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Abstract 

The purpose of this study has been to predict Forward Freight Agreement (FFA) prices using 

machine learning techniques, investigate the additional forecasting power of Automatic 

Identification System (AIS) derived features, and to evaluate the profitability of applying 

forecasted directional movements to trading strategies.  

A Long-Short-Term Memory (LSTM) neural network is used to predict price movements for 

the two closest quarterly, and the closest calendar year Capesize 5 Time Charter (5TC) FFAs. 

We have derived features from AIS data to generate proxies for supply, demand and 

geographical distribution for a subset of Capesize vessels. Additionally, we have included 

commodity prices and macroeconomic variables. The forecasting horizon investigated has 

been one week, two weeks, and one month ahead. To benchmark the LSTM model, we have 

included Vector Autoregressive (VAR) models, Autoregressive Integrated Moving Average 

(ARIMA) models and a Random Walk. 

The VAR models were found to be superior at forecasting FFA prices, and the results showed 

that the LSTM neural network and VAR show potential for predicting directional movements 

of prices. The results further indicate that AIS data holds predictive capabilities regarding 

directional movements of prices. Lastly, the trading results give implications of increased 

profitability compared to buy-and-hold and trend-following benchmarks, by utilizing the 

trading signals from the models. 
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1 Introduction 

Historically, the dry bulk shipping market has been extremely volatile. The large freight rate 

fluctuations create opportunities for generating substantial returns. On the other hand, these 

large fluctuations are a source of great risk for the operators. Foresight of the future 

developments in rates is therefore invaluable for speculators and operators, where derivatives 

such as Forward Freight Agreements (FFAs) may be used for both reducing and increasing 

freight rate exposure. 

FFAs are financially settled forward contracts, where the underlying asset is one of the freight 

rate indices published by The Baltic Exchange. The settling price for an FFA contract is 

calculated using the average spot price over the maturity period for the underlying indices. 

The contracts trade in a competitive over-the-counter market and go through clearinghouses 

(Baltic Exchange, 2019). The clearing of contracts eliminates the default risk, but price risk 

and cash flow risk is still inherent, due to movements in the underlying rates and margin 

requirements. The use of brokers as intermediaries affects the execution speed of trades, as 

well as liquidity and transaction costs. In combination with relatively sizeable minimum 

trading requirements, it is difficult for individual investors to access the market (Wilson, 

2013). 

FFAs were initially intended as a risk management tool for operators in the market, but there 

has been substantial speculative interest from investment banks and hedge funds (Zheng & 

Chen, 2018). Shipowners have a long exposure to physical freight, and benefit from increased 

rates, while charterers have a short exposure, as they are obliged to pay for freight services. 

These parties may take opposite positions in FFA contracts to hedge against unfavorable price 

movements to stabilize earnings and cash flow. Precise forecasts of FFA prices may be 

particularly helpful regarding contractual decisions and development of hedging strategies. 

For speculative third parties, information about future FFA prices may be used to form 

effective trading strategies, without participating in the underlying market. 

Nomikos and Doctor (2013) applied technical trading rules for the FFA market, where the 

superior trading strategies generated substantial excess returns compared to a buy-and-hold 

benchmark. Their results gave implications against a weak form of market efficiency in the 

FFA market. The efficient market hypothesis states that information should be reflected in the 

prices to a degree, where the additional gains to be made by acting on available information 

do not exceed marginal costs (Fama, 1991). However, we want to take a different approach 

than Nomikos and Doctor, as we aim to include relevant market features in addition to 
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geospatial data to support our predictions of movements. The utilization of Automatic 

Identification System (AIS) data has in recent years emerged as a new way of supplementing 

research on maritime economics. The vast amount of available AIS data and possibilities for 

the extraction of features offers a wide variety of new opportunities within shipping analytics. 

AIS data, in combination with programming tools, enables calculation of several metrics for 

selected vessels across time and space, in addition to the tracking of vessels and fleets in real-

time. The increased availability of computing power and applications for machine learning 

techniques has, simultaneously, created new possibilities for analyzing complex data sets.  

The objective of this paper is to forecast FFA prices using machine learning techniques. Our 

contributions to the literature are threefold: Firstly, we will apply and evaluate the performance 

of an LSTM neural network to predict movements of Capesize 5 Time Charter (5TC) FFA 

prices. Secondly, we will create new AIS-derived features and evaluate their predictive powers 

on FFAs. Thirdly, we will evaluate the forecasting models’ ability to generate profitable 

trading signals, by utilizing them in simple trading strategies. The first quarterly contract (1Q), 

the second closest quarterly contract (2Q), and the closest calendar year contract (1CAL) will 

be used for forecasting and trading, where the forecasting horizon will be one week, two 

weeks, and one month ahead. 

The remainder of this paper is structured as follows: firstly, we present a literature review that 

serves as a foundation for the work conducted in this paper, which culminates in our 

contributions to the current body of literature. Secondly, the data used will be presented. 

Thirdly, we go through the process of creating features. Fourthly, the methodology for feature 

selection and machine learning will be presented. Lastly, we present the results, before 

rounding off with some concluding remarks and recommendations for further work. 
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2 Literature Review 

The literature review for this is paper is extensive, as the paper revolves around several topics. 

First, relevant FFA market research is covered, followed by research on applications of AIS, 

before introducing research covering the predictive capabilities of machine learning 

techniques in relation to shipping, commodity and financial markets.  

There is a large body of literature covering the relationships between spot and FFA prices, 

forecasting, and hedging performance. Kavussanos et al. (2004) investigated the impact of 

FFA trading on spot market volatility, where they found that FFAs have a reducing effect on 

the spot freight rate volatility. Kavussanos et al. (2004b) studied the unbiasedness of FFA 

prices, where they found FFA prices one and two months before maturity to be unbiased 

predictors of the spot prices for Panamax routes. Bessler et al. (2008) also found evidence of 

a cointegrated relationship between spot and forward rates for Panamax bulk carriers. Zhang 

et al (2014) studied the relation between spot and Time Charter (TC) rates, as well as spot and 

FFA rates. Their results gave evidence of cointegration between spot and FFA rates, and for 

TC rates and FFA rates. Adland and Alizadeh (2018) studied TC rates and FFA prices, and 

also found evidence of cointegration, but that TC rates overall are priced higher than FFAs. A 

convenience yield, and the additional risk related to physical freight contracts, among other 

reasons, were pointed out as explanations for the price differences. Kavussanos and Visvikis 

(2004) found FFA contracts to discover market information faster than spot prices, which was 

pointed out to originate from lower transaction costs in the forward market, compared to the 

spot market. Additionally, they found a bi-directional relationship between the FFA and spot 

markets. Kasimati and Veraros (2017) found that FFAs have limited prediction power for 

prediction of future freight rates, but that FFA prices were useful for directional predictions. 

Further, Yin et al. (2017) found mean-reverting tendencies for both FFA and spot prices. 

Regarding the hedging performance of FFAs, Alizadeth et al. (2015) found that the hedging 

performance of FFAs for tankers is worse compared to futures in other commodities and 

financial markets. One reason for this was identified as the absence of a cost-of-carry 

relationship between spot and forward prices, due to freight being a non-storable commodity. 

Alexandridis et al. (2017b) found that freight rate risk can be reduced by 48% by holding a 

diversified portfolio of freight rates, and that additional risk can be reduced by hedging with 

forward contracts. 

Regarding the topic of forecasting, Batchelor et al. (2007) tested the performance of time series 

models for predicting spot and forward rates in the dry bulk shipping market, and found that 
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Autoregressive Integrated Moving Average (ARIMA) models and Vector Autoregressive 

(VAR) models were superior to Vector Error Correction Models (VECM) for predicting 

forward rates. Further, the study gave evidence of forward rates providing additional 

information for spot rates in the future, but that spot rates were unhelpful for predicting 

forward prices. Lyridis et al. (2004) applied neural networks for forecasting FFA Prices. The 

main findings were that neural networks performed well at forecasting future prices, but that 

connectionist models overall held superior predictive performance. Kavussanos et al. (2014a) 

investigated spillover effects between dry bulk FFAs and commodities, and found agricultural 

commodity futures to lead freight markets. Kavussanos et al. (2010) further found that 

spillover effects of return and volatility generally are one-directional from commodity futures 

to FFAs. Regarding the topic of FFA trading, Nomikos and Doctor (2013) conducted a 

comprehensive study of quantitative trading strategies for Capesize, Panamax, and Supramax 

FFAs across different maturities. They applied trend, momentum, and volatility-based 

strategies, and evaluated these against a buy-and-hold benchmark. The trend-following 

strategies were superior among the simple strategies based on mean returns and Sharpe ratio, 

while complex learning strategies provided the highest average outperformance in terms of 

Sharpe Ratio, compared to the benchmark. Their best active trading strategies generated 

significant excess returns compared to the buy-and-hold benchmark, which implies 

inefficiency the FFA market, as prices do not reflect all available information. 

Several studies covering AIS utilization revolve around shipping network detection, demand 

estimations, and trade patterns. Kaluza et al. (2010) studied the trade patterns for the different 

ship classes. The study interpreted the global movements of cargo as a network with a high 

level of complexity. Spiliopoulos et al. (2017) present a methodology for converting AIS data 

to be used effectively for understanding the shipping patterns in relation to global trading 

patterns. Wu et al. (2017) used AIS data for mapping vessel density and traffic density, to 

reveal the distribution of ships and traffic. Vessel density was defined as the number of vessels 

per unit area, and traffic density was defined as the average number of vessels crossing a region 

per unit area per unit time. Vector and grid-based methods were applied for traffic density 

calculations, while vessel density calculations were based on geofencing. Geofencing is a 

method of extracting data, based on geographical boundaries.  

Jia et al. (2015) investigated the reliability of reported draught in AIS data for estimating vessel 

utilization, in the dry bulk freight market. Due to AIS messages lacking info on cargo type and 

volume, they present different models for estimation of cargo size, mainly based on draught. 

They found that AIS data alone is insufficient for precisely tracking seaborne trade. Adland et 

al. (2017) compared the accuracy of AIS-derived trade statistics for the crude oil market to 



 10 

official customs data. Their results revealed that AIS-derived data for seaborne crude exports 

align well with official export numbers in aggregate, but that there are several challenges 

related to the aggregation of micro-level data. Some key challenges pointed out were the usage 

of pipelines in parts of the supply chain, in addition to countries and regions operating as 

storage and transshipment hubs. They further state that any maritime research which covers 

market fundamentals, could draw benefits from AIS-derived tonne-mile demand data, if the 

cargo is observable and homogenous. This is to a large extent the case for the dry bulk and 

tanker markets. 

Adland (2019) presents a framework for utilizing AIS data for dry bulk market analysis. He 

presents algorithms for generating data for tonne-mile demand, proxies for operational 

efficiency, and counting of unemployed ships. He argues that freight rates between regions 

tend to move synchronized in the long run, but that there may be differences in the short run 

due to local supply and demand imbalances. Regarding idle ships, he shows an inverse 

relationship between Capesize earnings and idle ships waiting in open sea. There are 

drawbacks to the metrics presented due to limitations of the information from AIS. However,  

he states that enriching the AIS data with information from other sources, such as vessel 

characteristics, contractual information, and bill of ladings, can lead to better results. 

Regli and Nomikos (2019) studied the effect of tanker supply for the TD3 tanker route between 

Ras-Tanura and Japan. They created a proxy for short-term supply in the voyage charter 

market, where vessels were classified as available or unavailable based on geographical 

restrictions, self-reported destination, loading condition, and employment status. They found 

their AIS-derived supply measures to partially explain freight rate movements, where other 

more traditional supply measures, such as fleet size, were ineffective. Also, the study gave 

evidence of a lagged relationship between ballast sailing speeds and short-term freight rate 

movements. 

Machine learning techniques as a prediction tool have been covered extensively for various 

stock, commodity and shipping markets. Herrera et al. (2019) examined forecasting of long-

term prices for crude oil, coal and gas by applying neural networks, Random Forest and hybrid 

models, which were compared to a Random Walk benchmark. The results showed that 

Random Forest were superior. Huang and Wu (2018) applied Deep Multiple Kernel Learning 

for forecasting energy commodity prices. Their model included information from oil, gold, 

and currency markets, and was found systematically superior for forecasting crude oil prices, 

compared to traditional neural networks and regression models. Fischer and Krauss (2018) 

applied LSTM neural networks for predicting directional movements of the constituent stocks 



 11 

of the S&P500. LSTM neural networks outperformed memory-free classification methods, 

such as Random Forest, logistic regression, and memory-free neural networks. The model was 

able to generate excess returns compared to the market portfolio from 1992 to 2009, but from 

2010, the model was not able to yield excess returns after transaction costs. Their findings 

give evidence of the market becoming increasingly mature.  

Lyridis et al. (2004) applied neural networks for forecasting monthly VLCC spot freight rates 

from 1979 to 2012. The results gave evidence of neural networks providing valuable forecasts, 

especially in volatile periods. Further, they found that crude oil price spreads, and Capesize 

rates, improved the forecasting performance. Fan et al. (2013) utilized wavelet neural networks 

for predicting the Baltic Dirty Tanker Index. Among the features included in their model, was 

the Dow Jones Industry Average and the AMEX Oil Index. The results showed that their 

model was unable to predict rates more accurately than an ARIMA benchmark on short 

horizons, but showed signs of superiority on longer forecasting horizons.  

There are two recent and relevant studies that cover machine learning methods with the 

utilization of AIS-extracted features, for predicting freight rates. Næss (2018) investigated 

whether multivariate machine learning methods with the inclusion of AIS-derived features, 

improved predictions of short-term rates in the LPG freight market. The thesis gave evidence 

of favoring multivariate machine learning models over a VAR model, where a Multi-Layer 

Perceptron neural network and a LSTM neural network were tested. The LSTM model yielded 

the best prediction power, and both machine-learning models predicted short-term freight rates 

more accurately when including AIS-derived features. Salen and Århus (2018) also applied 

LSTM neural networks with the inclusion of AIS-derived features, for predicting freight rate 

movements for the route between Ras Tanura, Saudi-Arabia and Singapore. The forecasting 

horizons were one, five, and ten days ahead. The model performed best on the ten days ahead 

forecast horizon, compared to a multivariate linear regression benchmark. The additional 

variables derived from the AIS data did not improve the model significantly. However, they 

state in the paper that more recent AIS data, and improved optimization of hyperparameters, 

could have improved the results.  

FFA market research, the applicability of AIS data, and the predictive powers of machine 

learning, is covered to a great extent in previous literature. However, there has not been carried 

out comprehensive studies regarding the use of AIS features in combination with machine 

learning techniques, for forecasting movements in FFA prices. Næss (2018) and Salen and 

Århus (2018) applied machine learning techniques in combination with AIS data, for 

forecasting spot prices for selected routes, where we aim to predict the FFA prices for a 
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composition of routes for the Capesize segment. Thus, our approach is on a more global scale. 

Further, we create additional AIS-derived features, among them, a more global tonne-mile 

demand estimation, as well as several new approximations for unemployment. In addition, our 

study is perhaps more applicable in practical terms, as FFAs allow for more dynamic 

adjustments to freight rate exposure, in addition to our forecasting horizon being longer.  

 

 

 



 13 

3 Data Foundation 

This Section presents the AIS and price data that is utilized in this paper. Due to the increased 

quality in AIS data from 2014, and the change from the Capesize 4TC to the Capesize 5TC 

index, our study period will be from May 2014 (Skauen, 2015). 

3.1 AIS Data 

AIS is an automated system used in the maritime space for tracking and exchange of 

navigational information for vessels. It was mainly developed to prevent collisions and assist 

port authorities in controlling marine traffic more efficiently. Signals from AIS transponders 

are transmitted using Very High Frequency radio waves. Messages include both dynamic 

information, such as speed, positioning, and course, as well as static information, such as 

International Maritime Organization (IMO) number. (Marine Traffic, 2018). 

We have been granted AIS data by the Center for Applied Research (SNF), which contains 

AIS messages for all bulk carriers from May 2014 to December 2018. We have separated the 

data into files based on the IMO numbers. The AIS messages do not contain information about 

vessel specifications, such as DWT. Hence, we have matched the IMO numbers from the AIS 

messages with fleet information from Clarksons World Fleet Register, and filtered the 

complete fleet list to only keep vessels above 150.000 DWT. This subset represents the most 

relevant vessels for the contracts that we are predicting. Figure 3.1 shows a sample message 

after separation, for each IMO number. Table 3.1 explains the message components. 

timestamp_position,lon,lat,course,speed,draught,destination 

2018-03-31 19:29:14,-45.49054,-26.026875,277.5,14.8,7.6,PARANAGUA BRZL 

 

Figure 3.1 AIS sample message. 

 

Table 3.1 AIS message components. 

Message Component Meaning 

“timestamp_position”  date and time for the position 

“lon”  longitude of the position 

"lat" latitude of the position 

“course” Sailing Course 

“speed”  speed in knots 

“draught”  draught in meters 

“destination”  destination text as sent by the ship 
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Figure 3.2 shows the deadweight tonnage (DWT) distribution for the fleet subset. The average 

DWT in our sample is 202.472, with a clear separation in the distribution between Capesize 

vessels (150.000 DWT to 320.000 DWT), and Valemaxes of around 400.000 DWT. 

 

Figure 3.2 Histogram of DWT for the fleet subset. 

3.2 FFA Price Data 

We have obtained FFA prices from the Baltic Exchange. The data contains prices from May 

2014 to December 2018. We will be looking into the contracts for the two nearest quarters, in 

addition to the nearest calendar year. A quarter consists of a basket of three monthly contracts 

settled on a rolling basis, while a calendar contract consists of 12 monthly contracts. The 

Capesize 5TC basket is comprised of route C8, C9, C10, C14, and C16, where a weighted 

average of the underlying routes is used for calculating the 5TC price. A brief description of 

the routes and the weights, are presented in Table 3.2. 

Table 3.2 5TC description (Schmitz, 2016). 

 

Route Code Route description Delivery Duration Weight 

C8 Transatlantic round voyage Gibraltar/Hamburg 30-45 days 25% 

C9 Fronthaul Amsterdam/ Rotterdam About 65 days 12.5% 

C10 Transpacific round voyage China/Japan 30-40 days 25% 

C14 China-Brazil round voyage Qingdao 80-90 days 25% 

C16 Revised backhaul North China/ South Japan About 65 days 12.5% 
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To create a continuous series of prices, we have sorted the contracts by maturity, and created 

continuous time series containing the contracts that are closest to maturity, but have not 

entered the settling period. Due to the structure of the series, the price may jump when rolling 

between contracts. According to Masteika et al. (2012), a proportional back-adjustment is a 

suitable for backtesting purposes. The adjustment ratio is calculated by dividing the price of 

the first day of the new contract by the price of the last day of the old contract. The price series 

will later be normalized, in order to keep the trends. See Figure 3.3 for a chart showing the 

actual FFA price series, and Figure 3.4 for a chart showing the synthetic FFA prices. See 

appendix A.2 for descriptive stats for the FFA prices before and after proportionally back-

adjusting.  

Figure 3.3 Actual FFA Prices. 

 

Figure 3.4 Proportionally back-adjusted FFA prices. 
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4 Feature Extraction 

The process of identifying relevant features to extract, has been based on data exploration and 

the studies presented in the literature review. To capture the geographical positioning of the 

fleet, we will divide the world map into different world regions. By generating a plot showing 

the density of AIS signals from our vessel subset, we can identify the main sailing patterns for 

the fleet. The density plot helps to better visualize the general patterns, in contrast to a plot 

visualizing all observed patterns equally visible. This is pointed out in the study by Næss 

(2018). Figure 4.1 show a density plot for our fleet subset. 

 

Figure 4.1 Density plot of the Capesize fleet. 

 

Based on visual inspection of the density plot, in combination with export and import data 

from Clarksons Shipping Intelligence Network, we have divided the world into a set of 

polygons. The purpose of dividing the map into polygons, is to isolate regions with different 

characteristics concerning the trading pattern for Capesize vessels, and meant to capture 

movements between export and import regions. Figure 4.2 shows the world map divided into 

world regions, and Table 4.1 shows the world region names. To create daily time series 

concerning different regions, we have used the ray casting algorithm, which is a common 

method for determining which polygon a longitude/latitude pair is inside (Narkawicz & 

Hagen, 2016). The use of a ray casting algorithm is also suggested in the work of Næss (2018). 
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Figure 4.2 World regions. 

 

Table 4.1 World region names and corresponding number. 

Number Name 

1 pacific_ocean 

2 north_america  

3 south_america 

4 europe  

5 med_sea 

6 arabian_gulf 

7 south_africa 

8 indian_ocean 

9 asia 

10 aus 

 

To calculate sailing distances between positions, we utilize an open-source distance calculator 

called, “python ports distance calculator” (Witsung, 2019). The method makes use of a 

pixelated world map, where all land areas are marked as unavailable for travelling through. In 

turn, the pixelated world map is transformed to an array. The algorithm finds the route between 

two sea coordinates passing the minimal amount of points in the map array. Finally, the 

distance in nautical miles is calculated between each point in the identified least cost route, 

using Vincenty’s formula. This formula calculates the distance on the surface of the earth, 

assuming the shape of the earth is an oblate ellipsoid (Scheucher, 2016). Table 4.2 shows 
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examples of the calculated distances between two ports, compared to the ones listed on sea-

distances.org. As can be seen, there are some minor differences for the selected routes, but it 

seems like an acceptable approximation. 

Table 4.2 Distance comparison for selected routes. 

  Port Hedland to Qingdao Rotterdam to Qingdao 

Sea-distances.org 3583 NM 10751 NM 

Distance calculator 3531.60 NM 11218.8 NM 

Difference in nautical miles 51.4 467.8 

Difference in % of seadistance.org -1.43% 4.35% 

 

When processing the draught data, we assume that an average draught status below 70% of a 

vessel’s maximum observed draught, implies that the ship is sailing ballast. Figure 4.3 shows 

the distribution of draught ratios on a given day for the Capesize fleet. The bimodal shape of 

the distribution implies that this threshold is reasonable. 

 

 

Figure 4.3 Distribution of draught ratios. 
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4.1 Count of Vessels and Capacity 

The total fleet capacity reflects the total supply (Stopford, 2009), hence we will count the total 

number of vessels and capacity globally. Further, we will create features for each of the world 

regions, that count the number of vessels, total freight capacity, and the relative capacity 

distribution. These features may capture regional imbalances that are relevant for the 

development of freight rates (Regli & Nomikos, 2019; Næss, 2018). The freight capacity for 

each vessel is assumed to be 95% of its DWT. The capacity in each world region is then 

calculated by aggregating the capacity for each vessel within a world region. Thus, this 

measurement does not consider whether a vessel is ballast or laden, or whether it is contracted 

or not. The count of vessels is simply measured as the total number of vessels within a world 

region, and the relative capacity is calculated by dividing the capacity in a world region, by 

the total capacity of the entire fleet, on a given day. The relative count of vessels is also 

calculated similarly. Figure 4.4 shows regional capacity and relative capacity for selected 

world regions.  

 

 

Figure 4.4 Capacity and relative capacity for selected world regions. 

 

4.2 Net Flow of Vessels in World Regions 

In addition to counting vessels within world regions, we will calculate the net flow of vessels 

for each world region. This is done by recording when a vessel travels from one world region 

to another. The sum of incoming and outgoing vessels for a world region is then calculated. 

Figure 4.5 shows the net flow of vessels for Asia.  
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Figure 4.3 Net flow of vessels for Asia. 

 

4.3 Fleet Sailing Speed and Standard Deviation 

The speed of the fleet affects operational efficiency (Stopford, 2009), and we will generate 

several speed features. The average speed for a vessel is calculated by looking at the first and 

last observation for a ship for a single day, and calculating the distance. The distance traveled 

is then divided by the time difference between the first and last observations. We will calculate 

average speeds for the whole fleet, and average speeds within each world region. Further, we 

will distinguish between vessels classified as sailing laden or ballast. First, we will calculate 

all the speed features without including stationary vessels (vessels with a daily average speed 

below 2 knots), as this subset better represents the speed of the fleet actually sailing. Second, 

we will create the same features with the whole fleet, including stationary vessels, as this may 

capture some additional information. Additionally, we will include the standard deviation for 

each speed feature as this may provide information regarding the variation in operational 

efficiency. The calculations for the speed features are shown in Equations 4.1 and 4.2. Speed 

plots are shown in figure 4.6. 

 

 

 

Average Speed =

∑
Distance sailed

Sailing timen ε N

N bulkers
 

 

 

(4.1) 
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Figure 4.4 Average speed moving vessels, and total average speed. 

As we can see from the two speed plots in Figure 4.6, the inclusion of stationary vessels makes 

a big difference for the average speed for the Mediterranean Sea and the global fleet. However, 

the differences are not notable for the Indian Ocean, which seems reasonable due this world 

region covering open sea for vessels passing Africa, where all vessels are expected to be 

sailing in normal speeds. An additional note is that the average speed for the Indian Ocean is 

consistently higher than for the global fleet, which also seems reasonable.  

 

4.4 Tonne-Mile Demand 

The real demand of freight is calculated on a tonne-mile basis, as it includes both the volume 

of cargo and the distance  (Stopford, 2009). We will therefore create a proxy for tonne-mile 

demand for our fleet. Based on visual inspection of AIS data, investigation of export and 

import data from Clarksons Shipping Intelligence Network, and a list of Capesize ports, we 

have created the port area polygons shown in Figure 4.7. Each port area is labeled as either an 

import or export port area. The rationale for this, is that we want a system for estimating tonne-

mile demand without relying on draught. See appendix A.1 for the labeling of port areas. 

 

Speed standard deviation =
1

𝑁 √∑(
Distance sailed

Sailing time
− 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑝𝑒𝑒𝑑)2

n ε N

 

 

(4.2) 
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Figure 4.7 Port areas. 

An estimate of realized tonne-mile demand is created through the following pseudo-algorithm: 

 All positional observations for each vessel are processed, and stationarity in either a 

defined import or export port area longer than 12 hours is classified as a port call for 

loading or discharge of cargo.  

 Each classified unload port call is matched with the previous load port call. 

 If there are multiple loading port calls registered in a row for a vessel, the last will be 

registered, and if there are registered multiple discharge port calls, the first will be 

registered. Hence, there will only be a matching of two ports for distance 

calculations. 

 For each pair of loading and discharge port calls, the distance is calculated and 

multiplied by 95% of the vessel’s DWT, thus assuming all cargo is transported in full 

shiploads.  

 

A drawback with this estimate, is that the tonne-mile demand only will include the 

international part of a multi-port voyage. An additional drawback is that the tonne-mile 

demand will be observable on the day of discharge. Thus, it is expected to be lagged four to 

eight weeks from when the demand was actually realized, i.e. when the ship was fixed. The 

tonne-mile demand estimate for a given day is calculated as shown in Equation 4.3. Figure 4.8 

shows moving sums for the tonne-mile demand estimate. 
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Figure 4.8 Moving sums of the tonne-mile demand estimate. 

When calculating the realized tonne-mile demand for 2017 based on our proxy, we end up at 

9.148 billion tonne-miles for our fleet. According to Clarksons Research (2019), the total 

demand for iron ore and coal was 13.430 billion tonne-miles, while the demand for all major 

bulks (iron ore, coal and grain) was 16 852 Billion tonne-miles in 2017. As we have excluded 

the small and mid-size vessels in the dry bulk fleet, it is hard to compare directly, but it seems 

like our tonne-mile estimate might be able to capture some dynamics. 

4.5 Load Factor and Loading Status 

The load factor for the fleet is calculated by taking the daily average draught for each vessel, 

both globally and in each world region. Subsequently, all the average regional draught ratios 

are then averaged for each world region. Because the ship crew manually enters this data, it is 

prone to errors according to Jia et al., (2015). In addition, the method of calculating a mean of 

means could also be affected by an uneven distribution of observations, among the vessels in 

a world region. Equation 4.4 provides the calculation of the average load factor.  

 

 Tonne − mile demand = ∑  DWT • 95% •  distance 

n ε N

 
(4.3) 

 

 

Average load factor =

∑
Current Draught

Maximum Draughtn ε N

N bulkers
 

(4.4) 
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The observed vessel count and capacity sailing with a draught less than 70% of its observed 

maximum, are also aggregated, providing a proxy for the number of vessels sailing ballast. 

Similarly, we have made a proxy for vessels and capacity sailing laden, by aggregating the 

count of vessels with a draught ratio above 70%. As draught is manually set, we have also 

included a feature counting vessels leaving export port areas and a feature counting vessels 

leaving import port areas. Figure 4.9 shows the average load factor and the relative laden share 

of the fleet. 

 

Figure 4.9 Average load factor and laden share of the fleet. 

 

4.6 Operational Status 

According to Adland (2019), the number of unemployed ships may provide information 

regarding the short-term balance of supply and demand. Unemployed vessels represent an 

oversupply, hence there is an inverse relationship between unemployed ships and freight rates. 

We will therefore create proxies for unemployed ships, total idle non-laden ships, and stand-

by capacity. 

A proxy for unemployed ships is made by aggregating stationary vessels that are non-laden 

based on AIS-reported draught (<70%), and are outside of discharge ports, or in areas not 

defined as port areas. An extension of this feature is also created, which is called “total idle 

non-laden” ships, which aggregates non-laden, stationary ships, regardless of location. These 

measures are included, as stationary status, or non-laden status, by themselves are insufficient 

for determining the contractual status of a vessel.  
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Further, we have created a measure for stand-by capacity, which measures the number of 

stationary vessels in the major exporting world regions (North, America, South America and 

Australia), as it may capture some information regarding vessels awaiting loading operations. 

In addition, the proxy may capture some information regarding vessels waiting to get a 

contract, or waiting for a contract to commence.  

Additionally, features cumulating the stationary time for vessels either categorized as 

“unemployed” or “total idle non-laden” are also created. These features represent unused 

supply, providing measures of shipdays. 

Both the proxy for unemployed and total idle non-laden ships may underestimate the actual 

values, due to inactivity of AIS transmitters. Even though there are drawbacks with these 

measures, we believe they may provide useful information over time. Figure 4.10 shows the 

unemployed share of the fleet, and the total idle non-laden share of the fleet, based on our 

calculations. 

 

Figure 4.10 Total idle non-laden and unemployed share of the fleet. 

Table 4.3 shows all AIS features previously described. We aim to capture several aspects 

affecting freight rates, as we both include measures for supply, demand, operational efficiency 

and operational status. The AIS data quality improved significantly from 2014 because of 

improved satellite coverage (Skauen, 2015). However, there are still signal gaps, giving an 

uneven distribution of AIS messages. Thus, there may be inconsistencies in the feature values. 

To account for this, we have calculated moving averages of seven, thirty and sixty days for all 

features, except for tonne-mile demand and net flow of vessels, where a moving sum is used.  
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Table 4.3 All described AIS features and what they measure. 

Feature Measure 

Global capacity Total supply 

Global vessel count 
 

    

Global count of ballast vessels Operational Status 

Global count of laden vessels and utilized supply 

Global load factor 
 

Regional load factor 
 

    

Regional vessel count Regional supply 

Regional capacity and distribution  

Regional relative capacity of supply 

Regional relative vessel count  

    

Regional net flow of vessels Regional changes 

    

Global count of unemployed vessels Excess supply and  

Global unemployed capacity Stand-by capacity 

Global count of idle-non-laden vessels 
 

Global cumulative sum of shipdays unemployed 
 

Global cumulative sum of shipdays idle non-laden 
 

Stationary vessels in export world regions 

 

 

  

Global average speed Operational efficiency 

Global average speed moving vessels 
 

Regional average speed  

Regional average speed moving vessels  

Global average speed laden vessels  

Global average speed laden vessels moving  

Global average speed ballast vessels  

Global average speed ballast vessels moving 
 

    

Global average speed standard deviation Changes in operational  

Regional average speed standard deviation efficiency 

Ballast speed standard deviation  

Laden speed standard deviation  

Global average speed for moving vessels standard deviation  

    

Tonne-mile demand Total demand 
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4.7 Non-AIS features 

In addition to the AIS-derived features, we will include price and market information shown 

in Table 4.4.  

The Capesize 5TC spot rate, Baltic Capesize index and Baltic Dry Index will be included, as 

Kavussanos and Visvikis (2004), among others, have found spot rates to have an effect on 

FFA prices. The exchange rate of EUR to USD and Yuan to USD will additionally be included, 

as fluctuations in exchange rates has an impact on revenue and costs for operators in the market 

(Kavussanos & Visvikis, 2006).  

Bunker prices affect the cost of operating vessels. In classical literature, vessels adjust the 

speed corresponding to changes in bunker prices, causing changes in the operational efficiency 

of vessels (Stopford, 2009). We assume our subset of vessels use 380Cst marine heavy fuel 

oil, and we will include the price from Bunkerindex.com. The price is calculated in dollars per 

metric ton, based on the average prices for all 380Cst port prices. We will also include Brent 

Crude oil prices, due to having several applications, among them transportation (Tsioumas, 

2016).  

Due to the findings of Tsioumas and Papadimitriou (2018) implying a bi-directional 

relationship between the Baltic Capesize Index (BCI) and the prices for iron ore and coal, we 

will include the spot index for iron ore 62% (ISIX62IU), and Rotterdam Coal futures 

(API21MON). In a setting with increased demand for iron ore, the price for iron will increase, 

also causing a rise in the demand for transportation. On the other hand, a positive shock in 

freight rates, may cause operators in the market to consider other transportation options, or 

store more commodities as inventory. This will effectively reduce the supply, which leads to 

increased commodity prices. A weakness of including these commodity prices, is that the 

effect on freight rates is dependent on whether the change in a commodity price is driven by 

supply or demand factors. A sudden fall in demand for major bulks will usually lead to a fall 

in commodity prices, and lead to reduced freight rates. On the other hand, a negative supply 

shock will usually lead to increased commodity prices, but decreased freight rates (Tsioumas 

& Papadimitriou, 2018). 

In addition to the features above, we will include the S&P500, US 10 year government bond 

yields, and US 3 month Libor yields. They may hold information about the development in 

the economy, as well as future funding rates, and general expectations for the future, according 

to Da et al. (2015).  
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Table 4.4 Non-AIS features. 

Feature Description 

Baltic Capesize Index Spot index for Capesize vessels 

5TC spot rate Spot index for 5TC basket 

Baltic Dry Index Spot index for dry bulk 

Euro to USD exchange rate Exchange rate 

Yuan to USD exchange rate Exchange rate 

Average 380Cst bunker prices Bunker price average 

Brent crude oil price Brent Crude Spot Price 

ISIX62IU Iron Ore Spot Price Index 

API21MON Rotterdam Coal Futures Price 

S&P500 S&P500 Index 

US 10 year government bonds Bond yield 

US 3 month LIBOR  Bond yield 

 

The total number of features available is 623 after including moving averages and moving 

sums. Descriptive statistics of the features used in the final models in this study, are presented 

in appendix A.2. 
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5 Methodology 

5.1 Data Preparation 

The process of preparing the data consists of data transformation, data normalization, and 

splitting of the data into training and test sets. Data transformation is the process of 

differencing the data to get it in a stationary form. To check for stationarity, we will be 

performing an Augmented Dickey-Fuller test. See appendix A.3 for test results showing 

evidence of stationarity after first differencing. 

After the data is transformed into stationary form, the next step is normalization. We utilize 

the min-max scaling method for normalization as shown in Equation 5.1. Normalization could 

prove necessary when the scale of features differs, and when the ranges of values are large. 

The former because features with larger scales will have a greater impact on the predicted 

output (Angelov & Gu, 2019). The latter because it could cause slow learning and convergence 

for the neural network (Brownlee, 2019). The min-max scaling gives each observation a value 

between 0 and 1, which is appropriate in the context of a neural network (Brownlee, 2019). 

Although the min-max scaling method is commonly used in practice, it does not handle 

outliers well. If outliers are present, they will highly influence the results (Angelov & Gu, 

2019). 

 
𝑥𝑛𝑜𝑟𝑚 =

𝑥 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 

(5.1) 

5.2 Walk Forward Validation 

When training and evaluating the prediction models, we perform walk forward validation, also 

called expanding window cross-validation. This procedure makes use of a series of test sets, 

each consisting of a single observation 𝐻 steps ahead, where 𝐻 denotes the forecasting 

horizon. Every corresponding training set consists of all observations that are at least 𝐻 steps 

prior to each test observation, in order to avoid look-ahead bias. The concept of updating the 

predictive model at each time step improves the models opportunity of making good 

predictions, due to continuously receiving new information and patterns to be included in 

retraining (Brownlee, 2016). As the forecasts will not be reliable if they are based on a small 

training sets, the series of test sets do not start before the last 15% of the available data, from 

May 2018. The accuracies of the forecasts are obtained by averaging the results in the test set 
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the over the entire forecasting period. The nature of this procedure involves successive testing 

on the same data and could be a source of overfitting. Figure 5.1 shows the principle of the 

walk forward validation method for predictions 𝐻 = 5 steps ahead. Here, the blue series 

represent the training sets, while the yellow fields represent the test sets. (Hyndman & 

Athanasopoulos, 2013). 

 

 

Figure 5.1 Walk forward validation. 

 

5.3 Machine Learning Methodology 

Machine learning techniques represent a set of algorithms that enables a learning process from 

a data set, without being directly programmed. When working with supervised learning and 

regression tasks, the goal of the machine learning model is to receive input data, adjust 

parameters, and produce an output that is as close as possible to the actual value. The process 

of adjusting the parameters in the model is done by training on historic observations according 

to James et al. (2017)  

Neural networks belong to a class of machine learning models that are capable of adding 

increased complexity, and is able to comprehend non-linear relationships (Haykin, 2009). 

Neural networks consist of layers of neurons and weighted connections. The first layer of a 

neural network is the input layer, which is passed the independent variables. The network 

further consists of hidden layers and an output layer. Figure 5.2 shows a simplified structure 

of a neural network. (Haykin, 2009). 
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Input layer  Hidden layer  Output layer 

 

Figure 5.2 inspired by Haykin (2009). 

 

The information in the network flows from the input nodes, through the nodes in the hidden 

layers, before finally calculating an output. The connections between the nodes has a weight 

𝑤, which regulates the information flow between nodes. The neuron values in the hidden 

layers and the output layer is calculated as the sum of the products of every incoming neuron 

and the connecting weights, and additionally adjusting for the bias 𝑏. (Haykin, 2009). 

 Equation 5.2 shows the calculation of the value of a neuron 𝑥𝑙,𝑓, based on the weights and 

neuron values from the previous layer, 𝑤𝑙−1,𝑓, 𝑥𝑙−1,𝑓, as well as the bias, 𝑏𝑙,𝑓. 

 

 𝑥𝑙,𝑓 = ∑(

𝑓=1

𝑤𝑙−1,𝑓  ⋅  𝑥𝑙−1,𝑓) + 𝑏𝑙,𝑓 
(5.2) 

 

The full process of calculating predicted values based on the independent variables is called a 

forward propagation. When a forward propagation is completed, the predicted value is 

compared to the actual value, and a loss function is computed. The loss function expresses the 

accuracy of the predictions, and the learning process for the network is based on minimizing 

the loss function by adjusting the parameters (Haykin, 2009). The contribution for each 

parameter to the loss function is calculated and adjusted between every forward propagation. 
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Equation 5.3 expresses a given loss function, where 𝑥 represents the input values, θ represents 

the parameters (weights and biases), and 𝑦 represents the actual output value. 

 𝐿(�̂�, y) = L(𝑓(𝑥, θ), 𝑦) (5.3) 

 

Recurrent neural networks are looped, which enables the passing of information between the 

steps in the network, thus enabling information to persist. Olah (2015) states that recurrent 

neural networks may be thought of as multiple copies of the same network, where each 

network passes on information. Figure 5.3 shows the principle of the passing of information 

between consecutive steps in a.recurrent neural network.  

 

 

Figure 5.3 Illustration of the chained structure of a recurrent neural network (Olah, 2015). 

 

Recurrent neural networks generally perform well on short-term dependencies, but struggle to 

perform well when the duration of the dependencies increases. The reason for performing 

poorly on long-term dependencies is due to exploding or vanishing gradients, according to 

Bengio et al. (1994). Vanishing gradients shrink exponentially and make it difficult for a 

model to learn. Exploding gradients grow exponentially and impairs learning, and can cause 

instability and crash the model. LSTM networks are a subgroup of recurrent neural networks 

that are capable of learning long-term dependencies, as well as overcoming the problems of 

exploding or vanishing gradients (Hochreiter et al., 2001). See appendix A.8 for a more in-

depth introduction to LSTM. 
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5.4 Hyperparameters 

The internal parameters are set by training the neural network, while hyperparameters on the 

other hand, are determined by the researcher. The hyperparameters are set before the training 

process of a network commences. There are numerous configurations for the hyperparameters, 

and the optimal values are dependent on the problem to be solved (Leoni, 2019). The 

hyperparameters considered for adjustment in our LSTM neural network are presented below. 

 Number of hidden layers 

 Hidden nodes 

 Learning rate 

 Batch size 

 Epochs 

 Window size 

 Regularization 

The number of hidden layers determines how many layers there are between the input and 

output layers. When adding hidden layers, they essentially form new combinations of the 

previous learned representation of the problem to be solved. (Brownlee, 2017). The number 

of hidden nodes determines the number of units in each hidden layer. When training the model, 

the learning rate determines how much the model changes the weights based on the estimated 

error (Brownlee, 2019b). The batch size, on the other hand, determines the number of samples 

of data to be processed before adjusting the model parameters, where a sample represents the 

input sequence for one timestep (Brownlee, 2018). The process of going through the entire 

training set and adjusting the weights is known as an epoch, and the number of epochs 

determines how many times this process is repeated (Brownlee, 2018). Each sample includes 

an amount of previous observations, determined by the window size. Finally, the 

regularization is the inclusion of constraints to a model, which helps to reduce overfitting, and 

increase out of sample performance (Brownlee, 2017b). 

5.5 Benchmark Models 

To create grounds for comparison for the LSTM models, we will include a Random Walk 

model, Autoregressive Integrated Moving Average (ARIMA) models, and Vector 

Autoregressive (VAR) models.  
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Random Walk 

The Random Walk is a standard model for benchmarking in forecasting. This model is also 

known as the naive model and takes the last actual value as the forecast (Hyndman & 

Athanasopoulos, 2013). The Random Walk model can be formulated as shown in Equation 

5.4.  

 �̂�𝑡+𝐻 =  𝑦𝑡 (5.4) 

 

Where H is the forecasting horizon 

ARIMA 

ARIMA is a univariate forecasting technique which uses the past lags and errors of dependent 

variable Y. It is a common forecasting tool when working with time series, and capable of 

capturing trends The AR term refers to the use of previous observations of dependent variable 

Y as features, and the number of lags included is determined by the parameter 𝑝. The 

integrated term is defined by a parameter 𝑑, which determines the order of differencing. The 

MA term refers to the use of past error terms 𝑒𝑡, where parameter 𝑞 determines the number of 

error terms to include. Equation 5.5 shows the generalized combinations of the AR and MA 

terms depending on the values of 𝑝 and 𝑞. (Hyndman & Athanasopoulos, 2013). 

 𝑦𝑡 = 𝑎 + 𝛽1𝑦𝑡−1+. . . +𝛽𝑝𝑦𝑡−𝑝 + 𝜙1𝜀𝑡−1+. . . + 𝜙𝑞𝜀𝑡−𝑞  (5.5) 

VAR 

VAR is a multivariate forecasting technique that facilitates the inclusion of previous values of 

features and predictions, and has proven to be a powerful forecasting tool when working with 

financial time series (Zivot & Wang, 2006). VAR is a system of equations where every 

variable is calculated as linear combinations of past values of all the variables. The difference 

between traditional models, such as linear regression where predictor variables only affect the 

dependent variable, is that the variables influence each other. An example system with two 

variables and one lag can be expressed as shown in Equations 5.6 and 5.7. (Hyndman & 

Athanasopoulos, 2013) 

 𝑌1,𝑡 = 𝑐1 + ∅11𝑌1,𝑡−1 + ∅12,1𝑌2,𝑡−1 + 𝜀1,𝑡 (5.6) 
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 𝑌2,𝑡 = 𝑐2 + ∅21𝑌1,𝑡−1 + ∅22,1𝑌2,𝑡−1 +  𝜀2,𝑡 (5.7) 

Where 𝜀1,𝑡 and 𝜀2,𝑡 represents white noise processes, ∅𝑖𝑖,ℓ denotes the influence of the ℓth lag 

of variable 𝑌𝑖 on itself, while ∅𝑖𝑗,ℓ denotes the influence of the ℓth lag of the variable 𝑌𝑗 on 𝑌𝑖.  

5.6 Feature Selection 

Feature selection is the process of choosing the features to be utilized in the prediction model. 

The goal is to remove irrelevant and redundant features, and avoid getting an overfitted model. 

According to James et al., (2013), effective feature selection increases out of sample prediction 

accuracy, in addition to making the model easier to comprehend. Ideally, we would test the 

model with all combinations of the available features, but this will be too computationally 

expensive.  

We will perform the filter methods presented in Table 5.1, where the resulting metric of feature 

importance is scaled to the range [0, 1]. Subsequently, we will calculate a mean importance 

score based on the performance from all the filter methods. Among the filter methods 

considered are both univariate and multivariate, as both could provide useful insight as to the 

feature’s importance. This scheme of creating a mean feature importance score is inspired by 

the work of Næss (2018). In the following are brief descriptions of the filter methods 

considered. 

Table 5.1 Filter methods for feature selection. 

Multivariate Univariate 

Linear Regression Correlation coefficient 

Lasso Regression Maximal Information Coefficient (MIC) 

Ridge Regression  

Random Forest  

 

Pearson’s Correlation Coefficient 

Pearson’s correlation coefficient expresses the linear relationship between two variables and 

can be calculated as shown in Equation 5.8. The output for a correlation coefficient is in the 

range of [-1, 1], and by taking the absolute value, the coefficient will be in the range of [0, 1] 

The correlation coefficient is useful for indicating linear relationships but could be misleading 

if the there exists a non-linear relationship. 
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ρX, Y =  

𝑐𝑜𝑣 (𝑋, 𝑌)

σ𝑋σ𝑌
 

(5.8) 

 

Maximal Information Coefficient (MIC) 

MIC, first presented by Reshef et al., (2011) is a metric that is able to discover a wide variety 

of relationships between two features, linear and non-linear. The metric possesses the property 

of equitability, meaning that it returns the same score for equally noisy relationships 

independent of the type of relationship (e.g linear, polynomial etc.) (Reshef, et al., 2011). The 

MIC takes a value in the range of [0, 1] and is calculated as shown in Equation 5.9. (Kinney 

& Atwal, 2014 ) 

 
𝑀𝐼𝐶(𝑋, 𝑌) = 𝑚𝑎𝑥 {

𝐼(𝑋, 𝑌)

𝑙𝑜𝑔2 𝑚𝑖𝑛{𝑛𝑋 , 𝑛𝑌}
} 

(5.9) 

Where 𝐼(𝑋, 𝑌) is the mutual information, and can be defined as shown in Equation 5.10 

(Kinney & Atwal, 2014 ). 

 
𝐼(𝑋, 𝑌) = ∑ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔2

𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
𝑥,𝑦

  
(5.10) 

The MIC represents the mutual information between random variables X and Y, normalized 

based on the minimum joint entropy between the two given random variables (Wint, 2019). 

Multiple Regression 

Multiple regression can also give an indication of the importance of variables through the 

magnitude of the coefficients. The multiple regression linear model between the dependent 

variable Y and the independent variables X, can be expressed as in Equation 5.11, according 

to James et al. (2017). 

 𝑦𝑡 =  𝛽0 +  𝛽1𝑥1,𝑡+. . . + 𝛽𝑝𝑥𝑝,𝑡 +  𝜀𝑡 (5.11) 

Where 𝑥1,𝑡, … , 𝑥𝑝,𝑡 represents the value of a feature at time t, 𝛽1, … , 𝛽𝑝 are the coefficients for 

the features in regards to Y, 𝛽0 is the intercept, and 𝜀 is the error term. The regression 

coefficients, 𝛽, are found by minimizing the residual sum of squares, shown in Equation 5.12.  
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𝑅𝑆𝑆 =  ∑(𝑦𝑡 −  �̂�𝑡)2

𝑁

𝑡=1

 

(5.12) 

Fitting a linear regression model with all available features will probably lead to overfitting. 

The upcoming methods of Lasso and Ridge regularization could be able to counter this 

drawback. When fitting an Ordinary Least Squares model with many predictors, the model 

will likely suffer from multicollinearity. However, the method is simple and can provide 

insights with regards to feature importance. The coefficients from the linear regression model 

are scaled to the range of [0, 1] for comparability with the other methods. 

Lasso Regression 

The Lasso regression is a regularization technique that applies shrinkage to a linear regression 

model. The Lasso adds a penalty correspondingly to the absolute value of the magnitude of 

the coefficients. This has the effect of shrinking less important coefficients features toward 

zero, where some coefficients may even shrink all the way to zero. Hence, the Lasso procedure 

results in sparse models that reduce problems with overfitting and multicollinearity. 𝜆 is the 

parameter that determines the impact of the regularization. The cost function for lasso can be 

expressed as shown in Equation 5.13. (James et al. 2017). 

 

∑ (𝑦𝑡 −  𝛽0 − ∑ β𝑗𝑥𝑡,𝑗

𝑗

)

2
n

𝑡=1

+ 𝜆 ∑| β𝑗|

𝑝

j=1

 

(5.13) 

Ridge Regression 

The Ridge regression behaves similarly to the Lasso regression, but the added penalty is here 

equivalent to the square of the magnitude of the coefficients. This causes all coefficients to be 

shrunken by the same factor, and will not eliminate any coefficients from the model, unlike 

the Lasso regression. The cost function to be minimized can be expressed as shown in 

Equation 5.14. (James et al. 2017). 

 

∑ (𝑦𝑖 −  𝛽0 − ∑ β𝑗𝑥𝑡,𝑗

𝑗

)

2
n

𝑡=1

+ 𝜆 ∑ β𝑗
2

𝑝

𝑗=1

 

(5.14) 
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Random Forest 

Random Forest consists of several regression trees, a machine learning method that splits the 

predictor space (features) into distinct and non-overlapping regions (branches). When a 

regression tree predicts an observation, it locates the region that corresponds with the input 

features and takes the average of all observations in that region. The final predicted value for 

a Random Forest model is the average of all the predicted values from the decision trees. 

(James et al. 2017). 

Random Forest has a built-in method for measuring feature importance. The condition on 

which the predictor space is divided in a regression tree is the standard deviation, called 

impurity. The Random Forest calculates how much the features contribute to reducing the 

weighted impurity, thereby providing a measure of feature importance. (James et al. 2017). 

The Random Forest method is useful, being a multivariate method and being able to detect 

non-linear relationships. However, Random Forest may struggle with identifying the 

importance of correlated variables. Considering two correlated variables, X and Y, where both 

account for the same decrease in impurity, only the first of the variables used to perform a split 

would be associated with the decrease in impurity. The method could perform splits on the 

features on different levels in the different trees, thus misinterpreting the importance of each 

feature. (Simon, 2015). 

 

In order to capture lead-lag relationships between the FFA price and the predictors, we will 

include lags from t-1 to t-20 in the filter methods. We will also investigate time lagged cross-

correlation between the variables and the response variable, as another method for identifying 

lead-lag relationships, proposed by Cheong (2019). 

The results of the filter method scheme and the time lagged cross-correlations will form the 

basis for different combinations to be tested with the LSTM and VAR methods. Additionally, 

features that intuitively could have explanatory power on the FFA prices will be included. 

Final testing of combinations with the LSTM and VAR methods ensures that the final subset 

of features provide the best predictions, corresponding to the method applied. The implication 

is that the filter methods might be unable to capture the same dependencies as the machine 

learning methods. The combinations tested with the highest predictive accuracy will constitute 

the final prediction models. 
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6 Results 

6.1 Feature Selection and Final Hyperparameters 

Included in appendix A.4 are the results for the 60 best performing features from the feature 

selection scheme introduced in Section 5.6. Appendix A.5 shows the results for the highest 

time lagged correlations, where the predictors have a lead-lag relationship with the response 

variable. The mean feature importance scores and the time lagged correlations provided a 

reference point when considering which features to include in the prediction models. Through 

testing numerous different feature combinations, well performing subsets were identified for 

both the VAR and LSTM models for the different forecasting horizons. Table 6.2 shows the 

features included in the best VAR models for the different horizons, and Table 6.3 shows the 

features included in the best LSTM models for the different horizons. As there are a lot of 

features in this study, Table 6.1 provides guidelines for interpreting the feature names.  

 

Table 6.1 Explanation of feature name components. 

Feature name component Explanation 

“count” Count of vessels 

“cap” Capacity in DWT 

“rel” Relative share 

“ex_regions” Exporting world regions 

“MA” Moving average 

“MS” Moving sum 

“cum" Cumulative 

"idle_nladen" Idle non-laden 

"stat" Stationary 

“std” Standard deviation 

"7”, “30”, “60" Number of days used for MA or SM 

No number at the end Daily values 

 

The name at the start of a feature refers to the world region, as shown in Figure 4.2, and 

features with no world region name refer to the global fleet. 
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Table 6.2 Subsets of Non-AIS, and AIS and Non-AIS features to be used in the final VAR 

models, for the different forecasting horizons. 

One week forecasting horizon Two weeks forecasting horizon One month forecasting horizon 

 Non-AIS features  
Iron Ore Spot Price Index Iron Ore Spot Price Index Iron Ore Spot Price Index 

Brent Crude Oil Brent Crude Oil Brent Crude Oil 

Gov 10Y yield Gov 10Y yield Gov 10Y yield 

Average Spot 5TC Average Spot 5TC Average Spot 5TC 

EUR/USD EUR/USD EUR/USD 

   

  AIS and Non-AIS features   

Average Spot 5TC Average Spot 5TC Average Spot 5TC 

3Month USD LIBOR 3Month USD LIBOR 3Month USD LIBOR 

total_idle_nladen _MA_30 total_idle_nladen _MA_30 total_idle_nladen MA_60 

stat_in_ex_regions_MA_60 stat_in_ex_regions_MA_60 arabian_gulf_rel_cap_MA_60 

europe_rel_cap_MA_30 europe_rel_cap_MA_60 europe_rel_cap_MA_60 

tonne_miles_demand_MS_30 tonne_miles_demand_MS_60 tonne_miles_demand_MS_60 

indian_ocean_speed_MA_30 indian_ocean_speed_MA_30 indian_ocean_speed_MA_60 

europe_speed_MA_60 europe_speed_MA_60 europe_speed_MA_60 

laden_speed_std_MA_60 laden_speed_std_MA_60 cum_idle_nladen_time_MA_60 

 med_sea _speed_MA_60 asia_draught_new_MA_60 

    laden_speed_std_MA_60 

   
 

Table 6.3 Subsets of Non-AIS, and AIS and Non-AIS to be used in the final LSTM models, 

for the different forecasting horizons. 

      

One week forecasting horizon Two weeks forecasting horizon One month forecasting horizon 
 Non-AIS features  

Iron Ore Spot Price Index Iron Ore Spot Price Index Iron Ore Spot Price Index 

Brent Crude Oil Brent Crude Oil Brent Crude Oil 

Gov 10Y yield Gov 10Y yield Gov 10Y yield 

Average Spot 5TC Average Spot 5TC Average Spot 5TC 

EUR/USD EUR/USD EUR/USD 

   

  AIS and Non-AIS features   

Average Spot 5TC Average Spot 5TC Average Spot 5TC 

3Month USD LIBOR ballast_speed_std_MA_60 ballast_speed_std_MA_60 

total_idle_nladen_MA_30 arabian_gulf_rel_cap_MA_60 cum_idle_nladen_time_MA_60 

tonne_miles_demand_MS_30 europe_rel_cap_MA_60 arabian_gulf_rel_cap_MA_60 

indian_ocean_speed_MA_30 tonne_miles_demand_MS_60 europe_rel_cap_MA_60 

europe_speed_MA_60 indian_ocean_speed_MA_30 tonne_miles_demand_MS_60 

laden_speed_std_MA_60 europe_speed_MA_60 indian_ocean_speed_MA_60 
 laden_speed_std_MA_60 europe_speed_MA_60 
 cum_idle_nladen_time_MA_7 asia_draught_MA_60 

    laden_speed_std_MA_60 
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When looking at the final subsets of features, the VAR and LSTM models share a lot of the 

same features. The measures of relative capacity seem to give the most valuable information 

regarding the geographical distribution. Further, speed features also seem relevant, and it is 

interesting that the speed features including all vessels are used, instead of the speed features 

for moving vessels only. The speed and capacity features for Europe, the Indian Ocean and 

the Arabian Gulf seem to yield the best results. Regarding the proxies for operational status, 

total idle non-laden vessels, as well as stationary vessels in exporting world regions, seem to 

hold more predictive powers than the proxy named unemployed vessels. Tonne-mile demand 

is also present in all subsets, which may indicate that it provides useful information regarding 

the demand. An additional note is that several of the non-AIS features are removed in the 

subsets containing all available features, which may imply that the AIS-derived features are 

able to capture similar information. The inclusion of moving sums and moving averages seem 

to be helpful, and we note that the moving sums and moving averages have longer periods as 

the forecasting horizon increases. 

 

The hyperparameters for the LSTM model are set on a trial and error basis. Multiple values 

and combinations were tested until we were unable to improve performance notably. The final 

model specifications are presented in Table 6.4. 

 

Table 6.4 Final hyperparameters. 

Hyperparameter Value 

Learning rate  0.01 

Number of hidden layers 1 

Number of neurons:  46 

Number of Epochs 200 

Rolling window size:  50 

Batch size 200 

Regularization 30% dropout regularization 
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6.2 Forecasting Results 

Table 6.5 to 6.7 summarizes the results from the prediction models with and without AIS-

derived features, for one week, two weeks, and one month, for all three maturities on the 

synthetic FFA price series. The rationale for using the synthetic price series for predictions, is 

that the actual prices jumps when the contracts roll, which will create noise for this purpose.  

The Random Walk model should be considered as a lower bound benchmark in terms of 

predictive accuracy. Regarding directional accuracy, our lower bound benchmark is a coin 

toss, which theoretically will have a 50% chance of predicting the correct direction.  

In general, we observe that some of the models perform well at predicting directions of price 

movements, but often struggle with the magnitude of the movements, when compared to the 

Random Walk benchmark model. We note that the VAR models with all features perform 

superior overall, particularly regarding the direction of movements. The results from the 

models with all features indicate that AIS data have predictive powers regarding the direction 

of price movements, when considering the DAR values. However, the VAR models with all 

features are only marginally better than the Random Walk when comparing RMSE values. 

Seeing as the VAR models with all features are generally superior, we have investigated 

whether the improvements of the predictions are statistically significant. We have conducted 

a Diebold-Mariano test to see whether the seemingly improved prediction errors of the VAR 

models with all features compared to the Random Walk benchmark, are significant. To test 

whether the directional accuracies for the VAR models are better than a coin toss, we have 

performed a z-test, where we assume that the coin toss realizes its theoretical directional 

accuracy of 50%. In addition, we have carried out a z-test to see whether the directional 

accuracy is improved significantly when including AIS-derived features in the VAR models. 

A brief introduction to the Diebold-Mariano test, followed by the test results are included in 

Appendix A.7. Similarly, a brief introduction to the z-test, followed by the results are included 

in Appendix A.6. 
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Table 6.5 forecasting results for the 1Q contract. 

        
Horizon Statistic Random Walk ARIMA VAR Non-AIS VAR All LSTM Non-AIS LSTM All 

1 week RMSE 864.48 1154.92 839.41 828.14 863.20 837.64 
 MAE 640.00 903.91 635.00 618.12 647.86 634.25 
 MAPE 4.59% 6.29% 4.52% 4.39% 4.64% 4.55% 

  DAR - 55.21 % 62.58 % 65.64 % 55.56 % 58.28 % 

2 weeks RMSE 1281.49 2082.26 1248.32 1199.7 1307.42 1238.3 
 MAE 933.33 1647.96 934.86 887.98 971.72 906.53 
 MAPE 6.82 % 11.61 % 6.81 % 6.49 % 7.12 % 6.68 % 

  DAR - 50.00 % 62.66 % 69.62 % 59.24 % 65.19 % 

1 month RMSE 1858.63 4106.9 1839.7 1650.53 2059.79 1737.99 
 MAE 1488.12 3280 1496.13 1268.6 1652.84 1331.96 
 MAPE 10.96 % 28.97 % 10.94 % 9.37 % 12.17 % 9.92 % 

  DAR - 49.32 % 54.79 % 73.29 % 40.69 % 65.75 % 

Note: Boldface indicates the best result for each horizon 
        

Table 6.6 forecasting results for the 2Q contract. 

                

Horizon Statistic Random Walk ARIMA VAR Non-AIS VAR All LSTM Non-AIS LSTM All 

1 week RMSE 636.07 911.34 610.96 595.37 636.67 613.67 
 MAE 441.3 693.21 441.93 423.2 448.57 438.19 
 MAPE 3.07 % 4.65 % 3.05 % 2.93 % 3.11 % 3.04 % 

  DAR - 49.08 % 63.19 % 67.48 % 56.79 % 58.28 % 

2 weeks RMSE 906.13 1654.59 901.18 850.75 931.31 893.2 
 MAE 635.3 1287.71 625.58 573.35 639.01 597.81 
 MAPE 4.45 % 8.52 % 4.36 % 4.02 % 4.48 % 4.20 % 

  DAR - 43.67 % 61.39 % 67.72 % 61.15 % 63.92 % 

1 month RMSE 1363.34 3187.23 1391.2 1255.64 2059.79 1303.8 
 MAE 1006.75 2539.33 1053.93 930.56 1652.84 958.45 
 MAPE 7.05 % 17.27 % 7.34 % 6.52 % 12.17 % 6.74 % 

  DAR - 40.41 % 51.37 % 63.01 % 46.21 % 60.96 % 

Note: Boldface indicates the best result for each horizon 
        

Table 6.7 forecasting results for the 1CAL contract. 
                

Horizon Statistic Random Walk ARIMA VAR Non-AIS VAR All LSTM Non-AIS LSTM All 

1 week RMSE 674.53 804.39 666.49 648.62 707.99 693.34 
 MAE 449.36 594.34 470.16 454.36 468.63 464.09 
 MAPE 2.57 % 3.31 % 2.65 % 2.56 % 2.66 % 2.63 % 

  DAR - 51.53 % 60.12 % 62.58 % 51.23 % 58.28 % 

2 weeks RMSE 1076.37 1427.25 1069.53 1028.91 1132.66 1074.92 
 MAE 698.66 1055.97 726.72 672.31 748.69 663.11 
 MAPE 4.04 % 5.81 % 4.16 % 3.87 % 4.31 % 3.84 % 

  DAR - 53.80 % 60.13 % 65.19 % 58.60 % 65.82 % 

1 month RMSE 1841.39 2719.19 1844.88 1690.78 2013.88 1767.95 
 MAE 1295.58 2049.17 1387.47 1186.9 1443.54 1196.04 
 MAPE 7.55 % 11.13 % 7.97 % 6.89 % 8.38 % 7.05 % 

  DAR - 56.85 % 42.47 % 69.86 % 40.00 % 69.18 % 

Note: Boldface indicates the best result for each horizon 
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Figures 6.1 and 6.2 shows predicted and actual values for the synthetic price series, for the 1Q 

contract for the VAR model with all features, for the weekly and monthly forecasting horizons, 

respectively. 

 

Figure 6.1 One week forecast LSTM with all features. 

 

Figure 6.2 One month forecast for VAR with all features. 

 

The VAR model without AIS features and the Random Walk model generate quite similar 

results regarding the magnitude across the different horizons and contracts. The results for the 

directional accuracy are varying, but the models have above 50% directional accuracy on eight 
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out of nine occasions. The VAR models with all features are superior overall, both regarding 

the directional accuracy and the magnitude of the predictions. When evaluating the Mean 

Squared Errors, they are not significantly different from the Random Walk model at the 5% 

level (see appendix A.7). In terms of the directional accuracy, the VAR models with all 

features have significantly better directional forecasts than the coin toss benchmark for all 

forecasting horizons and contracts, at the 5% level (see appendix A.6). The inclusion of AIS 

features increases the directional accuracy significantly for the all contracts on the monthly 

forecasting horizon (see appendix A.6). 

The LSTM without AIS features performs relatively poorly regarding directional accuracy, as 

it fluctuates around 50% for the different contracts and horizons. Compared with the Random 

Walk benchmark, the LSTM without AIS features generally performs worse, particularly at 

the longer horizons. The inclusion of AIS features greatly increases the directional accuracy 

and reduces the prediction errors. However, the LSTM models with all features are still 

inferior to the VAR models with all features.  

The ARIMA model performs poorly overall for predicting both the direction and magnitude 

and is consistently outperformed by the Random Walk model when comparing RMSE and 

MAE. Further, the directional accuracy fluctuates around 50%. The poor performance of the 

ARIMA model may be because the historic FFA prices alone might be a poor predictor for 

future developments. 

The inclusion of AIS features improves the VAR and LSTM models, both regarding predictive 

accuracy and magnitude, especially at longer horizons. However, the results indicate that the 

models are generally poor at predicting the magnitude of movements, considering fairly high 

RMSE values. On the other hand, the results are promising regarding the directional accuracy 

for the LSTM and VAR, and the z-tests uncover partial evidence of the AIS features improving 

the directional accuracy, especially at longer horizons for the VAR models (see appendix A.6). 

The price distribution for the testing period is characterized by a long positive trend, followed 

by a steep drop. It would be interesting to test the methodology in this study for different 

scenarios in the future. As the testing period is relatively short, it is difficult to test the 

robustness of the models sufficiently. Hence, the model framework is applied to several 

maturities.  

The two best models, which are the LSTM and VAR with all features, will further be tested 

in simple trading strategies, based on the predicted direction, in the next section. 
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6.3 Trading Results 

Based on predictions of movements on the synthetic FFA prices, we will be trading on the 

actual prices. We will test a long-short strategy for each forecasting horizon for all the three 

maturities. We perform a simulation over the testing period, where each strategy starts with 

the same initial cash balance. If the model predicts the prices to go up, a long position is taken, 

while a short position is taken if the model predicts the prices to go down. As the RMSE values 

for the best LSTM and VAR models are considerably high, we will not include any thresholds 

based on the predicted magnitude of movements. Thus, only the directional prediction is used 

as a basis for going long or short, and the strategies will always go long or short with all 

available funds. When the end of the forecasting horizon for a signal is reached, the position 

is liquidated, unless the current directional signal corresponds with the previously taken 

position. Consequently, if a long position is held at the last day of the forecasting horizon, and 

a new signal indicates continued price increase, the position will be held until the next horizon 

is reached. If the end of a long horizon is reached and the current signal indicates future price 

fall, the long position is first liquidated and a short position is simultaneously taken.  

Each position is held throughout the duration of the forecast horizon. Thus, repositioning will 

take place weekly for the models with a weekly forecasting horizon, biweekly for models with 

a two-week forecasting horizon, and monthly for the models with a one month forecasting 

horizon. In addition, the positions are always netted two trading days before entering the 

settlement month. If a position is held during rolling of contracts, we will net out the position 

two days before the first contract expires and buy or sell new contracts at the first day the next 

contract is traded.  

As benchmarks, we have included a buy-and-hold strategy, and a trend-following strategy (TF 

in the return table), supported by naive directional forecasts. The trend-following strategy 

takes positions at the same time as the other strategies, but trading signals are generated by the 

observed directional price movements in the period of the previous forecast horizon. For 

example, for the weekly repositioning scheme, a long position will be taken if there was an 

increase in prices in the last week. Similarly, the strategy looks at the historic price difference 

during the last two weeks for the biweekly repositioning scheme. Thus, this strategy simply 

follows the trend for the last period, and assumes this will continue for the next period. 

We assume that broker commissions are fixed at 25 basis point and that we can buy and sell 

at the daily average prices. We will not take initial margin or variation margin into account. 
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Also, we will assume that earnings received as a result of mark-to-market in the clearing 

account are unavailable for trading. The calculations of returns are based on the initial nominal 

value and the nominal value at the end of the testing period. The trading results for the different 

trading strategies are shown in Table 6.8. 

 

Table 6.8 Trading results. 

    Reposition weekly Reposition biweekly Reposition monthly 

1Q 
Buy-and-

Hold 
VAR LSTM TF VAR LSTM TF VAR LSTM TF 

Annualized 

returns 
-26.8% 188.7% 40.7% -31.4% 71.8% -37.4% 44.7% 140.3% 97.1% 74.7% 

Annualized 

Std. 
0.46 0.65 0.57 0.59 0.61 0.48 0.39 0.34 0.36 0.31 

Sharpe ratio -0.64 2.86 0.67 -0.58 1.14 -0.84 1.09 4.06 2.66 2.31 

           

2Q                     

Annualized 

returns 
-11.81% 108.2% 12.4% -43.7% 40.1% -15.0% 25.2% 35.6% -38.1% -5.3% 

Annualized 

Std. 
0.34 0.52 0.43 0.45 0.50 0.37 0.31 0.30 0.30 0.30 

Sharpe ratio -0.43 2.02 0.22 -1.02 0.75 -0.48 0.72 1.09 -1.38 -0.27 

           

1CAL                     

Annualized 

returns 
-20.9% 49.1% -10.4% -21.9% 36.8% -25.8% 28.9% 57.3% -25.5% 11.8% 

Annualized 

Std. 
0.27 0.45 0.32 0.46 0.42 0.30 0.28 0.20 0.26 0.28 

Sharpe ratio -0.87 1.03 -0.41 -0.54 0.82 -0.94 0.93 2.76 -1.09 0.32 

Note:Boldface indicates best result for each contract 
   

 

As can be seen in Table 6.8, there are vast differences in returns, volatility, and risk-adjusted 

returns for the different models across the different maturities and repositioning schedules. 

We note that the VAR model manages to generate excess returns compared to the benchmark 

models, and generates a positive return for all contracts for all repositioning schedules. It is 

especially impressive when repositioning weekly for the 1Q contract, as it generates an 

annualized return of 188.7%. 
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The LSTM model beats the buy-and-hold and trend-following benchmarks in four out of nine 

scenarios. The results indicate that the LSTM model works best when repositioning weekly. 

However, the LSTM model is consistently outperformed by the VAR model. 

The trend-following strategy beats the buy-and-hold benchmark six out of nine times, and 

generates positive returns five out of nine times. It is interesting that it generally performs 

better than the LSTM model. However, it seems to struggle at shorter horizons where the 

returns are consistently worse than the buy-and-hold benchmark.  

Overall, the results indicate that the VAR model is superior to both the buy-and-hold and 

trend-following benchmarks. It further shows superiority compared to the LSTM model for 

trading applications. The results are quite interesting, due to the VAR model consistently 

generating excess returns compared to the benchmarks. Further, it is interesting that the 

performance of the LSTM and VAR are so different, when the directional accuracies for both 

models were relatively decent for all contracts and horizons, as shown in Section 6.1. This 

may be due to the penalty of a wrongful directional prediction having a significant impact on 

the returns. One additional thing to point out regarding this issue, is that the models essentially 

generates daily directional forecasts, while the trading strategies are forced to hold the 

positions for the entire forecast period. 

The results of Nomikos and Doctor (2013) gave implications against a weak form of market 

efficiency in the FFA market. Their outperforming strategies for the Capesize 1Q, 2Q and 

1CAL FFA contracts, generated annualized returns of 327%, 254% and 199% respectively, 

with Sharpe ratios of 6.98, 6.72 and 6.13. These results are beyond our results for the similar 

contracts. However, it is hard to compare these results directly, due to the study horizon in 

their paper being much longer. Moreover, one should be careful to compare results from 

different time periods, as they have different characteristics. All of the buy-and-hold strategies 

yields negative returns in our case, but are positive in the study period of Nomikos & Doctor 

(2013). A final note regarding this issue, is that they applied strategies with dynamic holding 

periods based on a continuous input of signals, while our holding periods are rigid. However, 

our results also give implications against a weak form of market efficiency in the Capesize 

FFA market, and that there exist opportunities for generating excess returns by applying active 

trading strategies. 
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7 Concluding Remarks 

The results from this study show that AIS-derived features have some predictive power 

regarding the directional movements of Capesize 5TC FFA prices. The increased directional 

accuracies for the VAR models with AIS features are statistically significant for the longer 

periods, while not significant for the shorter periods, compared to the VAR models without 

AIS data. When compared to the coin toss benchmark, the VAR models with AIS data have a 

significantly superior directional accuracy, whilst the RMSE values are not significantly 

different. These results imply that there are opportunities for forecasting future directional 

movements of FFA prices. 

Among the features considered in this study, AIS features representing tonne-mile demand, 

geographical distribution of capacity, speed and idle non-laden ships, stand out as the most 

prominent features when forecasting future prices.  

When using the predictions from the best VAR models in simple trading strategies, it 

outperformed both benchmarks for all three repositioning schedules, across the three 

maturities. However, the LSTM neural network also showed promising results in some cases. 

As discussed in Section 6.2, the results give implications against a weak form of efficiency in 

the FFA market, and that there are opportunities for generating excess returns by applying 

active trading strategies. 

Regarding the performance of the LSTM, the results could possibly have been improved with 

more careful calibration of hyperparameters. One could also be more aware of the suitableness 

of the features used, with this kind of non-linear modeling framework. Further, both the LSTM 

and VAR models could have been improved by more scientifically determined geofencing. 

Several of the features are calculated based on the world regions and may therefore be sub-

optimal.  

Furthermore, the port areas cover relatively large areas, which may impair the classification 

of port calls, and in turn the features that rely on the port areas. The predictive powers of the 

created features are also dependent on the data quality. Differences in satellite coverage may 

for instance cause gaps in the data during the time period studied. There may also be other 

concerns regarding the AIS data quality, such as failures in the automatic message system, 

instances of incorrectly reported positions, as well as inconsistencies in manually reported 

data. Regarding feature selection, there is always the possibility that different combinations 

would have been better able to capture the underlying structure in the data.  
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The period for which our study covers is a little less than four years, and the number of 

observations may not be sufficient for the LSTM neural network models to learn the general 

underlying patterns. Furthermore, the freight market is highly cyclical, and the typical shipping 

cycle lasts about 7-8 years (Stopford, 2009). Ideally, the study period should have been longer. 

However, the AIS data quality has become increasingly better in recent years, and the period 

before and after the financial crisis has historically been an outlier for the freight market. 

Additionally, there are several alternatives regarding structuring and adjustment techniques of 

the FFA price data, which is used to develop the continuous time series. 

Even though our results indicate that AIS-derived features are able to forecast directional 

movements of FFA prices to some extent, our forecasting period is too short to provide any 

robust conclusions regarding the long-term benefits and profitability. The trading strategies 

presented in this study are relatively simple, and the trading results could have been improved 

by using more sophisticated strategies. Also, the trading assumptions are simplified, which 

may give an unrealistic view of the potential profitability. We therefore recommend 

investigating the profitability on an extended horizon while making the trading conditions as 

realistic as possible. We also recommend further work on AIS data in relation to maritime 

economics.  
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A Appendix 

A.1 Port Areas 

 

Figure A.1 Indexed port areas. 

 

Table A.1 Labeling for defined export and import port areas. 

Import Export Other ports 

5 31 1 36 39 

15 32 2 37 61 

16 33 3 38 62 

17 34 4 40 
 

18 35 6 44 
 

20 41 7 51 
 

21 42 8 52 
 

22 43 9 53 
 

23 45 10 54 
 

24 46 11 55 
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A.2 Descripitive Statistics 

Descriptive statistics of price data and features used for predictions 

Table A.2 Synthetic FFA prices descriptive statistics. 

Contract Mean Std. Min Max 

1QA 10755.200 5537.768 3162.662 28624.98 

2QA 10793.760 3984.674 5285.655 22103.73 

1CALA 14571.470 5320.450 7701.678 30811.95 

     

     

Table A.3 Actual FFA prices descriptive statistics. 

 

     

1Q  13033.74 5704.58 3547.00 28022.00 

2Q 12466.74 5088.95 4854.00 31210.00 

1CAL 13540.00 4142.19 7246.00 23805.00 

 

 

Table A.4 Non-Ais features descriptive statistics. 

 Feature Mean Std. Min Max 

Iron Ore Spot Price Index 65.888 12.990 37.5 102.1 

Brent Crude Oil 61.927 18.546 27.88 115.06 

Gov 10Y yield 2.316 0.4147 1.357 ‘3.237 

3Month USD LIBOR 1.0199 0.773 0.223 2.823 

Average Spot 5TC 12117.392 6215.523 1985 30475 

EUR/USD 1.157 0.077 1.038 ‘1.392 
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Table A.5 AIS features descriptive statistics. 

 Feature Mean Std. Min Max 

cum_ idle_nladen_time_MA_7 148.163 14.276 35.071 189.385 

cum_ idle_nladen_time_MA_60 146.364 16.970 34.538 175.241 

asia_draught_new_MA_60 0.727 0.008 0.709 0.747 

laden_speed_std_MA_60 6.628 1.366 5.317 12.888 

total_idle_nladen_MA_30 244.101 26.264 47.133 318.933 

total_idle_nladen_MA_60 242.292 29.104 46.200 301.967 

arabian_gulf_rel_cap_MA_60 0.022 0.004 0.015 0.033 

europe_rel_cap_MA_60 0.045 0.007 0.032 0.083 

europe_rel_cap_MA_30 0.044 0.007 0.031 0.080 

tonne_miles_new_MS_30 698.082 77.907 425.268 854.348 

tonne_miles_new_MS_60 1388.878 156.554 861.379 1667.321 

ballast_speed_std_MA_60 6.799 0.579 6.062 9.178 

indian_ocean_speed_MA_30 11.391 0.318 10.493 12.701 

europe_speed_MA_60 7.762 0.505 6.576 10.494 

ndian_ocean_speed_MA_60 11.391 0.273 10.771 12.197 

med_sea_speed_MA_60 6.219 0.907 4.265 9.891 

stat_in_ex_regions_MA_60 117.238 14.531 16.167 147.633 

 

A.3 ADF Tests 

Table A.6 ADF tests for all FFAs and features after first difference. 

Feature ADF Statistic p-value 1 % Accept H0 at1% 

cum_ idle_nladen_time_MA_7 -13.23 9.64e-25 -3.44 FALSE 

cum_ idle_nladen_time_MA_60 -6.35 2.67e-08 -3.44 FALSE 

asia_draught_new_MA_60 -10.32 2.95e-18 -3.44 FALSE 

laden_speed_std_MA_60 -33.75 0.0 -3.44 FALSE 

total_idle_nladen_MA_30 -10.44 1.52e-18 -3.44 FALSE 

total_idle_nladen_MA_60 -6.26 4.14e-08 -3.44 FALSE 

3Month USD LIBOR -4.17 0.0 -3.44 FALSE 

arabian_gulf_rel_cap_MA_60 -6.05 1.29e-07 -3.44 FALSE 

europe_rel_cap_MA_60 -5.47 2.45e-06 -3.44 FALSE 

europe_rel_cap_MA_30 -6.85 1.74e-09 -3.44 FALSE 

tonne_miles_new_MS_30 -10.20 6.01e-18 -3.44 FALSE 

tonne_miles_new_MS_60 -33.78 0.0 -3.44 FALSE 

ballast_speed_std_MA_60 -34.37 0.0 -3.44 FALSE 

Average Spot 5TC -17.52 4.27e-30 -3.44 FALSE 

indian_ocean_speed_MA_30 -9.26 1.38e-15 -3.44 FALSE 
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europe_speed_MA_60 -5.74 6.41e-07 -3.44 FALSE 

indian_ocean_speed_MA_60 -7.04 5.83e-10 -3.44 FALSE 

med_sea_speed_MA_60 -7.01 6.83e-10 -3.44 FALSE 

stat_in_ex_regions_MA_60 -6.07 1.15e-07 -3.44 FALSE 

Gov 10Y yield -13.44 3.79e-25 -3.44 FALSE 

EUR/USD -35.33 0.0 -3.44 FALSE 

Brent Crude Oil -35.73 0.0 -3.44 FALSE 

Iron Ore Spot Price Index -16.93 9.81e-30 -3.44 FALSE 

1QA -25.80 0.0 -3.44 FALSE 

2QA -25.80 0.0 -3.44 FALSE 

1CALA -15.88 8.83e-29 -3.44 FALSE 

 

 

 

 

A.4 Feature Selection Results 

Table A.7 Feature selection results for top 60 features in terms of the mean score. 

Feature Linear Reg. 

Ridge 

Reg. Lasso RF 

Linear 

Corr. MIC 

Mean 

Score 

daily_tot_laden(t) 1 1 0.03 1 1 1 0.84 

asia_ballast_new(t) 0.83 0.83 1 0.22 0.34 0.47 0.61 

asia_draught_new(t) 0.93 0.93 0.01 0.32 0.58 0.71 0.58 

aus_ballast_new(t) 0.42 0.42 0.72 0.27 0.28 0.53 0.44 

asia_laden(t) 0.68 0.68 0 0.01 0.39 0.62 0.4 

south_america_ballast_new(t) 0.59 0.59 0.42 0.09 0.28 0.43 0.4 

south_africa_ballast_new(t) 0.49 0.49 0.49 0 0.15 0.34 0.33 

indian_ocean_ballast_new(t) 0.42 0.42 0.5 0.04 0.16 0.33 0.31 

south_africa_draught_new(t) 0.49 0.49 0.01 0.21 0.18 0.26 0.27 

asia_flow(t) 0.37 0.37 0 0 0.21 0.46 0.24 

europe_ballast_new(t) 0.37 0.37 0.21 0 0.07 0.28 0.22 

indian_ocean_draught_new(t) 0.44 0.44 0.03 0.02 0.14 0.28 0.22 

south_america_draught_new(t) 0.39 0.39 0 0 0.16 0.36 0.22 

rel_daily_tot_ballast_MA_7(t) 0.25 0.25 0 0.01 0.26 0.5 0.21 

south_america_laden(t) 0.42 0.42 0 0 0.13 0.28 0.21 

aus_flow(t) 0.31 0.31 0 0 0.17 0.39 0.2 

aus_rel_count(t) 0.33 0.33 0.07 0.02 0.11 0.36 0.2 

aus_rel_cap(t) 0.32 0.32 0.01 0.01 0.12 0.36 0.19 
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daily_tot_fleet(t) 0.18 0.18 0.56 0 0.01 0.15 0.18 

aus_cap(t) 0.28 0.28 0 0 0.1 0.33 0.17 

south_africa_laden(t) 0.33 0.33 0 0 0.1 0.24 0.17 

aus_count(t) 0.29 0.29 0 0 0.1 0.31 0.16 

aus_draught_new(t) 0.28 0.28 0 0 0.07 0.33 0.16 

aus_laden(t) 0.3 0.3 0.04 0 0.05 0.26 0.16 

pacific_ocean_ballast_new(t) 0.29 0.29 0.15 0 0.09 0.17 0.16 

europe_draught_new(t) 0.27 0.27 0 0 0.08 0.28 0.15 

north_america_ballast_new(t) 0.27 0.27 0.2 0 0.02 0.16 0.15 

asia_ballast_new_MA_7(t) 0.31 0.31 0 0 0.08 0.15 0.14 

pacific_ocean_draught_new(t) 0.26 0.26 0.01 0.04 0.1 0.2 0.14 

aus_rel_cap(t-1) 0.17 0.17 0 0 0.08 0.35 0.13 

aus_rel_count(t-1) 0.16 0.17 0.01 0 0.08 0.36 0.13 

europe_laden(t) 0.29 0.29 0 0 0.04 0.16 0.13 

indian_ocean_rel_count(t) 0.23 0.23 0.02 0.01 0.04 0.23 0.13 

south_america_rel_count(t) 0.25 0.25 0 0 0.05 0.17 0.12 

asia_draught_new_MA_7(t) 0.17 0.17 0 0 0.09 0.23 0.11 

asia_rel_cap(t) 0.24 0.24 0 0.01 0 0.18 0.11 

aus_ballast_new(t-1) 0.17 0.17 0 0 0.06 0.24 0.11 

aus_cap(t-1) 0.17 0.17 0 0 0.07 0.26 0.11 

aus_count(t-1) 0.17 0.17 0 0 0.07 0.25 0.11 

indian_ocean_count(t) 0.19 0.19 0 0 0.03 0.27 0.11 

indian_ocean_moving(t) 0.2 0.2 0 0 0.03 0.21 0.11 

indian_ocean_rel_cap(t) 0.2 0.2 0 0 0.03 0.24 0.11 

rel_total_idle_nladen (t) 0.17 0.17 0 0 0.07 0.26 0.11 

south_america_flow(t) 0.22 0.22 0 0 0.04 0.18 0.11 

west_past_singapore(t) 0.19 0.19 0 0 0.05 0.26 0.11 

arabian_gulf_ballast_new(t) 0.19 0.19 0.16 0 0.01 0.08 0.1 

asia_ballast_new_MA_30(t) 0.16 0.16 0 0 0.07 0.21 0.1 

asia_flow_MS_30(t) 0.06 0.07 0 0.01 0.1 0.36 0.1 

asia_rel_count(t) 0.22 0.22 0 0 0 0.17 0.1 

aus_flow_MS_30(t) 0.09 0.09 0 0 0.1 0.3 0.1 

daily_tot_laden(t-1) 0.14 0.14 0 0 0.03 0.28 0.1 

indian_ocean_laden(t) 0.21 0.21 0 0 0.03 0.18 0.1 

rel_daily_tot_ballast(t-1) 0.04 0.04 0 0.02 0.17 0.35 0.1 

south_africa_rel_count(t) 0.17 0.17 0 0 0.01 0.22 0.1 

south_america_count(t) 0.22 0.22 0 0 0.04 0.13 0.1 

south_america_flow_MS_60(t) 0.21 0.21 0 0 0.05 0.13 0.1 

south_america_rel_cap(t) 0.22 0.22 0 0 0.04 0.13 0.1 

west_past_south_africa(t) 0.19 0.19 0 0 0.02 0.21 0.1 

west_past_south_africa_cap(t) 0.15 0.15 0 0 0.02 0.26 0.1 

EUR/USD(t-12) 0.14 0.14 0 0 0.01 0.24 0.09 
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A.5 Cross Correlation Results 

Table A.8 Cross correlation results for best performing features leading the FFA prices. 

 

Feature Offset Correlation 

1QA 0 1 

Brent Crude Oil -1 0.801909 

Baltic dry index -46 0.762259 

Average Spot 5TC -49 0.705862 

Gov 10Y yield -29 0.702615 

Baltic Capesize index -46 0.697154 

europe_moving_speed_MA_60 -39 0.669477 

Iron Ore Spot Price Index -28 0.65252 

europe_moving_speed_MA_30 -45 0.601482 

asia_draught_new_MA_60 -37 0.585185 

asia_draught_new_MA_30 -35 0.53525 

med_sea_speed_MA_60 -36 0.48589 

med_sea_speed_MA_30 -36 0.453895 

arabian_gulf_speed_std_MA_60 -8 0.44308 

med_sea_speed_std_MA_60 -49 0.387417 

arabian_gulf_speed_std_MA_30 -29 0.369876 

med_sea_speed_MA_7 -49 0.364721 

med_sea_speed_std_MA_30 -13 0.355409 

pacific_ocean_ballast_MA_60 -25 0.329168 

europe_speed -12 0.32046 

unloading_ports_outgoing_MA_30 -50 0.309906 

europe_cap_MA_30 -2 -0.56029 

europe_laden_MA_30 -3 -0.5059 

europe_count_MA_7 -6 -0.49339 

europe_cap_MA_7 -15 -0.48965 

europe_rel_count_MA_30 -17 -0.48062 

europe_rel_cap_MA_30 -23 -0.4761 

europe_rel_cap_MA_60 -3 -0.47157 

europe_count -7 -0.45853 

europe_rel_cap_MA_7 -32 -0.45415 

europe_moving_MA_30 -3 -0.44937 

pacific_ocean_laden_MA_60 -47 -0.4408 

indian_ocean_speed_std_MA_60 -54 -0.43819 

pacific_ocean_laden_MA_30 -53 -0.41399 

med_sea_ballast_MA_60 -17 -0.39059 
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A.6 Z-Test for Directional Accuracy 

𝐻0: 𝑝1 =  𝑝2 

𝐻𝑎: 𝑝1 >  𝑝2 

 
𝑧 =

�̂�1 −  �̂�2

√�̂�(1 − �̂�)(
1

𝑛1 +
1

𝑛2)

 

 

(A.1) 

Where �̂�1 and �̂�2 are the sample means, 𝑛1 and 𝑛2 are the sample sizes. The null Hypothesis 

is rejected if |𝑍| >  𝑧1−𝛼, 𝑣 , where 𝑡1−𝛼 represents critical value of the z distribution 

degrees, as we are conducting a one-sided test.  (Keller, 2018). 

 

Table A.9 One-sided z-test investigating if the directional accuracy of the VAR model with 

all features is significantly better than the coin toss benchmark. 

  10% 5% 1% 

 Z statistic 1.282 1.645 2.326 

1Q 2.85984143 TRUE TRUE TRUE 

 3.55690669 TRUE TRUE TRUE 

 4.09190063 TRUE TRUE TRUE 

     

     

2Q 3.20632934 TRUE TRUE TRUE 

 3.20090971 TRUE TRUE TRUE 

 2.24285498 TRUE TRUE FALSE 

     

     

1CAL 2.28895468 TRUE TRUE FALSE 

 2.7319119 TRUE TRUE TRUE 

 3.46319917 TRUE TRUE TRUE 

 

 

 

 

Table A.10 One-sided z-test investigating if the directional accuracy of the VAR model with 

all features is significantly better than VAR model without AIS features. 



 63 

 

  10% 5% 1% 

 Z statistic 1.282 1.645 2.326 

1Q 0.57731485 FALSE FALSE FALSE 

 1.30758881 TRUE FALSE FALSE 

 3.29260579 TRUE TRUE TRUE 

     

     

2Q 0.81466267 FALSE FALSE FALSE 

 1.17603283 FALSE FALSE FALSE 

 2.01060661 TRUE TRUE FALSE 

     

     

1CAL 0.45495508 FALSE FALSE FALSE 

 0.93037906 FALSE FALSE FALSE 

 4.71763686 TRUE TRUE TRUE 

 

A.7 Diebold-Mariano Test For Predictive Accuracy 

𝐻0: 𝐸(𝑑𝑡) = 0 ∀t (Same accuracy for the two forecasts) 

𝐻0: 𝐸(𝑑𝑡) ≠ 0 (different level of accuracy for the two forecasts) 

(Diebold & Mariano, 1995) 

Table A.11 Diebold-Mariano Test evaluating if the MSE values from the VAR model with 

all features and from Random Walk models are significantly different. 

 

 P value 10% level 5% level 

1Q 

1 Week 0.35676 FALSE FALSE 

2 Weeks 0.07602 TRUE FALSE 

1 Month 0.08931 TRUE FALSE 

    

2Q    

1 Week 0.39890 FALSE FALSE 

2 Weeks 0.06895 TRUE FALSE 

1 Month 0.23285 FALSE FALSE 

    

1CAL    
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1 Week 0.55146 FALSE FALSE 

2 Weeks 0.16440 FALSE FALSE 

1 Month 0.34990 FALSE FALSE 

 

A.8 LSTM 

LSTM networks have a similar looped structure as recurrent neural networks, but the repeated 

module in a general recurrent neural network contains one layer, while the repeated module in 

an LSTM contains four layers that interact, visualized by the yellow rectangles in figure A.2. 

(Olah, 2015). The upper horizontal line of figure A.2 is the cell state 𝐶𝑡, where the information 

flow from the previous cell state is regulated by gates. 

 

Figure A.2 illustration of the repeated module in LSTM (Olah, 2015). 

 

An LSTM contains three gates as ways to optionally let information through. The gates are 

composed of a sigmoid neural net layer and a stepwise multiplication operation. The sigmoid 

layer outputs numbers in the range [0,1], and decides how much of each component to be let 

through. The first step is going through the forget gate 𝑓𝑡, shown in Figure A.2. The forget 

gate determines what information to be removed from the cell state. It has an output range 

between [0,1], depending on the previous inputs, maintained in the previous hidden state, ℎ𝑡−1, 

and the current inputs, 𝑥𝑡. (Olah, 2015). The process is shown in figure A.3, and the calculation 

is shown in Equation A.2. 
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Figure A.3 Selection of information to be kept in the cell state: (Olah, 2015). 

 𝑓𝑡 =  σ (𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑓) (A.2) 

 

The second step is determining which information to store in the cell state. First, a sigmoid 

layer, called the “input gate layer”, determines which values to update, 𝑖𝑡. Second, a tanh layer 

creates a vector containing potential values for the current cell state, �̃�𝑡
̃ . The cell state is then 

updated by adding 𝑖𝑡 ⋅  �̃̃�𝑡. (Olah, 2015). The process is shown in Figure A.4 and the 

calculations are shown in equation A.3 and A.4. The entire process of arriving at the current 

cell state, 𝐶𝑡, is shown in Figure A.5, and the calculation is shown in Equation A.5. 

 

Figure.A.4 Storing of new information in the cell state (Olah, 2015). 

 𝑖𝑡 =  σ (𝑊𝑖 ∗ [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑖) (A.3) 

  

�̃̃�𝑡 = tanh ( 𝑊𝐶 ∗ [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝐶) 

 

(A.4) 
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Figure.A.5 Updating the cell state (Olah, 2015). 

𝐶𝑡 = (𝑓𝑡 ∗ 𝐶𝑡−1 +  𝑖𝑡 ∗ �̃̃�𝑡)    (A.5) 

 

The third and final step is determining the output from the cell state, 𝐶𝑡. A sigmoid layer first 

decides which information from the cell state that will be used as output. Next, the cell state 

is passed through tanh (compressing the values in the range [-1,1]), and multiplied with the 

output from the sigmoid gate. This ensures that the values for output are the ones decided. 

(Olah, 2015). The process is shown in figure A.6 and the calculations are shown in equations 

A.6 and A.7. 

 

Figure A.6 Output from cell state (Olah, 2015). 

 

 𝑜𝑡 = σ(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 

 

ℎ𝑡 = 𝑜𝑡 ∗ tanh (𝐶𝑡) 

(A.6) 

 

(A.7) 

 

 


