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Introduction

“God does not play dice with the universe.”

Albert Einstein (1879 – 1955), physicist

“God must have been a shipowner. He placed the raw materials far from where they were

needed and covered two thirds of the earth with water.”

Erling Næss (1901 – 1993), shipping tycoon

Although the presented quotes might give an impression that this thesis deals with

some religious topic, in particular God’s aversion to gambling or His potential interest in

creating an environment that He can subsequently exploit as a market participant, it is

not the case. In both quotes, the main message is carried by the second part and “God” is

used only to emphasize the importance that authors assign to the topics they talk about.

The topics that are also the main themes of this thesis: uncertainty and shipping.

Albert Einstein’s statement was written in a letter addressed to Max Born. In the

mail correspondence, the two great physicists discussed a, back then, new arising field of

quantum mechanics. Einstein could not accept the idea that a fundamental randomness

is embedded in natural laws of our universe. That contradicted with his belief in strict

causality, which implies certainty and determinism (Isaacson, 2007). He believed that

randomness could appear as some form of statistical behavior but could not be a part of

the natural law (Natarajan, 2008).

Acceptance of quantum mechanics, and thus perceiving uncertainty as an inherent

property of our universe, belongs to today’s mainstream of physics. Uncertainty presented

in this thesis has a slightly differnt meaning. It expresses mainly limited capabilities of

an individual to predict future events, which might be partly caused by the inherent

randomness, but mainly due to limited knowledge and abilities to precisely capture all

casual relationships. The individual is aware of these limitations and wants to include
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them into a decision-making process1. Thus, uncertainty is highly subjective and reflects

the individual’s perception of reality rather than an objective truth. As such, it does not

contradict with neither belief in causal determinism nor in randomness as a fundamental

property of our universe.

To illustrate the subjectivity of uncertainty and its consequences in a decision-making

process, let us consider an example of a roulette wheel with standard 37 fields. Without any

other prior knowledge, except for basic understanding of the principle of the roulette, one

would naturally assign 1
37 probability to each field. Then, betting on a single (arbitrarily

chosen) number with a potential reward 36 times of the bet is a strategy with a negative

expected value. And thus, it is not profitable to bet from the long-run perspective.

An approach that could turn the game into profitability would be to observe the

roulette for some time and report the numbers with the hope that after collecting a large

data sample, it shall be possible to spot some statistical biases that could turn the edge to

the bettor’s side. Such a bias was once discovered by a famous statistician Karl Pearson

(1857 – 1936) in roulette numbers reported in Monte Carlo’s newspapers. Eventually,

what had first looked like an exploitable opportunity, turned out to be just an inability

of humans to construct truly random numbers when making them up – which was easier

than observing and reporting true roulette outcomes (Kucharski, 2016). Statistical tests

for verifying whether there is enough confidence that an experiment’s outcomes are not

based purely on luck, remain incredibly useful in many areas until the present.

A third strategy applicable to the roulette wheel would construct the probability dis-

tribution for each trial individually from observing the momentum of the wheel and the

ball in the beginning of the spin. That requires a fast calculation of the movements,

hardly processable by a human mind. However, a computer can do such a job, as it was

conducted by none other than the father of information theory Claude Shannon (1916 –

2001). For this purpose, he constructed the first wearable computer (1960) and together

with another mathematician, Edward O. Thorp2 (1932), analyzed the game and came to

a conclusion that the prediction made by the computer could give them approximately

40% edge over the casino (Thorp, 2017).

The main point of the preceding reflection on uncertainty is to demonstrate how the

(generally overloaded) term “uncertainty” is perceived throughout this thesis – that is,

as an subjective view of some process for which we cannot determine the exact outcome,

either due to an inherent randomness or, rather, due to our limited capabilities.

1Some authors, for example Knight (1921), make a distinction between risk, which can be quantified,

and uncertainty, which represents truly unknown outcomes. Our notion of uncertainty corresponds to

Knight’s risk.
2Edward O. Thorp became famous for description of a winning strategy in blackjack (Thorp, 1966) or

foundation of one of the first hedge funds. The fund exploited so-called statistical arbitrage (Thorp and

Kassouf, 1967).
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Shipping has been closely connected with the history of mankind for thousands of

years. It played a role in the colonization of continents, as well as in the exchange of

goods among them. Even though the industry is more than 5,000 years old, it contributes

significantly also to today’s economy as it carries more than 90% of global trade (Stopford,

2009). There is no other mode of transportation that can compete with shipping in terms

of cost efficiency when transporting cargo from one continent to another. Up to almost

20,000 standard containers can be loaded on the largest container vessels, 400,000 metric

tons of iron ore on the largest bulk carriers or 550,000 metric tons of crude oil on the

largest tankers.

Shipping segments differ also in the way the vessels are operated. Containers are

usually carried by vessels that follow regular schedules. This mode is called liner shipping :

it is a sea-based analogy to bus lines. In contrast, bulk cargo – either wet (oil and its

products) or dry (ore, coal, grain, etc.) – is transported by vessels that are dynamically

matched with demand. Thus, the vessels do not follow regular schedules, but satisfy

the current needs of the market, similar to taxis on land. This mode is called tramp

shipping. A third category involves specialized cargo – industry products (for example

cars or chemicals) – that do not fit in either of the modes and must be handled in a

specialized way.

Stochastic optimization deals with the problem of how to incorporate uncertainty into

the modeling of a decision-making process. This thesis focuses only on the most classical

approach, where the uncertainty is represented by a set of scenarios (King and Wallace,

2012b). However, how to construct these scenarios from an underlying probability distri-

bution is not always clear and this problem is also addressed in this thesis.

I share the view of, for instance, Deng et al. (2018), that before proceeding to formulate

a stochastic optimization model, three steps should precede it. In particular one should

obtain (i) hindsight, (ii) insight and (iii) foresight for the problem of interest. Rolling

backwards, no matter how complex or sophisticated the optimization model is, the results

(obtained optimal decisions) are not very useful if the wrong model inputs are used3. That

is, we need to have a good foresight. A good (probabilistic) forecast should be built on

strong understanding of a process, that is, having good insight into the process. We should

determine the key variables and analyze the causal relationships among them. Even in

cases where a forecast is constructed only from historical data by some “black box” type

of model, there is an additional assumption that patterns observed in the past will repeat

in the future. Justification of such an assumption (in some cases it is reasonable, in some

not) can also be considered as insight into the process. Insight is almost always gained by

analyzing the past (hindsight). Thus, we need to start this complex process by observing

3Less formal but logically identical version of this sentence, which is often heard among practitioners,

is: Garbage in → garbage out.
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the historical behavior and analyzing the system.

The general objective of this thesis is the modeling of short-term operational planning

in tramp shipping, with a focus on handling uncertainty. The short-term decisions are

made either directly by a shipowner operating his own vessel(s) or by a commercial oper-

ator, who hires vessels from shipowners and collects margins from sub-letting the vessel.

Thus, we use the name “ship operator’s problem” to encapsulate the short-term decisions.

The name expresses the isolation from the long-term market exposure that is associated

with shipowning4.

A commercial ship operator manages a fleet of vessels on different types of contracts

varying from a single voyage vessel to time charters of different lengths (and different

time/spatial options on redelivery vessels to shipowners). Then, it is up to the operator to

find a cargo on the market, negotiate a price for carrying it with the cargo owner (usually

through a shipbroker) and make sure that all the requirements (laycan period5, capacity

constraints, commodity type) to match the cargo with a particular vessel are met. The

operator must secure bunker (fuel) for the vessel and communicate with the captain of

each vessel regarding many aspects of a voyage (route choice that might depend on the

weather, speed choice that depends on the next planned voyage and/or general market

condition).

All the described subprocesses require several decisions to be made. Naturally, in order

to make good decisions, their consequences need to be taken into account. For example,

when selecting a cargo the operator needs to think about the position of the ship after

completing the voyage and discharging the cargo: Is there (or will there probably be)

another cargo to carry in that region? Or will the ship need to ballast (i.e., going empty)

somewhere else? Or will she have to wait? How can regional freight rates and bunker

prices change in the future in different regions?

The consequences of all these decisions are influenced by many uncertain parameters

(weather, future freight rates, demand, port queues) that are, to some extent, dependent

on each other. In order to be profitable in this highly competitive market with relatively

low-margins, it is necessary to operate extremely efficiently and make good decisions.

We are not able to address all the subprocesses that an operator deals with and combine

them into one comprehensive optimization model with all the uncertain parameters taken

into consideration. In fact, this is similar to the real-life situation, where the operator does

not deal with all of them in a comprehensive way. Usually different business units take

responsibility for particular tasks – chartering managers deal with vessels hiring and cargo

4But naturally, an operator can own (at least partially) some of the vessels, or a shipowner can operate

his own fleet.
5A period within which a ship must present herself as ready for loading.
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fixing, operations managers with the smooth operation of the ship during the voyage, risk

managers keep an eye on the financial exposure, etc.

In this thesis, we focus mainly on the aspects related to spatial positioning of vessels and

its relation to the geography of the world. As the main source of uncertainty we consider

regional freight rates, trip durations and potential cargo availability. The thesis consists

of four papers (chapters) and their order follows the hindsight → insight → foresight→
optimization logic.

Chapter 1 provides insight into the contracting behavior of freight market participants

in crude oil transportation in the VLCC6 segment. Our analysis is based on two datasets

– satellite positions of ships and a database of commercial fixtures. In the first part of

the chapter, we demonstrate trading patterns of VLCCs and different strategic choices

that a shipowner or an operator faces. These discussions are based on visualization of

geographical positions of vessels in the moment they were fixed (hired for a voyage). In

order to determine the positions of fixtures, we match the dataset of fixtures with satellite

positions of ships. From the matched datasets, we also extract features that are used

in the second part, where an econometric model7 is introduced. The model empirically

assesses the relationship between the distance from the fixture location to the loading port

and market conditions and vessel specifications.

This chapter belongs to the hindsight and insight part of the process as it provides a

description of the market obtained from the past. It highlights key features, for instance,

market conditions, vessel specificitations (age, size, ownership), that need to be taken into

account when forecasting the behavior of market participants and formulating a model of

their strategic choices.

Creating a good predictive model for a process is usually a difficult task. Thus, it makes

sense to first estimate in some simple way the potential contribution that the model can

bring before it is developed. Such a logic is applied in Chapter 2 of this thesis, where

we establish the upper bound for the increase in vessel earnings obtained from decisions

about the relocation of a vessel between regions. The upper bound can be estimated by

assuming perfect knowledge of future regional freight rates, instant cargo availability and

optimization of spatial repositioning of a vessel. This means that any realistic forecast

(which should be provided in a probabilistic way) can only lead to worse economic results.

Moreover, in real life, cargo does not have to appear at every desirable point in time. Our

analysis is performed on the drybulk freight market for three vessel segments (by size).

Except for establishing the upper bound, our analysis also provides insight into spatial

efficiency of the market. If the upper bound was too close to average earnings, it would

6Very Large Crude Carriers (VLCCs) are the largest tankers with capacity exceeding 200,000 DWT

(deadweight tonnage). They are only involved in the transportation of crude oil.
7The empirical model (Section 1.5) is mainly formulated and fitted by our French co-author François-

Charles Wolff. My input in this part is very little, mostly just providing the data for the model.
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suggest that the market is spatially so efficient in the pricing of transportation that invest-

ing into sophisticated predictive analysis and optimization models is pointless as there are

basically no exploitable opportunities. This is, however, not what we find and we believe

there is space for improvement of economic performance, and thus making the market

more efficient.

Therefore, a natural step would be to build a more complex model of the operator’s

decision-making process that takes into account several features that are omitted in Chap-

ter 2. In particular, we should consider different scenarios for future freight rates, include

scenarios for bunker prices (which also differ across regions), include more regions (which

is important especially for smaller segments) and model cargo availability. Whether a

cargo of some particular attributes is available at certain region at a future time point

(in the case the time is discretized as in Chapter 2) can be modeled by a Bernoulli (bi-

nary) distribution. This means to combine several random variables, each of them with a

different character (continuous, binary), in one application. We found a lack of scientific

literature dealing with the handling of binary distributions within stochastic programming

models. Specifically, the issue of generating scenarios from binary distributions (let alone

a combination with other distributions) is not addressed in the literature. Chapters 3 and

4 contribute to this part of the literature in a general way.

Chapter 38 provides two simple, but effective, procedures for stochastic programs with

binary distributions. The procedures are designed for problems with a special structure

using penalization, which is quite common within stochastic programming. A typical

example is a stochastic knapsack problem, which is also used in the chapter for demon-

stration. The first procedure enables effective out-of-sample evaluation of a solution by

using only necessary scenarios – those that produce a penalty. The second procedure

enables reduction of scenarios (before the problem is solved) to a minimal number of sce-

narios needed. Both procedures are based on the same principle – we generate scenarios

in a recursive manner and stop when a penalty is no longer generated. We prove that

by this procedure, it is possible to reformulate the problem into a version with a minimal

number of scenarios. Thus, this is an exact approach as the optimal solution of the reduced

problem is also the solution of the original problem.

Even if the number of scenarios is reduced to the minimal number of scenarios for the

exact reformulation, the number of scenarios could still be too large to find a solution

within a given time (or even to store all the necessary scenarios). In such a case, we

search for a representation of the uncertainty by a smaller set of scenarios. The process

of choosing this subset is called scenario generation and even though there are many

methods for generating scenarios for continuous distributions, we are not aware of any

method suitable for binary distributions due to their specific statistical properties.

8The paper is published in Computational Management Science journal (May 2018).
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In Chapter 4, we introduce an original framework for scenario generation that is not

based on any statistical measures of the distributions that many other methods use, but

on minimizing discrepancy between in-sample and out-of-sample performance of a pool

of heuristically obtained solutions. The framework is not, in principle, limited to any

distribution, and thus, can be applied on binary distributions, as it is demonstrated in

one of the sections, or on a mix of continuous and binary distributions. Thus we see a

potential in usage the framework for generating scenarios for the ship operator’s problem

(and many other areas that are listed in the chapter), if we wanted to model uncertain

future cargo availability and future freight rates at the same time.
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Chapter 1
Contracting decisions in the oil

transportation market: Evidence from

fixtures matched with AIS data∗

Vit Prochazka� Roar Adland� François-Charles Wolff4
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Norwegian School of Economics, Bergen, Norway

4LEMNA, University of Nantes, Nantes, France

Abstract

In this paper, we investigate the contracting behavior of participants in the spot freight

market for tankers by analyzing the positioning of vessels at the time of fixture. For that

purpose, we create a new dataset obtained by merging spatial ship positions, commercial

fixtures and technical vessel specifications. Using quantile and quantile fixed effect regres-

sions, we show how market conditions, vessel characteristics and charterers’ preferences

affect the fixture location. Our main result is that oil buyers secure tonnage earlier during

strong tanker markets. We also find that the geography of trade creates natural decision

points that dominate in the spatial distribution of fixtures.

Keywords: international shipping, spot market, AIS data, oil transportation
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1.1 Introduction

International transport of crude oil takes place mainly on oil tankers, with annual seaborne

crude flows totaling approximately 14.2 billion barrels per annum (Clipper Data, 2016).

This compares to annual global crude oil supply of about 36 billion barrels IEA (2018).

The only notable competing transportation mode is pipeline, which is important for cer-

tain exporters (for instance for Canadian and Mexican exports into the United States),

although it can also be used in parts of the international supply chain in combination with

seaborne transport (Adland et al., 2017).

According to Clipper Data (2016), the key exporting areas for seaborne crude oil

transport are the Middle East (Saudi Arabia, UAE, Iraq, Kuwait, Iran, Qatar, Oman)

with approximately 6.1 billion barrels per year (bbpy), Russia (1.4 bbpy), West Africa

(Nigeria, Angola) with approximately 1.3 bbpy and Venezuela (0.7 bbpy)1. Because of

the natural dominance of large national and international oil companies, the crude oil

seller side is relatively consolidated, with the top 10 shippers in the seaborne crude oil

market accounting for 55.4% of global seaborne shipments by volume. The oil buyer side

is somewhat less consolidated, with the top 10 names accounting for 34.8% of seaborne

volumes, though we note that the large players in the market can appear as both crude

oil buyers and sellers due to regional imbalances in their internal supply chain or to

opportunistically take advantage of spatial price arbitrages2.

Most crude oil is still purchased on a Free-on-Board (FOB) basis, which means that

the oil buyer is in charge of arranging and paying for transportation. As opposed to the oil

market itself, the global market for the chartering (i.e. hiring) of tanker vessels is highly

fragmented and decentralized. To illustrate this, we note that the approximately 14.2

billion barrels of crude oil transported internationally by sea in 2015 were shipped on 2260

unique vessels owned by 536 different shipping companies (Clipper Data, 2016; Clarkson

Research, 2018). Overall, the crude oil tanker fleet exceeds 428 million deadweight tonnes

(DWT) and comprises roughly 21% of the overall fleet of ocean going vessels by DWT

Clarkson Research (2018). Oil tankers are matched with cargoes in a decentralized voice-

brokered market using specialized shipbrokers. Contracts for transportation (charters)

are entered into (fixed) for either single voyages in a spot market or a longer period of

time under a timecharter. Despite the dominance of long-term offtake agreements for

the supply of crude oil, with an estimated 90% of volumes traded on long-term contracts

(Schofield, 2007), most of the transportation demand is served by spot voyage charters.

1All numbers in this section refer to 2015 and are based on aggregating reported cargoes in the Clipper

Data database.
2According to Clipper Data (2016), the top ten crude oil shippers in 2015 were Saudi Aramco,

Transneft, PdVSA, Somo, Petrobras, KPC, ExxonMobil, Botas, Total and BP, with the top ten buyers

comprising Sinopec, Petrobras, Shell, Reliance, EGPC, PdVSA, Vopak, Valero, ExxonMobil and Repsol.
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The tanker spot market for crude oil transportation has some characteristics which

makes it an interesting candidate for the analysis of timing and location decisions. Firstly,

there are obvious separate producing and consumption regions, typically located far apart,

leading to a stable and well-defined international trading pattern with a clear fronthaul-

backhaul structure. In particular, tankers will typically sail fully laden in one direction

and empty (in ballast) when returning to one of the loading areas. As a consequence of the

limited number of trading routes and typical lead times between contracting and loading,

there will be certain points in time and space where ships are more likely to be looking

for new employment and, subsequently, be fixed on a new contract.

Secondly, transportation is arranged in a decentralized spot market with a large number

of buyers and sellers, with imperfect information about the availability of cargoes, ships,

transactions and the contemporaneous choices of competitors, at least from the viewpoint

of a single participant. As a consequence, the market functions like an unsupervised

logistics system, where choices about where to locate your fleet and when to enter into

new contracts have to be made under uncertainty in what is effectively a “matching game”.

Thirdly, the transportation cost is a very small share of the value of the oil cargo and the

cost of disruption in the crude supply chain (shutting down a refinery) is very high, leading

to highly inelastic demand for both the crude oil and its transportation (Stopford, 2009).

In addition, the short-run production of crude oil is rather insensitive to variations the

oil price as the marginal cost of production is very low, with additional constraints on

shore-side storage facilities in loading areas (i.e. a “supply push”). As a consequence,

the global trade in crude oil, both in terms of volume and timing of cargoes, is largely

exogenous to the tanker freight market.

While crude oil flows may be largely exogenous to the freight market, the supply and

demand for transportation in the freight market is definitely not. Zannetos (1966) was the

first author to describe the importance of expectations in the interplay between charterers

and shipowners, introducing the concept of “intertemporal substitution”. This principally

refers to the observation that both shipowners and charterers have some flexibility in when

to enter the market with a ship and cargo, respectively, which is also the ultimate source of

the strategic value of timing and positioning in our setup. While an oil buyer (charterer)

must commence loading the cargo in a certain time window (termed “laydays”), he can

secure the corresponding transportation service from any of the ships that are positioned

such that they can meet this loading deadline and that are not already under contract (an

“open” ship). Conversely, a ship should generally obtain a new contract by the time it

reaches the loading area, but long ballast voyages (23 days from Japan to Saudi Arabia at

prevailing speeds, for instance) gives the owner considerable flexibility in terms of when

to approach the market for new business.

Zannetos (1966) further describes how mere expectations about future prices (i.e. spot
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freight rates) can lead to “self-fulfilling prophecies” and contribute to the wild gyrations

observed in spot freight rates for tankers. In the presence of intertemporal substitution, the

joint expectation that short-run rates will increase will induce profit maximizing owners

to delay negotiating (i.e. reducing immediate supply) and cost-minimizing charterers to

enter negotiations early (i.e. increase demand), with the effect of increasing freight rates,

all else equal. It follows that we may see very large short-run price fluctuations with no

fundamental change in the overall number of cargoes to be shipped or the positioning of

the fleet, based on expectations only. Consequently, the timing of freight negotiations and

subsequent fixtures can have a large impact on the earnings for a voyage and the cost of

oil transportation and is, as such, a crucial choice for both shipowners and charterers.

While Zannetos (1966) referred to the timing of contracts, such timing is by definition

interlinked with the geographical location of the vessel. Aside from the obvious one-to-

one relationship between the remaining distance and time to the loading port at constant

sailing speeds, there are at least three more reasons for this.

Firstly, whenever there is a choice between competing load areas (between West Africa

and the Middle East for a ship returning from Asia, for instance), there are constraints

on when the final decision has to be made. These constraints are a result of the economic

trade-off between the cost of deviating from the most direct routing to the load ports (i.e.

additional fuel consumption and the alternative cost of time) and the additional profit

from delaying the decision and gaining from a higher freight rate in one of the loading

regions. Secondly, there may be geographical constraints on where ships can elect to wait

for orders during the return ballast voyage (i.e. safe, low-cost anchorages, ideally with

access to refueling and crew repatriation services). Thirdly, once the ship has returned to

the loading area and become a “prompt” ship (i.e. it is unemployed and waiting, albeit

possibly voluntarily in the hope of higher rates in the near future), the cost of relocating

elsewhere at the owners expense becomes prohibitively expensive due to the long distances

at play, and so the ship becomes part of a captive idle fleet for as long as it takes to clear out

the local oversupply. The latter point also highlights the relationship between charterers’

preferences and the location of fixtures, as attractive vessels should on average be “first

picks” and therefore fixed early (in space and time).

Until now, the hypotheses discussed above have not been empirically tested due to the

unavailability of accurate ship tracking data. In this paper, we make use of the improved

availability and coverage of ship position data from the global Automated Identification

System (AIS) as supplied by satellite-based receivers to study the location of vessels at the

time of fixture. We combine AIS data with fixtures data in order to get the geographical

positions of vessels when they are reported as fixed. To the best of our knowledge, our

paper represents the first ever empirical analysis of decisions concerning both the timing

and location of fixtures in the chartering market. Our main contributions are threefold.
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Firstly, we explicitly test a version of Zannetos’ intertemporal substitution hypothesis

according to which strong (weak) freight markets are associated with earlier (later) fixtures.

Secondly, we show that certain geographical locations naturally dominate in the spatial

distribution of fixtures because they represent either safe anchorages near loading areas or

strategic “decision points”. Thirdly, we test the hypothesis that certain ship characteristics

make the vessel more attractive in the spot market and increase the probability that the

vessel is fixed early.

Our findings are important for the improved modeling of spot freight markets on

the basis of spatial data, particularly forecasting applications, in both a commercial and

academic setting. Principally, freight market models that use ship positions as a proxy

for supply and cargo shipments as a proxy for demand fail to recognize the impact of

intertemporal substitution and geography on short-run freight rate formation. Similarly,

our research improves the understanding of spill-over effects between regional markets and

provides a building block for more advanced modeling of discrete routing choices in bulk

shipping chartering.

The remainder of this paper is structured as follows. Section 1.2 summarizes the

relevant literature. Section 1.3 describes the data. The geography of VLCCs fixing is

presented in Section 1.4. We investigate the determinants of fixture location in Section

1.5. Finally, Section 1.6 concludes and suggests areas of future research.

1.2 Literature review

There are mainly three concepts from maritime economics that are relevant for our work:

risk preferences and risk premia, spatial efficiency in the freight market, and models of

spot freight rate formation.

There is clearly a close relationship between charterers’ and shipowners’ risk prefer-

ences and their behavior in the spot market. For instance, a risk-averse charterer who is

exposed to large potential costs of disruptions in the crude oil supply chain may want to

secure tonnage as early as practicable3. Conversely, a risk-loving tanker owner may take

a calculated risk and prefer to fix its vessel as late as possible in order to catch a short-

term peak in rates. Kavussanos and Alizadeh (2002) and Adland and Cullinane (2005)

point out that this risk of transportation shortage is time-varying and exists only during

strong freight markets. While there are no academic studies on the risk preferences of oil

buyers, it seems reasonable to postulate that most are risk averse. Having to withdraw a

cargo from the market, delay the shipment or charter a sub-standard vessel because there

is no alternative could potentially have large monetary consequences for a charterer, for

3Anecdotally, major charterers care mostly about paying a market rate that is no higher than their

main competitors. See Adland et al. (2016) for a study on the impact of charterer identity on VLCC spot

freight rates.
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instance due to a resulting breach of contract, refinery downtime, or a loss of reputation

(Adland and Cullinane, 2005). As a consequence, we expect charterers to try to fix earlier

when spot freight rates are high.

The time-varying nature of risk preferences is well established in the literature, with

Friedman and Savage (1948) first presenting the theoretical argument that investors’ atti-

tudes towards risk are governed by their liquidity situation. A survey of the risk attitudes

of Norwegian shipowners by Lorange and Norman (1973) suggested that the majority of

the players were risk loving or risk neutral when their liquidity was good (strong freight

markets), but risk averse otherwise. Eckbo (1977) repeated the analysis in a market that

had been depressed for a few years and found that there had been some changes in the

attitudes towards risk. In the case of good liquidity, half the group showed risk-loving

behavior whereas the second half was risk averse. The group was mainly risk averse, how-

ever, if the participants were exposed to a liquidity shortage. Overall, the results imply

that shipowners as a group have decreasing absolute risk aversion with respect to wealth,

assuming that the state of the freight market is a good proxy for the latter (Cullinane,

1991).

Because of the potential for intertemporal substitution (Zannetos, 1966), the time-

varying and, more importantly, market-dependent risk preferences among shipowners and

charterers are likely the main source of heterogeneity in the timing of fixtures. Based on

the theoretical arguments presented and findings in the literature, (Alizadeh and Talley,

2011a,b), we expect a general shift towards early negotiations and fixing activity during

strong freight markets, and later fixing in weak markets where oversupply of open ships

allow even highly risk-averse charterers to have patience and secure cheap transportation

closer to the loading window. In addition, we expect that heterogeneous risk attitudes

translate into company-specific fixed effects in chartering behavior (as proxied by the tim-

ing/location of fixtures). Finally, the geography of the trading routes, with established

waiting areas and “decision points” for the routing of vessels, is expected to lead to sin-

gularities in the distribution of fixing activity (when measured by remaining distance).

The modeling of spot freight rate formation in bulk shipping has long been a fascination

of maritime economists. Early research focused on structural or reduced-form equilibrium

models (see Tinbergen (1934); Koopmans (1939); Zannetos (1966); Eriksen and Norman

(1976); Hawdon (1978); Norman and Wergeland (1939); Wergeland (1981); Charemza and

Gronicki (1981); Beenstock (1985); Strandenes (1986); Beenstock and Vergottis (1989);

Evans (1994)). Later studies adapted univariate stochastic models typically borrowed

from the finance literature (see Bjerksund and Ekern (1995), Tvedt (1997), Adland and

Cullinane (2005)). The former group of models were deterministic and, thus, at best

able to capture some of the long-run variations in market conditions (typically trying to

explain annual average spot rates, for instance). The second group ignores the underlying
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fundamental market information altogether and considers the spot freight rate history

only. Adland and Strandenes (2007) propose a stochastic extension of the classical partial

equilibrium models of the spot freight market in an attempt to bridge the two approaches.

However, the notion of “intertemporal substitution” (Zannetos, 1966) of cargoes and

ships creates dynamics that these models are unable to account for. Once we introduce

flexibility (in time and space) in when to enter the spot market for matching a cargo

or a ship, fundamental information such as fleet size and loaded cargo volumes need not

be a major influence on short-term spot rate dynamics. Instead, heterogeneous and time-

varying expectations, risk preferences, and the relative bargaining power of shipowners and

charterers start to play a role. As an example, a Markovian stochastic spot freight rate

model cannot account for the well-known presence of short-term positive autocorrelation

in spot freight rate dynamics (Benth and Koekebakker, 2016).

The literature dealing with this behavioral part of the spot freight market is limited

and mainly theoretical. Tvedt (2011) considers the psychological aspects of the Very Large

Crude Carrier (VLCC) market using an assignment model with an exogenous freight rate

that varies according to the bargaining power between the shipowner and charterer. Parker

(2014) develops a comprehensive simulation model for matching in the VLCC market

and finds that agents’ opportunity cost and future expectations influence the matching

and contract prices. Moreover, ships’ physical characteristics affect both costs and the

charterers’ willingness to pay. Also, varying location and physical characteristics show that

ships which are the most favored by physical characteristics cannot compete as strongly

with less preferred ships located closer to the loading area (Parker, 2014).

Our empirical work is based in part on ship positions recorded from AIS data, a

system which was originally conceived for collision avoidance. The use of AIS data in

maritime economic research is still in its early stages, with applications mainly limited to

emission accounting Smith et al. (2014) and studies of vessel speeds (Aßmann et al., 2015;

Adland and Jia, 2016, 2018). Adland et al. (2017) compare global crude oil trade statistics

derived from customs data with those derived from the bottom-up AIS tracking of crude

oil shipments. They find that overall there is good alignment in volumes, suggesting that

AIS-based trade volumes are reliable, but that temporal and spatial deviations occur due

to pipeline transport, temporary storage and transhipment. In related work, Jia et al.

(2017) propose an automatic algorithm for generating seaborne transport pattern maps

based on AIS data.

The literature on microeconomic analysis of fixture data can assist in identifying the

physical characteristics that make ships more or less attractive. Notable papers in this

area include, for instance, Tamvakis and Thanopoulou (2000), Köhn and Thanopoulou

(2011), Agnolucci et al. (2014), Adland et al. (2016, 2017). While researchers have almost

exclusively dealt with the impact of vessel and voyage determinants on contracted rate
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levels, many of the variables proposed in the literature, such as vessel age, ownership,

flag, and carrying capacity, should also proxy the vessel’s overall attractiveness in the

chartering market. An important point here is that of simultaneity, that is, whether

there is a relationship between the position at which a vessel is fixed and the rate it

obtains as highlighted by the simulation model of Parker (2014). Using reported fixtures,

Alizadeh and Talley (2011a,b), model the interrelationship between the lead time (between

fixture and loading) and the spot freight rate in a system of simultaneous equations. The

results for the tanker market in Alizadeh and Talley (2011b) suggest that ships are fixed

earlier during times of high freight rates and lower volatility4. The latter is somewhat

counterintuitive, but may be related to the expectedly high correlation between volatility

and levels (see Adland and Cullinane (2006)) and resulting issues with multicollinearity.

In the present paper, we use the recent availability of AIS data to build on the empirical

results in Alizadeh and Talley (2011b). Specifically, estimating the average effects of vessel

and voyage determinants in the time dimension only, as done in Alizadeh and Talley

(2011a,b), will ignore the finer details in how the full distribution of lead times depends

on market conditions and company risk preferences. Perhaps more importantly, such

an approach also ignores the link between the distribution of vessel fixing in both space

and time and the geography of seaborne trade (such as anchorages and routing decision

points). There are also important data quality challenges when relying solely on fixture

data for empirical work as in Alizadeh and Talley (2011a,b). The main problem is that

fixture data reports the intended loading dates for a vessel, which may be several weeks

ahead. There is no assurance that the actual loading takes place during the expected time

window, for instance due to cargo delays or bad weather affecting ship arrivals, in which

case the reported lead time is incorrect. Nor are all fixtures realized as intended and may

be canceled shortly after reporting if the contract was still “on subjects”.

By matching fixtures and the physical position and subsequent routing of the vessel,

we are able to verify that a contract was performed as intended and improve the quality

of the estimates using realized data points. In general, the impact of geography and trade

patterns on market dynamics has received comparatively little attention in the maritime

economic literature, with notable exceptions being the works of Laulajainen (2007, 2008,

2011). Our study clearly contributes to link the research streams of maritime geography

and economics.

4The lead time is positively related to the spot freight rate level, hull type (double hull vs single hull)

and DWT utilization, and negatively related to vessel age and freight rate volatility.
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1.3 Data and descriptive statistics

1.3.1 AIS data and VLCC trading

The tanker fleet is divided into several size classes based on vessels’ carrying capacity,

measured in deadweight tonnes (DWT). For crude oil tankers, the main segments are

referred to as VLCCs (above 200,000 DWT), Suezmax (around 130,000 – 160,000 DWT),

Aframax (around 70,000 – 120,000 DWT) and Panamax (around 50,000 – 70,000 DWT)

(Stopford, 2009). In this paper, we focus on spot fixtures of the largest size class of

tankers (VLCCs) as they dominate the long-haul routes of interest here. For instance,

Adland et al. (2017) report that VLCCs loaded 88% of all crude oil exports from Saudi

Arabia, 58% of Angolan exports and 35% of Venezuelan exports in 2015. Suexmax and

Aframax tankers are typically used on regional trades (in particular in ex-Russia and the

North Sea) where they are not subject to the same location choices. The trade of VLCCs

is further restricted to only a few main routes due to restrictions in ports regarding the

size and maximal allowed draught of a vessel.

Figure 1.1: Histogram of draught ratios

Source: Authors’ calculations, AIS data.

To determine the geographical position of a fixed vessel and illustrate main trading

routes, we use AIS data from the period January 2013 – July 2016. AIS data include

the location (longitude and latitude) of the ship, its unique IMO (International Maritime

Organization) number, vessel name as well as the current draught and speed5. However,

since the AIS-reported draught is not always reliable (due to manual input), we first assign

positions to single trips and then compute the average draught over the trip. The average

draught for the voyage is divided by the design draught for each vessel. Figure 1.1 shows

the bimodal distribution of resulting draught ratios across our fleet. We classify the voyage

as laden if the average draught ratio exceeds 0.6 and note that this will include some part-

5The positions in the AIS dataset are reported every three hours, but there are a few gaps in the data

due to poor coverage, typically due to signal disruptions in high-traffic areas such as the South China Sea.

20



laden voyages. However, since we use this classification only for visualization purposes in

Figures 1.3 and 1.4, we do not add more sophisticated features that could improve the

accuracy of the classification6. Note also that the laden/empty classification is not used in

the econometric analysis presented in Section 1.5, as ships can be fixed in both conditions.

(a) Laden Eastbound

(b) Laden Westbound

Figure 1.2: Worldwide laden voyages for VLCCs.

Source: authors’ calculations, AIS data.

Figure 1.3 illustrates the trading pattern of the 670 VLCCs in our AIS database in 2014

by direction (westbound/eastbound) and loading condition. The routes are highlighted by

drawing a thin partly transparent line between subsequent observations, with the direction

of the vessel movement determined by comparing longitudes of consecutive positions7.

6For example, we could assess whether a port of origin (destination) belongs to loading or discharging

ports for each trip. However, in our sample ships are fixed both when they are known to be laden and in

ballast.
7The scale of the transparency is chosen for each figure independently.

21



(a) Ballast Eastbound

(b) Ballast Westbound

Figure 1.3: Worldwide ballast voyages for VLCCs.

Source: authors’ calculations, AIS data.

In Figure 1.2a, we can recognize Persian Gulf (PG) as the main exporting area of

crude oil, which is transported mainly to east Asia (China, Singapore, Japan), west coast

of India, Pakistan or to the US Gulf (Figure 1.2b). Additional eastbound cargo flows

appear from West Africa, Venezuela and, to a much lesser extent, the North Sea. From

the US Gulf, vessels often ballast to Venezuela, which is basically the only significant

eastbound flow of empty vessels (Figure 1.3a), where crude oil is loaded and transported

to a similar set of destinations as in the PG case. The third exporting area that we focus on

is West Africa, to which empty vessels mainly ballast from East Asia (Figure 1.3b). More

detailed analysis of movements and the different strategies of shipowners and operators

are considered after merging AIS data with the dataset of fixtures.

Figure 1.3b depicting ballast voyages points to the importance of geography in the
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choice of where to wait. The key decision point in our observations is clearly the Sin-

gapore area because of its strategic location. The shortest path from East Asia (Japan,

China, Singapore), where most vessels discharge their cargo, to all main exporting areas

go through Singapore. Thus, for a ship that is not already fixed, it is possible to wait

here for a contract that can come from all exporting areas and still ballast the minimum

distance. An alternative decision is to not waste time (and potential earnings) by waiting,

but continue to a particular loading area even without a contract. However, this strategy

comes with the risk that no contract becomes available before arrival or that it turns out

that an alternative loading area would have provided higher voyage profits for the subse-

quent voyage. Of course, the location decision is reversible, but only at a cost of additional

fuel burn and lost alternative revenue.

1.3.2 Spot fixture data

We analyze the dataset of spot fixtures for VLCCs provided by Clarkson Shipping Intel-

ligence Network for the same period that we have AIS data (from January 2013 to July

2016)8. The data include basic vessel characteristics like name, deadweight tonnage, re-

ported fixture date, the laycan period within which a ship must present herself as ready

for loading, origin and destination of the transportation service, etc.

Without filtering, the database of fixtures includes 6179 transactions for VLCCs during

this time period. However, as the IMO number is not included in the Clarkson’s fixtures

dataset, we must rely on the name of a ship for the matching with AIS ship position

data. Since the vessel name can change multiple times during the lifetime of a ship,

typically when it changes ownership, we are not able to match all records. In addition,

though ignored in the literature, not every reported fixture is eventually realized. For

further analysis, we consider only realized fixtures, by verifying whether the particular

vessel appeared in a loading area within the stated laycan period, with a tolerance of +/-

3 days. One of the aspects we consider in our analysis is the waiting time before loading

(for example a vessel might spend several days in Fujairah anchorage), meaning that we

must filter out cases with a significant gap between the first appearance in the loading

area and the preceding position, since we are not always able to establish (or estimate

with a reasonable accuracy) the exact time a vessel enters the loading area9.

After filtering, we focus on the three main export areas for which we match AIS and

fixture data. Our final dataset includes 2029 fixtures for Persian Gulf, 464 fixtures for

West Africa and 217 fixtures for Venezuela. Our main variable of interest is the distance

to loading port. Due to the gaps in the AIS dataset, it is sometimes impossible to determine

8See www.clarksons.net.
9For example, a ship may be observed close to the west coast of India and the next AIS position is in

PG, where it is supposed to load a cargo. Such an observation is excluded from the dataset.
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the exact position of the vessel at the moment of fixture. In such a case, we interpolate the

nearest positions before and after the date of the fixture by approximation of the vessel

movement. We assume that the vessel is moving along the shortest path on a purpose-

made mesh of the ocean (see Appendix for more details). Simple approximation by a line

between two consecutive positions would typically not work since it might cross land.

The remaining distance to the load port is measured directly from the AIS data by

calculating the cumulative sum of distances between two consecutive positions in the AIS

dataset from the date of the fixture until the ship enters the corresponding loading area.

For Venezuela and West Africa, we add an approximate distance from the first point of

entry to the loading area to the “spatial centre of gravity” of the loading terminals. This

approach of “approximating the last step” is applied because it is generally difficult to

determine the exact terminal for loading. For instance, it is hard to distinguish between

an offshore loading area (buoy), ship-to-ship transfer at sea, and an anchorage area where

ships wait for contracts or terminal allocation. Moreover, gaps in the AIS dataset might

make it impossible to observe the period when the ship was stationary. In the case of

PG the loading area depicted by the rectangle is relatively small and so we measure the

distance from the point of fixture to a first entry to the rectangle10.

Table 1.1 presents the descriptive statistics of the matched and verified fixture data.

The average distance is 2897.2 miles in the Persian Gulf, with a standard deviation of

1535.8 miles. The average distance is 7272.9 miles in West Africa and 4656.6 miles in

Venezuela, respectively. We include in Table 1.1 vessel age and deadweight for each ge-

ographic area. The average age of VLCCs fixed for the Persian Gulf (8 years) is higher

than in West Africa and Venezuela (around 6.5 years). The average deadweight is around

300,000 in all areas.

An important indicator in our analysis is the general state of the tanker spot freight

market. In line with previous studies (Alizadeh and Talley, 2011b), we consider the Baltic

Dirty Tanker Index (BDTI), which is a daily indicator produced by Baltic Exchange that

includes several of the most traded routes across different sizes of vessels11. In our specific

analysis of the Persian Gulf, we use the BDTI TD2 indicator which is the index for the

route Middle East-Singapore.

10There are, however, some exceptions that we need to treat in a special way. In general, more compli-

cated behavior is observed inside the Persian Gulf. For example, we observe visits to multiple terminals or

a relocation to Fujairah anchorage and back to PG for loading. We check for the possibility that a ship is

fixed in PG, but manage to make a short trip within the laycan period, for example, to Karachi (Pakistan)

and back. In such a case, the distance is measured and added.
11More information on Baltic Indices, including the methodology of the calculation, can be found in

Laulajainen (2008). See also https://www.balticexchange.com.
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Variables Persian Gulf West Africa Venezuela

Distance to loading port

Average 2897.2 7272.9 4656.6

Standard deviation 1535.8 1837.4 2605.7

Median 3168.6 7568.8 4443.0

Control variables

Vessel age 8.0 6.6 6.5

Vessel deadweight 307,270 306,641 311,508

Baltic tanker index 54.6 54.1 54.4

Number of observations 2029 464 217

Table 1.1: Descriptive statistics of fixtures, by geographic area.

Source: authors’ calculations, 2013 – 2016 data from Clarksons and AIS data.

1.4 The geography of VLCC fixing

To get a visual overview of geographical distributions of fixtures, we display all assigned

fixtures in a map in Figures 1.4a, 1.4b and 1.4c. Fixtures that are made while a ship is

laden are denoted by a cross symbol, and fixtures done by ballasting ships by a circle.

The circles are partly transparent, thus an increased intensity of the color corresponds to

a higher number of fixtures in a certain place12.

From a distance point of view, vessels in the laden condition are still sailing away

from the loading area and towards the discharge port, or they are potentially fixed while

at anchorage or alongside the terminal in the discharge port. Although fixing the vessel

while still under contract with the previous cargo represents some risks for the shipowner,

mainly in case of unexpected delays leading to a missed laycan in the next loading port,

our data suggests that it is fairly common in the ex-Venezuela trade (Figure 1.4c). This

is because the ballast trip from the discharge area, typically in the United States, to

Venezuela is very short.

As shown in Figure 1.4a, most fixtures for cargoes in the Persian Gulf area are done

during the ballast trip back from Asia. We observe two main mass points in the number

of fixtures. The first peak is observed in Persian Gulf, mainly at Fujairah anchorage. It

consists of unfixed vessels that had to ballast all the way back to Persian Gulf and wait

for a contract. The second peak is in the Singapore area, which is a result of several

phenomena. First, Singapore as such is an important destination for crude oil so that

many vessels get a new contract while discharging a previous cargo. Second, if the ship

does not have a new contract and the discharging process is finished, it can either ballast

12The scale of the transparency is chosen for each figure independently, i.e., it is specific to each area.

25



back to the Persian Gulf or West Africa with the hope of getting a contract later, or it

can wait in the Singapore area. The advantage of waiting is that the ship does not lose

the option of going to all other areas (mainly West Africa or Venezuela). Clearly, these

waiting ships contribute to the peak of fixtures in the Singapore area. Third, even for

vessels returning from Japan or China, it makes sense to wait in the Singapore area on

the ballast trip back to the Persian Gulf. Again, in doing so, the vessel keeps the options

of going to other export areas without wasting fuel13.

(a) Persian Gulf

(b) West Africa

13Such waste is observed in Figure 1.4b according to which some ships decided to ballast without a

contract and were later fixed for West Africa.
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(c) Venezuela

Figure 1.4: Geographic positions of fixtures by export area

Source: authors’ calculations, data from Clarksons matched with AIS 2013 – 2016.

In the case of West Africa (Figure 1.4b), we observe similar phenomena as for the

Persian Gulf. Most vessels get fixed on the ballast trip from East Asia. Again, the

Singapore area plays an important role, because ships in this area keep the options of

going to both main export areas, in particular Persian Gulf and West Africa, without

wasting fuel due to deviation. Still, a fair number of vessels are fixed for West Africa

while ballasting to the Persian Gulf and therefore incur some deviation costs. However,

a profit-maximizing shipowner will only reverse such a routing decision if there are gains

in vessel earnings, i.e. because spot rates (or cargo availability) are better out of West

Africa. Finally, most fixtures for Venezuela (Figure 1.4c) are recorded during laden trips

to the US Gulf or immediately after discharge. Most cargoes head to the US Gulf from

Persian Gulf via Cape of Good Hope, but some cargoes go through the Suez Canal14.

14VLCCs can only go part laden through the Suez Canal. Fully laden VLCCs can ship part of their

cargo through the Suez-Mediterranean pipeline (Sumed pipeline). This oil pipeline located in Egypt runs

from the Ain Sukhna terminal on the Suez Gulf to Sidi Kerir on the Mediterranean Sea.
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(a) Persian Gulf

(b) West Africa

(c) Venezuela

Figure 1.5: Distribution of distance from point of fixture to loading by export area

Source: authors’ calculations, data from Clarksons matched with AIS 2013 – 2016.

To further highlight the existence of spatial “decision points”, Figure 1.5 shows the

distribution of estimated distances from the point of fixture to the loading area. The

width of bins in the histograms is set to 250 nautical miles (nm). The distribution for

Persian Gulf fixtures is characterized by two modes. The first one is for a category of

“prompt” ships which are fixed near the loading area (less than 250 nm distance). The

second one corresponds to vessels fixed in the Singapore area (between 3,250 and 3,500

nm distance). The proportion of vessels located more than 4,000 nm away when obtaining
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a fixture remains low (around 20%). The distribution for West Africa shows a similar

local maximum near Singapore at approximately 8,000 nm, and around one-half of vessels

(49.4%) are fixed in a distance ranging between 7,000 and 8500 nm. Conversely, very few

ships (1.7%) are fixed within a distance of 3,000 nm near the loading area. Finally, ships

fixed for Venezuelan loadings tend to be fixed with an increasing probability nearer the

loading area, the mode being at around 2,000 nm.

This pattern is quite revealing in terms of strategic behaviour in the VLCC chartering

market. Notably, shipowners generally do not send their vessels speculatively to West

Africa, but will fix for this destination latest mid-Indian Ocean. On the other hand, the

Persian Gulf acts as the main “sink” for unfixed tonnage, which appears like a natural

consequence of the greater cargo volumes being exported here. Venezuela, the only main

VLCC loading area in the Americas, also sees its share of fixing of prompt tonnage as

owners take the opportunity to wait for a backhaul cargo to India or Asia on the way

back from the US Gulf. In all cases, Singapore stands out as a key geographical area from

where tonnage is fixed for the reasons already mentioned.

Next, we study the potential effect of market dependency of the fixture location. For

that purpose, we show in Figure 5 the distribution of distance to loading area by market

conditions. Specifically, we separate high and low freight markets which are defined here

as when the BDTI is at least 20% above or below its average, respectively15. The arrows

indicate the average distance to loading port in each market condition.

15We have checked the robustness of our results to the definition of the high and low freight markets

by considering alternative percentages.

29



(a) Persian Gulf

(b) West Africa

(c) Venezuela

Figure 1.6: Distribution of distance from point of fixture to loading by export area

Source: authors’ calculations, data from Clarksons matched with AIS 2013 – 2016.

A first finding is that the average distance to loading area is much higher in high

markets than in low market: 3,698 nm against 2,828 nm in the Persian Gulf, 7,624 nm

against 7183 nm in West Africa, and 6,061 nm against 4,542 nm in Venezuela. A second

finding is that the distribution of distances is not simply shifted. The constraints of

geography, i.e. the location of waiting areas and routing decision points, imply that the

main modes remain at the same distances. For the Persian Gulf loading area, we still

observe a peak at around 3,500 nm corresponding to the Singapore area (and also another

one near the loading area). When the freight market is high, relatively more fixtures

are done before a ship arrives to the Singapore area from East Asia. As a consequence,
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fewer fixtures are done after Singapore since it is more likely that ships are already under

contract. This highlights the importance of looking at spatial distributions and not only

changes in average lead times as in (Alizadeh and Talley, 2011a,b) where such nuances are

lost. The market dependency is less obvious in the case of West Africa, while in Venezuela

we observe a larger proportion of vessels fixed when located around 2,000 nm from the

loading area in a high market.

In Figure 1.7, we further illustrate the relationship between market conditions and

the average distance from the location of fixing and the Persian Gulf loading area by

plotting monthly averages. The correlation between distance and the Baltic index is

large (0.678) and statistically significant (p=0.000). Both trends are highly correlated

and the relationship is contemporaneous. This supports Zannetos (1966) intertemporal

substitution hypothesis that increasing rates will pull demand forward, with earlier fixing

leading to longer average distance.

Figure 1.7: Distance to fixtures and Baltic tanker index in Persian Gulf

Source: authors’ calculations, 2013 – 2016 data from Clarksons and AIS data.

1.5 The determinants of fixture location

Having established that the state of the freight market is a driver of the distribution of

fixture locations, we proceed with formal statistical testing of the empirical relationships.

A key observation thus far, which has not yet been acknowledged in the related literature

(Alizadeh and Talley, 2011a,b), is the fact that the entire distribution of fixture locations

depends on the state of the freight market. In other words, the elasticity of distance to

the loading port with respect to the spot freight rate may depend on where we are in the

market cycle.

To investigate this aspect, we rely on regression models explaining the distance to
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loading area for each fixture as a function of market conditions and vessels characteristics.

We rely on quantile regressions which provide estimates of the marginal effect of covariates

at various locations in the distribution of the dependent variable (Koenker and Bassett,

1978). Quantile regressions will provide robust estimates of the determinants of distance

values, particularly with respect to misspecification errors related to heteroskedasticity.

Let qθ(Dvi) be the θth conditional quantile of the distance Dvi for fixture i concerning

vessel v. The fixture i occurs at time t so that i as index refers in fact to i(t) . The model

that we estimate is:

qθ(Dvi) = δ(θ) ∗ FRt +Xvi ∗ β(θ) + εvi (1.1)

where δ(θ) provides the effect of the spot freight rate FRt at the θth quantile of the

distance distribution, Xvi is a set of control variables dealing with vessel characteristics

for fixture i, β(θ) is a vector of coefficients to estimate, and εvi is a residual perturbation.

In our empirical analysis, we estimate the distance from the fixture location to the load

port as a function of spot freight rates at the 10th, 25th, 50th, 75th and 90th percentile.

We also estimate the OLS version of (1.1), in which case the estimates relate to the mean

value of the dependent variable.

In our dataset, we have repeated observations for many vessels which are observed all

over the period16. As a consequence, we are able to account for the influence of time-

invariant unobserved characteristics of vessels in our estimations by adding a fixed effect.

Vessel-specific heterogeneity may arise because it is a dedicated ship on a particular route

(so that we pick up a route effect) or because a particular human charterer is charge of the

vessel. In a linear model, the residual εvi is expressed as εvi = θv + ξvi with θv the vessel

fixed effect and ξvi the residual perturbation. The vessel fixed effect is then eliminated

by demeaning all observations at the vessel level. Let Dvi = δ ∗ FRt + Xvi ∗ β + θv + ξvi

be the corresponding linear model. The coefficients δ and β are obtained by estimating

(Dvi−Dv) = δ ∗ (FRt−FRt) + (Xvi−Xv) ∗ β+ (ξvi− ξv). However, the problem is more

complex in a non-linear framework since differencing techniques cannot be implemented.

Over the last years, a few solutions have been proposed to estimate quantile regression for

panel data (Koenker, 2004; Lamarche, 2010).

In this paper, we turn to the two-step estimator proposed in Canay (2011) in a setting

where the fixed effects are considered as location shift variables. The fixed effect θv is

eliminated in the first step by estimating the linear model Dvi = δ ∗FRt+Xvi ∗β+θv+ξvi

from which we obtain the estimated fixed effects θ̂v such that θ̂ = E[Dvi− δ̂∗FRt−Xvi∗ β̂].

In the second step, we define the new dependent variable D̃vi such that D̃vi = Dvi − θ̂v.

16The proportion of vessels observed several times is 96.0% in Persian Gulf, 75.6% in West Africa and

56.7% in Venezuela.
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Variables OLS Quantile regression

Q10 Q25 Q50 Q75 Q90

Panel A. Persian Gulf

A1. Without fixed effect

Baltic tanker index 28.84∗∗∗ 32.53∗∗∗ 33.40∗∗∗ 23.77∗∗∗ 34.21∗∗∗ 43.64∗∗∗

(13.19) (5.36) (7.99) (11.05) (10.41) (9.74)

Number of observations 2,029 2,029 2,029 2,029 2,029 2,029

R2 0.079 0.018 0.033 0.037 0.061 0.073

A2. With fixed effect

Baltic tanker index 32.03∗∗∗ 28.28∗∗∗ 30.87∗∗∗ 30.58∗∗∗ 34.65∗∗∗ 40.35∗∗∗

(13.43) (6.91) (11.35) (16.12) (13.91) (12.42)

Number of observations 1,947 1,947 1,947 1,947 1,947 1,947

R2 0.102 0.046 0.061 0.069 0.086 0.099

Panel B. West Africa

B1. Without fixed effect

Baltic tanker index 31.87∗∗∗ 40.50∗∗∗ 33.71∗∗∗ 21.84∗∗∗ 11.89 40.62∗∗∗

(5.65) (2.73) (3.25) (5.64) (1.34) (4.95)

Number of observations 464 464 464 464 464 464

R2 0.065 0.039 0.037 0.032 0.012 0.048

B2. With fixed effect

Baltic tanker index 16.25∗∗ 33.23∗∗∗ 16.92∗∗ 7.70 10.19 10.74∗

(2.23) (3.21) (2.50) (1.62) (1.51) (1.72)

Number of observations 351 351 351 351 351 351

R2 0.021 0.066 0.024 0.005 0.006 0.012

Panel C. Venezuela

C1. Without fixed effect

Baltic tanker index 42.84∗∗∗ −0.17 14.44 42.55∗∗∗ 51.88∗∗∗ 59.27∗

(4.05) (-0.03) (1.19) (3.20) (3.17) (1.92)

Number of observations 217 217 217 217 217 217

R2 0.071 0.002 0.005 0.033 0.057 0.072

C2. With fixed effect

Baltic tanker index 67.70∗∗∗ 52.33∗∗ 70.20∗∗∗ 49.32∗∗∗ 66.98∗∗∗ 108.02∗∗∗

(3.53) (2.38) (4.64) (3.41) (4.22) (5.14)

Number of observations 123 123 123 123 123 123

R2 0.143 0.111 0.105 0.106 0.102 0.180

Table 1.2: Effect of Baltic Tanker Index on distance to fixtures.

Source: authors’ calculations, 2013 – 2016 data from Clarksons and AIS data.

Note: Significance levels are equal to 1% (***), 5% (**) and 10% (*).
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The fixed effect quantile estimators are then obtained by estimating standard quantile

regressions with D̃vi as dependent variable instead of Dvi. Canay (2011) shows that this

two-step estimator is consistent and asymptotically normal as both the number of vessels

and fixtures grow. Both the standard and fixed effect quantile estimates are reported in

Table 1.2 for the three geographic area (Persian Gulf, West Africa, Venezuela).

We observe that there is substantial variation in the elasticity of fixture location along

the distribution of freight rates. Of particular interest is the tendency towards greater

sensitivity at very high freight rates. This pattern makes sense in the context of the

discussion of risk aversion and risk attitudes. Compared to the coefficient found in the

first quartile of the distance distribution (around 33 without fixed effects and 30 with fixed

effects), the coefficient is 30% higher at the 90th percentile. In a strong market, there is

a greater risk of transportation shortage, i.e. not finding a vessel for the cargo when it is

needed. This implies that risk-averse charterers are forced to fix vessels earlier, resulting

in a greater sensitivity to changing market conditions. While the situation in Venezuela

seems very similar to that found for the Persian Gulf, the pattern is different in West

Africa with some U-shaped profile for the impact of the market index.

The state of the market is not the only factor that influences the distance between

fixture and loading area. Some vessels are more desirable than others due to their charac-

teristics. We next investigate the influence of age, deadweight tonnage (DWT) and flag.

Additionally, we introduce year and month time fixed effects to account for seasonality.

Seasonality in fixture behavior could be influenced by seasonal refinery maintenance peri-

ods (common in Asia around April) or seasonal weather patterns such as the monsoon. In

Table 1.3, we report the results of both OLS and quantile regressions which are estimated

at the 10th, 25th, 50th, 75th and 90th percentile.

Again, we find that the quantile coefficients associated to the market index tend to

increase along the distance distribution. There is some evidence of seasonality in fixture

behavior, with fixing occurring earlier during March, April and May: the coefficients

associated to those months are positive and larger both in the lower and upper parts

of the distance distribution. This coincides with the main annual maintenance period

for Asian refineries, which ought to reduce shipment volumes temporarily. What we are

seeing may therefore simply be the effect of owners seeking earlier employment for their

ships during this expected and temporary market lull. We note here that the volume of

public fixture data need not be indicative of overall trading volume in the oil market, as

coverage is unknown and likely varies over time. Another finding is that younger tonnage

(lower age) are fixed earlier (longer distance). This is in line with what we expect from

the literature on microeconomic analysis of freight rate premium (Alizadeh and Talley,

2011a,b). Regarding the impact of flag state, we merely note that vessels flagged in Hong

34



Variables OLS Quantile regression

Q10 Q25 Q50 Q75 Q90

Baltic tanker index 34.21∗∗∗ 34.49∗∗∗ 37.96∗∗∗ 28.27∗∗∗ 40.97∗∗∗ 42.89∗∗∗

Month February 178.69 282.56 -154.96 -57.88 274.84 564.64∗∗

(ref: January) (1.16) (0.82) (-0.55) (-0.34) (1.48) (2.15)

March 639.24∗∗∗ 774.17∗∗ 371.35 524.30∗∗∗ 766.83∗∗∗ 846.83∗∗∗

(4.39) (2.36) (1.38) (3.28) (4.37) (3.40)

April 669.81∗∗∗ 948.52∗∗∗ 533.12∗∗ 552.52∗∗∗ 826.30∗∗∗ 716.51∗∗∗

(4.56) (2.86) (1.97) (3.42) (4.67) (2.85)

May 537.87∗∗∗ 589.85∗ 398.68 396.29∗∗ 763.68∗∗∗ 670.84∗∗∗

(3.77) (1.83) (1.51) (2.52) (4.44) (2.75)

June 376.59∗∗ 337.24 334.77 312.91∗ 407.67∗∗ 352.35

(2.54) (1.01) (1.22) (1.92) (2.28) (1.39)

July 146.97 140.12 -169.38 47.50 236.57 307.30

(0.91) (0.38) (-0.57) (0.27) (1.21) (1.11)

August 431.30∗∗ 491.86 41.78 473.44∗∗ 648.73∗∗∗ 433.56

(2.38) (1.20) (0.12) (2.37) (2.96) (1.40)

September 250.27 390.95 -190.34 181.16 490.96∗∗ 438.93

(1.54) (1.07) (-0.63) (1.01) (2.51) (1.58)

October 269.38∗ 321.19 -3.02 300.15∗ 406.18∗∗ 496.83∗

(1.72) (0.91) (-0.01) (1.75) (2.16) (1.86)

November 235.15 -114.62 -1.68 369.37∗∗ 300.58 498.72∗

(1.44) (-0.31) (-0.01) (2.06) (1.53) (1.79)

December 428.01∗∗ 444.81 151.61 344.80∗ 585.12∗∗∗ 637.91∗∗

(2.42) (1.11) (0.46) (1.77) (2.74) (2.11)

Year 2014 -710.14∗∗∗ -862.27∗∗∗ -760.07∗∗∗ -505.65∗∗∗ -602.39∗∗∗ -843.91∗∗∗

(ref: 2013) (-7.30) (-3.93) (-4.23) (-4.73) (-5.14) (-5.08)

2015 -568.55∗∗∗ -983.90∗∗∗ -698.35∗∗∗ -274.34∗∗ -571.27∗∗∗ -549.29∗∗∗

(-4.67) (-3.59) (-3.11) (-2.05) (-3.90) (-2.64)

2016 -396.03∗∗∗ -787.10∗∗ -559.41∗∗ -156.83 -245.59 -346.73

(-2.84) (-2.50) (-2.17) (-1.02) (-1.46) (-1.45)

Vessel age -41.17∗∗∗ -25.87 -53.58∗∗∗ -39.38∗∗∗ -35.60∗∗∗ -45.95∗∗∗

(-5.62) (-1.57) (-3.96) (-4.89) (-4.03) (-3.67)

Vessel deadweight -4,749 -467 -4,932 -4,637 -2,386 -10,754∗

(-1.38) (-0.06) (-0.78) (-1.23) (-0.58) (-1.83)

Flag Hong Kong 305.18∗∗∗ 374.76 468.67∗∗ 360.87∗∗∗ 431.08∗∗∗ -127.73

(ref: Other Flag) (2.81) (1.53) (2.33) (3.02) (3.29) (-0.69)

Greece 331.61∗∗∗ 179.24 533.02∗∗∗ 366.42∗∗∗ 404.94∗∗∗ 354.57∗

(3.02) (0.73) (2.63) (3.04) (3.06) (1.89)

Marshall Islands -82.01 8.24 -12.34 -182.77 -11.88 -137.73

(-0.71) (0.03) (-0.06) (-1.44) (-0.09) (-0.70)

Panama 294.08∗∗ 70.09 400.54∗ 383.37∗∗∗ 337.90∗∗ 347.61∗

(2.43) (0.26) (1.79) (2.88) (2.32) (1.68)

Liberia 145.20 421.38 258.39 80.87 231.62 -150.15

(1.20) (1.55) (1.16) (0.61) (1.59) (-0.73)

Singapore 206.61 393.69 335.89 59.43 268.49∗ 39.79

(1.58) (1.33) (1.39) (0.41) (1.70) (0.18)

Malta -275.91∗ -359.11 -150.03 -324.20∗ -157.81 -236.34

(-1.77) (-1.02) (-0.52) (-1.89) (-0.84) (-0.89)

Constant 2,790.92∗∗ -529.31 2,100.61 3,055.31∗∗ 2,309.39∗ 5,947.69∗∗∗

(2.52) (-0.21) (1.03) (2.51) (1.73) (3.15)

Number of observations 2,029 2,029 2,029 2,029 2,029 2,029

R2 0.153 0.071 0.080 0.77 0.111 0.127

Table 1.3: Estimates of distance to fixtures in Persian Gulf.

Source: authors’ calculations, 2013 – 2016 data from Clarksons and AIS data.

Note: Significance levels are equal to 1% (∗∗∗), 5% (∗∗) and 10% (∗).

35



Kong, Greece and Panama are fixed earlier than the other flag states17.

In a final step, we introduce the identity of the charterer in addition to the state

of the market and vessel characteristics. The identity of charterers, estimated here as

fixed effects, might influence fixing behavior through the mechanism of risk preferences as

discussed earlier, but also whether the charterer is an integrated oil company, refinery or a

commodity trading house. Intuitively, integrated oil companies, which are simultaneously

oil producers and refinery operators, will treat ocean transportation as an integral part

of their supply chain, naturally resulting in longer planning horizons. Conversely, refinery

operators and traders may occasionally act opportunistically and fix cargoes on short

notice if it makes financial sense. However, distances will naturally also be affected by

the location of the company’s assets, and so there will always be a large fixed distance

(or time) component in fixture behavior. Figure 1.8 shows the estimated effects of charter

identity on the fixture location.

Figure 1.8: Effects of charterers on distance to fixtures in Persian Gulf

Source: authors’ calculations, 2013 – 2016 data from Clarksons and AIS data.

The most obvious point to make here is the relationship between the geographical

location of the charterer’s refineries (where applicable) and the distance from the load

port at which vessels are fixed. For instance, IOC and Reliance are Indian refiners, which

by definition means the voyages for their cargoes will be among one of the shortest in

our fixture database and, thus, vessels will never be fixed far away. Similarly, Unipec is a

Chinese refining company, leading to long average voyages from the PG and therefore also

higher probability of early (by distance) fixing. This highlights the feedback loop between

17As the top flag states in our sample comprise both large national registries and open registries, we

are unable to observe an obvious relationship between, for instance, the perceived quality signaling effect

of the flag and fixture behavior.
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a company’s physical supply chain and its fixing behavior, determined in part by risk

attitudes and the risk of stockouts etc. However, we also see that the large international

oil majors with global operations (like Total, Shell, Chevtex or ExxonMobil) tend to fix

earlier than the reference group. Once again there is reason to believe that this reflects

their integrated operations, where oil transportation is less speculation and more a basic

cog in their internal supply chain.

1.6 Concluding comments

In this paper, we have provided new insight into the behavior of participants in the spot

market for tankers as represented by the spatial pattern of contracting (fixtures). We have

shown that this is influenced by market conditions, vessel age, vessel flag, seasonality and

charterer’s identity. Importantly, we have shown that the presence of key decision points

along global trading routes generates a certain “stickiness” in the spatial distribution and

that location decisions naturally depend on the location of nodes in the supply chain of

the charterer such as refineries. We have, in this regard, contributed to the literature

which deals only with contracting lead times. Our work also serves as an illustration of

how high-resolution AIS data for ship positions can be used in shipping market analysis.

Our research provides the foundation for more advanced modeling of fleet allocation and

routing decisions, for instance, where and for how long a vessel should optimally wait for

a new contract.

We acknowledge that our empirical work has some limitations. Firstly, only a fraction

of all spot fixtures are reported publicly, and we cannot be assured that those reported

represents an unbiased sample of the entire population. Consequently, our estimates may

be biased and affected by changing data coverage over time. However, this critique affects

all related empirical research using micro-level fixture data and, as the remaining data

are private and/or unobservable, it is hard if not impossible to address it. Secondly, we

do not assume that the distance from the load port at which a vessel is fixed and the

rate at which it is fixed are set jointly. This is a point of contention, and our approach

differs from the joint modeling of rates and lead times in Alizadeh and Talley (2011a,b).

Conceptually, one could envisage the existence of a “term structure” of spot freight rates

where, at any given point in time, the going market rate for a vessel depends on where it

is located (in time and space) relative to the loading area. However, its shape would likely

be non-linear and market dependent, thus making it less suitable for the linear framework

currently proposed in the literature. Given that we have shown that a large part of the

chartering decision (in terms of location) is governed simply by the geography of trade

and refinery locations, we do not believe that a joint modeling of rates and location or

lead times is required.
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There are several interesting areas for future research within the topic of spatial freight

market modeling. Importantly, chartering decisions are influenced by external market con-

ditions, but reflexively, these decisions also influence the future market since the available

ship capacity that is dynamically reallocated represents the supply side of the market.

Therefore, better understanding of this process can improve regional freight rates fore-

casts. Further work is also required to understand optimal waiting strategies, and global

vessel and fleet positioning.
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Appendix

In the case where there is a large gap between two adjacent positions in the AIS data and

a fixture appears between them, we approximate the movement of a vessel between the

two positions and estimate a probable location of the fixture. For the approximation of

the movement, we have created a network over the ocean (a part of it is shown in Figure

1.9). We assume that the vessel is moving along the shortest path on the network. This

assumption is problematic in the case of too large gaps - a vessel might choose a different

path or needs to finish a different voyage first. Thus, we filter out observations if the gap

is above a certain threshold.
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If the gap is large enough so the approximation of the movement along a straight line

might cross land, but not so large that we filter out the data, we proceed in the following

way. For any two positions in the ocean, we find the nearest nodes in the network (mesh)

of the ocean and assume that the vessel is moving along the shortest path between them.

Then we estimate the position of the fixture by assuming a constant speed along the path.

That is, the proportional distance between the estimated fixture point and each of the

AIS positions is the same as the time differences between the timestamp of the fixture

and timestamps of the neighboring AIS positions. Then, when measuring the distance to

the loading port, we add the distance from the “future” (i.e. after the estimated fixture

point) part of the shortest path.

The whole procedure is illustrated in Figure 1.9. We can see that the interpolation

of the vessel positions by a straight line would cross the land and the fixture position

would be estimated there. Our procedure overcomes this issue, even though there are still

limitations in accuracy and the necessary assumptions - movement along the shortest path

and the constant speed (especially if there is an important port along the way, where the

vessel might stop).

Figure 1.9: Demonstration of movement approximation

Source: Authors’ calculations, AIS data.
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Chapter 2
The value of foresight in the drybulk

freight market

Vit Prochazka� Roar Adland� Stein W. Wallace�

�Department of Business and Management Science

Norwegian School of Economics, Bergen, Norway

Abstract

We analyze the value of foresight in the drybulk freight market when repositioning a

vessel through space and time. In order to do that, we apply an optimization model on

a network with dynamic regional freight rate differences and stochastic travel times. We

evaluate the value of the geographical switching option for three cases: the upper bound

based on having perfect foresight, the baseline set by a random strategy, and the case

of perfect foresight but only for a limited time horizon. By combining a neural network

with optimization, we can assess the impact of varying foresight horizons on economic

performance. In a simple but realistic two-region case, we evaluate empirically that the

upper bound for large vessels can be as high as 25% cumulative outperformance, and that

a significant portion of this theoretical value can be captured with limited foresight of a

few weeks. Our research sheds light on the important issue of spatial efficiency in global

ocean freight markets and provides a useful upper bound for the value of investing in

predictive analysis.

Keywords: dry bulk market, dynamic programming, neural network, foresight
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2.1 Introduction

As in most business sectors, the ocean freight industry has recently seen a surge of interest

in the digitalization of business processes and the adoption of machine learning and “big

data” applications to improve economic performance. Such investments often take place in

the belief that there are market inefficiencies that can be exploited, without any verification

of the actual economic potential.

In this paper we propose a method to estimate potential financial benefits of having

a perfect forecast of future regional freight rates. Since any realistic forecast is not 100%

accurate, the real achievable economic benefits will be lower. In other words, we establish

an upper bound for the increase in earnings based on freight rate forecasts and optimal

decision making in the spot chartering market.

Naturally, if we were able to predict the market significantly better than other par-

ticipants, we could extract economic gains in many ways. For example, we could charter

vessels in before a predicted increase in rates and then charter them out once the rates are

higher. However, in this paper we limit our analysis to spatial inefficiencies in rates across

different regions. That is, we focus only on decisions that all operators of vessels in the

bulk shipping freight markets face: How to optimally reallocate a ship through space and

time by sequentially accepting freight contracts (charters) for spot market cargoes between

port pairs in a transport network, often called tramp shipping. We note here that tramp

shipping differs from the liner shipping networks usually considered in the optimization

literature (see Christiansen et al. (2013) for a comprehensive literature review) in that

there are no fixed routes, schedules or contract cargoes. Instead, a large number of ships

and full loads (cargoes) are continuously matched by shipbrokers in a perfectly competitive

market where the future trading pattern and employment of the vessel is largely unknown.

We analyze two cases of this problem that differ in the type of perfect forecast we use.

In the first case, future freight rates are completely known for the entire future1 (perfect

foresight). In the second case we also assume perfect knowledge of future rates, but the

period of this foresight is limited (we compare different horizons ranging from 20 to 80

days).

The optimization task to be solved in the first case can be classified as dynamic as-

signment problem with stochastic travel times. Dynamic assignment problems on networks

often arise in logistics applications, for instance Powell (1996) in the context of truck lo-

gistics or Topaloglu and Powell (2006) in business jet repositioning. In both these cases,

the authors use a dynamic programming framework (see Bellman (1957)).

Uncertainty comes naturally in dynamic environments, where new information arrives

1The entire future that is considered. It is still represented by a finite horizon, but the horizon is

sufficiently large.
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over time, and usually demand is the main source of uncertainty in logistics applications.

Handling stochasticity in the optimization problems is a big topic itself, see for instance

Wallace (1986) for a pioneering work on stochasticity in network problems, or Lium et al.

(2009) for more recent work. In both cases of our analysis, we work with stochastic travel

times. However, we use the uncertainty as a desirable feature of the model that makes

exact planning of the distant future impossible, rather than aiming for the most precise

description of the underlying probability distribution.

In the case of limited foresight, the main challenge is to handle the “end of the planning

horizon” issue. That is, since we optimize over a finite and short horizon, we must make

sure the model “knows” that the end of the planning horizon does not mean the “end of

the world” and does not simply maximize earnings over this period. In the spot freight

market, there is almost always a trade-off between capturing immediate profit and getting

a ship into a better location (a region with higher rates). The step that prioritizes location

over profit would never be chosen as the last step (which further influences the choice of

the previous step, etc.) by simple maximization of the earnings.

Such an issue arises in other classes of problems as well. It naturally appears in

reinforcement learning tasks, see Sutton and Barto (1998); Wiering and van Otterlo (2012)

for an introduction into the topic and algorithms. In classical optimization tasks, we can

find the issue in inventory models (van der Laan et al., 2004), where we need to treat

carefully the conditions at the end of the planning horizon (no condition on the inventory

level at the end of the planning period leads to an empty inventory at the end).

Less often, we see the issue in deterministic optimization. If a problem is formulated

as a standard linear program, it is usually solvable for large instances, therefore it is

possible to use a long enough horizon (with discounting) without a special treatment of

the end of the planning horizon (as in our perfect foresight setting). It is a different story

when facing a difficult complex problem and/or a stochastic environment. Powell (2014)

discusses different conceptual approaches that can be applied in stochastic programming.

One of the commonly used approaches is an approximation of the value function (Simão

et al., 2009; Bertsekas and Tsitsiklis, 1996). That is, the earnings coming from the “after

the end of the planning horizon” periods are approximated by features describing the state

of the system at the end of the planning horizon. Another approach is to approximate the

policy by some known features of the system directly (Buşoniu et al., 2012).

We introduce an algorithm that conceptually belongs to the latter class, but it differs

from approaches described in the literature in the way the policy is constructed. We use

the knowledge from the perfect foresight case to assess the quality of the policy instead

of the direct evaluation of the policy (that is, simulating its performance) during the

policy search. The algorithm represents the policy by a neural network that is trained

to predict correct decisions by using only information from the limited foresight horizon.
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As a learning objective for the neural network, the optimal decisions from the perfect

foresight model are used. Such an approach belongs to the policy approximation methods.

In practice, the outcome of an operators’ decisions is a market where the world fleet of

vessels is slowly reallocated around the globe in an attempt to match overall supply and

demand. However, in the short run, the bulk shipping freight market can be thought of

as several regional markets with their own supply and demand dynamics. As described in

Adland et al. (2016), each matching of a cargo and a ship can be thought of as a micro-

market, where only those ships commercially available and able to physically meet the

loading window can offer transportation. Accordingly, the spot freight rate in one loading

region is set by the immediate equilibrium of cargoes offered and vessels available to load

within a particular future time window. As vessels can only move slowly between regions,

shortages or oversupply of tonnage – and the corresponding high or low regional freight

rates – can persist for weeks. This inertia in regional supply – which implies a slow move

towards equilibrium - is present even though the market is considered transparent and

perfectly competitive, purely because there is as a cost of relocating tonnage. This cost

can be implicit in terms of time (which has an alternative value) or explicit (fuel and other

voyage costs) if an owner is moving the ship speculatively at his own expense. The solution

to our optimization problem is therefore closely related to the macroeconomic question of

whether the ocean freight market is spatially efficient: If there are no economic gains to

be had from spatial optimization – even with the benefit of limited foresight – then the

market is efficient2.

The issue of spatial market efficiency has been approached in several parts of the

literature. Berg-Andreassen (1996, 1997); Glen and Rogers (1997); Veenstra and Franses

(1997) investigate the statistical properties of regional freight rates. The general finding

is that regional rates are non-stationary and co-integrated, that is, there exists a stable

long-run relationship between them. This is consistent with the observation that regional

spot freight rates must revert towards some common (global) stochastic trend because of

the ability of ships to continuously move from regions of oversupply towards regions of

undersupply. Koekebakker et al. (2006) question the findings of non-stationarity for spot

freight rates and argue that non-linear dynamics and weak power of the linear unit root

tests used results in a failure to reject non-stationarity. Adland et al. (2017a) emphasize

that statistical co-integration of regional spot freight rates is a necessary but not a sufficient

condition for an efficient freight market, as it does not preclude the possibility that short-

term regional differentials are large and persistent enough to enable operators to take

advantage through well-informed chartering decisions.

2We note here that short-term predictability of the regional spot freight itself does not preclude market

efficiency, as spot rates cannot be traded or stored (Adland and Cullinane (2006); Benth and Koekebakker

(2016)).
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Other studies assess the impact of spatial differences in freight rates directly. Adland

et al. (2017b) employ a real option framework to calculate the value of the geographical

switching option in the drybulk market. They find that the main source of option value is

the observed persistent premium in Atlantic freight rates over Pacific freight rates and that

proactive switching does not add further value. However, they acknowledge that certain

assumptions imposed by their analytical model (such as immediate switching and con-

straints on switching costs) are not realistic. The issue of spatial freight market efficiency

has also been investigated in the economic geography literature. For instance, Laulajainen

(2007) studies systematic geographical differences in drybulk freight rates and proposes

that the difference between regions can be explained through a Revenue Gradient, equiv-

alent to the ratio of demanded and available tonnage weighted by sailing distance to a

discharge or loading region. Laulajainen (2006) fits route-specific freight rates in a static

gravity-type model and finds the sailing distance to be the most important explanatory

variable. Laulajainen (2010) argues that operational and tactical decisions are governing

at a regional level, while dynamic inter-regional allocation of the fleet represents a strategic

decision with an inherent risk.

The contributions of this paper are twofold. Firstly, we assess empirically the upper

bound for a vessel’s earnings based on freight rate forecasts and spatial optimization in the

drybulk shipping freight markets. This analysis also provides insight into the dynamic of

spatial market (in)efficiency by showing the evolution of excess earnings (above the market

average) over time. In other words, we answer the following question: Is it possible to

persistently outperform the market by repositioning of the vessel in a better way than

competitors or are there only occasional opportunities that can be exploited while most

of the time it does not matter which decision is made due to a high degree of market

efficiency?

Secondly, we propose an algorithm to handle the end of planning horizons problem.

Contrary to the related operations research literature, our model does not use constant

valuation (imposed by constraints, penalization of different positions, etc.) of a state of

the system at the end of the planning horizon that is set before the optimization itself.

Instead, we let the algorithm learn to make better decisions from observing the past. This

is done in a policy approximation fashion, where a simple neural network is used to predict

optimal decisions after the learning phase.

Our findings are important for vessel operators and academic researchers alike. We

show that the value of optimization conditional on our foresight assumptions is dependent

on vessel size, with large vessels showing greater potential than small- and mid-size vessels.

We also show that most of the economic benefit depends on correctly predicting short-

term trends in regional freight rates, offering some hope to current investors in predictive

analysis.
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The remainder of this paper is structured as follows: Section 2.2 outlines our method-

ology, Section 2.3 presents our numerical results and Section 2.4 concludes.

2.2 Methodology

In this section, we formulate a general model of freight trading that we use for our analysis.

We should emphasize in the beginning that our model is not meant to capture actual

operation of a vessel as we do not include several subprocesses that need to be taken

into consideration. For example, we ignore attributes related to specific cargoes (loading

requirements, laycan period, time lag between entering the spot market and the first day of

the loading window, etc.). In addition, our optimization model assumes perfect knowledge

of freight rates, either for the entire future or a limited period. In the real world, future

freight rates, as well as other attributes of cargoes, are naturally uncertain. Our aim is to

establish an upper bound for any realistic strategy by assuming the perfect knowledge of

rates and exploiting inefficiencies in regional freight rates.

The motivation for formulating such an optimization model for vessel allocation is to

take into account the time lag needed to switch between regions when analyzing spatial

efficiency. This significant time lag is not a regular property in other markets, where

changes can be implemented almost instantly, for example, the allocation of money to

different assets in the stock market. In shipping, it takes approximately two months to

relocate a vessel from the Pacific to the Atlantic region. So even if an opportunity arises in

a different region, the vessel may not be able to reposition in time to take advantage of it.

Moreover, if more participants spot the opportunity at the same time and independently

decide to go for it, they change the balance between supply and demand in that region,

thus, not only making the opportunity disappear, but potentially further reducing its value

to a costly mistake.

As some studies (for instance Adland et al. (2017b)) on spatial efficiency in the drybulk

market use the methodology from financial markets enabling immediate switching between

regions, our approach therefore adds an important dimension to the limited literature on

spatial efficiency.

2.2.1 Model

Let us assume T = {1, 2, . . . , T} is a finite time (planning) horizon (days) and I is a set

of ports/regions. If not stated otherwise we use indices i, j ∈ I and t ∈ T . The task is

to reallocate a single ship through this region-time space. The tripcharter rate (price) for

a single trip3 on a route from origin i to destination j at time t is rijt for every day of

3A single trip usually comprises one ballast leg to the origin of a cargo, loading the cargo and then a

laden leg to a destination port, where it is discharged.
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the duration of the trip, which takes from τmin
ij to τmax

ij days. We assume that the trade

duration is unknown before the commencement of the trip (due to weather, port queues,

etc.), but is observed at the moment of arrival, and, thus, the consecutive decision (i.e.

choosing a destination for the next trip) can differ for different arrival days. We assume

that the fixture for the next trip takes place only upon discharging and completion of the

previous trip. We assume a discrete uniform distribution U{τmin
ij , τmax

ij } of trip duration

as in Adland and Jia (2017). In the real world, the uncertain sailing duration is obviously

not uniformly distributed. However we do not try to make a perfect model for a real

decision-making process, so rather than capturing the real distribution of trip durations,

the cumulative impact of the stochasticity of travel times is used to decrease the capability

of exact planning the further we go into the future. This is a required feature of the model.

If we did not include it and assumed deterministic trip duration, the decisions would be

basically driven by a random few-days spike in rates that happens in a distant future.

Thus, it serves a similar purpose as a discount rate in other economic models. However,

the uncertain trip duration also reflects the real situation (weather, port queues, etc.

are not artificial constructs) and the boundaries τmin
ij and τmax

ij can be estimated quite

realistically by discussing with industry experts. The choice of a proper discount rate

would be a more difficult task.

We simulate and compare two types of fleet allocation strategies, the oracle and coin

trading strategy, respectively. Since we will use most of the variables and parameters in

both strategies, we distinguish them by superscript X ∈ {o, c} denoting oracle or coin

strategy, respectively.

For the oracle one, we assume that all future rates are known. We analyze two cases;

first with known rates for the whole horizon T , and second the case of limited foresight

for which rates are known only for a given number of future days ∆ (∆ � T ). The task

in both cases is to reposition a vessel to maximize the overall expected earnings.

The coin based strategy does not exploit any knowledge of future rates. Instead we

define quantities xcijt, which can be interpreted as probabilities4 of making a decision “go

to j” for a vessel positioned in region i at time t, where superscript c refers to the coin

strategy and
∑

j x
c
ijt = 1 ∀i, t. The probabilities xcijt are set upfront and disregard the

future rates. If only two options for the next destination were available and probabilities

were 50-50, the operator could flip a coin to determine where to go next, hence the name.

Another possible interpretation, with respect to further modelling, is that vessels are

divisible assets and xcijt represents a fraction of a vessel capacity located in i at time t that

is allocated to j. A similar thought process can be applied to stochastic trip durations

(different fractions sail different amount of days).

4For simpler presentation, x represents both probabilities in the coin flip case and decisions in the

oracle case, even though most readers may be accustomed to a probability being denoted by p.
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In Adland and Jia (2017), a similar approach is used for trade simulation, and the

values xcijt are set proportionally to real tradeflows. In this special case, the expected profit

of such a strategy reflects the average earnings of an agent in the market. As we do not have

data of tradeflows for all sectors, we set the probability such that the expected utilization

of all routes is equal. Based on our numerical test, there is not a significant difference

in the obtained results (earnings) between this setting and probabilities proportional to

tradeflows. Therefore, the results obtained by the coin strategy approximate reasonably

well the average earnings of market participants.

2.2.2 Perfect foresight

In the perfect foresight case, we assume that the rates rijt for the oracle strategy are

known for the whole time horizon and ship capacity is positioned optimally to maximize

the expected profit at time T (the end of the planning horizon).

The assumption of known rates for the oracle strategy is not realistic and results ob-

tained by this strategy are therefore an optimistic estimate (upper bound) to any realistic

achievable earnings. It is worth noting that some additional features that could increase

the profit are not assumed here, for instance speed optimization (with respect to freight

market condition, weather etc.) or exercising the option to wait between contracts. Here

it is assumed that the vessel must enter into a new contract immediately after transport-

ing the previous cargo. However, we argue that these additional operating options have a

smaller impact than the knowledge of future rates with corresponding optimization. Wait-

ing between contracts in a region with the hope of getting a higher freight rate will be

profitable just in very rare situations as we lose utilization of the ship every day of waiting.

More likely, operators will face the opposite problem: there is no available cargo to carry

on the spot market in the immediate vicinity of the empty vessel. Naturally, cargo avail-

ability differ across regions (and time) and should be taken into account when operating

a real vessel. The assumption of instant cargo availability can be justified by assuming

that the problem is being solved for a relatively modern ship. New ships are usually more

energy efficient and their lower marginal cost therefore means they will remain employed

in low freight markets (Stopford, 2009). Cargo availability is also influenced by the qual-

ity of the network of shipbrokers, which would be difficult to model as the information is

private and differ for individual operators. Hence, we assume the network is of sufficiently

high quality to secure a cargo to carry at any point in time.

Speed choice does not play such a significant role, since the regional freight markets

are co-integrated (Adland et al., 2017a) and we focus on regional differences rather than

on overall results. Specifically, it might be profitable to speed up in the case of a high

market, but then it is very likely that the optimal strategy is to speed up in all regions.

Thus, enabling dynamic but correlated speeds would not change the results qualitatively.
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It is easy to apply the coin strategy in real life: all the operator needs to do is to flip a

coin (generate a random number) and accept the decision. Therefore, results achieved by

this strategy can be considered as our baseline for comparison with the oracle strategy.

In real life, we can work only with limited predictions, where we have some partial,

imperfect, knowledge. For instance, we may have a probability distribution constructed

for future rates, and such a distribution will have higher variance (will be less accurate) the

further we look into the future. Accordingly, any smart strategy based on a realistic pre-

diction should achieve results above the baseline, but below the upper bound, established

by the coin and oracle strategy, respectively.

Generally with this type of model, we need to be aware of the modeling issues with

regards to the end of the planning horizon - naturally we do not expect that the real

trade ends that day. This repositioning game often has a fronthaul-backhaul dynamic,

which means that we often accept a cargo with lower immediate profit (i.e. a backhaul

trip) in exchange for having our vessel (resource) positioned in a better region to increase

future profits. With a finite horizon, a backhaul trip should never be chosen at the

end, and any such (non-optimal) decision may propagate back through time and affect

all the previous decisions in a bad (non-optimal) way. In our case, decisions do not have

irreversible consequences and the stochasticity of trip duration makes exact planning in the

future impossible. Thus, with a sufficiently large time horizon, the impact of non-optimal

decisions that are made towards the end of the planning horizon vanishes.

Solution

We first introduce the variables used in our procedures for obtaining and evaluating so-

lutions. We remind the reader that the superscript X ∈ {o, c} distinguishes between the

oracle and coin strategy in the notation.

To store the optimal decisions for the oracle strategy, we introduce variables xoijt,

which have the same interpretation as xcijt in the coin setting, that is, the probability of

repositioning the ship from i to j, given that she is located in region i at time t. However,

in the oracle case xoijt are the decisions obtained as a solution to the maximization of

expected earnings problem, not probabilities set upfront as in the coin strategy.

To track the expected allocation of the vessel, we define a parameter RXit denoting the

expected ship capacity allocated in region i at time t. Further, we define the expected

ship capacity fXijt going from i to j and starting at time t. It can be interpreted as the

expected flow on the ij arc. The relation between decisions and the flow is then:

fXijt = xXijtR
X
it (2.1)
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We assume that only trips that are finished within the planning horizon are considered.

To simplify the notation in the algorithms, we use πij for the probability of a particular trip

duration. Since we assume the discrete uniform distribution of trip duration with bound-

aries τmin
ij and τmax

ij , that is, we have τmax
ij − τmin

ij + 1 particular realizations, probability

πij of each realization is

πij =
1

τmax
ij − τmin

ij + 1
(2.2)

If the operator decides to take a cargo (perform a trip) from i to j at time t, by this move

he earns in expectation (over all realizations of possible trip durations s) eijt given by

eijt =

min{τmax
ij ,T−t}∑

s=τmin
ij

πij rijt s (2.3)

The solution for the oracle strategy can be obtained by solving the following optimization

program determining the optimal flows f (for better readability the superscript X = o is

omitted):

max
f

∑
ijt

eijtfijt (2.4)

s.t. Rit =
∑
j

fijt ∀i, t (2.5)

Rjt = R0
jt +

t−τmin
ij∑

s=t−τmax
ij

πijfijs ∀j, t (2.6)

where R0
jt is used as an initializing vector. That means it is not a variable to be set by

the optimization procedure, but input data that determines the initial state of the system

(i.e., initial position of the vessel). For example, if the vessel is positioned in region a in

the first period (t = 1), then R0
a1 = 1 and R0

jt = 0 for any other j-t node.

The objective is to maximize expected earnings given by (2.4). Constraints (2.5) and

(2.6) ensure proper flow balance at every i-t node. This model is a version of the minimum-

cost flow problem. Therefore, the problem can be solved by a dynamic programming

scheme instead of standard linear programming. Both procedures are fast, so the choice

depends on personal preferences.

In dynamic programming, we iterate backwards through time and reconstruct the

performance in a retrospective manner. Notice that a decision made for a ship positioned

in region i at time t does not depend on any of the previous decisions.
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We define values V X
it to store expected earnings generated from time t till the end of

the planning horizon by a vessel positioned in region i at time t, when the corresponding

strategy X (o or c) is applied. Values V o
it can be obtained as dual variables to constraints

(2.5) if classical linear programming is used to solve the optimization model (2.4) – (2.6).

The values are used in further analysis (sections 2.2.2 and 2.2.3).

One decision of the destination will almost always be more profitable than others,

that is, it will yield higher expected earnings till the end of the planning horizon, than

others. Thus, we obtain a binary solution, where all the decisions xoijt are either 1 or 0;

1 in the case of the most profitable destination, 0 otherwise. In the rare case that more

destinations lead to the same expected earnings, we can choose arbitrarily among them.

Accordingly, it is possible to have fractional decisions, but we do not lose any value by

considering only binary ones.

The procedure for the calculation of values V o
it and the determination of optimal de-

cisions at the time is summarized in Algorithm 1. As a temporary variable, we introduce

W o
ijt denoting expected earnings generated from time t till the end of the planning horizon

by a vessel positioned in region i at time t and making the consecutive decision “go to j”.

W o
ijt is used to store the earnings of all the available alternative destinations j for the ship

located in i at time t. The optimal decision is obtained by simple comparison of these

candidate values (rows 4 – 7 in Algorithm 1).

A similar approach is used for simulation of the coin strategy. In fact, the calculation

of V c
it is simpler, since it does not include an optimal destination decision. The expected

earnings are constructed by summing expected contributions of all alternatives with non-

zero probability of choice xcijt. This procedure is described in Algorithm 2.

The simulation of trade is the same for both strategies, once the values V X
it are com-

puted. To observe the development of the expected earnings over time, we define variable

MX
t where we store the sum of expected earnings from time period t. We assume that the

payment is spread over all days of the trip duration, not concentrated in the first day of

the trip as in (2.3). That is, every day of the trip duration the operator receives the rate

rijt, where t is the first period of the trip. Notice that this interpretation is simply for the

sake of results visualization and has no impact on the chosen decision. The simulation of

trade is summarized in Algorithm 3.
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Algorithm 1 Values for oracle strategy

1: Set W o
ijt = 0, xoijt = 0, V o

it = 0 ∀i, j, t

2: for t := T to 1 do

3: for i ∈ I do

4: j = arg maxjW
o
ijt

5: V o
it = W o

ijt

6: if W o
ijt > 0 then

7: xoijt = 1

8: for j ∈ I do

9: for i ∈ I do

10: for τ := τmin
ij to τmax

ij do

11: s = t− τ

12: if s > 0 then

13: W o
ijs = W o

ijs + πij
(
rijs τ + V o

jt

)

Algorithm 2 Values for coin strategy

1: Set W c
ijt = 0, xcijt = 0, V c

it = 0 ∀i, j, t

2: for t := T to 1 do

3: for i ∈ I do

4: for j ∈ I do

5: for τ := τmin
ij to τmax

ij do

6: s = t− τ

7: if s > 0 then

8: V c
is = V c

is + πij x
c
ijs

(
rijs τ + V c

jt

)
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Algorithm 3 Trade simulation (same for both type of strategies)

1: Set Mt = 0, Rit = 0 ∀i, j, t
2: Set the initial position of the ship, for example Ri01 = 1

3: for t := 1 to T do

4: for i ∈ I do

5: for j ∈ I do

6: for τ := τmin
ij to τmax

ij do

7: if t+ τ ≤ T then

8: Rjs = Rjs + πijxijtRit

9: for s := t to t+ τ do

10: Ms = Ms + πij xijt rijt Rit

Value of geographical switching

By the procedure described in Algorithm 1, we obtain optimal decisions xoijt indicating the

next destination j given that a vessel is positioned in i at time t in the case of known rates.

In this section, we introduce the methodology used for the evaluation of how important it

is to have the optimal decision (at a particular point in space and time) compared to its

alternatives.

We denote by ZXijt the expected earnings generated from time t till the end of the

planning horizon by a vessel positioned in region i at time t that makes the consecutive

decision “go to j” and trade according to the corresponding strategy X (o or c) after that.

We can calculate the values ZXijt from V X
it by the simple formula:

ZXijt =

τmax
ij∑

s=τmin
ij

πij
(
rijt s+ V X

js

)
. (2.7)

We evaluate ZXijt for all possible destinations j and compare the results. From these

values, we can observe how valuable it was to choose the best decision, compared to the

second best, etc. to the worst one. If the difference between some decisions is close to

zero, the operator is (almost) indifferent between the decisions at that time and place.

Such comparisons provide insight into the dynamics of the market, highlights its spatial

(in)efficiencies and the (in)capability of the market to anticipate future rates. Further,

it reveals some exploitable opportunities in freight mispricing that have occurred in the

past.

It is also useful to study the discrepancy between Zo and Zc, since it reveals the impact

of planning several steps ahead. This is discussed in Section 2.3, where an empirical

analysis of the market is presented.
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2.2.3 Limited foresight for two-region case

In this section, we describe the methodology used for cases where rates are known for ∆

future consecutive days and this horizon of known rates is very short – usually allowing

us to evaluate just a couple of future steps. We describe our approach for the case with

only two regions5. The operator can either undertake an intra-region (in short A) trip ii

or inter-region (in short E) trip ij, where i 6= j.

Since we can evaluate only a few future trips, we can not purely maximize expected

earnings over the horizon of known rates to find the optimal decisions due to the different

states (both in time and space) in which a vessel may occur at the end of the horizon.

To illustrate this point in a simple example, let us assume trip A takes 25 days and trip

E 45 days. When making a decision in region i with 40 days of foresight (known rates),

we can evaluate three possible future plans: either to take two intra-region trips AA, the

inter-region trip E, or first one intra-region followed by the inter-region trip AE. With

the AA sequence we have guaranteed earnings for 50 trading days, with E for 45 days and

with AE for 70 days. Moreover, the vessel might end up in a different region at the end

of each partial sequence; for A the vessel stays in i; for E and AE the vessel relocates

to j. Region j might be a better (or worse) location with higher (lower) rates, or better

in general, but relatively poor 40 days from now. Thus, it is clear that it does not make

much sense to purely maximize earnings obtainable over the short horizon without taking

into consideration consequences of the decisions in the unforeseen future.

Let us point out that even though E takes 45 days, hence we cannot evaluate EA and

EE exactly, the knowledge of rates in 40 days provides a useful hint for the estimation of

rates in 45 days. Hence, it is advantageous to take it into account when making a decision.

In the real-life decision-making process, market participants (operators, shipowners)

think about the consequences of the decisions. Even though they do not have available

exact information about the future rates, they have other observations of the market’s

condition, for instance forward curves, or the knowledge of seasonal effects (for example

the harvest season in South America). These different inputs are usually processed in

an intuitive way (“gut feeling”) based on years of experience. We mimic this natural

way of decision-making in shipping by introducing a learning algorithm, based on a neural

network, that aims to make good decisions by learning from the past. Instead of the diverse

input streams that real participants consider, we rely only on rates-based inputs that are

obtainable from the foresight horizon. In particular, we take into account immediate

5It should be possible to expand the idea into multi-region setting. However, since our method is

essentially a heuristic (That is, we cannot guarantee any theoretical performance, we can only provide

numerical tests.), we describe only the two-region case that is evaluated on real data (Section 2.3).
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earnings from the partial sequences that can be evaluated (as in the example above) and

changes of the rates between “today” and the most distant day in the foreseeable future

(since they carry information about the market development).

To implement this approach, we split the overall time horizon T into two parts: Tα =

{1, 2, . . . , Tα} and Tβ = {Tα + 1, . . . , T}, where Tα represents the past (training horizon

in machine learning vocabulary), from which the algorithm learns, and Tβ is used for

evaluation of learned behavior (testing horizon).

The learning process is realized through a function Sit, evaluated on Tα, showing the

value of switching from region i (to j) at time t. The function is defined as follows:

Sit = Zoijt − Zoiit , where i 6= j. (2.8)

That is, the function expresses how much more (or less if the value is negative) of the

expected earnings an operator makes when he decides to undertake an inter-region trip

(i.e., switching region) compared to performing the intra-region trip. In both cases, it is

assumed that after such a decision, the operator continues trading optimally (according

to the oracle strategy, see Section 2.2.2) till the end of the planning horizon Tα. Note

that Sit can be evaluated only looking backwards (offline), since future consequences of

particular decisions are included in the value.

The function carries two important pieces of information: Firstly, it implicitly says,

which decision was the optimal one in the past. If the value is positive, it was optimal

to switch market (undertake the inter-region trip), and if it is negative, it was optimal

to stay in the current region (and undertake the intra-region trip). Secondly, it expresses

how important (valuable) it was to make the optimal decision compared to its alternative.

Our aim is to make our algorithm able to predict (as well as possible) the value of Sit by

using only information available up to (t + ∆) day (online). Let us denote the predicted

values Ŝit.

We calculate expected earnings obtained from the partial sequences, i.e. combination

of possible moves that start in the foresight period. Even though it is theoretically possible

to assume even sequences where a consecutive decisions differ for different dates of arrival

τij ∈ {τmin
ij , τmax

ij }, we ignore that option, since it leads to too many input parameters

(many of them highly correlated) that would make the training process difficult. So only

the sequences of As and Es, where each consecutive decision is fixed for all arrival days

are considered. Expected earnings obtained by each sequence together with rates’ level at

the time t+ ∆ are the inputs of the learning algorithm.

After the training phase, we let the algorithm predict Ŝit on the time horizon Tβ. That
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is, we construct the predicted switching function by using only information available in the

limited foresight horizon {t, t+ 1, . . . , t+ ∆}). Subsequently, we reconstruct the decisions

x̂ijt from the function Ŝit as follows: if Ŝit ≥ 0, x̂ijt = 1 for i 6= j and x̂iit = 0. Vice versa,

if Ŝit < 0, x̂iit = 1 and x̂ijt = 0 for i 6= j.

We can then simulate the trade for decisions x̂ijt by using Algorithm 3 and compare

the results with the oracle and coin strategies. Since no information from Tβ was used

to train the network, the results obtained on this interval are considered as out-of-sample

values that can be compared to results obtained by the coin and oracle strategy. We

perform this analysis for different values of ∆ to assess the impact of the length of the

foresight horizon.

The specifications of the neural network used in our case are described in the numerical

part of the paper (Section 2.3). We prefer to use a general term “learning algorithm” in

this section to emphasize that the methodology is not limited to usage of neural networks,

but in principle, any regression algorithm can be used. We chose the neural network

scheme because of its ability to handle the non-linearities that occur in our problem.

It is fair to note here that there are plenty of modifications of the neural network and

other methods from the machine learning field or statistics that have not been tested and

might perform better at this specific task than the presented approach. For example, it

is possible to let the model learn the decisions directly instead of learning the switching

function value and reconstructing the decisions afterwards. The disadvantage of such

approach would be that it does not take into consideration the different importance (value)

of optimal decisions at different points. In other words, a higher number of correctly

forecasted optimal decisions does not have to lead to higher earnings.

However, the aim of this paper is not to search for the best possible method for this

particular task. The problem itself is still unrealistic in real life due to the requirement of

exact predictions of rates. The goal is to demonstrate whether some significant portion of

the theoretical gains from perfect knowledge can be captured with only a few future steps

taken into account.

2.3 Numerical results

In the methodology part for perfect foresight, we formulated a general model for an ar-

bitrary number of regions. In our numerical analysis, we work with a simplified model of

the world with only two regions – Atlantic and Pacific. This creates four possible routes

for trade: trans-Atlantic (TA), trans-Pacific (TP), from the Atlantic to the Pacific basin,

also called fronthaul (FH) in the shipping literature, and finally the backhaul (BH) trip

from the Pacific to the Atlantic (see for instance Adland and Jia (2017)). For each of

the routes we have rates (prices) for the period July 2005 – April 2017 provided by the
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Baltic exchange and obtained by Clarkson Research (2017) for three segments of dry bulk

shipping according to the standardized size of vessels: Supramax (52,000 metric tonnes

(mt) carrying capacity), Panamax (74,000 mt) and Capesize (172,000 mt).

For all sectors we assume the same discrete uniform distribution of trip durations with

the following ranges: TA: 30 – 45 days, TP: 30 – 40 days, FH: 60 – 70 days, BH: 60 – 70

days. For the coin strategy, we set probabilities xcTA = 0.634, xcFH = 1− xcTA, xcTP = 0.65,

xcBH = 1−xcTP. These probabilities are set such that the vessel spends an equal number of

days on each route (in expectation). Although it is not shown here, the results would not

be significantly different if probabilities were 0.5 for each route according to our numerical

tests.

2.3.1 Perfect foresight

Cumulative earnings for the perfect foresight case in the Capesize market, computed at

every time period t as
∑t

s=1M
X
s , are shown in Figure 2.1. The steeper growth of cumu-

lative earnings till the second half of 2008 is caused by higher rates in this period. After

the rates dropped sharply following the financial crisis (for instance, the BCI6 dropped

from over $200,000/day in June 2008 to less than $5,000/day in October 2008), the abso-

lute differences decrease as there are lower regional rate differences in a competitive and

oversupplied market (Adland et al., 2017b), but the relative differences increase as there

remains some inability to correctly anticipate future prices.

Figure 2.1: Cumulative earnings for the oracle and coin strategy in Capesize market.

6Baltic Capesize Index
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Table 2.1 compares different segments of bulk shipping by vessel size. We see that

the relative gains for the Capesize and Supramax segments are around 16%, while the

mid-size Panamax sector shows approximately 14% outperformance over the period 2006

– 2016. If we exclude the boom period and compare cumulative earnings obtained from

2009 to 2016, relative differences are higher, namely 19.5% for Supramax sector, 15.5% for

Panamax, and ca 24% for the Capesize sector. In Table 2.1 we can also see that the gains

from perfect knowledge differ from year to year. However, it is necessary to emphasize here

that the comparison across years is not entirely precise. The values shown in Table 2.1 for

every year are calculated as the sum of MX
s over that particular year, but the optimization

problem (2.4) - (2.6) is solved over the whole period (July 2005 – April 2017). This means

that the decisions are taken such that the cumulative expected earnings are maximized at

the end of the period (April 2017). Therefore, we may have situations where the earnings

in one year is sacrificed for a better position of the ship in the following year. Since the

start/end conditions differ across years, the comparison is imperfect. However, detailed

analysis of the performance in individual years is not the aim of this paper.

Year
Supramax Panamax Capesize

o c % o c % o c %

2006 9.09 8.05 12.85 9.08 8.34 8.88 17.15 15.82 8.39

2007 18.29 16.54 10.6 21.48 19.74 8.84 43.14 40.06 7.69

2008 19.57 16.51 18.53 22.90 19.51 17.37 49.27 42.50 15.94

2009 7.07 5.86 20.54 7.43 6.43 15.52 17.02 14.29 19.14

2010 9.62 8.37 14.84 10.47 9.43 11.03 15.55 12.76 21.84

2011 6.18 5.32 16.28 5.86 5.17 13.52 6.26 5.65 10.9

2012 4.95 3.60 37.5 3.73 2.99 24.64 4.94 3.30 49.89

2013 4.21 3.59 17.51 3.59 3.28 9.48 6.19 4.84 28.04

2014 4.71 3.72 26.55 4.13 2.98 38.48 7.57 5.58 35.73

2015 3.10 2.65 16.73 2.40 2.11 13.77 3.44 2.73 26.12

2016 2.36 2.18 8.27 2.00 1.90 4.93 3.18 2.62 21.18∑
2006−2016 89.15 76.39 16.70 93.07 81.88 13.67 173.71 150.15 15.69∑
2009−2016 42.20 35.29 19.58 39.61 34.29 15.51 64.15 51.77 23.91

Table 2.1: Overview of annual results obtained by oracle (o) and coin (c) strategy (all in

millions $), % is the relative difference.
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Value of geographical switching

In our two-region world, we construct the switching function SXit for both strategies and

each region i according to (2.8). The functions are shown in Figure 2.2 for the Capesize

segment. We observe quite low discrepancy between the functions for the coin and oracle

strategies. There also appears to be a correlation between market level and volatility of

the switching function. In the post-crisis period, we see asymmetry in the function for the

Atlantic market. Although not shown here, it is observed across all sectors. This suggests

that an incorrect decision to go to the Pacific basin is potentially more costly than to

choose incorrectly to stay in the Atlantic basin. In other words, the vessel should remain

in the Atlantic basin once it is located there, unless there is strong evidence in favour of a

FH trip. This corresponds to findings in Adland et al. (2017a) suggesting that a persistent

Atlantic premium is the main contributor to outperformance.

Figure 2.2: Value of geographical switching function - Capesize sector

To understand the low discrepancy between the switching functions for the oracle

and coin strategies and its implications, it is important to realize the following: The

switching function is defined as a difference of expected earnings generated by two possible

alternative decisions and subsequent trade. We can decompose the value of the switching

function into two parts. The first part is the contribution of the very first decision, that

is, the difference in earnings defined as:

τmax
ij∑

s=τmin
ij

rijts−
τmax
ii∑

z=τmin
ii

riitz (2.9)

The second part comes from the difference in earnings from subsequent trading after
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the first decision is made. In the coin strategy case, the randomized choice of the next

destinations is applied from initial positions j-s and i-z, respectively, and its difference

contributes to the value of switching function. In the oracle case, the second part is given

as the difference between results of optimal positioning from initial positions j-s and i-z.

We see that the contribution of the first decision (2.9) is shared by both strategies.

Therefore, the discrepancy between the switching functions of the two strategies is caused

by the second part. Since the discrepancy is low, the difference between randomized

and optimal sequences, starting from the same initial positions j-s and i-z, is very similar.

That suggests a great importance of the first decision as the main source of extra earnings,

if it is optimally chosen.

2.3.2 Limited foresight horizon

We use ∆ ∈ {20, 50, 80} days long horizons of foresight for evaluating the proposed strat-

egy. These lengths are chosen such that the number of possible trips that can be exactly

evaluated is expanding. With 20 days of foresight, we know the earnings from the current

trip, and this would be the same if we had no future information, but we may yet gain

some benefit from knowing regional price trends in the next 20 days. With 50 days of

foresight and assumed trip durations, we can exactly evaluate earnings from two intra-

region (A) trips, i.e. two TAs or TPs - depending on the position of the vessel, only one

inter-region (E) trip, FH or BH), or a combination of one intra-region trip followed by

the inter-region trip. In addition, the operator is in a better position to estimate future

rates because of the observation of price changes in the next 50 days. In the case of 80

days foresight, it is possible to at least partly evaluate the following combinations of trips:

AAA7, AAE7, AE,EA,EE.

The training phase of the model should not depend on any information from the testing

period. However, we believe it is realistic to assume that high freight rates as they were

observed in the boom period prior to financial crisis in 2008 will not be repeated any time

soon. Rather, we expect similar order of magnitude in freight rates and their differences

as observed in the post-crisis period. Therefore, we exclude the boom period from the

training horizon Tα and consider only the period 1.1.2009 - 10.11.2013. Since the last

decisions are impacted by the end of the period, we do not consider last 120 days of the

training period for actual training.

We use a neural network with an input layer and one hidden layer of the same size as

the input vector. Both layers use rectified linear units as activation function (Nair and

7 In the case of TA trip, we can evaluate this sequence only partialy. That is, the duration of first two

trips exceeds 80 days in some scenarios.
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Hinton, 2010). Then, a single neuron output layer with sigmoid activation function follows.

As a loss function, the standard mean squared error is applied. The output is assumed

to be in the interval (0, 1). Thus, we need to transform the switching function into that

interval. We test two different methods. The first is simple linear transformation, that

is, the minimum of the switching function on the training horizon is projected to 0 and

maximum to 1 with linear scaling between them. This approach has a weakness when the

maximum and minimum of the switching functions on the training horizon are asymmetric

with respect to the zero axis, in other words, one of the values is significantly larger in

absolute value than the other. Then, the zero value, which is our main interest since the

decision is changing there, would be projected too far from the middle point, which would

not be optimal for the output layer. Therefore, we introduce a second adjusted linear

approach, where we first transform the negative part of the switching function into the

(0, 0.5) interval and the positive part into the (0.5, 1) interval. This approach projects

0 correctly to 0.5, which is desired but, on the other hand, it distorts the loss function

applied on the evaluation of predictions during the training period.

We also experiment with the input values, which can be divided into trading contribu-

tions, i.e., the set of earnings obtained by selected strategies, and freight rates at the end

of the foresight horizon. We note that the optimal decisions would be the same if all rates

are increased by a constant value, in other words, it is not the absolute value of freight

rates, but the regional differences that are crucial for making a decision.

We consider four different settings of inputs by creating all combinations of absolute

values/differences of contributions/freight rates. For each combination we apply both

transformations, so in total we test 8 instances with different settings for each sector.

After the training phase, we let the model predict values of the switching function

on the testing horizon, which is Oct 2013 - Dec 2016. From the value of switching, we

reconstruct decisions for each i, t position and simulate the trade according to Algorithm 3.

We compare these results with the results obtained by the oracle and coin strategies. In

Table 2.2, we report which fractions (in percentage) of the oracle strategy gains (compared

to the coin strategy) can be captured by this approach for different input settings. We

show only the final numbers reached at the end of 2016. On average, we observe the

expected result that a longer foresight horizon brings better performance both in average

gains and stability of the results. We see, for example, that the results for 20 days foresight

in the Capesize segment differ from -20% up to +38% for different settings. This gives

the impression of a great deal of randomness involved in the computation. We cannot

conclude on the comparison across different vessel size segments, since we performed this

analysis only on one date, which splits the period into the training and test samples. Thus,

it is possible that such a splitting was more favorable to one sector than the other. For
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instance, it might happen that some pattern from the training horizon repeated in the

testing sample, but cannot be generalized.

LF 20 LF 50 LF 80

S P C S P C S P C

lin

ar-ac 38.34 47.19 35.3 89.15 75.33 48.7 61.56 96.27 82.42

ar-dc 54.64 37.87 34.47 81.74 48.98 53.28 87.86 95.29 79.05

dr-ac 62.34 -9.89 11.42 87.72 69.45 68.7 61.19 86.12 81.99

dr-dc 62.11 49.94 -20.35 70.01 72.09 74.98 89.06 83.3 77.09

adj

ar-ac 62.96 21.84 38.19 92.06 72.18 65.26 85.04 96.46 74.13

ar-dc 72.27 12.85 38.36 84.27 75.03 50.85 83.6 90.77 77.75

dr-ac 59.67 27.23 15.47 68.19 51.15 67.38 86.91 92.8 80.91

dr-dc 65.24 38.78 -10.99 90.1 41.32 71.05 78.26 78.82 73.15

Table 2.2: Percentage of the oracle gains over the coin trade for limited foresight horizon.

LF X - limited foresight for X future days; S - Supramax, P - Panamax, C - Capesize;

lin - linear, adj - adjusted linear transformation of output value; ar - absolute rates, dr -

difference of rates, ac - absolute contribution, dc - difference of contributions as input.

In Figure 2.3 we show the simulation of the trade throughout the whole testing period

and all sectors with simple linear transformation of output and differences in contributions

(but not in rates) being used as input setting.

We see in this figure that for all foresight (perfect or limited) periods across all sectors,

the highest outperformance of the market (the steepest curves in the middle row figures)

is realized in the first part of the testing horizon, that is, mainly the year 2014. This is

consistent with the shape of the Value of geographical switching function (Figure 2.2).

The function is quite volatile in 2014 in both regions, which means greater opportunities

for exploitation. We explain the ups and downs by the time needed to relocate a vessel

from one region to another. That is, once an opportunity arises in one of the region and

too many market participants decide to relocate their vessels into the more profitable

region, they create a new (and opposite) imbalance between supply and demand which is

reflected in changes in freight rates by the time of arrival. Thus, the participants receive

(a negative) feedback on their decisions with a significant delay. If a participant was

endowed with the knowledge of freight rates for a consecutive decision, he could avoid

this “following the herd” mentality and resist a temptation to make a decision based on a

belief that “today’s spatial rate differentials” will continue.

We see in Figure 2.2 that after the volatile year 2014, the market stabilized and ex-

ploitable opportunities significantly decreased. Thus, even with the foresight of the freight

rates it is difficult to ouperform the market, especially if the foresight horizon is short –
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there are almost no gains (for this setting of the policy) for 20 and 50 days long horizons

of foresight in 2015 and 2016, see the middle row in Figure 2.3. This reflects the signifi-

cant oversupply of ships during this period, meaning that even minor spatial opportunities

could be captured immediately by waiting tonnage.

Figure 2.3: Demonstration of limited foresight gains.

2.4 Conclusion

In this paper, we have evaluated the degree of spatial efficiency in the drybulk freight

market. The main objective was to determine the upper bound of earnings obtained by

optimal vessel positioning in space and time by assuming perfect knowledge of future re-

gional freight rates for a given time period. The upper bound is a first indicator of whether

or not it makes sense to continue developing chartering strategies based on imperfect fore-

casts of future rates.

To achieve this, we have formulated a simple model for optimal vessel repositioning

through space and time that takes into account uncertainty in travel times. Although

we work with a two-region world in the numerical section, the model is formulated in a

general way for an arbitrary number of regions. Empirically, we have shown that with
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perfect knowledge it is possible to achieve approximately 15% higher cumulative earnings

in the years 2006 - 2016. This number is distorted by exceptionally high freight rates

up to late 2008, after which the financial crisis hit the shipping market and freight rates

dropped sharply. However, with the lower market level in the post-crisis period, the

relative outperformance is higher, at around 20% for Supramax, 15% for Panamax, and

23% for Capesize sector in the period 2009 - 2016.

We have also extended the concept of perfect knowledge to the case where we assume

perfect knowledge only on a limited (and relatively short) time horizon. This required a

different methodology to overcome the so-called end of the planning horizon issue. For

that purpose, we have introduced a new approach based on a neural network model that

learns to predict the optimal decisions obtained in the perfect foresight section, but in this

case, using only information from the foresight horizon. This model naturally produces

better results the longer the foresight horizon is. The assumption of perfect foresight on a

limited horizon is still unrealistic, but our results demonstrate that it is possible to capture

a large portion of the theoretical “perfect foresight” value with only a few future moves

taken into consideration.

It is also possible to use the optimization model to provide further insight into the

market. For instance, we have calculated the value of each decision at every point in

space and time. With that, we have observed an asymmetry in the geographical switching

function for the Atlantic region. That is, an incorrect decision “go to Pacific” is potentially

more costly if applied at the wrong time than an incorrect decision to “stay in the Atlantic”.

In our view, the empirical findings reveal a big potential for exploiting spatial inef-

ficiencies by a sophisticated chartering strategy. A natural continuation of this research

would be to apply stochastic programming to handle uncertainty in freight rates. For in-

stance, to use a scenario tree for describing the future development of freight rates instead

of the assumption of perfect foresight. In contrast to many other applications of stochastic

programming, the difficult part of such an approach would be to construct the scenarios

(and build predictive models to do that), not the subsequent policy search.
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Chapter 3
Stochastic programs with binary
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scenario trees and algorithms
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Abstract

Binary random variables often refer to such as customers that are present or not, roads

that are open or not, machines that are operable or not. At the same time, stochastic

programs often apply to situations where penalties are accumulated when demand is not

met, travel times are too long, or profits too low. Typical for these situations is that the

penalties imply a partial order on the scenarios, leading to a partition of the scenarios into

two sets: Those that can result in penalties for some decisions, and those that never lead

to penalties. We demonstrate how this observation can be used to efficiently calculate

out-of-sample values, find good scenario trees and generally simplify calculations. Most of

our observations apply to general integer random variables, and not just the 0/1 case.

Keywords: stochastic programming, scenarios, binary random variables, algorithms
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3.1 Introduction

Stochastic programming is getting more attention in operations research and has many

applications in real processes where uncertainties are present, see for example Wallace and

Ziemba (2005); King and Wallace (2012b). Most approaches assume that the uncertainty

is represented by a set of scenarios. In this paper we study the case of discrete random

variables, with a focus on the multivariate Bernoulli (0/1) distribution. We shall do this

using a stochastic version of the knapsack problem. However, the point of the paper is

not to study the knapsack problem as such, rather it serves as a simple example suitable

for demonstrating our issues that are more general. In this sense we use the same idea as

Fortz et al. (2013).

In the case of n random variables, each taking the value 0 or 1, we have 2n possible

combinations. Every combination represents a scenario with a certain probability. Even

though the number of possible scenarios is finite, it rises exponentially with the number of

random variables and it quickly becomes numerically infeasible to solve most optimization

problems using all scenarios. When we are able to solve a problem only for a limited

number of scenarios, we need to choose a subset, i.e., construct a scenario tree. The most

common approach is to sample the required number of scenarios. However, in this paper

we introduce a heuristic based on iterative scenario selection that provides better results

than pure sampling for a given number of scenarios. We also show that pure sampling

can be strengthened by taking into account that many scenarios cannot lead to penalties

caused by the knapsack being too small; the scenarios cannot lead us into the tail of the

outcome distribution.

Technically, binary random variables are a subset of the discrete random variables. So

in a sense, if we knew how to handle the general discrete case for generating scenarios,

we would also have an approach for the binary case. In fact, binary should be simpler

than the general case. But when considering what binary random variables represent in a

real setting, it becomes clear that having a representative set is critical in a different way

than some demand, for example, that appear in integer amounts. Typical applications

are the existence of a customer in a routing or facility location problem, the presence of

an edge in a network, whether a machine is up in a scheduling problem, and whether the

weather allows a ship to sail. And it is often the combinatorial effects in the scenarios

that drive the system. Just to give a few simplistic examples: if we by accident find

ourselves in a situation where two customers never appear together in a scenario for a

stochastic vehicle routing problem, the optimal solution will very likely take that into

account and (if meaningful) put the two on the same route, since it knows that it will

only need to visit one of them (hence making route length or total demand less varying).

If two edges in a network design problem cannot (according to the scenarios) be down

at the same time, the optimal solution will take that into account, for example to make
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sure that the probability of two given nodes being connected is rather high (by placing

the two in parallel). Optimal solutions will always “look for” such anomalies and utilize

them to create what seems to be very good solutions. So, in a sense, scenario generation

for binaries becomes a combinatorial fight against such lack of good representation.

The quality of a decision is given by the true objective function value, that is, the

evaluation of the solution over all scenarios. In order to stay coherent with the literature,

we call it the out-of-sample value. In the case of the stochastic knapsack problem, and

also many other problems, the objective function is given by some value term which is

easily computed, and some penalty term related to for example financial risk or lack of

capacity, what we might call tail effects. For the knapsack problem, the penalty occurs

when the items we put into it are larger than the capacity of the knapsack. For such cases

we introduce a procedure that computes the penalty in the minimal number of steps.

Despite the wide range of real applications, we are not aware of any paper dealing with

the scenario generation process for binary random variables. For a general discusssion of

scenario generation, see for example Chapter 4 of King and Wallace (2012b).

3.2 Stochastic knapsack problem

We consider a stochastic version of the knapsack problem, where I is the set of n items,

item i having a value ci and size wi, with the knapsack having a capacity of W . All items

we want to use must be picked in the first stage and if the total size is too large, we pay

a unit penalty of d in the second stage. The aim is to maximize the expected profit.

Let S be the set of scenarios, having |S| elements. A scenario s ∈ S, with elements

si = 1 if the ith item is present, 0 if not, is associated with a probability πs.

For a decision vector x ∈ {0, 1}n, where xi = 1 if item i is picked, 0 otherwise, we

formulate the optimization problem

max
x∈{0,1}n

∑
s

πs

(∑
i

sicixi − d
(∑

i

siwixi −W
)+)

, (3.1)

where X+ takes value X if X ≥ 0, 0 otherwise. This problem can be rewritten as a

standard stochastic integer linear problem by introducing a new variable es for exceeded

capacity of the knapsack in scenario s. Problem (3.1) then becomes

max
x∈{0,1}n

∑
s

πs

(∑
i

sicixi − d es
)

(3.2)

s.t es ≥
∑
i

siwixi −W ∀s ∈ S (3.3)

es ≥ 0 ∀s ∈ S (3.4)
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If we have marginal probabilities of appearances pi for each item, either as a starting

point or computed from the identity
∑

s πssi = pi, we can reorganize terms in the objective

function to obtain a simplified form:

∑
s

πs

(∑
i

sicixi − d es
)

=
∑
i

picixi − d
∑
s

πses. (3.5)

In the independent case, we can compute the probability of a scenario by a formula:

πs =
∏
i

(
sipi + (1− si)(1− pi)

)
. (3.6)

In the general case we need 2n− 1 parameters to describe a multivariate Bernoulli dis-

tribution. This may of course cause practical difficulties, but is not the focus of this paper;

Our goal is to understand scenarios and algorithms. For simplicity, we shall therefore in

the following assume that items appear independently. The general case with dependencies

is discussed in Section 3.5.

If not stated otherwise, we use the notation
∏
i for

∏
i∈I (as already used above). The

same holds for the summation
∑

and indices of scenarios s belonging to S.

3.3 Out-of-sample evaluation

Out-of-sample (o-o-s) evaluation is a way to provide the true (or approximately true)

value of the objective function for a given solution, principally using the whole distribu-

tion. Only occasionally can that be done exactly for continuous distributions (for a case

when that was possible, see Zhao and Wallace (2014)). Therefore, the o-o-s value is nor-

mally obtained using a large number of sampled scenarios which approximates the true

distribution extremely well. With discrete distributions, the number of possible scenarios

is finite. However, to stay consistent with the literature, we shall call the evaluation o-o-s,

whether we use a very large sample or the full discrete distribution when calculating the

true value. For the complete scenario set S, and a given a solution x, the o-o-s value f(x)

is given by:

f(x) =
∑
s

πs

(∑
i

sicixi − d es
)

=
∑
i

picixi − d
∑
s

πses. (3.7)

The evaluation of f(x) in (3.7) is much faster than solving (3.2) – (3.4). That means

that there exist many cases where it is impossible to find the solution x? for a given

S, but it is possible to evaluate f(x) by simple enumeration. However, sometimes a

straightforward evaluation over all scenarios is still too time consuming. For those cases,
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we introduce a method to find the o-o-s value in a recursive manner using a minimal

number of calculations.

In (3.7), the expected profit is split into two terms. The first is simply the expected

profit from the selected items. This is given by the sum of expected contributions from

the selected items. The second term represents the penalty for exceeding the capacity of

the knapsack.

As we can see from the last term, we do not pay a penalty in all scenarios. Let us

denote by Q(x) the set of scenarios for which we pay a penalty given a decision x, that is

Q(x) = {s|
∑
i

siwixi > W}. (3.8)

For a decision x we define a relation ≥x for two scenarios s1 and s2 and we state the

obvious lemma that is used later in this section.

Definition 3.3.1 We say that s1 ≥x s2 if s1ixi ≥ s2ixi for all i = 1, . . . , n.

Lemma 3.3.1 If s1 ≥x s2 and s1 6∈ Q(x) then s2 6∈ Q(x).

This lemma says that if a scenario s1 does not generate a penalty for a particular

decision x, then a scenario s2, which does not include any item that is not present in the

scenario s1, also does not generate a penalty.

Vice versa, we could say that if a scenario s1 generates a penalty, then a scenario s2

which includes all selected items from s1 (that is s2 ≥x s1) also generates a penalty. This

result has, however, not been used in the paper.

3.3.1 Recursive implementation of o-o-s

A straightforward way to obtain the o-o-s value f(x), for a given x, is to evaluate the func-

tion over all scenarios, that is, to perform a full enumeration of the scenarios. However, this

might be impossible or very time-consuming if the number of scenarios is large. Therefore,

we implement a procedure that only visits those scenarios that result in penalties.

We shall utilize the simple observation that to evaluate the penalty term for a solution

x, it is sufficient to compute the penalties for scenarios that belong to Q(x). That is,

∑
s∈S

πses =
∑

s∈Q(x)

πses. (3.9)

Let us notice that if an item i is not chosen in the solution x, that is, xi = 0, two

scenarios that differ only in the appearance of item i will generate the same exceeded

capacity. Thus we aggregate these two scenarios, this practically means that for o-o-s

evaluations we ignore the random variables corresponding to items that are not selected.
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Let us denote the set of selected items Ix = {i ∈ I|xi = 1} and the set of all aggregated

scenarios for the selected items Sx. Therefore, a scenario s ∈ Sx is described as a vector

of length |Ix|. Let us further denote by 1 = (1, 1, . . . , 1) the scenario with all items from

Ix present.

For items that are selected, the relation ≥x is a partial order over the set of scenarios,

i.e., a relation which is reflexive, antisymmetric, and transitive. We shall use Algorithm 4

to generate a tree, based on this partial order, with root node 1. We can search over this

tree in a recursive manner to visit all scenarios in Q(x) and thus compute the basis for

the penalty, namely Px =
∑

s∈Q(x) πses. Lemma 3.3.1 gives the condition for stopping

the depth first search in a particular branch. By s = sIi→0 in Algorithm 4 we mean that

scenario s is obtained from scenario sI by changing the ith item in the vector from 1 to 0,

while the rest of the items remain unchanged.

The procedure described in Algorithm 4 provides the o-o-s value in the minimal number

of steps – we evaluate all scenarios for which the capacity of the knapsack is exceeded,

and we stop the search in the branch immediately after discovering that all remaining

scenarios in that branch are not penalized for exceeding the capacity.

In order to minimize the number of nodes (scenarios) that we need to consider, we sort

the items according to size from largest to smallest. Even though the number of scenarios

in Q(x) remains the same regardless of the sorting, we reduce the number of cases where

a scenario is explored, but turns out not to exceed the capacity. For a proof that sorting

is indeed optimal in this procedure, see Appendix B.

It may happen that the stopping criterion (row 8 in Algorithm 4) is never met, in other

words, all scenarios lead to the penalty, and thus, we need to enumerate all of them. In

such a case, the procedure ExceededCapacity is called 2n times. Since other operations

are trivial, the computational complexity of the o-o-s evaluation is O(2n) with respect to

n binary random variables (n selected items).

3.3.2 Example

Let us demonstrate the procedure on a simple example. We assume we have selected four

items with ordered sizes w = (7, 5, 2, 1) and that the capacity of the knapsack is W = 9.

In Figure 3.1, we show the tree that is created based on the partial order ≥x.

Each box starts with a scenario, for example (0, 1, 1, 1) (implying that items with sizes

5, 2 and 1 are selected), and their sum of weights in the second row. The scenarios that

are explored are those with a gray background, the scenarios from Q(x) are framed by

thick line. The order in which scenarios are explored is shown above the edges. In this

example, we need to investigate eight scenarios in order to find the set Q(x). Let us note,

that if items were sorted in reverse order, the procedure would have to explore 13 scenarios

to reveal the set Q(x).
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Figure 3.1: Demonstration of the o-o-s recursive procedure.

Algorithm 4 Computing the out-of-sample value

1: sort the items such that wi ≥ wj for all i < j

2: set initially:

a: j = 1

b: s = 1

c: πs =
∏
i∈Ix

pi

d: Px = πses

3: Px = ExceededCapacity(j, s, πs, Px)

4: f(x) =
∑
i∈Ix

pici − d Px

5: function ExceededCapacity(j, sI, πI, Px)

6: for i = j to |Ix| do

7: s = sIi→0

8: if es > 0 then . es is the exceeded capacity at scenario s

9: πs = (1−pi)
pi

πI

10: Px = Px + πses

11: if i < |Ix| then

12: Px = ExceededCapacity(i+ 1, s, πs, Px)

13: return Px
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3.3.3 Scenario contribution to the objective value

Another outcome of the procedure that might be useful is the knowledge of the contribution

of each scenario to the objective function. This contribution is defined as

γs(x) =
∑
i∈Ix

sicipi + πses (3.10)

for all s ∈ Q(x). For scenarios that do not belong to the set Q(x), the contribution is

simply γs(x) =
∑
i∈Ix

sicipi. The overall o-o-s value is then f(x) =
∑

s γs.

This can be useful, for example, in a setting where we have solved a problem with a

limited set of scenarios, and want to find out what non-included scenarios contribute to

the o-o-s value, in order to possibly include them in our scenario set.

We can easily compute the contribution from the scenarios in Q(x) in Algorithm 4, for

example between rows 9 and 10.

3.4 Exact reformulation of the stochastic knapsack problem

Let us define the set Q to be the set of all scenarios that lead to a penalty for some

feasible decision x. This set is therefore given as Q = ∪xQ(x). To get this set, let us use

the following:

Definition 3.4.1 We say that x1 ≥ x2 if x1i ≥ x2i for all i = 1, . . . , n.

Lemma 3.4.1 If x1 ≥ x2 then Q(x2) ⊆ Q(x1).

Let us take the decision x, where all items are selected, that is, xi = 1 for all i =

1, 2, . . . , n. It holds that x ≥ x for all x ∈ {0, 1}n. Therefore, Q(x) ⊆ Q(x) for all x, and

hence Q = Q(x). This gives us a way to generate all scenarios that may lead to a penalty

in a minimal number of steps - simply by a recursive procedure built just as Algorithm 4,

and initiated with the decision x. See Algorithm 5 for the detailed description.

Scenarios not in Q never lead to a penalty. Therefore, we do not have to evaluate

scenarios outside Q, and we do not need variables es for these scenarios since they are

never positive. Thus we reduce the number of constraints and input data and solve the

following reduced form of the problem:

max
x∈{0,1}n

∑
i

picixi − d
∑
s∈Q

πses (3.11)

s.t es ≥
∑
i

siwixi −W ∀s ∈ Q (3.12)

es ≥ 0 ∀s ∈ Q, (3.13)
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Algorithm 5 Determination of Q

1: sort the items such that wi ≥ wj for all i < j

2: set initially:

a: j := 1

b: s := 1;

c: πs :=
∏
i∈I

pi

d: Q = {1}

3: Q := FindSet(j, s, πs, Q)

4: function FindSet(j, sI, πI, Q)

5: for i := j to n do

6: s := sIi→0

7: if es > 0 then . es is the exceeded capacity at scenario s

8: πs := (1−pi)
pi

πI

9: Q := Q ∪ s . we also store the corresponding value πs

10: if i < n then

11: Q := FindSet(i+ 1, s, πs, Q)

12: return Q

The significance of the reduction of constraints and input data depends on the size of

Q relative to the size of S. We present a numerical experiment showing the dependency in

Figure 3.2. We have looked at a large number of cases, all with 10 items. As we move right

on the horizontal axis, the variation in size increases, but the average item size remains

at 10. We show the results for knapsack capacities from W = 10 (on the top) to W = 90

(on the bottom).

The symmetry around the central (W = 50) case is striking. First notice that the

points for W = 50 are perfectly lined up. For every scenario in S, there exists an “inverse

scenario”, which has the exact opposite combination of 1’s and 0’s: (0, 0, 1, 0, 1) versus

(1, 1, 0, 1, 0). These two scenarios combined have a total size of 100, exactly twice

that of the knapsack. Therefore, one of the scenarios must go into Q and the other one

must stay outside. The only exception is when both scenarios have the same weight,

namely the knapsack capacity. Then both stay outside. However, as we generated weights

randomly from a continuous distribution when creating the figure, this has zero probability

of happening (in the ideal case).

Similarly, by using these “inverse scenarios”, we can explain the symmetry between

the |Q|/|S| ratios of 0.9 and 0.1, of 0.7 and 0.3, etc, observed in the figure. If we look at
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the knapsack capacities 40 and 60, and the total sum of item weights is 100, we observe

the following: if a scenario goes into Q for 40, its inverse goes into S \ Q for 60 and so

on. Again this is distorted only by some special cases when weights of the selected items

equals the knapsack capacity. But as we sampled from continuous distributions this never

happens.

As we can see from Figure 3.2, the reduction in the number of scenarios can be sub-

stantial if we utilize Q rather than S, especially when the size of the knapsack is close to

the total sum of weights of all items. Then, only a small number of scenarios leads to a

penalty. This number is further reduced when the variance in sizes is small.

Figure 3.2: The number of scenarios in Q, relative to the number of scenarios in S for

different knapsack capacities as the variation in item sizes increases.

3.5 Dependent case

For simplicity, we assumed that items appear independently of each other. This is, how-

ever, rare in real applications. In this paragraph we discuss the case of a general multi-

variate Bernoulli distribution where interactions between random variables play a role and

the probability of a specific scenario is not given by a simple multiplication of probabilities

associated with (non-)appearances of single items. We do not provide a comprehensive

description of the multivariate Bernoulli distribution, but we discuss the properties that

need to be taken into account when dealing with correlated variables.
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The crucial observation is that the partial order from Definition 3.4.1 and Lemma 3.4.1

holds regardless of the underlying probability distribution. Since this lemma provides the

stopping criterion for Algorithms 4 and 5, the frameworks of both algorithms remain

unchanged. However, we need to adjust the computation of probabilities when creating

new scenarios, denoted by s = sIi→0. One possible description of the multivariate case,

with demonstrated modifications in the procedures, is shown in Appendix A.

Further derivations and properties of the multivariate Bernoulli distribution can be

found in Dai et al. (2013) or Whittaker (2009).

3.6 Other applications

The structures just observed for the simple stochastic knapsack problem also appear in

other settings. Consider a network design problem with stochastic existence (breakdown)

of edges, and where the task is to satisfy demand at some nodes. If demand is not satisfied,

we pay a penalty proportional to the unsatisfied demand. The first-stage decision is to

invest in new edges. Assume for the moment that there are no flow costs in the second

stage, just penalties for unsatisfied demand. The scenario used to initiate Algorithm 4 is

“All edges down”, while the decision that we denoted as 1 in Algorithm 5, that is, the

decision that will always lead to a penalty, is “not to buy any additional edges”. Then

if we have a scenario that leads to a penalty with this decision, every scenario where no

further edges are present, automatically must lead to a penalty as well. Vice versa, if

some scenario does not lead to a penalty, every other scenario that includes the same

edges (and possible some additional) are also penalty free. With this in mind, we end

up with a partial order of the scenarios and a subset Q just as for the knapsack case.

Calculating the penalty is somewhat more complicated, but can still be done efficiently.

For a given feasible solution, the root node in the tree cooresponding to Figure 3.1 is the

case when no edges are working. Then as we proceed through the evaluation, edges are

added, one by one. In the root node of the tree we shall have to solve a min cost network

flow problem (for a given first-stage decision and no edges working). Then one additional

edge is opened. The previous optimal flow is now feasible in this new looser problem, and

a warm start can take place. So it will never be necessary to start from scratch when

calculating the penalties; warm starts for min cost network flow problems will suffice.

If there are flow costs in addition to penalty costs in the second stage, a scenario

set Q will still exist if the penalty is so high that ordinary flow is always preferred over

penalties. If not, there is no clear-cut set Q (as there is no clear-cut tail), but the partial

order remains, and so does the recursive way of solving the second-stage problem using

warm starts.

Just as for the knapsack problem, the difference between S and Q (when it exists)
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can be both negligible or substantial based on the input data. For stochastic network

design, Q is small when the network provides high flexibility. That is, the situation where

even if some, but not all, edges break, it is still possible to satisfy demand at nodes by

using other edges. For instance, highly connected graphs, like city streets, provide such

flexibility. On the other hand, poorly connected networks, where one single break might

lead to a penalty, no matter what happens to the other edges, provide little flexibility.

Therefore, the number of scenarios in Q is high (all combinations of 1’s and 0’s of remaining

edges). So when dealing with such networks, it is not particularly beneficial to use the

presented methodology – the ratio |Q|/|S| is high.

This way of recursively visiting nodes in a tree is of course common in many other

parts of OR. Examples are the use of factoring methods in Ball et al. (1995, Section 3.3)

or finding feasible solutions in the progressive hedging algorithm as outlined in Wallace

and Helgason (1991). In the first case there is a stopping rule as in our case, in the latter,

the recursiveness is used to structure the calculations.

3.6.1 Sampling

In case we wish to sample scenarios we can either first generate Q and then sample from Q

or S \Q in a controlled way. Or we can sample and then check where the sample belongs

(which is equivalent to checking if a sample generates a penalty). This way we can achieve

different densities of scenarios in the tail and outside the tail.

3.6.2 Integer random variables

Most of what we have said applies also to integer random variables if we have a model

where there are tail effects; random integer demand that ought to be satisfied, and where

there is a penalty for not doing so; network flow problems where edge capacities are

random and integer. The scenarios will again be split into two sets, one that cannot lead

to penalties and one that can. The algorithms have obvious extensions in this case.

3.7 Conclusion

The main point of this paper has been to show that many two-stage stochastic programs

with special tail costs on the output distribution (which could correspond to tail risk

measures) possess a specific structure that allows the scenario set to be split into two sets:

those scenarios that may lead to a penalty (depending on the optimal solution) and those

that may not, whatever happens. We demonstrate the situation on a stochastic knapsack

problem, but indicate how many related problems, such as network design, are similar.

The structure and the split of the scenario set allows for an efficient way to calculate

the out-of-sample value for the problem at hand, and can also be used in a setting of
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sampling if we wish more scenarios in the tail of the output distribution, rather than

evenly spread all over as normal sampling would do.

Our procedures are more powerful when the number of scenarios that cannot go to the

tail is large. We show by numerical testing as well as verbal arguments when that will be

the case, and hence, when our approach is particularly useful.

So a practical way of proceeding whenever our approach potentially applies would be

• Try to solve the problem by using full enumeration of scenarios. If this is possible,

there is no need to use anything more advanced.

• If not, try to use our overall procedure, thus still solving the problem exactly. If this

is numerically feasible, all is well.

• If not, use some heuristic to find feasible solutions, possibly using ideas from this

paper in terms of sampling and scenario contributions. Check the quality of these

solutions by full enumeration. If this is possible, there is no need to be more ad-

vanced.

• If not, use the out-of-sample evaluation procedure from this paper in combination

with the heuristic.

• If not, use some out-of-sample estimation approach.
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Appendix A Multivariate Bernoulli distribution

Let s = (s1, s2, . . . , sn) be a scenario, that is a realization of an n-dimensional random

vector from the Cartesian product space {0, 1}n. There are several ways how to uniquely

describe the desired distribution. The most common way is by providing the joint prob-

ability mass function. For the case of n = 2 and a random vector Y = (Y1, Y2) with

realizations y = (y1, y2) we have:

P (Y = y) = p(y1, y2) = p
(1−y1)(1−y2)
00 p

y1(1−y2)
10 p

(1−y1)y2
01 py1y211 ,

where naturally pij = P (Y1 = i, Y2 = j).

It is possible to write the logarithm of the density function.

log p(y1, y2) = log p00 + y1 log
p10
p00

+ y2 log
p01
p00

+ y1y2 log
p11p00
p01p10

= uφ + y1u1 + y2u2 + y1y2u12.

The coefficients uφ, u1, u2, u12 are called u-terms and are widely used for studying

interactions among random variables in the multivariate Bernoulli distribution. Therefore,

they can be considered as an alternative way to define the distribution.

From the u-terms we can compute the logarithms of probabilities:

log p00 = uφ

log p10 = uφ + u1

log p01 = uφ + u2

log p11 = uφ + u1 + u2 + u12

In the case of n = 3, the logarithm of the density function by using u-terms notation is

log p(y1, y2, y3) = uφ + y1u1 + y2u2 + y3u3 + y1y2u12 + y1y3u13 + y2y3u23 + y1y2y3u123
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so we can derive expressions for selected u-terms (similarly for u2, u3, u13 and u23):

uφ = log p000

u1 = log
p100
p000

u12 = log
p000p110
p100p010

u123 = log
p100p010p001p111
p000p011p101p110

We omit the general notation of the probability density function for a case with n

random variables. We hope that the idea of how the density would look is evident from

the given examples. It can be also observed that for the general distribution, there are 2n

parameters (either probabilities or u-terms) with the additional condition that the sum

of the probabilities must equal one. So we need 2n − 1 parameters to fully describe the

distribution.

When the probabilities are known, there is no need to recompute the probabilities of

scenarios when we deal with the transition s = sIi→0. A different situation is in the case of

describing the distribution by u-terms. Let us assume we know all u-terms, each u-term

is associated with one element of the power set of I, denoted P(I). Further we denote

Fs ⊆ P(I), which includes all subsets of appearing items. Fs plays a role as a collection

of indices of items that appear in the scenario s and are used for computing the scenario

probability as is shown in Algorithm 6 in the function ComputeProbability. As initial

values for the scenario s = 1 in algorithms 4 and 5 we set Fs = P(I) and compute the

corresponding probability as it is described in the function InitialValues.

Algorithm 6 Modification of computing probabilities and initial values

1: function ComputeProbability(i, sI,FsI ,)
2: s := sIi→0

3: Fs = {F ∈ FsI | i /∈ F}

4: πs = exp
( ∑
F∈Fs

uF

)
5: return s, πs

6: function InitialValues(I, u-terms)

7: s = 1

8: Fs = P(I)

9: πs = exp
( ∑
F∈Fs

uF

)
10: return s, πs
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Appendix B

We prove that sorting of items in Algorithm 4 is optimal, i.e. requires the minimal number

of recursive calls of the procedure.

Let us assume two orderings of the same set of items, represented by vectors of weights

wA and wB which differ only at neighboring positions k and k + 1, which are swapped.

That is, wAk = wBk+1 and wAk+1 = wBk . Let us assume wAk ≥ wAk+1. Then, the recursive

procedure ExceededCapacity, described in Algorithm 4, generates for both vectors wA

and wB fundamentally equal scenarios (the same items are present) if i < k or i > k. In

the case of i = k (sk = 0), we have
n∑

m=k+1

wAmsm ≤
n∑

m=k+1

wBmsm for every scenario s.

Therefore, s ∈ Q for wA implies s ∈ Q for wB at every branch. However, it may

happen that s ∈ Q for wB, but s /∈ Q for wA. In such a case, the recursive procedure is

called again for wB in the particular branch, but not for wA. Thus the total number of

times the procedure is called for wB is higher or equal to the number of times it is called

for wA.

Let us take some arbitrary ordering and apply, for instance, the bubble sort method

where two neighboring items are swapped whenever wi < wi+1. Such a method results in

a descending order of items, and since for every swap we can only improve (decrease) the

number of times the procedure ExceededCapacity is called, working with an ordered

vector of items in Algorithm 4 is optimal in this respect.
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Chapter 4
Scenario tree construction driven by

heuristic solutions of the optimization

problem

Vit Prochazka� Stein W. Wallace�

�Department of Business and Management Science

Norwegian School of Economics, Bergen, Norway

Abstract

Many methods for generating scenarios for stochastic programs aim to ensure a good fit (in

a sense of some statistical measure) between the scenario tree and the underlying proba-

bility distribution. We offer an alternative approach where the scenario generation process

is driven purely by the out-of-sample performance of a pool of solutions, obtained by some

heuristic procedure. In order to do that, we formulate a loss function that measures the

discrepancy between out-of-sample and in-sample (in-tree) performance of the solutions.

By minimizing such a (usually non-linear, non-convex) loss function for a given number

of scenarios, we receive an approximation of the underlying probability distribution with

respect to the optimization problem. This approach is especially convenient in cases where

the optimization problem is solvable only for a very limited number of scenarios, but an

out-of-sample evaluation of the solution is reasonably fast. Another possible usage that

we demonstrate in this paper is the case of binary distributions, where classical scenario

generation methods based on fitting the scenario tree and the underlying distribution do

not work.

Keywords: stochastic programming, scenario generation, binary distributions, heuristic
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4.1 Introduction

Most methods for solving stochastic programs require discrete scenarios as input. Ex-

ceptions would be simple (often inventory) models that have closed-form solutions and

methods such as stochastic decomposition (Higle and Sen, 1991), where the discretization

takes place inside the method. The simplest way to find scenarios that can be used as

input is normally to sample (Cario and Nelson, 1997; Lurie and Goldberg, 1998). If sam-

pling leads to numerically solvable problems with high enough accuracy in short enough

time (see for example the discussion in Kaut et al. (2007)), there is no good reason to

do anything more complicated. But, if for some reason, sampling is not acceptable, there

is a need for something more advanced – and usually more complicated. Very often, the

alternatives require some rather expensive offline computations, but lead to a much more

efficient online performance. For an overview, see for example King et al. (2012). The

methods fall into two major classes; those that try to approximate the probability distribu-

tion itself, and those that focus on the quality of the solutions that emerge from using the

scenarios. We can call these methods distribution-oriented and problem-oriented. Both

use a metric to measure distance, the first uses measures from probability theory (such as

the Kantorovich-Rubinstein or Wasserstein metric (Pflug, 2001)), the second uses the op-

timization problem itself as metric. This paper falls into the second category, and is hence

connected to the principal thinking in Høyland and Wallace (2001), and the methodology

set out by Fairbrother et al. (2017). But contrary to the latter work, we do not need

to analyze the optimization problem itself, rather we need to be able to produce a set

of feasible solutions and to perform, rather efficiently, out-of-sample objective function

evaluation.

Hence, in this paper, we introduce a framework that enables generating scenarios in

a problem-oriented fashion, but without analyzing the problem explicitly. Our general

approach is based on a pool of solutions and a measure of discrepancy between in-sample

(in-tree) and out-of-sample performance of the solutions, which we aim to minimize. We

assume that the pool of solutions is generated by some heuristic with a reasonable trade-

off between speed and accuracy. Every solution from the pool can be evaluated out-

of-sample, that is, we can determine its true value by using the true distribution (or a

very large sample), and in-sample (in-tree) by using the corresponding scenario tree. We

define a loss function that measures the discrepancy between out-of-sample and in-sample

performance of the pool of solutions. We search for a tree that minimizes the loss function.

Since we offer a general framework that requires several problem-specific subroutines,

a direct comparison with other methods for generating scenarios is not easy. Such com-

parisons can always be distorted in (or out of) favor, by applying, for example, a different

heuristic. Our framework also may require a significant time on development. Both
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the subroutines - the heuristic for obtaining solutions and the loss function minimization

procedure - must be tailored-made for a specific problem. That is the main disadvantage

compared to some other methods for scenario generation, for instance copula-based heuris-

tics (Kaut, 2014), which can be applied immediately by using a publicly released code,

and which requires either historical data or specifications of the probability distribution.

Thus, rather than directly competing with these methods on solvable problems, we

try to identify their limits, for example how they handle binary random variables, such

as a random appearance of customers in vehicle routing problems. We offer an approach

that can overcome some of the limits, and which can be applied on a larger spectrum of

applications. We also hope to offer an original perspective on the relationship between

uncertainty and its representation by scenarios within optimization problems.

4.2 Framework

Since this paper is primarily conceptual, and not technical, we will not introduce exact

mathematical definitions of all elements of our procedure in order to keep the work easy

to follow. In general, we assume there is a true1 random vector ξ that enters a process

to be optimized. The distribution is either parametrically described or empirically given,

for example by historical data. For simplicity, we focus on two-stage problems to avoid

the complications that multi-stage problem formulations and conditional distributions

between stages bring. See Birge and Louveaux (1997); Kall and Wallace (1994) for proper

definitions, if needed.

Without loss of generality we assume a maximization2 problem throughout the text

max
x∈X

f(x, ξ) (4.1)

where X is the feasible region for decisions x. The problem that often arises is that

(4.1) cannot be solved when using ξ directly due to its size (in the case of an empirical

distribution) or its computational intractability (in the case of a parametrically defined

distribution). Thus, we search for a representation of the original distribution by a so-

called scenario tree T consisting of particular scenarios, which are vectors of realizations of

random variables (for example volumes of the items in the stochastic knapsack problem),

and probabilities p associated with each scenario. Then, we solve an optimization problem

1In a large majority of applications, this still means highly subjective descriptions of the random

phenomena.
2It is more standard to work with minimization problems in the literature. However, we decided to go

with maximization, since our approach is demonstrated on a knapsack problem, for which maximization

is natural. In the end, each maximization problem can be converted to a minimization one and vice versa.
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max
x∈X

f(x, T ) (4.2)

and hope that the solution of this program is also a good solution to the original problem

(4.1). The quality of the solution and its relation to the original program can be tested,

see Kaut and Wallace (2007).

Although it is almost always impossible to solve problem (4.1), it is often possible to

evaluate the quality of a fixed solution x̂ by using the whole distribution. That means

to determine the value f(x̂, ξ). If it is not possible to do this exactly, then, most of the

time, it can be done approximately, with very high accuracy, by using a very large sample

from the true distribution. We call this procedure out-of-sample evaluation of the solution.

Similarly, we can get an in-sample value f(x̂, T ) for the solution x̂ by inserting the scenario

tree into the model.

Our framework to construct a scenario tree consists of two steps:

1. Heuristically generate a pool of solutions for the optimization problem; evaluate

the solutions out-of-sample.

2. Construct a scenario tree in such a way that the discrepancy between in-sample

and out-of-sample performance of the solutions is minimized.

The first step of our approach is to generate a pool of solutions A by a problem-specific

heuristic and evaluate the solutions out-of-sample. This is not always possible, since for

some problems even finding a feasible solution or its out-of-sample evaluation can be too

difficult3. But our approach appliess to a large class of problems, for which reasonable

heuristics exist. To make the right choice of heuristic, one needs to take into consideration

a trade-off between the number of solutions in the pool, accuracy of the heuristic and the

time spent in this phase.

The heuristically obtained solutions are evaluated out-of-sample, either as a part of the

heuristic procedure itself or afterwards, for example in the case the heuristic is using just a

small sample of the original distribution. This step, again, assumes that the out-of-sample

evaluation can be performed within a reasonable time.

To measure discrepancy between in-sample and out-of-sample performance of the so-

lutions from the pool, we define a loss function. The function is derived from our re-

quirements on a good scenario tree, which are discussed in the following section. For a

given pool of solutions, the loss function is a function of the scenario tree. Thus we search

3For example the problem of minimum Hamiltonian cycle, where even finding a Hamiltonian cycle in

a given graph is NP-complete (Garey and Johnson, 1979).
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for such parameters of the scenario tree (scenarios and their probabilities) that the loss

function is minimized. In Section 4.2.3, we discuss different settings of the minimization

procedure, but in the case both scenarios and their probabilities are used, we deal with

non-linear and non-convex functions to be minimized. This is not a trivial task, and even

though there are some solvers for non-linear optimization available, they often require

some problem-specific adjustments.

4.2.1 Properties of a good scenario tree

In this section, we discuss our views on what makes a scenario tree good. We list a set

of requirements on the scenario tree and its relation to the original optimization problem

(4.1). These requirements are used for the formulation of the loss function. Let us first

focus on relatively complete recourse; handling potential infeasibilities in the second-stage

problem is discussed in Section 4.2.5.

In theory, to call a scenario tree T (almost) perfect, we would simply need that (4.2)

returns the same optimal solution for T as it would for the true distribution ξ — had

it been obtainable. There are, however, two problems. First, there are cases for which

even the optimization program (4.2) is computationally intractable and we need to settle

with some non-optimal solution, which can be reasonably good for T , but arbitrarily bad

for ξ. Hence “(almost)”. Second, and more importantly, to assure that this requirement

will hold is not achievable. It would require the knowledge of the optimal solution of the

program for ξ. If we were able to solve the problem for ξ and get the optimal solution,

generation of the scenario tree is, obviously, of more marginal interest (though it depends

on the requirements on CPU time).

Let us, then, discuss what we expect from a good tree, not a perfect one. Here we

summarize our requirements on a good scenario tree T in relation to the true distribution

ξ when we perform out-of-sample and in-sample evaluation of a pool of solutions.

1. The ranking is “more or less” preserved4. That is, if one solution x1 is better than x2

when evaluated out-of-sample, it is going to be “very likely” better when evaluated

in-sample.

2. We do not observe overconfident outliers. We argued in Requirement 1 that it is

impossible to have a guarantee of the perfect ranking, so we expect it may happen

that f(x1, ξ) > f(x2, ξ), but f(x1, T ) < f(x2, T ) for some x1 and x2. Such a case

is acceptable when the values f(x1, ξ) and f(x2, ξ) are close to each other. But we

4We would naturally prefer the perfect ranking. Then, for any subset of solutions, solving maxx f(x, T )

and maxx f(x, ξ) would be equivalent tasks with respect to our objective. But having a requirement on

reaching the perfect ranking of solutions is meaningless, since it implies the ability to solve the problem

maxx f(x, ξ). Usage of the scenario tree is, then, redundant.
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want to avoid the case where a particularly bad solution (out-of-sample) performs

well in-sample, that is, its in-sample value is a (massive) overestimation of the true

value. The opposite case – a truly good (out-of-sample) solution performs really

badly in-sample – is not so critical, if it does not hold for many solutions. We call

these outliers acceptable.

3. There is a greater emphasis on Requirements 1 and 2 to be satisfied for better

solutions than for worse solutions. In other words, the scenario tree approximates

better the underlying distribution in the space of higher-quality solutions, where an

optimization algorithm, either an exact or a heuristics one, will search for the best

solution to the program (4.2).

4. In-sample values approximate well out-of-sample values, that is f(xa, ξ) ≈ f(xa, T ).

In theory, this requirement is not needed at all. A scenario tree that can produce

in-sample values of solutions that are totally off, but ranks the solutions “more or

less” correctly, is still a very useful tree, because it enables us to find a very good

solution. Then, the real value of the solution can be found by an out-of-sample

evaluation.

However, we still have this requirement on our list, not just because it is a nice (but

not necessary) property of the scenario tree, but because it implies, to some extent,

other requirements. If the in-sample values approximated out-of-sample values per-

fectly, it would also preserve the perfect ranking. Thus, we use this requirement as

a starting point for the loss function formulation in 4.2.2.

Example

We demonstrate the relationship between in-sample and out-of-sample values over the pool

of solutions in Figure 4.1. We show four examples of different scenario trees, on which

we comment some of our views formulated above. We assume the pool consists of six

solutions, sorted in ascending order according to their out-of-sample values (y-axis). We

assume a maximization problem, thus the higher the out-of-sample value, the better the

solution is.

Let us assume we have a scenario tree that returns out-of-sample and in-sample values

as in 4.1a). If these six solutions were the only feasible solutions of the optimization

problem, solving the program (4.2) would return the true optimal solution, which is fine.

However, we see the tree is not reliable for other solutions and their ranking, for example

solution no 1 (worst out-of-sample) is ranked as the second best one in-sample. Sometimes,

problem (4.2) can be solved only heuristically, so even if we had guaranteed the basic

property that the optimal solution in tree is optimal out-of-sample, the heuristic could

miss it and return an arbitrarily bad solution (out-of-sample).
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(a) (b)

(c) (d)

Figure 4.1: Demonstration of different scenario trees and their properties with respect to

in-sample and out-of-sample performance.

In 4.1b), we demonstrate the concept of overconfident (solution no 3) and acceptable

(solution no 6) outliers. If we solve maxx f(x, T ) over this set of solutions, we determine

solution no 3 as the optimal one, but it performs quite poorly in reality (out-of-sample).

Had it not been for solution no 3, we would end up with solution no 5 as the optimal

one. That means we would miss the true optimal solution no 6 and some related value,

but the error is not as significant as for overconfident outliers, whose in-sample value is

overestimated.

In 4.1c), we show a good ranking of solutions, but with the wrong approximated values.

Such a tree would be good for the optimization process, which would correctly find the

optimal solution. Its out-of-sample value can be determined afterwards.

In 4.1d), the in-sample values approximate the out-of-sample value reasonably well.

That implies that the ranking is more or less correct. We see that solutions nos 3 and

2 are ranked incorrectly, but since their out-of-sample values are similar, that would not

cause a big error even if we solved the maximization problem over the solutions {1, 2, 3}.
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Note

In this paper, we introduce a whole framework for scenario generation. But even if some

other method (mentioned in the introduction) is used, visualization of the tree performance

as in Figure 4.1 can offer a fast and intuitive way to assess how good a scenario tree is. In

other words, we use just the first step of the proposed framework: we apply some heuristic

to generate a pool of solutions for the problem (4.1) and visualize their out-of-sample and

in-sample performance for a given tree.

4.2.2 Loss function

We introduce a loss function to measure the discrepancy between the out-of-sample and in-

sample performance of a pool of solutions. The formulation of the loss function is derived

from our requirements on a good scenario tree. The smaller the value of the function, the

better the tree (in our view) for the subsequent optimization procedure. We define the

loss function in the following way:

L(T ,A) =
∑
xa∈A

(
za1
(
1 + z21[f(xa,T )>f(xa,ξ)]

)(
f(xa, T )− f(xa, ξ)

)2)
(4.3)

where 1[condition] takes the value 1 if the condition is met, 0 otherwise. The loss function

is fundamentally the weighted sum of squares between in-sample and out-of-sample values

that captures a basic fit between them (Requirement 4). A good fit between the in-sample

and out-of-sample values implies that the ranking is more or less correct (Requirement 1).

Each square is further weighted with the term (1+z21[f(xa,T )>f(xa,ξ)]), which penalizes

approximations from above. Together with a potential high difference between in-sample

and out-of-sample value, it penalizes the overconfident outliers (Requirement 2). If we

dealt with a minimization problem, we would penalize the approximation from below as

it leads to overconfident outliers.

Each term is also weighted with za1 which takes a higher value, the better (out-of-

sample) a solution is. Thus, contrary to the previous weighting term, it does not depend

on the scenario tree. The weights za1 put more emphasis on higher-quality solutions,

for which it is more crucial that the scenario tree approximates better the underlying

distribution.

Loss function (4.3) is formulated generally by using weights za1 and z2. The weights are

considered as hyper-parameters of the overall procedure, and they allow us to adjust the

loss function based on problem specifications such as the heuristic for solution generation

and the loss function minimization procedure (see the following section). For instance,

if the heuristic procedure at times produces some bad solutions, za1 should be more pro-
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gressive (adding more weights) towards better solutions compared to the case where all

solutions from the heuristic phase are relatively good.

4.2.3 Minimization of the loss function

Our aim is to construct the scenario tree. Since we defined our measurement of discrepancy

between the tree and the underlying distribution, we will naturally look for a tree, for which

the discrepancy is as small as possible for a given pool of solutions.

In general, we search for a set of scenarios (realizations of a random vector) and

associated probabilities that enter the optimization program (4.2) as input data. But

for this task - minimization of the loss function - the roles are swapped. Scenarios and

probabilities are free variables to be set, whereas decision variables of the optimization

problem (heuristic solutions) are input data.

Specifications of the minimization procedure depend on requirements of the scenario

tree and the optimization problem we solve. For instance, it is possible that an application

requires equiprobable scenarios. In such a case, probabilities are no longer free variables

but parameters in the in-sample evaluation function. This phenomena appears and is

discussed also in Høyland and Wallace (2001). When using both probabilities and scenarios

as free variables, we deal (most likely) with a non-convex problem. In Section 4.2.4, we

show a requirement on integrality of scenarios, which makes the problem constrained.

But in general, we do not want to impose constraints on scenarios and probabilities

unless it is forced by the problem itself. The main reason is that it could only worsen

the value of the loss function, that is, cause larger discrepancies between the trees and

the underlying distributions according to our definition. For the same reason, we do not

require the sum of probabilities to be 1, thus, our tree does not have to form a properly

defined probability distribution. This is demonstrated and discussed in the example below.

Deriving a list of all possible properties of the loss function minimization procedure

(convexity, differentiability, types of constraints, etc.) for different classes of optimization

problems goes beyond the scope of this paper. But we point out several phenomena that

a reader might face. We kindly encourage the reader to analyze his own problem in order

to choose a suitable method.

In most applications, there will be a given number of scenarios based on how many

of them can be computationally handled by the subsequent optimization procedure, for

instance within a certain time limit. Then, the presented approach returns scenarios with

the most similar performance to the original distribution with respect to the optimization

task. However, it is possible to use the same framework to find scenarios that ensure some

predefined loss function value (in our definition). The problem is to set such a threshold
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given several hyperparameters (weights za1 and z2) and solve a constrained optimization

(non-linear, non-convex) program.

Stochastic knapsack problem

We demonstrate the usage of our framework on the classical stochastic knapsack problem

where the items have uncertain volumes. The aim is to find K scenarios to represent a

true distribution, which is given by discrete observations (historical data). That means

the uncertainty is in both cases represented by the set of scenarios S, each scenario has

its probability ps. In the case of the true distribution ps = 1
|S| .

Let I be the set of items, item i having a value ci and size wsi in scenario s, with the

knapsack having a capacity W . All items we want to choose must be picked in the first

stage and if their total size exceeds the capacity of the knapsack, we pay a unit penalty of

d in the second stage. The objective is to maximize the expected profit. We formulate the

optimization problem for decision variables x ∈ {0, 1}n, where xi = 1 if item i is picked, 0

otherwise;

max
x∈{0,1}n

∑
i∈I

cixi − d
∑
s∈S

pses (4.4)

s.t es ≥
∑
i∈I

wsixi −W ∀s ∈ S (4.5)

es ≥ 0 ∀s ∈ S (4.6)

where es denotes exceeded capacity of the knapsack in scenario s. The in-sample and

out-of-sample evaluation (depending on scenarios we use) of a given solution x̂ is straight-

forward and fast:

f(x̂, p, w) =
∑
i∈I

cix̂i − d
∑
s∈S

ps

(∑
i∈I

wsix̂i −W
)+

(4.7)

where X+ takes value X if X ≥ 0, 0 otherwise.

The optimization model (4.4) – (4.6) and the evaluation function (4.7) hold for the

scenario tree as well as for the true distribution (historical data also form a scenario tree).

To distinguish between the two in the following text, we denote the true distribution

ξ = {p̂, ŵ} and the desired scenario tree, consisting of K scenarios, as T = {p, w}
Our main focus is on the minimization of the loss function, so we choose a very simple

heuristic to generate a pool of solutions A. In every solution from the pool, an item i is

randomly picked with probability q.

Since the pool of solutions is not changing during the subsequent minimization of the

loss function, the out-of-sample evaluation is performed only once. Then the list of out-of-
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sample values, denoted V , enters the loss function minimization procedure as input data.

We deal with a unconstrained problem

min
p,w

L(p, w) (4.8)

where the loss function is

L(p, w) =
∑
xa∈A

(
za1
(
1 + z21[f(xa,p,w)>Va]

)(
f(xa, p, w)− Va

)2)
(4.9)

The loss function is non-linear and non-convex in decision variables p and w. That

makes the problem difficult to solve due to the existence of many local minima. Thus, we

propose a heuristic that explores the search space in an efficient way to find a high-quality

solution.

The core of the heuristic is the sub-gradient method that works in an iterative manner.

It is designed for solving non-linear convex problems. As the name suggests, it is based on

sub-gradients of the loss function with respect to the decision variables, denoted gp and

gw. Sub-gradients express how much the loss function will change, if the inputs (w and p)

are changed by a very small step. Sub-gradients can be, therefore, computed numerically

by the definition of derivative. That is, we add a small number h to each element of the

scenario tree and probability vector and recompute the value of the loss function for each

element. After dividing the change by h, we get the numerical sub-gradients.

This procedure is, obviously, computationally expensive, as it requires multiple eval-

uation of the loss function at every iteration of the overall method. Fortunately, it is

possible to derive the sub-gradients analytically. It is advantageous to apply the chain

rule. It means to derive dL
df – the gradient of the loss function with respect to the in-

sample evaluation function, further df
de – the gradient of the in-sample evaluation function

with respect to the exceeded capacity, and so on. By doing so, we get a chain of simple

operations (square, multiplication, addition, max()5, etc.), for which we have standard dif-

ferentiation rules. By simple applications of the chain rule we get the desired sub-gradients

gp and gw.

Let us note that in other optimization problems it might not be so straightforward

to derive sub-gradients as in our case. More complicated functions might come into play.

Thus it could require more effort in analytical derivation or the use of numerical sub-

gradients, which should always be available, at least in in principle. Or it is possible

to choose a different method from non-linear optimization theory, that is not based on

5The function max(·, ·) is non-differentiable at the point where the two arguments are equal. Hence

we use sub-gradient instead of gradient to be precise. It has no practical impact from the computational

point of view.
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gradients (see some textbook on non-linear optimization, for instance Hendrix and Tóth

(2010); Boyd and Vandenberghe (2004)).

With the sub-gradient method, we take a small step in the direction of the negative

sub-gradient, that is, in the direction of the steepest descent, at every iteration. Such

an approach converges to a local minimum, which is also a global minimum in the case

of convex minimization. However, not in our case, so we add two features to enhance

exploration of the search space in order to avoid termination of our procedure at some

low-quality local minimum.

The first feature is to use multiple starts of the procedure from different initial points.

The second feature is the recognition and replacement of “useless” scenarios. We recognize

these scenarios by evaluating their impact on the loss function. The impact is defined as

the change of the loss function values if we remove a particular scenario from the scenario

tree. If the change is very small, it means that the particular scenario is not very useful,

and we replace the scenario by a new one (chosen randomly). The heuristic is summarized

in Algorithm 7.

Algorithm 7 Minimization of the loss function

1: for m = 1 to M do

2: initialize p and w

3: for j = 1 to J do

4: compute sub-gradients gp and gw

5: p = p− αpjgp
6: w = w − αwj gw
7: compute Ljm(p, w) according to (4.9)

8: for k = 1 to K do

9: if ‖gwk
‖∞ < εw then

10: p̃ = {pl : l 6= k}

11: w̃ = {wl : l 6= k}

12: if |L(p̃, w̃)− L(p, w)| < εL then

13: replace wl with a new scenario

14: choose p and w that correspond to the smallest Ljm value.

The parameters p and w are updated (rows 5 and 6 in Algorithm 7) by small steps in the

direction of the steepest descent. The step sizes, denoted αp and αw, are decreased with the

increasing number of iterations. They are hyper-parameters that enter the procedure and

need to be carefully set (too small steps lead to slow convergence, too large to oscillation
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or divergence). We set these steps based on some trial tests.

The routine of scenario usefulness assessment is computationally expensive. It would

require computation of the loss function K times at every iteration. To avoid it, we run a

pre-test, where we check the ∞-norm of the sub-gradient related to each scenario (row 9),

which allows us to break the test once we find one of its element greater than εw. Only

if the sub-gradient is small, do we proceed to the evaluation of the impact on the loss

function.

Initialization and replacement of scenarios is performed by a random draw from the

original data ŵ, probabilities are randomly set. Algorithm 7 is just a pseudo-code, not

the most efficient implementation. Obviously, storing all Ljm is not necessary, since at

any time, we can store just two best values - a local one for the j cycle and a global one

for the m cycle. We can also compute the value of the loss function while evaluating the

sub-gradients of the function.

Hence, we do not claim that this is the most effective heuristic for the problem. Most

likely it is not. It is based on a simple sub-gradient method. If the main focus was on

developing the most efficient algorithm for this task, it would be possible to build it on

more sophisticated algorithms for non-linear optimization, such as the adaptive gradient

method, possibly with momentum, or methods based on the second sub-derivative.

We believe this can still serve as an inspiration for developing more efficient algorithms,

if needed. We pointed out some issues and suggestions how to overcome them. But for

some applications, the presented algorithm is “good enough”, as it was in our case. It

is important to realize that even if we could guarantee the global optimum of the loss

function, the whole framework would still be a heuristic in the sense that there are no

guarantees relative to other feasible solutions that are not included in the pool.

Computational test

We create two pools of solutions. One pool, called a training pool, is used to run Algo-

rithm 7 to obtain a scenario tree T = {p, w}. The second pool, called a testing pool, is

used for evaluation of the obtained tree. The testing pool serves as a proxy for the en-

tire search space. In real usage, the heuristic from the first phase generates substantially

weaker solutions (unless it gets very lucky) than what is assumed to be achievable with the

subsequent optimization (otherwise there is no need of searching for a tree and solving the

optimization problem). To mimic this property, we exclude the best 10% of the solutions

from the training pool.

In our computational experiment, we generate 1000 scenarios for 19 items to represent

the true distribution ŵ. Our aim is to find a scenario tree consisting of only 3 scenarios.

We use 200 solutions in the training pool and 400 in the testing pool.

To demonstrate the advantage of problem consideration in the scenario generation
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process, we apply our method on two cases. In the first case (case 1), we choose a capacity

of the knapsack such that approximately half of all scenarios satisfy

∑
i ŵsi > b. (4.10)

In other words, only half of the scenarios may lead to a penalty. The rest of the

scenarios do not have to be taken into account, since they do not lead to a penalty even

for the decision x = (1, 1, . . . , 1) (all items are picked).

In the second case (case 2), we transform the original scenarios ŵBsi = q − ŵsi, where

q > maxsi ŵsi. That is, small items become large and large items become small. We also

set a new capacity of the knapsack bB such that those scenarios, for which the condition

(4.10) is not met, satisfy
∑

i ŵ
B
si > bB. In other words, all the scenarios that may lead to

a penalty in case 1 can be ignored in case 2. And vice versa, scenarios that may lead to a

penalty in case 2, can be ignored in case 1.

We present numerical results for these two cases in Figure 4.2. In 4.2a, we show the

sum
∑

i ŵsi for all scenarios. We highlight the capacity of the knapsack b, which divides

the scenarios into two sets - those that may lead to a penalty and those that never do

(those can be ignored) in case 1, and oppositely in case 2. We shall see that this property

was “discovered” and exploited by our framework and all scenarios were set such that

they may lead to a penalty for some solution. We did not have to incorporate such a rule

explicitly. It comes from the simple fact that more scenarios enable better fit (lower value

of the loss function). Thus, the minimization procedure, if designed properly, should use

a maximal number of scenarios and not place any of them into the region that never leads

to a penalty. This is a numerical counter-part of the analytical results in Fairbrother et al.

(2017).

In 4.2b) (case 1) and 4.2c) (case 2), we show the discrepancy between in-sample and

out-of-sample performance of the training and testing pool when the three final scenarios

are used for in-sample evaluation. We zoom in on the best solutions from the testing

pool where our main focus is. For comparison, we show in 4.2d) - 4.2f) results for 15,

30 and 50 scenarios if they are randomly drawn from the original distribution. We show

the results when the seed for the random draw is 1, so we were not cherry-picking some

specific output. We can find much lower, as well as much higher, discrepancy if we choose

different samples, especially in the case of smaller number (15) of scenarios.

The main point of this test is to demonstrate how our framework can shape the scenar-

ios according to needs of the optimization problem, but without an explicit analysis of the

problem. With such an approach we can tremendously reduce the number of scenarios. In
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our numerical example, three scenarios perform as well as fifty randomly picked scenarios,

maybe even better (depending on the chosen metric for comparison).

Let us point out that any method for scenario generation, which is based on a good fit

between the scenario tree and the original distribution without considering the optimiza-

tion problem, would inevitably return an identical scenario tree for both cases, since the

original distribution is shared in both cases. Therefore, a tree with three scenarios would

generate (at best) two useful scenarios for one case and only one useful scenario for the

other case. Obviously, such a scenario tree would perform worse than our tree in both

cases, especially in the case where only one scenario is useful.

To put it from a different perspective, one scenario tree used for both cases would need

at least twice as many scenarios as our tailor-made trees for each case to reach similar

quality of performance6. We admit that the problem is artificially set, but it clearly demon-

strates our point that scenario trees derived purely from the original distribution, without

considering the optimization problem, may lead to some redundant, or little important,

scenarios.

Then, a natural question is how much it actually matters from a computational point

of view to keep the number of scenarios small. That will be discussed in Section 4.3, where

we discuss potential applications of our approach.

6At least according to our definition of the quality of performance, which is given by the loss function.
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(a) Distribution of sum of items’ volume (b) Three scenarios for case 2

(c) Three scenarios for case 1 (d) 15 sampled scenarios for case 1

(e) 30 sampled scenarios for case 1 (f) 50 sampled scenarios for case 1

Figure 4.2: Numerical results for a stochastic knapsack problem – comparison of three

scenarios obtained by our framework and scenarios sampled from the original distribution.

4.2.4 Binary distributions

In this section, we discuss problems where the uncertainty is described by a multivariate

Bernoulli distribution (binary distribution in short). This represents a large class of real-

world applications: a customer is present or not during delivery services, weather allows

a ship to sail a certain edge or not, a machine is broken or not in a scheduling problem,
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just to give some examples.

And yet, stochastic programs with binary distributions are rarely studied in the liter-

ature and if they are (for example Ball et al. (1995) in the context of network reliability

or Bent and Van Hentenryck (2004) in a routing problem), the focus is on the problem

as such, not on handling scenarios (generation, reduction etc.). An exception is a paper

Prochazka and Wallace (2018), where two useful methods are proposed; one for an effi-

cient out-of-sample evaluation, and the second for reduction of the scenario tree into a

minimal number of scenarios needed for an exact solution of the problem. However, to

the best of our knowledge, there is no paper offering an efficient method for scenario gen-

eration for binary distributions (other than sampling) that would be suitable for solving,

approximately, larger instances.

The advantage of our framework is that it does not rely on statistical properties and

relationships among distributions. All we require are a heuristic for generating solutions,

out-of-sample evaluations and an efficient procedure for minimizing the loss function. The

requirements on a good scenario tree and, therefore, the definition of the loss function, do

not have to be adjusted.

Although the overall framework remains unchanged, we identify two cases of problems

that differ in the procedure of loss function minimization. Let us consider the following

example of the knapsack problem, where items have constant value and volume, but it is

uncertain whether a particular item will appear or not after the decisions (to pick or not)

are made. The optimization program (using the same notation as in 4.2.3) is as follows:

max
x∈{0,1}n

∑
s∈S

ps

(∑
i∈I

rsicixi − d es
)

(4.11)

s.t es ≥
∑
i∈I

rsiwixi −W ∀s ∈ S (4.12)

es ≥ 0 ∀s ∈ S (4.13)

where rsi is the indicator of appearance of items, taking the value 1 if item i is present in

scenario s, 0 if not. Assuming we have a pool of solutions, we formulate the loss function

(4.3), where scenarios rsi and probabilities ps are decision variables. For n items, we get

2n possible combinations (scenarios), which results in unsolvable problems for large n.

Even though the scenarios are inherently binary, there is no reason to follow that

restriction when constructing the scenario tree. Relaxation of scenarios (allowing all values

for rsi) decreases the value of the loss function by extending the search space, and therefore,

decreases discrepancy between performance of the scenario tree and the true distribution.

Moreover, we can find sub-gradients with respect to r and p and use the same procedure

(Algorithm 7) for minimizing the loss function as in the case of continuous scenarios.
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Even though the optimization problem (4.11) – (4.13) gets a different interpretation:

suddenly an item can be half-present and half-missing, it remains computationally mean-

ingful. We need to remember that the goal is to find solutions for such a modified problem

which are good also in the original problem.

In the following computational test, we consider an example with 8 items, each with a

probability of appearance of 50% (independently of each other), so all the scenarios have

equal probabilities. In total, there are 256 scenarios. We have a training pool consisting

of 50 solutions and a testing pool of 70 solutions (all randomly generated). We want to

have 4 scenarios to represent the whole distribution.

In Figure 4.3a), we show the performance of 4 scenarios obtained by our framework

when allowing relaxed scenarios. In 4.3b), we choose the best combination (with minimal

loss function on the training pool) of 4 binary scenarios. We see that the relaxed scenar-

ios perform much better on the testing pool in preserving ranking among solutions and

approximating their true value (they perform better on the training pool by definition).

We compare the performance with scenarios that are randomly sampled (random seed 1).

Four relaxed scenarios obtained by our framework outperforms 20 sampled scenarios and

provide comparable results as 50 sampled scenarios by visual assessment.

There are, however, cases where the relaxation of scenarios is not helpful, albeit possi-

ble. An example would be a location-routing problem with uncertain customer appearance.

A first-stage decision is the location location of a warehouse, from which customers will

be served (second-stage decision). It is uncertain which customers will use the service

(contracts are not signed yet). Performing an optimal routing between customers in the

second stage requires solving an optimization model that contains a constraint of type

∑
i

xij ≥ d̂sj (4.14)

where xij is a binary decision variable about a choice of traversing an arc from a node i

to j. d̂sj indicates whether a customer is present in node j in scenario s. In words, if a

customer is present, he must be served. Let us assume the constraint is associated with a

penalty for violation.

Any entry between 0 and 1 performs as if it was 1 in this constraint (at least one arc to

j must be used). Let us assume that the parameter d̂sj does not appear anywhere else in

the optimization problem, just in (4.14). Then, whether d̂sj is 1 or any arbitrary number

between 0 and 1 does not have any impact on violation/non-violation of the constraint, and

hence on the value of the objective function, and therefore on the value of the loss function.

As a consequence, there is no change in the value of the loss function if the parameter

d̂sj , which is already greater than zero, is changed by an infinitesimally small number.
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(a) 4 relaxed scenarios (b) 4 binary scenarios

(c) 20 sampled scenarios (d) 50 sampled scenarios

Figure 4.3: Computational test for a problem with binary scenarios.

Therefore, there is no useful change of (sub)gradients in the loss function minimization

procedure and the relaxation of the scenarios is pointless.

So even if the scenarios can be principally continuous, there is no advantage in consid-

ering them to be so. We would still have to treat them as binaries (d̂sj is either zero or

greater than zero). That means that the minimization of the loss function is more prob-

lematic as it leads to solving a non-linear and non-convex problem with binary variables.

In such a case, we suggest using meta-heuristics (for example genetic search), which are

state-of-art methods for combinatorial optimization problems. But the general scheme –

we minimize the discrepancy between in-sample and out-of-sample performance – remains

unchanged.

Dealing with a network with n potential customers, the total number of possible sce-

narios is exponential in n. That is, again, often impossible to handle for large instances.

Thus we can use only a subset of all possible scenarios. Our framework can help us identify

a suitable set.
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4.2.5 Feasibility

So far in the text, we assumed (relatively) complete recourse. That is, we assumed that all

feasible first-stage decisions would lead to feasible second-stage problems for all possible

values of the random variables. We also assumed that the heuristic producing our pool of

solutions makes sure that they are all first-stage feasible.

In this section, we discuss the case where, for some reason, feasibility of the second-

stage problem is an issue. We want to point out that this should be a rather seldom. A

constraint saying that (random) demand must always be satisfied leads to a worst-case (and

at the same time, most likely, a subjective) model, which hardly makes sense. It may be

true that a time window is hard in the sense that outside the time window it is impossible

to deliver, but it hardly means that life does not go on if the truck is late. Rather, a

penalty is incurred, and the activities continue. So, really hard constraints (violating the

ideas behind relatively complete recourse) are extremely rare from an applied perspective.

Even so, we shall discuss the issue to some extent here. Note that even in cases where some

constraints need to be satisfied in every scenario, it is possible to use a penalty several

orders of magnitude larger than the other profits (costs) in the objective function. Then,

if there is a solution that can satisfy all the constraints, the optimization model will prefer

it. If there is not such a solution, we can see which constraints have been violated. Such

information is more valuable for analyzing the problem than a simple report that there

is no feasible solution for the problem. For further discussion on feasibility modeling, see

King and Wallace (2012a).

In addition, it is also challenging to incorporate a (in)feasibility classification into

our framework from a computational point of view as we lose some properties of the loss

function, mainly the utilization of sub-gradients. Thus, we recommend to use penalization

whenever possible.

However, if feasibility in the second stage really is an issue, for example due to a

constraint related to some laws of physics, and which therefore cannot be violated, we

introduce a new requirement on a good scenario tree that stands above those formulated

in Section 4.2.1. We postulate it as follows:

0. A good scenario tree classifies feasibility of solutions “more or less” correctly. That

is, true feasible solutions are also feasible in the tree. The same holds for infeasible

solutions. But as with outliers, we find it acceptable if occasionally a solution that

is feasible in reality, is classified as infeasible by the tree, especially if the solution is

weak. On the other hand, we want to avoid cases where very good solutions (high

out-of-sample value) that are infeasible in reality, become feasible in the tree.

Let us assume that the heuristic generates both feasible and infeasible solutions. We

construct a list F of feasibility indicators, that is Fa = 1 if xa is feasible (out-of-sample),
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0 otherwise. Further, let the function u(x, T ) return 1 if x is feasible in the tree and 0 if

the solution is infeasible in the tree.

We keep all the terms from the loss function as they were defined previously to reflect

Requirements 1 - 4, and we add some new terms to capture Requirement 0. The loss

function is

LF (T ,A) = L(T , A) +
∑
xa∈A

(
za3 u(xa, T )(1− Fa) + za4

(
1− u(xa, T )

)
Fa

)
(4.15)

We simply add the weight za3 if an out-of-sample infeasible solution is classified as

feasible by the tree, and weight za4 if an out-of-sample feasible solution is classified as

infeasible. Since the first case is more critical, penalties za3 are set higher than za4 . Similarly

as for za1 , weights za3 and za4 also depend on the quality of the solution xa. The higher

the out-of-sample value is, the higher weights we set, especially in the case of za3 , so we

penalize very good (high value of the objective function) but infeasible solutions that are

incorrectly classified as feasible by the tree.

Naturally, it is challenging to set all the weights z1 – z4 properly to create a perfect

balance between classification of feasibility and approximation of the out-of-sample values.

The balance should be derived from the usage of the model and assessment of importance

of having feasible solutions.

The main issue is the minimization of the loss function, which is much more difficult in

this case due to the added classification terms. The main problem is that we cannot utilize

the sub-gradients of the function u(x, T ). The function is not continuous and returns only

two values, that means its derivative is 0 (if it is defined). One needs to either use methods

for non-linear optimization that do not utilize derivatives or approximate the function u

with some differentiable function as is demonstrated in the next example.

Example

Let us consider an alternative version of the stochastic knapsack problem

max
x∈{0,1}n

∑
i∈I

cixi − d
∑
s∈S

pses (4.16)

s.t 0 ≥
∑
i∈I

wsixi −Wmax ∀s ∈ S (4.17)

es ≥
∑
i∈I

wsixi −W ∀s ∈ S (4.18)

es ≥ 0 ∀s ∈ S (4.19)
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The total volume of picked items may exceed capacity of the knapsack and we pay the

corresponding penalty, but we cannot exceed the total value Wmax (> W ) in any single

scenario.

Classification of feasibility, i.e., the approximation of u(x, T ), is performed by a simple

neural network model with one hidden layer, sigmoid function as the activation function

in both layers and the sum of squares as the measurement of the error. As input we

use the vector es scaled to (0, 1). The neural network is trained on the training pool of

heuristically obtained solutions. This simple model works well in our case and correctly

classifies (in)feasibility of solutions.

The main advantage of this approach is that the neural network can (back)propagate

the sub-gradients of error (miss-classified solutions) via the weights of the neural network

to the sub-gradient of the es vector and further to scenarios wsi. Thus, we can, in principal,

use Algorithm 7 to find the scenario tree.

We compare the performance of scenarios constructed by our framework with scenarios

obtained by pure sampling from the original distribution and by using a copula-based

heuristic (Kaut, 2014) in Figure 4.4. The comparison is made on the testing pool as it was

not used to construct scenarios by our framework. The testing pool can be perceived as

a proxy for the whole search space. Each pool consists of feasible and infeasible solutions

sorted in ascending order based on the value of the objective function with highlighted

incorrectly classified solutions.

Since no feasible solution leads to a total size exceeding Wmax in any realization (sce-

nario) of the original distribution (by the definition of the feasible solution), the size also

does not exceed Wmax in any subset of scenarios drawn from the original distribution. In

other words, sampled scenarios will always classify correctly out-of-sample feasible solu-

tions, see Figure 4.4a). However, it may happen that in some scenario from the original

distribution, the limit Wmax is exceeded, but such a scenario is not chosen in the sampled

subset. Thus, several out-of-sample infeasible solutions are classified as feasible in the

tree. Since some of them return high value of the objective function, they have a negative

impact on the subsequent optimization as they provide too optimistic and almost always

infeasible (out-of-sample) solutions, even if the sample is very large.

We observe a similar phenomena in the case the scenarios are obtained by the copula-

based heuristic, Figures 4.4b) and 4.4c). The scenarios are constructed by generating

realizations from marginal distributions and then combining them to match the shape of

the copula of the original distribution. Thus, even feasible solutions can be occasionally

incorrectly classified. This heuristic works extremely well when it comes to matching

most of the properties of the original distributions (notice almost perfect estimation of the

objective value). However, it is not designed to focus on capturing, in some sense, extreme
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scenarios that cause second-stage infeasibility. Thus, even a large scenario tree consisting

of 100 scenarios might cause the occasional appearance of missclassified solutions that look

feasible in the tree, but are infeasible in reality (due to one extreme scenario for example).

In contrast to the above described methods, our framework (Figure 4.4d) primarily

focuses on correct classification of (in)feasibility, especially on not letting good (high value

of the objective function) infeasible solutions be classified as feasible in the tree. To

satisfy that requirement, the tree tends to set scenarios more towards their extremes, and

thus classify feasible solutions as infeasible more often in favor of correct classification of

high-value infeasible solutions. That is a preferable situation for solving the optimization

program.

Naturally, there is no guarantee that the presented approach is able to always cap-

ture the extreme directions of all scenarios to prevent that a good infeasible solution is

incorrectly classified. This risk could be reduced by using a larger training pool.

To further minimize that risk, it would be possible to tighten constraints that cause in-

feasibility. In our case we could set Wmax smaller, when solving the optimization program

with the scenario tree. Then we have more certainty that we are on the “safe” side.

This leads to an idea that it is possible to set other parameters (input data), not only

the scenarios, to mimic performance of the original distribution. Our approach provides

a framework that can serve that purpose (minimizing discrepancy between in-sample and

out-of-sample performance). However, minimization of the loss function becomes more

complicated as there are more variables to set.
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(a) 100 sampled scenarios

(b) 100 scenarios generated by copula-based heuristic

(c) 20 scenarios from copula heuristic

(d) 6 scenarios from our framework

Figure 4.4: Computational test for a problem with infeasible solutions.

4.3 Applications

In this section, we summarize the main advantages and drawbacks of the framework. Based

on that, we comment for what types of applications our approach could be beneficial, and
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where it is better to use a different method.

The main advantage is the number of scenarios needed to represent the underlying

distribution. We demonstrate on several examples that just a small number of scenarios

can perform as well as a much larger tree since they are “tailor-made” for a particular

optimization problem. Our framework enables identifying spots where the scenarios are

most useful. Thus, we aim for applications where it is crucial to keep the number of

scenarios small.

The main disadvantage is the time to develop two subroutines; a heuristic for gener-

ating solutions and the subsequent procedure for minimization of the loss function, which

is difficult. Therefore, we do not see any reason to use our framework for optimization

problems that are run only once in principal (strategic problems) and/or can handle a

large number of scenarios relatively easily (linear programs). In such a case, savings in

computational time when solving the program (4.2) with a smaller number of scenarios

do not exceed (most likely) time needed for running the heuristic, tuning parameters of

the loss function minimization procedure and running it. In addition, we need time to

develop these procedures. Thus, for simple linear two-stage models, we recommend using

some different method, for which a publicly released code can be found.

A typical example that could utilize our framework would be a stochastic vehicle rout-

ing problem7 (VRP) that needs to be solved repeatedly. Stochasticity in routing problems

can be related to uncertain travel conditions (potential congestion), uncertain demand,

etc. See an overview of the field in Gendreau et al. (2016). For a dispatching company,

this means solving the problem every day (or several times per day) with different input

data, but the formulation of the optimization problem is the same. Thus, one can invest

into the development of a heuristic, especially if it is likely that one needs the heuristic

even for solving the final optimization problem. Typical state-of-art heuristics (genetic

search, adaptive neighborhood search, simulated annealing, etc.) for VRPs produce many

solutions very quickly during the process. We can imagine that the pool of solutions is

obtained by multiple runs of the heuristic with different subset of scenarios (for example

randomly sampled), and then, the same heuristic is run with the final scenario tree ob-

tained by minimizing the loss function. We can even imagine, that the two subroutines

- solution search and the scenario tree search - can be merged and cleverly implemented

into one heuristic with several updates of both subprocesses.

Another application of our framework is on problems with distributions that have no

alternative ways to generate scenarios, except for sampling. But sampling often requires

too many scenarios to provide a stable solution, and that is sometimes unaffordable from

a computational point of view. To this class of problems we can include programs with the

7Or generally a difficult problem, where the number of scenarios, and thus the number of con-

straints/variables significantly influence the computational time.
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multivariate Bernoulli distribution. An example is VRPs with uncertain appearance of

customers. We already made some points that play in favor of our approach when dealing

with VRPs. Issues related to binary distributions are analyzed in Section 4.2.4.

There are many real-world application where we need to work with a combination of

different distributions (different random variables). Some of them might be empirical,

some theoretical, some might by binary, some continuous, etc. It is difficult to handle this

issue by other methods for scenario generation. Due to the fact that our framework does

not rely on statistical properties of the distribution, but simply looks for a scenario tree

that mimics the out-of-sample performance in some (defined) way, it can be, in principal,

used in such a case once we are able to evaluate the out-of-sample quality of a solution.

The last field we want to mention is multi-stage optimization (for example Dantzig

and Infanger (1993)). Our numerical experiments show that our framework can produce

scenario trees with a smaller number of scenarios than other methods with the same

level of solution quality. Since the size of the scenario tree growth exponentially with the

number of stages in a multi-stage setting, the smaller number of scenarios per stage implies

significant reduction in size of the overall tree. Moreover, the scenarios can be generated

stage by stage by simply trying to mimic the behavior of the original distribution at that

particular stage. Thus, we do not have to control dependencies across the stages as the

case when matching statistical properties of the scenario tree and the original distribution.

This is not further studied in this paper.

4.4 Conclusion

We introduce a new problem-oriented approach for generating scenarios for stochastic

optimization. It is not based on matching the scenario tree and the underlying distribution

in some probabilistic sense, but it sets the scenario tree in such a way that the tree performs

similarly as the original distribution. The performance is evaluated on a pool of solutions

that are produced by some heuristics. The similarity of performance is measured by a

loss function that we introduce. Its formulation is derived from our postulates on what

constitutes a good scenario tree.

Hence, it is the optimization problem that drives the scenario generation by searching

for a tree that minimizes the loss function. Thus, the parts of the original distributions

that are more crucial for good solutions are approximated with greater emphasis. This

approach often leads to a smaller number of scenarios compared with other methods. The

main disadvantage is that two main subroutines - the heuristic for generating solutions

and the procedure for minimization of the loss function - are not necessarily trivial and

need to be developed specially for a given problem.

Thus, the framework is suited for applications where it is critical to use as few scenarios
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as possible, for example difficult problems (non-linear, integer) that seriously increase their

complexity with the number of used scenarios. We believe it is worthwhile to choose our

approach especially in cases where the problem is solved repeatedly (with different input

data), so we can utilize the implemented parts several times.

Another usage of our framework is on problems where uncertainty is represented by

distributions, for which there is no alternative to pure sampling (even that might be

problematic when we have a combination of different distribution types). In this paper,

we discuss the case of binary distributions that have many applications in real life, for

example a customer that appears randomly in a routing problem, a machine that might

not work in a scheduling problem, or a cargo from A to B that is available on a future

spot market with a certain probability.

We offer an alternative point of view on the relationship between optimization problems

and scenario trees. Even if a different method for scenario generation is used, a simple

visual test that compares in-sample and out-of-sample performance of a pool of heuristic

solutions, can provide an intuitive way to assess the quality of the tree.

We introduce some ideas for further extension of this research. One is to use our

framework on multi-stage optimization problems, where the number of scenarios grows

exponentially with the number of stages. Thus, it is desirable to have as few scenarios per

stage as possible. Another idea, that is not elaborated in this paper, is to consider other

input data (parameters), and not only the scenarios, to be set according to our framework.

Thus, we would create a modified problem, whose solution would, hopefully, be similar to

the solutions of the original problem using the entire distribution.
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