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ABSTRACT 
 
The electricity market in Norway has undergone substantial changes in recent decades, which 
prompts the need for research on how the industry should be organized. In an indivisible 
electricity industry that, on the one side, consists of market-oriented competitive entities in 
production and power trading, and, on the other side, natural monopolies within transmission 
and distribution, it is of interest to perform cost analysis within the productivity and efficiency 
framework. The electricity industry is complex, owing to the fact that production and 
consumption must happen simultaneously. After the Energy Act of Norway came into force on 
January 1, 1991, only transmission and distribution remained regulated. The regulation of 
transmission and distribution serves to avoid the typical disadvantages arising from natural 
monopolies. Many countries have gone through the same or similar changes in their respective 
industries. In a developing and increasingly global industry regarding power trading, more 
regulation is probably needed, not less. The possible future changes in the power grid—owing 
to private firms and the ability of households to take advantage of the technological 
developments in solar and wind generation—will probably also affect the regulating task in the 
future. The main objective of this thesis is to improve the understanding of efficiency measures 
and methods, and to increase the knowledge of the market structure in the Norwegian electricity 
distribution industry. 
  
In Essay 1 “Economies of scale in Norwegian electricity distribution: A quantile regression 
approach”, we investigate scale economies to see if the structure of the industry affects the 
costs. If a restructure of the industry would reduce costs for the firms, and, hence, in the 
industry, it would mean increased productivity and efficiency. In Essay 2, “Economies of Scope 
and Scale in the Norwegian Electricity Industry”, we study scale and scope economies. 
Economies of scope measures the synergies of producing more than one output. Some 
electricity companies in Norway both generate and distribute electricity. If there exist some 
positive synergies from producing more than one output, it means that the cost would be higher 
if two separate firms produced the same amounts of output of each product as the one firm 
producing both products. In Essay 3, “Lost economies of scope and potential merger gains in 
the Norwegian electricity industry”, I investigate what are the potential gains from merging the 
distribution companies in Norway. Both Essay 1 and Essay 2 state that there are economies of 
scale in the industry, meaning that the industry would benefit from increasing the size of the 
companies in terms of increased output. Because the output is given, this means that companies 
must merge. In Essay 2, we report that there exist economies of scope. Due to the change in the 
Energy Act of Norway in 2016, we find that the separation of the integrated firms producing 
both generation and distribution services, would increase costs to the industry and, hence, incur 
losses by not utilizing economies of scope. If disentangling generation and distribution of 
electricity would lead to more mergers of the distribution companies, it is of interest to seek the 
potential gains in terms of cost reductions to the industry from such mergers. In Essay 4 
“Disentangling Costs of Persistent and Transient Technical Inefficiency and Input 
Misallocation: The Case of Norwegian Electricity Distribution Firms”, we focus on the fact that 
many efficiency studies neglect allocative efficiency, and only concentrate on technical 
efficiency. In addition, we also disentangle costs of persistent and transient inefficiency, and 
include determinants for both persistent and transient inefficiency. 
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INTRODUCTION 

 

1 BACKGROUND AND OBJECTIVES 

What is efficiency and productivity analysis? Basically, it is the relation between inputs and 

outputs in any kind of production of equivalent products or services. If two firms, A and B, 

have the same output, but firm A has lower inputs than firm B, we know that firm A is more 

productive than firm B. However, is firm A more efficient than firm B? Yes, in this case, where 

the two firms produce the same quantities of outputs, we can say that firm A is more efficient 

than firm B. But what if the two firms do not have the same output? If firm B has higher output 

than firm A, then firm A is not necessarily more efficient or more productive than firm B. 

Whereas productivity is simply a performance measure, given by the ratio of output per input 

for each firm, efficiency measures the relative performance of one firm against other firms. If 

firm C has the same input as firm A, but lower output, by finding the ratio of the two firms’ 

productivity, we can measure what the output of firm C should be if it was equally productive 

as firm A. This gives the efficiency measure of firm C. If we can find the maximum output 

possible for every level of input, we have defined a production possibility frontier. Because this 

frontier represents the maximum output possible for each input level, it also represents 

maximum efficiency for each input and output level. If firms A and B are located on the frontier, 

even with different levels of input and output, both of them will be fully efficient, but one of 

them is more productive than the other. Every firm that is located below the frontier is less 

efficient. Figure 1 illustrate this situation, for a one-output and one-input case.  

  



3 

 

 

 

Figure 1. Production frontier, productivity and efficiency.  
 

Firms A and B are located on the frontier, meaning that both are 100% efficient, whereas firm 

C has the same input as firm A, but less output, and is thereby located below the frontier, which 

means that the firm is less than 100% efficient. If we find the ratio of output and input for these 

three firms, we will find that firm A has the highest ratio and is thus the most productive firm.1 

In practice, it is never really possible to find the “true” frontier, by which we mean that we 

know that, for each input level, it is not possible to have higher output, as shown in Figure 1. If 

we have input and output data for several firms in an industry, we can use this information to 

find a frontier. The firms with the highest ratio of output per input define the frontier. We do 

not know whether this frontier represents the “true” frontier, but we know that the firms 

deciding the frontier are the best firms with regard to the output – input ratios in this industry. 

This kind of productivity and efficiency analysis performed on an industry is often called 

benchmarking (Bogetoft and Otto, 2010), and refers to the firms that decide the frontier, by 

setting a benchmark against which every other firm can be measured. 

In this thesis we focus on Norwegian electricity distribution companies that are regulated by 

the Norwegian Water Resources and Energy Directorate (NVE). The regulation model that 

NVE uses is basically the same as the simple example we outline above. However, in a 

                                                 
1 Reviews of models and recent applications in general are given in, e.g., Kumbhakar and Lovell (2000), 
Coelli et al. (2005), Fried et al. (2008) and Kumbhakar et al. (2015a).  
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benchmarking model used to regulate firms in an industry, there is often more than one input 

and more than one output. It then becomes more difficult to calculate the productivity and 

efficiency measures, and more advanced estimation methods must be applied, e.g. Data 

Envelopment Analysis (DEA) or stochastic frontier analysis (SFA). NVE uses the non-

parametric DEA model.2 Further, the Norwegian electricity distribution companies have more 

than one output. The model NVE uses has three outputs, number of network stations, kilometers 

of network, and number of customers. Costs are combined into one single input, total costs. For 

the distribution companies, we assume that the output is exogenously given, meaning that the 

output is decided by the demand of the customers. This means that a distribution company that 

is not efficient can only increase their efficiency by reducing cost, e.g. see firm C in Figure 1. 

If this firm is a Norwegian electricity distribution company, the only way for this company to 

improve efficiency is to reduce their costs while producing the same output, giving a horizontal 

right–to–left movement toward the frontier. So, what is the focus in terms of productivity and 

efficiency analysis when applied to Norwegian electricity distribution companies? As should 

be clear, it basically concerns the cost of production. The output for each firm is fixed given the 

exogenously given demand and output. The only variable, in this case, is the costs and, for this 

reason, studies on the costs of the companies are of interest.  

This introduction proceeds as follows. Section 2 starts with a brief description of the Norwegian 

regulation model and the industry. Further, for each of the essays, I provide some extended 

explanations on the methodology and the empirical results. In Section 3, implications of data 

are discussed, and Section 4 provides comments on future research. Section 5 contains 

concluding remarks.     

 

 

  

                                                 
2 Amundsveen and Kvile (2015) give a review of the regulation model and application of DEA used by NVE. 
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2 METHODOLOGY AND RESULTS 

 
Brief description of the Norwegian regulation model and the industry 

After the Energy Act of Norway came into force on January 1, 1991, transmission and 

distribution of electricity, which are considered as natural monopolies, remained regulated 

whereas production and power trading became more market oriented and competition was 

introduced. The model used to regulate the Norwegian electricity distribution companies is a 

form of incentive model with a revenue cap, Coelli et al. (2003).3, 4   

 

������� ��� =  (1 − �)� + ��∗ (1)  

 

where � represents the actual cost, �∗ is the cost norm that is calculated in two steps; and the 

value of � determines the strength of the incentives in the regulation model. From 2009, � was 

set equal to 0.6, meaning that 40% of the revenue cap is decided by the firm’s actual cost, and 

60% is decided by the cost norm, calculated in the model. Some details in the regulatory model 

change from year to year, but, from 2007, the model has been mainly unchanged. The actual 

cost, �, for the company at year t is a combination of reported and calculated costs, based on 

accounting values from year t-2, (see Bjørndal et al. (2010)). For 2018, the cost norm, �∗, for 

each company is carried out in two steps, as follows.5  

Step 1: The efficiency score for each company is calculated using data for each company for 

year t-2 (2016). These results are measured against the average (industry) efficiency, which is 

on a frontier obtained from DEA using yearly averages for the period 2012-2016.6   

Step 2: To account for firm heterogeneity originating from firms operating in different 

environmental conditions, the DEA results from Step 1 are adjusted by the parameter estimates 

of environmental variables on costs.  

 

                                                 
3 We can also refer to this model as a yardstick model. The regulator uses a yardstick model, using 
benchmarking methods to assess relative efficiency.  
4 For an overview on the development in the regulation model see Bjørndal et al. (2010) and Amundsveen and 
Kvile (2015). 
5 This information is retrieved from NVE, see Langseth (2017). 
6 This is done so that the companies can obtain super efficiency, meaning that fully efficient companies can 
earn more than the normal rate of return, in order to secure increasing efficiency over time, see Bjørndal et al. 
(2010).  
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NVE performs a calibration of the results from Step 1 and Step 2 to ensure that the actual cost 

in the industry is accounted for and that the industry in total receives a rate of return equal to 

the NVE rate of return (����).7 Further, the calibration adjusts for the age effect from 

differences in capital cost in new and old networks. Finally, the revenue cap for year t-2 is based 

on CPI-adjusted actual costs for year t-4 as an estimate of expected costs at year t-2. The 

revenue cap in year t (2018) is calibrated by the difference between estimated and actual cost 

for year t-2 (2016) and the difference is adjusted by ����. 

Figure 2 gives an overview of the Norwegian electricity distribution industry,8 from which we 

notice that length of network, number of customers, number of network stations, MWh 

electricity, and operational costs show that the size of the companies vary. The environmental 

variables describe the differences in the environments that the companies operate in, which can 

affect the cost of production. These variables also vary, implying that it is important to include 

them in the analysis to control for firm heterogeneity.  

  

 
Figure 2. Overview of 120 Norwegian electricity distribution companies in 2016. Location and 

   descriptive statistics.  

  

Similar data are not readily available for other countries. According to the Nordic Energy 

Regulators, the number of electricity distribution companies in Sweden is 175, with 87 in 

Finland, and 84 in Denmark. The mean values for market share, based on the number of 

customers, are low in all three countries: 0.6% in Sweden, 0.8% in Norway, and 1.2% in 

                                                 
7 NVE rate of return is a regulated rate of return and is determined annually. 
8 The data is collected by NVE. The map is created in R, using the package “ggmap” (Kahle and Wickham, 2013). 

Data Mean Min Max 

Length of network, in km 854 9 11,866 

Number of customers 25,600 61 696,540 

Number of network stations 1,075 4 17,929 

MWh electricity 683,508 4,268 18,446,274 

Operational costs, 1,000 NOK 29,858 468 695,246 

Environmental variables       

Proportion of underground cables 0.38 0.00 1.00 

Proportion of sea cables 0.02 0.00 0.36 

Proportion of air cables 0.12 0.00 0.40 

Average slope of terrain 10.21 2.97 22.22 

Average distance to road 64.18 1.00 126.00 

Number of islands 2.62 0.00 30.00 

Proportion of deciduous forest 0.08 0.00 0.31 

Coastal climate 0.23 0.00 4.74 

 



7 

 

Finland. The market share of the three biggest companies in Finland, Norway, and Sweden are 

41%, 33%, and 51%, respectively. 9 

 

 

Essay 1: Economies of scale in Norwegian electricity distribution: a quantile regression 

approach 

Because the Norwegian electricity distribution industry consists of companies that are natural 

monopolies within their concession area, we expect to find economies-of-scale properties 

within the companies in the industry. It is interesting to investigate how the structure of the 

industry affects the cost in the industry. Large economies of scale in the industry imply that the 

companies should increase their outputs. However, the companies cannot increase their outputs, 

because their outputs are exogenously given, decided by demand by customers. To increase the 

outputs of companies, the companies need to merge. If the policymakers decide to change the 

structure of the Norwegian distribution industry, it is important that there is knowledge on how 

the existing structure affects the costs in the industry. By implementing a quantile regression 

model, we find economies of scale for different firm sizes. To our knowledge, this is the first 

attempt to study scale economies using quantile regression. By implementing panel data for the 

period 2000–2013, we retrieve updated information on the economies of scale in the Norwegian 

industry. Kumbhakar et al. (2015b), the last scale study for Norway, used panel data for the 

period 1998–2010.10 Further, different from earlier studies of this industry, we retrieve 

information on how the economies-of-scale results changed over time for each quantile. Our 

results state that returns to scale (RTS) increase over time for all quantiles. One interpretation 

of these results is that the Norwegian electricity distribution companies are too small, and this 

is becoming increasingly more so over time. The technical explanation is that the firms in the 

industry are further away from the optimal scale where RTS equals unity. Figure 3 illustrates 

this situation. 

 

                                                 
9 Information is retrieved from Nordic Energy regulators, Economic regulation of electricity grids in Nordic 
country, report 7/2011. http://www.nordicenergyregulators.org.   
10 Other economies of scale studies on the Norwegian electricity distribution industry; (e.g., Salvanes and 
Tjøtta, 1994; Førsund and Kittelsen, 1998; Førsund and Hjalmarsson, 2004; Growitsch et al., 2009; Miguéis et 
al., 2011) 
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Figure 3. Technical change and movement toward the new frontier.  
 

The black dots in Figure 3 depict firms that initially are located on the frontier. We assume that, 

due to technical change, the frontier shifts upward. The firms that are now not on the new 

frontier will try to reduce input/costs to become more efficient. Because the output is 

exogenously given, the movement toward the new frontier will be a horizontal movement from 

right to left. Figure 3 shows that the firms are now further away from the new optimal scale on 

the new frontier. If this scenario repeats itself over time, it explains the results in Essay 1 with 

increasing RTS over time. 

 

Essay 2: Economies of scope and scale in the Norwegian electricity industry 

In the economies of scope literature within studies on electricity companies, the quadratic cost 

function has been widely adopted (see, e.g. Kaserman and Mayo, 1991; Kwoka, 2002; Jara-

Dıaz et al., 2004; Fetz and Filippini, 2010; Arocena et al., 2012; Meyer, 2012). In a dataset for 

studying economies of scope, there will be some firms producing more than one output, and 

other firms producing only one output (here output refers to a product or a service). Table 1 

gives an example of what a dataset in an economies of scope study looks like.  
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Table 1. Example dataset in economies of scope study, quadratic cost function 

 Raw data  Blanks replaced with zero 

Firm Cost �� Output �� Output ��  Cost �� Output �� Output �� 

1 156 100 182  156 100 182 

2 105 58 52  105 58 52 

3 191 84 67  191 84 67 

4 170 35 73  170 35 73 

5 144 67 45  144 67 45 

6 222 112 172  222 112 172 

7 194 34 57  194 34 57 

8 111 87   111 87 0 

9 162 126   162 126 0 

10 167 49   167 49 0 

11 165 59   165 59 0 

12 165 101   165 101 0 

13 132 55   132 55 0 

14 183  101  183 0 101 

15 157  46  157 0 46 

16 200  54  200 0 54 

17 144  60  144 0 60 

18 155  81  155 0 81 

19 138  4  138 0 4 

20 166  120  166 0 120 

Mean 161.35 74.38 79.57  161.35 48.35 55.70 

 

In this example dataset, the raw data consist of firms 1-7 producing both outputs �� and ��. 

Firms 8-13 are specialized in producing output �� and firms 14 – 20 are specialized in producing 

output ��. The goal in an economies of scope study is to see if the output per input (cost) is 

higher or lower for the specialized firms compared to the integrated firms producing both 

outputs. If the costs are higher for the specialized firms, there exists economies of scope. To 

estimate (with the standard approach) the costs for all three firm types jointly, the blanks need 

to be filled in with zero. Then, an assumption on shared technology is imposed on the model, 

which is not always a suitable assumption. The alternative is to estimate three separate cost 

functions, one for each firm type. This implies an assumption on different technologies between 

the firm types, but this is impossible to test. One of the advantages of the flexible technology 

dummy variable approach, introduced by Triebs et al. (2016), which we adopt in Essay 2, is 

that it is possible to test for shared technology. Another advantage by using the dummy variable 

approach is that we estimate a different set of parameters for the zero values. If the number of 

zero values represents a large proportion of the total number of sample observations, the 

parameter estimates may be biased (Battese, 1997). One way of explaining this, is that the 
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“blanks” in the output values in the dataset are not really zero, meaning they are non-existing. 

In this simple example dataset, we see that the mean value of the output values in Table 1 

changes quite much when including the zero values. This will of course affect the results. This 

potential problem does not arise in Triebs et al.’s (2016) approach.  

The translog cost function is far less applied in economies of scope studies within electricity 

markets. The problem is that it is only possible to take the logarithm of positive numbers. This 

is sometimes solved by replacing the zero values (blanks) in Table 1, with an arbitrarily chosen 

small number. Table 2 gives an example of this method. By replacing blanks (or zero) values 

with, say 0.0001, it is possible to take the logarithm of the data. As shown in Table 2, the small 

numbers may have no or a very small effect on the mean value of the outputs compared to the 

case where blanks are replaced by zero values in Table 1. However, Fraquelli et al. (2005) show 

that with a translog specification, economies of scope are very sensitive to the value of the 

arbitrarily selected small number. Even in this simple example the regression coefficient from 

estimating �� on �� and �� varies quite considerably when one zero is added or subtracted from 

the small number. By applying the flexible dummy variable specification, presented in Essay 

2, the blanks can be replaced by any positive number, because outputs that do not belong to the 

specific firm type, decided by the dummy variables, are eliminated in the estimation. 
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Table 2. Example dataset in economies of scope study, translog cost function 

 

Raw data 
Blanks replaced 

with 0.00001 
Blanks replaced 

with 0.0001 
Blanks replaced 
with 0.000001 

Firm Cost �� Output �� Output �� �� �� �� �� �� �� 

1 156 100 182 100 182 100 182 100 182 

2 105 58 52 58 52 58 52 58 52 

3 191 84 67 84 67 84 67 84 67 

4 170 35 73 35 73 35 73 35 73 

5 144 67 45 67 45 67 45 67 45 

6 222 112 172 112 172 112 172 112 172 

7 194 34 57 34 57 34 57 34 57 

8 111 87  87 0.00001 87 0.0001 87 0.000001 

9 162 126  126 0.00001 126 0.0001 126 0.000001 

10 167 49  49 0.00001 49 0.0001 49 0.000001 

11 165 59  59 0.00001 59 0.0001 59 0.000001 

12 165 101  101 0.00001 101 0.0001 101 0.000001 

13 132 55  55 0.00001 55 0.0001 55 0.000001 

14 183  101 0.00001 101 0.0001 101 0.000001 101 

15 157  46 0.00001 46 0.0001 46 0.000001 46 

16 200  54 0.00001 54 0.0001 54 0.000001 54 

17 144  60 0.00001 60 0.0001 60 0.000001 60 

18 155  81 0.00001 81 0.0001 81 0.000001 81 

19 138  4 0.00001 4 0.0001 4 0.000001 4 

20 166  120 0.00001 120 0.0001 120 0.000001 120 

Mean 161.35 74.38 79.57 48.3500 55.7000 48.3500 55.7000 48.3500 55.7000 

Reg.coef.  - - 0.0206 0.2268 0.0016 0.0090 0.0012 0.0064 

 

 

The flexible technology dummy variable approach is applicable to any functional form, e.g., 

the quadratic cost function: 

�� = �������
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or the translog cost function: 
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where �������
, �����

 and �����
 represents the dummy variable for the integrated firm with 

two outputs, the specialized firm with only output ��, and the specialized firm with only output 

��, respectively.  

The results from Essay 2 show evidence of economies of scope and scale. We reject the null 

hypothesis when testing for shared technology for the different firm types, implying that the 

standard quadratic cost-function approach is not recommended. Further, in one of the models, 

we find a clear relationship between firm size and economies of scope, more specifically that 

the cost of separating the vertically integrated firms is costlier for the smallest firms in the 

industry.  

 

 

Essay 3: Lost economies of scope and potential merger gains in the Norwegian electricity 

industry 

In Essay 3 I investigate what are the potential gains from merging the electricity distribution 

companies in Norway. Most efficiency studies focus on what can be gained by a firm 

improving, whereas in this study, I focus on the improvement on the industry level from firms 

merging. Both Essay 1 and Essay 2 state that there exist economies of scale in the industry, 

meaning that the industry would benefit from increasing the size of the companies in terms of 

increased output. Because output is given, this means that companies must merge. In Essay 2, 

we report that there exist economies of scope. Due to the change in the Energy Act of Norway 

in 2016, we find that the separation of the integrated firms, producing both electricity and 

distribution services, increases costs to the industry, implying lost economies of scope. If 

disentangling generation and distribution of electricity will lead to more mergers of the 

distribution companies, it is of interest to seek the potential gains in terms of cost reductions to 

the industry from these actions. An efficiency analysis on the Norwegian electricity distribution 
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industry, including the integrated firms that are affected by the amendments in the Norwegian 

Energy Act, provides answers to the changes in costs to the industry. In a recent study on 

potential merger gains in the Norwegian electricity industry, Saastamoinen et al. (2017) focus 

on potential merger gains from companies that are located geographically close. Recently, there 

have been mergers between Norwegian electricity distribution companies that were not located 

geographically close.   

 

Figure 4. Map of South Norway. Norgesnett (four merged companies). 
 
Figure 4 illustrates four Norwegian electricity distribution companies, Askøy Nett AS, Gauldal 

Nett AS, Follo Nett AS and Fredrikstad Nett AS, which from July 1, 2018 merged into 

Norgesnett AS. As can be seen, these companies are not located near to each other. I provide a 

method of investigating the optimal merger combination to the industry where the restrictions 

on proximity are relaxed. However, the results show quite small potential merger gains 

compared with the loss in not utilizing economies of scope presented in Essay 2.  

 

 

Essay 4: Disentangling costs of persistent and transient technical inefficiency and input 

misallocation: The case of Norwegian electricity distribution firms 

In section 1 of this introduction, the term efficiency was introduced. Note that this referred to 

technical efficiency. Cost efficiency (CE) consists of technical efficiency (TE) and allocative 

efficiency (AE). Formally, the relationship is �� = �� ∗ ��. All firms that are located on the 

frontier, are fully technically efficient. To explain AE, it is useful to start with the standard 
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microeconomic theory on cost minimization. Let us assume that two inputs, �� and �� are 

needed to produce output �. The input prices for inputs 1 and 2 are �� and ��, respectively. 

The condition for cost minimization is given by 

 

����

����

=
��

��
  (2)  

where ����
, � = 1,2, is the marginal product of input j given by ��/��� . The marginal rate of 

technical substitution (MRTS) is given by 
����

����

 and measures the substitution between the two 

inputs, which indicates how much input �� must increase to keep output y constant if input �� 

is decreased (see Mas-Colell et al. (1995)). In Figure 5 (a), the cost-minimized solution for one 

firm is described. At point A, the slope of the isoquant, given by the MRTS, equals the slope of 

the isocost line, given by the input price ratio.11 In this situation, the firm has no misallocation 

of inputs and is therefore allocatively efficient. However, it is not possible to tell if this firm is 

technically efficient without measuring its relative performance against other firms. We do not 

know the “true” frontier and so we need more firms to find the CE and to identify the TE. In 

Figure 5 (b), there are six firms (A-F) that produce the same amounts of output. It is important 

to note that the frontier is not exactly the same as the isoquant in (a). Whereas the isoquant 

shows different combinations of inputs to produce a fixed amount of output for one firm (or 

identical firms), the frontier in (b) shows the firms that have the lowest input to produce a fixed 

amount of output. This means that firms E and F produced the same amount of output as the 

other firms, but they used more input to do so. Firms A-D are all located on the frontier; hence, 

they are technically efficient. However, only firm A is cost efficient and, therefore, both 

technically and allocatively efficient. Firm F is allocatively efficient but not technically 

efficient. Finally, firm E is neither technically nor allocatively efficient.  

 

                                                 
11 � = ���� + ����  ⇒ �� =

�

��
−

��

��
��  ⇒

���

���
=  −

��

��
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Figure 5. Cost minimization and cost efficiency. 
 

The CE for firm E in Figure 5 (b) can be measured by the ratio 
��

��
. AE is measured by the ratio 

��

��
 and TE measures the distance from point E to the frontier given by the ratio 

��

��
. To 

summarize, CE can be decomposed in the following way. 

 

�� = �� ∗ �� 

⇓  

0�

0�
=   

0ℎ

0�
∗ 

0�

0ℎ
 

 

In Essay 4, we report that the costs to the industry arising from input misallocation ranges, on 

average, from 9.0% to 11.3%. This means that, even if all firms in the Norwegian electricity 

distribution industry where technically efficient, the cost in the industry would still be 9.0%-

11.3% too high.  

Essay 4 makes some important contributions on the modeling aspect. Filippini et al. (2018) 

argue that regulators may fail to set optimal efficiency targets if they are unable to identify 

systematic shortfalls in managerial capabilities that generate persistent inefficiency and to 

distinguish these from non-systematic management problems in the short run. Our findings 

emphasize that future efficiency studies should disentangle persistent and transient technical 

inefficiency. This is supported by Kumbhakar and Lien (2017). Further, in our study we also 

include determinants for inefficiency, both in the persistent and transient components of 

technical inefficiency.  
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3 IMPLICATIONS ON DATA 

As highlighted by Coelli et al. (2003), when doing empirical economics research, the first rule 

is “garbage inn, garbage out”. This applies no matter the method used, whether DEA or SFA. 

In the four essays presented in this thesis, the data are a crucial factor. It is a great advantage 

that these data, are also used in the regulation model, meaning that the regulator and the 

companies in the industry are also interested in the data being correct.12 From the point of view 

of the regulator and the companies, it is an advantage that the data are used in research because 

the researcher probably will control the data carefully. The Norwegian data used in the 

regulation models are open access, and the model, data, and results are published on the 

regulator’s web site. This is not the case for this industry in all other countries. In the selection 

of methodology, the availability of data and likely noise in the data play a key role.  

A regulator can determine the amount of data, together with the details that the regulated 

companies are obligated to report. There is a trade-off between the desire to obtain enough data 

and the details needed for use in the regulation model or in empirical research, and the time and 

effort that current companies must put in to provide the data required.  

Capital can be a challenging input to define in empirical research, especially because the 

characteristics of capital are not the same as for most other inputs. Most inputs like labor, fuel, 

and power are purchased and transformed into output within one period of production. 

However, capital is often transformed into output for many years into the future. This makes it 

challenging to decide how the input should be measured in each accounting period. In electricity 

transmission and distribution, investments in the power grid are expected to last for 20-30 years. 

A common method to allocate the cost for all the years in the life span of capital investments is 

to use the depreciation cost for each year. However, Coelli et al. (2003, p. 110) states that this 

might be problematic.   

 “Price inflation will make the quantities (that is, the depreciation cost) of new capital 

items appear larger than identical capital items purchased in previous years. 

 

 Different firms could assume different asset lives or use different depreciation patterns, 

such as declining balance, or use accelerated depreciation to minimize tax payments.” 

                                                 
12 Note that the data on generation of electricity in Essay 2 “Economies of scope and scale in the Norwegian 
electricity industry” is not retrieved from data used in the model used to regulate the Norwegian electricity 
distribution companies.  
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These are valid points to keep in mind when performing analysis, and evaluating results based 

on capital measures.  

In the regulation model in Norway, NVE uses the following outputs: number of network 

stations, number of customers and kilometers of network. These variables are the main cost 

drivers in the industry. Because the outputs are exogenously given, it is reasonable to model 

cost as input(s). In the current model, all costs are summarized into one input. Table 3 shows 

the input factors in the current regulation model.  

 

 
Table 3. Input factors in the DEA model used by the Norwegian regulator13   

Input Input price 

Labor (number of man-years) Company specific average wage 

Capital, book values (NOK)14 Depreciation factor + ���� 

Goods and services (NOK) 1 

Power losses (MWh) Base on Nord Pool Spot’s system price of power  

Value of lost load (VOLL) 1 

 

In applying parametric methods in our estimations, we were concerned about strong 

multicollinearity between the three outputs. In Essay 1, we dropped number of network stations 

from the analysis to avoid strong multicollinearity. Further, the danger of summing all inputs 

into one measure of total costs is that we can hide low or negative correlation between some of 

the cost elements.  

It would be interesting for regulators and researchers to have datasets from different countries 

and to compare the various methods of analysis on these different electricity data. Further, it 

would be possible to measure the relative performance of the companies in one country against 

companies in other countries. This would strengthen the estimated efficiency measures, and it 

could provide useful knowledge about how well the regulators of the companies in the different 

countries were performing. 

Finally, in this section, I would like to comment on the development within business analytics. 

It is interesting to consider how developments within areas such as “business intelligence,” 

                                                 
13 Source: Bjørndal et al. (2010). 
14 NOK = Norwegian Kroner. 1 GBP = 10.74 NOK, 1 EUR = 9.59 NOK, 1 USD = 8.19 NOK, on September 15, 2018. 
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“artificial intelligence,” and “big data” might open up new possibilities within the collection 

and control of data. Of course, “garbage in, garbage out” still applies. However, we expect that 

these developments can have significant effects on the efficiency of collection, control, 

analysis, and reporting of data by researchers, regulators, and companies.  
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4 FUTURE RESEARCH 

An interesting question to address for future research is to investigate which firms in the 

industry have experienced technical change in recent years, and if there are differences 

associated with characteristics such as the size of firms. 

It would be valuable to conduct an economies-of-scale study on the Norwegian electricity 

distribution companies within a spatial econometric framework to test the effect of the 

neighboring companies on scale properties. Orea et al. (2018) present a method in which they 

combine a spatial econometric approach with SFA to control for unobserved environmental 

conditions when measuring efficiency of electricity distribution utilities. 

Further, it is valuable for future merger analysis to develop a method that facilitates the testing 

of all possible merger combinations. Currently, there are some problems in performing 

efficiency analysis on an industry level applying parametric methods such as SFA. It would be 

worthwhile to expand the range of empirical methodologies other than nonparametric methods 

such as DEA to further test the existing merger results. 

In Essay 4, we include determinants of persistent and transient technical inefficiency. An 

interesting expansion on this modeling framework would be to include determinants for 

allocative inefficiency. This would provide important knowledge to the industry on how to 

identify the misallocation in the existing inputs, and how to find the optimal input mixture to 

become allocatively efficient. 

Finally, it would be interesting to check the ideas for future research that have emerged from 

this thesis, as well as the answers provided through our analysis, against data from other 

countries. To check for robustness in the methods and to compare results from the Norwegian 

electricity industry against other countries, a cross-country study would be of value. 
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5 CONCLUDING REMARKS 

Because the electricity market in Norway and throughout the world has changed rapidly in 

recent decades, and is likely to change further, there is a need for more knowledge on the 

market, the industry, regulation models, and on methods on productivity and efficiency 

analysis. The power network, as we know it today, may well change due to increasing needs 

for power. Moreover, developments in the technology of solar and wind generation of 

electricity–which have made remarkable progress, thereby resulting in lower costs–have 

created greater opportunities for investments by private customers. An increase in the supply 

of electricity by private investments is likely to affect the organization of the network and the 

regulation of the industry in the future. It is unlikely that the transmission or distribution 

network will become redundant, but if new solutions to the network begin to play a larger role 

in the future, the need to regulate the distribution services is likely to increase to make the 

system function. The work presented in this thesis expands our knowledge on the electricity 

industry in Norway and contributes to broadening existing methods of analysis of efficiency 

and economies-of-scale and -scope studies. 
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ABSTRACT 

In this paper, we use panel data for the period 2004–2014 to investigate economies of scope and 

scale in the Norwegian electricity industry, with a focus on the distribution and generation of 

electricity. We examine economies of scope and scale in unbundled and vertically integrated firms 

using both quadratic and translog cost functions. We implement a new method of estimating 

economies of scope and scale in which the technologies for unbundled (specialized) and integrated 

firms are different. Our results show evidence of economies of scope and scale which have 

important policy implications.  

Keywords: Cost function, Economies of scope, Economies of scale, Flexible technology 
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1. INTRODUCTION 

Traditionally, the organizational structure of electricity industries worldwide has been one of 

vertical integration. Electric utilities have typically performed all services from generation to 

distribution in the electric supply chain. Vertical integration creates the potential for economies of 

scope, which may reduce the total cost of providing services. However, electricity industries 

worldwide have undergone profound changes involving strict separation of these services. In 

Norway, the main motivation for the unbundling of services is to increase competition in the 

electricity industry, avoid cross-subsidization, and ensure the distribution system operators (DSOs) 

focus only on network operations. 

The deregulation and market reforms in Norway during the 1990s have led to a more 

market-oriented environment. The basic idea behind the deregulation of this sector was to 

introduce competition where possible, namely in generation and supply (retail). Distribution and 

transmission services were regulated because they are natural monopolies. To promote efficient 

markets, regulatory rules for unbundling were developed. Accounting unbundling was introduced 

in the 1990s. The European Union’s Third Energy Package, which consists of directives aimed at 

unbundling energy generation and supply interests from the distribution and transmission of 

electricity, was adopted in 2009. The directives impose rules on legal unbundling for firms with 

more than 100,000 customers. In 2016, the Norwegian parliament amended the Energy Act, with 

the changes taking effect from 2021. The amended legislation will introduce legal and functional 

unbundling for all firms involved in electricity distribution regardless of the number of customers. 

Ownership unbundling was also considered, but found to be infeasible because ownership is 

mostly public. Functional unbundling was introduced as an alternative solution, which implies that 
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the distribution company shall have its own board separate from the other companies in the group 

and reduces the possibility of interference with decisions made by DSO managers. In addition, 

goods and services are required to be purchased in the market, not within the group. The rationale 

behind these rules is to minimize the risk of cross-subsidization (which will lead to less-efficient 

electricity markets) and strengthen the neutrality of the DSO in its operations (by limiting the 

possibility of favoring other services in the group). 

The new legislation will obviously reduce the potential for cost savings from economies 

of scope. However, society is supposed to benefit from economies of scale and increased 

competition in the power market. These gains might be greater than the loss from not utilizing 

economies of scope. We believe that this view is held by policy makers because the new rules 

were implemented without referring to any economies of scope studies for Norway or any other 

country that generates electricity mainly from hydropower. 

In our analysis, we examine how these rules affect the Norwegian electricity industry. 

Baumol et al. (1982) pointed out that economies of scope can exist because of synergies in the 

joint utilization of labor and capital. The type of labor required in the distribution and generation 

of electricity might be quite similar. Furthermore, combining all elements of electricity supply into 

one value chain from electricity generation to distribution may minimize production costs. 

Examples of positive synergies are advertising and billing costs, and what Waldman and Jensen 

(2001) called “massed reserves,” which means that multioutput firms can exploit the same reserve 

capacity during emergency repairs and maintenance. 

In this study, we estimate three random effects cost models using data from 212 

Norwegian electricity firms observed over a period of 11 years. We estimate a quadratic and a 

translog cost function using Triebs et al.’s (2016) flexible technology approach. The flexible 
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technology approach is useful because it gives a more realistic estimate for the effect of separation, 

and is more realistic because it actually allows the technologies of integrated and separated firms 

to be different. To compare results, we also estimate a common cost function model. For the scope 

and scale measures, we do not follow the standard practice of presenting the results at the mean or 

median values of output. In our analysis, we seek to identify the costs and benefits of separating 

an integrated firm into two specialized firms to see how the new legislation for Norwegian 

electricity firms will affect the economic situation in the industry. Economies of scope estimates 

are often sensitive to the actual output values used in the estimation. Therefore, we present scope 

and scale estimates for all combinations of output values from all 42 integrated firms in our dataset. 

The remainder of the paper is organized as follows. Section 2 presents a brief survey of 

the literature. Section 3 describes the model specifications and methods. Section 4 describes the 

data and Section 5 presents the results. In Section 6, we present a summary of our main results and 

conclusions. 

2. LITERATURE REVIEW 

It is somewhat surprising that considering its policy importance, there is little research on 

economies of scope in the electricity industry in Norway. We are aware of only one recent report 

from the Norwegian Water Resources and Energy Directorate (NVE) that briefly addresses the 

topic of economies of scope in the Norwegian electricity industry. Nevertheless, NVE (2015) finds 

that the operational costs of vertically integrated companies are 15% lower than those of other 

companies. One reason for the lack of studies in this area may be that it is difficult to obtain data 

suitable for analyzing economies of scope. By examining both economies of scale and scope, this 

study provides new insights for both policy makers and the electricity industry. 
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Although many scope studies have been conducted within energy markets in other 

countries, including the markets for electricity, gas, water, and coal, only a few have focused on 

economies of scope and scale in the electricity industry. Mayo (1984) and Chappell and Wilder 

(1986) found evidence of economies of scope in the US electricity and gas markets. Fraquelli et 

al. (2004) and Piacenza and Vannoni (2004) examined the Italian electricity, gas, and water 

distribution markets, while Farsi et al. (2009) examined the corresponding Swiss markets. Garcia 

et al. (2007) studied North American water utilities, and Carvalho and Marques (2014) studied 

Portuguese water utilities. 

Based on our knowledge, there have been five scope studies of US electricity markets. 

Using cross-sectional data examining US electric utilities, Kaserman and Mayo (1991), Kwoka 

(2002), and Arocena et al. (2012) used data from 1981, 1989, and 2001, respectively. Meyer 

(2012a) and Triebs et al. (2016) examined the US electricity market with panel data covering the 

periods 2001–2008 and 2000–2003, respectively. These studies provide empirical evidence for the 

existence of significant economies of vertical integration between generation and 

transmission/distribution in electricity supply companies. The scope estimates ranged from 4% to 

27%.1 

Four studies of economies of scope of the European electricity industry exist in the 

literature; all of them used panel data. Jara-Dıaz et al. (2004) analyzed Spanish electricity 

generation and distribution companies for the period 1985–1996. Piacenza and Vannoni (2009) 

examined the Italian electricity market for the years 1994–2000, while Fetz and Filippini (2010) 

investigated Swiss generation and distribution companies for the period 1997–2005. Gugler et al. 

                                                 
1 A summary of the most important previous empirical economies of scope and scale studies within the electricity 

sector is presented in Table A1 in the Appendix. Meyer (2012b) provided a review of the theoretical and empirical 

literature within the field of vertical economies and the costs of separating electricity supply. 
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(2017) studied 28 electricity generation and transmission firms from 16 European countries for the 

period 2000–2010. These European studies reported evidence of economies of scope, ranging from 

6.5% to 60%, which is higher than the estimates for the US. As this brief review shows, no 

scientific published economies of scope studies of the electricity market exist for Norway or 

Scandinavia.  

The estimation approach in the previous economies of scope studies mentioned above 

(except Piacenza and Vannoni (2009) and Triebs et al. (2016)) used either a quadratic or a translog 

cost function for each firm type (integrated and specialized firms), jointly or separately. The 

quadratic function’s violation of the linear homogeneity (in input prices) property is discussed in 

Farsi et al. (2008) and Triebs et al. (2016). We do not use input prices in our cost models because 

there is no input price variation cross-sectionally in our data and the temporal variation can be 

captured in the time dummies or the time trend in the models. In Norway, union agreements 

regarding wages and social benefits are centralized at a national level. Thus, the assumption of 

constant input prices across firms is a reasonable assumption in a small country such as Norway.2 

As a result, homogeneity (in input prices) violation is not a problem in our models. In estimating 

a cost function that includes multiple firm types jointly, a common technology among firm types 

is assumed. The question is whether the technology used by the specialized utilities is identical to 

that used by the utilities providing more than one service. If the technologies are different, and one 

assumes a common technology, the results are likely to be invalid. For instance, results suggesting 

the presence of economies of scope may actually be a result of scale economies. One way to get 

around this issue is to perform separate estimations for each firm type. This allows the technology 

                                                 
2 For fixed input (factor) prices, the cost function is written as a function of outputs. For example, see Varian (1992). 

Temporal variations in input prices are captured by the time dummies or trend included in the cost function. 
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to be different between the firms, which may also affect the results through the firm’s ability to 

utilize factors of production. Triebs et al. (2016) introduced a method that allows us to test for 

differences in technology. Another advantage of this method is that it avoids the problem of zero 

values for output in a translog function.3 Previous studies have shown that replacing zero values 

by some arbitrary number can influence the results (e.g., see Pulley and Humphrey, 1993). 

However, the flexible technology approach introduced by Triebs et al. (2016) avoids the zero-

value problem by allowing the technologies of the specialized firms to be different from the 

integrated firms. 

In addition, there might also be a problem with zero values when using a quadratic 

function. If the number of zero values represents a large proportion of the total number of sample 

observations, the parameter estimates may be biased (Battese, 1997). This potential problem does 

not arise in Triebs et al.’s (2016) approach. 

3. MODEL SPECIFICATION AND METHOD 

In this section, we describe the specifications of three models and the estimation method used in 

this study. We start by describing Model 1, which uses a common quadratic cost function, followed 

by a description of Models 2 and 3, which use a flexible technology approach (Triebs et al., 2016). 

Model 2 is a quadratic cost function and Model 3 is a translog cost function. Before introducing 

the models, we provide definitions of scope and scale economies. For economies of scope, we 

measure the difference between the cost of one firm producing two outputs and the costs (sum) of 

                                                 
3 In scope studies, one or several outputs are zero for specialized firms. This is a problem in the translog function 

approach because the logarithm of zero is not defined (missing values will be created). The common way to handle 

this problem is to replace zero values with a small number. 



50 

two specialized firms producing the same outputs (see Baumol et al., 1982; Panzar and Willig, 

1981).4 Economies of scope are measured as: 

����� =
���(�)���(�)����(�,�)

��(�,�)
, (1)  

where ��(�) is the estimated cost for the specialized firms in distribution and is usually obtained 

by setting the output of generation (G) to zero in �(�, �), i. e. , ��(�) =  �(�, 0). Likewise for 

the specialized firms in generation, the estimated cost is ��(�) = �(0, �), and for the integrated 

firms with positive outputs in both distribution and generation, the estimated costs are ��(�, �) =

�(�, �). If the scope measure is positive (or negative), economies (or diseconomies) of scope 

exist.  

Following Baumol et al. (1982), global economies of scale in a multioutput setting are 

defined as: 

 ����� =
�(�,�)

� 
��(�,�)

��
�� 

��(�,�)

��

. (2)  

If the scale measures are greater than, equal to, or less than unity, the returns to scale (RTS) are 

increasing, constant, or decreasing, respectively. 

 

3.1 Model 1: Common Quadratic Cost Function 

Electricity generation in Norway is mainly based on hydropower. In our analysis, we use panel 

data, but to simplify the notation, we drop the subscripts i and t, where i denotes the firm, i = 1,...,n 

and t denotes time, t = 1,…,t. The common quadratic cost function is specified as follows: 

                                                 
4 To avoid any confusion, in previous studies, the term “economies of vertical and horizontal integration” was used 

instead of “economies of scope and scale.” We believe these terms are synonymous. 
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(3)  

where C is total operational cost, and Ddum and Gdum are dummy variables representing the 

distribution and generation companies, respectively. Kilometers of high-voltage network (L) and 

number of customers (Q) represent the electricity distribution outputs �(�, �). Megawatt hours of 

produced electricity (E) and number of generators (N) are the outputs in electricity generation 

�(�, �). Note that we allow the cost functions to differ only in the intercepts, i.e., �� and ��  are 

coefficients for the dummy variables representing the distribution and generation companies, 

respectively. The coefficients �� and �� represent the fixed costs of only the distribution and only 

the generation companies, respectively, over the fixed cost of both the distribution and generation 

(integrated) companies. 

A single cost function in eq. (3) is estimated using all the data (pooled) and then the costs 

for the specialized and integrated firms are obtained from the estimated cost function by using 

their respective output values. Thus, substituting eq. (3) into eq. (1), the scope measure from Model 

1 is: 

���������� � =
���������

�

�
����∗��

�

�
����∗��

�

�
����∗��

�

�
����∗��

�

�
����∗�

��(�,�)
. (4)  

If the numerator of eq. (4) is positive, economies of scope exist, meaning that an integrated firm 

producing both outputs has lower costs compared with a situation where the production is 

separated across two specialized firms. If the numerator is negative, diseconomies of scope exist, 

meaning that costs are lower if we have two specialized firms compared with one integrated firm. 
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3.2 Models 2 and 3: Flexible Technology Approach 

In Model 2, we use a quadratic cost function and add flexibility to it by allowing the technology 

to vary across specialized and integrated firms. We do so by introducing dummies for specialized 

and integrated firms so that the technologies are different. Thus, the specification of Model 2 is: 
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(5)  

By introducing the dummy variables Idum, Ddum, and Gdum for the integrated firms and 

the two specialized firms in distribution and generation, respectively, Model 2 in eq. (5) combines 

three separate cost functions, one for each firm type. The dummy variable approach makes it 

possible to estimate the three cost functions jointly.5 

Model 3 is also specified using the flexible technology dummy variable approach as in 

Model 2, but with a translog cost function. The specification of Model 3 is: 

                                                 
5 This is equivalent to stacking the three cost functions and then estimating the stacked cost function as a single cost 

function. 
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(6)  

The three models presented in eqs (3), (5), and (6) are made stochastic by introducing the 

error term ��. To control for firm heterogeneity, we include random effects in all three models. 

Thus, in our estimation, we replace the constant terms ��, ��, and ��  in Model 1 in eq. (3), Model 

2 in eq. (5), and Model 3 in eq. (6) with �� = (�� + ��), where the subscript � = 0, D, or G. �� is 

a time-invariant, firm-specific random term that controls for firm heterogeneity.6,7 Note that we 

omitted the time subscript from ui and both the firm and time subscripts from the variables in the 

cost functions. 

                                                 
6 The Breusch and Pagan Lagrange multiplier test for random effects (against a standard OLS regression) rejects the 

null hypothesis at the 0.000 level of significance in all three models. 

7 We have low intertemporal variation in some variables in our data. Thus, we are more interested in between than 

within variation. In addition, we use an unbalanced panel where a portion of the sample has four or fewer 

observations per firm (i.e., panel data with a short time-series component). In cases such as this, based on Clark and 

Linzer (2015), a fixed effect model exacerbates measurement error bias and the random effect model is preferable. 

The fixed effect model will therefore not be appropriate in our analysis. 
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How can one estimate the model in eq. (6) given that there are no output data for the 

generation (distribution) utilities? If one estimates the technologies separately, then no output data 

on electricity generation (E = N = 0, meaning that the firm is a distribution utility) will be used to 

estimate the technology for the distribution utilities. To mimic this, in estimating eq. (6), we 

replace the output data for electricity generation (E = N = 0) for the distribution utilities by any 

positive numbers so that the log of these numbers can be defined. These numbers then disappear 

when multiplied by Ddum, and the model reduces to one, for which only the output data on the 

distribution utilities are used; the same applies for the generation utilities. Furthermore, this 

approach applies for any kind of functional form specified, including the quadratic model 

specification in eq. (5). For further details, see Triebs et al. (2016). 

The scope measure expression in both Models 2 and 3 is different from the scope measure 

in the common quadratic cost function in Model 1 presented in eq. (3). From the general definition 

of scope in eq. (1), we obtain: 
 ������(�)������(�)�������(�,�)

�����(�,�)
. See Fuss and Waverman (1981) for 

more on this.  

The dummy variable specifications of the translog and quadratic cost functions make it 

possible to test whether the common technology assumption in Model 1 is appropriate. We can do 

this by performing a joint likelihood ratio test with the following restrictions on both Models 2 and 

3: 

 �� = ��,  �� = ��,  �� = ��,  �� = ��,  ��� = ���,  ��� = ���, ��� = ���,

��� = ��� . 
(7)  

Note that the technology, e.g., for the generation companies is obtained by imposing the above 

restriction together with Gdum = 1, which also implies Ddum = 0 and Idum = 0. Failure to reject 

the null hypothesis with the above restrictions indicates the presence of a shared technology for all 
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firm types. The specification in Model 1 does not permit us to impose these cross-equation 

restrictions and thus test for the presence of a shared technology for all firm types. 

4. DATA 

The data comprise economic and technical information on Norwegian electricity companies from 

2004 to 2014 and are collected by the NVE.8 In total, there are 1,494 firm-year observations 

constituting an unbalanced panel of 212 Norwegian electricity companies. Table 1 presents the 

descriptive statistics of the variables used in our analysis. 

Total operational cost for each firm consists of the sum of material costs, salaries and 

other personnel costs (including pension costs), other operating expenses, losses on receivables, 

losses on disposal of fixed assets, internally priced services, and allocated overhead costs. All costs 

are adjusted for inflation by an industry commodity price index, where wages are the main cost.9 

The output variables for electricity distribution are kilometers of high-voltage network (km 

network) and number of customers. We also considered including the number of network stations 

as a proxy for electricity delivered. However, this will cause multicollinearity between the output 

variables. The ratio between the number of customers and number of network stations, and that 

between the number of customers and km network, captures the same effect. In urban areas, the 

number of customers is high compared with the number of network stations and km network, while 

in rural areas, the situation is the exact opposite. The output variables for electricity generation are 

electricity production in megawatt-hours (electricity MWh) and number of generators. In a scope 

study, the minimum value of the output variables will naturally equal zero because by definition, 

                                                 
8 The data used in this study are confidential. Readers who want to gain access to the data must apply to the NVE for 

permission; see www.nve.no for details. 

9 The price index was retrieved from Statistics Norway, Table 03363. http://www.ssb.no/en.   
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specialized firms do not produce some outputs. The minimum values for distribution and 

generation outputs in parentheses are the minimum output values, given that the outputs are not 

zero. 

To control for time effects, we also include a time component in our estimation. Note that 

because the cost function does not include input prices, which only change over time, the time 

components capture input price effects as well as other effects (technical change) that shift the cost 

function. In other words, technical change cannot be separated from any temporal changes in input 

prices. 

Our data consist of three types of firms: integrated firms with positive outputs for both 

distribution and generation, and specialized firms that have positive output only for distribution or 

generation. There are large variations in firm size in our data. For example, the lowest total 

operational cost is 255,000 Norwegian kroner (NOK), while the highest total operational cost is 

about 275 million NOK. Large variation also exists in the outputs. 
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Table 1: Descriptive Statistics 

Variable  Mean St.Dev. Min Median Max 

Total operating costs (1,000 NOK):        

Distribution firms   30,773 37,364 4,126 16,117 274,822 

Generation firms   19,065 20,054 255 12,272 146,887 

Integrated firms (distribution and 

generation) 
  30,754 21,213 2,485 22,952 91,701 

Outputs distribution firms:        

Km network    479 520 0 (37) 269 2,909 

Number of customers   13,943 22,315 0 (178) 6646 134,854 

Outputs generation firms:        

Electricity MWh   276,804 296,476 0 (2,391) 134,428 1,081,649 

Number of generators   8.07 9.73 2 5 68 

Outputs integrated firms:        

Km network   486 337 31 368 1,185 

Number of customers    7,939 6,236 391 6,335 25,748 

Electricity MWh    91,430 108,907 3,861 14,640 535,554 

Number of generators    4.35 2.73 2 3 15 

Time     2004  2014 

Firm type observations:    
     

Integrated firms (distribution and 

generation)  316 observations, 42 firms  

Specialized firms (distribution)   671 observations, 77 firms  

Specialized firms (generation)  507 observations, 93 firms  

Total firms   1,494 observations, 212 firms  

Note: Numbers in parentheses are the minimum positive outputs for distribution and generation. 
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5. RESULTS 

Using the estimated parameters from the three models, we calculated the marginal costs at the 

mean values of our data for each of the four outputs (Table 2). These are the derivatives of the 

estimated cost function with respect to each output.10 In Model 1, we assume joint technology and 

do not distinguish between integrated or specialized firms. All of the marginal costs have positive 

signs as expected, but only km of network is significant at the 1% level. This result shows that 

increasing km of network by one, will increase cost by 51.86 (1000 NOK), ceteris paribus. In Model 

2, we use the flexible technology dummy variable approach, and even though the cost elasticities 

for each firm type are presented in different columns, the three cost functions are estimated 

simultaneously. Compared with Model 1, the estimated marginal costs of km of network in Model 

2 are lower for both integrated and specialized firms in distribution. In Model 2, all but Number of 

generators for the integrated firms are significant at the 5% level. In Model 3, we estimate a 

translog cost function, meaning that the data are in log form. To simplify comparison across 

models, we convert the cost elasticities to marginal costs for the results in Model 3. The marginal 

cost for number of generators for the integrated firms in Model 3 has a negative sign, which is 

counterintuitive. However, this is not statistically significant. In Models 2 and 3, the estimated cost 

elasticities for the specialized firms in generation (electricity MWh and number of generators) are 

significant at the 1% level. 

  

                                                 
10 For the interested reader, the parameter estimates are available in the Appendix (see Table A2). 
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Table 2: Marginal Costs 

 Model 1 Model 2 Model 3 

 All firms Integrated Distribution Generation Integrated Distribution Generation 

Km network 
(L) 
 

51.86** 
(8.63) 

30.00** 
(10.06) 

27.71** 
(5.11) 

 
24.60* 
(10.74) 

30.82** 
(6.77) 

 

Number of 
customers (Q) 

0.31 
(0.50) 

1.24* 
(0.57) 

1.17** 
(0.15) 

 
1.50** 
(0.57) 

0.76** 
(0.18) 

 

Electricity 
MWh (E) 

0.04 
(0.03) 

0.06* 
(0.03) 

 
0.04** 
(0.01) 

0.02 
(0.02) 

 
0.03** 
(0.002) 

Number of 
generators (N) 

905.96 
(665.31) 

400.90 
(897.95) 

 
999.57** 
(139.17) 

-321.01 
(922.37) 

 
1116.97** 
(122.32) 

Observations 1494 316 671 507 316 671 507 

Notes: Standard error in parentheses. ** and * indicates significance at 0.01 and 0.05 levels respectively.  
Model 1: Quadratic function, combined, random effects. Model 2: Quadratic function, separate technology, random effects. 
Model 3: Translog function, separate technology, random effects.  
In Model 3, the data are in log-form but we have converted the results into marginal costs. 

 

To test the restrictions presented in eq. (7) for Models 2 and 3, we perform a joint 

likelihood ratio test. The test results are presented in Table 3. At the 5% significance level, we 

reject the null hypothesis of shared technology in both Models 2 and 3. Thus, the results based on 

a common technology are likely to be incorrect. In the reminder of the paper, we focus on the 

economies of scope and scale results from Models 2 and 3.  

 

Table 3: Test for Common Technology: Likelihood Ratio Test 

 Model 2 Model 3 
��: �� DF P �� DF P 

 
�� = �� 
�� = �� 
�� = �� 
�� = �� 

��� = ��� 
��� = ��� 
��� = ��� 
��� = ��� 

 

22.83 8 0.005 47.64 8 0.001 
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The natural policy question to answer from this exercise is “What are the costs or benefits 

from separating one integrated firm into two specialized firms?” Alternatively, we could ask what 

would happen to costs if two specialized firms became one integrated firm. However, this is not 

relevant for the Norwegian situation. Policy makers have decided to change the Norwegian Energy 

Act so that all integrated firms within the industry will be strictly separated into specialized firms 

by 2021. In previous economies of scope studies, it is normal to either use median or mean values 

of the data to calculate the scope measures. Alternatively, a two-by-two table that gives different 

scope estimates for different combinations of output levels can be constructed. However, these 

approaches are not always recommended because they are likely to use combinations of output 

values that do not actually exist in the applied data set, and which might not even be realistic in 

the real world.11 To overcome this problem we calculated economies of scope by using the 

parameter estimates combined with all actual output combinations for the integrated firms in our 

data set. We retrieve 316 economies of scope estimates for each of the two models from an 11-

year period for the 42 integrated firms. The distribution of these 316 estimated economies of scope 

measures for each model is presented in percentiles in Table 4. The 1% percentile estimate 

represents the smallest 1% of economies of scope estimates from the distribution. For Model 2, 

we see that the 1% percentile gives diseconomies of scope (−0.10), meaning that for these 

integrated firms, costs will be reduced by 10% if they are separated into two specialized firms. The 

scope measure differs between the models. In Model 2, we find economies of scope at the 25% 

percentile and above while in Model 3, we find economies of scope at the 75% percentile and 

                                                 
11 For the integrated firms in our data set, median L = 383.5 and median E = 53,016. However, this company (with 

this output combination) does not exist in our data set. This output combination for distribution and generation 

might not ever exist or might not even be feasible in the Norwegian electricity industry. 
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above. At the median, the estimated economies of scope estimates are 10%, and −4% for Models 

2, and 3, respectively.12 

Table 4: Economies of Scope Results for Integrated Firms 

 Economies of scope 

Percentiles Model 2 Model 3 

1% -0.10 -0.22 

5% -0.08 -0.18 

10% -0.05 -0.15 

25% 0.02 -0.10 

50% (median) 0.10 -0.04 

75% 0.21 0.02 

90% 0.38 0.12 

95% 0.53 0.24 

99% 0.92 0.47 

Mean 0.18 -0.02 

Standard deviation 0.37 0.13 

 

Table 4 shows the distribution of scope estimates using all the real output combinations 

for the integrated firms from Models 2 and 3. This gives us an overview of the present economies 

of scope in the Norwegian electricity industry. However, it is interesting to determine what 

characterizes the firms with diseconomies and economies of scope. In Figure 1, a plot of the 

economies of scope estimates by firm size shows that there is a clear relationship between firm 

size and economies of scope. Figure 1 uses the scope measures in Table 4, but we plot the mean 

scope measures for each firm from each model against total operational costs (we use total 

operational cost for each observation as a proxy for firm size for each time period in our data, 42 

                                                 
12 We also estimated the models without random effects, and the scope estimates in the models at median values 

change from: Model 2: 0.10 (random effect) to 0.18 (pooled OLS), Model 3: 0.04 (random effect) to 0.07 (pooled 

OLS). The economies of scope results increase in all three models if we do not control for firm heterogeneity. 
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firms and 316 observations over 11 years). The scope estimates from Models 2 and 3 are presented 

in the left and right panels, respectively. The solid black line in each panel is a fitted line between 

economies of scope and total operational costs to show the trend in the results. In both models, 

there is a negative relationship between firm size and economies of scope. For Model 2, there is 

an unambiguous relationship between firm size and economies of scope. The largest economies of 

scope estimates are for the smallest firms, meaning that the costs of separating an integrated firm 

into two specialized firms are highest for the smallest firms. The bigger the firms, the lower the 

economies of scope; in both models, we see that there are even diseconomies of scope for some of 

the biggest firms, meaning that the operational costs will be lower if production is separated across 

two specialized firms. In Model 3, there is no clear relationship between firm size and economies 

of scope. Although there is a negative trend, we also note that even for the smallest firms, there 

are both economies and diseconomies of scope.  
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Figure 1: Economies of Scope and Firm Size Using Total Operational Costs as Proxy for 

Firm Size 

 

Notes:  The solid black l ine is computed by local ly weighted scatterplot smoothing (LOWESS).  

 

To further investigate the firm’s characteristics, we examine the economies of scope 

results for different output levels in our sample of Norwegian integrated firms. In Table 5, we 

present the mean values of the scope estimates for the firms within each output combination. To 

measure the output value for distribution of electricity, we use km of network, and for generation 

of electricity, we use electricity in MWh. In the upper and lower parts of Table 5 we see the results 

from Models 2 and 3, respectively. For Model 2, we can see the same trend in the results as that in 

Figure 1, where we used total costs as a proxy for firm size. We find the highest economies of 

scope values for the lowest output combination values, suggesting that the smallest firms in terms 

of output, have the highest economies of scope. For Model 3, the results are more dispersed, as in 

Figure 1, and we do not find a clear trend. The overall economies of scope estimates are lower 

-.
2

0
.2

.4
.6

S
co

p
e
 m

o
d
e

l 2

0 20000 40000 60000 80000

Costs

-.
2

0
.2

.4
.6

S
co

p
e
 m

o
d
e

l 3

0 20000 40000 60000 80000

Costs



64 

those that in Model 2, and the highest diseconomies of scope are found at the lowest and the highest 

output level combinations. The highest economies of scope estimates for Model 3 are close to the 

median of the output distribution.  

 

Table 5: Economies of scope and firm output 

        Model 2. Distribution (Km network) 

  
 

200 400 600 800 1000 1200  

M
o

d
el

 2
. 

G
en

er
at

io
n

 (
M

W
h

) 5000 51% (2) 18% (1) 10% (1) * * * 

10000 51% (6) 17% (13) 18% (4) * * * 

20000 36% (13) 14% (22) 10% (9) * 1% (1) * 

50000 28% (30) 10% (35) 8% (3) * -2% (8) * 

100000 29% (2) 3% (20) 5% (12) -0.8% (12) -8% (10) -3% (10) 

300000 * 0.7% (19) 9% (6) 4% (11) 11% (7) 7% (27) 

 
   

 
    Model 3. Distribution (Km network) 

  
 

200 400 600 800 1000 1200  

M
o

d
el

 3
. 

G
en

er
at

io
n

 (
M

W
h

)  5000 -11% (2) -2% (1) 2% (1) * * * 

10000 2% (6) -5% (13) 5% (4) * * * 

20000 6% (13) -4% (22) 2% (9) * -4% (1) * 

50000 -5% (30) -6% (35) 7% (3) * -6% (8) * 

100000 -9% (2) -5% (20) 2% (12) -3% (12) -10% (10) -18% (10) 

300000 * 2% (19) -2% (6) -6% (11) -8% (7) -8% (27) 

 Notes: * means no observations. 

 

In Table 6, we present the economies of scale results for the integrated and specialized 

firms in distribution and generation from Models 2 and 3. The economies of scale estimates in 

Model 2 follow the definition in eq. (2). For Model 3 with the translog function, we have used the 

inverse of the sum of the cost elasticities to compute the economies of scale measures.13 Except 

for the smallest percentiles, both models show increasing RTS across all three firm types, which 

is consistent with previous scale studies using data from Norwegian electricity distribution firms 

                                                 
13 ��� =  

�

���������������������
, where ����, ����, ����, ��� ���� are the cost elasticities for the integrated firms 

considering the outputs L, Q, E, and N, respectively. 
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(e.g., see Mydland et al., 2016; Kumbhakar et al., 2015). An interesting research topic would be 

to examine how costs in the industry change if separating the integrated firms leads to more 

mergers among the distribution companies.14 By doing a merger analysis, one could see whether 

the cost savings from optimal merges can balance the loss of not utilizing economies of scope. 

This topic is left for future research. 

  

                                                 
14 The regulated distribution companies can represent “safe income” for an integrated firm because 40% of the 

revenue cap is decided by the costs in the distribution company. By unbundling distribution and generation into two 

totally separated firms, one can avoid any cross subsidizations or anticompetitive behavior. This might lead to an 

increased interest in merging more distribution companies. 
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Table 6: Economies of Scale Results for Integrated and Specialized Firms 

 Integrated firms 

Percentiles Model 2 Model 3 

1% 0.82 0.82 

5% 0.92 0.84 

10% 0.94 0.92 

25% 0.99 1.01 

Median 1.07 1.29 

75% 1.21 1.69 

90% 1.79 2.12 

95% 2.67 2.94 

99% 2.99 2,65 

Mean 1.95 1.70 

St. dev. 2.82 1.64 

 

 Specialized firms, distribution 

Percentiles Model 2 Model 3 

1% 1.03 0.89 
5% 1.04 0.98 

10% 1.06 1.02 

25% 1.09 1.12 

Median 1.15 1.23 

75% 1.26 1.36 
90% 1.44 1.48 

95% 1.58 1.53 

99% 1.92 1.65 

Mean 1.21 1.24 

St. dev. 0.19 0.18 

 

 Specialized firms, generation 

Percentiles Model 2 Model 3 

1% 0.02 0.72 

5% 1.10 0.76 

10% 1.22 0.78 

25% 1.33 0.85 

Median 1.50 1.01 

75% 1.81 1.31 

90% 2.34 1.73 

95% 2.83 2.01 

99% 4.35 2.37 

Mean 1.80 1.15 
St. dev. 4.38 0.40 
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6. SUMMARY AND CONCLUDING REMARKS 

In our study, we found evidence of scope and scale economies in the Norwegian electricity 

industry. Using the new flexible technology approach, we obtained consistent estimates of scope 

and scale economies. One important point is that this approach provides the possibility to test 

whether specialized and integrated firms share the same technology. By applying the flexible 

technology approach for both the quadratic and translog cost functions using new data from the 

Norwegian electricity industry, we examined how the results vary among the functional forms and 

model specifications. However, we found a negative relationship between firm size in terms of 

total costs, and economies of scope in our models, which suggests that for the smallest companies 

in the industry, the policy decision on strict separation between generation and distribution is 

costly. In Model 2 the results show that firms characterized by low output values in both the 

distribution and generation of electricity have the highest economies of scope. In Model 3, we also 

find evidence of economies of scope, but the firm’s characteristics in terms of output values are 

not as clear as those in Model 2.  

From a political perspective, it might be desirable to separate generation and distribution 

because natural monopolies in electricity distribution are being regulated, whereas electricity 

generation occurs in competitive markets. If unbundling distribution and generation leads to 

increased competition, less cross-subsidization, and more productive DSOs, this might be 

beneficial for the electricity industry as a whole. However, as this study shows, the policy decision 

on strict separation also comes with a cost. Moreover, this cost seems to differ across firms. The 

overall conclusion of this paper is that for the larger firms, there are no incentives to keep the firms 

integrated, but for the smaller firms, distribution and generation should not be unbundled. 
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In policy making, all pros and cons should be considered before a political action is taken. 

One of the cons of introducing strict separation between distribution and generation of electricity 

is the cost of not utilizing economies of scope. In this paper, we provide new insights into this 

issue, and our results are useful for the formulation of future political strategy and visions within 

the energy sector. 

For future research, it would be interesting to combine the analysis on both economies of 

scope and merger gains from utilizing economies of scale to determine how we can expect the cost 

structure in the Norwegian electricity market to evolve. If the policy of separating integrated firms 

into specialized firms leads to more mergers, the net cost changes might be positive in the long 

run, provided that the companies utilize unexploited economies of scale. 

  



69 

ACKNOWLEDGMENTS 

The work in this study is a part of the project “Benchmarking for Regulation of 

Norwegian Electricity Networks” (ElBench), which is funded by Norwegian Water Resources and 

Energy Directorate, Energy Norway and six electricity companies in Norway (Agder Energi Nett, 

Skagerak Nett, Eidsiva Nett, Hafslund Nett, BKK Nett, and Istad Nett). 

 

  



70 

REFERENCES 

Arocena, P., Saal, D.S., and T. Coelli (2012). Vertical and horizontal scope economies in the 

regulated US electric power industry. Journal of Industrial Economics 60(3): 434–467. 

Battese, G.E. (1997). A note on the estimation of Cobb–Douglas production functions when some 

explanatory variables have zero values. Journal of Agricultural Economics 48(1–3): 250–252. 

Baumol, W.J., Panzar, J.C., and R.D. Willig (1982). Contestable Markets and the Theory of 

Industry Structure. New York: Harcourt Brace Jovanovich. 

Carvalho, P. and R.C. Marques (2014). Computing economies of vertical integration, economies 

of scope and economies of scale using partial frontier nonparametric methods. European 

Journal of Operational Research 234(1): 292–307. 

Chappell, H.W. and R.P. Wilder (1986). Multiproduct monopoly, regulation, and firm costs: 

Comment. Southern Economic Journal 52(4): 1168–1174. 

Clark, T.S. and D.A. Linzer (2015). Should I use fixed or random effects? Political Science 

Research and Methods 3(2): 399–408. 

Evans, D.S. and J.J. Heckman (1984). A test for subadditivity of the cost function with an 

application to the Bell system. American Economic Review 74(4): 615–623. 

Farsi, M., Fetz, A., and M. Filippini (2008). Economies of scale and scope in multi-utilities. Energy 

Journal 123–143. 

Fetz, A. and M. Filippini (2010). Economies of vertical integration in the Swiss electricity sector. 

Energy Economics 32(4): 1325–1330. 

Fuss, M.A. and L. Waverman (1981). “Regulation and the multi-product firm: The case of 

telecommunications in Canada,” Studies in Public Regulation, Fromm, G. (ed.). Cambridge, 

MA: MIT Press, 277–328. 

Fraquelli, G., Piacenza, M., and D. Vannoni (2004). Scope and scale economies in multi-utilities: 

Evidence from gas, water and electricity combinations. Applied Economics 36(18): 2045–

2057. 

Garcia, S., Moreaux, M., and A. Reynaud (2007). Measuring economies of vertical integration in 

network industries: an application to the water sector. International Journal of Industrial 

Organization 25(4): 791–820. 



71 

Gugler, K., Liebensteiner, M., and Schmitt, S. (2017). Vertical disintegration in the European 

electricity sector: Empirical evidence on lost synergies. International Journal of Industrial 

Organization 52(5): 450-478. 

Jara-Dıaz, S., Ramos-Real, F.J., and E. Martınez-Budrıa (2004). Economies of integration in the 

Spanish electricity industry using a multistage cost function. Energy Economics 26(6): 995–

1013. 

Kaserman, D.L. and J.W. Mayo (1991). The measurement of vertical economies and the efficient 

structure of the electric utility industry. Journal of Industrial Economics 39(5): 483–502. 

Kumbhakar, S.C., Amundsveen, R., Kvile, H.M., and G. Lien (2015). Scale economies, technical 

change and efficiency in Norwegian electricity distribution, 1998–2010. Journal of 

Productivity Analysis 43(3): 295–305. 

Kwoka, J.E. (2002). Vertical economies in electric power: evidence on integration and its 

alternatives. International Journal of Industrial Organization 20(5): 653–671. 

Mayo, J.W. (1984). Multiproduct monopoly, regulation, and firm costs. Southern Economic 

Journal 51(1): 208–218. 

Meyer, R. (2012a). Economies of scope in electricity supply and the costs of vertical separation 

for different unbundling scenarios. Journal of Regulatory Economics 42(1): 95–114. 

Meyer, R. (2012b). Vertical economies and the costs of separating electricity supply-a review of 

theoretical and empirical literature. Energy Journal 33(4): 161–185. 

Mydland, Ø., Haugom, E., and G. Lien (2016), Economies of scale in Norwegian electricity 

distribution: a quantile regression approach. Working paper. Lillehammer University College. 

Norwegian Water Resources and Energy Directorate (NVE) (2015). Utvikling i Nøkkeltal for 

Nettselskap Med Fokus På Nettstruktur. Report from the Norwegian Water Resources and 

Energy Directorate (in Norwegian: Norges vassdrags- og energidirektorat). 

http://publikasjoner.nve.no/rapport/2015/rapport2015_28.pdf. 

Panzar, J.C. and R.D. Willig (1981). Economies of scope. American Economic Review 71(2): 268–

272. 

Piacenza, M. and D. Vannoni (2004). Choosing among alternative cost function specifications: An 

application to Italian multi-utilities. Economics Letters 82(3): 415–422. 



72 

Piacenza, M. and D. Vannoni (2009). Vertical and horizontal economies in the electric utility 

industry: An integrated approach. Annals of Public and Cooperative Economics 80(3): 431–

450. 

Pulley, L.B. and D.B. Humphrey (1993). The role of fixed costs and cost complementarities in 

determining scope economies and the cost of narrow banking proposals. Journal of Business 

66(3): 437–462. 

Triebs, T.P., Saal, D.S., Arocena, P., and S.C. Kumbhakar (2016). Estimating economies of scale 

and scope with flexible technology. Journal of Productivity Analysis 45(2): 173–186. 

Varian, H.R. (1992). Microeconomic Analysis. (3rd ed). New York: W.W. Norton, 67. 

Waldman, D.E. and E.J. Jensen (2001). Organization: Theory and Practice. New York: Addison 

Wesley Longman. 

  



73 

APPENDIX 

Table A1. Summary of Previous Empirical Scope and Scale Studies of the Combined 
Generation and Transmission/Distribution Electricity Companies 
 

Author(s) Data Functional form Established 

method 

Economies of scope and scale* 

Kaserman 

and Mayo 

(1991) 

Cross-section 

(1981, US) 

Quadratic cost function OLS Economies of scope (EOS) = 0.12 (at 

mean) 

Kwoka 

(2002) 

Cross-section 

(1989, US) 

Quadratic cost function OLS EOS = 0.27 (at median). Reports 

substantial costs of vertical integration 

and highest for the smallest utilities 

Jara-Dıaz et 

al. (2004) 

Panel-data 

(1985–1996, 

Spain) 

Quadratic cost function 

together with cost share 

equations 

Seemingly 

unrelated 

regressions 

(SUR) 

EOS = 0.065–0.28. Economies of scale 

returns to scale (RTS) = 1.07. 

Piacenza and 

Vannoni 

(2009) 

Panel-data 

(1994–2000, 

Italy) 

Multiproduct & 

multistage Box–Cox 

transformed cost 

function 

Nonlinear 

SUR 

EOS = 0.24. RTS = 0.96. Reports 

findings of both vertical integration 

gains and horizontal economies of 

scope 

Fetz and 

Filippini 

(2010) 

Panel-data 

(1997–2005, 

Switzerland) 

Quadratic cost function Random 

effects GLS 

and Random 

Coefficient 

model 

EOS = 0.50–0.60 (at median). RTS = 

1.40–1.70 (at median). Presence of 

considerable economies of vertical 

integration and economies of scale for 

most companies 

Arocena et 

al. (2012) 

Cross-section 

2001, US) 

Quadratic cost function 

together with cost share 

equations 

SUR EOS = 0.04–0.10. RTS = 1.01–1.03. 

Reports positive sample mean estimates 

of both vertical and horizontal 

economies 

Meyer 

(2012a) 

Panel-data 

(2001–2008, 

US) 

Quadratic cost function OLS EOS = 0.19–0.26, when separating 

generation from distribution and retail. 

Reports that if generation and 

transmission remain integrated but are 

separated from distribution and retail, 

EOS = 0.08–0.10.  

Triebs et al. 

(2016) 

Panel-data 

(2000–2003, 

US) 

Flexible technology 

translog cost functions 

with different 

specifications   

SUR EOS = 0.04 (0.40 when zeros are 

replaced by small numbers in the 

common cost function model). RTS = 

1.10–1.13. Reports evidence of 

economies of scale and vertical 

economies of scope. 

Gugler et al. 

(2017) 

Panel-data 

(2000-2010, 16 

European 

countries) 

Multistage quadratic 

cost function 

Nonlinear 

SUR 

EOS = 0.14-0.20. Reports that at the 

median integrated utilities have EOS = 

0.14 while large scale utilities have 

EOS = 0.20.  
*Estimates of economies of scale (measured by RTS) are for integrated firms. 
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Table A2: Parametric Estimate 
 Model 1 Model 2 Model 3 

 All firms Integrated Distribution Generation Integrated Distribution Generation 

L 

 

25.67 

(7.68) 

29.28 

(24.72) 

22.29  

(8.77) 
 

0.23  

(1.98) 

0.96 

(0.98) 
 

L*L -0.02 

(0.01) 

-0.04 

(0.07) 

-0.01  

(0.01) 
 

0.87  

(0.85) 

0.22 

(0.37) 
 

Q 1.50 

(0.19) 

1.16 

(1.07) 

1.52 

(0.20) 
 

-0.09  

(1.74) 

-0.99 

(0.72) 
 

Q*Q -0.000 

(0.00) 

0.000 

(0.00) 

-0.000 

(0.00) 
 

0.51 

(0.54) 

0.29 

(0.24) 
 

E 0.04 

(0.01) 

0.11 

(0.05) 
 

0.04 

(0.01) 

-0.04 

(1.13) 
 

-0.70 

(0.31) 

E*E -0.000 

(0.00) 

0.000 

(0.00) 
 

-0.000 

(0.00) 

0.01 

(0.09) 
 

0.09 

(0.03) 

N 758.60 

(219.60 

367.60 

(1727.86) 
 

782.46 

(222.34) 

-1.48 

(1.84) 
 

-0.49 

(0.39) 

N*N -24.79 

(6.46) 

-266.76 

(245.35 
 

-26.63 

(6.44) 

-0.04 

(0.35) 
 

-0.03 

(0.09) 

L*Q 0.001 

(0.00) 

-0.001 

(0.01) 

0.001 

(0.00) 
 

-0.64  

(0.65) 

-0.20 

(0.28) 
 

L*E -0.000 

(0.00) 

-0.001 

(0.00) 
  

0.09 

(0.21) 
  

L*N 4.40 

(3.36) 

19.03 

(9.45) 
  

-0.25 

(0.43) 
  

Q*E 0.000 

(0.00) 

0.000 

(0.00) 
  

-0.06 

(0.18) 
  

Q*N -0.17 

(0.00) 

-0.55 

(0.45) 
  

0.42 

(0.34) 
  

E*N 0.004 

(0.001) 

-0.03 

(0.02) 
 

0.004 

(0.00) 

-0.07 

(0.15) 
 

0.08 

(0.04) 

�� -368.50 

(1,719.07) 
      

��  530.92 

(2,046.40) 
      

t -744.05 

(317.06) 

-495.12 

(676.33) 

-1049.50  

(470.86) 

-549.24 

(557.39) 

0.002 

(0.09) 

0.08 

(0.03) 

0.09 

(0.04) 
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�� 121.86 

(54.45) 

– 65.04 

(109.90) 

225.46 

(81.90) 

34.34 

(94.84) 

0.003 

 (0.00) 

0.004 

(0.00) 

-0.01 

(0.00) 

t*L 

 

3.83 

(0.63) 

-0.72  

(2.08) 

2.24 

(0.86) 
 

-0.001 

(0.02) 

0.008 

(0.01) 
 

t*Q -0,16 

(0.02) 

0.12  

(0.11) 

-0.13 

(0.02) 
 

-0.007 

(0.02) 

-0.02 

(0.01) 
 

t*E 0.004 

(0.00) 

0.01 

(0.11) 
 

0.01 

(0.00) 

0.006 

(0.01) 
 

-0.01 

(0.00) 

 t*N 

 

-38,84 

(29.41) 

35.07 

(203.19) 
 

-25.05 

(32.90) 

-0.001 

(0.02) 
 

0.02 

(0.01) 

Const. 2,930.17 

(1995.43) 

4,088.680 

(3,714.10) 

3575.15 

(1974.99) 

4317.90 

(2095.94) 

7.85  

(6.64) 

8.28 

(1.70) 

10.40 

(1.75) 

        
Observations 1494 316 671 507 316 671 507 

Log- 

likelihood 
 

Model 1: -15670.5 
 
Model 2: –15654.7 

 
            Model 3: –304.37 

�� Model 1: 0.89 
 

Model 2: 0.89             Model 3: 0.82 

Standard errors in parentheses. Model 1: Quadratic function, combined, random effects. Model 2: Quadratic function, separate 
technology, random effects. Model 3: Translog function, separate technology, random effects. 
�� is calculated as squared correlation between estimated and observed costs, which is the equivalent to �� from OLS. 

 

In Table A2, we present the parameter estimates for the three random effects models. 

Model 1 in the first column is a quadratic cost function and assumes shared technology between 

the specialized and integrated firms. Models 2 and 3 are the quadratic cost function and the translog 

cost function, respectively, both using the flexible technology approach. Note that even though the 

parameter estimates for each firm type are presented in different columns, the cost function for 

integrated, distribution, and generation firms is estimated jointly in both Models 2 and 3. In Model 

1, the constant term refers to �� in eq. (1), and in Models 2 and 3, it refers to Idum, Ddum, and 

Gdum from eqs (4) and (5). In both Models 1 and 2, we use a quadratic cost function, which means 

that the estimation results are in levels. In the translog cost function in Model 3, we have taken the 

log of the variables, and we cannot compare the results in Models 1 and 2 directly. 
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ABSTRACT 

In 2016, the Norwegian Parliament amended the Energy Act, with changes taking effect from 

2021. The amended legislation will introduce strict separation of all generation and distribution 

companies within the electricity industry in Norway. Economies of scope studies from Norway 

show evidence of economies of scope. Further, the companies in the industry could utilize the 

economies of scale potential if they merged. In this paper, we perform merger analysis to 

investigate best- and worst-scenario outcomes regarding the cost effects in the industry from 

the amendments in the Norwegian Energy Act. By providing a method of testing for optimal 

mergers, we can present the best merger combination to the Norwegian electricity industry. 

Keywords: Potential merger gains, Energy, Policy, Energy Act, Lost economies of scope, 

Optimized mergers. 
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1. Introduction 

The organizational structure of electricity industries has been one of vertical integration. 

Up until the Energy Act of Norway came into force on January 1, 1991, electricity utilities in 

Norway performed all of the services in the power delivery value chain, from generation of 

electricity to supply. In a vertically integrated utility, the management benefits in terms of both 

short- and long-term planning by controlling the entire value chain. The main motivation for 

the unbundling of services is to increase competition in the electricity industry, to avoid cross-

subsidization, and to make the distribution system operators focus only on network operations. 

The deregulation in Norway during the 1990s have led to a more market-oriented 

environment in the electricity industry. The basic idea behind the deregulation of this sector 

was to separate the services in the value chain, regulate the monopolistic services of 

transporting electricity to consumers, and expose others (generation, wholesale, and supply) to 

competition. To secure efficient markets, regulatory rules for unbundling were developed. The 

European Union’s Third Energy Package from 2009 consists of directives meant to effectively 

unbundle energy production and supply interests from the distribution of electricity. The 

directives impose rules on ownership unbundling for the largest companies in generation and 

distribution of electricity. In 2016, the Norwegian Parliament amended the Energy Act, with 

changes to take effect from 2021. The amended legislation will introduce strict separation of 

all generation and distribution companies within the electricity industry in Norway. The main 

motivations for these changes in the Energy Act are as follows. (1) To increase competition in 

the market. Generation of electricity is exposed to competition whereas distribution of 

electricity is not, because distributors have the character of a natural monopoly. However, if 

the integrated firms (electricity firms with both generation and distribution of electricity) 

prioritize the distribution of electricity from their own generation, this could lead to market 

failure because integrated firms have an advantage compared with firms that only have 
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generation of electricity (specialized firms). (2) To avoid cross-subsidization. Because it is not 

possible to impose competition directly into the market for the distribution of electricity, the 

regulator, the Norwegian water and energy directorate (NVE), make the distribution companies 

compete in a benchmarking model. Sixty percent of the revenue cap (the total amount of 

income each distribution company can charge their customers in net rent each year) is decided 

by the efficiency score for the company. Forty percent of the distribution company’s income is 

decided by the annual actual costs for each company. Because a portion of the company’s 

income is decided by its actual costs, this might be regarded as “safe income” that, no matter 

what, the company will retrieve from its customers. This can be problematic for the following 

two reasons. First, if there is some cross-subsidization within the integrated firms, between 

distribution of electricity and generation of electricity, this will decrease competition because 

the integrated firms have some advantages over the specialized firms. Second, previous studies 

of the Norwegian electricity distribution industry have shown that the distribution companies 

are too small, and several of them should merge to utilize unexploited economies of scale in 

the industry (Kumbhakar et al., 2015; Mydland et al., 2018a). If the possibility to cross-

subsidize and to prioritize their own generation of electricity leads the companies to be less 

willing to sell or merge their distribution services with other companies, this is problematic 

because the Norwegian distribution electricity industry does not utilize economies of scale. (3) 

To make the distribution companies focus on network operations only. To concentrate on both 

generation and distribution might be challenging. The policy makers believe that, by 

unbundling generation and distribution, the leaders of the distribution companies will be more 

able to focus on distribution services, and to increase efficiency. 

Although all of the arguments above seem valid, we also know that the policy of 

unbundling generation and distribution of electricity comes with a cost. Mydland et al. (2018b) 

report that, on average, the costs increase by 8% if the generation and distribution of electricity 
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is strictly separated in the Norwegian electricity industry. This cost increase is caused by not 

utilizing economies of scope.1 The aim for this study is to seek the potential merger gains in 

the Norwegian electricity industry for the 55 distribution companies that will be affected by 

the changes in the Energy Act of Norway. To perform this study, we follow the framework 

introduced by Bogetoft and Wang (2005), based on a standard data envelopment analysis 

(DEA), imposing different model specifications and assumptions on returns to scale (RTS). 

The remainder of the paper is organized as follows. Section 2 gives an overview of 

previous literature. In Section 3, the framework and model specifications in this analysis are 

presented. The data are presented in Section 4 and, in Section 5, the results are presented. 

Section 6 provides conclusions. 

2. Literature overview 

There is only one recent published study on potential merger gains in the Norwegian 

electricity distribution industry, Saastamoinen et al. (2017), which investigates potential 

merger gains between all distribution companies in Norway. They use both DEA and StoNED 

models to estimate potential merger gains. The study reports some merger gains and illustrates 

that potential gains from the mergers may vary on the assumption of the regulatory model about 

the production technology. Saastamoinen et al. (2017) seek merger gains between all 

distribution companies in Norway, whereas our study seeks to find potential merger gains 

based on data for the companies that will be affected by the amended Energy Act of Norway. 

Further, Saastamoinen et al. (2017) concentrate on potential merger gains between firms 

located geographically close.  

In the Norwegian electricity industry, there exist examples of firms merging without any 

                                                 

1 Economies of scope, sometimes called economies of vertical integration, means that one firm producing two 
products can do this at a lower cost than if two companies produce one of the product each.  
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geographical proximity. Hence, it is interesting to find potential merger gains without 

considering geographical proximity. One could argue that, if mergers were beneficial for the 

distribution companies in Norway, they would already be merged. However, there are only a 

few examples of recent mergers between Norwegian electricity distribution companies. Even 

if there are potential merger gains, they might not be feasible because the companies in the 

industry do not consider them as beneficial. The ownership structure in the Norwegian 

electricity industry consists of many municipalities. These might find importance in owning 

their own distribution companies to have security of supply, secure jobs, and be able to control 

dividends from the companies. However, some of the motivation for the policy makers to 

introduce strict separation between generation and distribution of electricity is that the 

distribution companies might be more willing to merge after the reform.  

Whereas Saastamoinen et al. (2017) use data for the period 2004–2012, we add two more 

years, 2004–2014. 

Agrell and Teusch (2016) study the effect from realized mergers within the Norwegian 

electricity industry in the period 1994–2004. They report only small gains from these realized 

mergers. There are few merger studies within the electricity sectors also for other countries. 

Bagdadioglu et al. (2007) look at Turkish electricity companies for the period 1999–2003. 

Kwoka and Pollitt (2010) report no merger gains from US panel data for the period 1994–2003. 

Çelen (2013) also uses panel data from the US for the period 2002–2009 and reports no 

evidence of merger gains. Almost all these previous studies apply DEA in their analysis. Only 

Çelen (2013) conducts the merger analysis with stochastic frontier analysis (SFA). As pointed 

out in Bogetoft and Otto (2010), there are some problems with the SFA approach. The main 

problem is that one cannot rule out a “learning effect” (explained later in this paper), and it is 

difficult to identify the pure merger gains from the results from the analysis. Saastamoinen et 

al. (2017) apply the StoNED model to their analysis in addition to the more common DEA 
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model. Their analysis shows that the results are quite sensitive to model specifications and the 

method of estimation. In Table 1, we present a brief overview of the previous studies. 

 

Table 1. Summary of previous merger studies on the electricity distribution industry. 

Author(s) Data  Viewpoints Est. 

method/

model 

Merger gains* 

Bagdadioglu et 

al. (2007) 

Panel data 

(1999–

2003, 

Turkey) 

Effects on 

productive efficiency 

DEA Yes 

Kwoka and 

Pollitt (2010) 

Panel data 

(1994–

2003, US) 

Effects on 

productive efficiency 

DEA No 

Çelen (2013) Panel data 

(2002–

2009, US) 

Effects on 

productive efficiency 

SFA No 

Agrell and 

Teusch (2016) 

Working paper 

Panel data 

(1994–

2004, 

Norway) 

Effects on 

productivity 

efficiency from 

realized mergers 

DEA Reports rather small gains from 

realized mergers in the period 

1994–2004. Largest effect from 

internal efficiency increases 

within the firms 

Saastamoinen 

et al. (2017) 

Yearly 

average 

(2004–

2012, 

Norway) 

Effects on 

productivity 

efficiency with 

different 

assumptions on the 

regulatory model 

and the production 

technology 

DEA, 

StoNED 

Reports some merger gains and 

illustrates that potential merger 

gains from the mergers may vary 

on the assumption of the 

regulatory model about the 

production technology 

 

3. Model specification and conceptual framework 

This section introduces the Bogetoft and Wang framework for measuring merger gains. In 

our model, we use total costs as an input measure because, in distribution of electricity in 

Norway, the demand and, hence, the outputs are exogenous. 
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3.1. Mergers 

The merger gains can be explained by the reduction in costs relative to the outputs, after 

one or more companies have merged. This is what is called unadjusted gains, and it can be 

decomposed into several measures. Following Bogetoft and Wang (2005), the unadjusted gains 

are defined by  

�� = � �� ��

�∈�
� /  � ��

�∈�
 (1) 

where c(.) is the estimated cost function; �� is the output vector for the i-th company; �� is the 

actual costs for the i-th company; and H denotes the set of merging companies (|H| = 2 means 

that the measure shows the effect of two companies merging). If �� is less, greater or equal to 

unity, it indicates potential gains, losses, or no effect from the mergers, respectively. 

The learning effect is each company’s individual learning effect, meaning the potential to 

be more efficient. Hence, this is not linked to the merger. Therefore, in our study, we rule out 

this effect. The learning effect is given by 

��� = � �(��)  /
�∈�

� ��

�∈�
 (2) 

By ruling out the learning effect, we get the adjusted gains, which is given by 

�∗ = � �� ��

�∈�
� / � �(��)

�∈�
 (3) 

The adjusted gains can further be decomposed into the harmony effect and the size effect. The 

harmony effect is given by 

��� = � �
1

|�|
� ��

�∈�
� / �

1

|�|
� �(��)

�∈�
� (4) 

where we find the possible reduction in the average input in the production of the average 

output. The size effect is given by 

��� = � �� ��

�∈�
� / �|�| � �

1

|�|
 � ��

�∈�
�� (5) 
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The learning effect LEH is a measure of the cost reduction when we assume that every firm 

learns best practices (become efficient) but do not merge with any other firm. HAH is the 

harmony effect and is a measure of the minimal cost of the average output vector compared 

with the average of the costs adjusted for LEH. The size effect SIH is a measure of the cost of 

operating at full (merged) scale compared with operating at average scale of the original firms. 

The harmony effect, also called the scope effect, is linked to the ability of the companies to 

better utilize inputs after the merger, whereas the size effect, also called the scale effect, is the 

movement toward optimal scale from a merger. By using equations (4) and (5) above, we can 

readily see that �∗ = ��� ∗ ���. 

It is easy to illustrate the conceptual framework of potential merger gains. In Fig. 1, we 

see two initial firms (A and B) and their production possibility set. There are two outputs (�� 

and  ��) relative to costs (�). If firms A and B merge into firm C, the unadjusted merger gains 

in equation (1) correspond to the distance between C and C’’. However, we want to rule out 

the learning effect, see equation (2), meaning firm A’s and B’s movement to the frontier to 

point A’ and B’, respectively. The adjusted (true) merger gains in equation (3) correspond to 

the distance between C’ and C’’. This measure can further be decomposed into the harmony 

effect (equation (4)) and the size effect (equation (5)). Note that under constant returns to scale 

(CRS), the size effect is zero, hence, �∗ =  ���. 
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Fig. 1. Conceptual framework merger gains. 
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3.2. DEA estimator 

To find the estimated costs and the efficiency scores for each firm, the following 

minimization problem must be solved: 

min
�,��,…,��

�  

�. �.     ���
� ≥ � ����

�,

�

���

    ∀� = 1, … , � 

��� ≤ � ����
�,

�

���

                  ∀� = 1, … , �  

�� ≥ 0,                                ∀� = 1, … , �. 

(6) 

This is an input-oriented DEA model, similar to the DEA model used in the regulation of 

the Norwegian electricity distribution companies by NVE. The input orientation is because we 

assume the outputs to be exogenous (demand is fixed), meaning that the companies can only 

adjust their inputs (costs) to be more efficient. In (6), CRS is assumed, as in the regulator model. 

From the regulators standpoint, it might be desirable to treat all the firms the same in regard to 

size, hence, CRS is appropriate. This gives the firms incentives to merge if they are too small 

or split up if they are too big. However, variable returns to scale (VRS) might be more realistic 

to the actual technology in the industry. To implement VRS in the model, the convexity 

constraint �� ≥ 0 changes to ∑�� = 1. Introducing decreasing returns to scale (DRS) or 

increasing returns to scale (IRS) would favor the small or the large firms, respectively, and is 

therefore not interesting in this analysis.2,3 

By solving the minimization problem in equation (6), we find the piecewise linear 

                                                 

2 DRS (IRS) are sometimes referred to as non-increasing (non-decreasing) returns to scale. 
3 The free disposable hull (FDH) and the free requirement hull (FRH) are two more possible assumptions on 

scale (not always called DEA-models). However, to implement these assumptions, the convexity constraint 

must be avoided; see Bogetoft and Otto (2010). 
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production frontier illustrated in Fig. 2. The frontier is determined by the efficient companies 

(VRS) or company (CRS). All deviations from the frontier are regarded as due to inefficiency. 

Therefore, all companies represented by the black dots, along the frontier in Fig. 2, are 100% 

efficient, and all companies below the frontier are less efficient. 

 

 

Fig. 2. Illustration of DEA. 

 

3.3. Adjusting for firm heterogeneity 

The Norwegian electricity distribution companies are operating in different environments. 

The weather conditions, the amount of rainfall/snowfall or the steepness of the terrain are 

examples of variables that can affect the costs of the firm. To take the environmental variables 

into account, but still following the Bogetoft and Wang (2005) framework, the costs are 

adjusted. To do this, we follow the procedure by Barnum and Gleason (2008). By finding the 

parameter estimates for the environmental variables by using a cost function model, the 

observed costs in our data can be adjusted: 
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���� = � + ���´� + ��´� + �� (7) 

where ��� is a vector of logged output values for the i-th firm; � contains the parameter 

estimates; z is the vector of the environmental variables; and � is the vector of parameter 

estimates for these variables, which gives the effect on costs from the environmental variables. 

The observed costs are adjusted, as indicated in the following equation: 

��� = exp(ln(��) − ��´�) = �� exp(−��´�) (8) 

4. Data 

The data include yearly averages for 55 integrated firms during the period 2004–2014. 

There are two main reasons why we use average data instead of yearly data. First, by averaging, 

we reduce the effect of noise in the data; see Kuosmanen et al. (2013). Second, by using yearly 

data, we would obtain potential merger gains at different points in time. This would be difficult 

to analyze and to give meaningful conclusions. Further, the regulator in Norway also applies 

average data to secure a more stable cost frontier; see Amundsveen and Kvile (2016). 

The integrated firms have positive outputs in both generation and distribution of electricity 

over the whole period. However, in this analysis, the aim is to investigate potential merger 

gains between the distribution companies. In Table 2, descriptive statistics for the costs and 

outputs for these firm’s distribution services are presented. The outputs representing the main 

cost drivers in the industry are the number of network stations (NT), the length of network (N), 

and the number of customers (Q). Length of network is the length of the (high-voltage) 

distribution network in kilometers. The number of customers is the total number of entities 

(firms and households) that pay the network tariffs. The single input is total costs (TOTEX). 

For the entire industry in 2013, total costs were about 13.5 billion Norwegian kroner (NOK).4 

whereas total cost on average was approximately 110 million NOK. In 2013, the largest 

                                                 

4 1 USD = 8.53 NOK, 1 EUR = 10.01 NOK on July 3, 2018. 
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company (Hafslund) had a total cost of 1.6 billion NOK while the smallest company (Modalen 

Kraftlag) had a total cost of only about 3.4 million NOK. Considering the outputs and costs of 

the firms in the industry, it is clear that there are large variations in firm size. In Table 2, the 

environmental variables are also included, and there is large variation in the different variables 

describing the environment in which each company operates. For example, the length of 

network (km) range from about 32 km to over 6,000 km, and the environmental variable that 

gives the proportion of sea cables shows a range from 2% to 30%. For underground cables, the 

range is from 24% to 51%, and so on. This shows the existence of firm heterogeneity for which 

we should control. 

 

Table 2. Descriptive statistics. Yearly average 2004–2014. 

Variables Label Mean SD Min Median Max 

Number of network stations NT 507 511 30 318 2,974 

Length of network, in km N 484 469 34 329 2,938 

Number of customers Q 8,334 10,077 385 4,961 56,758 

Total costs, 1,000 NOK (2010) TOTEX 48,738 51,631 2,912 31,610 285,327 

Firm-type observations  55 distribution companies that are 

integrated firms (positive outputs in 

both generation and distribution of 

electricity)  

Environmental variables             

Underground cables Z1 0.24 0.11 0.07 0.21 0.51 

Sea cables Z2 0.02 0.04 0.00 0.01 0.30 

Overhead cables Z3 0.09 0.09 0.00 0.06 0.39 

Average slope of terrain Z4 11.38 3.54 4.69 10.98 22.22 

Average distance in km to road Z5 281.20 232.50 84.69 178.86 924.09 

Number of islands Z6 2.80 5.76 0.00 0.00 25.00 

Deciduous forest Z7 0.09 0.09 0.00 0.05 0.31 

Coastal climate Z8 0.17 0.42 0.00 0.02 2.30 
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4.1. Pairwise mergers based on minimal distance 

In this study, pairwise mergers of the 55 electricity distribution companies are examined. 

First, the mergers are decided by minimization of the geographical distance between all the 55 

distribution companies. This is done by listing all possible combinations (55*54 / 2 = 1485 

combinations) and then finding the 27 pairs that gives the total minimum distance in kilometers 

when each firm is only merged once.5  

In Fig. 3, the map of Norway with all the pairwise mergers is presented. The map shows 

the 27 mergers decided by minimization of geographical distance. Because we have 55 

companies, and due to the large distances between distribution companies in the north of 

Norway, we find that around Alta, three companies are merged. We want to find out how the 

cost in the industry is affected if all these mergers where implemented. 

 

 

 

                                                 

5 The distance is measured by using the haversine formula, see Robusto (1957). 
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Fig. 3. Geographical presentation of pairwise merges by minimization of geographical 

distance. (South of Norway left. North of Norway right.) 

 

4.2. Pairwise mergers based on maximum cost reduction 

Because we have examples of mergers between distribution companies in Norway that are not 

located geographically close, it is also interesting to find the potential merger gains if we 

optimize the merger combinations while relaxing the geographical restrictions, meaning that 

one merger can consist of two companies located in different parts of the country. By doing 

this, we can find the total maximum potential merger gain in the electricity distribution industry 

in Norway. Hence, the goal is to maximize the sum of gains from all the pairwise mergers.  

While keeping the initial frontier constant, we run all the 1 485 possible combinations 

of pairwise mergers. By sorting the result on potential merger gains, we can find the maximum 
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cost reducing combination of potential merger gains when each firm is only merged once. This 

gives us approximately the optimal potential pairwise merger gains from the companies 

included in this analysis.6   

5. Results 

5.1. Potential gains from pairwise mergers based on minimal distance 

In this section, the potential merger gains from the DEA analysis where geographical 

distance is minimized are presented. The analysis is conducted with the assumptions of CRS 

and VRS in the model. In addition, in both assumptions on technology, the models are 

estimated with initial observed costs and with observed costs adjusted by the environmental 

variables, following the procedure described in equations (7) and (8). This gives us four 

different DEA models. 

The results from the four model specifications in this analysis are presented in Table 3. In 

the first column, the results from the CRS model with observed costs are presented. In the 

second column, the results from the CRS_Z model with adjusted costs are presented. When 

assuming CRS, the size effect will, of course, be zero. It does not matter how big the companies 

get after the merger because returns to scale are constant. Therefore, in the CRS models, we 

see that E* = HA. In a convex function, HA will, by construction, always be less than or equal 

to one; see equation (4). Here this means that HA will never be less than zero (the cost reduction 

is non-negative). Hence, because E* = HA, the size effect when assuming CRS will never be 

different from zero. For the two CRS models, the E* is the interesting result, and we have 

presented the minimum, maximum, mean, and median values of the potential merger gains on 

                                                 

6 Let v(i, k) be the merger gains from merging firm i and k. In theory we can have a situation where  
v(i , k) + v(j , l) > v(i , j) + v(k , l) even if v(i , j) gives the highest pairwise merger gains. In our analysis v(i , j) will 
be chosen first, making v(i, k) and v(j , l) not possible.    
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cost reduction. The standard deviation is also presented to show the variation in the results. At 

the bottom of each column, we have calculated the total cost effect in 1000 NOK to the industry 

if all mergers presented in section 4.1 were realized. The mean value for the CRS model shows 

that the potential merger gains gives a reduction in cost of 1.18%, the maximum cost reduction 

is 3.79%, whereas the minimum value is zero. We see that the total potential merger gains from 

these firms merging (see Fig. 3) represents a cost reduction of about 27 million NOK. In the 

CRS_Z model, where the environmental variables have been used to adjust costs, we see that 

overall the effect on reduced costs is lower. The total potential cost reduction to the industry is 

10.5 million NOK. 

In the VRS and VRS_Z models, we see that the mean results of E* in both models gives a 

cost increase to the industry. However, we can also see that the median represents a cost 

reduction in the industry. We can observe that the minimum value is very high, meaning high 

cost increases. In the two models where we assume VRS, the harmony effect can be different 

from the adjusted gains effect because the size effect now also applies. We see from the 

harmony effect that both the mean and median in the VRS- and the VRS_Z-models are positive, 

meaning cost reductions. The size effect is negative at the mean but positive at the median. The 

minimum value in the VRS model gives a cost increase of almost 43% and 21% in the VRS_Z 

model. The total cost effect on the industry is negative in both VRS models owing to the gains 

for several mergers being negative, meaning it will lead to a cost increase for these companies 

and the industry, (cost increase of 116 million NOK in the VRS model, and a cost increase of 

40 million NOK in the VRS_Z model).  
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Table 3. Potential gains from pairwise mergers based on minimal distance 

  CRS CRS_Z VRS VRS_Z 

E*      

 Min 0.00% 0.00% −35.40% −17.85% 

 Max 3.79% 2.39% 8.24% 6.19% 

 Mean  1.18% 0.67% −3.04% −0.10% 

 Median 1.11% 0.23% 2.23% 1.92% 

 SD 0.0011 0.0072 0.1073 0.0571 

HA      

 Min 0.00% 0.00% 0.00% 0.00% 

 Max 3.79% 2.39% 6.20% 7.67% 

 Mean  1.18% 0.67% 1.97% 1.60% 

 Median 1.11% 0.23% 1.64% 1.11% 

 SD 0.0011 0.0072 0.0168 0.0185 

SI      

 Min 0.00% 0.00% −42.81% −20.53% 

 Max 0.00% 0.00% 4.62% 4.12% 

 Mean  0.00% 0.00% −5.04% −2.41% 

 Median 0.00% 0.00% 0.92% 1.48% 

 SD 0.0000 0.0000 0.1183 0.0649 

1000 NOK 27,631 10,467 −116,564 −40,072 

Notes: E* = Adjusted merger gains; HA = Harmony effect; SD = standard deviation; SI 

= size effect. 

Negative numbers mean cost increases whereas positive numbers mean cost reductions 

to the industry. 

 

The results from the VRS models tell us that several of the suggested merger combinations 

will lead to high cost increases if the mergers are being completed. Further, this indicates that 

some of the firms are too big initially to have any positive effect on a merge with another firm, 

which is surprising because these firms are natural monopolies. This also contradicts the 

findings in other studies on scale economies on the Norwegian electricity distribution industry; 

see Kumbhakar et al. (2015) and Mydland et al. (2018a). However, the findings in this analysis 
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correspond to the results in Saastamoinen et al. (2017). They report very high size-related 

diseconomies (cost increases) in both the DEA and the StoNED models when assuming VRS. 

This might suggest that the assumption of VRS is not an appropriate assumption with respect 

to the technology of the firms in this merger analysis. The Norwegian regulator assumes CRS 

in the regulation model because this gives the firms incentives to merge if they are too small.  

 

5.2. Potential gains from pairwise mergers based on maximum cost reduction 

In this section, we focus on the results from finding the optimized merger combinations in 

the CRS and the CRS_Z models. In Table 4, the results from the optimized mergers are 

presented. Because we assume CRS technology, the SI effect will be zero, and, thereby, the 

HA effect will be equal to E*. We, therefore, drop HA and SI from the presentation in Table 

4. Note that the merging firms are not necessarily the same in the CRS and the CRS_Z models.7 

It is an interesting result that even when we optimize the merger combinations, we still find 

that some mergers will give zero effect on costs. However, compared with the situation where 

the mergers were decided by minimal geographical distance, we see that these results give 

higher cost reductions to the industry. In the CRS model, we find that if all these mergers were 

implemented, the total cost reduction in the Norwegian electricity distribution industry would 

be 68 million NOK and 28 million NOK in the CRS_Z model. When we adjust the costs by 

the environmental variables in the CRS_Z model, we see that the potential merger gains are 

lower. This is because when we adjust the cost for the environmental variables, on average, the 

cost for each firm reduces by about 22%. This means that we reduce the cost base and the 

potential gains with respect to cost reductions before we run the DEA merger analysis. 

  

                                                 

7 Figs. A1 and A2 in the Appendix show which companies are merging in each model. 
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Table 4. Potential cost reduction from optimized merger combinations. CRS and CRS_Z. 

  CRS CRS_Z 

E*    

 Min 0.00% 0.00% 

 Max 11.28% 6.50% 

 Mean 4.08% 2.13% 

 Median 4.51% 2.11% 

 SD 0.0342 0.0175 

1000 NOK 68,369 28,388 

Notes: E* = Adjusted merger gains. 

 

 

6. Conclusions 

This study provides insight into the potential merger gains for the electricity distribution 

companies in Norway that are affected by the changes in the Norwegian Energy Act. The 

results show evidence of potential merger gains for some of the companies in this study. 

However, the potential gains are not very high. The sum of the costs for all firms included in 

this study is about 2.5 billion NOK. When we optimize the merger combinations, the highest 

total potential merger gain on costs to the industry is about 68 million NOK. This represents a 

potential cost reduction of less than 3% from the total costs in the industry. 

Mydland et al. (2018b) reports that, on average, the costs will increase by 8% if generation 

and distribution of electricity are strictly separated in the Norwegian electricity industry. This 

means that, by comparing the results from these two studies, we see that the losses from not 

utilizing economies of scope, will lead to a cost increase in the industry, even if all the 

suggested optimized merger combinations were implemented. The potential merger gains are 

only one of the reasons for the action of the policy makers to amend the Energy Act of Norway. 

However, this seems to be an important reason in justifying the new reform taking effect from 

2021 for all electricity companies in Norway. 
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To find the optimal mergers in this study, we have relaxed the restriction on the 

geographical proximity by checking all possible pairwise merger combination across Norway. 

This gives us the optimal mergers within the Norwegian electricity distribution industry. In 

future work, it would be interesting to see the potential merger gains if also the restriction on 

pairwise mergers where relaxed. By finding potential merger gains from companies merging 

with more than one company, we might find different potential merger gains.  

In this study we hold the initial frontier constant while performing the merger analysis on 

all companies in the Norwegian industry. In reality the frontier might shift if one or several 

merges would happen between some of the firms in the industry. If so, then the results from a 

merger analysis on the other firms in the industry, that has not yet merged, might change. It 

would be interesting to do a merger analysis where we take into account that mergers between 

firms might affect the potential merger gains for other firms.        
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Fig. A1. CRS. Optimized mergers, with assumption on constant returns to scale. 
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Fig. A2. CRS_Z. Optimized mergers, with assumption on constant returns to scale where costs 

are adjusted for environmental variables. 
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Abstract 

Numerous studies have focused on estimating technical inefficiency in electricity distribution 

firms. Most of these studies did not distinguish between persistent and transient technical 

inefficiency. Furthermore, almost none of the studies estimated the cost of input misallocation 

arising from non-optimal use of inputs. The cost function used to model inefficiency assumes 

that all firms are fully efficient allocatively, which is a very strong assumption. 

In this study, we estimate both the persistent and transient components of technical 

inefficiency and input misallocation of Norwegian electricity distribution firms, using panel 

data from 2000 to 2016. Our modelling and estimation strategy is to use a system approach, 

consisting of the production function and the first-order conditions of cost minimization. Input 

misallocation for each pair of inputs is modelled via the first-order conditions of cost 

minimization. We also estimate the costs of each component of technical inefficiency and input 

misallocation by deriving the cost function for a multiple-output separable production 

technology. Our modelling and estimation strategy handles endogeneity of inputs. Finally, we 

allow for the determinants of persistent and transient technical inefficiency. Our results show 

that the costs of input misallocation of Norwegian electricity distribution firms are non-

negligible. 

Keywords: Cost and production functions, Allocative and technical inefficiency, Determinants 

of inefficiency, Norwegian electricity distribution firms 

JEL Classification: C31; D21 
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1 Introduction 

Application of stochastic frontier analysis (SFA) to study inefficiency of electricity generation 

and/or distribution firms has overwhelmingly focused on technical inefficiency. It is often 

assumed that all firms are fully allocatively efficient, that is, there is no input misallocation 

(under or overutilization) that results from failure to minimize costs exactly because of some 

institutional, structural, and managerial problems. Furthermore, few studies go further to 

distinguish between persistent (long-term/time-invariant) and transient (short-term/time-

variant) technical inefficiency. There is also a lack of empirical research investigating the extent 

to which these omissions matter. The purpose of this paper is to address these questions using 

panel data for Norwegian electricity distribution firms. 

Electricity distribution firms in Norway have the characteristics of natural monopolies within 

their service territories. As a part of greater market orientation introduced to the industry during 

the 1990s, the firms are regulated. The Norwegian regulator, Norwegian Water Resources and 

Energy Directorate (NVE), uses a benchmarking model to estimate each firm’s technical 

efficiency score, while not identifying input misallocation. The efficiency scores, as the 

regulator calculate for each firm, determine sixty per cent of the firms’ revenue cap. From a 

regulator’s point of view, the main focus is to motivate the firms to increase productivity and 

efficiency without going into micro management. However, in reality, the firms could reduce 

costs in production by changing its input allocation. This could be important for the society, the 

consumers of electricity and the owners of the electricity distribution firms. Because the NVE’s 

regulation model is a one-year model, it does not distinguish between transient and persistent 

technical efficiency. Again, this might not be a direct problem within the task given to the 

regulator, but if the goal is to minimize overall (economic) costs, one should distinguish 

between different sources of inefficiency because it is likely that the solution to the sources of 

inefficiency might differ, and disentangling these sources might influence the overall technical 
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inefficiency score. Also ignoring persistent inefficiency, for example, might affect the estimates 

of the technology. In this study, we apply panel data that make it possible to disentangle 

persistent (time-invariant) and transient (time-variant) inefficiency. Ignoring input 

misallocation can be more serious (see Kumbhakar and Wang, 2006a) because the estimated 

technology parameters may be inconsistent. 

Previous studies that estimate both technical inefficiency and input misallocation have 

widely adopted the dual approach that utilizes the duality between the cost and production 

functions. However, estimation of a cost function with both technical inefficiency and input 

misallocation is quite complex (Kumbhakar and Wang, 2006b). Estimation of the production 

function alone cannot accommodate input misallocation. The alternative is to use a primal 

system that uses the production function and the first-order condition for cost minimization. 

Schmidt and Lovell (1979) used this approach, which is flexible enough to incorporate both 

technical inefficiency and input misallocation, and costs therefrom. However, they used a 

Cobb–Douglas (CD) production function. Subsequently, Kumbhakar and Wang (2006b) 

extended their modelling approach and used a translog production function. Although they used 

panel data, their model is essentially cross-sectional. An advantage of this approach is that in 

addition to estimating technical inefficiency and input misallocation, the model takes into 

account endogeneity of inputs. Some studies have used the production function and the first-

order conditions for profit maximization or a profit function and the implied demand system 

using Hotelling’s lemma to estimate the profit loss from each component (see Kumbhakar et 

al., 2015 and references therein). This approach takes into account endogeneity of both inputs 

and outputs. Another approach is to study the observed demands to determine whether these 

are the cost-minimizing demands consistent with observed prices. Alternatively, one can seek 

to find the set of prices that would make observed demand cost minimizing. In all of the 
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described approaches above, a number of variations have been presented over the years (for 

more details, see Kumbhakar, 2015, ch. 8, and Greene, 1993). 

To the best of our knowledge, there exists only one recent SFA study on technical 

inefficiency and input misallocation within the electricity distribution industry. Nemeto and 

Goto (2006) used a CES cost frontier to study technical inefficiency and input misallocation in 

the Japanese electricity transmission and distribution industry. Using panel data of Japanese 

utilities for the period 1981–1998, they reported that technical inefficiency raises costs by 1–

28%, while input misallocation raises costs by 8–30%. 

Our approach is an extension of Kumbhakar (1988), and it involves estimating a production 

function frontier together with the first-order conditions of cost minimization. Kumbhakar 

(1988) introduced a flexible functional form of production technology, which permits elasticity 

of output to vary across firms, and introduced input misallocation separate from random errors 

in optimization. In our paper, we consider some extensions of the Kumbhakar (1988) model to 

study inefficiency in the Norwegian electricity distribution industry where we disentangle 

persistent and transient technical inefficiency and at the same time estimate input misallocation 

for each pair of variable inputs. We also estimate the costs of each of these inefficiency 

components. Furthermore, our model allows for multiple inputs and outputs, handles 

endogeneity of inputs and includes the determinants of persistent and transient technical 

inefficiency. 

Our study has two main contributions. First, we extend the sparse SFA literature on 

modelling both technical inefficiency and input misallocation in electricity distribution 

industries. Second, we extend the modelling and estimation approach by including additional 

inefficiency components, decomposing them into persistent and time-varying components and 

also include inefficiency determinants for both of these. 
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The remainder of the paper is organized as follows. The model specifications and estimation 

method are described in Section 2. Section 3 describes the data, and Section 4 presents the 

results. In Section 5, we present a summary of our main results and concluding remarks. 

 

2 Model specification and estimation method 

2.1 The model 

We consider the production function used in Kumbhakar (1988) extended to accommodate a 

generalized error specification 

 �(���) = �� �∏ �
���

���
��� � �������������  (1) 

where ��� is output for firm i and time t (� = 1,⋯ ,�; � = 1,⋯ ,�), �� are inputs (� = 1,⋯ ,�), 

and �� and �� are the parameters to be estimated.1 ��� is the noise term that captures exogenous 

shocks unknown to the producer, ��� is persistent inefficiency and ��� is transient inefficiency. 

We extend the model to incorporate a multiple-output separable production technology. 

Assuming a translog functional form of F(Yit); that is 

 �� �(���) = ������ + �������� +
�

�
 �������� ⋅ ������ (2) 

and substituting (2) into the log form of (1), we can rewrite (1) as 

 ������ + �������� +
�

�
 �������� ⋅ ������ =  ���� + ∑ ��������

�
��� − ��� − ��� + ���  (3) 

If inputs are exogenous, direct estimation of the production function parameters is possible 

by the maximum likelihood method using distributional assumptions on the inefficiency and 

                                                 
1 This is referred to as the generalized production function and was introduced by Zellner and Revankar (1969). 
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noise components when there is a single output. However, for regulated industries such as the 

electricity distribution firms that we consider, output (outputs) is (are) treated as exogenous, 

and inputs are endogenous.2 In this case, estimating equation 3 will result in inconsistent 

parameter estimates, even if there is a single output. If outputs are exogenous (not a choice 

variable), maximization of profit is the same as minimization of cost. Since the distribution 

industry is a service industry, and outputs then are exogenously determined, it is a standard 

practice to estimate the technology using the dual cost function. One can then use the duality 

results to derive the underlying features of the production function. For the production function 

in equation 1, one can derive the cost function analytically. That is, from the parameters of the 

cost function, we can derive the parameters of the production function, and vice versa. 

From microeconomic theory, the firm is said to be allocatively efficient (no input 

misallocation) if it equates the marginal rate of technical substitution between each pair of 

inputs with the ratio of input prices. We therefore model input misallocation as 

 
������

������
= ��� �

����

����
� ����� � = 2,⋯ ,� (4) 

where the factors of proportionality ��� are firm and input specific, ���� are random errors in 

cost minimization, ������ are the marginal products of ����, and ���� are the input prices. Apart 

from input misallocation that arises from a non-optimal mix of inputs, the equation underlines 

the fact that some inefficiency may also arise from uncontrolled random exogenous shocks; 

e.g., uncertainty in input and output prices, quality of inputs, etc. Solving ���� from equations 

(3) and (4) yields the input demand functions (see Appendix A3) that can be used to derive the 

cost function, which is 

                                                 
2 For example, the output of Norwegian electricity distribution companies is decided by their customers. This 

means that there is no point for the companies to increase their amount of distribution services, if the customers 

do not demand this increase. 
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����� = −
�

�
��� �� + ∑ �� �� ��

�
��� � +  

�

�
������� + �������� +

�

�
 �������� ⋅ ������� +

 
�

�
 ∑ ��

�
��� �� ���� + ����� + ∑ �� �

������
��� � +

�

�
 ∑ �� ���� +

�
���

�

�
(��� + ���) −

�

�
(���) + ��� 

 (5) 

where 

 ��� =  �� � �� + ∑ �� /(����
����)

�
��� � +

�

�
 ∑ �� �� ��� −  �� � �� + ∑ (�� �

�����)
�
��� �

�
���   (6) 

From the expression of the cost frontier in (5), it is evident that any kind of inefficiency leads 

to an increase in cost. The cost of technical inefficiency is given by 
�

�
(��� + ���), whereas the 

cost of input misallocation is given by (6). As the derivation of the cost function uses the FOCs 

of cost minimization, the resulting cost function depends on input misallocation, and persistent 

and transient technical inefficiency. In particular, the above cost function shows the amount of 

cost (normally) increase because of input misallocation, and persistent and transient technical 

inefficiency. Once the relevant parameters are estimated, the increase in cost because of input 

misallocation, and persistent and transient technical inefficiency can be computed for each firm. 

 

2.2 Estimation method 

Equation (3) can be rewritten as (Appendix A1) 

 ������ ≡ �� +  ∑ ���� �
����

����
� + �������� + �������� + �������� ∗ ������ + ���

�
���  (7) 

where ��� = ��� 
∗ + ���

∗ + ���
∗  , ���

∗ =
�

�
���,���

∗ = 
�

�
���,���

∗ = 
�

�
��� and � =

�

��
. From this 

specification, we can compute �� = −�� ⋅ � = −
��

��
 for � = 1,…,�,�� = � − ∑ ��

�
��� =
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�

��
�1 + ∑ ��

�
��� �, and � = ∑ ��

�
��� , where � defines the returns to scale (RTS). Similarly, the 

FOCs for cost minimization (equation 4) can be expressed as 

 �� �
����⋅����

����⋅����
� ≡ �� + ��� + ���� (8) 

where �� = ln �
��

��
� for � = 1,…,� (see Appendix A2). The parameter ���  can be directly 

calculated as ���� = ����������� − ���, where ����������� is the average across time of ������; i.e., 

�

�
∑ ������
�
��� , where ������ = �� �

����⋅����

����⋅����
�. Furthermore, ��� = ln ���, which implies ��� =

exp�����. This allows us to estimate ���� = ln ���� − ��� − ���� . We can therefore substitute the 

parameter estimates of ��, ��� and ���� into (6) to calculate the cost of input misallocation. The 

cost of technical inefficiency as defined earlier is the sum of persistent inefficiency (���
∗ ) and 

transient inefficiency (���
∗ ). Note that in (8), we find that 

����

����
 are functions of input price ratios 

and input misallocation. Thus, ����� =
����

����
 in (7) is exogenous as long as input misallocation is 

independent of ��� and ���, which is a common assumption. Therefore, we can estimate (7) 

without any endogeneity problems because our outputs are exogenous. However, estimation of 

(7) will not help us to estimate the cost of input misallocation. 

In our study, we define the composite error term ��� in (7) across four different model 

specifications. The numeraire input (��) in all the models is capital. Model 1 is the SFA model 

with a normal distribution of the noise term (���) and half-normal distribution of the efficiency 

term (���) (Aigner et al., 1977). Model 2 is the “true fixed-effects” (TFE) model with 

determinants for inefficiency, whereas Model 3 is the “true random-effects” (TRE) model with 

determinants for inefficiency (both introduced by Greene, 2006a, 2006b). Model 4 is a 

generalized TRE (GTRE) model with determinants for inefficiency (Badunenko and 
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Kumbhakar, 2017; Lai and Kumbhakar, 2018; Lien et al., 2018). The model specifications are 

summarized in Table 1. 

 

Table 1: Econometric specification of stochastic frontier models 

 Model 1 Model 2 Model 3 Model 4 

��� ��� = ��� + ��� ��� = �� + ��� + ��� ��� = �� + ��� + ��� ��� = �� + ��� + ��� + ��� 

Firm effect  ��~����� ��������� ��~���� �0,��
�� ��~���� �0,��

�� 

Noise ���~���� (0,��
�) ���~���� (0,��

�) ���~���� (0,��
�) ���~���� (0,��

�) 

Transient 

inefficiency 

���~����
� (0,��

�) ���~����
� �0,��

�(���)�

= � � �0,���(���

+ ����
� ���)� 

���~����
� �0,��

�(���)�

= � � �0,���(���

+ ����
� ���)� 

���~����
� �0,��

�(���)�

= � � �0,���(���

+ ����
� ���)� 

Persistent 

inefficiency 

   ���~����
� �0,��

�(��)�

= � � �0,���(���

+ ���
� ��)� 

Main 

reference(s) 

Aigner et al. (1977) Greene (2006a, b) Greene (2006a, b) Badunenko and 

Kumbhakar (2017), Lai 

and Kumbhakar (2018), 

Lien et al. (2018) 

 

Details on the estimation issues can be found in the relevant papers (main references) cited 

in Table 1. Model 1 corresponds to the specification in Kumbhakar (1988), and we include this 

as a benchmark in our study. This model does not account for the panel structure of the data. 

Models 2 and 3 are panel data models that separate firm heterogeneity from transient 

inefficiency. The former models firm heterogeneity as a fixed effect, whereas the latter models 

it as a random effect. Both models specify the time-invariant component (��) as firm 

heterogeneity, whereas, for example, in Kumbhakar and Heshmati (1995) this is considered as 

persistent inefficiency. Model 4 is a generalized version of the TRE (Model 3). It decomposes 

the error term into four components, where the first captures random firm heterogeneity; the 

second, persistent inefficiency; the third, transient inefficiency; and the final, random shocks. 
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Models 2 and 3 allow for determinants of transient inefficiency, whereas Model 4 in addition 

allows for determinants of persistent inefficiency. 

Models 1 and 2 are estimated by standard one-step maximum likelihood techniques. Model 

3 is estimated using a simulation-based one-step maximum likelihood estimator (Filippini and 

Greene, 2016). Estimation of Model 4 can be done in several ways. One is the single-step full 

maximum likelihood procedure, first proposed in Colombi et al. (2014), and extended in 

Badunenko and Kumbhakar (2017) and Lai and Kumbhakar (2018) to allow for 

heteroscedasticity in the error components. In this study, Model 4 is estimated using a multi-

step procedure introduced by Lien et al. (2018), which is a modified version of Kumbhakar et 

al. (2014), where the inefficiency components are not necessarily independently and identically 

distributed (iid) but their variances are functions of exogenous determinants. All four models 

are estimated in Stata. 

 

3 Data 

The data used in this study are an unbalanced panel of 146 Norwegian electricity distribution 

firms for the years 2000 to 2016 compiled by the Norwegian Water Resources and Energy 

Directorate (NVE). The data contain economic and technical information on the firms. We used 

2,143 firm-years. 

We use three inputs and two outputs. The inputs are capital, labour and operational cost, and 

the outputs are the total number of customers and the size of the network, defined as the length 

of the high-voltage power lines in kilometres. We define capital as the aggregate book value of 

all assets owned by the firm, labour as number of man-years, and operational cost as total cost 
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minus capital cost, labour cost and value of lost load. 3 We use the regulatory rate of return as 

the input price of capital. This rate is calculated annually by NVE using the weighted average 

cost of capital method (Amundsveen and Kvile, 2016). The price of labour is a year-specific 

variable calculated by the regulatory agency as the annual average cost per man-year (yearly 

average for the firms in the survey). The price of labour is measured in 2015 Norwegian kroner 

(NOK).4 Finally, we use the consumer price index compiled by Statistics Norway as the price 

index for operational cost. 

We include two environmental variables in the analysis, one as a determinant of transient 

inefficiency and the other as a determinant of persistent inefficiency. NVE uses several 

environmental variables in its regulation model, and these are intended to account for 

heterogeneity in the firms’ production environments. In this study, we used the proportion of 

underground cables as a determinant of persistent inefficiency, and the value of lost load per 

kilometre network as a determinant of transient inefficiency. The value of lost load represents 

the estimated amount in NOK that customers receiving electricity through contracts would be 

willing to pay to avoid a disruption in the service, and this variable varies from year to year for 

each firm.5 As the value of lost load also varies with firm size, we divided it by the firms’ 

kilometre network to get a standardized measure. 

Firms with fewer than two consecutive years of observations are dropped from the analysis 

because this is a requirement for panel data models that exploit the within variation in the data. 

Table 2 presents descriptive statistics of the inputs, input prices, outputs and environmental 

variables. 

                                                 
3 We subtract labour cost from operational cost because this is included as an input variable in our analysis. 
Similarly, the value of lost load is subtracted from operational cost because we include this as a determinant of 
transient inefficiency. 
4 1 USD = 8.14 NOK, 1 EUR = 9.50 NOK on June 25, 2018. 

5 The Value of lost load is calculated as lost load times a unit price, with different unit prices for various 
customer groups (Bjørndal et al., 2010). 
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Table 2: Descriptive statistics (N=2143, Year 2000–2016) 

Variable Name Mean SD Min Max 

Input      

Capital (book-value, 1000 NOK) X1 265,290 570,248 1,605 6,873,112 

Man-years (numbers) X2 31.1 48.9 0.6 396.3 

Operational costs (1000 NOK) X3 24,957 65,173 168 901,652 

Price of input      

Price of capital W1 0.072 0.016 0.042 0.100 

Price of labour (per man-year) W2 601 94 439 720 

Price of operational costs (CPI) W3 1.145 0.103 0.965 1.325 

Output      

Number of customers Y1 20,176 54,751 4 696,540 

Network (Km) Y2 727 1,252 5 11,866 

Environmental (Z) transient variable      

Value of lost load per km of network (1000 

NOK) Z1 2.70 2.92 0.000 31.32 

Environmental (Z) persistent variable      

Proportion of underground cables Z2 0.318 0.204 0.000 1.000 

 

4 Results 

Table 3 presents estimates of the input elasticities. Although the estimates exhibit some 

variation depending on the model, we observe that across all models, the elasticity of capital is 

the largest of the three, ranging from 0.67 to 0.85. This is followed by the elasticity of labour 

(man-years) and finally the elasticity of operational costs, ranging from 0.56 to 0.64 and 0.43 

to 0.53, respectively. 
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Table 3: Input elasticities 

Input elasticities Model 1 Model 2 Model 3 Model 4 

Capital 0.847 0.672 0.676 0.788 

Man-years 0.563 0.638 0.642 0.636 

Operational costs 0.533 0.442 0.428 0.460 

 

Table 4 presents the estimates of transient, persistent and overall technical efficiency across 

all four models mentioned in Table 1. The mean transient (and overall) technical efficiency for 

Model 1 is 0.76. Because this model does not account for unobserved firm heterogeneity, we 

expected it to overestimate the level of inefficiency relative to the other models, and this is what 

we observe. The mean transient technical efficiency for Model 3 is 0.93, a value slightly higher 

than that found by Kumbhakar and Lien (2017) in their study of Norwegian electricity 

distribution firms using the same model but over a shorter time frame (2000–2013). However, 

transient efficiency in Model 4 is 0.92, which is higher compared with Kumbhakar and Lien, 

who also use the same model but do not include determinants of inefficiency. However, 

persistent inefficiency is virtually the same in both studies. The mean transient efficiency in the 

TFE model (Model 2) is 0.85, which is within the range of values found by Kumbhakar et al. 

(2015), who used Norwegian data for the period 1998 to 2010 and used the same estimator. In 

this study, technical efficiency scores range from 0.82 to 0.87. Filippini et al. (2018), using data 

for electricity distribution firms in New Zealand for the years 2000 to 2011, found mean 

transient efficiency varying between 0.70 to 0.88 depending on the model, whereas persistent 

efficiency varied from 0.88 to 0.94. 

Models 2 through 4 in Table 4 show that the value of lost load per kilometre of network 

increases the variance of transient inefficiency (illustrated by the positive � coefficient), which 

implies increased inefficiency (or decreased efficiency). Similarly, for persistent inefficiency 

in Model 4, we observe that higher proportions of underground cables increase inefficiency. 
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Figure 1 graphically exhibits the marginal effects of value of lost load per kilometre of network 

on transient inefficiency, as well as the marginal effects of the proportion of underground cables 

on persistent inefficiency, showing a positive association that is increasing in both cases. The 

value of lost load represents a cost to the distribution companies resulting from a disruption in 

the service. High rates of disruption, more likely due to lack of maintenance, represent higher 

costs to the companies and thus will have a negative impact on the efficiency scores. It is 

therefore intuitive that the value of lost load per kilometre of network has a positive and 

increasing effect on the marginal effect on transient inefficiency. 

There is no intuitive explanation of why the proportion of underground cables has a positive 

and increasing marginal effect on persistent inefficiency. One could think that the firms 

investing in newer network solutions also had higher efficiency. One reason for these results 

might be that the firms that have a high proportion of underground cables operate in an 

environment that makes this type of network necessary. If so, it is not the underground cables 

that increase persistent inefficiency but rather the environment. Kuosmanen (2012) reported 

that for Finnish electricity distribution firms, the proportion of underground cables has a highly 

significant positive effect on the total cost, which is consistent with our findings. 
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Table 4: Estimates of technical efficiency and determinants of technical inefficiency 

Statistics Model 1 Model 2 Model 3 Model 4 

Transient technical efficiency     

Mean 0.757 0.849 0.933 0.921 

SD 0.121 0.083 0.083 0.028 

P5 0.561 0.686 0.760 0.872 

P95 0.913 0.943 0.982 0.953 

Persistent technical efficiency     

Mean    0.949 

SD    0.064 

P5    0.868 

P95    0.981 

Overall technical efficiency     

Mean 0.757 0.849 0.933 0.874 

SD 0.121 0.083 0.083 0.065 

P5 0.561 0.686 0.760 0.764 

P95 0.913 0.943 0.982 0.928 

Determinants of transient technical inefficiency 

Value of lost load per km network  0.073*** 0.091*** 0.126*** 

Determinants of persistent technical inefficiency 

Proportion of underground cables    7.177* 

* Significant at p > 0.10, ** Significant at p > 0.05, *** Significant at p > 0.01. 

 

 



121 
 

 

Figure 1: Scatterplot of marginal effects of lost load and proportion of underground 

cables on expected value of inefficiency, based on Model 4. The left plot shows marginal 

effects of value of lost load per km network on transient inefficiency. The right plot shows 

marginal effects of proportion of underground cables on persistent inefficiency. 

 

The estimates of input misallocation, where capital is used as the numeraire, are shown in 

Table 5. K2 and K3 respectively indicate whether the capital/labour and capital/operational costs 

ratios deviate from unity (or the optimal proportion). Our findings show that the capital/labour 

ratio is on average less than one, indicating excessive use of labour relative to capital. The 

results show large variations both between and within the estimation models. For example, in 

Model 4, we observe that more than 15% of the firms have a K2 value greater than 1, indicating 

over-capitalization for these firms. The capital/operational costs ratios, however, show 

excessive use of operational costs relative to capital. This ratio is less than unity for firms at the 

95th percentile across all models, illustrating the robustness of the mean values. 

Our finding that increased capital investments are required in the electricity distribution 

industry is not surprising. In an evaluation report commissioned by the Norwegian Ministry of 

Energy and Oil, Reiten et al. (2014) clearly stressed the need for such investment in the 

electricity distribution sector in the next few decades. 
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Table 5: Estimates of input misallocation of labour and operational costs 

 Misallocation in labour (K2) Misallocation in operational costs (K3) 

Statistics Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4 

Mean 0.564 0.806 0.806 0.685 0.487 0.510 0.491 0.452 

SD 0.408 0.584 0.584 0.496 0.210 0.219 0.211 0.195 

P5 0.260 0.372 0.372 0.316 0.227 0.237 0.228 0.210 

P95 1.650 2.360 2.360 2.010 0.827 0.865 0.833 0.767 

 

As shown above, input misallocation increases cost; therefore, it is interesting to examine its 

effect on costs. Table 6 presents estimates of the overall cost of inefficiency, which is 

decomposed into technical and input misallocation costs. Apart from highlighting that there are 

substantial costs arising from technical inefficiency, the findings show that input misallocation 

also poses a significant challenge to the industry. Eliminating technical inefficiency can reduce 

costs by between 6.7% (Model 3) and 24.3% (Model 1), while for input misallocation, the 

corresponding cost reductions are between 9.0% (Model 2) and 11.3% (Model 1). From Model 

4, we observe that the cost of input misallocation is larger than the cost of technical inefficiency 

for 28% of observations in the sample, implying that for more than a quarter of all firms, input 

misallocation is the main cost challenge. Nemeto and Goto (2006) find that for Japanese 

electricity transmission and distribution firms observed over the period 1981 to 1998, the cost 

of technical inefficiency increased overall cost by between 1% and 20%, whereas for input 

misallocation, the increase was between 8% and 30%.6 As is evident from the lower section of 

Table 6, when input misallocation is taken into account, the overall cost of inefficiency is 

significant for the sample of firms, ranging from 16.1% (Model 3) to 35.6% (Model 1). 

                                                 
6 Our findings that both technical inefficiency and input misallocation contribute to the overall cost inefficiency 
is consistent with a similar study (but not with the same estimation model) by Brissimis et al. (2010) of the 
European banking industry.   
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Table 6: Estimates of cost inefficiency 

 Model 1 Model 2 Model 3 Model 4 

Estimates of cost of technical inefficiency 

Mean 0.243 0.151 0.067 0.142 

SD 0.121 0.083 0.083 0.102 

P5 0.087 0.057 0.018 0.076 

P95 0.439 0.314 0.240 0.276 

Estimates of cost of input misallocation 

Mean 0.113 0.090 0.094 0.109 

SD 0.085 0.096 0.099 0.096 

P5 0.016 0.000 0.002 0.010 

P95 0.276 0.292 0.303 0.307 

Estimates of overall cost of inefficiency 

Mean 0.356 0.240 0.161 0.251 

SD 0.144 0.124 0.149 0.150 

P5 0.177 0.086 0.033 0.115 

P95 0.565 0.473 0.454 0.484 

 

5 Summary and concluding remarks 

In this study, we have estimated persistent and transient technical inefficiency and input 

misallocation using a panel of Norwegian electricity distribution firms for the years 2000 to 

2016. Our modelling and empirical strategy was to formulate and estimate a primal system 

consisting of the production function (generalized Cobb–Douglas) and the first-order 

conditions of cost minimization. We estimated the costs of technical inefficiency and input 

misallocation by deriving the cost function for a multiple-output separable production 

technology, extending the model in Kumbhakar (1988). 

The results show that there exist non-negligible costs of input misallocation for Norwegian 

electricity distribution firms and call into question a commonly imposed modelling assumption 

under the SFA framework, that all firms are fully allocatively efficient. Even if we assumed 

that all firms are technically efficient, the costs to the industry arising from input misallocation 
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would be too high, ranging on the average from 9.0% to 11.3% in our analysis. The robustness 

of these estimates across the different model specifications emphasize the importance of 

estimating input misallocation in general, also in studies of electricity distribution firms. 

Beyond the modelling aspects, our results may also have important implications for 

regulators of electricity generation and distribution firms from across the world. The priority so 

far has been to identify the best method for estimating technical efficiency for benchmarking; 

see, e.g., Bogetoft and Otto (2011). The question that this study poses is as follows: given that 

the goal of regulation is cost minimization, is it not imperative that allocative efficiency also 

should be included in the benchmarking? 

The results from the generalized true random effects model show evidence of persistent 

inefficiency. Filippini et al. (2018) argued that regulators may fail to set optimal efficiency 

targets if they are unable to identify systematic shortfalls in managerial capabilities that 

generate persistent inefficiency and to distinguish these from non-systematic management 

problems in the short run. For firms, however, investment decisions could be delayed and 

incentives for innovation weakened. Therefore, in line with Kumbhakar and Lien (2017), our 

findings further emphasize that future efficiency studies need to disentangle persistent and 

transient technical inefficiency. 
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Appendix 

A1. Derivation of Equation 3 

By taking the log of equation 1, we have 

 ln �(���) = ���� + ∑ ��������
�
��� − ��� − ��� + ��� (A11) 

Inserting equation 2 into the left-hand side of equation A11 yields 

 ������ + �������� +
�

�
 �������� ⋅ ������ =  ���� + ∑ ��������

�
��� − ��� − ��� + ��� 

which can be rewritten as 

 ���� +  �������� = −∑ ��������
�
��� + ������ + ��������   

 +
�

�
 �������� ⋅ ������ + ��� + ��� − ��� (A12) 

By adding and subtracting ∑ ��������
�
���  to the right-hand side of Equation A12, we can 

restate the equation as 

 ���� +  �������� = −∑ ��������
�
��� + ������ + �������� +

�

�
 �������� ⋅ ������  

 +��� + ��� − ��� + �∑ ��������
�
��� − ∑ ��������

�
��� �.  

Taking −∑ ��������
�
���  to the left-hand side and simplifying, noting that ��� − ln � =

ln (�/�), we have 

 ���� +  �������∑ ��
�
��� � = −∑ �� �

������

������
�

�
��� +  ������  

 +�������� +
�

�
 �������� ⋅ ������ + ��� + ��� − ��� (A13) 
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Finally, expressing equation A13 in terms of ������ yields equation 3. 

 

A2. Derivation of Equation 8 

The marginal product of input ���� is given by 

 ������ =
��(���)

�����
=

�����∏ �
���

���
��� ��

������������ �

�����
  

 = ����
����
��

����
�∏ �

���

���
��� � �������������  (A22) 

The marginal product of ���� is similarly defined by changing the subscripts 1 in the 

expression in equation A21 to � and amending the product within the parenthesis to include all 

terms except the ���. Inserting these marginal products into equation 4 and cancelling out the 

common terms yields 

 
������

������
=

������

������
= ��� �

����

����
� ����� � = 2,⋯ ,�  

which can be rearranged to 

 
��������

��������
= ��� �

��

��
� �����  (A22) 

Taking the log of equation A22 results in the expression in equation 8. 

 

A3. Derivation of the input demand functions 

Equation A22 equates the marginal rate of technical substitution between inputs ���� and ���� 

to the slope of the isocost line, which is the ratio of the input prices; that is �����/�����. We can 
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solve for ���� in the equation to obtain the expansion path, which represents all combinations 

of inputs that are cost minimizing. 

 ���� = ��� �
����������

������
� ����� (A31) 

Substituting equation A31 into the production function in equation 3 (i.e., substituting the 

expression for ����) and solving for ���� yields the following log efficient input demand 

functions 

 ������ = �� + ∑ �
��

�
− ���� ������

�
���   

 +
�

�
������� + �������� +

�

�
 �������� ⋅ ������� 

 + ∑ �
��

�
�  �� �

����

����
�

�
���   

 + ∑ ���/� − �������� +
�

�

�
��� (��� + ��� − ���) (A32) 

where 

 �� = ���� −
�

�
����� + ∑ �� ���� 

�
��� � ,� = ∑ �� ,

�
���  and  

 ��� =     
 1     �� � = �       
 0     ��ℎ������,

         � = 1,2,⋯ ,�.  


