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General introduction  

Fishing activities have accompanied human civilizations for thousands of years, supporting 

some of our ancestors through a hard life. As the technology advances, we have obtained more 

and more tools to detect what is out there in the mysterious ocean. Now we are able to explore 

species, collect data, measure samples and estimate quantities for various stocks. However, at 

the same time, the efficiency and capacity of removing large amounts of biomass out of the sea 

is rocketing. Without a long-term vision and proper decision-making mechanisms, it is easy to 

act myopically and overuse the power of modern technology. Today, it is a globally recognized 

issue that many fish populations, which were productive and sound before, are becoming overly 

exploited and poorer.  

To pursue better management and more sustainable resources, an important instrument in the 

hands of researchers is modelling. Population dynamics of fish is one of the oldest realms in 

quantitative population ecology (Shertzer, Williams, Prager, & Vaughan, 2014). Such 

mathematical models focus on the biological processes such as growth, recruitment, natural 

mortality and fishing mortality. As the literature evolves, many studies address more of the 

other aspects, for example climate uncertainty, predation relationship, ecosystem analysis, 

market interaction and other economic elements.  

All three chapters in the thesis share the common research field of fishery modelling and 

management. The goal is to propose modelling approaches, innovative recipes and management 

guidelines that potentially improve our understanding of the topic. In addition, all chapters 

employ bioeconomic models that incorporate both biological and economic elements. 

Numerical examples are applied in every chapter to demonstrate the model and to offer relevant 

discussions for real populations.  

The readers will find a wide spectrum of methods and techniques through the chapters, such as 

non-linear programming, dynamic optimization in discrete or continuous time and simulation. 

When the research question focuses on the first-best policy, optimization analysis is weighted 

more. When the study is mainly about effects of specified policies, simulation results are more 

emphasized.  

The structure of the models develops progressively in the thesis. In Chapter 1, to avoid possible 

oversimplification of a biomass model, we build an age-structured single species model. The 

time increment is the same as a typical yearly model. In Chapter 2, we still study a single species, 
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but instead of the numerous age classes we categorize the stock into two groups of immature 

and mature fish. The time frame here is more complicated and unconventional: seasonal and 

uneven time increment are introduced in discrete dynamic optimization. In Chapter 3, instead 

of single species models, we work with a predator-prey relationship in an ecosystem. Both 

optimization and simulation are conducted in a continuous time framework.  

Any fishery model is inevitably an abstract description of the world and contains multiple 

assumptions and distortions of reality. The essence of modelling is the balance between where 

to simplify and where to elaborate. For three chapters that have rather diversified biological 

structure, time increment and mathematical methods, a unified goal is to present a matching 

approach for each problem. For example, to look into seasonality in a year, Chapter 2 employs 

a two-dimensional size-structured model that not only simplifies the age classes but also 

systematically captures the season-dependent behaviour of each group.  

Stochasticity is an intrinsic feature of real-world fisheries, caused by mechanisms that are often 

tangled. While modelling the bioeconomic processes, it is a common practice to build a 

stochastic population growth. In Chapter 1, randomness from the environment is linked to both 

individual weight gain and recruitment of the cohorts, allowing us to study them separately. In 

Chapter 2, the core of the study is the innovative approach of the seasonal optimization model 

itself, therefore, stochasticity is not modelled. In Chapter 3, environmental stochasticity is 

summed up into one volatility term in the dynamic equation. Stochasticity may not be the centre 

of the research question in every chapter but is indeed a crucial aspect for reasonable modelling.  

In Chapter 1, the effects of recruitment patterns and environmental impacts on the optimal 

exploitation of a fish population are investigated. Based on a discrete-time age-structured 

bioeconomic model of Northeast Atlantic mackerel, we introduce the mechanisms that generate 

6 scenarios of the problem. Using the simplest scenario, optimizations are conducted under 8 

different parameter combinations. Then, the problem is solved for each scenario and 

simulations are conducted with constant fishing mortalities. We find that any parameter 

combination that favours the older fish tends to lend itself to pulse fishing pattern. The 

simulations indicate that a constant fishing mortality around 0.06 performs the best. A 

comparison between the optimal and the historical harvest shows that for most of the time, the 

optimal exploitation precedes the historical one, leading to much higher net profit and lower 

fishing cost.  
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Chapter 2 is an attempt to treat seasonality in a systematic way while most of the extant 

literature tends to neglect periodicity in fishery modelling. We present a multi-season multi-

state bioeconomic model and apply a periodic Bellman approach using dynamic programming 

to obtain the optimal feedback policy of each season. Our numerical illustration demonstrates 

that a seasonal dynamic optimization model allows for naturally occurring seasonal moratorium 

or potentially a Marine Protected Area (MPA). It shows that there exist optimal dynamic paths 

that develop into a permanent equilibrium cycle, which consists of one harvesting season 

followed by a moratorium period. This indicates an optimal closure of the fishery that a yearly 

model would overlook. Fishing pressure on the mature stock elicits even heavier harvesting in 

the next season on the same group. A protective moratorium of the immature could hinder the 

value of the whole stock.  

Chapter 3 demonstrates a predator-prey system of cod and capelin that confronts a possible 

scenario of prey extinction under the first-best policy in a stochastic world. We discover a novel 

‘super-harvest’ phenomenon that the optimal harvest of the predator is even higher than the 

myopic policy on part of the state space. Following the idea of harvesting the predator to protect 

the prey, we ban prey harvest and increase predator catch in a designated state space area based 

on the optimal policy. When we scale up the predator harvest by 1.5, the prey recovery rate 

escalates for as much as 28% at a cost of 5% value loss. We establish two strategies: modest 

deviation from the optimal on a large area or intense measure on a small area. It seems more 

cost-effective to target the stock space with accuracy than to simply boost predator harvest 

when the aim is to achieve remarkable improvement of prey recovery probability.  

 

Shertzer, K. W., Williams, E. H., Prager, M. H., & Vaughan, D. S. (2014). Fishery Models☆. 

In Reference Module in Earth Systems and Environmental Sciences. 

https://doi.org/10.1016/B978-0-12-409548-9.09406-9 

  



7 

 

Chapter 1 

 

1. Optimization of age-structured bioeconomic model: 

recruitment, weight gain and environmental effects 

Yuanming Ni a 

Abstract 

More and more fishery researchers begin to acknowledge that one-dimensional biomass models 

may omit key information when generating management guidelines. For the more complicated 

age-structured models, numerous parameters require a proper estimation or a reasonable 

assumption.  

In this paper, the effects of recruitment patterns and environmental impacts on the optimal 

exploitation of a fish population are investigated. Based on a discrete-time age-structured 

bioeconomic model of Northeast Atlantic mackerel, we introduce the mechanisms that generate 

6 scenarios of the problem. Using the simplest scenario, optimizations are conducted under 8 

different parameter combinations. Then, the problem is solved for each scenario and 

simulations are conducted with constant fishing mortalities.  

It is found that a higher environmental volatility leads to more net profits but with a lower 

probability of achieving the mean values. Any parameter combination that favours the older 

fish tends to lend itself to pulse fishing pattern. The simulations indicate that a constant fishing 

mortality around 0.06 performs the best. A comparison between the optimal and the historical 

harvest shows that for more than 70% of the time, the optimal exploitation precedes the 

historical one, leading to 43% higher net profit and 34% lower fishing cost.  

Keywords 

Age-structured, bioeconomic, recruitment, optimization 

  

                                                           
a Norwegian School of Economics. Helleveien 30, 5045 Bergen, Norway. Ni.yuanming@gmail.com 
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1.1 Introduction   

Many economic fishery studies have described the state of a population using biomass as the 

only variable (Schaefer, 1954). Such surplus production models use lumped parameters to 

describe the stock dynamics. In recent years, fishery biologists and economists widely begin to 

recognize that such one-dimensional models are too simple for developing realistic 

management guidelines (Tahvonen, 2008). One concern is about the dangerous tendency to 

catch small and immature fish (Pauly, Christensen, Dalsgaard, Froese, & Torres, 1998). 

Another is that ever increasing fishing pressure may cause various systematic changes in the 

internal structure and evolution of fish populations (Anderson et al., 2008), which may have 

crucial economic consequences that may not be captured by the biomass approach.  

The age-structured framework is pioneered by Baranov (1945), Beverton & Holt (1957), and 

Leslie (1945) among others. Many extensions have been explored since and have dominated 

fishery management (Hilborn & Walters, 1991). However, analysing the problem technically 

is still challenging. Clark (2010) has pointed out that an analytical solution for the general age-

structured problem is unattainable. Many models lend themselves to Mathematical 

Programming (Operational Research) and simulations, but not much to analytical studies. Still, 

it is possible to formulate a proper model and simulate how different factors influence the 

optimal fishing mortalities numerically. Our model is inspired by, among others, Walters (1969), 

Hannesson (1975), Getz & Haight (1989), Horwood (1987) and Tahvonen (2009).  

NEA (Northeast Atlantic) Mackerel (Scomber scombrus) is a fish species with high commercial 

values. In the 1960s and 1970s, the annual catches of mackerel in the Northeast Atlantic, mainly 

North Sea, rose steeply, resulting in an extreme drop in the 1980s. Consequently, the mackerel 

stock has been at low level for many years with poor recruitment. ICES (International Council 

for the Exploration of the Sea) advices have been proposing limits on the fishing mortality or 

the size of the catch to improve the situation of the unsustainable harvest. But still in 2014, as 

in all years since 2008, unilateral quotas have been set higher than the TAC indicated by the 

ICES Management Plan (ICES, 2014). It is thus of high interest to investigate the management 

of NEA mackerel. 

Among many environmental factors, food availability can be crucial and representative for all 

species. As typical plankton feeders, mackerel is affected by the abundance, distribution and 

composition of zooplankton to a large extent (Reid, Walsh, & Turrell, 2001). Most zooplankton 

species have a life span shorter than one year, therefore no age structure is applied for the 
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zooplankton population. The characteristics such as density, average size and distribution of 

zooplankton that interact with the mackerel stock are many. To simplify the problem reasonably, 

a single zooplankton index is used to describe prey density or the food availability for mackerel. 

Note that due to the position of zooplankton as a primary producer in the low trophic level, 

several assumptions are implied, which may or may not fall into the category of standard 

predator-prey models (Yodzis, 1994). First, the consumption of zooplankton by mackerel this 

year will not influence the prey density next year. Due to the many predators that zooplankton 

has simultaneously, the sole impact from mackerel is difficult to quantify. Second, the food 

supply of mackerel depends entirely on zooplankton abundance. Other prey species are not 

included.  

Random variations in the environment affect the dynamics of populations through changes in 

individual life histories (Benton, Lapsley, & Beckerman, 2002). In this paper, two interactions 

between the environmental factor (zooplankton index) and the fish population (mackerel) are 

considered. The first interaction is the influence by the zooplankton abundance on the mackerel 

recruitment. Mackerel spawns between May and July, which coincides with the zooplankton 

boom (Lockwood, 1988). It is known that higher food availability can bring down the natural 

mortality especially of the small fish larva by allowing them to spend more time in the deeper, 

darker and safer area of the sea. Since this interaction mainly applies for the first-year juveniles, 

it can be translated to a constant natural mortality plus a varying recruitment influenced by the 

zooplankton abundance. The argument for the second interaction is the strong and positive 

connection between weight and price. On the final product market, a mackerel can be called 

'large size' if the average weight is 400 to 600 grams (4-6 category); 'small size' if the average 

weight is 200 to 400 grams (2-4 category). The price differences between categories can be 

significant. Assuming one price for all age classes is not realistic.  

There have been different approaches addressing the two interactions: recruitment and weight. 

To deal with recruitment, some chose an exogenous and constant recruitment such as (Beverton 

& Holt, 1957) and (Clark, 2010). While some assumed that recruitment can be endogenous and 

stock-dependent, such as (Walters, 1969) and (Getz & Haight, 1989). In this paper, both 

approaches will be applied. To deal with weight, some studies such as (Walters, 1969) referred 

to the von Bertalanffy function as the rule that determines the individual fish weight. This study 

links mackerel's annual weight gain to the exogenous zooplankton index, which can be either 

deterministic or stochastic under different scenarios.  
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Due to its complexity, the age-structured model can be sensitive to many parameters (Horwood, 

1987). It is thus necessary to be cautious when it comes to combinations of parameters. In the 

literature, one issue has been connected to the parameter sensitivity: the choice between smooth, 

stable harvesting over time and periodic (oscillatory or pulse) fishing (Tahvonen, 2010). Clark 

(2010) argued that when there exists perfect selectivity, it is optimal to harvest each cohort at 

its maximum biomass, creating a stable harvest strategy. Hannesson (1975) pointed out that 

non-selective gear leads to pulse fishing. He also showed that discounting shortens the intervals 

between fishing periods. Tahvonen (2009) proves that when there are 2 age classes with 

endogenous recruitment, optimal harvest is pulse fishing under specific conditions such as non-

selective gear. Steinshamn (2011) showed that pulse fishing becomes less attractive as the 

distribution of the species moves from uniform to schooling. Rocha, Gutiérrez, & Antelo (2012) 

concluded that imperfect selectivity increases the optimal lifespan and the optimal pulse length.  

The approaches employed in this paper are innovative in several aspects. First, while many 

predator-prey models have been focusing on higher trophic levels (Major, 1978; Von 

Westernhagen, Westernhagen, & Rosenthal, 1976), this paper investigates the lower trophic 

level including the primary production. Second, a series of 8 parameter combinations has been 

examined before introducing the random environmental interactions, which offers some 

thought-provoking results. Third, based on a common framework of the model, 6 different 

scenarios have been applied in order to fully investigate the problem. Last but not least, based 

on the same population dynamics, both simulation and optimization are conducted, offering 

deeper understanding of the model.  

1.2 Model   

1.2.1 Model formulation 

The population dynamics is: 

𝑥𝑖+1,𝑡+1 = 𝑥𝑖,𝑡𝑒−(𝑚𝑖+𝑠𝑖𝑓𝑡)  (𝑖 = 0,1, … , 𝑛 − 1; 𝑡 = 1,2, … , 𝑇 − 1)                (1.1) 

where 𝑥𝑖,𝑡 is the number of fish individuals of age 𝑖 at time 𝑡 measured in millions; 𝑥𝑖,1 is given 

by historical data as the initial status of the stock; 𝑚𝑖 is the natural mortality of age 𝑖; 𝑠𝑖 is the 

selectivity parameter of age 𝑖 and 𝑓𝑡  indicates the fishing mortality at time 𝑡 and is also the 

decision variable of the model. The dynamics indicates that every year part of the cohort dies 

out of natural causes and another part is being harvested. Both events are assumed to happen 

instantaneously. The rest of the cohort survives the year and continue to grow and reproduce. 
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The maximum age of the fish in the model is denoted by 𝑛 and 𝑇 indicates the end period. It is 

assumed that all fish with age above 𝑛 will naturally die.  

In order to describe the recruitment, the Spawning Stock Biomass (SSB) is calculated as 

following: 

𝑆𝑡 = ∑ 𝑢𝑖𝑥𝑖,𝑡𝑤𝑖,𝑡𝑖                                                                        (1.2) 

where 𝑆𝑡 is the SSB at time 𝑡 measured in million tonnes; 𝑢𝑖 is the maturity ogive (proportion 

of sexually matured individuals in that age class) and 𝑤𝑖,𝑡 is the individual weight of the average 

fish of age 𝑖 at time 𝑡.  

The endogenous recruitment can be generalized as a recruitment function: 𝑥0,𝑡+1 = 𝜑(𝑆𝑡). 

Harvest can be obtained from the well-known Beverton-Holt model:  

𝐻𝑡 = ∑ ℎ𝑖,𝑡 =𝑖 ∑
𝑠𝑖𝑓𝑡

𝑠𝑖𝑓𝑡+𝑚𝑖
[1 − 𝑒−(𝑚𝑖+𝑠𝑖𝑓𝑡)]𝑤𝑖,𝑡𝑥𝑖,𝑡𝑖                          (1.3) 

where 𝐻𝑡 is the harvest biomass measured in million tonnes at time 𝑡 and ℎ𝑖,𝑡 is the harvest 

biomass measured in million tonnes of age 𝑖 at time 𝑡. 

The problem's objective is to maximize the following: 

𝑍 = 𝑚𝑎𝑥
𝑓𝑡

∑ ∑ (1 + 𝑟)−𝑡(𝑝𝑖,𝑡ℎ𝑖,𝑡 − 𝑐𝑓𝑡)𝑛
𝑖=0

𝑇
𝑡=1                             (1.4) 

where 𝑍 is the present value of the total net profit, 𝑟 is the discrete discount rate, 𝑝𝑖,𝑡 indicates 

the unit weight price for age 𝑖 at time 𝑡 and 𝑐 is the calibrated cost parameter.  

The objective function is subject to the following constraints: 

1. Population dynamics: Eq. (1.1) 

2. Sustainability constraint: SSB does not fall below a proposed biomass reference point in the 

end:  𝑆𝑇 ≥ 𝐵𝑙𝑖𝑚  

3. Non-negativity for variables 𝑥𝑖,𝑡, 𝑤𝑖,𝑡 and 𝑓𝑡 

4. Effort restriction (admissible controls defined by harvest capacity): 𝑓𝑡 ∈ 𝐹 

The problem is solved in GAMS as a nonlinear programming problem using solver NLP.  
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According to Steinshamn (2011), the stock elasticity parameters for different fish species vary, 

resulting in various population dynamics and production functions. The model is concise and 

easy to analyse in the extreme cases where stock elasticity equals either zero or one. Zero stock 

elasticity lend itself to pure schooling fishery where production function is independent of the 

stock. Mackerel, which has a certain schooling behaviour, has a stock elasticity between zero 

and one. A larger stock level, even for schooling species, naturally leads to higher probability 

of finding the fish schools given the same level of searching effort. Thus, we believe the 

production function is not completely stock independent. In addition, another study of a 

schooling species Norwegian Spring-Spawning Herring uses a similar model (Bjørndal, Gordon, 

Lindroos, & Kaitala, 2000). Therefore, a stock elasticity of one is applied in the model.  

Optimizing with respect to fishing mortality is equivalent to finding the optimal effort if we 

follow 𝑓𝑡 = 𝑞𝐸𝑡, where 𝑞 is the catchability parameter. The cost parameter 𝑐 in the model can 

be reckoned as the unit cost of effort multiplied by the catchability parameter. Both paradigms 

are interchangeable common practices. This paper focuses on optimizing the fishing 

mortality.  

1.2.2 Two interactions 

We introduce the zooplankton index 𝜌𝑡  which is assumed to take the form of a Bounded 

Random Walk (BRW) (Nicolau, 2002; Vandromme et al., 2011). This specified process1 has a 

mean reverting property around 1 but behaves like a random walk in the range of [0.6,1.4]. 

Another constraint of 𝜌𝑡 ∈ [0.5,1.5] is forced in order to avoid extreme outliers. 

The first interaction of the zooplankton influencing mackerel's average weight gain goes as 

follows: 

𝑤𝑖+1,𝑡+1 = 𝑤𝑖,𝑡 + [0.036(𝜌𝑡 − 1) + 0.055]            𝑤0,𝑡 ≈ 0                  (1.5) 

Usually growth rates are difficult to determine from catches because schools are sorted by size 

and their mobility prevents representative sampling (Skagen, 1989). A small difference between 

weight of catch and weight of stock exists in the data. It is ignored in the model for simplicity. 

It is assumed that the weight for the first age class is virtually zero. As the same cohort 

                                                           
1 𝜌𝑡+1 = 0.01[100𝜌𝑡 + 𝑒−120(𝑒−3(100𝜌𝑡−100) − 𝑒3(100𝜌𝑡−100)) + 𝜎𝜌휀𝑡] where 휀𝑡 is a sequence of 

independent and identically distributed random variables with 𝐸[휀𝑡] = 0 and 𝑉𝑎𝑟[휀𝑡] = 1 and the 

volatility 𝜎𝜌 = 2. 
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accumulates its weight over time, the zooplankton index 𝜌𝑡 decides how much weight is gained 

each year for all cohorts. 

Fig. 1.1 displays the historical average individual weight of the fish. When it is assumed that  

𝜌𝑡 = 1 for all t, the weight gain is constant every year, creating a linear weight development 

pattern that can be written as: 

 𝑤𝑖+1,𝑡+1 = 𝑤𝑖,𝑡 + 0.055                                                   (1.6) 

                           (a) Stock                                                       (b) Catch 

 

Fig. 1.1 Minimum and maximum weight of mackerel by age class from year 1980 to 2014 

The possible maximum and minimum individual weights respectively are 0.83 kg and 0.49 kg 

at the age of 12 in the model. There exist cases where maximum weight is reported to be 3.5 

kg2. Such extreme values will not be considered in the model. 

The second interaction is about zooplankton affecting mackerel's recruitment. Under different 

scenarios, recruitment can be: first, exogenously given and fixed as 4500 million, which is the 

historical mean recruitment from 1980 to 2014; second, governed by a recruitment function; 

third, exogenous and random from a normal distribution N(4500,2000) based on historical data 

(ICES, 2014). For the first and third case, the behaviour of zooplankton index does not alter the 

recruitment. For the second case, we choose the Ricker formula (Ricker, 1954) as an estimation 

of the recruitment function and include the zooplankton index in a multiplicative form: 

𝜑(𝑆𝑡, 𝜌𝑡) = 𝜌𝑡𝛼𝑆𝑡𝑒−𝛽𝑆𝑡                                                 (1.7) 

                                                           
2 http://www.imr.no/temasider/fisk/makrell/makrell/en 
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where 𝛼 = 6.37 and 𝛽 = 0.52  for NEA mackerel (Simmonds, Campbell, Skagen, Roel, & 

Kelly, 2011).  

 

Fig. 1.2 Ricker recruitment function and the historical recruitment data 

We see from Fig. 1.2 that the historical recruitment data (square dots) exhibits rather high 

volatility and spreads widely around the estimated curve. The recruitment curve seems to have 

limited explanatory power about the relationship between the SSB and the recruitment next 

year. 

1.2.3 Scenarios illustration 

The zooplankton index can either be deterministic and fixed as 1 (denoted as D) or stochastic 

as a BRW process (denoted as S). Recruitment can be fixed as 4500 million (denoted as F) or 

governed by recruitment curve as in Eq. (1.7) (denoted as C) or random from a normal 

distribution N (4500,2000) (denoted as R). All scenario combinations are listed in Table 1.1. In 

scenarios DF, DC and DR, weight gain is governed by Eq. (1.6) while in scenarios SF, SC and 

SR by Eq. (1.5). 

Table 1.1. Scenario illustrations 

Zooplankton index 

Recruitment  

 

Deterministic 

 

Stochastic 

Fixed  DF SF 

Curve  DC SC 

Random DR SR 
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 1.3 Parameters   

This section applies the simplest scenario DF where the zooplankton index is deterministic as 

1 throughout the entire period. Recruitment is fixed as the historical mean. Individual weight is 

assumed to have a constant yearly gain as in Eq. (1.6). 

1.3.1 Parameter specifications 

It is a common practice to set the age classes of mackerel from 0 to 12, where the 0 age class is 

the recruitment of that year. So 𝑖 ∈ [0,1,2, … 12] and 𝑛 = 12. The whole modelling period is 

set to be 100 years in order to gain long term insights of the problem. Thus 𝑡 ∈ [1,2, … 𝑇] and 

𝑇 = 100. The original status of the stock for each age class in the model comes from the 

historical data in year 1980. Discount rate r is set to 5%. The effort constraint can be chosen as 

𝑓𝑡 ∈ [0,10], which has a high enough upper bound for fishing mortality (Horwood, 1987). 

Fishing costs c is calibrated to 23000 in order to obtain a cost-revenue ratio around 70%: a 

number that has been observed for pelagic fisheries such as mackerel, herring, blue whiting and 

capelin (Fiskeridirektoratet). Minimum SSB 𝐵𝑙𝑖𝑚 is 1.84 million tonnes (ICES, 2014). Maturity 

ogives of mackerel 𝑢𝑖 are presented in Table. 1.2.  

The three varying parameters are price, natural mortality and selectivity. For such parameters, 

we either apply a constant number, which is what usually has been done, or utilize the age 

structure of the model by assigning age-specific or weight-dependent parameter values.  

Price of mackerel in Norwegian kroner per kilogram (NOK/kg) is either constant as the mean 

price 𝑝 = 8.46 NOK/kg  or linear as a function of weight: 𝑝𝑖,𝑡 = 19.87𝑤𝑖,𝑡 (Zimmermann & 

Heino, 2013). Natural mortality of mackerel is assumed to be a constant 𝑚 = 0.15 for all age 

classes (ICES, 2014) or age-specific: 𝑚𝑖 = 0.32 − 0.02𝑖. 

Selectivity 𝑠𝑖 is assumed to be either knife-edge selective (denoted 𝑠𝑖
′) where only classes above 

a certain age are harvest or non-selective (denoted 𝑠𝑖
∗) where every age class lend itself to some 

fishing mortality. Both cases are shown in Table. 1.2. Note that age-class zero is of no interest 

for harvesting. The non-selective case can be calculated as the age-specific fishing mortality 

divided by maximum fishing mortality in the same year. According to ICES (2014), there has 

been a slow shift from selecting older classes to younger classes over time. To embody this 

shift, we apply the average historical values on the first 35 years and use the values in year 35 

for the remaining periods. 
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Table 1.2 Parameter values for maturity ogive and selectivity 

 

𝑖 

 

𝑢𝑖 
𝑠𝑖

′ 𝑠𝑖
∗ 

𝑡 ∈ [1, 𝑇] 𝑡 ∈ [1,35] 𝑡 ∈ [36, 𝑇] 

0 0 0 0.03 0.01 

1 0.106 1 0.1 0.04 

2 0.539 1 0.18 0.18 

3 0.913 1 0.37 0.43 

4 0.998 1 0.64 0.72 

5 0.999 1 0.73 0.82 

6 0.999 1 0.9 0.83 

7 1 1 1 1 

8 1 1 1 1 

9 1 1 1 1 

10 1 1 1 1 

11 1 1 1 1 

12 1 1 1 1 

1.3.2 Parameter combinations 

The three varying parameters are combined and explored: constant vs. weight-dependent price; 

knife-edge selective vs. non-selective; constant vs. age-specific natural mortality. This gives a 

total of 8 different combinations. It is found that the optimization results are highly sensitive to 

parameter assumptions. In other words, a small change in parameter combination may lead to 

rather distinct results. 

It seems that weight-dependent price 𝑝𝑖,𝑡 , knife-edge selectivity 𝑠𝑖
′  and constant natural 

mortality 𝑚 lend themselves to pulse fishing. A possible explanation is that the weight-specific 

price structure puts higher value on older classes, justifying the waiting period before harvesting. 

With selectivity 𝑠𝑖
′, younger age classes are more vulnerable towards harvesting and this creates 

a relatively lower fishing pressure for the older age classes. Selectivity parameters applied have 

in fact very limited difference: both 𝑠𝑖
′ and 𝑠𝑖

∗ are the same above age 7. However, it induces 

obvious changes of the results. This paper numerically illustrates the scale of the issue, which 

should never be underestimated. In many studies, natural mortality is assumed to be constant 
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for all. When the bigger fish has a higher probability to survive, this also gives incentive to wait 

for the stock to accumulate. 

                            (a) 𝑝𝑖,𝑡, 𝑠𝑖
∗, 𝑚𝑖                                                (b) 𝑝𝑖,𝑡, 𝑠𝑖

∗, 𝑚 

 
                             (c) 𝑝𝑖,𝑡, 𝑠𝑖

′, 𝑚𝑖                                                (d) 𝑝𝑖,𝑡, 𝑠𝑖
′, 𝑚 

 
                              (e) 𝑝, 𝑠𝑖

∗, 𝑚𝑖                                                   (f) 𝑝, 𝑠𝑖
∗, 𝑚 

 
                               (g) 𝑝, 𝑠𝑖

′, 𝑚𝑖                                                   (h) 𝑝, 𝑠𝑖
′, 𝑚 

 

Fig. 1.3 Optimal fishing mortalities for 8 parameter combinations 

To sum up, any parameter choice that favours the older age classes, for example by assigning 

higher value or decreasing the chance of death of older classes, tends to lend itself to pulse 

fishing pattern. 
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1.4 Optimization 

In this section, we choose the parameter combination: price 𝑝𝑖,𝑡is weight-dependent, selectivity 

is 𝑠𝑖
∗ and natural mortality is a constant 𝑚. This combination has a modest tendency towards 

favouring the pulse fishing pattern. All other parameter values are specified as in Section 1.3.1. 

All scenarios in Table. 1.1 will be explored and summarized in this section.    

1.4.1 Mean results 

For each scenario of SF, SC and SR, 1000 realizations of the zooplankton index are drawn 

randomly. Each represents a possible outcome of the environmental development path during 

the 100 years. The model is treated as a deterministic nonlinear programming problem under 

each path. Optimization is conducted for each realization and mean results are obtained by 

taking the average.  

Several indicators of the results are used for interpretation. Net profits Z and fishing costs C are 

measured in million dollars and calculated as the mean from the 1000 scenarios. The fishing 

cost C for the whole period is calculated as: 𝐶 = ∑ (1 + 𝑟)−𝑡𝑐𝑓𝑡𝑡 .  

The average time series of harvest �̅�𝑡 and stock biomass �̅�𝑡 are measured in million tonnes and 

are obtained as the average from the 1000 scenarios. �̅�, �̅� and �̅�0,𝑡  are the average harvest, 

stock biomass and recruitment respectively. Only periods from t18 to t90 are used to calculate 

the mean results in order to avoid the adjusting phases in the beginning and at the end of the 

model, which have extremely high volatility. 𝜎𝑍
∗ denotes the standard deviation of the sample 

for net profits and 𝜎𝐶
∗ denotes the standard deviation of the sample for fishing costs. 

As illustrated in Table. 1.3 the only modelling difference between scenario DF and DR is the 

randomness of recruitment. Scenario DR has a higher profit margin on average but with a lower 

probability of actually reaching the mean. Note that random recruitment in scenario DR is from 

a symmetric probability distribution around the same mean as DF. The model seems to be able 

to efficiently capture and utilize the extremely high recruitment to reach higher average profits. 

It is also noticeable that 𝜎𝐶
∗  is generally larger than 𝜎𝑍

∗. This may be explained by the way 

fishing costs and sales revenues are calculated. On one hand, many elements are involved in 

determining the sales revenue such as individual weight and stock size, thus smoothing out 

potential variances. On the other hand, the calculation of total fishing cost is purely linked to 

fishing mortality, which may have high volatility.  
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Scenario DC results in the lowest net profit, lowest cost and poorest harvest and stock biomass. 

This is mainly due to the poor recruitments. If the recruitments generated by the model strictly 

follow the estimated Ricker curve, it ends up with only 74% of what has been the historical 

average. With the fact that recruitment data usually is rather volatile, letting a single recruitment 

function to take over seems an unreliable approach leading to a pessimistic scenario. 

Table 1.3 Mean results  

(Z and C are net profit and fishing cost for the whole period. 𝜎∗  represents the standard deviation of the 

sample. �̅� is the average harvest in million tonnes. �̅� is the average stock biomass in million tonnes. 

�̅�0,𝑡 is the average recruitment in millions. Mean values are obtained from t18 to t90.) 

  Scenario 
 

DF 

 

DC 
 

DR 
 

SF 
 

SC 
 

SR 
Indicators  

𝑍 12504 8761 14222 12955 9491 14596 

𝐶 29817 23733 30843 29954 24442 30821 

𝜎𝑍
∗ / / 1497 2228 1851 2811 

𝜎𝐶
∗ / / 1884 2860 4199 3164 

�̅� 0.2 0.1 0.22 0.19 0.13 0.23 

�̅� 5.17 4.15 5.16 5.19 4.14 5.16 

�̅�0,𝑡 4500 3308 4509 4500 3290 4498 

Compared to DF, scenario SF lends itself to slightly higher values of average net profit and 

fishing cost. The improvements are rather trivial. It seems that a nonlinear individual weight 

development path may not create huge differences in the results. However, note that the 

increases in 𝜎𝑍
∗ and 𝜎𝐶

∗ are much higher between scenario SF and DF than between DR and DF, 

which is mainly caused by varying annual weight gains. This implies that when recruitment is 

fixed, the randomness of weight gain, which may be presumably small, is transferred to the 

volatility of the value as well as cost of harvesting.  

Similar to DC, scenario SC has a poor performance: in more than 70% of the time, scenario SC 

leads to lower profits than SR. However, scenario SC has a higher net profit than DC on average 

due to the introduction of the random environmental factor. Scenario SR, similar to DR, has the 

highest profit and cost on average all the scenarios. The varying annual weight gain almost 

doubles 𝜎𝑍
∗ and 𝜎𝐶

∗ by switching from DR to SR, which is not a surprise given two sources of 

randomness in the model. 
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To sum up, higher volatility of the zooplankton index, implying either varying recruitment or 

volatile weight gains, leads to higher net profits on average but together with a lower probability 

of actually hitting the mean values. It can be interpreted as the risk upon the fishing industry 

brought by nature. When recruitment is fixed, volatile weight gains cause considerable increase 

of 𝜎𝑍
∗ and 𝜎𝐶

∗. When weight gain is constant, random recruitment also lends itself to larger 

volatility of profits and costs. Strong and extremely good recruitment can be utilized by the 

model to reach better profits. Net profits usually have smaller variances than fishing costs 

mainly due to the structure of the model. Recruitment governed by a recruitment function tends 

to lead to the weakest zero age-class, thus the poorest overall performance. 

1.4.2 Time series results 

Fig. 1.4 displays the mean estimated optimal fishing mortality time series of 1000 realizations 

under each scenario. Scenarios DF, DC, SC and SF exhibit various scales of pulse fishing 

pattern while DR and SR have a more stable harvest. For DR and SR, the normally distributed 

recruitments are generated with a rather large standard deviation, leading to widely distinctive 

optimization results. With all the realizations, they simply cancel out and smoothed out when 

the mean time series are presented.  

The volatility of simulated recruitments in scenario SC is roughly 600 while this number is 

about 2000 in DR and SR. When the volatility of recruitment is zero (scenario SF) or relatively 

small (scenario SC), the pulse fishing patter clearly remains even after taking the average. With 

a fixed recruitment as in SF, the suggested fishing activity is periodic and reaches a peak about 

every 9 years. Yet the fishing mortality peaks are of moderate levels. For scenario SC, the 

recruitment is comparatively weaker, so the waiting time or moratorium period is longer. About 

every 14 years, the time series of scenario SC suggest quite a strong harvesting action.   

A similar conclusion could be drawn when comparing scenario DF and DC. A guaranteed 

recruitment offers the possibility for more frequent fishing activities and lower fishing mortality 

in general.  

While the time series results for scenario DC and SC are extremely alike, more distinctions can 

be found between DF and SF. When the weight gain is stochastic, the ‘waiting period’ is not 

strictly moratorium and the strong harvest years becomes more conservative.  
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                            (a) Scenario DF                                            (b) Scenario DC 

 
(c) Scenario DR                                             (d) Scenario SF 

 
(e) Scenario SC                                             (f) Scenario SR 

 

Fig. 1.4 Mean estimated optimal fishing mortalities 

1.5 Simulation 

A straightforward policy that is easy to implement in reality is a constant fishing mortality. In 

this section, fishing mortalities from 0.02 to 0.1 are assessed through simulations of the stock 

in a period of 100 years under the 6 scenarios. All parameters are the same as in Section 1.4. 

Simulating with a constant fishing mortality has been a tool for analysing such bioeconomic 

problems. Bjørndal, Ussif, & Sumaila (2003) investigated the Norwegian spring spawning 

herring (NSSH) and found that with a time horizon of 20 years, a constant fishing mortality of 

0.15 is economically optimal. They assumed that the price of the fish is a constant and applied 

20 years as the simulation period, which is much shorter compared with this study.  

As shown in Fig. 1.5, regardless of the choice of scenarios, net profit is maximized when fishing 

mortality is around 0.06. In the management plan simulations of ICES advice 2015, the NEA 
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mackerel stock is simulated with different target fishing mortalities from 0.2 to 0.35. No 

economic elements are accounted for in these simulations. This paper promotes a much lower 

fishing mortality than what is being evaluated in the ICES advice. One aspect that potentially 

contributes to this difference is the weight-specific price structure. This assumption includes 

crucial economic aspects that could be neglected in pure biological studies. When the fishing 

mortality is high and constant, the composition of the entire population may shift towards 

smaller individuals, leaving the cohorts limited time to accumulate body weight in time and 

therefore lose its value.  

                           (a) Net profits                                           (b) Harvest biomass 

 

Fig. 1.5 Simulated net profits and harvest biomass under different fishing mortalities for each 

scenario 

The level of net profits is largely influenced by the overall recruitment and the random 

environmental factor. In scenario DC and SC where recruitment is determined by the Ricker 

function, the recruitments are systematically lower, leading to smaller profits and smaller 

optimal fishing mortality. In the other scenarios, DF has the lowest profits, which goes in line 

with the findings from Section 1.4.1. Compared to Table. 1.3, simulations with a fixed fishing 

mortality lead to average net profits that are at least 1 𝜎𝑍
∗ lower than the optimization results. 

The curve of total harvest biomass against fishing mortality in Fig. 1.5(b) is slightly concave. 

Since the fishing mortality is kept constant for years in the simulation, a heavier harvesting 

gives rise to a smaller stock biomass and smaller individuals. When the stock is harvested to a 

poor level, even large fishing effort will still have little return. This may explain what can be 

observed in Fig. 1.5(a) and (b): the more we manage to harvest, the worse it becomes regarding 

net profits once the fishing mortality goes beyond the optimal level.  
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1.6 Historical vs. optimal harvest 

It is of interest to apply some real data to the model and make comparison between historical 

harvest and optimal harvest offered by the optimization model. Similar to scenario SC, this 

section assumes that the zooplankton index is stochastic and recruitment is governed by a 

recruitment curve as in Eq. (1.7), in order to fully capture the two interactions of recruitment 

and weight gain. Parameter T is changed to 40 years in order to cover the available data from 

1980 to 2014. Fishing cost c is adjusted to 11000. 

                     (a) Fishing mortality in HT                         (b) Fishing mortality in OP 

 
  (c) Harvest biomass in HT                          (d) Harvest biomass in OP 

 
(e) Stock biomass in HT                              (f) Stock biomass in OP 

 

Fig. 1.6 Results for scenarios HT and OP 

We use 'HT' to indicate the results of historically applied harvest and 'OP' for the optimal 

harvest. Both have the same random number generator seed. Since the stock has never been 

managed under a pulse fishing regime with consecutive years of strict moratorium, the optimal 

exploitation requires certain constraint in order to remain practical and comparable. To offer 

relevant proposals, an extra constraint of 𝑘1 ≤
𝑓𝑡+1

𝑓𝑡

≤ 𝑘2 is added in the optimization, where 
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𝑘1 = 0.75 and 𝑘2 = 1.25 are the minimum and maximum annual change rate respectively 

from historical data. 

As shown in Table. 1.4, HT leads to 43% lower profit, 34% higher cost and a larger cost-revenue 

ratio on average. In addition, with more than twice the fishing mortality and 1.6 times the 

harvest biomass of OP, HT maintains 32% lower stock biomass level. The historical 

exploitation is economically inefficient and biologically unsustainable.  

As presented in Fig. 1.6, it is no surprise that the results of HT show that NEA mackerel stock 

had been harvested unsustainably. The stock biomass kept decreasing to a minimum level 

around 2.4 million tonnes in year 2005. In year 1994 and 2003, fishing mortality peaked to 0.37 

and 0.46 respectively. After the second peak, fishing mortality came down to around 0.22, 

leading to a slight recover in stock biomass.  

The fishing mortalities in Fig. 1.6(b) can be the proposal for management plan of the NEA 

mackerel from our model. It not only leads to a higher net profit but also a higher and more 

stable stock biomass, which is crucial for a healthy stock structure and sustainable fishery 

resource management. The proposed harvest policy secures both biological and economical 

potential of the stock, diminishing the possibility of potential population collapse.  

Table 1.4 Results for scenarios HT and OP  

(Z and C are net profit and fishing cost for the whole period. 𝜎∗  represents the standard deviation of the 

sample. �̅� is the average harvest in million tonnes. �̅� is the average stock biomass in million tonnes. 

�̅�0,𝑡  is the average recruitment in millions. 𝑓̅ is the average fishing mortality. Mean values are 

obtained from t15 to t35.) 

  Scenario 
 

HT 

 

OP 
Indicators  

𝑍 15944 28216 

𝐶 47309 31067 

𝜎𝑍
∗ 4080 2769 

𝜎𝐶
∗ 396 388 

�̅� 0.44 0.28 

�̅� 2.76 3.63 

�̅�0,𝑡 4369 3778 

𝑓 ̅ 0.312 0.118 
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As Hannesson (2011) pointed out: 'What pulse fishing means is that a stock of fish is fished 

down heavily for a short period of time and then left to replenish itself for a longer period. But 

what does the industry do in the meantime?' The added constraint in this section successfully 

limits the variations of fishing mortality over time.  

It is shown in Table. 1.5 that as the constraint gets tighter, both profit and cost tend to decrease; 

the shadow cost for having the constraint rises. Still, the scale of the constraint shadow cost is 

low: within 10%. At a relatively low cost, the constraint has made the proposal more realistic 

since stable quotas are favoured by fishers as they enable the decision making to be more 

predictable and correct. When the annual change rate of fishing mortality is within 2% (𝑘1 =

0.98 and 𝑘2 = 1.02), it is still valid that in more than 70% of the time, OP results in higher 

average net profits than HT. It seems possible to obtain better results than HT if the harvest 

strategy is to apply a constant fishing mortality level. Such a simple strategy can have limited 

risk, higher mean profits and more straightforward implications for the sector. 

Table 1.5 Results for OP under various sets of 𝑘1 and 𝑘2 

(Z and C are net profit and fishing cost for the whole period. Shadow cost is calculated as the percentage 

difference of the objective value Z with (set 1-4) and without (set 5) the underlying constraint. 𝜎∗  

represents the standard deviation of the sample.) 

Parameter sets 1 2 3 4 5 

𝑘1 0.75 0.9 0.95 0.98 +∞ 

𝑘2 1.25 1.1 1.05 1.02 −∞ 

𝑍 28216 27934 27512 26894 29332 

𝐶 31067 30451 30547 30209 31770 

Shadow cost 3.8% 4.8% 6.2% 8.3% / 

𝜎𝑍
∗ 2769 2748 2825 2942 2903 

1.7 Conclusion  

This paper sets up an age-structured bioeconomic model of NEA mackerel and introduces an 

environmental factor that affects the weight gain process and the yearly recruitment of the 

population. To deal with such a complex model, certain assumptions are required. All the 

simplifications are based on existing studies. Several methods have been implemented to 

analyse the problem: simple optimization of nonlinear programming problem; extracting 
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average results from multiple optimizations; simulations and comparison between historical 

and optimal policy.  

It is found that weight-dependent price, knife-edge selectivity and constant natural mortality 

promote pulse fishing as the optimal exploitation pattern. Any parameter combination that 

advocates the older age classes encourages the policy to give time for the population to 

accumulate biomass before removing a large quantity in a short period. The behaviour of the 

optimal policy is quite sensitive to the combination of parameters. The challenge for such age-

structured models lies not only in estimating the numerous age-dependent parameters, but also 

in choosing the assumptions that sway the results to the minimum extent.  

The mean results from multiple optimizations suggest that a higher volatility of the 

environmental factor leads to higher net profits on average but with a smaller likelihood of 

achieving the mean values. When recruitment is constant, the seemingly small stochasticity in 

the weight gaining process causes huge volatility in net profits and fishing costs. Although the 

Ricker recruitment function is estimated from the historical data in a mathematically sound 

manner, still it seems oversimplified for generating reasonable recruitments. In our numerical 

example, even with a certain amount of randomness involved, the recruitment curve constantly 

produces the most pessimistic scenarios of all.  

When a constant policy is applied for simulations, it is found that a fishing mortality around 

0.06 produces the highest net profits. This result promotes a much more conservative policy for 

NEA mackerel than what ICES reports have examined. The simulations yield at least one 𝜎𝑍
∗ 

lower net profits than optimizations regardless of the scenario, which is an expected situation. 

In reality, a stable and predictable fishing pattern without intense harvesting peaks is practical 

and valuable to the industry and management of the resource.   

Comparisons between the historical and the optimal harvest prove that the past exploitation has 

been economically inefficient and biologically unsustainable. A proper and constant fishing 

mortality policy has the possibility to exceed the performance of the historical harvest. When 

conducting the optimization in this section of the paper, an extra constraint on the annual change 

rate of the decision variable is attached in order to smooth out the policy. The cost of having 

such a constraint is inexpensive: within 10% of the total profit. The comparison manifests that 

in more than 70% of the time, the optimal harvest offered by the model leads to 43% higher net 

profit and 34% lower fishing cost.   
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Appendix 

Table A. Notations and parameter values 

Subscripts       Definitions  

𝑖  Age 

𝑡  Time/Period 

Variables   

𝑥𝑖,𝑡  Number of individuals of age 𝑖 at time 𝑡 (millions) 

𝑓𝑡  Fishing mortality at time 𝑡 (decision variable) 

𝑠𝑖  Selectivity at age 𝑖 

𝑤𝑖,𝑡  Average individual weight of age 𝑖 at time 𝑡 (tons)  

ℎ𝑖,𝑡  Harvest biomass at time 𝑡 of age 𝑖 (million tons) 

𝐻𝑡   Harvest biomass at time 𝑡 (million tons) 

𝑆𝑡  Spawning Stock Biomass (SSB) at time 𝑡 (million tons) 

𝑝𝑖,𝑡  Unit price of age 𝑖 at time 𝑡 (1000NOK/ton) 

𝜌𝑡  Zooplankton index 

Parameters Values  

𝑚 0.15 Natural mortality (same for all age classes) 

𝑚𝑖 0.32 − 0.02𝑖 Natural mortality at age 𝑖 

𝑛 12 Maximum age class 

𝑇 100 End period 

𝑢𝑖 Table 1.2 Proportion of sexually matured individuals at age 𝑖  

𝑠𝑖
′ Table 1.2 Knife-edge selectivity   

𝑠𝑖
∗ Table 1.2 Non-selective selectivity 

𝛼, 𝛽  6.37; 0.52 Parameters for the Ricker’s recruitment function 

𝑝 8.46 Constant unit price (NOK/kilo) 

𝑟 0.05 Discount rate 

𝑐 23000 Calibrated cost parameter for pure schooling fisheries 

𝐵𝑙𝑖𝑚 1.84 Biomass reference limit (million tons) 

𝐹 [0,10] Fishing mortality range 
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Abstract 

Many biological and economic processes in fisheries occur seasonally though most of the extant 

literature tends to neglect periodicity. This work is an attempt to treat seasonality in a systematic 

way. We present a multi-season multi-state bioeconomic model and apply a periodic Bellman 

approach using dynamic programming to obtain the optimal feedback policy of each season. 

Our approach has rich potentials. It could deal with seasonal patterns of arbitrary uneven lengths: 

some may span years and some may occur within a year.  

Our numerical illustration demonstrates that a seasonal dynamic optimization model allows for 

naturally occurring seasonal moratorium or potentially a Marine Protected Area (MPA). It 

shows that there exists optimal dynamic paths that develop into a permanent equilibrium cycle, 

which consists of one harvesting season followed by a moratorium period. This indicates an 

optimal closure of the fishery that a yearly model would overlook. Fishing pressure on the 

mature stock elicits even heavier harvesting in the next season on the same group. A protective 

moratorium of the immature hinders the value of the whole stock.  

Keywords 

OR in natural resources; Seasonality; Dynamic programming; Optimization; Fisheries 

                                                           
a,* Corresponding author. Norwegian School of Economics. Helleveien 30, 5045 Bergen, Norway. 

Ni.yuanming@gmail.com 

b Norwegian School of Economics. Helleveien 30, 5045 Bergen, Norway. Leif.Sandal@nhh.no 



32 

 

 

2.1 Introduction   

2.1.1 Motivation behind seasonality 

Numerous commercial fisheries exhibit periodic patterns that undergo periods of feeding, 

reproduction, migration and harvesting (Clark, 2010). However, most commercial fisheries are 

managed quintessentially on a yearly basis. For example, agencies like the International Council 

for the Exploration of the Sea (ICES) collect annual data and provide annual advice regarding 

stock status, reference points and Total Allowable Catches (TACs) (Fisheries - European 

Commission, 2016). Often, annual TACs are allotted to different vessel groups that target the 

resource in different seasons (Kvamsdal et al., 2017). Therefore, we conduct this work believing 

that research and policymaking should incorporate seasonality in fisheries to a larger and deeper 

extent.  

Our approach is an initial attempt that applies Dynamic Programming (DP) to obtain the optimal 

feedback control policy with both seasonality and multidimensional states in a bioeconomic 

model under an infinite time horizon. It has rich potential because this approach makes it 

possible to take into consideration arbitrary season lengths including longer seasonality that 

spans more than a single year. For instance, we may model El Nino conditions that happen at 

intervals spanning several years combined with seasonal features that take place annually.  

Many fisheries with notable seasonal variations have been studied using diverse methodology. 

Some ecological studies focus on the biological aspects of the seasonal stock such as population 

growth (Durant et al., 2008). Some stand from an economic and empirical point of view: 

Hannesson, Salvanes, & Squires (2010) analysed the effect of technological change on labour 

and productivity in the seasonal Lofoten fishery using data over 130 years. Hermansen & 

Dreyer (2010) investigated how the regime aiming to shift the harvesting pattern towards the 

low season performed for the Lofoten fishery. Seasonal changes were considered an existing 

negative impact to the processing industry and data about the regime was collected to test the 

hypotheses empirically. Some investigate the consequences for fisheries exposed to seasonal 

environmental disturbances. Huang & Smith (2011) employed the optimal control theory on an 

annual fishery with a seasonal hypoxia shock and found that the pollution shifts the harvest 

opening earlier in the year. Various nonlinear programming optimization models establish 

multiple periods with time dependent parameters and variables to capture seasonality. Önal et 

al. (1991) developed a nonlinear mathematical programming model with multi-periods and 
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size-structure to determine the optimal harvesting pattern for the Texas shrimp fishery. The 

optimal policy during 1000 days were compared with the actual observation and substantial 

overfishing was found especially in spring and summer. There are also highly detailed 

simulation models that assess fishery management policies (Pelletier et al., 2009). They can 

incorporate complex seasonality in the dynamics without much restriction since the ‘curse of 

dimensionality’ in itself does not impose challenge on such what-if analyses.  

Although many researchers have approached seasonality in the literature, most have built intra-

seasonal bioeconomic models to analyse within-season harvesting in regulated open access 

fisheries (Smith, 2012). Larkin & Sylvia (1999) set up a nonlinear programming model to 

determine the time path of harvest by allocating effort across months (intra-season harvest 

pattern) and annual quotas between competing industry sectors (catch rights) and found that 

intra-season quality generated higher net benefits than the allocation of catch rights. Holland 

(2011) simulated an intra-annual numerical model to optimize effort and catch over a one-year 

period in the Maine lobster fishery under seasonal variability in catchability. Such intra-season 

studies tend to assume that fishing takes place over a single season, with a frequently fixed 

season length (Kvamsdal et al., 2017). 

Both the profound role of seasonality in fisheries and the inadequate studies in the literature 

call for further research in this direction. Seasonality in fisheries is a common phenomenon: 

both biological processes, such as spawning, and human activities, such as harvesting, are 

seasonal rather than smoothly distributed over time (Bjørndal & Munro, 2012; Clark, 2010). At 

the same time, seasonality is complex and difficult to address: when considering one-year time 

increments, discrete-time models tend to neglect seasonality; when considering autonomous 

optimal feedback policies, continuous-time models neglect it as well (Kvamsdal et al., 2017). 

Moreover, when seasonality is investigated instead of being disregarded, those intra-season 

studies that imply a single harvesting season can be an oversimplification of many real world 

fisheries.  

We hereby argue that it is appropriate to turn to discrete-time models (Bjørndal & Munro, 2012) 

and we propose uneven time increments that are less than one year in order to incorporate 

seasonality. To fill the gap in the current literature, we introduce multiple harvesting seasons 

within each year. Each season length can be adjusted according to specific fisheries. The stock 

develops alternately according to seasonal dynamics and the cycle goes on in an infinite time 

horizon.  
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2.1.2 Remarks on the approach 

A rich literature on fisheries management includes implementation of the DP approach (Clark, 

1985; Lane, 1988; Mangel & Clark, 1983; Poudel et al., 2012; Walters, 2002) but few address 

the issue of seasonality. With the recent finding on the periodic Bellman approach (Kvamsdal 

et al., 2016) , we are able to simplify the problems that consist of multiple periods in one cycle 

and solve them with a common DP technique. Nevertheless, it is widely recognized that discrete 

DP suffers from the curse of dimensionality (Anderson et al., 1981). The escalating computing 

time brought about by additional dimensions remains. Therefore, we begin with the simplest 

case of two-dimensional states, seeking to preserve both solution efficiency and theoretic 

insights.  

With multidimensional states, a bioeconomic model can describe either interacting species that 

often includes predator-prey relationships (Poudel et al., 2012; Sandal & Steinshamn, 2010) or 

a single stock that is categorized into age or size groups (Tahvonen, 2014). Age-structured 

models, which are widely used to assign catch quotas, have gained more popularity among 

economists as a consequence of the critics on the ‘oversimplified’ traditional biomass approach 

(Tahvonen, 2010; Townsend, 1986). Due to generally large cohort numbers, few of the age-

structured studies employ the DP approach.  

To better understand the inner structure of a stock, we adopt a commonly accepted practice and 

divide a population into mature (adult) and immature (juvenile) individuals (Holden & Conrad, 

2015; Sandal & Steinshamn, 2003). Though simple, this practice is intuitive and allows 

inclusion of critical biological processes such as recruitment, as well as other potential model 

expansions and specifications such as size-dependent prices.  

We achieve the optimal feedback solution with the control variable (seasonal harvests) as a 

direct function of the state variable (mature and immature group biomasses). The feedback 

models take prevailing stocks as inputs and automatically respond to the changes in the states, 

and thus adapt to new situations instantaneously (Sandal & Steinshamn, 1997). In addition, the 

feedback approach can easily be extended with stochasticity since it is superior to the alternative 

time paths approach when faced with uncertainty (Agnarsson et al., 2008). 

In Section 2, we first demonstrate the basic model structure with seasonality and two-

dimensional states; we then specify the biological state transitions and economic rent functions; 

lastly, we establish the credibility of our method and results by referring to the recent theoretic 
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findings on the periodic Bellman approach. In Section 3, a simple depiction of the solution 

procedure is provided. We then elaborate on parameter specifications and introduce two cases. 

Section 4 manifests the numerical results, analyses the effects and provides possible 

explanations. Conclusions and discussions follow in Section 5.  

2.2 The model   

2.2.1 Model structure 

As elaborated in Section 1, we choose a simple but representative model structure aiming to 

access both conceptual insights and solution feasibility. We look at an infinite horizon, 

discounted, discrete-time dynamic optimization problem with two-dimensional states and two 

seasons. The states are mature biomass x and immature biomass y and the two seasons are 

denoted as S1 and S2. It is straightforward to depict the seasonal state transitions as follows: 

 

 

 Fig. 2.1 Two-dimensional two-season dynamic cycle in an infinite time horizon:                              

state transitions, value function and profit functions 

The population at the start of S1 is represented by the biomass of two age groups, namely mature 

(𝑥1) and immature (𝑦1). Seasonal harvest policy or control of the system is ℎ1 for S1 and ℎ2 for 

S2 respectively. There are two dynamic operators during a cycle noted as 𝑇1(𝑥1, 𝑦1, ℎ1) 

and 𝑇2(𝑥2, 𝑦2, ℎ2), driven by its seasonal transitions and policy. States 𝑥2 and 𝑦2 are the new 

states at the beginning of S2 after dynamic operator 𝑇1. States 𝑋1 and 𝑌1 at the end of S2 are the 

states at the beginning of the next S1. The periodic cycle goes on infinitely as demonstrated in 

Fig. 2.1.  

As a practice of tradition (Gordon, 1954;  Scott, 1955), we believe it is legitimate to set our 

objective as to maximize the economic rent from the fishery resource. The core purpose of 

fisheries management is to take into account both the conservation of the resource base, as well 

as the exploitation of it (Bjørndal et al., 2004). Profit maximization achieves many of the 

prevalent fishery objectives, for example, it implies conservation of fish stocks and marine 
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environment to the extent that this conservation contributes to harvesting profits and 

conservation in itself is valuable (Arnason, 2009).  

Seasonal net economic gains are denoted as Π1 and Π2. In each season, we assume that the 

stock first undergoes biological processes, such as growth and spawning, and then becomes 

available for the human harvesting activities at the end of the season. Therefore, Π1 is obtained 

at the end of S1 while Π2 is realized at the end of S2.  

The value function manifests the best possible value of the objective and is non-autonomous, 

depending on which season the present time is. 𝑉1 indicates the value at the beginning of S1 

while 𝑉2 represents the value when standing at the end of S1 or at the beginning of S2. Note 

that  𝑉1 and 𝑉2 are not the value of each separate season but rather of the entire infinite time 

horizon and together they constitute the value function of our problem:           

     𝑉(𝑡, 𝑥, 𝑦) = {
𝑉1(𝑥, 𝑦),   𝑡 = 𝑆1

𝑉2(𝑥, 𝑦), 𝑡 = 𝑆2
  = {

  max
ℎ1

 {𝛽1Π1(ℎ1, 𝑥, 𝑦) + 𝛽1𝑉2(𝑇1(𝑥, 𝑦, ℎ1))}

  max
ℎ2

 {𝛽2Π2(ℎ2, 𝑥, 𝑦) + 𝛽2𝑉1(𝑇2(𝑥, 𝑦, ℎ2))}
              (2.1)    

Where 𝑡 indicates the season, 𝛽1 = 𝛽𝜃  and 𝛽2 = 𝛽1−𝜃. The parameter 𝜃 indicates the length 

proportion of S1 in a whole cycle and 𝛽 is the cycle discount factor. A varying 𝜃 generates 

flexibility and allows the model to deal with species or ecological systems of various kinds. 

2.2.2 A simplified fishery 

Our bioeconomic model describes a single species stock in which the parameter for seasonal 

harvesting selectivity can be modified. This simplified fishery model serves as a starting point 

to probe the implications of modelling seasonality in such problems and to stimulate and 

support further research in this direction. Certain seasonal features are in reference to the 

Northeast Arctic (NEA) cod stock. The adults of the NEA cod migrate from the Barents Sea to 

the Norwegian coast to spawn in the spring, with a remarkable amount aggregated in Lofoten. 

The larvae then drifts north and reaches the Barents Sea by summer. 

We assume that spawning or recruitment takes place during S1, setting S1 as the shorter season 

in this context. Harvesting is assumed to take place smoothly within the season. We introduce 

a major difference between seasons about harvesting: in S1, only the mature group lends itself 

to harvesting while in S2 the selection between 𝑥 and 𝑦 remains unfixed. This protection of the 

young in the spawning season can be advocated by multiple arguments: modelling-wise, it 

simplifies the decision variables; economically, it may be easier to take the mature group in S1 
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when they agglomerate in the spawning ground; biologically, sparing the immature at this 

critical time of the year is likely to advantage future prosperity of the stock. If the season is 

short enough, then one can choose to ignore the growth during the season (Mangel, 1984). Thus, 

we assume for simplicity that the mature group has little change except for biomass loss due to 

harvesting as shown in Eq. (2.2).  

𝑥2 = 𝑥1 − ℎ1                                                                                                                                         (2.2) 

𝑦2 = 𝐹(𝑥1, 𝑦1) = 𝑚𝑖𝑛 [ 𝑦𝑚𝑎𝑥, (𝑏1 + 𝑏2𝑥1)𝑦1 + 𝑏3𝑥1 ]                                                                       (2.3) 

Function 𝐹(𝑥1, 𝑦1) in Eq. (2.3) is linear in 𝑦1 with upper bound 𝑦𝑚𝑎𝑥 and it effectively grasps 

the spawning dynamics: both the slope (𝑏1 + 𝑏2𝑥1) and the intercept (𝑏3𝑥1) are dependent on 

𝑥1. As 𝑥1 escalates,  𝐹(𝑥1, 𝑦1) rises via both slope and intercept until it reaches the maximum 

biomass 𝑦𝑚𝑎𝑥. This structure implies that a stronger mature group produces more offspring 

creating higher population density for the immature and thus induce better fitness and faster 

growth rate of the immature according to ‘the Allee effect’ (Allee, 1931). When 𝑦1 becomes 

zero, 𝑥1  still contributes as much as (𝑏3𝑥1)  to 𝑦1  through spawning, which maintains the 

immature group even without any to start with. When 𝑥1 is zero, 𝑦1 will grow to 𝑏1𝑦1 after S1. 

Here the ‘biomass growth’ counts for both individual weight gain and biomass loss caused by 

natural mortality, so 𝑏1 is not necessarily larger than one.   

𝑋1 = 𝐷𝑥(𝑥2, 𝑦2) − 𝑠ℎ2                                                                                                                                (2.4) 

𝑌1 = 𝐷𝑦(𝑥2, 𝑦2) − (1 − 𝑠)ℎ2                                                                                                                      (2.5) 

𝐷𝑥(𝑥2, 𝑦2) = 𝑚𝑥2 + 𝑎𝑦2                                                                                                                              (2.6) 

𝐷𝑦(𝑥2, 𝑦2) = 𝐺(𝑦2) − 𝑎𝑦2 − 𝑐𝑥2𝑦2                                                                                                                (2.7) 

𝐺(𝑦2) =
𝑔1𝑦2

1+𝑔2𝑦2
                                                                                                                                        (2.8) 

During S2, both groups can lend themselves to harvesting where a gear selectivity parameter 𝑠 

indicates the proportion of ℎ2 that comes from the mature group. Having a parameter 𝑠 enables 

the model to adjust according to fishing gear or policy. For example, 𝑠 = 1 may represent a 

policy to spare all the immature individuals and 𝑠 = 0 can signify a fishing gear type that 

perfectly selects all the young fish. 𝐷𝑥(𝑥2, 𝑦2) and 𝐷𝑦(𝑥2, 𝑦2) are the dynamics of the mature 

and immature group respectively before harvest in S2.  

On top of the natural growth and mortality within the mature group itself, which is assumed 

linear, every year, a part of the immature matures and transforms to join the mature group. Thus, 
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the dynamics of the mature group during S2 consists of three parts: linear growth (𝑚𝑥2), 

maturity transformation (𝑎𝑦2) and harvest (𝑠ℎ2).  

The function 𝐺(𝑦2) has a form resembling that of the discrete-time Beverton-Holt recruitment 

function (Beverton & Holt, 1957). It provides a non-linear growth for the immature group 

during the longer season. In the function, smaller states correspond to higher growth rates and 

as the state increases, the immature biomass after S2 asymptotically approaches a fixed level. 

Note that the original Beverton-Holt function gives the number of population but we are 

working with stock biomass instead. Cannibalistic behaviour is expressed in the model as 𝑐𝑥2𝑦2. 

The multiplicative form means that only when both groups coexist, will there be biomass loss 

due to cannibalism. The dynamics of the immature group include the following items: non-

linear growth 𝐺(𝑦2) , maturity transformation  (𝑎𝑦2) , cannibalistic behaviour (𝑐𝑥2𝑦2)  and 

harvest (1 − 𝑠)ℎ2.  

The size and value of the fish stock as a renewable source can grow and change over time due 

to biological factors, regulatory decisions as well as market conditions (Clark & Munro, 1975). 

After elaborating on the biological facets, we now focus on the economic conditions, which can 

be decisive in determining the value functions.  

Inspired from the NEA cod stock as one of the most important fisheries worldwide with 

minimum prices set through negotiations (Pettersen & Myrland, 2016), we assume that the unit 

price is a typical downward sloping function of the seasonal harvest with a price floor. Both 

seasons share the same price function structure as in Eq. (2.9): when harvest is big, the unit 

price of the fish goes towards the minimum 𝑝𝑚𝑖𝑛  and when harvest is small, the price 

approaches the maximum 𝑝𝑚𝑎𝑥. We can easily adjust parameter values to enable various price 

ranges for each season. In this work, we employ the same price function for both seasons 

leaving costs as the only element contributing to the economic difference between seasons. 

Numerical details are elaborated in Section 3.3.  

𝑃(ℎ) = 𝑝𝑚𝑖𝑛 + (𝑝𝑚𝑎𝑥 − 𝑝𝑚𝑖𝑛)𝑒−𝛼ℎ 

 

(2.9)                                                                              

Π1(ℎ1, 𝑥1) = 𝑃(ℎ1)ℎ1 − 𝑘1ℎ1                              (2.10) 

Π2(ℎ2, 𝑥2, 𝑦2) = 𝑃(ℎ2)ℎ2 −
𝑘2ℎ2

𝐷𝑥(𝑥2, 𝑦2) + 𝐷𝑦(𝑥2, 𝑦2)
 

 

(2.11) 

For the seasonal cost functions, there is an important concept in fisheries management: the 

sensitivity of harvesting cost to the biomass density, which is referred to as the marginal stock 
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effect (MSE)3 (Clark & Munro, 1975). This establishes an inverse relationship between stock 

size and harvesting cost, making it possible to account for density dependence and thereby 

analyse anything from completely uniformly distributed stock to perfectly schooling fish 

(Steinshamn, 2011).  

A stock-cost parameter reflects the level of stock dependency in the harvesting cost. One critical 

value is zero, signifying that the unit harvest cost is completely independent of the aggregated 

stock size and the total harvesting cost is simply proportional to the harvest amount. This can 

be a valid assumption when the stock is highly densified and it may elicit overfishing because 

taking the last school of fish can remain profitable given a constant unit cost (Bjørndal & 

Conrad, 1987). For positive values of the stock-cost parameter, the unit harvest cost is 

dependent on the stock size inversely: less densified stocks are difficult to search and have 

higher unit harvest cost; more densified stocks are easy to find and have lower unit cost. Such 

stock dependency is quintessentially an economic protection of the weaker stocks.  

In S1, when the population migrates into a compact enough spawning ground, the biomass 

density increases as a result of the gathering. We infer that this aggregation or agglomeration 

leads to salient population densification in S1 and this effectively sets the value of the implied 

stock-cost parameter to be zero4 as in Eq. (2.10). In S2, the stock is assumed to be dispersed in 

a vast enough area with an implicit stock-cost parameter of one: the seasonal unit harvest cost 

is dependent on the total stock size as in Eq. (2.11). We choose the state right before harvesting 

as the reference for the stock size, which may underestimate the costs when the harvest amount 

is significant. Having such season-specific cost structure makes it possible to capture more of 

the diverse implications of seasonality. 

2.2.3 The Periodic Bellman approach 

Kvamsdal et al. (2016) have shown that the classical Bellman approach can be extended to 

periodic problems. Instead of formulating the problem using one high-dimensional single 

equation with the annual contraction factor, we can work directly with the coupled dynamic 

programming equations and legitimately obtain the same unique solution.  

                                                           
3 A parameter usually referred to as the stock elasticity, or the schooling parameter in some studies, 

embodies the MSE either in the production function or in the unit harvest cost function. 

4 Though empirically zero is hardly a realistic number, a stock independent cost structure can provide 

profound implications from our seasonal model. 
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If the optimal control {ℎ1
∗ , ℎ2

∗} is known, the value functions in Eq. (2.12) are the fixed points 

of the Bellman operators, for which 𝛽1 and 𝛽2 are the seasonal contraction factors respectively.  

𝑉1(𝑥1, 𝑦1) = 𝛽1Π1(𝑥1, 𝑦1, ℎ1
∗) + 𝛽1𝑉2(𝑇1(𝑥1, 𝑦1, ℎ1

∗))  

 (2.12) 𝑉2(𝑥2, 𝑦2) = 𝛽2Π2(𝑥2, 𝑦2, ℎ2
∗) + 𝛽2𝑉1(𝑇2(𝑥2, 𝑦2, ℎ2

∗)) 

In our two-season setting, the coupled dynamic programming equations are displayed in Eq. 

(2.1). We establish our numerical work based on the theoretical findings about the periodic 

Bellman approach summarized above. The procedure here is to utilize both of the coupled value 

function equations at the same time and solve for control ℎ1 from the first contraction process 

and ℎ2 from the second. We demonstrate further numerical algorithm details in Section 3.1.  

2.3 Numerical approach 

2.3.1 Solution procedure 

We discretize the two-dimensional state space evenly with N1 grid points along 𝑥 and N2 grid 

points along 𝑦. All the state transitions before control are 𝐹(𝑥1, 𝑦1), 𝐷𝑥(𝑥2, 𝑦2) and 𝐷𝑦(𝑥2, 𝑦2), 

which can be calculated once for all. For any state ending up outside the grid, it will be set to 

the upper bounds of the grid: 𝑥𝑚𝑎𝑥 and 𝑦𝑚𝑎𝑥. Lower bounds for both dimensions are zero.  

In the numerical scheme, we use the escapements after each season as the decision variable of 

that season. The policy is bounded so that the states remain non-negative at all times.  

Starting with a rough estimate of the value functions, we seek to utilize them to arrive at the 

optimal policies. For each grid point, we find the corresponding upper and lower bounds for the 

policy and then discretize this feasible part of the escapement space evenly using a number of 

points that are proportional to the length of the feasible range.  Hence, the step length of the 

discretized escapement is comparable for all grid points. For each grid point, we interpolate 

within the grid and obtain all the feasible values according to Eq. (2.12). We then pick the 

maximum value and update the current value function on this grid point, completing Eq. (2.1). 

Subsequently, we locate the escapement level that provides the highest value and update it as 

the optimal escapement on this grid point, which in turn gives us the optimal harvest. One policy 

iteration is accomplished when all the grid points are updated with the newest values and 

policies for both S1 and S2.  

Then a number of coupled value iterations follow, contracting both value functions without 

updating the policies. When the value functions have moved closer to the true fixed points, they 
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are put into another round of policy iteration. This iterating process continues until the change 

in the value functions and policies are negligible.  

2.3.2 Phenomenological parameter specifications 

We construct a reasonable and stylized population to work with through theoretical 

parameterization. The focus and purpose of the numerical illustration is to model seasonality. 

The first season, S1, lasts from January to April and represents the shorter and more intense 

harvest season (Hermansen & Dreyer, 2010). In this work, we conduct the numerical 

approximation with an annual discount factor of 0.97 and accordingly, the seasonal discount 

factors are 𝛽1 = 0.97
1

3 and 𝛽2 = 0.97
2

3. Referring to several stock assessments from ICES, the 

state space is set to be 4000 (𝑥𝑚𝑎𝑥) by 4000 (𝑦𝑚𝑎𝑥) with 200 (N1 and N2) points distributed 

evenly along each dimension. All parameters introduced earlier are positive numbers. The unit 

of the states as well as other state-related concepts such as harvest and biomass difference is 

kiloton (106kg). The unit of the profits and costs is million Norwegian kroner (106NOK). 

The biological parameters mimicking the scale of the population and its dynamics without 

harvest are specified below:  

𝑦2 = 𝐹(𝑥1, 𝑦1) = 𝑚𝑖𝑛[ 4000, (0.92 + 0.00005𝑥1)𝑦1 + 0.2𝑥1 ]                                                     (2.13) 

𝐷𝑥(𝑥2, 𝑦2) = 0.75𝑥2 + 0.2𝑦2                                                                                                            (2.14) 

𝐷𝑦(𝑥2, 𝑦2) =
1.2𝑦2

1+0.00005𝑦2
− 0.2𝑦2 − 0.00001𝑥2𝑦2                                                                           (2.15) 

The inherent equilibrium cycle of the stock lies well inside the stock space: see the white 

diamond and the white hexagon in Fig. 2.2(a). If left alone, the stock will not collapse with a 

low biomass level so it never exhibits critical depensation (Clark, 2010). Yet, the biomass 

recovery in such situations is very slow as shown in Fig. 2.2(b). If either group is wiped out 

every year consecutively in whichever season, the population eventually collapses to zero. This 

phenomenon goes in line with the single species setting here that neither group can be sustained 

by itself.  
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Fig. 2.2 Dynamic paths without harvesting: 

 (a) Full state space in 200 years with initial states (0, 2000), (0, 4000), (500, 0), (2500, 0) and 

(4000, 4000); (b) Partial state space in 20 years with initial states (0, 20) and (20, 0) 

For state transitions, there exists more nonlinearity and complexity for the immature than the 

mature, so we demonstrate the immature group visually. A message from Fig. 2.3 is the 

different level of sensitivity and susceptibility brought by the states between seasons. When 

spawning activities occur in S1, the new immature state depends heavily on the mature group 

while the link is not as strong in the other case in S2. This is intuitive in the sense that the 

spawning season may display the uttermost direct impact from the mature to the immature 

group.  

 

Fig. 2.3 Immature group state transitions without harvesting: 

 (a) 𝐹(𝑥1, 𝑦1) in S1; (b) 𝐷𝑦(𝑥2, 𝑦2) in S2 

Having determined the biological parameters, we proceed to elaborate on the parameters that 

address the economic aspects.  
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Regarding the price, we argue that the longer period S2 may elicit less intensive harvesting, 

lower average harvesting rate and limited supply to the market. These consequences in turn 

increase prices especially when the demand is not necessarily dropping in S2. Following this 

argument, we keep the minimum price 10 and raise the maximum price from 18 to 25, roughly 

doubling the min-max price difference, arriving at a shifted and higher price function in S2. 

This can reflect the unmet demand when harvesting happens less intensively during S2.  

𝑃1(ℎ1) = 10 + (18 − 10)𝑒−0.002ℎ1                                                                                               (2.16) 

𝑃2(ℎ2) = 10 + (25 − 10)𝑒−0.002ℎ2                                                                                                  (2.17) 

In order to achieve reasonable results and comparable scales, we calibrate the cost parameters 

and employ the following numerical expressions for the seasonal economic gains: 

Π1(ℎ1) = 𝑃1(ℎ1)ℎ1 − 6ℎ1                                                                                                                 (2.18) 

Π2(ℎ2, 𝑥2, 𝑦2) = 𝑃2(ℎ2)ℎ2 −
24000ℎ2

𝐷𝑥(𝑥2,𝑦2)+𝐷𝑦(𝑥2,𝑦2)
                                                                                (2.19) 

We display Π
1
 and Π

2
 in Fig. 2.4 to offer a brief visualization of the economic drive behind 

the optimization. The profit Π
1

 only depends on seasonal harvest while Π
2

 is also state 

dependent. For most states, Π
2
 is monotonically increasing, while for some states it is concave 

e.g. when 𝐷𝑥 + 𝐷𝑦 = 2000.  

 

Fig. 2.4 Seasonal net economic gains (million NOK) 

The graphical comparison of the unit harvest cost is illustrated in Fig. 2.5. The red surface 

manifesting the costs in S2 writes as 
24000

𝐷𝑥(𝑥2,𝑦2)+𝐷𝑦(𝑥2,𝑦2)
. The blue surface represents the unit 
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harvest cost of 6 NOK/kg in S1. When the stocks are abundant, S2 costs are lower than S1. 

When either group is getting scarce, it becomes much more costly to harvest in S2. 

 

Fig. 2.5 Seasonal unit harvest costs (NOK/kg) on the state space 

2.3.3 Two cases 

We look at two special values of selectivity parameter 𝑠: zero and one. For any in between 

values, the optimization results are analysed but not included here because they lie between the 

results when 𝑠 equals to zero and one. When 𝑠 = 0, the whole stock is harvested separately 

timewise: in S1 only the mature is harvested and in S2 only the immature is harvested. Therefore, 

we denote this case as MIH (Mature Immature Harvest). When 𝑠 = 1, only the mature group 

lends itself to harvesting during both S1 and S2. This case is referred to as MMH (Mature 

Mature Harvest). 

For case MIH, the harvest range in S2 is ℎ2 ∈ [0, 𝐷𝑦(𝑥2, 𝑦2)]; for case MMH, it is ℎ2 ∈

[0, 𝐷𝑥(𝑥2, 𝑦2)] . The escapement policy constraints are 𝑢1 ∈ [0, 𝑥1]  and  𝑢2 ∈

{
[0, 𝐷𝑦(𝑥2, 𝑦2)], 𝑠 = 0

[0, 𝐷𝑥(𝑥2, 𝑦2)], 𝑠 = 1
 respectively for each season.  

We present here what we believe is most representative and informative. The cases are 

independent and can potentially represent specific fisheries policies. We argue that it is 

legitimate to compare them thanks to properly established numerical scales.  

Despite a certain level of parameter sensitivity, the general features of the numerical results 

remain robust. For example, a 10% increase or decrease of the maturity parameter 𝑎 leads to 

roughly 3% change in ℎ1 and 5% in ℎ2 under case MIH. A 10% increase or decrease of the 

price parameter α leads to an average change of 3% in ℎ1 and 4% in ℎ2 on the state space.  
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2.4 Results 

The most interesting and relevant findings of our results are summarized in Table 2.1. We 

elaborate and provide more detailed observation and analysis for each finding.  

Table 2.1 Highlights of findings 

No. Findings Explanation & Implications 

1 Seasonal moratorium in S2 at the equilibrium 

cycle. 

Equilibrium cycle acts as a target 

escapement policy. Emerges naturally as 

the optimal policy. 

2 Some states begin with positive year round 

harvests and later evolve into harvesting (S1)-

closure (S2). 

Typically, moratorium is employed to 

recover the stock. We find novel optimal 

trajectories. 

3 Overshooting potentially caused by contraction 

process that is stronger in one direction.  

A rising group biomass could be the 

overshooting effect instead of a signal to 

increase harvest. 

4 A ‘valley’ effect (declining harvest with rising 

states) exists for harvest in S1 

We find it closely related to the unit profit 

difference between seasons. 

5 Fishing pressure on the mature in S2 arouses 

even more aggressive harvesting on the mature 

in S1. 

It is more efficient to gain biomass by 

having a large amount of immature rather 

than mature in the beginning of S1. 

6 The mature is pressed to lower levels along its 

optimal path towards the equilibrium cycle in 

Case MMH. 

When the immature is protected and can 

fully utilize the growth, the mature can be 

harvested to a lower level. 

7 Case MMH results in a lower value of the 

resource in the long term. 

Higher efficiency of transferring the mature 

to the immature via spawning. We should 

avoid high pressure on the mature in S2 so 

that they reproduce better in S1. 

 

2.4.1 Dynamic paths under optimal harvest 

Starting from various initial states, we follow the seasonal optimal harvesting policies and reach 

the permanent ‘equilibrium’ that consists of two seasonal states in a yearly cycle as in Fig. 2.6. 
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One novel observation is that the equilibrium ℎ2 in both cases are zero5, signifying that the 

optimal harvesting includes a seasonal closure of the fishery, which is not forced by regulations 

but emerge naturally instead (Finding No.1). In both cases, it is optimal to harvest 57 kilotons 

of the mature fish during S1 and leave the whole stock to itself during S2. The cycle acts as a 

target escapement policy. In the optimal equilibrium cycle, the location of the stock during S2 

can also be treated as a Marine Protected Area (MPA). A typical yearly model may simply 

overlook such important implications provided by our model with uneven season lengths and 

multiple harvesting seasons. 

 

Fig. 2.6 Dynamic paths with optimal policy in 200 years with initial states:                                           

(0, 4000), (200, 0), (2000, 0) and (4000, 4000). Contraction directions illustrated in (a). 

Harvest moratorium is not a new topic or finding from other fisheries models (Clark, Clarke, & 

Munro, 1979; Kasperski & Wieland, 2009; Kennedy, 1992). Nonetheless, it is novel to bring 

seasonality into such models and reach a moratorium during a part of the annual cycle as a long-

term optimal steady situation. This coincides with practices in real fisheries: harvesting is often 

assumed to take place during the whole year but many fleets only harvest seasonally.  

Typically, the stock first goes through moratorium to recover the biomass and then lends itself 

to harvesting when it becomes abundant enough. Our results contradict this pattern and indicate 

that many initial states begin with positive harvests in both seasons but later evolve and settle 

down in an annual equilibrium cycle of harvesting (S1)-closure (S2) (Finding No.2). Visual 

examples of such trajectories include initial states of (4000, 4000) and (0, 4000) in Fig. 6. 

                                                           
5 A consistency check for the validity of our numerical results is that both cases end up in the same 

equilibrium cycle with the same equilibrium values since selectivity in S2 makes no difference when 

we do not harvest in S2 at all.  
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Moreover, even when the stock undergoes moratorium first and harvesting later, our results 

exhibit diversified paths towards the equilibrium cycle. When the initial state is 200 kilotons of 

the mature, an annual moratorium first applies, and then ℎ1 becomes positive but S2 remains a 

moratorium period. When the initial state enlarges to 2000 kilotons of the mature, S1 is the only 

harvesting season and this situation is sustained for the entire trajectory. 

In both cases, various initial states seem to join a certain path converging to the equilibrium 

cycle. The hallmarks of the trajectories imply that the contraction can be strong in one direction 

so that the states move quickly towards the path and weak in another so that they progress 

slowly along the path. We find that the contraction is much faster along direction 16 than 

direction 27 (see Fig. 2.6(a)) for both cases in the neighbourhood of the equilibrium cycle. 

Though our calculation is valid closely around the equilibrium states, the features seem rather 

global in the state space.  

Overshooting could come as a result of the speed and direction of the contraction process 

(Finding No.3). Given an initial state far from the equilibrium states, it takes a long time to 

approach the steady state. Together with a faster speed along a certain direction, overshooting 

can emerge. For example, starting with the maximum immature state in Case MIH (see Fig. 

2.6(a)), the mature stock quickly rises above the equilibrium then slowly drops towards the 

steady state. Therefore, observing an increase of group biomass could potentially be the 

overshooting effect instead of a clear indication to harvest more. 

2.4.2 Seasonal optimal harvest policies 

We identify decreasing harvest with increasing states (‘valley’) on ℎ1 surfaces as shown in Fig. 

2.8 (Finding No.4). To investigate closely, we demonstrate seasonal unit profit of harvest and 

seasonal harvest along the diagonal of the state space. For example, according to the solid blue 

line in Fig. 2.7(a), it is optimal to harvest 174 kilotons of the mature on top of the ‘valley’ 

(diagonal states 960) and only 152 in the bottom (diagonal states 1500) even though both states 

are more prolific in the latter case.  

                                                           
6 The eigenvalue is 0.58 for direction 1 with eigenvector of (-0.82, 0.58) for both cases. A smaller 

eigenvalue indicates a stronger and faster contraction. The direction of contraction is specified by the 

eigenvector. 

7 The eigenvalue is 0.97 for direction 2 with eigenvector of (0.48, 0.88) for both cases.  
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Fig. 2.7 Seasonal unit profit in NOK/kg (blue and red dotted lines), unit profit difference in 

NOK/kg (black dotted lines) and harvest policy in S1 and S2 (blue and red solid lines)                                  

along the diagonal of the state space  

It is counterintuitive to diminish harvest given stocks that are more abundant. Since Π1  is 

monotonically increasing with harvest, the key must lie in the benefits from later periods. In 

Fig. 2.7, when ℎ2 (red solid line) remains zero, ℎ1 (blue solid line) seems to be rising with the 

states at a fast rate. When ℎ2 becomes positive, the fishing pressure is diverted partly to S2. 

Consequently, ℎ1 increases less drastically. Moreover, when the economic advantage of S2 is 

prevailing (dotted black line in Fig. 2.7), ℎ1 decreases and forms the dent in order to exploit 

higher profits from S2. The ‘valley’ is an interesting and robust effect because of the trade-off, 

or competition between harvesting seasons.  

We observe that part of the optimal ℎ1 surface with a weak mature stock reaches the myopic 

solution, in which merely the present season’s net revenue is valued. The immature group is 

not harvested in S1 and a considerable part of it will transit to join the mature in the next season 

S2, maintaining the stock biomass level. Therefore, in the myopic part, it is economically 

justified to wipe out the mature group in S1 when the immature is abundant. The results of ℎ2 

in Fig. 2.8 evince that the natural moratorium area on the stock space in S2 tends to maintain 

its shape and size under different parameter 𝑠. 
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Fig. 2.8 Optimal harvest policies                                                                                                             

(a): ℎ1 of Case MIH (equilibrium state indicated by white diamond) (b): ℎ1 of Case MMH 

(white diamond) (c): ℎ2 of Case MIH (white hexagram) (d): ℎ2 of Case MMH (white 

hexagram) 

2.4.3 Selectivity 𝒔 in S2 

The key divergences of ℎ2 between the two cases, where 𝑠 is the only varying parameter, lie 

along the two zero axes as shown in Fig. 2.8. On the one hand, when the mature group is zero 

i.e. 𝑥2 = 0, what is left available for harvesting in S2 is 𝐷𝑥(0, 𝑦2) = 𝑎𝑦2 of the mature and 

𝐷𝑦(0, 𝑦2) = 𝐺(𝑦2) − 𝑎𝑦2 of the immature. Referring to Fig. 2.3(b), we deduce that there is less 

harvesting potential when we select the mature group 𝐷𝑥 with 𝑠 = 1. Consequently, ℎ2 along 

this axis exhibits stronger conservation when 𝑠 = 1. On the other hand, when the immature 

group is zero i.e.  𝑦2 = 0, what is left available to take is 𝐷𝑥(𝑦2, 0) = 𝑚𝑥2 of the mature and 

𝐷𝑦(𝑥2, 0) = 0 of the immature. Hence, for Case MIH when 𝑠 = 0, ℎ2 along this axis is all zero 

while for Case MMH when 𝑠 = 1, ℎ2 becomes positive as the mature group prospers.   
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We probe into the trade-off between harvesting in S1 and in S2. Fig. 2.9 manifests the 

proportion of ℎ1 to the total annual harvest if we follow the optimal policy during the year. The 

grey surface depicts this proportion with each state in the stock space as the starting state of S1. 

The blue part at the bottom displays the natural moratorium zone where it is optimal to leave 

the stock to itself throughout the year. The red plain highlights the area where the proportion is 

smaller than 50%, meaning that ℎ2 is more dominant in the annual harvest. We find that they 

cover locations in the state space that correspond to the area where the unit harvest cost in S2 

(red surface) lies beneath the unit cost in S1 (blue surface) in Fig. 2.5. It is straightforward that 

when it is cheaper in S2, more is harvested during S2. However, due to higher prices in S2, the 

red planes cover some additional state space area: areas with abundant immature and little 

mature in Case MIH and areas with little immature and abundant mature in Case MMH.  

 

Fig. 2.9 Proportion of ℎ1 to the annual harvest following the optimal policy. Grey surface is 

the percentage. Blue area is the annual moratorium zone. Red plane represents 50%. Black 

diamond is the equilibrium state in S2.  

Selecting only the mature in S2 (𝑠 = 1) enhances ℎ1 on most part of the stock space not only 

with regard to the harvest biomass level in Fig. 2.8 but also the relative proportion in Fig. 2.9. 

It may seem counterintuitive that the fishing pressure on the mature in S2 arouses even more 

aggressive harvesting in S1 on the same group (Finding No.5). This thought-provoking 

phenomenon may be explained from the biological perspective: the strongest growth of the 

stock is the stepwise linear transition of the immature during S1, which is dependent on both 

states. The marginal biomass increment incurred by one more state unit is  (0.00005𝑦 + 0.2) 

of the mature and (0.00005𝑥 + 0.92) of the immature. Apparently, it is more efficient to gain 

biomass by having a copious amount of the immature rather than the mature in the beginning 

of S1. When 𝑠 = 0, we are forced to diminish the immature in the beginning of S1; hence it is 
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crucial to retain the mature at a higher level in order to exploit the growth. When 𝑠 = 1, the 

immature group is free from being harvested and can fully utilize the growth, so the mature 

group can lend itself to harvesting towards a lower level. One piece of evidence is the optimal 

path of the maximum states as the initial point in Fig. 2.6: Case MMH (𝑠 = 1) tends to press 

the mature group to lower levels along its path towards the equilibrium cycle (Finding No.6).  

The surfaces of both value functions are almost identical between cases. Therefore, we calculate 

the average value in the state space as an indicator for its general level. The difference between 

the two cases is 1274 million NOK for 𝑉1 and 972 for 𝑉2. Both are lower for Case MMH (𝑠 =

1), suggesting that the compulsory selection targeting the mature group in S2 results in a lower 

value of the resource in the long term (Finding No.7). This may relate to the high efficiency of 

transferring mature biomass to the immature through spawning and the relatively low efficiency 

of transferring immature to the mature via natural maturation. Hence, when determining the 

selectivity 𝑠, it can be worthy to avoid putting all the fishing pressure on the mature group in 

S2 and to allow it to produce more offspring in the spawning season S1. A complete ban on 

harvesting a certain part of a stock may stem from conservative purposes but can also hinder 

the value and potential of the whole stock.  

2.5 Conclusions and discussions 

We employ a DP technique in a periodic Bellman approach to present a seasonal model 

numerically. We obtain the optimal feedback harvesting policies given multiple uneven seasons 

and two-dimensional states. Our method provides a useful tool for seasonal regulation measures, 

such as periodic moratorium, MPA, seasonal TACs, fleet-specific TACs and seasonal target 

escapement policies. The trade-off of harvesting between seasons is driven by multi-fold 

mechanisms, which leads to profound implications for bioeconomic modelling and 

policymaking.  

Key findings are listed in Table 2.1 and the most intriguing ones are rather counterintuitive. 

Our approach allows a naturally occurring seasonal closure of the fishery in the equilibrium 

cycle. This cannot occur in a non-seasonal model. The permanent equilibrium cycle in Case 

MIH and Case MMH resembles a target escapement policy (Reed, 1979). Instead of an annual 

target, which is a common practice, our results propose alternating optimal seasonal target stock 

levels. A moratorium period or a MPA is usually considered a specified policy scheme to be 

evaluated (Pelletier et al., 2009). Unlike a typical policy that imposes a moratorium to recover 

the stock, we find that many states first undergo harvesting all year round and then develop into 
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the long-term seasonal moratorium. In a standard single state bioeconomic model, higher levels 

of the stock often indicate bigger harvest potentials (Clark, 2010). According to our results, a 

growing group biomass could be the overshooting effect instead of a clear signal to increase 

harvest. On part of the state space, the optimal seasonal harvest declines with rising states, 

creating a ‘valley’. This may originate from the unit profit difference between seasons. Similar 

discoveries exist in some multi-species studies (Leif K. Sandal & Steinshamn, 2010). Fishing 

pressure on the mature in one season leads to even heavier harvesting on the same group in the 

next season. Protecting the immature may derive from conservative purposes but in fact 

diminish the value of the whole stock. Therefore, it can be beneficial to avoid only harvesting 

the mature group in order to let it reproduce better in the spawning season. This finding goes in 

line with the general concern regarding the Spawning Stock Biomass (SSB). For example, ICES 

often employs SSB reference limits to ensure a strong spawning stock.  

Our approach can potentially be adapted for varying biological and economic seasonality in 

fisheries. Some forage fish, such as herring, make vast migrations between spawning, feeding 

and nursery grounds. In this case, the season number and season lengths can be adjusted 

according to behaviours that are shaped by ocean currents, plankton abundance, trade-off 

between predator avoidance and growth (Brönmark et al., 2008). Although the curse of 

dimensionality is inevitable, the multidimensional states may instead represent predator-prey 

multispecies relationships, such as cod and capelin in the Barents Sea. This allows for more 

focus on ecological analysis and food web studies, which are gaining more attention as a 

research topic. For single species models, the biological dynamics could include depensation 

so that the model becomes more realistic for species that are particularly vulnerable at lower 

states. The decision variables, i.e. harvesting policies, may be extended to season-state-specific 

instead of simplified to season-specific as in our presentation.  

Possible modelling extensions exist in various directions. It is interesting to employ 

size(group)-dependent price functions (Zimmermann et al., 2011). The model can be in 

continuous time and apply the periodic Bellman approach to investigate seasonality. 

Stochasticity can be added to the biological transitions via different fluctuations in such as the 

ocean temperature, food availability, cannibalistic behaviour, predator distribution etc. 

Randomness may also be incorporated in the price and cost functions. We are currently working 

on establishing stochastic models with seasonality.  
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Furthermore, the big potential and rich implications of our approach go beyond the model we 

present in this work. This approach enables us to take into consideration longer seasonality that 

spans more than a single year. For example, the El Nino conditions affect the ocean temperature 

drastically at intervals spanning several years, influencing numerous ocean lives as well as 

commodity prices in different countries. In addition, the flexibility to employ arbitrary uneven 

season lengths makes it possible to combine more than a single seasonal pattern in the model. 

For instance, we can model El Nino as a condition that happens once every several years 

together with a seasonal feature, such as upwelling in the spring, which takes place annually. 

Except for natural phenomenon, such combined seasonal patterns may potentially be extended 

to market prices, technological breakthroughs, economic trends and countless other aspects in 

natural resource modelling. 

Seasonal models require season-specific data for real fishery management. An approach with 

sophisticated seasonality surely puts a burden on the managerial costs due to more frequent 

monitoring of the stock. Assuming that the required data is available, the techniques of inferring 

input parameter values from the observations are conceptually the same as for a classical yearly 

model.  
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Appendix 

Table A1. Notations in the model.  

Variables Definitions  Unit 

𝑥 Mature group biomass  kiloton (106 kg) 

y Immature group biomass kiloton (106 kg) 

𝑥1 Mature group biomass in the beginning of S1 kiloton (106 kg) 

𝑦1 Immature group biomass in the beginning of S1  kiloton (106 kg) 

𝑥2 Mature group biomass in the beginning of S2  kiloton (106 kg) 

𝑦2 Immature group biomass in the beginning of S2  kiloton (106 kg) 

𝑋1 Mature group biomass in the end of S2  kiloton (106 kg) 

𝑌1 Immature group biomass  in the end of S2  kiloton (106 kg) 

ℎ1 Harvest biomass in S1 from the mature group  kiloton (106 kg) 

ℎ2 Harvest biomass in S2 from either group  kiloton (106 kg) 

ℎ Either ℎ1 or ℎ2  kiloton (106 kg) 

𝐹(𝑥1, 𝑦1) Immature group biomass in the beginning of S2  kiloton (106 kg) 

𝐷𝑥(𝑥2, 𝑦
2
) Mature group biomass before harvest in S2  kiloton (106 kg) 

𝐷𝑦(𝑥2, 𝑦
2
) Immature group biomass before harvest in S2  kiloton (106 kg) 

𝐺(𝑦
2
) Nonlinear biomass growth for the immature group in S2 kiloton (106 kg) 

𝑃1(ℎ1), 𝑃2(ℎ2) Unit price of the fish  NOK/kg 

Π1 Net economic gain in S1  Million NOK 

Π2 Net economic gain in S2  Million NOK 

   

Parameters Definitions Values 

𝑏1, 𝑏2, 𝑏3 Parameters of the nonlinear growth 𝐹(𝑥, 𝑦) for the immature in S1 0.92, 0.00005, 

0.2 

𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥 Biomass upper bound for both states  4000, 4000 

𝑠 Selectivity of harvesting in S2 0 or 1 

𝑚 Linear growth for the mature in S2 0.75 

𝑎 Linear biomass transition from immature to mature in S2 0.2 

𝑐 Cannibalistic behavior in S2  0.00001 

𝑔1, 𝑔2 Nonlinear growth for the immature in S2 1.2, 0.00005 

𝑝𝑚𝑖𝑛, 𝑝𝑚𝑎𝑥, 𝛼 Parameters for the pricing function (𝑃𝐿 or 𝑃𝐻) 10, 18, -0.002 or 

10, 25, -0.002 

𝑘1 Constant unit cost in S1  6 

𝑘2 Cost parameter in S2 24000 
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Chapter 3 

3. Greed is good: from super-harvest to recovery in a 

stochastic predator-prey system 

Yuanming Ni a, Leif K. Sandal b, Sturla F. Kvamsdal c, Diwakar Poudel d 

Abstract 

This paper demonstrates a predator-prey system of cod and capelin that confronts a possible 

scenario of prey extinction under the first-best policy in a stochastic world. We discover a novel 

‘super-harvest’ phenomenon that the optimal harvest of the predator is even higher than the 

myopic policy, or the ‘greedy solution’, on part of the state space. This intrinsic attempt to 

harvest more predator to protect the prey is a critical evidence supporting the idea behind ‘greed 

is good’.  

We ban prey harvest and increase predator harvest in a designated state space area based on the 

optimal policy. Three heuristic recovery plans are generated following this principle. We 

employ stochastic simulations to analyse the probability of prey recovery and evaluate 

corresponding costs in terms of value loss percentage.  

We find that the alternative policies enhance prey recovery rates mostly around the area of 50% 

recovery probability under the optimal policy. When we scale up the predator harvest by 1.5, 

the prey recovery rate escalates for as much as 28% at a cost of 5% value loss. We establish 

two strategies: modest deviation from the optimal on a large area or intense measure on a small 

area. It seems more cost-effective to target the stock space with accuracy than to simply boost 

predator harvest when the aim is to achieve remarkable improvement of prey recovery 

probability.  
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3.1 Introduction 

Marine fisheries are vital resources for human society and ecosystem, especially with growing 

world population and increasing food demands (FAO, 2008). The current progress towards 

sustainable fisheries is at an insufficient rate and the stock recovery is generally overwhelmed 

by unsustainable fishing practices (Teh, Cheung, Christensen, & Sumaila, 2017). To improve 

the current fisheries management requires an effort to address both the direct economic gains 

and the indirect ecological values of the resource. To assess the existence value and the risk of 

extinction of any species, it is more realistic to include dynamic stock interactions from an 

ecosystem perspective. Feasible management practices that aim to rebuild a weak stock in a 

system should be evaluated with regards to its effects and costs. 

With widely recognized depletion of various global fisheries and increasing climate uncertainty, 

many researchers and policy makers have prioritized their focus to sustainability, stock 

recovery and collapse. Incorporating sustainability considerations adds additional layers of 

complexity to conventional models (Howarth, 1995). Woodward & Bishop (1999) included a 

sustainability constraint in their model to suggest long-term sustainable management in a 

deterministic setting. Kama & Schubert (2004) chose to derive decision rules of a sustainable 

development under a special case of preference uncertainty. Britten, Dowd, Kanary, & Worm 

(2017) revealed how a changing environmental context can reform the recovery timeline and 

delay the rebuilding of depleted fish stocks. Rosa, Vaz, Mota, & Silva (2018) developed an age-

structured model where the objective function incorporates the risk of fishery collapse, in 

addition to profit maximization and fishers’ preference for stable landings. They managed to 

illustrate that their framework assists the analysis and design of harvest control rules. Diwakar 

Poudel, Sandal, & Kvamsdal (2015) discovered that the risk of stock collapse due to 

stochastically induced critical depensation increases with stochasticity in a single species model.  

Healthy and diverse marine ecosystems are essential in order to ensure they are resilient to 

inevitable shocks and stresses. It has become clear that ecosystem-based fisheries management 

(EBFM) is a desired approach towards resilient fisheries (Link et al., 2012). In contrast to 

treating different species individually and separately, an ecosystem-based approach deals with 

the interacting components in a systematic and dynamic way. The most common models of 

single species ignores the ecological as well as the technological and economic interactions 

among species (Kasperski, 2010). This may lead to misleading results and incorrect policy 

decisions causing over or under exploitation of the stocks (Fleming & Alexander, 2002; 

Maravelias, Damalas, Ulrich, Katsanevakis, & Hoff, 2011). Usually the economic interactions 
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play an important role in generating the overall harvesting pressure on the commercially 

valuable species.  

Multispecies models in the literature have been attempts to account for ecosystem concerns. 

Earlier multispecies studies focused mainly on a predator-prey relationship from different 

trophic levels (May, Beddington, Clark, Holt, & Laws, 1979; Yodzis, 1994). However, they 

merely addressed the biological yields without considering the economic aspects of harvesting. 

Later, some suggested deterministic bioeconomic models with an optimal equilibrium solution 

(Fleming & Alexander, 2002; Kar & Chaudhuri, 2004). They found it difficult to solve for the 

optimal paths even with linear objective functions. Some concluded that multispecies 

management provides distinct advantages allowing for more realistic modelling of growth rates 

and better understanding of fish population dynamics (Hollowed et al., 2000). Nonetheless, 

multispecies bioeconomic models are limited due to unavailability of the analytical solutions 

(Posch & Trimborn, 2010) and computational difficulties (Singh, Weninger, & Doyle, 2006). 

Most multispecies bioeconomic studies propose optimal harvesting in a deterministic setting 

(Clark, 2010; Woodward & Bishop, 1999; Sandal & Steinshamn, 2010). However, most of the 

economic and biological processes take place in an uncertain environment in reality (Charles 

& Munro, 1985). Uncertainties in fishery include stock measurement error, parameter 

estimation errors, environmental variability influencing the growth of fish stocks, structural 

uncertainty and model error (Charles, 1998; Sethi, Costello, Fisher, Hanemann, & Karp, 2005; 

Nøstbakken & Conrad, 2007; Roughgarden & Smith, 1996; Poudel, Sandal, & Kvamsdal, 2015; 

Kvamsdal, Poudel, & Sandal, 2016). Most of the extant literature that evaluates long-term stock 

management does not consider such uncertainties sufficiently. Stochastic models with a single 

species have gained popularity over the years  (Clark & Kirkwood, 1986; Hannesson, 1987; 

Sandal & Steinshamn, 2017; Sethi et al., 2005; Singh et al., 2006; Kugarajh, Sandal, & Berge, 

2006; Bruce, J, & Christopher, 2009), but stochastic multispecies models are still uncommon 

in the literature (Agnarsson et al., 2008).  

We employ a feedback policy approach where the optimal control (harvest) is a direct function 

of the state variable (stock). Instead of the commonly used time paths approach, the feedback 

approach is superior when faced with uncertainty (Agnarsson et al., 2008). We also apply the 

DP (Dynamic Programming) technique, conducting value and policy iterations to solve for the 

optimal policy and value (Judd, 1998). The DP approach is a useful method when considering 

the multispecies management model under stochasticity (Sanchirico & Springborn, 2011). 
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This study is inspired by previous work of Sandal & Steinshamn (2010). In this paper, we work 

with a continuous-time stochastic multispecies predator-prey bioeconomic model. Based on the 

optimal policy derived from the numerical solution of a predator-prey system, we generate 

alternative harvesting policies in search for recovery of the less valuable prey stock. We conduct 

simulations to investigate the probability of prey recovery in a certain period of time, which 

also mirrors the risk of prey collapse. We progressively refine the recovery plans using three 

heuristics to explore the consequential benefits and costs. Using the DP technique, we evaluate 

the costs of implementing the alternative policies, providing references for the existence value 

of the prey species. We introduce the concept of value elasticity of recovery, which sheds light 

on a possible state-dependent recovery approach for further research.  

3.2 Predator-prey system 

3.2.1 Model 

We employ a continuous-time predator-prey bioeconomic model. The general interdependent 

deterministic biological growth model is similar to those of Clark (1990), Agnarsson et al. 

(2008) and Poudel et al. (2012). Letting 𝑥 be the prey species state and 𝑦 be the predator stock 

state, the continuous-time deterministic growth increments of the system are: 

𝑑𝑥 = [𝑓(𝑥, 𝑦) − 𝑢𝑥]𝑑𝑡

𝑑𝑦 = [𝑔(𝑥, 𝑦) − 𝑢𝑦]𝑑𝑡
                                                    (3.1) 

Functions 𝑓(𝑥, 𝑦) and 𝑔(𝑥, 𝑦) are the biological growth functions of the prey and predator 

respectively, while 𝑢𝑖 stands for the harvest rate of species (𝑖 = 𝑥, 𝑦). The term 𝑑𝑡 is the time 

increment. Furthermore, a two-species interaction model with stochastic dynamics is generated 

by adding volatility terms in Eq. (3.1) in the following way:  

(
𝑑𝑥
𝑑𝑦

) =  𝐹(𝑥, 𝑦, 𝑢𝑥 , 𝑢𝑦)𝑑𝑡 + 𝜎(𝑥, 𝑦) (
𝑑𝐵𝑥

𝑑𝐵𝑦
)                                 (3.2) 

where 𝐹(𝑥, 𝑦, 𝑢𝑥 , 𝑢𝑦) = (
𝑓(𝑥, 𝑦) − 𝑢𝑥

𝑔(𝑥, 𝑦) − 𝑢𝑦
) and 𝜎(𝑥, 𝑦) =  (

𝜎11𝑥 𝜎12𝑦
𝜎21𝑥 𝜎22𝑦). 

It can formally be considered as the two-dimensional controlled Ito-process: 𝑑𝑍 = 𝐹(𝑍, 𝑢) +

𝜎(𝑍)𝑑𝐵.  In Eq. (3.2), term 𝜎(𝑥, 𝑦)  is the diffusion matrix, and 𝑑𝐵𝑥  and 𝑑𝐵𝑦 denote the 

incremental basic Brownian motion, which is independent and identically distributed (i.i.d.) 

with mean zero and variance 𝑑𝑡. The additive noise formulation is a general Wiener process 

and contains the multiplicative case (Poudel et al., 2015; Kvamsdal et al., 2016). We assume 
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the stock biomass states and harvests to be nonnegative. 

The economic part of the model consists of the net revenues from harvesting both species, 

which can be obtained by adding revenue from each stock.8 Let 𝜋 (𝑥, 𝑦, 𝑢𝑥, 𝑢𝑦) be the total net 

revenue, where 𝜋𝑥 (𝑥, 𝑢𝑥) and 𝜋𝑦 (𝑦, 𝑢𝑦)  are the revenues from 𝑥 and 𝑦 respectively: 

𝜋 (𝑥, 𝑦, 𝑢𝑥, 𝑢𝑦) = 𝜋𝑥  (𝑥, 𝑢𝑥) + 𝜋𝑦 (𝑦, 𝑢𝑦)                                         (3.3) 

                                                               = 𝑝𝑥(𝑢𝑥)𝑢𝑥 − 𝑐𝑥(𝑥, 𝑢𝑥) + 𝑝𝑦(𝑢𝑦)𝑢𝑦 − 𝑐𝑦(𝑦, 𝑢𝑦) 

where 𝑝𝑖(∙) and 𝑐𝑖(∙) are inverse demand functions and cost functions respectively. We assume 

that the objective of the fisheries management authority (such as a regional fisheries 

management organization that acts as the sole owner of the resource) is to maximize the 

expected net present value (NPV) of harvesting activities of the fishery over an infinite time 

horizon. This can be achieved by maximizing the following functional with respect to the policy 

or control variable 𝑢𝑖. 

𝐽(𝑥, 𝑦, 𝑢𝑥 , 𝑢𝑦) = 𝐸[∫ 𝑒−𝛿𝑡∞

0
𝜋 (𝑥, 𝑦, 𝑢𝑥, 𝑢𝑦)𝑑𝑡]                             (3.4) 

The nonnegative parameter δ is the discount rate, and E is the expectation operator. The value 

function and the optimal policy can be obtained by solving the Hamilton-Jacobi-Bellman (HJB) 

equation: 

𝛿𝑉(𝑥, 𝑦) = 𝑚𝑎𝑥
𝑢∈𝑈⊂𝑅+

2
{𝜋(𝑥, 𝑦, 𝑢𝑥, 𝑢𝑦) + 𝐷𝑉𝑇(𝑥, 𝑦)𝐹(𝑥, 𝑦, 𝑢𝑥 , 𝑢𝑦)                (3.5) 

                           +
1

2
𝑡𝑟[𝜎(𝑥, 𝑦)𝜎𝑇(𝑥, 𝑦)𝐷2𝑉(𝑥, 𝑦)]} 

where 𝐷𝑉(𝑥, 𝑦) = (

𝜕

𝜕𝑥
𝑉(𝑥, 𝑦)

𝜕

𝜕𝑦
𝑉(𝑥, 𝑦)

) and 𝐷2𝑉(𝑥, 𝑦) =  (

𝜕2

𝜕𝑥2 𝑉(𝑥, 𝑦)
𝜕2

𝜕𝑥𝜕𝑦
𝑉(𝑥, 𝑦)

𝜕2

𝜕𝑦𝜕𝑥
𝑉(𝑥, 𝑦)

𝜕2

𝜕𝑦2 𝑉(𝑥, 𝑦)
). 

Closed-form solutions are usually rare because of the difficulty in solving the HJB equation 

given nonlinearity and boundary conditions. The Markov chain approximation approach is one 

of the most effective numerical methods for such problems with nonlinear control. The 

numerical optimization results will be presented in section 2.3. The solution procedure will not 

be emphasized with details in this paper. 

                                                           
8 We assume that there is no market interactions between the demand for and prices of the two 

species. Therefore, the revenues from both species are added together.  
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3.2.2 Numerical specifications 

The diversified ecosystem in the Barents Sea harbours two key fish species, namely capelin 

(Mallotus villosus), a plankton feeder, and Northeast Arctic cod (Gadus morhua), the main 

predator of capelin. Cod is considered the main resource of the Norwegian commercial white 

fish industry (Kugarajh et al., 2006), while capelin is the largest pelagic stock in the Barents 

Sea and potentially the most abundant in the world. The relationship between cod and capelin 

is highly dynamic in the Barents Sea ecosystem (Bogstad et al. 1997). As the prey, capelin is 

crucial for the growth of juvenile cod (Dalpadado & Bogstad, 2004). The cod recruitment and 

survival rate are directly affected by climatic conditions and availability of food. Higher 

temperature during spawning and more capelin have a positive effect on cod recruitment 

(Hjermann et al., 2007). Given various kinds of uncertainties in the Barents Sea ecosystem 

(Flaaten et al., 1998), we apply a stochastic multispecies model consisting of cod and capelin 

as the interacting predator and prey species. 

Functional forms of the biological and economic components of the model, as well as the 

specifications of parameter values are based on the works of Agnarsson et al. (2008) and Sandal 

& Steinshamn (2010). Built on empirical data and analysis from existing work, our model 

ensures that the functional forms are relevant and the parameter values occupy a realistic part 

of the parameter space. We assume that a single authority who seeks to maximize the joint 

benefit of the predator-prey system manages both stocks. The upper bounds for the state space 

is 𝑥𝑚𝑎𝑥 = 10000 and 𝑦𝑚𝑎𝑥 = 12000. We set 100 grid points along each dimension of the 

state space to discretize the problem numerically. The biological growth functions of capelin 

(prey x) and cod (predator y) in Eq. (3.1) are specified as:  

𝑓(𝑥, 𝑦) = 𝑎1𝑥2 − 𝑎2𝑥3 − 𝑎3𝑥𝑦

𝑔(𝑥, 𝑦) = 𝑏1𝑦2 𝑏2𝑦4 + 𝑏3𝑥𝑦
                                             (3.6) 

where 𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, and 𝑏3 are parameters. The first two terms in Eq. (3.6) for each species 

represent the biomass growth in the absence of the other species and hence stand for the 

aggregated effects of the rest of the ecosystem. The 𝑥𝑦-term represents the interactions between 

the two stocks. The numerical specification goes as follows9: 

𝑓(𝑥, 𝑦) = 1.8 ∙ 10−4𝑥2 − 1.19 ∙ 10−8𝑥3 − 2.1 ∙ 10−4𝑥𝑦   (106𝑘𝑔/𝑦𝑒𝑎𝑟)

𝑔(𝑥, 𝑦) = 2.2 ∙ 10−4𝑦2 − 3.49 ∙ 10−11𝑦4 + 1.82 ∙ 10−5𝑥𝑦   (106𝑘𝑔/𝑦𝑒𝑎𝑟)
           (3.7) 

                                                           
9 The value of parameter 𝑎1 is 1.8 ∙ 10−3 on the referred papers, which is supposedly a typo. 
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The volatility of each species is assumed to be a linear function of its own stock level. It is also 

assumed that there is no correlation between the stochastic terms. The diffusion matrix is thus 

specified as: 𝜎11 = 0.2; 𝜎12 = 0; 𝜎21 = 0 and 𝜎22 = 0.2. 

The functional forms of the economic part in Eq. (3.3) are specified as follows:  

𝑝𝑥(𝑢𝑥) = 𝑝1

𝑐𝑥(𝑥, 𝑢𝑥) = 𝑞1𝑢𝑥
𝛼1

𝑝𝑦(𝑢𝑦) = 𝑝2 − 𝑝3𝑢𝑦

𝑐𝑦(𝑦, 𝑢𝑦) =
𝑞2𝑢𝑦

𝛼2

𝑦
 

                                                   (3.8) 

where  𝑝1, 𝑞1, 𝛼1, 𝑝2, 𝑞2, 𝛼1,𝛼2, and 𝑝3 are price, cost, and elasticity parameters. We assume that 

capelin is an unevenly distributed schooling species and the unit cost of harvesting is 

independent of its stock level. The simplified revenue function can be rewritten as: 

𝜋 (𝑦, 𝑢𝑥, 𝑢𝑦) = 𝑝1𝑢𝑥 − 𝑞1𝑢𝑥
𝛼1 + 𝑝2𝑢𝑦 − 𝑝3𝑢𝑦

2 −
𝑞2𝑢𝑦

𝛼2

𝑦
                      (3.9) 

The corresponding numerical specification is: 

𝜋 (𝑦, 𝑢𝑥, 𝑢𝑦) = 𝑢𝑥 − 0.07𝑢𝑥
1.4 + 12.65𝑢𝑦 − 0.00893𝑢𝑦

2 − 5848.1
𝑢𝑦

𝑦
     (106𝑁𝑂𝐾)      (3.10) 

It is also worth mentioning that both stocks have commercial value but the predator is much 

more worthy in the market. The unit price of cod is 12.65 NOK/kg while that of capelin is 

1NOK/kg. The optimal feedback solutions are calculated with a 5% discount rate ( = 0.05). 

3.2.3 Evidences for heuristics from the optimal policy  

We interpret the optimal harvests from the point of view of how the first-best policy determines 

the development of the prey species capelin. As shown by the blue dashed lines in Fig. 3.1, in 

a deterministic world, some initial states end up with capelin extinction while some others go 

to the other extreme of capelin prosperity. It seems that a slight change in the starting point 

could give rise to drastic differences of capelin stock development. In a single species setting, 

both stocks are sustainable on its own. The coexistence of two stocks in a predator-prey 

relationship gives rise to a possibility that the prey may disappear.  
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Fig 3.1 Development paths from various initial states 

If capelin disappears, we lose the direct revenues from harvesting capelin as a commercial 

species as well as the indirect revenues due to a weaker cod stock. The risk of capelin collapse 

is embedded in the optimization model and the way that the optimal policy deals with this 

possibility is reflected in itself. We observe that the optimal harvest of both species expresses 

some level of intentional ‘prey protection and recovery’ strategy.  

 

Fig 3.2 Optimal harvest for (a) capelin 𝑢𝑥
∗  and (b) cod 𝑢𝑦

∗  

The first evidence is the moratorium region or the ‘valley’ phenomenon in the optimal capelin 

harvest as shown in Fig. 3.2(a) with a surface plot of the harvest and in Fig. 3.3(a) with a contour 

plot of the harvest. When capelin stock is low, for example below 2000∙106kg, it will most 

likely go extinct due to predation no matter how much human harvests. Therefore, the optimal 

capelin harvest is positive in this region in order to take advantage of whatever value that can 

still be acquired. Inside the moratorium area, i.e. bottom of the ‘valley’, the optimal policy 
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equals zero, seeking to avoid capelin from disappearing or to slow down the extinction process. 

The conservation of capelin is stronger in the presence of higher volatility because a more 

stochastic cod stock intuitively requires more abundant food resource (Poudel et al., 2014).  

The second evidence is that on part of the state space the optimal cod harvest exceeds the 

myopic cod harvest, forming what we call a ‘super-harvest’ phenomenon. The myopic or 

‘greedy’ solution to the optimization model only takes into account a single period when 

calculating the profit function. We solve for the myopic harvests by maximizing 

𝑒−𝛿𝜋 (𝑥, 𝑦, 𝑢𝑥 , 𝑢𝑦) with respect to 𝑢𝑥 and 𝑢𝑦. The results are displayed in Appendix Fig. B. 

Usually the greedy harvest is, as the name implies, larger than the optimal policy. Therefore, it 

is very novel and counterintuitive to observe an obvious bump in Fig. 3.2(b) and a significant 

state space area of the super-harvest in Fig. 3.3(b). Inside the 0 contour line in Fig. 3.3(b), the 

positive difference numbers together with the purple colours indicate how much the optimal 

harvest is even greedier than the greedy solution.  

 

Fig 3.3 (a) Contour plot of the optimal capelin harvest 𝑢𝑥
∗ ; (b) Contour plot of the difference 

between the optimal cod harvest 𝑢𝑦
∗  and the myopic cod harvest  

Referring to the green line of capelin zero drift boundary as shown in Fig. 3.1, one possible 

explanation is that it is optimal to harvest a bit more cod so that the cod state shrinks at a faster 

speed. This enhances the probability that the states enter the area of positive capelin growth and 

land on the safe side for capelin. When cod is abundant, the speed-up effect could accumulate 

for a long time as cod transits from high to low. Thus, a low level of super-harvest applies to 

most of the cod abundant region. The optimal cod harvest bump (dark purple region in Fig. 

3.3(b)) is probably where the system would extract the most potential. Given that the super-

harvest emerges naturally and intrinsically with the optimal policy, the message is that it is 

worthy to give up some short-term revenues from the predator if the prey has a higher 
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probability of long-term recovery. There is no additional existence value of the prey in the 

objective function and super-harvest does not appear when there is only one species. 

The strategy of prey protection and recovery manifested in the optimal policy could be 

amplified when the non-economic values of the system are accommodated as well. In this work, 

we follow the two evidences analysed above, establish alternative polices according to various 

heuristics and evaluate the recovery plans concerning effects and costs.  

We define A on the state space as the area in which the recovery plan replaces the optimal policy. 

The first evidence, i.e. moratorium of the optimal capelin harvest, is an intuitive and 

straightforward strategy. Following this, we set all capelin harvest to zero in A for all recovery 

plans. Due to the large area of moratorium in Fig. 3.3(a), some alternative harvests may result 

in no change for capelin policy. The second evidence, i.e. super-harvest of the optimal cod 

policy, is an active and more aggressive approach where the system chooses to be ‘merciful’ to 

the prey by being ‘greedy’ to the predator. Parameter 𝜃  (𝜃 > 1 ) describes the degree of 

deviation of the alternative cod harvest from the optimal cod harvest in A. The higher 𝜃 gets, 

the bigger existence value we bestow implicitly to the prey species.  

3.2.4 Simulation settings 

In order to evaluate the effect of a recovery plan, we look at the probability of capelin recovery 

and the improvement achieved by implementing the alternative policy instead of the optimal. 

We conduct Monte Carlo simulations with a feedback policy. To imitate a continuous-time 

Markov process, we apply a time unit of one year and a time step dt of 0.01 with 2000 periods, 

which leads to a simulated time horizon of 20 years. For each initial state, we simulate 2000 

realizations and then calculate the corresponding probabilities. A trajectory is counted as 

capelin recovery if x exceeds or equals to 4000∙106kg in the end of the simulation period. 

Similarly, a trajectory is considered capelin collapse if x ends up smaller than 120∙106kg. The 

sum of capelin recovery and collapse probabilities equals one on most of the state space. We 

therefore conclude that 20 years is a long enough simulation period for most states to settle 

down either as capelin recovery or collapse.  
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Fig 3.4 Contour plots of the probability of (a) capelin recovery and (b) capelin collapse  

As shown in Fig. 3.4, the contour lines for both figures extend more and more vertically as cod 

stock increases, offering limited new information. In addition, the investigation interest shrinks 

as capelin becomes more and more plentiful. Thus, when presenting the results, we focus on 

the state space area where cod stock y is smaller than 6000∙106kg and capelin stock x is smaller 

than 8000∙106kg. A total of 100 points from a 10-by-10 even grid are chosen as the initial states 

for the simulations. The results are then transferred onto the fine grid of the state space using 

cubic interpolation.  

In Fig. 3.4(a), less than 10% of realizations end up as recovered for states within the area to the 

left of the 0.1 contour line. More than 90% of realizations are considered as capelin recovery 

for states within the area to the right of the 0.9 contour line. Similar conclusions could be drawn 

from the probability map of capelin collapse in Fig. 3.4(b). The risk of prey extinction is highly 

mirrored to the probability of prey recovery. Therefore, we focus on presenting and interpreting 

the results of capelin recovery in the rest of the paper.  

3.3 The Simple Heuristic (SH) 

3.3.1 Recovery plan of SH 

The objective of all the recovery plans is to decrease the risk of capelin extinction and to 

promote the sustainability and resilience of the predator-prey system while considering the cost 

and practicality of the alternative policy. Following the two evidences in section 2.3, the 

recovery plan of Simple Heuristic (SH) is generated out of plain intuitions. We ban the prey 

harvest and increase the predator harvest on area 𝐴𝑆𝐻 where both stocks coexist and the prey is 

considered weak. For capelin stocks lager than 4000∙106kg, the likelihood of capelin recovery 

is already very high. Deviation from the optimal policy is deemed unnecessary in this case. 
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Therefore, the area, as shown in Fig. 3.5, is defined as 𝐴𝑆𝐻 = 𝑥 ∈ (0,4000] ∩ 𝑦 ∈ (0, 𝑦𝑚𝑎𝑥]. 

The alternative harvest is calculated as follows: 

𝑢𝑥
′ (𝑥, 𝑦) = 0                   

𝑢𝑦
′ (𝑥, 𝑦) = 𝑢𝑦

∗ (𝑥, 𝑦) ∙ 𝜃
                                                (3.11) 

 

Fig 3.5 State space area 𝐴𝑆𝐻(blue colored) and corresponding policy of the  

Simple Heuristic (SH) recovery plan for capelin and cod 

Harvesting the predator in a greedy manner has its practicality when it comes to implementation 

of the recovery policy. Taking more predator not only helps to recover the prey but also imposes 

no pressure regarding extra monetary investment. Putting more cod on the market lowers the 

total profit according to the objective function, but it can be positive for the local labour market 

as well such as the processing companies. In addition, raising the quota of a valuable 

commercial species is unlikely to confront strong opposition from fishers. Sandal & Steinshamn 

(2010) have investigated the possibility of rescuing the prey by harvesting the predator. In this 

paper, we focus on the probabilistic evaluation of the recovery plan together with the 

corresponding cost.  

3.3.2. Evaluation of SH 

We employ two values of parameter 𝜃, i.e. 1.2 and 1.5, and demonstrate on the state space the 

probability of capelin recovery, the improvement of the probability by the recovery plan and 

the value loss for diverging from the optimal policy.  

We plot the contour lines of capelin recovery probability under the optimal policy (see Fig. 

3.4(a)) as a reference using red dotted lines. As illustrated in Fig. 3.6(a,b), harvesting more 

predator than the optimal cod policy increases the likelihood of capelin recovery and pushes 

the blue dashed contour lines to the left. When 𝜃 takes the higher value of 1.5, the shift towards 



71 

 

left is more obvious. The two styles of contour lines merge where cod state lies within the 

moratorium region. In the moratorium area, cod harvest remains zero no matter what value 𝜃 

takes.  

 

Fig 3.6 Recovery plan of Simple Heuristic (SH) with 𝜃 = 1.2 and 𝜃 = 1.5: 

(a,b) Probability of capelin recovery; (c,d) Increased probability of capelin recovery;  

(e,f) Percentage of value loss compared with the optimal value 

In order to describe the performance of the recovery plan, we present the difference of capelin 

recovery probability between the alternative and the optimal policy. From Fig. 3.6(c,d), we 
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observe that the enhancement is most evident on the narrow blue area within the 0.05 contour 

line, which wraps around the red dotted 0.5 contour line of capelin recovery rate under the 

optimal policy. Comparing with the marked areas in Fig. 3.3, where the optimal policy intends 

to rescue the prey in search for extracting the most value, the blue areas fall inside of the 

moratorium region in Fig. 3.3(a) and coincides with the super-harvest area to a large extent.  

When 𝜃 = 1.2, the most effective case is for the recovery rate to rise from around 50% to 63%, 

leading to a maximum improvement of 13% in the darkest blue part. When 𝜃 = 1.5, the most 

fruitful case is for the recovery probability to escalate from around 50% to 78%, which is rather 

prominent. The improvement looks rather trivial and negligible outside of the 0.05 contour lines. 

It is either because capelin stock is doomed to go extinct when the predator is strong and the 

prey is weak or because capelin species is quite safe already even without the extra harvest on 

cod.  

Note that the approach of calculating recovery probabilities automatically leaves out some 

special situations. For example, a state may begin by developing into capelin collapse and then 

shift towards the safe equilibrium thanks to a weakening cod stock. But 20 years of simulation 

period is not long enough for it to be considered as recovered. Therefore, the boost in capelin 

recovery rate exposes only a part of all the effects produced by the recovery plan. For some 

states that are outside of and close to area 𝐴𝑆𝐻, the likelihood of ending up with a recovered 

capelin stock also grows. Although the alternative harvest has a sharp change on the boundary, 

the impact distributes more progressively.  

Corresponding to the benefit of the recovery plan, the other side of the coin is the incurred cost 

related to implementing the alternative instead of the optimal policy. By applying the value 

iteration DP technique, we are able to solve for the value function of a given policy. The amount 

of value difference between the alternative and the optimal harvest is the value loss in absolute 

terms.  

The percentage of value loss, manifested in Fig. 3.6(e,f), is the percentage number of the value 

loss compared to the optimal value function. When 𝜃 = 1.2, the worst case is that the recovery 

plan costs 1.3% of the optimal value. When 𝜃 = 1.5, the alternative harvest could result in a 

value loss of as much as 6% of the optimal value. While the capelin recovery probability 

increment is approximately linear to the excessive cod harvest, the percentage of value loss is 

more sensitive to the change in alternative policy.  
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All the states that suffer from value losses spread fairly widely on the stock space. While it is 

definitive that the states inside 𝐴𝑆𝐻, except for the moratorium region, are subjected to value 

losses due to deviation from the optimal policy, it is less obvious for the states outside. Keep in 

mind that the value of each state is the sum of the expected and discounted profits in an infinite 

time horizon. In a stochastic world, as long as there exists a possibility for a state outside 𝐴𝑆𝐻 

to enter the area of inevitable value losses at some point, the total value will be lower than the 

optimal no matter how long the state stays inside of 𝐴𝑆𝐻. Therefore, as cod stock enlarges, the 

predator is able to bring down capelin faster and drag the state deeper inside of 𝐴𝑆𝐻, which 

provokes a heavier value loss. As a result, we can clearly observe that the contour lines from 

Fig. 3.6(f) form an asymmetric ‘U’ shape leaning towards the right.  

The approach of solving the value function for a recovery plan and then obtaining the value 

loss percentage from it is a novel and interesting method. We construct the recovery plan 

intending to preserve the capelin stock as a prey for the cod, but other benefits such as 

development for the processing companies and environmental significance for other related 

species are also concomitant. Thus, the value loss we acquire here can be considered as a 

reference for the upper bound of the existence value of capelin as a food source for cod.  

3.4 The Refined Heuristic (RH) 

3.4.1 Recovery plan of RH 

Proceeding from the Simple Heuristic, we continue to refine the area of the alternative policy 

in pursuit of more promising capelin recovery and less value loss. From the previous results, 

we notice that certain states already have little risk of capelin extinction under the optimal policy 

and appears to have limited improvement when we switch to the alternative policy. Hence, we 

could alleviate the value loss by avoiding to carry out a non-optimal policy on the area that 

holds insubstantial need to rebuild capelin.  

As a result, for the recovery plan of the Refined Heuristic (RH), we establish 𝐴𝑅𝐻 using the 0.9 

contour line of capelin recovery probability under the optimal policy. As displayed in Fig. 3.7, 

the blue area 𝐴𝑅𝐻 includes the states that have a capelin recovery probability less than 90%. It 

is an attempt to distribute the efforts in a smarter way that they can be put to better use.  
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Fig 3.7 State space area 𝐴𝑅𝐻 (blue coloured) and corresponding policy of the  

Refined Heuristic (RH) recovery plan for capelin and cod 

3.4.2. Evaluation of RH 

As illustrated in Fig. 3.8, the capelin recovery rate (figures a,b) and the increased probability of 

capelin recovery (figures c,d) resemble very much the counterparts from SH under the same 

value of 𝜃. Shrinking the unnecessary policy deviation does not contribute to notable capelin 

recovery enhancement but mainly to sparing the value loss.  

Evidently, the contour lines of the same values distribute densely and narrowly under RH 

instead of widely and dispersedly with SH. This has disparate implications depending on where 

the state stands on the stock space. For the state of 2000∙106kg capelin and 5000∙106kg cod, the 

percentage of value loss is bound to reach the worst case of around 1.3% with 𝜃 = 1.2 

whichever recovery plan there is. For the state of 4000∙106kg capelin and 2000∙106kg cod with 

𝜃 = 1.5, the percentage of value loss is merely 0.2% for RH but is 1.2% for SH. The recovery 

plan of RH may not deliver a pronounced improvement regarding value loss in the former case 

but certainly performs better in the latter case. In addition, the maximum percentage of value 

loss is lower under RH for either choice of 𝜃 and the number of states involved in any definite 

value losses are much smaller under RH.  
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Fig 3.8 Recovery plan of Refined Heuristic (RH) with 𝜃 = 1.2 and 𝜃 = 1.5: 

(a,b) Probability of capelin recovery; (c,d) Increased probability of capelin recovery; 

(e,f) Percentage of value loss compared with the optimal value 

Inspired by the concept of price elasticity of demand in economics, we divide the change of 

capelin recovery probability by the percentage of value loss and refer to the quotient as the 

‘value elasticity of recovery’. For various states, the value elasticity of recovery can be very 



76 

 

distinct. The following Table 3.1 lists a comparison of the elasticity for the exact same state 

under SH and RH. This state lies within the alternative policy region in both recovery plans.  

Table 3.1 Value elasticity of recovery for the state of 2500∙106kg capelin and 3000∙106kg cod     

under recovery plans of SH and RH 

Recovery plan Increased capelin 

recovery probability  

Percentage of value 

loss 

Value elasticity of 

recovery 

SH  (𝜃 = 1.2) 12.87% 1.25% 10.3 

SH  (𝜃 = 1.5) 28.79% 5.56% 5.2 

RH  (𝜃 = 1.2) 12.30% 0.99% 12.4 

RH  (𝜃 = 1.5) 27.76% 4.58% 6.1 

While the price elasticity of demand in economics measures the responsiveness of the 

demanded quantity to a change in the price, the value elasticity of recovery estimates the 

sensitivity of capelin recovery probability increase to a unit of value loss. Under the recovery 

plan of SH with 𝜃 = 1.2, for each percentage of value loss, the alternative policy is able to 

achieve an average of 10.3% capelin recovery rate increase for the chosen state. As 𝜃 rises, the 

value loss escalates at a higher speed making the value elasticity of recovery generally lower 

for both SH and RH.  

The value elasticity of recovery goes up by roughly 20% from SH to RH under the same 𝜃. 

This finding reinforces the argument behind RH that the recovery plan is deliberately refined 

to be more efficient at promoting capelin stock at the same amount of value cost. However, 

there are apparently some states with a low capelin stock that suffer from value losses but do 

not enjoy much privilege of capelin recovery. The value elasticity of recovery is zero for such 

states. Does it imply that it is useless to implement any recovery plan on such an area? We 

continue to another heuristic that utilizes the innate information from the optimal policy and 

avoids large area of zero elasticity when capelin stock is poor. 

3.5 The Target Heuristic (TH) 

3.5.1 Recovery plan of TH 

After exploring the recovery potentials and value costs under the recovery plans of SH and RH, 

we pursue to target the relevant stock space area with higher levels of precision and 

sophistication. In the recovery plan of TH, the variable becomes the area of the alternative 

policy instead of the value of 𝜃. 
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The inspiration and justification that lead to constructing 𝐴𝑇𝐻 are threefold. First, the novel 

phenomenon of ‘super-harvest’ remains a major drive behind restricting the alternative policy 

within the super-harvest boundary. It follows the innate feature from the first-best policy. 

Second, RH has proven to be more efficient and beneficial in comparison with SH, therefore 

we continue to utilize the contour lines of capelin recovery probability from the optimal policy. 

Third, we can observe clearly from Fig. 3.6(c,d) and 3.8(c,d) that the increased capelin recovery 

rates concentrate on a part of the stock space with a capelin stock roughly above 1500∙106kg. 

The question follows spontaneously: is it still rewarding to deviate from the optimal policy at a 

cost of value loss when capelin is weak? It is intriguing to create cases where we switch back 

to the first-best policy for small capelin stocks.  

 

Fig 3.9 State space areas of the Target Heuristic (TH) recovery plan  

for capelin and cod (a) 𝐴0.5
𝑇𝐻 and (b) 𝐴0.9

𝑇𝐻 

As displayed in Fig. 3.9, the narrow blue regions on the stock space lie in between the super-

harvest boundary (dashed line) and the 0.5 or 0.9 contour line (solid line). The region of 𝐴0.5
𝑇𝐻 

covers the super-harvest area that lend itself to a capelin recovery probability of less than 50%. 

The area of 𝐴0.9
𝑇𝐻 includes super-harvest states that have a capelin recovery rate of less than 90%. 

The latter is a stronger tool to preserve capelin and to boost the resilience of the predator-prey 

system. The recovery plan of TH takes advantage of the information extracted from the optimal 

policy in order to target very specific states on the stock space. With fewer states being affected 

by the recovery plan, we escalate the value of 𝜃 to 1.8 to produce an intense recovery policy on 

a concentrated region on the stock space, which also leads to comparable results to the previous 

SH and RH.  
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3.5.2. Evaluation of TH 

We discover that the case of 𝐴0.5
𝑇𝐻 with 𝜃 = 1.8 produces similar results as SH and RH with 𝜃 =

1.2 and the case of 𝐴0.9
𝑇𝐻 with 𝜃 = 1.8 generates resembling results to SH and RH with 𝜃 = 1.5. 

For SH and RH, a large part of the state space is involved in some level of recovery rate increase 

but for many states it is merely neglectable. However, for TH the states with enhancements are 

more gathered within a outlined area. If we reckon the outermost contour line as a threshold for 

any noteworthy improvement, then the areas inside the 0.05 contour lines in Fig. 3.10(c,d) are 

marginally smaller than their counterparts in SH and RH. In addition, the maximum of capelin 

recovery rate increase is the highest under TH. The recovery plan of TH successfully achieves 

rather adequate capelin recovery effects and comparable results to those from SH and RH.  

Compared to SH and RH, the recovery plan of TH employs a higher 𝜃 on a smaller targeted 

area, which is a trade-off between the number of states that lend themselves to alternative 

policies and the degree of deviation from the optimal policy. From Fig. 3.10(a), we notice that 

the 0.5 contour line shifts towards left to the utmost extent among the three contour lines, which 

is not the case for SH and RH. This is also reflected in Fig. 3.10(c) that the dark blue area 

mainly gathers to the left of 0.5 contour line. Moreover, the spaces between the 0.05 and 0.1 

contour line are much tighter than that of SH and RH, indicating a sharper rise of improvement 

with 𝐴0.5
𝑇𝐻. For the case of 𝐴0.9

𝑇𝐻, the main differences emerge around the lower left corner of the 

state space. This region is left out by the super-harvest and is therefore not targeted under TH. 

As a result, the dark blue area in Fig. 3.10(d) distributes alongside the red dotted 0.5 contour 

line and ends where cod stock is above 1000∙106kg while for SH and TH, it elongates and 

spreads until where cod is about 500∙106kg. 

For SH and RH, we seek to rescue inadequate capelin stocks even though they are much likely 

to develop towards extinction. The recovery plan manages to prolong the process of capelin 

collapse, which endows the value of capelin existing for a longer period of time in the system. 

For TH, the implicit argument is that the efforts to sustain the weak capelin states are not worthy 

and therefore we decide to extract the remaining commercial values from the system. Instead 

of trying to keep the poor capelin stocks, doomed sooner or later, present for more years, we 

focus on altering the ending for capelin on the selected parts of the state space, i.e. 𝐴0.5
𝑇𝐻 and 

𝐴0.9
𝑇𝐻 . Such distinctions consequently spawn considerable differences with regards to the 

percentage of value loss.  
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Fig 3.10 Recovery plan of Target Heuristic (TH) with 𝐴0.5
𝑇𝐻 and 𝐴0.9

𝑇𝐻: 

(a,b) Probability of capelin recovery; (c,d) Increased probability of capelin recovery;  

(e,f) Percentage of value loss compared with the optimal value 

For most of the states with a capelin stock less than 2000∙106kg, implementing the recovery 

plan of TH leads to zero value loss. But a weak capelin stock could experience a percentage of 

value loss up to 5% using SH and RH. If we put the case of 𝐴0.5
𝑇𝐻 in Fig. 3.10(e) together with 
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the case of SH when 𝜃 = 1.2 in Fig. 3.8(e), we see that the worst of value loss is 4.5% for the 

former and 1.2% for the later. The 0.5 contour lines signify an extensive shrinkage of the dark 

red area. For the majority of states, the value under the recovery plan of 𝐴0.5
𝑇𝐻 does not deviate 

from the optimal value function. But for the ones that do deviate, bigger sacrifices in value are 

made in order to acknowledge the ecological importance of the prey. Similar characteristics 

hold for the case of 𝐴0.9
𝑇𝐻 in Fig. 3.10(f) and the case of SH when 𝜃 = 1.5 in Fig. 3.8(f). The 

highest percentage of value loss is 8.3% for the former and 6% for the latter, with a smaller gap 

between the two. Again, the outermost 0.5 contour lines manifest an obvious reduction of the 

‘suffering’ area. And the innermost 5 contour lines reveal that the percentage of value loss 

rockets drastically towards the centre under TH.  

The value elasticity of recovery for the same state (2500∙106kg capelin and 3000∙106kg cod) is 

4.36 for the case of 𝐴0.5
𝑇𝐻 and 4.03 for the case of 𝐴0.9

𝑇𝐻. Since the value of 𝜃 remains unchanged, 

it is expected that the two elasticities are close. Similar to previous results, the case of a stronger 

deviation from the optimal policy yields a lower value elasticity of recovery. It is also 

anticipated that the elasticity numbers from SH and RH are higher than those from TH. The 

distinctive design about TH is to let a smaller number of states carry the gains and losses of a 

more intensive approach. For this specified state, one percentage of value loss exchanges 

approximately four percentage of increase of capelin recovery probability. To determine 

whether this number can be considered sufficient would be another potential research direction. 

3.6 Conclusion and discussion 

In our stochastic predator-prey setting, a capelin stock develops towards two opposite endings: 

a prosperous ecosystem or a devasted one. We discover that the optimal policy inherently makes 

an effort to promote the prey, sometimes going so far as to be even greedier than the ‘greedy 

harvest’ for the predator. The super-harvest is an unconventional and thought-provoking 

discovery. A certain amount of economic benefit is sacrificed through excessive predator 

removal in order to drive the states faster into the region of capelin growth so that the risk of 

prey collapse becomes lessened. Note that the optimization objective does not put extra value 

on having an ecosystem instead of a single stock. Therefore, the super-harvest phenomenon 

implies that even though no existence value of the prey is deliberately counted, the optimal 

solution somehow calls out for maintaining the food source in the system for a longer period of 

time. The value loss could be reckoned as a reference for the upper bound of the existence value 

of the prey. 
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It has been shown that implementation of adequate policies to reduce fishing mortality is crucial 

for overexploited stocks to recover, underlining the positive impacts of science-based 

management (Zimmermann & Werner, 2019). The idea of acting greedily at harvesting the 

predator in order to spare the prey guides our heuristics that seek to rebuild the prey stock. To 

elevate the resilience of the system, we need to alter the probability of capelin extinction and 

recovery intentionally by deviating from the first-best policy. 

One could potentially produce alternative management plans that are instantly effective but 

come with an unacceptable cost. Thus, we propose a succession of heuristics that modify the 

optimal policy in a way that both promote capelin recovery and limit the value loss. We generate 

three recovery plans with various degrees of complexity. The Simple Heuristic (SH) follows a 

straightforward rule that all states with a capelin stock less than a certain level apply the 

alternative policy. The Refined Heuristic (RH) selects the states with a capelin recovery rate 

less than 90%. The Target Heuristic (TH) focuses on the states of super-harvest that at the same 

time has a recovery rate less than 50% or 90%. Within the active area of the recovery plan, 

capelin harvest is zero and cod harvest is scaled up with parameter 𝜃. 

Our results show that all of the recovery plans manage to lift capelin recovery probabilities and 

shift the contour lines. The improvement in recovery rate mainly takes place around the contour 

line of 50% under the optimal policy. It is not a surprise that the approach contributes most to 

the area of states where future development is most obscure. The similarities dominate the 

results between SH and RH. When 𝜃 = 1.2, the capelin recovery probability can grow by as 

much as around 13%. When 𝜃 = 1.5, the maximum capelin recovery rate increase is roughly 

28%.  

While RH performs slightly better than SH regarding recovery, it delivers a much more visible 

difference regarding value loss percentage. The refined plan under RH successfully avoids 

unnecessary value losses on numerous states. With a specific example state, we demonstrate 

that this leads to at least 20% increase in value elasticity of recovery for RH. The value elasticity 

of recovery reflects the efficiency of transferring one percent of value loss into recovery 

probability growth and the exquisiteness in the design of the policy. The choice of 𝜃 is certainly 

crucial for the elasticity and should depend on the urgency degree of rebuilding the endangered 

stock.  

The TH selects part of the super-harvest area and sets the cod harvest to 1.8 times of the first-

best policy. It resembles a sharp knife with intense effort on a tiny state space area, creating 
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comparable recovery results and concentrated value losses. Very poor capelin stocks are 

directly harvested in the same resolute way as the optimal policy. The maximum value loss is 

4.5% while this number is only about 1.3% for SH and RH under 𝜃 = 1.2. The worst value loss 

is 8.3% while it is around 5.8 % for SH and RH under 𝜃 = 1.5.  

Let us assume the first ‘jump’ is from zero capelin recovery probability increase to the mild 

cases with a maximum increment below 15% and the second ‘jump’ is from the mild to the best 

improvements. An intriguing question is: what is smarter to do? To make the first jump, SH 

and RH lend themselves to a minor loss in value while TH chooses to sacrifice a small group 

of states. It is a judgement call to determine which strategy is more suitable depending on 

specific constraints. To make the second jump, both the area and level of value loss roughly 

double under TH. But for SH and RH, in addition to the area expansion the level of value loss 

has rocketed much more. It seems smarter to work with the area refinement than to simply 

increase 𝜃 when we seek to move from modest to pronounced recovery improvement. We 

emphasize the importance of the super-harvest finding and hope for better processes to target 

the accurate state space area for stock recovery with future research.  

 
Fig 3.11 Total biomass of capelin stock in the Barents Sea  

from 1973 to 2017 with unit of 106 kg 

The capelin stock in the Barents Sea has a history of repeated collapses during the recent 50 

years (Gjøsæter, Bogstad, & Tjelmeland, 2009). As displayed in Fig. 3.11, we highlight the 

most relevant range of states between 1000∙106kg and 4000∙106kg using colored solid lines. 

Yearly state transitions take place in a drastic and sharp manner inside this range. The overall 

trend is decreasing over the years despite the volatile ups and downs. Better stock management 

is called for in order to maintain a healthy ecosystem.  
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For the three times where capelin stock hit bottom and bounced above the blue line of 

4000∙106kg afterwards, it took 4-5 years to rise above the yellow line of 1000∙106kg. According 

to our study, even with increased predator removal and banned capelin harvest, not much can 

be improved when capelin is extremely weak. A period of 5 consecutive years with a collapsed 

capelin stock signifies huge economic losses. Precautionary measures should be taken to avoid 

capelin state dropping below the lower yellow line. With the recovery plans proposed in our 

paper, we establish a buffer area on the state space with enhanced growth for capelin. It helps 

not only to rebuild the stock faster but more importantly to escape being trapped in a poor state 

for years.  
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Appendix 

 

Fig A. Optimal value function 

 

 

 

Fig B. Myopic harvest policy for (a) capelin and (b) cod 
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