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Abstract

Nowadays, Data Envelopment Analysis (DEA) is a well-established practice to apply in

network regulation. More specifically, DEA can turn out to be a proper tool to evaluate

the productivity development of an industry. From the Network Performance Assessment

Model to the Revenue Cap Model and passing through a low-powered rate-of-return regime,

Sweden experienced a broad range of regulatory scheme. This study is the opportunity to

evaluate the impact on the industry of the two mentioned regulatory schemes. Through

a Malmquist productivity index, our study encompasses a productivity analysis of the

Swedish electricity distribution sector from 2002 to 2017. Besides, a Kruskal-Wallis test

and a Tobit regression helped us evaluate if factors such as the ownership type or the

customer density could have an influence on the performances of the operators. Among

other results, we have demonstrated the low-robustness of the Network Performance

Assessment Model and the stability of the industry from the establishment of the Revenue

Cap Model onwards. Recommendations to the Swedish Energy Inspectorate are also

given such as a revision of the general efficiency requirement imposed to the operators

or the inclusion of environmental variables. Furthermore, the results have shown that it

is likely that private operators present better performances than municipally-owned and

cooperative operators.

Keywords – network regulation, electricity distribution data envelopment analysis,

Malmquist productivity index
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1 Introduction

Since the 1990’s, the structure of the electricity supply industry has gone through major

changes. Often called "deregulation" or, more fairly, "restructuring", this trend has

resulted in the unbundling of the previous structure to create a more efficient market.

Introduced by authors such as Friedman and the so-called School of Chicago in the

1970’s, the neo-liberal current empowered many governments to take up the mantle of

deregulation. Among other sectors traditionally run by monopolies as telecommunication

or gas, electricity was one of the main concerned network. Previously, utilities were

concentrated in monopolistic positions in the areas in which they operated. There

was usually no separation between the four different electricity sectors (generation,

transmission, distribution and consumption), which were covered by the same public

operator (Wangensteen, 2012). The restructuring triggered a global trend in the electricity

market to unbundle these sectors in order to promote competition inside them. One of the

main consequences of this restructuring was notably to introduce a competitive environment

into the generation of the electricity market by allowing the different distribution system

operators (DSOs) and major consumers to choose their supplier of electricity. According

to this new scheme, the different generation companies competed through a wholesale

commodity market, causing a reduction of the tariffs and more incentives for generators to

optimize their operations. A major change has also taken place in electricity distribution.

Given the existence of high fixed-costs, network utilities can be described as natural

monopolies. Nevertheless, as highlighted in the neo-liberal literature, a distribution system

operator is likely to abuse its market power, resulting in a lower total welfare than in a

competitive situation. This typically results in effects such as a low cost-efficiency and high

tariffs charged to the customer. In view of this, a regulatory change of network operators

was needed. These regulations are nowadays mainly funded on incentive-based regulation

such as depicted by Laffont and Tirole (1993).

This new type of regulation intends to offer proper incentives to operators to align their

profit-maximizing goal with a total welfare-maximizing goal. To achieve this, different

regimes have been tested with relative success throughout the world such as the common

revenue cap.
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Another way of viewing the issue is based on the information asymmetry between the

regulator and the regulated operator, as underlined by the Agency Theory. In the case of a

low-powered regulation, this would result in a company providing the regulator with wrong

cost information in order to increase its allowed revenue. In the attempt of limiting this

phenomenon, regulators resort to extensive use of freshly designed benchmarking methods

such as Data Envelopment Analysis to capture the real performance of the operators and

to determine a reasonable revenue cap according to the results.

Apart from providing useful informative tools for the regulation of a network, the

benchmarking methods can as well offer a room for productivity research of the industry.

Since performances of the different actors are reported every year by the regulator, they

can be tracked over time in order to evaluate their productivity development related to

several aspects. A productivity development evaluation can turn out to be particularly

useful to address the health status of the distribution sector in a given country and more

specifically, to evaluate the impact of a new regulation in the industry. This thesis will

focus on this aspect of the benchmarking methods.

More precisely, we will concentrate on a country which can be seen as one of the precursors

of the global restructuring trend: Sweden. To say a few words about its regulatory

situation, Sweden recently switched to the more common revenue cap regime after having

experienced three other regulatory schemes with limited success since its restructuring in

1998. This revenue cap is set for a regulatory period of four years and is revised at the

end of it.

In light of the last two paragraphs, our research question is the following:

How did the productivity development of the Swedish distribution system operators evolve

from 2002 until now?

To answer this question, a productivity index based on a Malmquist approach will be our

main tool.

Such research is common and has been achieved in many countries. However, concerning

Sweden, research of this kind dates back to the period 1970-1986 (Hjalmarsson and

Veiderpass, 1992) or 2000-2006 (Agrell and Grifell-Tatjé, 2016). An updated analysis

including recent data (2011-2017) or another model for 2002-2006 such as proposed in this
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thesis is relevant to complete these past studies. As evoked before, from a low-powered rate-

of-return regime to a Revenue Cap Model and passing through the Network Performance

Assessment Model, an engineering-driven model, Sweden experienced a broad range of

regulatory schemes. Besides providing a clearer picture of the situation of the industry,

this thesis is also the opportunity to evaluate the impact on the industry of the two main

regulatory schemes: The Network Performance Assessment Model which was the model

initially planned to regulate the industry; the Revenue Cap Model which was conceived in

reaction to the fall of the latter scheme. Especially, this thesis can be the opportunity to

provide the regulator with some relevant findings concerning the new regulatory scheme.

The next chapters of this thesis will be ordered as follows: Chapter 2 will aim at providing

the first insights by exploring the literature that relates to benchmarking and productivity

research in particular; Chapter 3 will set the regulatory framework through an introduction

to the main families of regulatory regimes set up in electricity distribution followed by a

glimpse of the regulation in Sweden; Chapter 4 will dig a bit deeper in the benchmarking

techniques employed nowadays under the light of Data Envelopment Analysis and will

then achieve a review of the existing literature concerning benchmarking research; Chapter

5 will develop more deeply the tools used to evaluate the productivity development, i.e.

the Malmquist index and other statistics methods; Chapter 6 will follow with a quick

summary of the data provided by the Swedish Energy Inspectorate and its formatting and

model; Chapter 7 will analyze the results obtained by applying tools from Chapter 5 to

data presented in Chapter 6; A conclusion with the main findings and recommendations

will be given in Chapter 8.
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2 Literature Review

The purpose of this section is to locate our thesis in comparison with the existing literature

and to detect useful tools which might help us thereafter. We will first review the

main benchmarking research for network operators in order to fill the gap between the

regulatory setting of a country and its benchmarking method employed. By a second

step, some of the main theoretical and practical studies about productivity development

will be approached. Finally, a special attention will be devoted to benchmarking research

concerning Scandinavian countries.

2.1 Benchmarking research for network operators

Directly inspired by the agency theory, economic regulation is now a well-established

economical current to effectively regulate natural monopolies (Joskow, 2008). Combined

with the introduction of new benchmarking techniques known as frontier-based methods by

pioneers (Charnes et al. (1978); Banker et al. (1984); Banker et al. (1989)), the book written

by Laffont and Tirolle (1993) set the outlines of the transition towards reformed regulations

of network sectors such as telecommunication, electricity or natural gas transportation. To

know more about economic regulation used in networks, a relevant reading that enlightens

its main terms and concepts is provided by Agrell (2015). Regarding frontier-based

methods, a non-exhaustive list of main findings in DEA until 2009, can be explored in

Cook and Seiford (2009).

As said earlier, the electricity distribution sector can be seen as a good application for

economic regulation. In this respect, Joskow (2008) examines developments of incentive

regulation for electricity distribution and transmission network with a focus on price-cap

regulation. A summary of regulation in electricity distribution through frontier-based

method is exhibited by Agrell and Bogetoft (2017). Coelli et al. (2003) co-wrote a book to

provide regulators with useful benchmarking tools to evaluate the efficiency of different

actors in a regulated industry. More broadly, frontier-based methods turned out to be

useful tools to evaluate the efficiency of the distribution sector. A cornerstone is the old

but relevant review of existing studies of efficiency in the electricity distribution sector,
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using frontier-based methods proposed by Jamasb and Pollitt (2001). More research has

been added in the last years. Many of them can be seen in the survey of DEA in energy

and environmental studies by Zou and al. (2008).

2.2 Productivity development research for network

operators

Productivity development research is nowadays a well-established application of frontier-

based model. Total factor productivity index, which comprises the Malmquist productivity

index (Caves et al. (1982)) or the Fisher index such as introduced by Coelli et al. (2005)

appear to be the most common approach for assessing the productivity development of an

industry. Nevertheless several variations have been proposed in the literature. Thus, Färe

et al. (1994) proposed a decomposition of the index into a technological and a efficiency

change component. A survey of some of the theoretical developments of the Malmquist

index can be found in Färe et al. (1998). Ray and Desli (1997) suggested to complete

the latter mentioned component of the Malmquist index by including a scale efficiency

change component. Maniadakis and Thanassoulis (2004) proposed a cost-Malmquist index

which allows to capture an allocative efficiency component. Pastor and Lovell (2006)

conceived a global Malmquist productivity index in order to solve the circularity problem.

The circularity problem stipulates that the productivity development of a firm between

two periods cannot be deduced from the productivity development found for the periods

in-between the two periods.

When looking more precisely at studies of productivity development through frontier-based

methods, it appears that it can apply to a large range of situations. For instance, one of

the first projects, proposed by Nishimizu and Page (1982), was a study of the productivity

change in 23 social sectors in Yugoslavia between 1965 and 1978 thanks to a Malmquist

index. Studies concerning productivity development of public sectors such as health care

(Färe et al. (1992);Hollingsworth (2003)) or education (Parteka and Wolszczak-Derlacz

(2013);Rahimiana and Soltanifar (2013)) are common practice. Concerning the electricity

distribution sector, many studies have been performed to evaluate the productivity of

network utilities. Inter alia, recent studies include Tovar et al. (2011) who examine the size
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and productivity of Brazilian distribution utilities from 1998 to 2005; Hattori et al. (2005)

who compare the performance of distribution utilities in United Kingdom and Japan for

1985-1998; Çelen (2013) who performs a two-stage productivity development analysis of

Turkish operators for 2002-2009; Amado et al. (2013) who measure the impact of a new

technology on a group made of Portuguese operators from 2006 to 2008; Bishnoi and

Gaur (2018) who measure productivity change among Indian distribution companies for

2006-2015.

2.3 Benchmarking research in Scandinavia

Scandinavian countries are some of the precursors of the electricity market restructuring.

For this reason, a large literature focused on the efficiency and productivity of their

electricity network. Agrell, Bogetoft and Tind (2005) introduce a regulation scheme based

on a dynamic DEA yardstick as an alternative to the popular CPI-X revenue cap regulation.

Førsund and Edvardsen (2003) use a fictive grid network based on distribution utilities

from Denmark, Finland, Norway, Sweden and Netherlands to compare productivity of the

different countries and their respective peer operators. More specifically, one of our datasets

has already been used through the work of Agrell and Brea (2017) which underlined the

need to capture heterogeneity in a sample by analyzing a sample compounded of 118

Swedish operators through a latent class model. Still using one of our datasets, Agrell and

Niknazar (2014) investigated the robustness in applied best-practice regulation through

the detection of three different types of outliers in the dataset.

One of the first studies of the electricity distribution in Scandinavia has been carried out

by Hjalmarsson and Veiderpass (1992). The study intended to measure the productivity

development in Sweden from 1970 to 1986. Through this study, it seems that the type

of ownership of an operator does not affect its productivity, as opposed to the type of

area with rural areas experiencing a higher productivity increase. Similar productivity

research has been conducted in Norway for 1983-1989 (Førsund and Kittelsen (1998)),

2004-2007 (Miguéis et al. (2012)) and 2004-2013 (Cheng et al. (2014)) as well as in Finland

(Korhonen and Syrjänen (2003)). More recently, productivity development research in

Sweden has been carried out by Agrell and Grifell-Tatjé for the period 2000-2006 thanks

to a Laspeyres index. This has been carried out in order to illustrate the failure of some
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regulation regimes to provide adequate incentives to firms, as was the case for the Network

Performance Assessment Model used in Sweden before the Revenue Cap Model.

2.4 Landmark publications

Even though most of the latter mentioned papers directly relates to our thesis, there is

no doubt that some studies influenced more our research than others. The table below

summarizes the main studies and their contribution to our research.

Author(s) Sample Method used Contribution
Färe, Grosskopf,
Norris and
Zhang

17 DEA
countries 1979-
1988

Decomposed
Malmquist index

Decomposition of the
Malmquist index into
technological and efficiency
change components

Ray and Desli
(1997)

17 OECD
countries 1979-
1988

Revised
Malmquist
index

Addition of a scale efficiency
change component

Miguéis,
Camanho,
Bjørndal E. and
M.

177 Norwegian
operators 2004-
2007

Classical
Malmquist
index

Analysis of the most
innovative operators

Hjalmarsson
and Veiderplass
(1992)

289 Swedish
operators 1970-
1986

Decomposed
Malmquist index

Possibility to compare our
results with previous results

Agrell and
Grifell-Tatjé
(2016)

218 Swedish
operators 2000-
2006

Fisher index Possibility to compare our
results with results from
another model

Table 2.1: Relevant productivity studies
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3 Regulatory framework

In this chapter, a first section will be dedicated to an introduction of the regulation of

distribution network. This will be followed by a description of the main families of regimes

established. Finally, an overview of the history of the regulatory scheme in Sweden will be

given.

3.1 Network regulation

With very few exceptions, the distribution sector is always compounded of several

distribution system operators (referred to as DSOs, operators or distribution utilities

hereafter) operating under natural monopoly conditions. Due to large fixed costs and

low marginal operating costs, the economies of scale constitute the main reason for the

existence of these monopolies. The significant start-up costs also lead to high barriers for

new entrants (Agrell and Bogetoft, 2017).

There will generally be several local monopolies within a country because of a trade-off

between economies of scale and use of benchmarking methods. On the one hand, there is

no doubt that economies of scale are exacerbated as the distribution company covers a

wider area. On the other hand, a high number of DSOs facilitates the use of benchmarking

methods such as described in Chapter 4. According to Wangensteen (1989), economies of

scale fades as the number of customers is raising and the optimal size would be around a

number of 10,000 customers.

As demonstrated by economic theory (Kahn (1971);Laffont and Tirole (1993);Armstrong

and Sappington (2007)), pricing coming from a natural monopoly tends to be too high

given the lack of competitiveness. This is even more amplified by the high market power

of the operators, given the absence of substitutes translated into a relatively low elasticity

of the electricity demand (Agrell and Bogetoft, 2017). This can lead to market-inefficiency.

Secondly, given that the costs or bad performance (e.g weak quality supply) can be easily

transferred to the consumers, there are low incentives to alleviate them. This can be called

X-inefficiency.
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As mentioned, the relationship between the regulator and the different distribution utilities

is usually described as an application of the agency theory. The principal-agent problem

can be defined as occurring when:

"The desires or goals of the principal and agent conflict and it is difficult or expensive for

the principal to verify what the agent is actually doing" (Eisenhardt, 1989).

In other words, there will be an information asymmetry between the regulator and the

firms holding the information about their cost technology needed by the former. This,

however, is needed to implement an efficient policy limiting the abusive position of the

operators in the market. The companies can take advantage of this situation to increase

their profits at the expense of the social welfare (Laffont and Tirole, 1993), with two

consequences:

1. The market inefficiency in the agency theory is referred to as the adverse selection

problem which arises when there is a misrepresentation of the service provided by the

agent (Eisenhardt, 1989). In the distribution sector, this will lead to the possibility

for the better informed agent (the distribution utility) to increase consequently its

tariffs by for instance, claiming too high costs.

2. The X-inefficiency will be described as a moral hazard problem, which is an issue

occurring when the principal is not able to precisely monitor if an agent cheats in

pursuing personal objectives (Bogetoft and Otto, 2011). In the distribution sector,

this will induce the distribution utility to avoid taking action to be cost-efficient and

to rely on a low-quality supply in order to minimize its costs.

Thus, regulatory authorities need to set the proper incentive measures in order to limit the

aforementioned inefficiency issues and therefore, to ensure fair tariffs and a quality supply

for the consumers by aligning the profit maximizing objectives of the the operators with

those of the public interest (Hackett, 2010). In Europe, regulation regimes are mainly based

on an incentives scheme, aiming to encourage the DSOs, whether state- or privately-owned,

to take the right actions and to bypass the agency problem.
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3.2 Classical regulatory regimes

Since the restructuring movement, various regimes have been tested to regulate the grid.

Three main types of regulatory regimes can usually be identified in the literature: the

cost-recovery, the fixed price and the yardstick regime.

3.2.1 Cost-recovery regime

Also referred to as cost of services, cost-plus or rate-of-return regulation (Agrell and

Teusch), the first model is based on the reimbursement of the reported costs by the

regulated firm. This will suppose the information provided by the firm as true and can be

illustrated by the following formula (Agrell and Bogetoft, 2017):

Rk(t) = Ck
Opex(t) +Dk(t) + (r + δ)Kk(t) (3.1)

Where Ck
Opex is the operating expenses, Dk is the depreciation reflecting capital usage, r is

the interest rate reflecting the credit costs of investments with similar risks, δ is a mark-up

and Kk is the total investment for a firm k.

This model solves the market-inefficiency problem of the firm. Indeed, the regulated firm

is ensured to be fully reimbursed for its additional costs. Providing the right amount

of electricity to the demand and avoiding an overpricing will therefore be aligned with

the profit maximization objective of the firm. However, this will usually result in poor

performance:

“Firms have incentives to overinvest in capital and have no incentives to reduce operating

expenditures since they just lower revenue” (Agrell and Bogetoft, 2017).

Without huge regulatory effort to extract the full information, the firms will be given

the wrong incentives and the X-inefficiency will remain resulting in a low-powered regime

(Agrell and Bogetoft, 2017). This is also often described as an ex-ante regime since the

reimbursement will often occur prior to the concerned period on the contrary of an ex-post

regime.
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3.2.2 Fixed price regime

First proposed by Littlechild (1983) through a simple model, the second regime can be

defined as more powered than cost-recovery while still operating ex-ante. This regime

is currently broadly employed in European electricity grid regulation (Agrell, 2015). It

consists of setting a cap on the revenue or the price of a company for a determined period.

Through this model, the regulated firm will be reimbursed for its predetermined cost

(revenue cap) or price (price cap) for a coming period and will allow it to maintain its

additional efficiency gains during the period (Littlechild and Beesley, 1989). The revenue

cap regime can be quickly illustrated by the following formula (Agrell and Bogetoft, 2017):

Rk(t) = Ck(0)(1− x− xk)t, t = 1, ..., T (3.2)

Where Rk(t) is the allowed revenue of the firm k in period t, Ck(0) is the cost in period 0,

x is the predicted productivity development and xk, the individual requirement on the

firm k reflecting the level of historical costs and the need to catch-up to best practices.

In the case of a price cap regime, the following formula will be appropriate (Joskow, 2008):

P k(t) = P k(0)(1 +RPI − x− xk) (3.3)

Where P k is the allowed price for the firm k and RPI is the rate of input price accounting

for changes in inflation.

These kind of regimes are supposed to prevent the grid from suffering from market-

inefficiency and X-inefficiency (in other words, supposed to solve both the adverse selection

and the moral hazard problem (Agrell, 2015)). Indeed, by setting this kind of regime, the

regulator provides the right incentives so that the operator aims to minimize its costs in

addition to providing the right amount of electricity supply.

The efficiency requirement is usually determined by some benchmarking methods as

shown in Section 3. Techniques such as the Malmquist-index to analyze the productivity

developments over the years will generally be helpful tools to determine the general

requirement x and the individual efficiency requirement xk. Thus, as said, this thesis
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can propose relevant content to the regulator in order to define general and individual

requirement for the industry. Concerning the initial costs, according to the regulator, the

total or operating cost will be used. However, if the initial cost is based on the operating

cost, the regulator will have to take into account the risk of transferring some capital costs

to operating costs (Agrell and Bogetoft, 2017).

Despite its theoretical efficiency and simplicity, the effective implementation of the regime

can turn to an authentic challenge for the regulator. The need to predict the costs and

individual and general efficiency requirements thanks to past data will have to be balanced

with the realized costs and efficiency observed for the firm. On the one hand, if the cap is

too ambitious, the firm will not cover its costs and the risk of bankruptcy or restructuring

will affect the security of the electricity supply. This can provoke a bias to overestimate

the cost of the regulated firms. On the other hand, if the decided revenue cap is too large,

or too often reset by the regulator to reflect realized costs and efficiency gains, this will

undermine the incentives provided to the regulated firms resulting in high informational

rents. A ratchet effect can also be observed for agents increasing their cost in anticipation

of resetting the initial cost in the next regulatory periods (Agrell et al., 2005). Finally, this

kind of regime will be particularly favourable to regulatory capture (the firm will influence

the revenue cap setting) since the firm can retain the realized profits (Agrell and Bogetoft,

2017).

3.2.3 Yardstick regime

The yardstick regime can also be characterized as a high-powered regime but will be set

ex-post implying that the regime will be based on observations instead of predictions.

Introduced by Shleifer (1985), the yardstick regime will induce a pseudo competition

between the different DSOs by mimicking the market as closely as possible. For this

purpose, a shadow firm will compete with the regulated firm. This shadow firm will be

created thanks to the realized cost functions (which is the costs computed to produce a

given output in light of input prices) of the other firms. In other words, a cost function

will be estimated for the regulated firm based on the real observations of the other firms

on the past regulatory period. Assuming a set of firm N = {1, ..., n} the revenue of a firm
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k can be defined as follows (Agrell and Bogetoft, 2017).

Rk(t) =
1

n− 1

n∑
j 6=k

Cj(t) (3.4)

Where Cj(t) is the realized cost of the firm j in period t.

Alternative methods exist to aggregate the performance of the other firms. Instead of

achieving an average, the allowed revenue can for instance just be the best practice realized

performance (Agrell and Bogetoft, 2017).

As earlier implied, while still allowing the regulator to align incentives with profit

maximization of the firms, the yardstick regime presents the advantage to rely upon

observations instead of predictions, limiting the risk of bankruptcy or excessive

informational rents (as it was the case for fixed price regimes) while still being relevant for

the information asymmetry problem given the fact that the model is based on accurate

components (Agrell et al., 2005). Besides, the revenue is not determined by the own cost of

the DSO alone but by the performance of the other DSOs. This risk of regulatory capture

is therefore greatly limited (Agrell and Bogetoft, 2017).

Even if this model seems to erase the flaws in the aforementioned regimes, there remain

some risks of implementation. The first is the necessity to either find a set of comparable

firms operating under similar conditions or to include the differences in the operating

conditions into consideration through tedious computations (Agrell et al., 2005). In the

case of a limited number of regulated companies, a risk of collusion can also appear (Agrell

and Bogetoft, 2017).

3.2.4 Application in Europe

In light of what has been seen, it is worth mentioning that every regulation will present

distinctive characteristics that can be related to the different regimes as said by Agrell

and Bogetoft (2017). Reviewing the different regulation regimes in Europe, Agrell and

Bogetoft proposed to link them to the most similar classical regulatory regime. This is

summed up in Table 3.1.
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Country Regime
Austria Revenue Cap
Belgium Revenue Cap
Denmark Revenue Cap
Finland Revenue Cap
France Cost recovery
Germany Revenue Cap
Greece Cost recovery
Hungary Price Cap
Ireland Price Cap
Italy Revenue Cap (Operating

costs only)
Netherlands Yardstick
Norway Yardstick
Portugal Revenue Cap
Spain Revenue Cap
Sweden Revenue Cap
Switzerland Cost recovery
United Kingdom Revenue Cap

Table 3.1: European regulation regimes (Bogetoft and Otto, 2011)

We clearly see that, in European countries, including Sweden, the revenue cap approach

presents a clear predominance nowadays.

3.3 Regulation in Sweden

Deregulated in 1996, Sweden can be quoted as one of the first countries to liberalize

its electricity market. From this date, Sweden, through the Swedish Energy Authority

(STEM) and more recently, through the Energy Inspectorate (SEI), implemented several

regulations in order to ensure the electricity grid operators to comply with their obligations

evoked in the Electricity Act of 1996.

This section aims to offer us with a glimpse of the regulation in Sweden since 1996. Given

that our research aims to explore the effects of the Network Performance Assessment

Model and the Revenue Cap Model, this will be followed by a more attentive look at their

main components.
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3.3.1 History

Following the restructuring in 1996, the STEM discovered evidence of excessive tariffs

imposed by the operators to the customers. It quickly turned out that attempts to maintain

the price at an acceptable level like price freezing were inefficient and that new regulatory

tools were urgently needed (Wallnerström and Bertling, 2010).

Initially, the first idea was to use an existing model and to adapt it to the Swedish grid.

Given the fact that models are designed directly in correspondence with an industry,

the Swedish regulator finally decided to frame its own regulatory scheme: the Network

Performance Assessment Model (NPAM). From 1998, it took 5 years for the scheme to

come into force and 7 years to provide the first results. Rapidly, this model underwent

fierce criticisms both from operators and higher institutions and was abandoned after

only three years in 2006 (Jamasb and Pollitt, 2007). At this time, Sweden understood

the non-feasibility of this model and changed to an intermediate ex-post cost-recovery

scheme with rate-of-return regulation waiting for a higher-powered regime (Agrell and

Grifell-Tatjé, 2016). Meanwhile, the Energy Inspectorate (SEI), freshly created in 2008

to monitor the tariffs and cost-efficiency of the distribution sector, began to conceive a

regulatory program based on a revenue cap launched in 2012. This new regulation consists

of an ex-ante revenue cap based on a period of four years. Given the recent nature of

the revenue cap, the SEI undertook several adjustments at the end of the first regulatory

period. Some other measures are also planned for the coming regulatory period but are

still awaiting approval (Swedish Energy Inspectorate, 2018).

Nowadays, it can be said that even if many mergers occured, the distribution sector is

characterized by a high number of operators mainly owned by municipalities with few

cooperative and private actors. Even if most of the companies are publicly owned, some

private operators such as E.ON or Elevio own consequent parts of the global Swedish

network. Vattenfall, entirely state-owned, can also be seen as one of the main current

actors (Council of European Energy Regulators, 2019).
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3.3.2 The Network Performance Assessment Model

Applied from 2003 to 2006, the NPAM had the particularity of not relying on traditional

benchmarking methods. On the contrary of a conventional incentive regulation, this model

proposed an individual ex-post benchmark to the firm on a yearly basis. Figure 3.1 below

provides an overview on the components of the NPAM.

Figure 3.1: Elements of the NPAM regulation (Wallnerström and Bertling, 2008)

In short, a comparison was realized between the actual revenue of each operator and the

results obtained through the NPAM, the supposed revenues of the operator, on a yearly

basis. Those results were obtained through several computations based on geographic and

technical information of all the low and high-voltage connections and supply points of each

distribution company (Distribution system- and customer data in the figure). From these,

a fictive radial network (in blue) could be estimated and used as reference to evaluate the

efficiency of a company (Jamasb and Pollitt, 2007).

A major step of the NPAM was to deduce the cost norm of an operator from five main cost

components (in green) thanks to the built radial network and other real inputs such as the

System Average Interruption Frequency Index (SAIFI) and System Average Interruption

Duration Index (SAIDI) of the operator. A summary is presented below (Wallnerström
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and Bertling, 2008):

1. Cost of service included mainly the fees paid by the operator to the superior grids.

They were directly reported by the operator.

2. Cost of administration corresponds to the administrative cost for each customer.

This cost was estimated by the STEM.

3. The cost of connection consists of the capital cost of the fictive radial network as

well as the cost of spare capacity for redundant components.

4. Cost of delivery is cost related to the energy loss of a distribution company, given

the customer density of the radial network. To obtain the cost, the energy loss was

multiplied by the corresponding period price on Nord Pool.

5. Cost of reliability is deduced from the difference between the expected outage

costs and the occured outage costs. Through an algorithm accounting for several

characteristics of the radial network (mainly customer density and total energy

delivered per voltage level for a year), the expected outage cost was computed.

The occured outage cost is obtained through the System Average Interruption and

Duration Frequency Indexes (SAIFI and SAIDI).

As mentioned, this system was welcomed with sharp criticism in 2004. A good time

line of the situation has been described by Agrell and Grifell-Tatjé (2016). Impressively

complex, the NPAM published first results for 2003 in June 2005. These results required

twenty one operators to lower their tariffs. This was quickly followed by lawsuits by

the concerned operators, which pointed out the lack of feasibility of the cost norm and

procedural flaws. After two court sessions, STEM abdicated and set an upper bound

on the revenue cut. However, despite the concessions, eight of the twenty one operators

maintained their appeal and it became clear that the Swedish regulator would still not

overcome the lawsuits. Finally, in 2008, a claim out of court between the Swedish regulator

and the eight remaining operators was settled, leading to further decrease of the revenue

cut. After four years of judicial troubles, the NPAM model was formally abandoned in

Januray 2009 and an interim cost-recovery was implemented, waiting for the revenue cap

to come into force.

Studies supported this decision and highlighted many flaws in the NPAM as again
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highlighted by Agrell and Grifell-Tatjé (2016). Lack of robustness in the model leading

to disproportionate consequences of small parameters on the cost norm was raised by

Wallnerström and Bertling (2008). Jamasb (2007) underlined the mitigated investment

incentives of the scheme. According to him, it also appeared that customer density

played a main role in the NPAM, while operators could not have influence on it. Lantz

(2003) argued that the model did not take into consideration the differentiation between

short and long-term perspective leading to wrong incentives on the long run. Besides, as

underlined by Larsson (2005), the model required a lot of information, which made its

effective application challenging. Other issues such as the lack of incentives for a reliable

electricity or a reduction of the network losses were also raised (Wallnerström and Bertling

(2010);Persson and Tornqvist (2006).

3.3.3 The Revenue Cap Model

The currently applied regulatory scheme in Sweden can be summarized by Figure 3.2

Figure 3.2: Elements of the Revenue Cap regulation. (Schweinsberg et al., 2011)

The determination of the revenue cap can be decomposed in three main operations: the

determination of the operating costs (1), capital costs (2) and the subsequent adjustment

realized (3) (Schweinsberg et al., 2011).

1. The operating costs are divided into two categories: the costs considered as non-

controllable (33% of the revenue cap) and the cost considered as controllable (23%
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of the revenue cap). The non-controllable costs are directly included in the revenue

cap. Examples of these costs are the tariffs for feeding in electricity from generation

plants or to be connected to the subtransmission level (Nordic Energy Regulators,

2011). Contrary to non-controllable costs, controllable costs can be influenced by

the operation of the firm. They typically concern the operation and maintenance of

the grid but will also include some capital expenditures not related to the grid such

as vehicles or administration offices (Wallnerström et al., 2016). Until now, a general

efficiency requirement of 1% has been judged as adequate by the regulator (Ek and

Fredriksson, 2010). In addition, each operator is imposed an individual efficiency

requirement varying between 0 and 7% to reach within two regulatory periods. The

intuition is that the Swedish regulator estimated that a possible improvement of

30% over two regulatory periods could be seen as reasonable. Given that DSOs are

allowed to keep half of these additional revenues,the global efficiency improvement

amounts to 15%. Because of a yearly general requirement of 1%, this is equivalent to

a maximum individual efficiency requirement equal to 7% in 8 years. To ensure the

realization of these requirements, EI designed a benchmarking model based on DEA.

2. The capital costs (44% of the revenue cap) only concern assets which are part of

the grid. Equipment such as vehicles are converted to controllable operating cost

(Nordic Energy Regulators, 2011). These costs are constituted by two main elements:

the depreciation and the return on capital. Their determination will first require the

valuation of the regulatory asset base (RAB). Specifically, this valuation relies on the

principle of replacement value. The value of each sort of grid equipment is computed

based on the investment expenditures of an operator acting in a cost-effective manner.

At the beginning of each regulatory period, each operator has to provide a list of

the different grid materials used. Thanks to the replacement value and taking into

consideration inflation, the Swedish authority is then able to compute the RAB for

each operator and finally derive the depreciation and return on capital. A real annuity

method was previously used to compute the depreciation for the first regulatory

period (2012-2015). Since 2014, a new method taking into account the age of the

assets and based on linear depreciation has been implemented. The goal was to

provide companies with incentives to renew more frequently their grid materials.

Concerning the return on capital, it is computed based on a common weighted average
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cost of capital WACC imposed to the whole industry by the regulator following

advice from consulting groups. The main challenge lies in the determination of a

return which will provide proper incentives to invest in the industry, while avoiding

companies from having too high revenue caps (Nordic Energy Regulators, 2011).

This imposed WACC is often subject to legal debates. For instance, during the last

period, the WACC changed from 5.85% to 5.92% after legal procedures from some

operators (Council of European Energy Regulators, 2019).

3. Adjustments will be made to the revenue cap of a DSO. Those adjustments mainly

account for the quality and reliability of the electricity supply proposed by the firm

to its customers. Given the lack of relevance with the topic of the thesis, these

mechanisms will not be discussed directly. Nevertheless, Appendix 1 provides us

with an overview of them.
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4 Benchmarking

As said in the introduction, benchmarking proved to be a useful tool for the regulator in

the electricity distribution sector. Benchmarking can be characterized as “the systematic

comparison of the performance of one firm against other firms”(Bogetoft and Otto, 2011).

This chapter will help us be first acquainted with the frontier-based models used nowadays

in benchmarking and secondly to introduce the reader to Data Envelopment Analysis.

4.1 Frontier-based methods

An initial intuition when it comes to benchmarking is that the efficiency of a firm increases

as the firm produces more output with the same amount of input or will use less input to

produce the same amount of output. Because a firm can be said efficient only if compared

to others, benchmarking needs to define what is the best performance (Cooper et al.,

2004).

Until recently, the main tools used to define the best possible performance were based on

technical data from engineers. Only in recent years, benchmarking analysis has shifted to

frontier-based models providing particularly useful tools for economic regulation. In a few

words, "the idea is to model the frontier of the technology rather than to model the average

use of the technological possibilities" (Bogetoft and Otto, 2011). Thus, a frontier based

model will determine a technology set and a best-practice frontier. This function is defined

on the basis of the performance of the most efficient actors, which will be the reference

for the comparisons with the different firms of the panels. From this, the efficiency of a

firm that is part of the panel will be derived. This kind of models provides reference to

the operators by determining the most efficient ones. There exist four principal types of

frontier-based models. Those models can be summed up by Table 4.1.

Deterministic Stochastic
Parametric Corrected Ordinary

Least Square (COLS)
Stochastic Frontier Analysis
(SFA)

Non-parametric Data Envelopment
Analysis (DEA)

Stochastic Development
analysis (SDEA,StoNED)

Table 4.1: Frontier models (Bogetoft and Otto, 2011)
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As seen in this table, a model distinguishes from the others mainly by the way of two

characteristics: parametric or non-parametric, and deterministic or stochastic. In short, it

can be said that a model can be labelled as parametric as long as its frontier is defined a

priori through several parameters. A non-parametric model will be much less restricted

from the beginning. A deterministic model refers to one which does not include noise.

The data will be considered as being exact and having no measurement error. On the

contrary, a stochastic model will assume that the data has possibly been influenced by

noise and will aim to account for it (Bogetoft and Otto, 2011).

DEA, introduced by Charnes et al. (1978), is characterized as deterministic and non-

parametric. In order to estimate the technology, DEA uses the minimum extrapolation

principle based on different assumptions to deduce the set containing all the data. SFA

(Aigner et al. (1973);Battese and Coelli (1992)) includes the presence of noise and thus,

draws a technology set which does not contain all the data. The technology set is computed

a priori, in most cases thanks to the maximum-likelihood approximation. Regarding COLS

(2016;Lovell (1993)), it can be summed up by the idea of adapting a regression model to

enclose all the firms in the technology set through the shifting of the estimated line. The

Stoned or SDEA is quite recent and aims at combining the relevant characteristics of DEA

and SFA.

In spite of the equal relevance of the different approaches, only DEA will be used in

this thesis. It is clearly a choice of convenience given that DEA is the method currently

used by the Swedish regulator and appears to be easier to implement. On the one hand,

the method will present qualities to provide a good representation of the industry, since

the best-practice frontier being directly inspired from real observations without relying

too much on strong assumptions. On the other hand, DEA will not take noise into

consideration and results need to be interpreted with caution. This criticism is often

addressed to regulation using DEA.

"If there is considerable noise in the data [...] firms may be evaluated against the

hardest possible standards (possibly the most lucky firms) and not against a cautious

standard"(Bogetoft, 2012).
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4.2 Data Envelopment Analysis

Currently the dominant method used to benchmark firms part of the electricity grid is the

so-called Data Envelopment Analysis (DEA).

DEA can be defined as:

"A mathematical programming method of estimating best practice production frontiers

and evaluating the relative efficiency of different entities" (Bogetoft and Otto, 2011).

4.2.1 Production models and technology

Let us assume a firm i using m inputs and n outputs. The input vector xi and the output

vector yi can respectively be defined as:

xi = (xi,1, xi,2, ..., xi,m) ∈ Rm
+ (4.1)

yi = (yi,1, yi,2, ..., yi,n) ∈ Rn
+ (4.2)

The presented vectors of each firm will allow us to define a technology set, which is "the

set of combinations of input and output such that the input can actually produce the

output". (Bogetoft and Otto, 2011)

The technology set will be defined as:

T = {(x, y) ∈ Rm
+ ×Rn

+| x can produce y} (4.3)

The firm will be generally compared to the best-practice frontier of the technology set,

which is calculated from several reference firms.

In order to clearly determine the technology set from the performance of the firms, several

assumptions need to be made (Daraio and Simar, 2007):

Assumption 1 – Free Disposability

This is a weak assumption (i.e. it does not restrict our model and can be seen as highly
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plausible) and can be defined as follow:

(x, y) ∈ T, x′ ≥ x, and y′ ≤ y ⇒ (x′, y′) ∈ T (4.4)

If (x’,y’) produce less output with more input than the feasible combination (x,y), then it

will be feasible too. The point (x’,y’) will be characterized as dominated by (x,y). In other

words, this assumption gives to firms the possibility to waste their input and/or output.

Figure 4.1: Free disposability (Bogetoft and Otto, 2011)

Assumption 2 – Convexity

The set is assumed to be convex and any weighted average of two feasible combinations

(x1, y1) and (x2, y2), is feasible too. For α belonging to [0; 1]:

(x, y) ∈ T, (x′, y′) ∈ T, α ∈
[
0; 1
]
⇒ α(x, y) + (1− α)(x′, y′) ∈ T (4.5)

The convexity is a stronger assumption, but presents the advantage of being analytically

convenient and is often used in economics. Here below can be seen an illustration of the

free disposability and convexity assumptions. By comparing this illustration to Figure 1,

the representation of the convexity assumption can easily be deduced.
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Figure 4.2: Free disposability and convexity (Bogetoft and Otto, 2011)

Assumption 3 – Scaling

While the implementation of the two first assumptions are conveniently admitted, the

scaling assumption will usually be subject to debate for the regulator. The scaling

assumption can be broadly defined as:

(x, y) ∈ T, λ ∈ Λ(γ)⇒ λ(x, y) ∈ T (4.6)

This states that the frontier can be achieved thanks to a rescaling of the data following

different returns. Indeed, this assumption will often be decisive when evaluating the

efficiency of the firms relatively to the best-practice frontier.

The table below sums up some of the most common assumptions. These assumptions are

set up in an increasing order in view of the strength of their assumption.

Returns to scale Assumption

Free disposability hull (FDH) Λ(fdh) = {λ ∈ NK
+ |
∑K

k=1 λk = 1}
Variable returns to scale (VRS) Λ(vrs) = {λ ∈ RK

+ |
∑K

k=1 λk = 1}
Decreasing returns to scale (DRS) Λ(drs) = {λ ∈ RK

+ |
∑K

k=1 λk ≤ 1}
Increasing returns to scale (IRS) Λ(drs) = {λ ∈ RK

+ |
∑K

k=1 λk ≥ 1}
Constant returns to scale (CRS) Λ(crs) = {λ ∈ RK

+ |
∑K

k=1 λkfree} = NK
+

Table 4.2: Return to scale assumptions (Bogetoft and Otto, 2011)
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Figure 4.3: Technology set under different scaling assumptions (Bogetoft and Otto, 2011)

From a regulatory perspective, the scaling assumption plays a crucial role when determining

the best-practice frontier and often directly affects the efficiency of a firm. A strong

regulation uses , for example, a constant return to scale (CRS). Thus, a firm would prefer

to see the best-practice frontier set under variables return to scale (VRS) rather than under

CRS. Indeed, VRS is a softer assumption (two different-sized firms cannot be compared),

which will result in higher efficiency score on average. Increasing return to scale will

favour only small companies (because first presenting a VRS turning then to a CRS as the
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firm size will increase) and inversely, decreasing return to scale will favor big companies.

Regarding the regulatory authority, the concern lies in finding a right trade-off between a

scaling that would limit the firm information asymmetry and that would not be too tough

to brake new investments or drive the companies into troubles (Bogetoft and Otto, 2011).

4.2.2 Efficiency measures

While we know that measures of the input and output used by a firm will be translated into

a global efficiency score, there remains the question of how computing the efficiency score.

The question is therefore: What are the common measures used to evaluate the efficiency

of a firm relatively to a given input or output? Four different measures of efficiency are

hereafter introduced.

4.2.2.1 Farell efficiency

The radial method designed by Farrell (1957) is certainly of the dominant approaches used

in benchmarking literature. This efficiency can be divided into two sub-efficiencies: the

input-oriented efficiency and the output-oriented efficiency.

The input-oriented efficiency will measure the proportional reduction of the inputs needed

to reach the best-practice frontier while keeping the amount of outputs or other inputs

constant. It can be defined as (Bogetoft and Otto, 2011):

E = min{E > 0 | Ex can produce y} =
|x∗|
|xi|

=
Minimal input (best practice)

Actual input (firm i)
(4.7)

The input-oriented efficiency will be characterized as:

E ≤ 1 (4.8)

However, it can happen that we are interested in deducing the firms that moved the

frontier. To achieve this, we can resort to the super-efficiency. The principle is to compute

the efficiency of a firm in comparison with a best-practice frontier which does not include
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the firm itself. In this case, a firm can be assigned a value superior to one. This is often

used in regulation when it comes to detecting outliers in a sample or to evaluating firms

located on the best-practice frontier.

The output-oriented efficiency will follow an opposite scheme that the input-oriented

efficiency. We will measure the proportional augmentation of outputs needed to reach the

best-practice frontier while keeping the amount of inputs constant.

F = max{F > 0 | x can produce Fy} =
|y∗|
|yi|

=
Maximal output (best practice)

Actual output (firm i)
(4.9)

The output-oriented efficiency will be characterized as:

F ≥ 1 (4.10)

Again, an output-based efficiency lower than 1 would not be logical.

Therefore, the higher the E or the lower the F, the more efficient the firm. All of this is

illustrated below, where a firm is compared to a technology set under the assumptions of

free-disposability, convexity and variable return to scale.

Figure 4.4: Farrell efficiency(Bogetoft and Otto, 2011)

It is worth to note that the regulator of electricity networks will adopt benchmarking

methods based on input-based efficiency. The reason for this lies in the fact that DSOs

will only have an influence on their inputs, the outputs being considered as given by the

market demand (Bogetoft and Otto, 2011).

In case of multiple inputs and outputs, the hand computation can quickly become tedious
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and will require the use of models which can only be solved by computers (Bogetoft and

Otto, 2011). The CCR model proposed by Charnes et al. (1978) was the first model

using the term DEA. The model proposed is input-oriented, and assumes free-disposability,

convexity and CRS assumptions such as:

minE,λ(E)

s.t Ex ≥
K∑
k=1

λkxk (4.11)

y ≤
K∑
k=1

λkyk (4.12)

λk ≥ 0 ∀k ∈ K (4.13)

Quickly summed up, the first constraint on the inputs tells us that the firm k has to use at

least as much input as the reference firm (a firm created from the combinations of the peer

firms, i.e the firms lying on the best-practice frontier). The next constraint tells us that

the reference firm has to produce at least as much as the firm k. The ultimate constraint

will assign positive value to the weight vector and reflect the CRS assumption (Bjørndal,

2018).

In addition of the CRS assumptions, several other scaling assumptions can be applied

according to the technology of the sample such as the VRS premise applied in the well-

known BCC model (Banker et al., 1984). As a reminder, even though the return to scale

employed presents a regulatory involvment, it is also needed to account for the nature of

the industry:

"The CRS assumption is appropriate when all the firms are operating at an optimal scale.

However, imperfect competition, government regulations, constraints on finance etc., may

cause a firm to be not operating at optimal scale." (Coelli et al., 2005)

Thus, the input-based efficiency of a firm belonging to a set of K firms with a technology

set T (γ) can be summarized as the previously presented models but taking into account

the constraint of the scaling assumption λ ∈ ΛK(γ) . ΛK(γ) will typically be one of the

assumptions mentioned in Section 4.2.1 (Bogetoft and Otto, 2011).
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4.2.2.2 Cost efficiency

Although providing a good way of measuring input and output efficiency, the methodology

described in the previous section disregards the possible preference regarding the different

inputs and outputs typically expressed through a cost information. Nonetheless, in many

situations, the preference among the different inputs or outputs is provided. This will

typically be reflected through cost and price information and allows the regulator to

elaborate further evaluation (Bogetoft and Otto, 2011). Farell proposed to account for

this additional information through the concept of cost-efficiency Farrell (1957). In order

to allow a good understanding of the concept, a simple illustration will be provided by

Coelli et al. (2005).

Let us assume a firm represented by the point P and producing a single output y from two

inputs x1 and x2 with known prices w1 and w2 such as first proposed by Farrell (1957).

The total cost is therefore given by the formula:

c = w1x1 + w2x2 (4.14)

Since the input-price and the quantity needed of each input to produce an output are

known, the cost preference function of the two inputs and the isoquant representing the

possible combinations of the two inputs to produce a given output y can be drawn.

Figure 4.5: Cost efficiency(Bogetoft and Otto, 2011)



4.2 Data Envelopment Analysis 31

It seems clear that this new model will create more difficulty to be efficient since a firm will

need to select a point which is technically efficient while allocating correctly its resource in

order to minimize the cost as this can be illustrated above. Let us decompose the efficiency

into three factors: technical, cost and allocative efficiency.

As demonstrated, technical efficiency can be easily computed by looking at the distance

between the firm and the input-based efficient frontier represented by the isoquant. This

efficiency will relate to the input-based efficiency.

TE =
Minimal input

Actual input
=
x′

x
(4.15)

Where x̂ is the best-practice input vector associated with the technically efficient point Q

and x the input vector associated with the point P.

The firm will be efficient on a technical perspective if located on the best-practice frontier.

Since we also have access to the input prices, the cost efficiency can also be measured. Let

x∗ represent the cost-minimizing vector of Q’. The cost efficiency is defined as the ratio

between the cost-minimizing input combination x” and the input cost of the firm.

CE =
Minimal cost

Actual cost
=
wx∗

wx
(4.16)

Finally, the allocative efficiency mentioned before consists of having selected the efficient

point x’ instead of the point x* presenting the same efficiency but at a least expensive

cost.

AE =
Cost of x′′

Cost of x∗
=
wx∗

wx′
(4.17)

On this basis, the technical efficiency can be rewritten as

TE =
Cost of x∗
Cost of x

=
wx′

wx
(4.18)

A relationship can be derived between the three forms efficiency.

CE = AE × TE (4.19)
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"This decomposition emphasized our initial intuition. To be cost efficient, the firm must

be able to select the correct mix of inputs and use them in a technically efficient manner.

It must use the right resources, and it must use them in the right way" (Bogetoft and

Otto, 2011).

Thus, from these two components, cost efficiency can be derived, that is the ability of a

firm to choose the right input-mix and to use them in the most efficient way.

Given K observations, m inputs with an input cost vector w and n outputs, the cost

efficiency for the i-th firm is (Agrell et al., 2005):

CEi =
C(yi, wi)

wi ∗ xi
(4.20)

where C(yi, wi) is the cost function representing the minimal cost to produce an output yi

and can be defined as:

C(yi, wi) = min{wixi|(xi, yi) ∈ T (r)} (4.21)

Using the DEA approach, computing the cost function for the firm i can result in the

following model:

min x,λwixi (4.22)

s.t. xi ≥
K∑
k=1

λkxk (4.23)

yi ≤
K∑
k=1

λkyk (4.24)

λk ∈ Λk(γ) ∀k ∈ K (4.25)

Where x represent the vector of inputs optimally used for a firm producing an output

y. This model will aim to minimize the costs by finding the best input-mix so that the

evaluated firm use at least as much input as the reference firm and the reference firm

produce at least as much output as the evaluated firm as represented by the first and

second constraints, respectively.

Besides, we know that the cost efficiency of a firm i can be seen as a relation between
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the technical efficiency and the allocative efficiency. Therefore, the allocative efficiency is

defined as:

AEi =
C(yi, wi)

wixiE(xi, yi)
(4.26)

It can be seen that the allocative efficiency will be the ratio between the optimal cost

found by the cost function and the product of the technical efficiency and the real cost of

the companies.

4.2.2.3 Scale efficiency

In order to compare DEA programs under CRS and VRS assumption, Figure 4.6 is relevant.

Figure 4.6: Scale efficiency(Bjørndal et al., 2010)

Figure 4.6 shows the best-practice frontier determined under convexity and free disposability

assumption with a VRS and CRS technology. As demonstrated, the input-oriented technical

efficiency for the point D under VRS and CRS assumption will be the following (Cooper

et al., 2007):

Evrs =
PR

PD
≥ Ecrs =

PQ

PD
(4.27)

Because of the stronger assumption (adding a constraint make the convex hull tighter),

it can be easily derived that the technical efficiency of the point D will globally decrease
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if switching from a CRS to a VRS assumption. As a matter of fact, since the frontier is

linearly increasing from the origin, the input-based efficiency will simply be the inverse of

the output-based efficiency under a CRS technology assumption (Bjørndal et al., 2010).

It can be seen that all the firms will suffer from switching from a VRS assumption to a

CRS assumption with the exception of the firm B The input level at the firm B will be

called the most productive scale size (MPSS) such as suggested by Banker et al. (1984).

Hence, all the firms should aim to adapt their size to be closer to B since its average

output and average input are maximal and minimal respectively. The scale efficiency will

express how close is a firm from the MPSS (Bogetoft, 2012) and can be written as:

SE =
TE (crs)

TE (vrs)
=
PQ

PD
/
PR

PD
=
PQ

PR
=
Minimal input (crs)

Minimal input (vrs)
(4.28)

However, the scale efficiency does not tell us if a firm is above or below the optimal size,

an easy way to deduce it is to compute the efficiency score under the DRS assumption

(translated by the constraint
∑z

l λl ≤ 1). If the efficiency score under the CRS assumption

and the DRS assumption is the same for a firm, then the firm will be above the MPSS

and oppositely (Bogetoft and Otto, 2011).

4.2.2.4 Dynamic Efficiency

A primordial aspect when it comes to analyzing the efficiency of a firm is to locate it

through time. For example, due to a global technological change or by a catch-up to best

practice, a firm can increase its efficiency. The most popular way to assess the efficiency

of a firm across the time is the Malmquist Productivity Index (1953), namely popularized

by Caves et al. (1982) and extended by Färe et al. (1994).
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Figure 4.7: Dynamic efficiency (Bogetoft and Otto, 2011)

Following the illustration from Bogetoft and Otto (2011), the Figure 4.7 represents the

firm and a best-practice frontier from the period s to the period t. Let E(s, t) be a measure

of the performance of a firm in period s against best-practice frontier in period t. If we

want to measure the evolution of the performance of a firm between the two periods, we

can alternatively write it as:

M s =
E(t, s)

E(s, s)
M s =

E(t, t)

E(s, t)
(4.29)

The first equation expresses the progress of a company from the period s to t in light of

the best-practice frontier in s. Same reasoning applies to the second equation but in light

of the best-practice frontier in t. Because there is no reason to choose one to the other,

the Malmquist productivity index will be the geometric average of the two.

MPI(s, t) =
√
M sM t =

√
E(t, s)

E(s, s)

E(t, t)

E(s, t)
(4.30)

4.2.3 Non-discretionary variables

Until now, we considered that a firm could exercise influence over all of its different

variables. However, in many cases, this turns out to be wrong and some components

affecting the performance of a firm are beyond its control. For instance, an operator
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will see its operations affected by climatic components or the density of its customers.

A response proposed by Banker and Morey 1986 was to include these variables, called

non-discretionary variables, in the technical efficiency input-oriented model through an

additional equation such as:

z ≥
K∑
k=1

λkzk (4.31)

Where z depicts the additional variables. As it can be seen, a special constraint is added

which stipulates that they are fixed. Thus, the efficiency will be adjusted by reducing

inputs considered as discretionary. Another manner to write the constraint is the following:

−z ≤
K∑
k=1

λk(−zk) (4.32)

Thus, in this case, the DEA program will interpret a non-discretionary input as a negative

output. This transformation can appear to be useful since it allows us to take include

these non-discretionary variables in a usual DEA model (Bogetoft and Otto, 2011).

A concern often raised is that this model supposes non-discretionary variables to be

convex. To solve this issue, several other alternatives have been proposed to account for

non-discretionary variables.

Introduced by Ray (1991), a first alternative was to apply a second stage to a classical

DEA model through regression modelling in order to account for the non-discretionary

inputs. This second stage aimed to adjust the efficiency scores by controlling the effect of

the non-discretionary variables on them.

Another alternative suggested by Ruggiero (1996) was to establish a model which would

assign no weight to peer-firms evolving in an advantageous environment. The formulation

of the model is similar to the technical efficiency model presented in Section 3.2.2.1 with

exception that the following constraint is included:

λkz = 0 ∀l, j ∈ zk > zo; k ∈ K (4.33)

This additional constraint sets a weight equal to zero if a firm has a higher level of

non-discretionary input z than a given treshold z0 so that these firms are not included in
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the reference set (Ruggiero, 2004).

Nevertheless, Ruggiero (1998) demonstrated that as the number of non-discretionary

variables becomes bigger, the probability of identifying a firm as efficient increases. The

reason is that firms are not compared with a firm who has a more advantageous environment.

To account for this problem, Ruggiero suggested a revised three-stage model which would

combine the Ray’s two-stage model (1991) to the first Ruggerio’s model (1996) by applying

a regression of the non-discretionary variables to create a fictive non-discretionary variable

included in the no-weight model.
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5 Methodology

After a review of the literature, the regulatory setting and its main benchmarking tools,

let us now focus on the tools that will be used to support our productivity research. This

chapter will be divided into two main parts. First, we will explain the Malmquist index

and its components proposed for evaluating the productivity change related to the Swedish

DSOs for the period 2011-2017. A few limitations of the index will also be underlined.

Secondly, second stage analysis techniques used to assess if non-discretionary variables are

affecting the efficiency scores of the operators.

5.1 Malmquist productivity index

In Chapter 4, the Malmquist productivity index was introduced. This Malmquist index

allows the regulator to assess the health and the competitiveness of an industry by

determining if firms of an industry are improving throughout time. This measure can also

turn to be effective when evaluating the effect of a regulation. Assuming an input-oriented

model with CRS assumption, the Malmquist productivity index MPI between the period t

and t+1 can be rewritten as:

MPI(xt, yt, xt+1, yt+1) =

[
Et
crs(x

t+1, yt+1)

Et
crs(x

t, yt)

Et+1
crs (xt+1, yt+1)

Et+1
crs (xt, yt)

]1/2
(5.1)

Where Et+1
crs (xt, yt) is the efficiency score of a firm presenting inputs x and outputs y in

period t in comparison with a best practice frontier in t+1 under CRS assumption. In case

of productivity growth, the MPI will be greater than one. On the contrary, a productivity

decline will lead to an MPI inferior to one.

5.1.1 Decomposition of the Malmquist index

According to the Malmquist index, the progress of a firm can be due to two different

factors according to Färe et al. (1994): the technological change (TC) capturing the global

technological progress of the industry and the technical efficiency change (TEC) measuring
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the catch-up of a firm compared to the other companies between two periods. Besides,

the scale efficiency change (SEC) proposed by Ray and Desli (1997) is also introduced as

a third term. As hinted in Chapter 4, the scale efficiency change measures if a company

has been able to come closer to the MPSS to gain cost-efficiency. Thus, the MPI can be

decomposed in three main terms such as:

TC =

[
Et

vrs(x
t+1, yt+1)

Et+1
vrs (xt+1, yt+1)

Et
vrs(x

t, yt)

Et+1
vrs (xt, yt)

]1/2
(5.2)

TEC =
Et+1

vrs (xt+1, yt+1)

Et
vrs(x

t, yt)
(5.3)

SEC =

[ Et
crs(x

t+1,yt+1)
Et

vrs(x
t+1,yt+1)

Et
crs(x

t,yt)
Et

vrs(x
t,yt)

Et+1
crs (xt+1,yt+1)

Et+1
vrs (xt+1,yt+1)

Et+1
crs (xt,yt)

Et+1
vrs (xt,yt)

]1/2
(5.4)

Made from a geometric average between two relevant ratios like the MPI, a positive average

TC translates a shift of the best-practice frontier under VRS technology. That term will

often tend to be on a global average superior to 1 seeing that the TC is a measure of the

technology progress of an operator and it would be uncommon to have technologies in an

industry globally regressing. However, companies can have positive TC even if not located

on the best-practice frontier. In order to detect if a firm moved the best-practice frontier,

the operator need to fulfill two conditions underlined by Färe et al. (1994): to have an

efficiency scores equal to one in period t+1; to have a positive TC from the period t to

t+1.

The TEC term compares the evolution of a firm between two periods under VRS technology.

If a company caught up the best-practice frontier, the TEC will be superior to 1. On the

contrary of the TC, it is not rare to see a negative average TEC. Intuitively, this situation

would mean that the industry has become more heterogeneous. In other words,few firms

have stretched the best-practice frontier while others have not taken advantage of it. Thus,

it can happen that even if the global technology is progressing, this only benefits the

companies located on the best-practice frontier. The TEC term is therefore important to

understand the dynamic of the operators between each other.
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Finally, the scale efficiency change will be superior to 1 if the company is getting closer

to the MPSS. A SEC superior to 1 is the sign of an industry with companies tending

to become same-sized and adopting a more suited field of operation. This is often the

hardest way for a firm to increase its productivity since it depends directly on the fixed

asset of a company, which cannot be easily adapted. For instance, investments in capital

expenditures cannot be easily converted into operating expenditures.

As components of the MPI, it can be derived that the product of the three previously

mentioned terms will provide us with the MPI as a result:

MPI = TEC × TC × SEC (5.5)

Concerning the DEA model, an example of the manner of computing the efficiency score

of a firm k in period t+1 and a best-practice frontier in t under CRS technology can be

illustrated as follows (Cheng et al., 2014):

minE,λ(E) (5.6)

s.t Ext+1 ≥
K∑
k=1

λkxk,t (5.7)

yt+1 ≤
K∑
k=1

λkyk,t (5.8)

λk ≥ 0 (5.9)

x ≥ 0 (5.10)

In order to compute accurate results, some precautions have to be taken regarding the

the TC and SEC components. Since some efficiency scores are computed in comparison

with the best-practice frontier from the previous period under VRS assumption in an

input-oriented model, it can happen that for extreme operators (the major operators

usually) located on the best-practice frontier, no feasible solution will be found. The logic

is that if a firm increased its output between two periods and there is no reference firms

from the past period with which the firm can be compared (in other words, no other firms

has reached that level of output in the previous period), the efficiency found for the firm
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will amount to infinity. To quantify their removal, the MPI scores (which are under CRS

assumption and still valid even with the concerned companies) are compared with and

without the included companies.

5.1.2 Limitation of the Malmquist index

The Malmquist index is not beyond any reproach. As briefly explained, a first criticism

which can be addressed to the Malmquist index is its lack of circularity. The circularity

condition is the following (Pastor and Lovell, 2006):

MPI(t, t+ 2) 6= MPI(t, t+ 1) +MPI(t+ 1, t+ 2) (5.11)

According to this equation, the Malmquist index of two periods cannot be derived from

the index referring to those periods and the periods in-between.

This can be paraphrased by:

"If we have an index for the comparison of productivity between periods k and f, and

between l and f, we can establish a productivity comparison between units k and l via the

arbitrary third unit, f, that is independent of which third unit, f, that is chosen" (Førsund,

2002).

Secondly, besides its absence of circularity, the Malmquist index suffers from another flaw.

Relying only on the technical efficiency based on the work of Farell (1957), the Malmquist

index is not able to relate the global cost efficiency change since the allocative efficiency

component is not considered by the index.

"The Malmquist index may not give a full picture of the sources of productivity change

such as those resulting from a unit aligning its input mix better with the prevailing input

prices." (Maniadakis and Thanassoulis, 2004)

Yet, it is a common sense that the more information a regulator owns the more he will be

able to take effective decisions and propose an effective regulatory framework.

However, as mentioned by Coelli (2005), it is often harder for a firm to improve on an

allocative than on a technical perspective:
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"Allocative efficiency changes may result from distortions in factor markets not really under

the control of the operator. Limited access to capital markets and national agreements

with unions unrelated to the operator’s specialized employment needs are two common

examples of sources of allocative inefficiency for which the operator should not necessarily

be blamed. " (Coelli et al., 2003)

This reason simply lies in the nature of the network capital which is often long-lived

and not easily substituted, limiting even more the access to capital markets. Secondly, a

distribution company can face quite different environment resulting in restrictions on its

network capital.

Thus, although using Malmquist index incorporating an allocative component is more

suited theoretically, it will often lead up to limited results since companies have only a

limited control over their allocative efficiency. A clear productivity development will not

be often observed.

5.2 Second stage analysis

Once our efficiency analysis done, it is relevant to understand how to explain the difference of

productivity between the different actors by completing a second stage analysis. Thus, the

second stage analysis will consist of evaluating the environmental or structural differences.

This will be achieved by two main tools: the Tobit regression for the continuous variables

and the Kruskal-Wallis test for the categorial variables.

5.2.1 Tobit regression

Proposed by James Tobin (1958), A Tobit regression can be related to a simple linear

regression which is censored and where noise is truncated. The use of a Tobit regression

can be justified by the following quote:

"Linear regression do not take into account that efficiencies are greather than 0 and less

than or equal to 1 and that many efficiencies are typically at the upper boundary of 1"

(Bogetoft and Otto, 2011).
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Thus, the Tobit regression will be defined as:

E =


0 if az + ε ≤ 0

az + ε if 0 < az + ε < 1

1 if az + ε ≥ 1

(5.12)

Like a linear regression, the goal is to estimate the coefficient a, which will relate to the

marginal effect that the continuous variable z has on the efficiency score. A random error

term is expressed through ε since the model does not entirely explain the efficiency thanks

to the continuous variables (Bogetoft and Otto, 2011).

5.2.2 Kruskal-Wallis test

Concerning the categorial variables, the Kruskal-Wallis test proposed by Bogetoft and Otto

(2011) can be used. Established by Kruskal and Wallis (1952), this test aims to decide if

significant differences can be found in the results of two or more samples according to a

specific variable. This test aims to answer the following statement:

"The question is whether the differences signify differences among the populations, or

are merely the chance variations to be expected among random samples from the same

population" (Kruskal and Wallis, 1952).

In our case, our population will be the three main different type of ownerships among

the Swedish operators (cooperative, public or private) and the variable tested will be the

efficiency score of the three groups. The idea of the test is to rank all the observations on

a common scale in order to detect if a sample is systematically ranked higher than the

others. After the ranking, the following statistical test can be used:

H =
12

N(N + 1)

c∑
i=1

R2
i

ni
− 3(N + 1) (5.13)

Where C is the number of samples, ni the number of observation in the ith sample, N the

number of observations in all samples combined and Ri the sum of the ranks in the ith

sample. This test is based on a chi-squared law such as χ2(C − 1) and a high statistical

value leads to confirming the hypothesis of a significant differences among the samples.
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6 Data

In this chapter, the reader will get acquainted with the dataset analyzed through our

productivity research. As mentioned in Chapter 1.4, the Swedish undertook many reforms

concerning its regulatory scheme of the electricity distribution sector and proceeded to

the collection of a diversified range of information during different periods. One of the

main challenges was therefore to collect data allowing us to compare the different years in

order to reach some conclusions about the state of the industry. Two distinct sets of data

provided by the Swedish Energy Agency (STEM) and the Swedish Energy Inspectorate

(SEI) are analyzed throughout this thesis. The first consists of relatively exhaustive

information on Swedish distribution utilities for the period 2002-2006 while the second

provided the same type of information for the period 2011-2017.

For each dataset, a model has been designed. The first model concerns the period 2002-2006

(Model 1) and the second refers to the period 2011-2017 (Model 2). In order to maintain a

semblance of continuity in our research, Model 1 and Model 2 are as similar as possible

even if some variables were removed because they were not significant. These two models

are mimicking as closely as possible the current model applied by the EI. One of the

strengths of these models is to include the main costs faced by operators. This gives a

response to the critics addressed to the MPI concerning its lack of consideration of the

whole cost-efficiency (Maniadakis and Thanassoulis (2004),Coelli et al. (2003)).

6.1 Dataset 2002-2006

6.1.1 Data collection and preparation

This data, collected by the Swedish regulator, provides precise information on the assets

and costs of the different Swedish distribution companies for the period 2002-2006. Since

we need to have the same sample of distribution companies for each year, a first step was to

balance the panel, namely, through completing the mergers which took place for 2002-2006

within the sample. These mergers have been realized by consolidating the different inputs

and outputs of the merged companies together to create fictive merged companies for the
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years before the merger. Besides, operators which were not represented in all years or

with unrealistic information have been removed. A third step was to take into account the

outliers. They were detected using both super-efficiency and data cloud methods even if

the data cloud method was only applied to get some additional intuition. Results can be

found in Appendix 2.

At the end of the data preparation, the dataset consisted of a sample of 825 observations

depicting the main characteristics of 165 operators for 2002-2006.

6.1.2 Model 1

The selection of the variables of the benchmarking model is not a trivial exercise. Different

models of past research mentioned in Chapter 2 which used the same dataset were reviewed

(Agrell and Niknazar (2014);Agrell and Brea-Solís (2017);Agrell and Grifell-Tatjé (2016)).

Nevertheless, it has been decided to follow as closely as possible the current model used

by the Swedish authority in order to facilitate the comparison with the second model

presented hereafter. This model, based on the main costs faced by an operator as input, is

a good response to the criticism that the Malmquist index only takes the technical and not

the whole cost-efficiency into account. In addition, given the presence of environmental

information, some non-discretionary variables were included to provide us with a better

analysis of the difference of efficiency existing between the DSOs. Nevertheless, the

significance of these initial variables needed to be investigated. This has been done thanks

to the Kolmogorov-Smirnov’s test for discretionary variables and Tobit regression for non-

discretionary variables in Appendix 3. The variables that were not significant according

to the test were removed.

6.1.2.1 Candidate inputs

As said, the inputs initially chosen aim to depict the main costs that a distribution company

has to face.

Input 1: The operating costs represents the different costs associated with the operation

and maintenance of the company activity on a yearly basis. They are expressed in real
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terms. We can write them as:

Operating costs = Cost of personnel + Cost of metering + Other costs (6.1)

Input 2: The capital costs represents the different costs occurring to the asset base expressed

on a yearly basis. They comprise the cost of finance (return on capital) and the cost of

depreciation.

Capital costs = Cost of finance + Cost of depreciation (6.2)

6.1.2.2 Candidate outputs

We included five different outputs in our first version of this benchmarking model. As

mentioned, the choice of these variables is directly related to the investigation led by the

Swedish authority. According to the EI, they can be seen as the main cost drivers of the

distribution utilities in Sweden. Nonetheless, given that the output depicting the number

of network stations of a DSO being not represented for this period, a variable depicting

the number of transformer substations was chosen as the best proxy.

Output 1: Energy delivered through high-voltage is the amount of energy provided by the

DSO to customers by lines between 40 and 130kV. This electricity is typically transmitted

to the industry sector

Output 2: Energy delivered through low-voltage is the amount of energy provided by the

DSO to customers by lines less than 40kV. This energy will often be intended to provide

the residential sector.

Output 3: The peak load corresponds to the highest power demand delivered by the

company within a year.

Output 4: The number of sub-transformers refers to the number of transformer substations

which transfer electricity from the TSO to the DSO with a reduction of the voltage level.

Output 5: The number of connections corresponds to the number of customers subscribed

to the DSO (one customer typically represents one household).
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6.1.2.3 Candidate non-discretionary variables

We have chosen to follow the model proposed by Banker and Morey (1986) in order to

include the non-discretionary variables in our model. These non-discretionary variables

will be included as negative outputs as proposed by Bogetoft and Otto (2011).

Non-discretionary variable 1: Operator size depicts the relative size of an operators through

its total network length (TNL) as the sum of the high-voltage lines (HVL), low-voltage

lines (LVL), high-voltage cables (HVC) and low-voltage cables (LVC) lengths. Indeed, we

can assume that operators with a larger network can benefit from economies of scale. The

total network length of an operator was deduced as the sum of the kilometers of cables

and lines in both high and low-voltage.

TNL = HV L+ LV L+HV C + LV C (6.3)

Non-discretionary variable 2: Proportion of cable in the network depicts the ratio of cables

in the network of an operator.

Cable proportion(%) =
Cable network length (km)

Network length (km)
(6.4)

On the one hand, since cables are harder to settle than lines and their maintenance cost is

also higher, a high ratio would suggest more important costs for an operator. On the other

hand, this ratio can also offer a proper proxy to estimate if the operator is located in a urban

or rural area or in other words, if the distributor is facing a higher customer density since

cables will be preferred to lines in a urban area with space constraint. In this configuration,

a high ratio would suggest lower costs for an operator since a less large network is needed

to provide electricity to the customers. After performing a Tobit regression (Appendix

3), it seems that the cost saving due to the higher customer density overcomes the higher

cost of the cable material. Thus, a high ratio corresponds to lower-costs and operators

operating in urban areas are advantaged.

Non-discretionary variable 3: Proportion of network at low-voltage accounts for the

ratio between the low-voltage network length and the total network length. Knowing

that low-voltage electricity is mainly destined to small consumers (households, public
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infrastructures,...) and high-voltage to industrial consumers, the profile of the consumers

for each operator is addressed through this ratio. A large ratio implies that the operator

mainly provides electricity to small consumers while a small ratio that the main consumers

of the operator are industrial companies. It is known that low-voltage lines or cable suffer

from more energy losses than high-voltage ones. Thus, a high ratio is supposed to affect

negatively the efficiency scores as it would reflect the high share of the network that is

made of low-voltage lines or cables.

Low-voltage proportion(%) =
Low-voltage network length (km)

Network length (km)
(6.5)

6.1.2.4 Final model

In light of the investigation summarized in Appendix 3, only six of the mentioned variables

appeared to be significant and have been retained in Model 1.

Figure 6.1: Overview of Model 1

6.1.2.5 Descriptive statistics

After having performed the Kolmogorov-Smirnov’s test and the Tobit regression, our final

model can be represented as follows:

A quick overview of the median, mean and standard deviation of each variable for Model 1

can be found below.
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Category Unit Variable Median Mean SD
Input x SEK Operating costs 24,019 53,438 157,227
Input x SEK Capital costs 7,118 25,211 93,553
Output y No Number of connections 11,664 30,767 91,350
Output y MWh Energy delivered HV 49,411 163,413 445,851
Output y MWh Energy delivered LV 159,954 407,543 1,137,159
Dis. var. z % Cable network proportion 0.6935 0.6879 0.216

Table 6.1: Descriptive statistics 2002-2006 model

As it will also be seen later, the operators present sensitively variable sizes. The choice of

not removing the most important DSOs from the dataset can partly explain the significant

standard deviation and the gap between the mean and the median.

6.2 Dataset 2011-2017

6.2.1 Collection and formatting

The second dataset provided by the EI consists in information related to cost and physical

characteristics of the Swedish distribution operators for the period 2011-2017. This data

contains the most recent information and will be used to set the different requirements of

the next regulatory period (2020-2023).

It can be argued that 2014-2017 does not correspond with the regulatory period set by

the EI for the revenue cap (2016-201). This time lag is simply related to the access to

data. As a matter of fact, the individual and general efficiency requirements applying to

each DSO have to be set before summer 2019 for the time period 2020-2023. However,

the last reported output information by the operators are from 2017 and back. Regarding

the capital costs, they are reported once in the beginning of a regulatory period with

forecasting for the next years.

A major difficulty is that the SEI switched in 2014 from a real annuity to a linear

depreciation method to assess the depreciation. Given that the depreciation is a major

component of the capital costs, it was required to conduct two different studies of the

dataset for both the period 2011-2015 and 2014-2017. The reason of the overlapping is that,

even if the linear depreciation method has been used from 2014, capital cost computed by
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the way of the real annuity method were still provided until 2015.

Like the model for 2002-2006, several adjustments were made to the dataset in order to

balance the panel and account for the mergers. The treatment of the outliers based on the

same methods as previously mentioned can again be referred to Appendix 2. The final

result was samples compounded of 142 and 152 operators with complete information for

the period 2011-2015 and 2014-2017 respectively. The reduced number of observations

for 2011-2015 can be explained by the fact that some operators have been removed since

no information on their capital costs was provided. This sample can nevertheless be

considered as representative of the electricity distribution industry in Sweden. As an

indicator of this, the total amount of connections ranged between 4,392,896 in 2011 and

4,455,802 in 2015.

6.2.2 Model 2

As mentioned, Model 2 is directly inspired from the current model used by the Swedish

authority. Model 2 initially tested the two inputs and five outputs presented hereafter.

Just as for Model 1, statistical tests were conducted to evaluate the significance of the

variables (Appendix 3). From the test, it has been concluded that the peak load could

not be considered as significant and was removed from Model 2. As a reminder, note

that, due to different valuation of the capital costs, Model 2 has been performed on two

samples: one from 2011 to 2015 with the capital costs evaluated through a real annuity

depreciation method and one from 2014 to 2017 with the capital costs evaluated through

a linear depreciation method.

6.2.2.1 Candidate inputs

As said, the inputs will aim to relate to the costs of the DSO. Although closely related,

those inputs will not correspond exactly to the inputs previously introduced since they

will not consist of the total operating costs but only the controllable operating and capital

costs have been computed based on a linear depreciation according to the model proposed

by the SEI (cfr. Chapter 3.3.3).

Input 1: The controllable operating costs relates to the operating costs that the operator
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can influence and at least, partially avoid. Those operating costs are reported on a yearly

basis by the distribution companies concerning the previous exercise. Among others, they

mainly comprises:

• Labour cost

• OM cost

• Overhead cost

• Converted capital cost (cf. Chapter 3.3.3)

Note that the controllable operating costs are expressed in real value and account for the

inflation. They have been indexed to the price level of the year 2014.

Input 2: The capital costs is compounded of the depreciation and return of the regulatory

asset base incurred during the year. As said, there has been a change in the methodology

of computing these and the capital costs based on a real annuity method are displayed for

2011-2015 while those based on linear depreciation applies for the model for 2014-2017.

The previously used real annuity method was achieved by applying a constant depreciation

rate according to the type of materials. Thus, materials related to metering had a rate of

6,9% a year while materials related to the network stations and the distribution lines had

a rate of 3,5%

The new evaluation of the grid assets is based on a more elaborated depreciation method

based on the capital costs provided by the distribution companies at the beginning of the

new regulatory period. It can be described as follows (Wallnerström et al., 2016):

Capital costs =


( 1
DT

+ DT+1−age
DT

∗WACC) ∗ PPV if age ≤ DT

( 1
age

+ 1
age
.WACC) ∗ PPV if DT < age ≤ DT + α

0 if age > DT + α

(6.6)

Where DT is the estimated depreciation time,age is the age of the asset, WACC is the

weighted average cost of capital,PPV is the present purchase value of the asset, alpha is a

constant for providing some capital costs more years after the DT.
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6.2.2.2 Candidate outputs

As explained, only the variable referring to the peak load can be considered as insignificant

both for 2011-2015 and 2014-2017. The only variation with Model 1 refers to the inclusion

of the number of network stations instead of the number of sub transformers.

Output 4: The number of network stations accounts for the number of transformers and

exit points in the grid of the DSO.

It can be noticed that this model does not include non-discretionary variable. Even though

geographical variables would certainly be relevant, they have not been included yet in

the Swedish regulatory model. However, the variable depicting the number of network

stations aims to include the structural difference between the different DSOs and works

as a proxy for the customer density when coupled with the number of connections. For

instance, a distribution utility with a small customer density will have a more consequent

number of network stations than the same company in a high-density environment. There

is also a differentiation between low and high-voltage electricity delivered since it leads to

different costs (Council of European Energy Regulators, 2019).

6.2.2.3 Final model

After conducting the tests in Appendix 3, six of the presented variables are considered as

significant and included in Model 2.

Figure 6.2: Overview of Model 2



6.2 Dataset 2011-2017 53

6.2.2.4 Descriptive statistics

As explained, Model 2 is divided into two periods: a period going from 2011 to 2015 with

capital costs based on real annuity and a period going from 2014 to 2017 based on linear

depreciation. Descriptive statistics of the retained variables for the respective periods are

displayed below.

Category Unit Variable Median Mean SD
Input x SEK Capital costs 44,769 117,666 357,058
Input x SEK Controllable

Operating costs
18,709 47,281 127,836

Output y No Number of connections 12,163 31,367 98,048
Output y MWh Energy delivered

through high-voltage
lines

47,314 154,514 468,631

Output y MWh Energy delivered
through low-voltage
lines

156,947 390,685 1,151,931

Output y No Number of network
stations

279.0 960.8 3,433.4

Table 6.2: Descriptive statistics 2011-2015

Category Unit Variable Median Mean SD
Input x SEK Capital costs 32,752 103,362 333,339
Input x SEK Controllable costs 20,632 53,411 143,230
Output y No Number of connections 11,822 35,749 112,283
Output y MWh Energy delivered

through high-voltage
lines

47,168 164,561 482,037

Output y MWh Energy delivered
through low-voltage
lines

156,125 442,830 1,340,547

Output y No Number of network
stations

290.9 1157.6 4231.6

Table 6.3: Descriptive statistics 2014-2017
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7 Analysis

In this chapter, the different tools presented in Chapter 4 and 5 will be applied on the

sets of data presented in Chapter 6. One section will be devoted to assess and analyze the

productivity development through a Malmquist productivity index in each period. Second

stage analysis will also be performed for the two periods, aiming to verify if the type of

ownership (public, private or cooperative) but also if environmental factors for 2011-2017

can influence the efficiency scores. A special attention will be dedicated to the 2011-2017

period given its more recent nature.

7.1 Productivity development for 2002-2006

7.1.1 Efficiency scores

Even though the efficiency scores cannot be associated with a productivity development,

it is useful to get a first impression of those for the 165 operators for 2002-2006. As a

reminder, variables from Model 1 have been used to evaluate the efficiency scores for each

year. Table 7.1 presents the average efficiency score (TE) and the corresponding, standard

deviation (SD) and coefficient of variation (CV), for each year. The number of peer firms

and the minimum technical efficiency score within the year are also included. Note that

the results are expressed in percentage except for the number of peer firms.

Year Unit TE SD CV Peer firms Minimum
2002 % 68.00 20.00 29.40 22 16.01
2003 % 67.09 18.97 28.27 15 27.73
2004 % 65.46 19.19 29.31 21 30.70
2005 % 62.79 19.33 30.80 16 16.22
2006 % 62.86 18.59 29.58 13 29.68

Table 7.1: Efficiency scores 2002-2006

Given that the model is input-oriented, we first see through these results that firms could,

on average, decrease their costs between 32% and 36% for each of the years. Secondly, it

can be concluded that the industry is quite heterogeneous. We deduce it when focusing

on the average efficiency scores. As said, the average efficiency score can be considered as
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a measure of the heterogeneity of an industry since they show how close the operators

are to the best-practice frontier. As an illustration, an average efficiency score of one

would depict the fact that all the companies are located on the best-practice frontier,

demonstrating that the industry is using the same technology. On the other side, an

average efficiency score close to zero would indicate that few firms are outperforming and

putting the best-practice frontier away from other operators. Having a look at the large

number of peer firms and the low minimum scores confirm that the operators present

particularly different efficiency scores.

Sweden was one of the first countries to restructure its electricity market. Therefore, it

can be supposed that the distribution sector is quite mature. Having a look at the scale

efficiency scores (SE) depicted in Table 7.2 confirms this intuition.

Year SE
2002 97.04
2003 97.41
2004 98.06
2005 96.41
2006 96.18

Table 7.2: Scale efficiency scores 2002-2006

The averages per year are particularly high with scale efficiencies ranging from 96.39% to

98.41%. It seems that most of the firms have an optimal size according to Model 1.

7.1.2 Productivity change

7.1.2.1 General scores

After a brief overview of the efficiency scores, let us now dig deeper into the productivity

measurement for 2002-2006. However, before proceeding to any computation, the removal

of some operators as suggested in Chapter 5.2 is taken into account. These operators are:

E.ON Elnaet Sverige and Vattenfall Eldistribution. They represent the two largest of the

industry. Besides, the fact of including a negative output generated the reverse problem.

Two operators are removed: Blaasjoen Naet AB and Hamra Besparingsskog. They present

a relatively moderate size. The effect of the removal of those four operators can be seen in

Appendix 4.
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The results after removal are summed up in Table 7.3. The distribution of the scores of

the different components can be found in Appendix 5 for a better review of the industry

productivity development.

Year MPI TEC TC SEC
2002-2003 1.0344 0.9995 1.0395 1.0017
2003-2004 0.9762 0.9711 1.0061 1.0017
2004-2005 0.9919 0.9820 1.0109 1.0024
2005-2006 1.0008 1.0192 0.9828 1.0030
2002-2006 0.9576 0.9587 1.0006 1.0072

Table 7.3: Malmquist index 2002-2006

It can be seen that the MPI recorded a noticeable of the productivity enhanced by a positive

TC for the period prior the implementation of the NPAM. Afterwards, the operators

endured an important decline of their productivity from 2003 to 2005 and stabilized in

2006. All these results together give us a negative MPI for the period 2002-2006. This

fall is due to a decrease of the TEC. Through this component, we see that the industry

became less competitive and that the gap widened between the operators from 2002 to

2006. The TC and the SEC remained stable during this period. Concerning the SEC,

this can be explained by the fact that most of the operators already have an optimal size.

Therefore, the improvement of the scale efficiency is limited.

In view of our results, it seems that the NPAM provided wrong incentives to stimulate the

productivity development of the whole industry. As an illustration, let us have a look at

Figure 7.1. Note that the capital costs are depicted in brown and the operating costs in

blue

Figure 7.1: Evolution of the cost and the low-voltage electricity delivered 2002-2006

Through this illustration, we can conclude that an increased supply in LV electricity
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drove the raise of additional investments for 2002-2003. However, this was followed by a

decrease in the electricity delivered. Even though it cannot be undoubtedly said that the

inauguration of the NPAM is the cause (a conjonctural decrease of the demand could also

explain it), it seems a credible hypothesis.

7.1.3 Second stage analysis

Does the type of ownership of an operator has an influence on the cost-efficiency scores?

We will try to explain this question through the application of the Kruskal-Wallis test

explained in Section 5.3.2. As a reminder, this test consists mainly of detecting possible

differences among the results of different samples. A high statistical value (and de facto a

low p-value) expresses divergences among the samples. Three different samples have been

created according to the legal status of the operator: one sample with 32 private operators,

one with 30 operators categorized as cooperatives and one gathering 103 operators owned

by the municipality. The results of the test are displayed below.

Year Statistical value P-value
2002 8.107 0.0173
2003 15.949 0.0003
2004 17.025 0.0002
2005 15.695 0.0004
2006 19.620 0.0000

Table 7.4: Kruskal-Wallis test 2002-2006

We see that the p-values are all significantly low and coupled to a high statistical value.

As a matter of fact, it can be concluded that a significant difference in performance is

detected according to the ownership.

However, the test does not tell us which type of ownership is performing better. A good

way of assessing it is to compute the average of the efficiency scores per type of ownership

for each year and to compare them. These scores are not weighted. If it was the case, given

that few large private operators are located on the best-practice frontier (Vattenfall, E.ON

Elnaet Sverige and Fortum), the results presented in Figure 7.2 could even be intensified.
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Figure 7.2: Efficiency scores per type of ownership 2002-2006

The efficiency scores indicate that private operators perform better than operators under

municipal or cooperative ownership. It also seems that cooperative are performing at a far

lower level than municipally and privately owned utilities.

It could be argued that large economies of scale is the reason of their high efficiency

scores and that municipally owned operators of a similar size would obtain similar results.

However, the Tobit regression displayed in Appendix 3 shows that the network length

has a low impact on the efficiency scores. Secondly, environmental factors such as the

weather or the topological conditions would need to be taken into account to confirm that

a difference does exist between private operators, cooperatives and municipally-owned

operators.

7.2 Productivity development 2011-2017

As said before, due to different methods of valuation of the capital costs (real annuity and

linear depreciation), the period 2011-2017 will be divided into two periods: one from 2011

to 2015 and one from 2014 to 2017.
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7.2.1 Efficiency scores

The average results of 142 operators for 2011-2015 and 152 operators for 2014-2017 are

summarized in the table below. The average technical efficiency (TE), the standard

deviation (SD), the coefficient of variation (CV), the peer firms and the minimum efficiency

score are displayed. These results are expressed in percentage. The peer firms, expressed

in number, are the only exception.

Year TE SD CV Peer firms Minimum
2011-2015

2011 84.43 10.87 13.74 19 61.19
2012 84.53 11.18 13.22 23 59.58
2013 83.86 11.19 13.34 20 58.94
2014 83.86 11.05 13.16 19 60.32
2015 85.09 11.18 13.14 23 61.00

2014-2017
2014 80.45 11.73 14.57 14 49.49
2015 81.51 11.90 14.6 21 52.21
2016 81.84 11.55 14.08 17 55.12
2017 82.36 11.55 13.99 20 58.63

Table 7.5: Efficiency scores 2011-2017

Given that the inputs depict the main expenditures faced by an operator, a first

interpretation of the table is that the operators could on average decrease their cost

by about 15% and 20% if performing as the best operators for 2011-2015 and 2014-2017

respectively.

The average efficiency scores are slightly lower for the period 2014-2017 than for the period

2011-2015. Given the stability of the results and the difference also observed in 2014 and

2015, it can be concluded that the linear depreciation method certainly allows the model

to discriminate better the different operators than a simple annuity method. Nevertheless,

a bias can also be caused by the linear depreciation. The operators owning old networks

infrastructures have lower capital costs than others companies with more recent networks

infrastructures and therefore, will appear more efficient. The variation of the score seems

to be quite stable with only non-significant variations for both 2011-2015 and 2014-2017.

Drawing the attention on the coefficient of variation (CV), it can be seen that the variation

of the efficiency score is quite limited with standard deviation representing between 13.14%

and 14.57% of the average efficiency score all the years confounded. Combined with high
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minimum efficiency score, this strengthens our belief that the two samples analyzed are

quite homogeneous. Besides, the operators seem to tend to catch-up the best-practice

frontier as shown by a slight global increase in the efficiency score of 1.5% and 2% for

2011-2015 and 2014-2017 respectively. However, let us remember that this catch up only

accounts for one component of a productivity change. Indeed, the best-practice frontier

can also evolve from year to year (depicted by the TC).

These results denote a mature industry. As an illustration, the average scale efficiency

scores for each year is depicted in Table 7.6:

Year SE
2011-2015

2011 96.98
2012 97.80
2013 97.17
2014 97.76
2015 98.04

2014-2017
2014 94.6
2015 95.1
2016 95.6
2017 95.9

Table 7.6: Scale efficiency scores 2011-2017

A slight difference can be noticed in the average efficiency scores for 2011-2015 and 2014-

2017. As explained earlier, the change of capital costs valuation method induced a clearer

distinction among the operators. Apart from this, no major changes have happened in

the industry and most of the operators present a convenient size. A limited amount of

mergers is expected in the industry for the years to come.

7.2.2 Productivity change

7.2.2.1 General scores

Let us now turn to the productivity measures for 2011-2017. Like in 2002-2006, it is

important to underline that those results do not take into consideration the following

companies as they are the largest companies and they divert of the technology set of the

previous period as explained in Chapter 5.2:
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• In 2011-2015: E.ON Energi Distribution and Ellevio AB

• In 2014-2017: E.ON Elnät Sverige AB,Vattenfall Eldistribution AB and Ellevio AB

Results shows that this removal does not influence the MPI as it can be seen in Appendix

4. Once these operators are removed, let us have a look at Table 7.7 below.

Year MPI TEC TC SEC
2011-2012 1.0318 0.9925 1.0413 0.9993
2012-2013 1.0015 0.9996 1.0018 1.0015
2013-2014 0.9939 0.9947 0.9921 1.0016
2014-2015 1.0024 1.0129 0.9922 0.9983
2011-2015 1.0024 0.9980 1.0230 0.9993
2014-2015 1.0066 1.0089 1.0040 0.995
2015-2016 0.9752 1.0001 0.9677 1.0066
2016-2017 1.0061 1.0040 1.0033 0.9996
2014-2017 0.9857 1.0123 0.9739 1.0005

Table 7.7: Malmquist index 2011-2017

Between 2011 and 2015, it can be noticed that most of the years with exception of

2012-2013 presents a positive productivity development. However, with exception of the

year 2011-2012, the productivity development is marginal and at the end of the day, the

productivity development for the period 2011-2015 appears quite stable. The small increase

is due to the TC that is globally positive for 2011-2015. Concerning the TEC and SEC,

they have undergone small declines but can be considered as stable for 2011-2015 (this

even more when having in memory that the TEC and SEC deduced from efficiency scores

presented Chapter 7.2.1 would have been positive). It would be in any case difficult to

imagine other results for the SEC given the high scale efficiency scores obtained previously

(Chapter 7.2.1) and the limited influence of the operators on the size of their operations

as mentioned in Chapter 6.2.1.

It seems somewhat surprising that the period 2011-2012, the last year prior the revenue

cap that was characterized with a low-powered regime, present the best productivity

development. Turning to the cause of this upturn, the development of the productivity

comes mainly from the TC with an augmentation of more than four percent between 2011

and 2012. This results in a positive TC for 2011-2015. A plausible hypothesis can explain

this by the ratchet effect. This effect indicate that before the introduction of the Revenue

Cap Model, the operators could have purposely increased their costs to benefit from an



7.2 Productivity development 2011-2017 62

increased revenue cap for the next regulatory period and to meet more easily the general

efficiency requirement imposed by the SEI.

Concerning the productivity measurements for 2014-2017, the results reveal that the global

productivity development have been plateauing with slight increases between the years

2014-2015 and 2016-2017. However, a significant fall of the productivity is observed for

2015-2016, which corresponds to the transition between the two regulatory periods. This

is essentially due to the TC component. One reason might be the change in reporting the

capital costs or controllable operating costs by the regulator. For example, some categories

of operating costs might have been transferred from non-controllable to controllable or the

common capital rate of return imposed by the SEI could have been adjusted, resulting in

an increase tinhe global input quantity for the same amount of output and affecting badly

the best-practice frontier. If this hypothesis is retained, this would greatly change our

results and the productivity development of the industry could be considered as increasing

in light of the productivity development for 2014-2015 and 2016-2017. Looking deeper at

the TEC, as hinted by the efficiency score reported before, it is slightly progressing on

average, showing a tendency of homogenization in the distribution sector concerning the

best-practice usage. This contrasts with the period 2011-2015. A pertinent hypothesis

of the increase of the homogeneity in the sample can be attributed to the successful

introduction of the individual efficiency requirement in addition to the general requirement

forcing poor-performing operators to catch-up with best practices. The SEC presents

insignificant fluctuations and can be considered as stable. This appears quite reasonable

for the same reason as the one mentioned before for the period 2011-2015.

Even if we retain the hypothesis that some changes in reporting occured between the two

regulatory periods (which would alleviate or even remove the productivity decrease in

2015-2016), those results depict a slightly better industry with a productivity development

inferior to 1%. As said, this is not surprising given the maturity of the industry. Nonetheless,

when comparing with the efficiency requirements imposed by the regulation, it suggests

that the general efficiency requirement imposed to the operators by the regulator could be

overestimated. As a reminder, the regulator imposes a general efficiency improvement of 1%

for any operator. This requirement had been proposed from a research achieved in 2010 (Ek

and Fredriksson) based on productivity results from Sweden for 2000-2008. The findings are,

among others, that the productivity development of the industry using a MPI is estimated
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to 3.6% for the period 2000-2006. The report relies on other benchmarking techniques

and finally concludes that the productivity development of the Swedish distribution sector

is equal to about 2%. Accentuated by the fact that the regulator explicitly wanted to

set a low efficiency requirement in order to allow the operators to retain some efficiency

gains, a revision of the general efficiency requirement would certainly be relevant for the

Swedish authority. However, note that additional research based on other tools (SFA,

Stoned, engineering models) would add consistence to the evaluation of a plausible general

efficiency requirement.

7.2.2.2 Scores distributions

To get a broader picture of the situation, a look at the distribution of the results as

illustrated in Section 7.1 might be relevant. The distributions of the MPI, TC, TEC and

SEC scores between 2011 and 2015 are illustrated in Figure 7.3.

Figure 7.3: Histograms of the Malmquist index and components 2011-2015
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Observing the histogram of the MPI, the distribution seems to follow a normal law

characterized by a low standard deviation. Only Bodens Energi Nät AB delivers exceptional

results with a 27 percent increase of its productivity. This is mainly due to a dramatic

catch up to best-practice with EC increasing between 7 and 16 percent every year from

2012. A case study exploring the reasons which allowed Bodens Energi Nät AB to operate

such a catch-up could be worthwhile.

Concerning the TC and EC components, they follow normal distributions, even more

concentrated than for the MPI. The SEC has unsurprisingly nearly all its results

concentrated between 0.95 and 1.05.

Histograms can be observed in Figure 7.4 concerning the distribution of the productivity

of the different components scores for 2014-2017.

Figure 7.4: Histograms of the Malmquist index and components 2014-2017

Through these histograms, it can first be noticed that the MPI and its components also

display what seems to be normal and concentrated distributions. However, some operators
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stand out with MPI inferior to 0.75. A special attention will be given to them later.

Regarding the components of the productivity, the TC seems also to present few companies

having experienced a recoil of their technology. As mentioned, this can be due to a change

in reporting. Concerning the TEC measures, they are concentrated around 1 with few

operators presenting a higher number than 1.2. This seems to indicate us that a catch-up

to best practice dictated by an individual efficiency requirement of 0.082% as asked by the

regulator could be reachable. Again, most of the SEC measures concentrate between 0.95

and 1.05.

7.2.2.3 Causes of the productivity change

It can appear to be hard to know the dynamic of the distribution sector in view of the

MPI and its components. In order to have a better understanding of the results presented

in Table 7.7, Figures 7.5 and 7.6 depicts the evolution of the total levels of input and

output used by the industry between 2011 and 2015 and 2014 and 2017.

Figure 7.5: Variables evolution 2011-2015

Regarding the controllable operating costs, they seem to vary from one year to the next

but seem quite stable on the long run. On the other side, the capital costs seem to
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be constantly decreasing from 2011 to 2015. Note that both the controllable operating

costs and capital costs substantially declined from 2011 to 2012. This fact supports the

hypothesis of a ratchet effect prior to the establishment of the Revenue Cap Model.

Concerning the outputs, while the number of connections can be considered as steady, an

increased followed by a drop in energy delivered through low and high-voltage is noticed.

Therefore, it appears that, apart from the reduction of the costs, the raise in LV and

HV electricity delivered for the period 2011-2012 can also partly explain the significant

productivity development for this period. On the contrary, the fall in 2012-2015 is likely

to have limited the productivity improvement of the industry in our model. Nevertheless,

this drop cannot be imputed to a reduced supply. According to the International Energy

Agency (2019) in a recent report, this drop in consumption was conjectural and an increase

followed during the next years.

Figure 7.6: Variables evolution 2014-2017

As shown by 7.6, it seems highly likely that our intuition of a possible change in reporting

effectively occured. As a matter of fact, both the capital costs and controllable operating

costs have endured significant variations within the years 2014-2015 and 2015-2016. While

the rise of controllable operating costs between 2014-2015 does not seem to affect the
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productivity (because compensated by a fall in capital costs and a rise in total LV energy

delivered), the subsequent boom in capital costs for 2015-2016 reinforces the hypothesis of

a change in reporting. In fact, an increase of 3.1% in total LV energy delivered is observed

for the same year. We can therefore reach the conclusion that without this change in

reporting, the productivity development of the sector would certainly be growing in the

same way as 2014-2015 and 2016-2017.

7.2.3 Effect of the capital costs

As highlighted several times, the difference in the method of valuation of capital costs

prevents us from comparing the productivity development of the period 2011-2015 and

2014-2017 together. However, by removing the capital costs from our variables, we could

obtain a model depicting results for the two periods altogether. Nevertheless, an intuition

suggested by the test of significance of our variables (Appendix 3) is that taking away the

capital costs would lead to considerably different results. Besides, the limited number of

variables would probably limit us to offer a proper analysis of the industry.

To convince ourselves of the impact that it would have on our productivity analysis,

productivity development have been computed for each year with and without the capital

cost in order to compare the impact of the removal of the capital costs on the productivity

changes for the periods 2011-2015 and 2014-2017. The results are shown in Figure 7.7.

Figure 7.7: Malmquist index with and without capital costs 2011-2017

The figures underline unsurprisingly significant differences in the productivity development
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measures for the model with and without capital costs. This indicates us that removing

the capital costs would give significantly different results. It can also be noticed that the

variation of the productivity change measures would increase. Indeed, less variables allow

the models to offer a better ranking of the different operators since based on less variables.

7.2.4 Analysis of the most innovative and underperforming

companies for 2014-2017

After having reviewed the global tendency of the productivity, we found it relevant to

analyze more deeply which companies have been showing the best improvements for the

recent years. A sample composed of the 15 best performing operators according to the MPI

between the year 2014 and 2017 has been retained. Those operators can be summed up in

Table 7.8 in a descending order. There is no doubt that a distribution utility presenting a

low efficiency score will have more potential to improve. For this reason, the last column

representing the mean between the efficiency scores obtained in the last four years has

also been added.

Operators 2014-2015 2015-2016 2016-2017 2014-2017 Average efficiency score
Njudung Vetlanda 1.2197 1.0096 0.9562 1.1626 0.7531
Falbygdens Energi 1.0332 1.0795 1.0271 1.1492 0.6810

Södra Hallands Kraft 1.0097 1.1754 0.9785 1.1466 0.6930
Vattenfall Elec. 0.9300 0.9686 1.3477 1.1455 0.7987

Ulricehamns Energi 1.0229 1.0198 1.0808 1.1329 0.8176
Hamra Besparingsskog 1.0570 0.9893 1.0491 1.1262 0.8620
Övertorneå Energi 1.0330 0.9710 1.1306 1.1262 0.8467

Vara Energi 1.0811 0.9988 1.0375 1.1258 0.8481
Härjeåns Nät 1.0679 0.9579 1.0387 1.0972 0.6310
Åsele Elnät 1.0386 1.0202 1.0387 1.0920 0.7403
C4 Elnät 1.0652 1.0698 0.9899 1.0920 0.8781

Olofströms Kraft 1.0258 1.0325 1.0255 1.0919 1
Brittedals Elnät 1.0108 1.0192 1.0548 1.0888 0.6920

E.ON Elnät Stockholm 1.0608 1.0651 0.9724 1.0879 0.9913
Ljusdal Elnät 1.0814 0.9652 1.0196 1.0779 0.6992

Table 7.8: Innovative operators 2014-2017

Above all, some precautions need to be taken with these results. It can be seen that

according to our results, some operators sometimes present outstanding productivity

improvement such as Njudung Vetlanda, Södra Hallands Kraft or Vattenfall Electricity

Distribution with productivity improvement of 21%, 17% and 34% between two periods.
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Those results seem highly unrealistic from a common sense perspective. As said earlier,

the possibility of a change in reporting is a plausible hypothesis to explain at least partly

the productivity development of those firms.

Nonetheless, constant productivity development for a company such as Falbygdens Energi

cannot be denied. This company presents an average efficiency score significantly below

average but has been able to work out how to make its operations more efficient. Other

companies having high efficiency requirements could get inspired of this example to

catch-up more quickly to best-practice.

Finally, in green is depicted the company Olofströms Kraft. In spite of being on the

best-practice frontier, the operator seems to keep improving its productivity. According to

Färe et al. (1994), this company can be considered as the most innovative operator since

it contributes in moving the best-practice frontier. Specific research of that operator is

certainly meaningful in order to detect the cause of the productivity development.

From an opposite perspective, it can be interesting to assess the underperforming operators

of the industry over the last four years. The fifteen companies presenting the worst

productivity development between 2014 and 2017 have been summed up in Table 7.9 in a

descending order.

Operators 2014-2015 2015-2016 2016-2017 2014-2017 Average efficiency score
LKAB Nät 0.9938 0.9892 0.9055 0.8836 0.6592
Nacka Energi 1.0151 0.9762 0.9064 0.8827 0.8919

Mölndal Energi Nät 1.0105 0.8668 1.0155 0.8814 1
Trelleborgs kommun 1.0330 0.9521 0.9013 0.875 0.7584

Oxelö Energi 1.0041 0.8017 1.0677 0.8583 1
Landskrona Energi 1.0061 0.9547 0.9142 0.8566 0.9828

Blåsjön Nät 1.03317 0.6994 1.1381 0.8532 0.7210
Mellersta Skånes Kraft 1.0353 0.9204 0.9011 0.8537 0.7922
Bodens Energi Nät 1.0981 0.8818 0.8660 0.8354 0.832

Bergs Tinglsags Elec. 0.8147 1.0146 1.0092 0.8137 0.6390
Skövde Nät 0.8437 0.9577 0.9879 0.8118 1

Mälar Energi Elnät 0.8972 0.9064 0.9972 0.8090 0.8860
Gotlands Elnät 0.8945 0.8564 0.9671 0.7499 0.8275
Skyllbergs Bruks 0.7696 0.9044 0.9969 0.7391 0.9561
Sturefors Eldistri. 1.0349 0.6582 0.9301 0.6550 0.8885

Table 7.9: Underperforming operators 2014-2017

Again, these results should be taken cautiously given that some changes in reporting

could have occured. However, for companies presenting constantly negative productivity
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improvement, it cannot be denied that some aspects of the operations should be questioned.

On the one hand, highlighted by the presence of three peer firms in the 15 underperforming

operators, it can be supposed that peer firms will more often tend to rely too much on

their high efficiency score. A lack of incentives could be the reason since fully efficient

operators would have the same efficiency requirement even in case of negative productivity

development because they are already entirely efficient. In other words, they would have

no incentives to decrease their costs, since it will not affect their efficiency score. A system

based on super-efficiency seems to be an option to solve, at least partially, this issue and

to keep giving incentives to the best operators to reduce their costs.

On the other hand, two companies, Bergs Tinglsags Elec. and LKAB Nät, depicted

in red, demonstrate relatively low efficiency score and are apparently struggling with

catching-up to best-practice. These results show that a special care in the monitoring

of these companies would certainly be needed. While Bergs Tinglsags Elec can be seen

as a typical operator, the nature of LKAB Nät can certainly explain why the average

efficiency score is so low. Indeed, LKAB Nät is an operator devoted only to providing

electricity to the mining company of the same name. The company is characterized by a

modest amount of customers and a higher energy consumption per capita. Thus, ceteris

paribus, LKAB Nät will present lower efficiency scores due to less customers than a similar

company operating in normal conditions.

7.2.5 Second stage analysis

7.2.5.1 Comparisons between the types of ownership

The Kruskal-Wallis test has again been applied in order to account for possible divergence in

the efficiency scores according to the ownership type. For the period of 2011-2015, 90 of the

142 operators were classified as publicly-owned while 25 and 26 were respectively labelled

as private and cooperative companies. The samples for 2014-2017 were compounded of 99,

25 and 27 operators for the samples with publicly-owned, private and cooperative firms

respectively.

Table 7.10 summarizes the main results of the test.
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Year Statistical value P-value
2011 4.658 0.0974
2012 7.471 0.0239
2013 6.173 0.0457
2014 5.800 0.0550
2015 2.707 0.2583
2014 0.118 0.9426
2015 0.308 0.8575
2016 0.734 0.6928
2017 1.935 0.3800

Table 7.10: Kruskal-Wallis test 2011-2017

These results appear to be a bit puzzling. Indeed, while the test indicates clearly no

difference in performance according to the ownership structure for the period 2014-2017,

the test conducted for the period 2011-2015 seems to indicate us the opposite. Even worse,

the results for the year 2014 show two opposite things. If the capital costs are valued with

the real annuity method, it seems that a difference does exist according to the structure

of the ownership while no difference is detected when the capital costs are valued with a

linear depreciation method.

As said earlier, the test only points that a difference between the samples exist but does

not provide us with information concerning its nature. The different average efficiency

scores per type of ownership allows us to understand the difference between the type of

ownership.

Figure 7.8: Efficiency scores per type of ownership 2011-2017
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We see that operators with private ownerships perform better than municipally-owned

and cooperative distribution utilities according to data collected for 2011-2015. On the

contrary, no real difference can be distinguished for the period 2014-2017.

An explanation of the difference between the two sets of data can be found when

remembering the reasons of the change from a real annuity method to a linear depreciation.

As a reminder, the objective was to provide operators with additional incentives to invest

in the renewal of their grids by rewarding the operators with a newer network by the

means of a higher revenue cap. Since the real annuity method proposed a linear rate

following the type of the assets without accounting for the age of them, it was in the

interest of an operator to save its money and to maintain as long as possible its old grid,

given that expenditures in a new grid would not result in an increase in the capital costs

and therefore the revenue cap. On the contrary, with a linear depreciation valuation, the

capital costs are higher for an operator with a recent grid, resulting in a higher revenue

cap. Besides, reforms in 2016 concerning the incentive mechanism for a reliable supply

also probably played a role in the renewal of the grid of the operators (cf. Appendix 1).

In our model, this effect leads to higher capital costs and a decreased efficiency for the

operators with a recent grid if the capital costs are assessed through linear depreciation. In

other words, a firm with an old grid will obtain higher efficiency scores than a similar firm

with a more recent grid. This bias can be observed in Figure 7.8. The privately owned

companies are not performing better than municipally owned and cooperative operators

when capital costs are valued with a linear depreciation method unlike when the capital

costs are valued with a real annuity value. In view of the results, we can reach the conclusion

that there is probably a difference in the age-structure between private, cooperative and

municipally-owned operators, which will lessen the average efficiency scores of the private

companies in comparison with the cooperative and publicly-owned companies since having

a newer grid. The reason of this more recent grid remains in the fact that private operators

are more monitored than cooperative and publicly owned companies. Therefore, new

investments will be realized regularly to optimize their operations. The private companies

will notice the incentives faster and maximize their revenue cap. This is especially true

given the fact that the operators are allowed to retain a part of their efficiency gains

according to the SEI policy. On the contrary, municipalities and cooperatives will often

feel less the need to renew their grid, their first goal being simply to ensure a decent supply
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of electricity and their financial results being less closely monitored.

7.2.5.2 Other environmental factors

Secondly, it can be interesting to have some insights on different environmental factors.

Using a Tobit regression, the objective is to assess if some environmental factors can

explain the efficiency scores of the operators.

Given the lack of environmental information, the factors were created thanks to the

variables used in Model 2. This also explains why they have not been included in Model

2. The two environmental factors tested are (1) the customer density, approximated

by dividing the amount of connections by the number of network stations and (2) the

high-voltage network proportion that refers to the ratio of high-voltage electricity on the

total electricity delivered by an operator.

Regarding (1), it appears likely that some economies of scale would allow operators in

urban areas to be more efficient than operators in rural areas. The intuition is that the

capital costs are highly correlated to the number of network stations and a firm operating

in a low-density area will therefore have more network stations and more costs than a

firm providing electricity in a urban area, which will counter balance its high costs in

comparison with its number of connections. Another way of estimating the customer

density would have been to relate the number of customers with the network length of

an operator. Nevertheless, it has not been set up by the SEI which estimated that only

including the two variables in the model would be sufficient.

Regarding (2), operators can have higher efficiency scores when providing mainly high-

voltage since it implies fewer losses for the same amount of electricity delivered. Once

again, EI tried to account for this difference by discerning low and high-voltage electricity

delivered in the outputs. This implies that a company with a large proportion of high-

voltage electricity delivered can still be considered as efficient even if having higher costs

than a company delivering the same amount of energy but through low-voltage lines.

As underlined in the previous paragraph, these environmental factors are supposed to be

taken into consideration by the model of SEI. However, results obtained summed up in

Table 7.11 below offer us another perspective. For each year is written the environmental
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factor coefficient while the p-value is depicted in parenthesis. As a reminder, the smaller

the p-value, the higher the probability that the environmental factor exerts an influence

on the efficiency scores.

Year Customer density HV network proportion
Intercept Slope Intercept Slope

2011 0.8221(0.0000) 0.0007(0.0491) 0.8418(0.0000) 0.0458(0.4910)
2012 0.8280(0.0000) 0.0006(0.0905) 0.8528(0.0000) 0.0141(0.8450)
2013 0.8168(0.0000) 0.0007(0.0563) 0.8322(0.0000) 0.0682(0.329)
2014 0.8297(0.0000) 0.0004(0.2800) 0.8365(0.0000) 0.04455(0.512)
2015 0.8218(0.0000) 0.0009(0.0141) 0.8396(0.0000) 0.1001(0.1590)
2014 0.7745(0.0000) 0.0008(0.0193) 0.7844(0.0000) 0.1083(0.0988)
2015 0.7675(0.0000) 0.0013(0.0003) 0.7858(0.00000) 0.1686(0.0154)
2016 0.7623(0.0000) 0.0015(0.0000) 0.7961(0.0000) 0.1311 (0.0509)
2017 0.7879(0.0000) 0.0010(0.0040) 0.8080(0.0000) 0.1058(0.1210)

Table 7.11: Tobit regression 2011-2017

As can be seen, results from the two sets of data seem to converge to say that the customer

density is probably a factor related to the efficiency score. Nevertheless, the fact that the

customer density is related to the efficiency score does not mean that it is the cause. A

confounding factor could exist. The climate can influence both the customer density and

the costs related to the grid of an operator. For instance, a cold climate would result in a

lower customer density and higher cost. This is especially true in a country like Sweden

with some areas facing extreme temperatures or climatic conditions. Therefore, some other

environmental variables need to be tested and possibly integrated to take into account

these effects and provide a fairer benchmarking to the operators.

Concerning the proportion of high-voltage energy delivered, the results are more balanced.

On the one hand, no link can be found when applying the Tobit regression on the efficiency

scores obtained from the data for 2011-2015. On the other hand, a link seems somewhat

probable when looking at the p-value for 2014-2017. Once again, it seems that the valuation

method of the capital costs would be relevant to explain these differences. However, more

research would be needed to understand these results.
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7.3 Limitations of the research

In view of these results, it is however important to bear in mind that the results displayed

in this chapter does not offer us a perfect picture of the real activities of the operators.

The productivity change could appear utterly different with the use of other variables. For

instance, the inclusion of non-discretionary variables related to geographical conditions

would certainly have been useful for our two models.

Besides, as already explained, the operators are constantly trying to maximize their revenue

cap. Thus, incentives given to operators to have higher capital costs and controllable

operating costs can bias the two models. For instance, the reward of the operators with a

more recent grid will penalize them in our model since it will lead to higher capital costs.

A change in the reporting of the cost is also likely to affect our model. As an example,

at the end of each regulatory period, the return on capital is reassessed. This results in

different capital costs for a same operator with the same operation conditions.

Finally, even if comprising most of the Swedish operators, there is still a possibility to

obtain different results with all the operators present in the distribution sector. We can

also question if the operators presenting excellent performance are not merely the luckiest

firm of our samples. The causality of a bright management of these operators and their

excellent performances is not demonstrated.
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8 Conclusion

In this research, we have attempted to perform an evaluation of the productivity

development of the Swedish electricity distribution sector. This thesis echoes the lack of

productivity development research in Sweden within the last years. Besides, it was also

the opportunity to evaluate both the demoted Network Performance Assessment Model

and the Revenue Cap Model established since 2012. At first, a review of the literature has

been achieved. The main families of regulatory regimes for network regulations and the

previous Swedish regimes were introduced. Then, the benchmarking methods extensively

employed throughout this research were presented.

The productivity has been assessed by means of the Malmquist index following the

decomposition proposed by Färe et al. (1994) and Ray and Desli (1997) for both the period

2002-2006 and 2011-2017. Besides, these two distinct analysis have been completed by

second stage analysis aiming to determine if the ownership structure or environmental

factors could contribute to the productivity development. Note that due to a difference in

reporting the capital costs, the period 2011-2017 was divided into two distinct periods:

2011-2015 with capital costs based on an annuity depreciation method; 2014-2017 with

capital costs based on a linear depreciation method.

After the completion of the analysis for 2002-2006, it may be concluded that:

1. The industry was more heterogeneous than now with many peer and underperforming

operators.

2. Many of the operators already had an optimal size. This is the sign that the industry

was already mature.

3. The low-powered NPAM regime did not provide proper incentives to the productivity

development of Swedish operators.

4. Privately owned distribution utilities seemed to perform better than municipally

owned and cooperative operators.

Secondly, the analysis for the period 2011-2017 added many interesting conclusions:

1. The efficiency scores has shown that the technologies employed by the firms are
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quite homogeneous.

2. The productivity has raised in 2011-2012 due to an increase in the electricity delivered

and possibly due to a ratchet effect before the establishment of the Revenue Cap

Model.

3. The productivity fell slightly in 2012-2015 but is due to a decrease of the electricity

consumption

4. The productivity grew mildly in 2014-2017 if we do not take into account change in

reporting.

5. The general efficiency requirement of 1% imposed by the EI would need to be

reassessed since it does not reflect the global productivity growth of the operators.

6. The recent inclusion of an individual efficiency requirement by the Swedish regulator

seems to be effective with a catch-up to best-practice by the least competitive

operators.

7. The operators located on the best-practice frontier present a lower productivity

development than the industry. A mechanism to maintain incentives to improve

such as super-efficiency would be relevant to solve this issue.

8. The private companies are likely to perform better than cooperative and municipal

operators given that their network appears to be more modern and reliable.

9. A link can be found between the performance of an operator and the density of its

customers.

Nevertheless, these results need to be contrasted by some major limitations. The choice of

the variables is also debatable and other benchmarking models would have certainly given

significant divergences in their results. For instance, the real performance of the operators

could be utterly different if non-discretionary variables accounting for the geographical,

topological and climatic conditions were included in the two models. Besides, the linear

depreciation of the assets is a bias to the capital costs and an operator with an old grid

will perform better than a similar operator with a newer grid. Oppositely, an operator will

be penalized if its grid is recent. The quality of our data can also be discussed. Indeed, it

seems that costs have probably been reported differently throughout the years. Finally,
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note that some operators were not included in our samples. Therefore, the results obtained

in this research may not correspond perfectly to the real situation of the distribution

sector.

In light of those limitations, additional research need to be conducted with other samples,

models and productivity tools in order to define with certainty the productivity development

of the Swedish distribution operators. A particular emphasis is placed on model which

would incorporate geographical variables. Productivity development studies of electricity

distribution sectors in other Scandinavian countries would also be relevant in order to

understand the differences between the distribution sectors. Case studies to explain the

noticeable performances of the most and least competitive operators underlined by this

study could be achieved as well.
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Appendix

A1 Adjustments of the Revenue cap - Swedish

regulatory scheme

Three adjustments of the revenue cap were conducted by the Swedish regulator. All

the explanations provided below have been taken from the paper of Wallnerström and

al.(2016).

A1.0.1 Quality

The quality adjustments is calculated from the information yearly provided by every

operator concerning their outages planned or unplanned faced in the past year. Because

customers have different outage costs (no electricity for a company will have a greater

impact than for a household for instance), every customer belongs to one of the five

categories facing different outage costs determined in advance by the EI. The annual

quality adjustments are computed for each operator as follows:

Q =
5∑

k=1

2∑
j=1

(
(SAIDIb,j,k − SAIDIo,j,k)Kej,k + (SAIFIb,j,k − SAIFIo,j,k)Kpj,k

)
Pav

where SAIDI is the system average interruption duration index and SAIFI the system

average interruption frequency index, k represents the customer group concerned and j

the nature of the interruption (planned or unplanned), b is the norm level (that is to say,

the SAIDI and SAIFI levels tolerated by the EI) and o is the outcome during the period

of regulation, Ke is the cost parameter given in SEK/kWh, Kp is the cost parameter given

in SEK/kW and Pav is the average yearly power usage defined as a fraction between the

total energy consumption for a customer and the number of hours within a year.
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A1.0.2 Energy losses

The energy losses are considered as non-controllable costs. However, on the long run, lines

can be changed. For this reason, the following incentive mechanism has been imagined.

L =
(Nnorm −Nturn-out)pEturn-out

2

where Nnorm and Nturn−out are respectively the historical average share of electricity

network losses in the previous regulatory period and the share of network losses for the

operator during the year in percentage.The parameter p is the corresponding price per

megawatt hour for network losses calculated as an average price during the regulatory

period and Eturn−out represents the amount of distributed energy during the regulatory

period.

A1.0.3 System utilization

The cost for feeding grid paid to the superior operator is comprised in the non-controllable

cost and therefore the consumer has to pay for it. Nevertheless, this tariff often depends

on the highest load. Since the network is designed to consider the peak loads, the capacity

of the system will rarely be fully utilized and a better utilization leads to lower tariffs. To

account for this, the following equation depicts the incentive measure set up the EI:

U =

 |Lfturn−out ∗Bdiff ∗ Eturn-out if Bdiff < 0

0 if Bdiff ≤ 0


where s the sum of all daily load factors Lfi divided by the number of days during the

regulatory period. Bdiff = Bnorm−Bturn-out is the saving for the cost that DSOs pay to the

feeding grid (kSEK/MWh). This can be computed as the difference between the cost paid

to the superior grid during the previous period and during the current regulatory period

divided by the amount of distributed energy during the period (SEK/MWh). Eturnout is

the distributed energy during the regulatory period (MWh).

The term Lfturn-out can be found as follows:
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Lfturn-out =

∑D
i=1 Lfi
D

where Lfi is the average load divided by the maximum load in day i and D is the amount

of day for the regulatory period.

A1.1 Consequences on the revenue cap

Based on the incentives presented previously, the total adjustment of the revenue cap (RC)

can be computed as shown below:

Total adjustments =


-0.05[RC] if (Q+L+U)≤ −0.05[RC]

+0.05[RC] if (Q+L+U)≥ +0.05[RC]

Q+L+U otherwise



A2 Outliers

We can distinguish two different definitions according to Agrell and Niknazar (2014):

"According to a typical intrinsic definition, cf. Barnett and Lewis (1994), an outlier is an

observation which appears to be inconsistent with the rest of the data set [...] According

to an influence perspective, a unit acquires the quality of outlier for a given method and

reference set through the (undue) impact that its inclusion exerts on the quality of the

estimation."

In view of those two different definitions, two different methods has been used.

A2.1 Outliers via data cloud method

For outliers such as presented in the first definition, we will use what is commonly called

the data cloud method (Bogetoft and Otto, 2011). This method first consists of computing

the determinant of the matrix representing the dataset. Since this determinant is directly

proportional to the volume of the data cloud, removing outliers would greatly reduce the

data cloud and therefore the determinant. Therefore, a determinant being far lower than
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the initial determinant after the removal of an observation underlines that it is part of the

outliers.

In light of what has been said, let us consider the following ratio:

Ri =
Di

D
(.1)

Where Di is the determinant without the observation(s) i and D is the initial determinant.

The method proposed relies on an iterative process that aims to deduce which observation

are minimizing the ratio Ri when deleted. Since the process requires an exponential

number of combination as the number of observations deleted increases, the reasonable

number of three observations removal is chosen as the best trade-off between the time

consumed and the accuracy of the answer.

Results for the dataset 2002-2006 can be observed in Table A2.1.

Additional firm deleted Firms deleted (DSO
number)

Ri

2002-2006
Vattenfall Eldistribution AB 583 0.0822
E.ON Elnaet Sverige AB 583,593 0.0094
Fortum Distribution 583,593,176 0.0013
2011-2015
Jukkasjärvi Sockens 83 0.0081
E.ON Energidistribution 93, 957 0.0009
Ellevio AB 93,957,3008 0.0000
2014-2017
Jukkasjärvi Sockens 93 0.0015
E.ON Elnät Sverige 93,957 0.0002
Vattenfall Eldistribution 93,957,572 0.0000

Table A2.1: Outliers according to the data cloud method

A2.2 Outliers via super-efficiency

Another way of determining the outliers proposed by Banker and Chang (2006) is to make

use of the super-efficiency. The main idea is to compute the super-efficiency of each firm.

If the super-efficiency is higher than a predetermined threshold, the observation will be

seen as greatly influencing the best-practice frontier. The method suggested to compute
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the threshold according to the data is to use the following formula:

T = q(0.25) + 2 ∗ [q(0.75)− q(0.25)] (.2)

Based on this method, outliers for our different dataset are displayed in Table A2.2

2002-2006 Super-efficiency
Larvs Elektriska 1.48
LJW Naet HB 2.50
NVSH Energi AB 1.53
2011-2015
Carlfors Bruk 99.66
Sturefors Eldistribution 10.10
Vaggeryds kommun 1.56
2014-2017
Carlfors Bruk El. Björklund 32.40
Jukkarsjärvi Belysnings. 3.32
Vaggeryds kommun Elverket 1.72

Table A2.2: Outliers according to the super-efficiency method

A2.3 Discussion

In view of the table presented, it can first be concluded that the two methods lead to

sensible different results when classifying observations as outliers, confirming our intuition

that several kinds of outliers exist. Another conclusion regarding the data cloud methods

is that it tends to systematically detect biggest operators as outliers. Based on this, only

outliers detected thanks to the super-efficiency method are removed.

A3 Variables significance

A3.1 Inputs and outputs

It is important to verify that our models fits correctly to the data. On the one hand,

a simplified model would offer less accurate performance. On the other hand, it would

increase the discriminatory power of the model and allows a clearer ranking of the firms.

In order to determine the relevance of a variable, we can compare the efficiency scores
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which would be obtained with and without the variable. The intuition is that if efficiency

scores deduced from the two models are divergent above a certain threshold, the initial

model offers a better representation of the performance of the firms.

The Kolmogorov-Smirnov (KS) test proposed by Banker (1993) can be seen as a convenient

test with free assumption on the distribution in order to test the significance of the

variables. The test statistic can be defined as:

TKS = max{|G1(E
k)−G2(E

k)|} (.3)

Where G1 and G2 are the empirical cumulative distributions of the model with and without

the variable such as TKS is the largest vertical distance between the cumulative distribution.

A large value for TKS indicates that the distribution differ and therefore, that the variable

is significant.

The results of the test on our set below.

Variable Statistical value P-value
2002-2006
CAPEX 0.567 0.0000
OPEX 0.998 0.0000
Connections 0.062 0.0427
Power sub-transformers 0.017 0.7885
Peak load 0.0121 0.8858
Energy delivered LV 0.383 0.0000
Energy delivered HV 0.094 0.0006
2011-2015
CAPEX 0.583 0.0000
Controllable OPEX 0.280 0.0000
Connections 0.096 0.0038
Network stations 0.371 0.0000
Peak load 0.005 0.9852
Energy delivered LV 0.238 0.0000
Energy delivered HV 0.149 0.0000
2014-2017
CAPEX 0.673 0.0000
Controllable OPEX 0.280 0.0000
Connections 0.096 0.0038
Network stations 0.371 0.0000
Peak load 0.005 0.9852
Energy delivered LV 0.238 0.0000
Energy delivered HV 0.149 0.0000

Table A3.1: Kolmogorov-Smirnov test
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The application of the Kolmogorov-Smirnov test shows interesting results. A first conclusion

is that the number of power sub transformers does not seem to be a relevant variable for

Model 1 and can be removed. Being highly insignificant, the variable referring to the peak

load is also removed from Model 2.

A3.2 Non-discretionary variables

As you may have noticed, the non-discretionary variables of Model 1 have not been tested

through the Kolmogorov-Smirnov test. Instead, Tobit regressions such as explained in

Section 6.3.1 seem to be more adequate. To conduct these regressions, efficiency scores

without the non-discretionary variables have been computed for each year. Then, the

Tobit regression has been performed to see if there is any link between them and the

non-discretionary variables.

Year Cable proportion LV proportion Network size
Intercept Coefficient Intercept Coefficient Intercept Coefficient

2002 0.459 (0.0000) 0.260 (0.0000) 0.485 (0.0000) 0.222 (0.1830) 0.636 (0.0000) -0.0000 (0.679)
2003 0.453 (0.0000) 0.301 (0.0000) 0.316 (0.0030) 0.515 (0.0012) 0.661 (0.0000) -0.0000 (0.463)
2004 0.463 (0.0000) 0.251 (0.0002) 0.471 (0.0000) 0.248 (0.1340) 0.636 (0.0000) -0.0000 (0.937)
2005 0.479 (0.0000) 0.197 (0.0057) 0.531 (0.0000) 0.131 (0.445) 0.618 (0.0000) -0.0000 (0.934)
2006 0.382 (0.0000) 0.347 (0.0000) 0.282 (0.0884) 0.521 (0.0012) 0.630 (0.0000) -0.0000 (0.704)

Table A3.2: Tobit regression for 2002-2006

Obviously, a relation between the cable proportion and the efficiency score is detected.

This legitimates its presence in the model.

A boxplot chart depicting the efficiency scores obtained with and without the non-

discretionary variable is depicted below.
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Figure A3.1: Efficiency scores with and without non-discretionary variables 2002-2006
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A4 Effect on average productivity change when

removing biggest operators

Year MPI
2002-2006 -0.0090
2002-2003 -0.0032
2003-2004 -0.0028
2004-2005 -0.0092
2005-2006 0.0038
2011-2015 0.0001
2011-2012 0.0007
2012-2013 -0.0002
2013-2014 0.0000
2014-2015 -0.0005
2014-2017 -0.0003
2014-2015 -0.0011
2015-2016 0.0016
2016-2017 -0.0005

Table A4.1: Difference in the Malmquist with and without the biggest operators 2011-
2017
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A5 Histograms of the Malmquist index and its

components 2002-2006

Figure A5.1: Histograms of the Malmquist index and components 2002-2006
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