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Abstract

The purpose of this thesis is to investigate trading strategies that can exploit

misspecification of volatility in the freight options market. We have, using observed

market prices, derived smooth forward rate curves from daily observations. These forward

curves promote a representation of the historical volatility term structures for the Capesize,

Panamax, and Supramax sub-sector of the dry-bulk shipping industry. The volatility

term structures present consistent behavior across vessel sizes, with increasing volatility

over a six week time horizon before the volatility converges towards an apparent long

term equilibrium. The dynamics coincides with the general belief that spot freight rates

are mean reverting in the long term and positively auto-correlated in the short term. A

comparison of the historical volatility term structure and the volatility estimates implied

by the options market reveals differences. Based on deviating volatility estimates, we

execute trading strategies in what we believe is a realistic representation of the market

dynamics. Our findings can be interpreted as a sign of inefficiency in the freight options

market.

Keywords – Forward freight agreements, dry bulk, volatility term structure, volatility

trading
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1 Introduction

Despite its volatile nature, the shipping business has a relatively short history of exploiting

financial derivatives in the design of risk management strategies. Baltic International

Freight Futures Exchange (BIFFEX) introduced a freight futures market in 1985, offering

shipowners, charterers, and speculators exposure to future freight rate formations.

However, the market participants perceived the contracts’ broad specifications to be

poorly overlapping with their hedging needs, giving the market place low volumes, which

eventually led to its closing in 2002 (Kavussanos and Nomikos, 2003). Since 1992, forward

freight agreements (FFAs) have been offered OTC, as a Contract-for-Difference between

sellers and buyers who agree to settle a freight rate for a pre-specified quantity of cargo or

type of vessel for a specific route or basket of routes in the sub-sectors of the shipping

industry (Alexandridis et al., 2018). While the entry of FFAs represented a valuable

innovation to shipping markets, the added flexibility offered by options enabled market

participants to specify non-linear freight rate exposures.

For freight options, the payoff is determined by the average spot freight rate over some

predetermined time interval. They belong to the family of Asian options, are frequently

offered in thinly traded commodity markets, and possess pricing qualities that makes

them naturally harder to manipulate (Nomikos et al., 2013). Koekebakker et al. (2007)

note that the averaging effect is appealing to hedgers and that the non-storable nature of

freight make average-based options a solution to consumers, who demand a continuous

flow of the service. On the pricing of freight options, Nomikos et al. (2013) register

that market practice has been to assume log-normal spot freight rates and quote a price

applying the formulas described by Turnbull and Wakeman (1991) and Lévy (1997).

Moreover, practically implementing option pricing formulas require the specification of

input parameters, where the legitimacy of the solution is heavily reliant on the parameters’

ability to accurately summarize real world dynamics. While some of the determining

pricing factors are observable, the estimate of freight rate volatility is based on predicting

future freight rate dynamics. Predicting volatility is subject to much research and is the

main reason why market participants assign different values to the same claims.

The market’s expectation of future spot freight volatility can, conditional on a particular
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pricing model, be implicitly derived from the quoted options prices. The implied volatility

term structure describes the expected fluctuation of freight, and while short term freight

rates generally are believed to be formed by the market participants’ expectations of future

market conditions, long term freight rates are believed to be a reflection of a long-term

equilibrium between the supply and demand of freight (Stopford, 2009). Furthermore,

Koekebakker and Ådland (2004) have shown that the volatility term structure of freight

rates, historically, has been consistently bump-shaped. However, even if there is evidence of

mispricing in options markets, arbitrage activity is complicated by the absence of a physical

relationship linking current freight rates with future ones, owing to the non-tradable and

non-storable nature of the former.

Koekebakker et al. (2007) establish a theoretical linkage between FFAs and freight rate

options that promotes replication of the options’ payoff and an opportunity to expose the

derivatives’ misspecification of volatility. Natenberg (1994), Taleb (1997), and Wilmott

(2013) have provided extensive research on the practical implementation of volatility

trading and offer methods to capitalize on the mispricing. Through option trading

strategies and dynamic hedging, they show that the market’s estimate of volatility can be

isolated, traded, and under the right circumstances, arbitraged.

The objective of this thesis is to study how discrepancies between the implied and historical

volatility term structure of freight rates can practically be exploited using volatility trading

strategies. This thesis expands on the current literature by applying explicit trading

strategies to investigate market efficiency in the freight options market, a topic which

hopefully is of interest to market participants.

The remainder of this thesis will be structured as follows: Section 2 provides a review

of related literature. Section 3 describes the data. Section 4 presents the theoretical

framework of our approach. Section 5 estimates the historical volatility structure. Section

6 covers trading strategies, while Section 7 concludes.



3

2 Literature Review

The academic literature on freight derivatives has, to a large degree, focused on elaborating

different aspects of the market’s efficiency, initially in the BIFFEX futures market and

later in the OTC FFA market. Kavussanos and Nomikos (1999, 2003) utilize cointegration

techniques to explore whether futures contracts in the BIFFEX market can be regarded as

unbiased estimates of future realized spot freight rates. They find that the unbiasedness

hypothesis holds for maturities up to 2 months. Kavussanos et al. (2004) explore the

FFA market and concludes similarly that forward contracts are unbiased predictors of

spot prices until reaching maturities of 2 months. Alizadeh et al. (2007) find that implied

forward time charter rates are unbiased estimates of future forward rates.

The hedging effectiveness of the BIFFEX contracts has been investigated by Kavussanos

and Nomikos (2000a,b,c). For the FFA market, Kavussanos et al. (2010) compare the

hedging performance of time-varying and constant hedge ratios in the Capesize segment.

Out-of-sample tests lead to the conclusion that the highest variance reduction is achieved

by matching freight rate exposure with forward contracts of equal size. Alizadeh et al.

(2015a), use a regime-switching GARCH model to improve the hedging efficiency for six

different tanker routes with mixed results. Adland and Jia (2017) show that there is a

benefit of diversification accompanied by an increasing fleet size, but that this effect is small

beyond a fleet size of ten vessels. They also show that physical basis risk is increasing with

shorter hedging duration. Sun et al. (2018) acknowledge the volatility spillovers between

crude oil futures and FFAs, and consequently, highlight the importance of considering the

dynamic relationship between cost and revenues markets when determining an optimal

hedging strategy.

Further, the interaction between the spot and the forward markets is subject to much

research. Disclosure of FFA market data opened up for Kavussanos and Visvikis (2004)

to explore the lead-lag relationship between forward and spot freight markets. Their

study reveals that, despite the non-storable nature of freight, FFA prices are important

factors in the price discovery of spot prices. Li et al. (2014) investigate spillover effects

between spot and FFA prices. They find evidence of unilateral spillovers from one-month

FFA returns to spot rate returns. And, a bilateral spillover effect between the one and
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two month FFA markets. Additionally, they find bilateral volatility spillovers between

spot and FFA markets. Alexandridis et al. (2017) extend the research of spillover effects

by including freight options when they examine the interaction between freight futures,

time charter rates, and freight options. Their study concludes that there is significant

information transmission in both volatility and returns between the markets. Interestingly,

they find that freight options lag behind freight futures and physical freight rates, a result

they assign the low liquidity found in the options market.

While FFA contracts present an effective means of hedging freight rate risk for specified

periods, their lack of flexibility has created a demand for options on freight rates

(Alexandridis et al., 2018). Tvedt (1998) priced the European options that were present

on BIFFEX. Relevant to current markets, Koekebakker et al. (2007) derive an analytical

pricing formula for Asian type freight options by approximating the FFA rate dynamics.

This thesis is heavily dependent on their derivation. While Koekebakker et al. (2007)

rely on assumptions of log-normally distributed FFA rates, Nomikos et al. (2013) suggest

that the risk-adjusted spot freight rates follow a jump-diffusion model, allowing for jumps

prove to be a significant improvement to the pricing of freight options. The jump-diffusion

pricing formula of Nomikos et al. (2013) is then extended by Kyriakou et al. (2017), who

incorporate the mean-reverting property of freight rates. An extension of the log-normal

assumption of the freight rate returns to include mean reversion is shown to provide

significantly lower errors in the pricing of the options.

The pricing of options is highly dependent on reliable estimates of the volatility structure of

the underlying asset. Koekebakker and Ådland (2004) model the forward curve dynamics

using a smoothing function on implied forward prices. They find that the volatility

structure is bumped and that there are low and even negative correlations between

different parts of the term structure. Alizadeh and Nomikos (2011) apply augmented

EGARCH models and concludes that volatility of freight rates is affected by the shape of

the current term structure, in particular, that volatility is higher when the market is in

backwardation compared to when it is in contango. Kavussanos and Alizadeh-M (2001,

2002) explore the seasonality in shipping and find that for dry bulk, freight rates rise in

early spring and drop in June/July while the freight rates increase in November/December

and decline from January to April. Similar in both markets is the tendency of higher
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seasonal variation when the market is in recovery. Lim et al. (2019) investigate the

fundamental drivers of volatility in the freight market using panel regression. Their

findings indicate that expectations of general economic growth and increasing spot freight

rates reduce implied volatility, a result that similarly to Chen and Wang (2004) support

the notion of a leverage effect in freight rates. Another interesting finding is that the slope

of the implied volatility curve follows that of the forward curve, meaning that generally,

when the slope of the forward curve gets steeper - so will the slope of the implied volatility

curve.

The non-storable nature of freight services interferes with the concept of the efficient

market. Based on historical data, Adland and Strandenes (2006) apply technical trading

techniques to identify trends in the freight market cycles. They discredit any hypothesis

of a freight market that is semi-strong efficient when they obtain excess returns utilizing

their chartering strategy. Trading rules have later been explored by Nomikos and Doctor

(2013), who prove that excess returns can be made in the FFA market by trading according

to momentum and trend strategies. They expect the trading opportunities to diminish as

the FFA market is gaining liquidity.

While there have been successful attempts to demonstrate profitable trading strategies in

the FFA market, to our knowledge, there is no published study revealing the profitability

of volatility trading in the freight options market. The purpose of this thesis will therefore

be to fill this gap in the academic literature. Our thesis starts by deriving an historical

volatility structure from observed FFA prices. With the assumption that the historical

volatility estimate is an accurate representation of future volatility we investigate if there

is mispricing in the options market. To exploit the mispricing we apply option strategies

suggested by Natenberg (1994), Wilmott (2013), and Taleb (1997).
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3 Data

Using data of FFA prices, we estimate volatility structures for three time charter basket

routes. The time charter basket routes are the C5TC; Capesize time charter average of

five routes, P4TC; Panamax time charter average of four routes, and S6TC; Supramax

time charter average of six routes. The data is collected and granted by Baltic Exchange.

The basket routes make up their respective indices revealing the development of the

different market segments and create the basis for which forward and option contracts

can be settled.

The prices of the Asian style options, quoted by implied volatility, are provided by Baltic

Exchange. We use LIBOR as the risk-free interest rate in the period. Time Charter

indices and interest rates are obtained from Clarkson Research Services.

3.1 Descriptive Statistics

We plot the time charter indices for Capesize, Panamax, and Supramax in the time interval

spanning May 2014 to the end of 2018, seen in figure 3.1. The time series reveal some

key characteristics of the different market segments. The time period is chosen to handle

the change in practice in the reporting of Capesize vessel routes. In the time interval, it

is evident that volatility increases with vessel size. This is a trait that has been shown

previously by (Kavussanos, 1996), and explained by smaller vessels being more diverse

in the range of routes and ports they can handle. As a consequence, smaller vessels are

expected to be less affected by market fluctuations than their larger peers.

Figure 3.1: Time Charter Indices
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Further, when we look at time series for the FFAs, as illustrated in figure 3.2, it is clear

that volatility is also decreasing with time to maturity. The short term contracts can be

seen to fluctuate around the longer term contracts. Also, in times of low freight rates, the

long term freight rates look to be above the short term rates. Similarly, in times of high

freight rates, the long term rates seem to be below the short term rates. This supports

the general notion that freight rates are mean-reverting in the long term (Koekebakker

et al., 2006). An assumption backed by the competitiveness of the shipping industry,

where the mechanics of supply and demand inevitably will pull the freight rates toward

the long-term costs prevalent in the market (Stopford, 2009).

Figure 3.2: Forward Freight Agreements

C5TC P4TC S6TC

The Asian style options’ implied volatility, shown in figure 3.3, reveals the market consensus

of what the volatility is expected to be for the spot freight rate until the contract specified

maturity date. The volatility is decreasing with time to maturity across all three vessel

sizes in the period. It’s a trait that is shared with storable commodities, is termed

the Samuelson-effect, and is usually explained by the market participants’ expectations

being smoothed under a mean-reverting process (Routledge et al., 2000). Jaeck and

Lautier (2016) find evidence for the Samuelson-effect in electricity markets, and as a

consequence, reject storage as a necessary precondition. It is also noticeable that the

market’s expectation of volatility has been declining since 2016 for C5TC, P4TC, and

S6TC. We suspect that contracts with maturity longer than +4Q ahead are thinly traded,

and therefore decide not to include these in our analysis.
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Figure 3.3: Volatility implied from options prices

C5TC P4TC S6TC

From table 3.1 we see that average returns are zero percent for all contracts and vessel

sizes while standard deviation is decreasing with vessel size and with time to maturity.

However, we are careful of interpreting this as proof of volatility decreasing with maturity.

If we assume that the underlying freight rate follows a mean reverting stochastic process,

the volatility of the average of these will be less volatile than the freight rates themselves.

Thus, if we increase the averaging period, the volatility of the average based contracts

will necessarily be reduced as well (Koekebakker and Ådland, 2004).

CURMON +1MON +2MON +1Q +2Q +3Q +4Q
C5TC
obs. 1177.00 1177.00 1177.00 1177.00 1177.00 1177.00 1177.00
mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00
std. dev 0.07 0.07 0.06 0.06 0.05 0.04 0.04
median 0.00 0.00 0.00 0.00 0.00 0.00 0.00
min -0.55 -0.52 -0.48 -0.68 -0.68 -0.58 -0.55
max 0.65 0.35 0.26 0.55 0.35 0.43 0.36
skew 1.51 0.13 -1.30 -2.22 -5.46 -1.39 -2.48
kurtosis 24.37 4.96 14.28 50.87 81.85 62.63 72.83
P4TC
obs. 1262.00 1262.00 1262.00 1262.00 1262.00 1262.00 1262.00
mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00
std. dev 0.04 0.04 0.03 0.03 0.02 0.02 0.02
median 0.00 0.00 0.00 0.00 0.00 0.00 0.00
min -0.47 -0.22 -0.22 -0.26 -0.22 -0.21 -0.14
max 0.36 0.37 0.29 0.42 0.23 0.27 0.24
skew 1.27 1.58 0.45 1.51 -0.17 0.29 3.09
kurtosis 39.56 10.99 10.24 39.63 23.24 40.51 43.27
S6TC
obs. 1262.00 1262.00 1262.00 1262.00 1262.00 1262.00 1262.00
mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00
std. dev 0.03 0.02 0.02 0.02 0.02 0.02 0.01
median 0.00 0.00 0.00 0.00 0.00 0.00 0.00
min -0.25 -0.20 -0.30 -0.33 -0.28 -0.18 -0.12
max 0.34 0.16 0.19 0.20 0.19 0.19 0.12
skew 2.86 -0.16 -1.29 -3.43 -3.04 0.43 0.96
kurtosis 46.40 10.60 29.98 57.97 56.91 46.50 25.28

Table 3.1: Descriptive statistics for FFAs - data in log-differences
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3.2 Volumes

As almost all of the FFA trades are now cleared, counter-party risk is negligible, leaving

liquidity risk the major concern for market participants in the freight derivatives market

(Alizadeh et al., 2015b). Liquidity risk describes the extent to which investor are able

to trade large quantities quickly, at low cost, and with little price impact. Amihud and

Mendelson (1986) show that less liquid assets are priced lower and require higher expected

returns. The same effect is also found for freight derivatives, where a study by Alizadeh

et al. (2015b) show that less liquidity have a positive effect on the forward premium.

Their study also note that FFA volumes have stabilized after reaching a peak in 2008,

that quarterly contracts are perceived to be most liquid and that market participants

are seemingly unaffected by liquidity in their decision to invest in quarterly contracts.

Furthermore, data from Baltic Exchange (2019) describes a market where trading activity

is primarily concerned on the larger vessel sizes, implying that the liquidity risk is relatively

lower for Capesize than it is for Panamax and Supramax. However, Taleb (1997) note

that financial markets can suffer from liquidity holes when market participants are unable

to comprehend the impact and size of an upcoming event - creating an environment

where lower prices bring accelerated supply, and conversely, higher prices bring accelerated

demand. Morris and Shin (2004) describe a momentum effect following a liquidity hole,

where sales become mutually reinforcing and spiralling down to an outcome similar to

that of a bank run. Thus, while the freigth derivatives market has gained liquidity in the

recent years, the risk of illiquidity will always be present.

Capesize Panamax Supramax Handysize Combined
Dry FFA Volume
No of lots traded 481,725 571,850 141,078 2276 1,196,929

% by sector 40% 48% 12% 0%

Dry Options Volume
No of lots traded 182,575 82,987 3,414 0 268,976

% by sector 68% 31% 1% 0%

Table 3.2: Data on FFA and Options volume (Baltic Exchange, 2019)
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4 Theoretical Framework

4.1 The Forward Freight Rate Function

The dynamics of the forward freight rate is usually estimated in one of two ways. The

first method describes the spot freight rate process and derives the corresponding forward

freight rate subject to an estimated or assumed risk premium. Geometric Wiener process

(Koekebakker et al., 2007), Ornstein-Uhlenbeck process (Bjerksund and Ekern, 1995),

(Adland and Cullinane, 2006), and the more general Lévy-processes (Benth et al., 2014)

have all been proposed to the literature. To ensure accuracy in the aforementioned spot

freight rate models, it is necessary to decide on an appropriate market price of risk.

Adland and Cullinane (2005) argue, using logic and industry knowledge, that the risk-

premium should be time-varying. This has also been proved empirically by Kavussanos

and Alizadeh (2002). As there is not yet a suitable method for specifying the risk premium

in an endogenous forward curve model, the practice has been to assume that the risk

premium is zero, exemplified by Tvedt (1997).

Given the risk premium’s unobserved nature, this thesis will model the forward freight

dynamics in the framework of Heath et al. (1992). The forward freight rate dynamics will

be derived empirically by smoothing the observed forward prices - creating a continuous

forward price function for each trading day in our sample. By smoothing observed market

prices, we avoid considerations concerning the specification of a potential risk-premium.

We consider a market where the uncertainty can be described by a Wiener process, W,

defined on an underlying probability space (⌦,F,Q), with the filtration F = {Ft 2 [0, T ⇤]}

satisfying the usual conditions and representing the disclosure of market information. The

probability measure Q represents the risk-adjusted pricing measure. We will keep the

interest rate constant when we estimate the forward freight rate function.

We let the forward freight market be represented by a continuous forward price function,

where f(t, TN) denotes the forward price at date t for delivery of transportation at time

TN , where t < TN < T ⇤
. Given constant interest rates, it can be shown that forward

prices are by construction martingales under Q. We model the dynamics of the forward
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freight rate in line with what Koekebakker and Ådland (2004) has done before us, where

df(t, TN)

f(t, TN)
=

KX

i=1

�i(t, TN)dWi(t), t  TN (4.1)

with the solution

f(t, TN) = f(0, TN)exp

 
�1

2

KX

i=1

Z t

0

�i(s, TN)
2ds+

KX

i=1

Z t

0

�i(s, TN)dWi(s)

!
(4.2)

and the distribution of the natural log of the forward price is given by

lnf(t, TN) ⇠ N
 
lnf(0, TN)

�1

2

KX

i=1

Z t

0

�i(s, TN)
2ds,

KX

i=1

Z t

0

�i(s, TN)
2ds

!
(4.3)

N (s, v) denotes a normally distributed variable with mean s and variance v.

By the definition of the forward rate, we can describe the spot freight rate as

S(t) = f(t, t) = lim
TN!t

f(t, TN) 8 t 2 [0, T ⇤] (4.4)

which implies that the forward freight rate converges to the spot rate, in the limit.

In our model, we let F (t, T1, TN ) be the constant FFA price a shipowner receives at time

t for the duration [T1, TN ]. When R(t, TN) is the value at t of entering into a forward

freight contract, the profit/loss of the contract at TN will be the difference between the

agreed FFA price and the average spot freight rate over the period [T1, TN ]. At maturity,

the profit/loss can be formulated as

R(TN , TN) =
1

TN � T1

Z TN

t

e�r(u�t)(f(u, u)� F (t, T1, TN))du (4.5)

As the forward price is set to be the expectation of future spot rates, the initial value of

the contract must be zero under Q. Thus, as shown by Koekebakker and Ådland (2004)

0 = EQ
t

"
1

TN � T1

Z TN

T1

e�r(u�t)(f(u, u)� F (t, T1, TN))du

#
(4.6)



12 4.2 Freight rate options

0 = EQ
t

"
1

TN � T1

Z TN

T1

e�r(u�t)f(u, u)du

#
� F (t, T1, TN)

TN � t

Z TN

T1

e�r(u�t)du (4.7)

0 =
1

TN � T1

Z TN

T1

e�r(u�t)f(t, u)du� F (t, T1, TN)

TN � t

Z TN

T1

e�r(u�t)du (4.8)

which can be rearranged to

F (t, T1, TN) =

Z TN

T1

w(u; r)f(t, u)du (4.9)

where

w(u; r) =
e�ru

R TN

T1
e�rudu

(4.10)

As noted by Lucia and Schwartz (2002), 1/(TN � t) is a good approximation for

e�ru/
R TN

t e�rudu for reasonable levels of the interest rate.

4.2 Freight rate options

From equation 4.9, we can interpret the FFA contract F (t, T1, TN) as today’s t price for

delivering the average value of transportation in the period [T1, TN ] at date TN . As noted

by Koekebakker et al. (2007), this implies that we can value an Asian option on the spot

freight rate as a European option on the forward contract. By the law of one price, we

can argue that the price of the forward contract at TN equals the price of the underlying

in the corresponding period. Thus, the payoff for an Asian call option at TN with strike

K and maturity TN can be formulated as

D ⇥max
h
F (TN , T1, TN)�K, 0

i
(4.11)

similarly, a put option can be formulated as

D ⇥max
h
K � F (TN , T1, TN), 0

i
(4.12)

where D denotes the number of days the FFA contract covers.

The value of a contingent claim can be expressed as the expected payoff at maturity under

Q discounted by the risk-free rate. The value at time t of the Asian call and put option,
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with maturity TN can be written as

C(t, TN) = e�r(TN�t)D ⇥ EQ
t

h
max[F (t, T1, TN)�K, 0]

i
(4.13)

and

P (t, TN) = e�r(TN�t)D ⇥ EQ
t

h
max[K � F (t, T1, TN), 0]

i
(4.14)

Applying the Black-Scholes framework on the above Asian option we can, as shown by

Koekebakker et al. (2007) formulate the price at time t for the call option as

C(t, TN) = e�r(TN�t)D(F (t, T1, TN)N(d1)�KN(d2)) (4.15)

where

d1 =

ln

 
F (t, T1, TN)

K

!
+

1

2
�2
F

�F
, d2 = d1 � �F (4.16)

where �F is the volatility of the forward contract, and N(x) is the cumulative normal

distribution function. Applying the put-call parity, we can derive the price of the put as

P (t, TN) = e�r(TN�t)D(KN(�d2)� F (t, T1, TN)N(�d1)) (4.17)

We price the Asian option on spot freight rate as a European option on the FFA. However,

our data of FFA prices are quoted by volatility, as implied by the Asian style options on

spot freight rate. Therefore, in order to get a meaningful comparison between the two, we

establish a linkage between the two volatility measures. As described by Koekebakker

et al. (2007) we can define the volatility of FFA contracts as a function of the volatility of

the spot rate, and the time specifications of the FFA contract

�2
F = (T1 � t)�2 +

1

3
(TN � T1) (4.18)

where the 1/3-term is a result of continuous settlement.
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5 Methodology

5.1 A smooth forward freight rate function

To derive the volatility structure of the forward freight rate function, we compute a

continuous forward price function from each day’s average based forward freight rates.

The smoothing procedure is based on the principle of maximum smoothness suggested by

Adams and Van Deventer (1994). They prove, for fixed income, that the yield curve with

the smoothest possible forward rate function is a fourth-order polynomial spline fitted

between each knot point on the yield curve.

The smoothness algorithm has later been applied to various commodity markets. Benth

et al. (2007) build on Adams and van Deventer’s work when they show how to adjust

the smoothing procedure to handle average based contracts in the electricity market,

while Koekebakker and Ådland (2004) demonstrate its applicability in the forward freight

market.

Applying the methods described by Koekebakker and Ådland (2004) and Lim and Xiao

(2002) we establish the smoothness criterion for the forward rate function as the one that

minimizes the functional

min

Z T

0

f 00(t, s)2ds (5.1)

while simultaneously fitting the observed market prices. Where f(t,s), denotes the forward

freight rate at time t with maturity at time s.

To find the parameters of the spline function

xT = [a1, b1, c1, d1, e1, a2, b2, c2, d2, e2, ..., an, bn, cn, dn, en] (5.2)

we solve the linear equation

2

42H AT

A 0

3

5

2

4x

�

3

5 =

2

40

b

3

5
(5.3)

where A is the constraint matrix ensuring connectivity and smoothness of derivatives at

the knots, j=1,...,n-1
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(aj+1 � aj)t
4
j + (bj+1 � bj)t

3
j + (cj+1 � cj)t

2
j + (dj+1 � dj)tj + ej+1 � ej = 0 (5.4)

4(aj+1 � aj)t
3
j + 3(bj+1 � bj)t

2
j + 2(cj+1 � cj)tj + dj+1 � dj = 0 (5.5)

12(aj+1 � aj)t
2
j + 6(bj+1 � bj)tj + 2(cj+1 � cj) = 0 (5.6)

Z T e
i

T s
i

ait
4
i + bit

3
i + cit

2
i + diti + ei = FFAi ⇤ (T e

i � T s
i ), i = 1, ..., n (5.7)

and the boundary condition

f 0(tn) = 4a3n + 3b2n + 2cn + dn = 0 (5.8)

making the forward rate curve flat at the long end, a common assumption in financial

modeling (Van Deventer et al., 2013).

For H we have

H =

2

6664

h1

.

.

.

hn

3

7775
, hj =

2

6666666664

144/5�5
j 18�4

j 8�3
j 0 0

18�4
j 12�3

j 6�2
j 0 0

8�3
j 6�2

j 4�1
j 0 0

0 0 0 0 0

0 0 0 0 0

3

7777777775

and

�l
j = tlj+1 � tlj, l = 1, ..., 5

The solution [x?,�?] is found through QR factorization.

We compute smooth forward freight curves for each day in our sample period. Every day,

7 contracts are used; CURMON, +1MON, +2MON, +1Q, +2Q, +3Q and +4Q. Hence,

our forward curve functions up to 15 months into the future.
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5.2 Data set of smooth forward curves

The forward freight model in (4.2) describes the stochastic evolution under an equivalent

martingale measure, and not under the real-world measure where observations are made.

From Girsanov’s Theorem, we learn that even though there might be an unobservable price

of risk in the market, causing the forward freight rate to follow a non-zero drift process,

the diffusion term remains equal under the two probability measures Q and P (Hull

et al., 2009). This enables us to estimate the volatility function from equation 4.2 from

real-world data. As noted by Cortazar and Schwartz (1994), this is only strictly correct

when observations are sampled continuously. In our following analysis, we approximate

this condition through daily sampling of observations. From our continuous forward

freight functions, we construct a data set of forward freight rates with weekly maturities

T1, ..., Tm.

For a set of weekly maturity dates, we construct a data set X(N⇥M) with forward freight

rate returns

lnf(tn, Tm)� lnf(tn�1, Tm) = xn,m (5.9)

where n=1,...,N.

X(N⇥M) =
h
X1 X2 . . . XM

i
=

2

6666664

x1,1 x1,2 . . . x1,M

x2,1 x2,2 . . . x2,M

.

.

.

.

.

.

.

.

.

.

.

.

xN,1 xN,2 . . . xN,M

3

7777775
(5.10)

From the data set of daily returns, we estimate the historical volatility function as

�̂(t, TM) = s
p
252 (5.11)

where s is a 1⇥M vector of historical standard deviations, representing each of our M

weekly maturities. We annualize the volatility estimate by the number of trading days for

every given year.
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5.3 Historical volatility structure

With the data of FFA prices for Capesize, Panamax, and Supramax described in the

data section, we apply the smoothing procedure to produce a smooth forward curve for

every day in our sample. Thus, for each vessel size, we get N smoothed forward curves, N

corresponding to the length of the sampling period. Examples of graphs of the estimated

smooth forward freight function for the different vessel types are illustrated below, where

the horizontal lines are the actual FFA prices.

Figure 5.1: Examples of smooth forward freight rate function

C5TC: 10.10.2015 P4TC: 13.01.2016 S6TC: 19.07.2017

Alizadeh and Nomikos (2013) describe the dry bulk market to be characterized by clear

seasons, where the first quarter carries a significant increase in freight rates across all

vessel sizes while the summer months are subject to declining rates. The reason for these

particularities is generally believed to be a consequence of reduced industrial activity and

trade in the summer months. Plotting the forward curve functions over time does not

immediately reveal the aforementioned trends of seasonality. However, historically, the

period 2014 to 2018 can be described as having low rates, which Alizadeh and Nomikos

(2013) believe will dampen the seasonality effect, as there is likely capacity to absorb the

seasonal increase. For Koekebakker and Ådland’s (2004) sample of Panamax dry bulk,

they describe the term structure to generally follow a "hump-shape", in which short and

long-term rates are below medium-term rates. As seen from figure 5.2, our data is, to

some extent, indicative of the same trend; however, this trend is weak.
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Figure 5.2: Estimated smoothed forward curve functions for Capesize

In figure 5.3, we have plotted the estimated average volatility function for each vessel

size. Generally speaking, volatility is decreasing with increasing time to maturity. This

is a trait that coincides with the mean reversion displayed through the spot freight

dynamics. It is again evident that volatility is strictly decreasing in vessel size, an

attribute that has been explained by Kavussanos (1996) of larger ships being more

specialized toward specific commodities and their physical limitations in operating certain

ports. Larger ships’ limited flexibility will naturally be manifested through higher volatility.

Figure 5.3: Estimated historical volatility structure of the forward freight function

The volatility structures of the different vessels experience increasing deviations from each
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other approaching maturity. Annualized volatility can be seen to converge to levels of

40%, 30%, and 20% for the respective vessel sizes as the time to maturity reaches one

year. These findings are consistent with the general belief in shipping literature that the

volatility of long-term freight rates should mirror the volatility in prices of newbuildings

(Strandenes, 1984). Data from Clarkson Research Services on newbuilding prices show

annualized volatility estimates around 30%. Deviations from the long-term volatility

estimates of freight rates could be explained by strong labor unions and governmental

policy of subsidy that ultimately distort the mechanics of supply and demand in the

market of newbuildings (Strandenes, 2002). It is also possible that a time period spanning

one year is too short for the freight rates to revert to their long-term expected equilibrium.

Another striking quality of the estimated volatility structure is the spike that appears

around five weeks to maturity. The hump feature could be a result of investors’ elastic

expectations, as explained by Zannetos (1959), where the supply of freight services

is determined by the shipowners’ expectations of freight rates more so than of the

current freight rates. Zannetos (1959) argued, in the context of tanker freight rates, that

expectations of changing freight rates will establish a dynamic relationship of supply and

demand between time periods. Benth and Koekebakker (2016) have later documented

short-run positive autocorrelation in the Supramax dry bulk segment and propose a

continuous ARMA model to capture the observed dynamics. In the market for dry bulk

newbuildings, Alizadeh and Nomikos (2013), explain how expectations of high freight rates

make investors place orders of new vessels to capitalize on the positive outlook. Similarly,

the shipowners are likely to delay offering their services to gain from the expected increase,

and the charterers will want to lock the current market price. Market forces will push

the short-term freight rates upwards. However, since there is no cost-of-carry relationship

that links today’s rate with tomorrow’s, future freight rates are simply determined by the

market participants’ expectations of freight rates. These expectations are transmitted into

forward price formations faster than the determination of spot rates, causing the volatility

of short-term forward freight rates to be higher than the volatility of spot rates. The fact

that our estimate of one month volatility is below that of spot volatility is believed to be

a result of the smoothing method, where the spot rate is not accounted for but is merely

a result of equation 4.4.
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Figure 5.4: Yearly historical volatility term structures across vessel sizes

C5TC P4TC S6TC

When we estimate yearly volatility term structures, we observe the same characteristic

trends across maturities as can be seen from the full sampling period, ensuring that the

historical volatility term structure in figure 5.3 is actually revealing the general behavior

of the forward freight rate and is not too heavily influenced by what could be atypical

behavior from an abnormal year. Further, we see that the spread between yearly volatilities

are relatively larger for Panamax and Supramax than it is for Capesize. Meaning that

even though Capesize freight rates are more volatile, the general level of volatility is more

stable.
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6 Trading Strategies

Following our estimation of the volatility structure of the forward freight rate, we want

to explore statistical arbitrage opportunities in the pricing of Asian options. Our focus

will be to exploit the consistent volatility dynamics present in the forward curve to

spot discrepancies between the volatility implied by the quoted option and our historical

volatility estimate. Thus, our focus is to explore trading strategies that isolate the exposure

of the underlying volatility, without being affected by the general direction of the market.

In what follows, we will present and discuss results obtained through simulating three

different trading strategies. The strategies are; delta hedging, straddles, and time spreads.

6.1 Delta Hedging

Ahmad and Wilmott (2005) show that in cases where implied volatility differs from actual

volatility, profit can be extracted through delta hedging the option. The arbitrage is

possible in a stylized world with constant volatility, and where we know the future realized

volatility, the actual volatility. The profit is secured through delta hedging, either with

implied or actual volatility. The difference between hedging with implied and actual

volatility becomes apparent in the process of marking to market. Hedging with actual

volatility secures a profit equal to the initial mispricing of the options. However, the path

required to reach the correct volatility estimate is random - opening up for large losses

before gaining. In a time interval [t, TN ] where implied volatility (�IV ) is higher than

actual volatility (�a), and we hedge with actual volatility , the expected profit is

O(t, U ; �a)�O(t, U ; �IV ) (6.1)

with U representing the underlying asset of the option value O at time t.

On the other hand, hedging with implied volatility, secures a deterministic daily profit,

yet the final profit becomes path-dependent. Ahmad and Wilmott (2005) show that the

profit in the time interval [t, TN ] can be formulated as

1

2
(�2

a � �2
IV )

Z TN

t

e�r(s�t)U2�IV ds, � =
@2O

@U2
=

@�

@U
(6.2)



22 6.1 Delta Hedging

ensuring deterministic gains as long as the implied volatility is higher than actual volatility

when buying volatility. And opposite, that implied volatility is lower than actual volatility

when selling volatility.

We simulate a delta hedging strategy on real market data. At time t, the first trading day

of the contract, we compare the option’s implied volatility with the historical volatility, as

stated by our estimated volatility term structure. If the implied volatility is sufficiently

above/below our historical volatility estimate, we want to sell/buy volatility. We apply

a filter (�) to determine what constitutes a sufficient deviation from our estimate. The

filter (�), differentiates between the vessel sizes, with the argument being that greater

absolute variation in the volatility structures opens up for greater mispricing of the options,

and ultimately a lower margin of error when deciding on the direction of the volatility

deviation. The filters for Capesize, Panamax, and Supramax contain the trigger values

[0,6,12,18,24,30], [0,4,8,12,16,20], and [0,2,4,6,8,10], respectively, where the trigger values

are percentage deviations from our historical volatility estimate. Thus, for Capesize with

a trigger value of 18%, we need the implied volatility to be 18% higher (or lower) than

our historical volatility estimate to take a position. We expose ourselves to the volatility

by selling/buying a call and hedging our portfolio through buying/selling � ⇥ FFA -

establishing a delta neutral position. The delta (�) of the call is calculated as

@(CallAsian)

@FFA
= D ⇥N(d1) (6.3)

where D represents the number of calendar days covered by the FFA contract.

It is important to highlight that our investment decision at time t is strictly based on

available information prior to t. For every trading day prior to roll-over, [t, . . . , TR], we

adjust our portfolio by buying/selling the underlying FFA to remain delta neutral. On

the day, TR, that the contract rolls-over to a new period, we clear our position. Thus, for

monthly contracts, the trading period will span around 1 month, while quarterly contracts

will be traded for approximately 1 quarter, establishing the time frame of relevance,

[t, TR, T1, TN ]. We assume that we can borrow/place money at the risk-free rate, LIBOR,

and transaction costs are set at 0.01 % for FFAs and 0.25% for options. When short

selling, we assume that all positive cash flow will be held as collateral.
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Our results when hedging using implied volatility are listed in table 6.1. Return, (µ), is

the total return, from t to TR, on the absolute value of what we initially buy and sell. The

volatility, (�), is the standard deviation of the previously mentioned total returns. # is the

number of positions that are taken during the sample period for the specific contracts, as

expected, the number of positions taken are declining with higher filter values. Maximum

drawdown, (MDD), is the maximum observed loss from a local maximum to a local

minimum during the time interval [t, TM ] of the contract. It is important to emphasize

that MDD for the strategy is the reported maximum downturn in one specific trading

period in the four year time interval we simulate the trading strategies. The MDD is

calculated as

MDD =

�����
Local Minimum� Local Maximum

Local Maximum

����� (6.4)

The reported return and volatility estimates are not directly comparable across monthly

and quarterly contracts because of the varying holding period. Annualizing the return

and volatility estimates could solve this, however, we believe the downside risk metric,

maximum drawdown, is more informative when compared to the actual return and volatility

realized over the period. Looking at table 6.1, we see that downside risk, volatility, and

return is typically higher for shorter contracts and larger vessels. Furthermore, a trading

signal requiring a larger deviation from our historical volatility estimate is generally

followed by higher returns and lower volatility across all contracts. This supports freight

rates’ mean-reverting nature and establishes historical volatility as a better estimate of

future realization of volatility than the market’s estimate of volatility in the sampled time

frame. A critical assumption is that the realizations of freight rate returns are actually

representative of the true freight rate distribution. If this assumption holds, our historical

volatility estimate can prove to be an accurate representation of future volatility.

From the maximum drawdown estimate, we observe identical values for many different

trigger values, hence, the largest downturn must stem from one specific trading period.

Moreover, the simulations reveal that the largest fall is occurring in the same time interval

for many of the different contracts. Considering that we compare a backward-looking

volatility estimate (historical) with a forward-looking estimate (implied), there could be

instances when there is information in the market affecting future volatility that our

backward-looking estimate does not capture. And, as such, downside risk is highest when
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the difference between the two estimates are greatest. However, because of the random

nature of the freight rate process, it is difficult to conclude whether higher deviations

actually increase downside risk.

+1MON +1Q +3Q

Index Filter(%) µ(%) �(%) MDD(%) # µ(%) �(%) MDD(%) # µ(%) �(%) MDD(%) #

C5TC

0 4.47 3.34 8.14 48 6.92 3.53 3.83 16 5.43 2.32 2.78 16

6 4.51 3.41 8.14 46 6.92 3.53 3.83 16 5.43 2.32 2.78 16

12 4.66 3.29 8.14 43 6.92 3.53 3.83 16 5.43 2.32 2.78 16

18 4.79 3.31 8.14 40 7.35 3.19 3.83 15 6.01 2.10 2.78 13

24 5.06 3.24 8.14 35 7.35 3.19 3.83 15 6.01 2.10 2.78 13

30 4.96 3.30 8.14 33 8.18 2.87 3.83 10 7.66 1.39 0.78 6

P4TC

0 1.44 2.01 2.80 48 2.25 1.39 1.81 16 2.50 1.12 0.51 16

4 1.91 2.01 2.80 32 2.66 1.34 1.81 12 2.60 1.08 0.51 15

8 2.26 2.13 2.80 24 2.68 1.40 1.81 11 2.72 1.02 0.51 14

12 2.13 2.17 2.80 22 2.91 1.46 1.81 9 2.86 0.91 0.37 13

16 2.39 2.14 2.80 18 2.91 1.46 1.81 9 3.25 0.82 0.37 9

20 2.39 2.21 2.80 17 3.30 1.19 1.81 7 3.56 0.54 0.23 7

S6TC

0 0.08 0.95 2.79 48 0.87 0.61 0.95 16 1.13 0.65 1.36 16

2 0.15 0.95 2.79 35 0.88 0.63 0.95 15 1.13 0.65 1.36 16

4 0.25 1.03 2.79 21 0.98 0.56 0.95 12 1.13 0.65 1.36 16

6 0.39 1.07 2.79 16 1.23 0.48 0.49 6 1.13 0.65 1.36 16

8 0.71 0.72 1.23 10 1.51 0.09 0.41 2 1.13 0.65 1.36 16

10 0.89 0.47 0.72 7 1.44 - 0.15 1 1.32 0.52 0.27 13

Table 6.1: Descriptives for delta hedging strategy with implied volatility

If our historical volatility estimate is correct, the expected profit is, given continuous

hedging, path-independent, and equal to equation 6.1. For this to be true, it is also

required that the strategy is upheld until TN , giving the volatility time to reach its expected

level. Thus, our trading strategy rests on the assumption that volatility converges towards

our historical volatility estimate prior to TR and that the options are priced according to

the information prevalent in the market.

Compared to hedging with implied volatility, hedging using historical volatility yields

higher returns with higher volatility. While the volatility estimates, as reported in table

6.2, are close to the estimates received from the hedging strategy using implied volatility,

the fluctuations in the P&L processes are higher using our historical volatility estimate.

Additionally, hedging using a historical volatility estimate will not account for upcoming

events that are expected by the market to have measurable effects on the freight prices and

ultimately will support a period with abnormal levels of implied volatility. Consequently,

delta hedging with historical volatility will necessarily increase downside risk.
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+1MON +1Q +3Q

Index Filter(%) µ(%) �(%) MDD(%) # µ(%) �(%) MDD(%) # µ(%) �(%) MDD(%) #

C5TC

0 4.73 3.67 13.92 48 7.23 3.13 5.84 16 5.62 2.45 3.96 16

6 4.79 3.75 13.92 46 7.23 3.13 5.84 16 5.62 2.45 3.96 16

12 4.97 3.64 13.92 43 7.23 3.13 5.84 16 5.62 2.45 3.96 16

18 5.12 3.68 13.92 40 7.69 2.63 5.84 15 6.19 2.26 3.96 13

24 5.38 3.73 13.92 35 7.69 2.63 5.84 15 6.19 2.26 3.96 13

30 5.30 3.82 13.92 33 8.12 2.85 5.84 10 7.94 1.64 0.44 6

P4TC

0 1.50 1.96 2.93 48 2.33 1.47 1.55 16 2.58 1.15 0.44 16

4 1.99 1.92 2.93 32 2.78 1.39 1.55 12 2.69 1.11 0.44 15

8 2.36 2.01 2.93 24 2.81 1.46 1.55 11 2.80 1.06 0.44 14

12 2.23 2.05 2.93 22 3.08 1.48 1.55 9 2.94 0.95 0.36 13

16 2.44 2.13 2.93 18 3.08 1.48 1.55 9 3.35 0.86 0.36 9

20 2.45 2.19 2.93 17 3.51 1.21 1.55 7 3.64 0.68 0.36 7

S6TC

0 0.10 0.96 2.81 48 0.88 0.61 0.98 16 1.16 0.64 1.43 16

2 0.17 0.96 2.81 35 0.89 0.63 0.98 15 1.16 0.64 1.43 16

4 0.27 1.05 2.81 21 0.98 0.57 0.98 12 1.16 0.64 1.43 16

6 0.42 1.10 2.81 16 1.25 0.48 0.51 6 1.16 0.64 1.43 16

8 0.75 0.74 1.28 10 1.56 0.14 0.31 2 1.35 0.48 0.30 13

10 0.97 0.41 0.60 7 1.46 - 0.16 1 1.35 0.48 0.30 13

Table 6.2: Descriptives for delta hedging strategy with historical volatility

From figure 6.1 and 6.2, we see the P&L development of every position throughout the

trading period. The purpose of delta hedging is to protect the option’s value against

price movements in the underlying FFA contract. The concept’s weakness is that while

the position is protected against the underlying price movement, it is not accounting for

the underlying price movement’s effect on volatility. This is especially relevant for the

positions with shorter maturities, which historically have, and theoretically, should be

subject to larger variation in volatility over the trading period. Consequently, hedging

against underlying price movements will be relatively less efficient holding positions with

shorter maturities than when delta hedging long-term contracts, that are expected to have

more stable volatility estimates. Comparing data of +3Q with data of +1MON and +1Q

it is clear that changes in FFA prices seldom are followed by changes in implied volatility

for longer maturities. This effect is something that can be observed in figure 6.1 and 6.2,

where the P&L processes follow a more steady growth rate.

A comparison of the P&L processes obtained hedging with historical and implied volatility

reveals more extreme movements when hedging with historical volatility estimates. This

is especially evident for Capesize, where MDD is noticeably increasing using historical

volatility. This effect on MDD is not present for the Panamax and Supramax contracts.

The more volatile P&L processes are an expected feature given that differences in implied

volatility and our historical volatility estimate will give different hedging ratios. Since the
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value of the option always will be priced using the market’s estimate of future volatility,

movements in the underlying FFA price, without the implied volatility converging to our

historical estimate will unveil a non-zero delta position and a corresponding change in the

value of our portfolio. A portfolio adjusted according to implied volatility will, therefore,

be delta neutral according to the market, and subsequently, account for changes in the

option price caused by changing market expectations of future volatility.

Figure 6.1: Delta hedging strategy with implied volatility for Capesize

+1MON +1Q +3Q

Figure 6.2: Delta hedging strategy with historical volatility for Capesize

+1MON +1Q +3Q

6.2 Modified Delta Hedging

The analytical delta value is a partial derivative and describes the change in option value

for an infinitely small change in the price of the underlying. According to Taleb (1997), the

idea of adjusting a position corresponding to infinite small price changes in the underlying

is irrelevant due to the mere non-existence of infinite small price changes, and if they

were to exist - they would not be worth adjusting to. He therefore proposes a numerical
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estimation of the delta, where

�O(t, U)

�U
=

1

2

⇣O(t, U + h)�O(t, U)

h
+

O(t, U � h)�O(t, U)

�h

⌘
(6.5)

which ensures that adjustments are made to reflect set changes in the underlying. Hull

and White (2017) derive an alternative delta that accounts for price changes as well as

expected changes in implied volatility conditional on changes in the price of the underlying.

A delta that minimizes the variance of the changes in the value of the option is estimated

as

�MV =
�O(t, U)

�U
+ v

�E(�IV )

�U
(6.6)

where

v =
1

2

⇣O(t, U ; � + s)�O(t, U ; �)

s
+

O(t, U ; � � s)�O(t, U ; �)

�s

⌘
(6.7)

The numerical approach of calculating the derivatives forces us to define economically

small h and s for which our portfolio will be locally delta neutral. We believe 1% is a

small change to the price of the underlying, and 1% is a small change to the implied

volatility. Applying the minimum variance delta also requires us to estimate the expected

change in implied volatility for a set change in the price of the underlying. We do not have

data on options with strikes that are out/into the money, and as such, decide to estimate

the movement of implied volatility due to movement in the underlying price with OLS.

We estimate the expected change in implied volatility for change in FFA prices for every

contract, and delta hedge according to equation 6.6 using implied volatility estimates.

The results are roughly equivalent to the analytical delta calculated above, as reported in

table A3.1 in the appendix. We acknowledge that volatility is not constant over the period,

and that implied volatility can be sensitive to changes in FFA prices. Results show that

the implied volatility experience large deviations over our holding period. Our estimated

regression indicate that our hedge ratio should be reduced compared to the analytical

delta, to account for the fact that a positive change in the underlying in general will result

in a lower implied volatility estimate. A reduction in implied volatility reduces the value

of the option, and our portfolio should thus be adjusted with fewer FFA contracts to

remain delta neutral.
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+1MON +1Q +3Q

Index Filter(%) µ(%) �(%) MDD # µ(%) �(%) MDD # µ(%) �(%) MDD #

C5TC

0 4.47 3.36 8.13 48 6.93 3.53 3.82 16 5.51 2.27 2.77 16

6 4.51 3.43 8.13 46 6.93 3.53 3.82 16 5.51 2.27 2.77 16

12 4.66 3.31 8.13 43 6.93 3.53 3.82 16 5.51 2.27 2.77 16

18 4.79 3.33 8.13 40 7.34 3.22 3.82 15 6.09 2.03 2.77 13

24 5.06 3.26 8.13 35 7.34 3.22 3.82 15 6.09 2.03 2.77 13

30 4.96 3.33 8.13 30 8.17 2.95 3.82 10 7.80 1.40 0.61 6

P4TC

0 1.44 2.02 2.81 48 2.23 1.37 1.96 16 2.48 1.04 0.32 16

4 1.90 2.01 2.81 32 2.63 1.33 1.96 12 2.57 1.00 0.32 15

8 2.26 2.13 2.81 24 2.64 1.39 1.96 11 2.69 0.94 0.32 14

12 2.12 2.17 2.81 22 2.85 1.46 1.96 9 2.80 0.86 0.28 13

16 2.38 2.14 2.81 18 2.85 1.46 1.96 9 3.16 0.80 0.28 9

20 2.38 2.21 2.81 17 3.24 1.23 1.96 7 3.47 0.55 0.24 7

S6TC

0 0.08 0.95 2.79 48 0.85 0.61 0.95 16 1.10 0.62 1.35 16

2 0.15 0.95 2.79 35 0.85 0.63 0.95 15 1.10 0.62 1.35 16

4 0.24 1.03 2.79 21 0.96 0.57 0.95 12 1.10 0.62 1.35 16

6 0.38 1.08 2.79 16 1.19 0.54 0.55 6 1.10 0.62 1.35 16

8 0.70 0.72 1.23 10 1.47 0.18 0.39 2 1.10 0.62 1.35 16

10 0.88 0.47 0.72 7 1.34 - 0.11 1 1.31 0.45 0.32 13

Table 6.3: Descriptives for modified delta hedging strategy

6.3 Weaknesses with Delta Hedging

The practical implementation of the strategy suffers from real-world dynamics. Delta

hedging is risky, and the arbitrage opportunity described by Ahmad and Wilmott (2005) is

only attainable had our historical volatility estimate been perfect in its ability to forecast

future volatility, which it is not. However, it could be the case that a historical estimate

of volatility is a better predictor of future volatility than the market’s prediction (as

implied by option prices) is. But as long as there exists some uncertainty surrounding

the realization of actual volatility, our pricing formula will have a non-zero chance of

misspecifying the volatility input parameter. This will have implications for the hedging

effectiveness, and more severely, it will imply that increasing the hedging frequency is not

a solution to perfectly replicate the payoff of the underlying asset, a result that imposes

any position with an additional layer of risk (Karoui et al., 1998).

Assuming a continuous-time world introduces the possibility of continuous hedging, an

exact replication of the underlying asset, and the arbitrage-free argument of the Black-

Scholes formula, that ensures a zero expected profit from the option strategy (Derman and

Taleb, 2005). At the same time as continuous replication seize to exist, there will be an

accumulation of replication errors leading to a deviation from the original Black-Scholes
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price and a non-zero P&L expectation. While dynamic hedging is path-independent in a

continuous-time world, and as such will provide an expected profit equal to equation 6.1

for hedging with actual volatility, the accumulated gains will be highly path-dependent

under a discrete hedging regime. The implication of this is that we would prefer to have

the large price changes in FFA when gamma is largest, and the small price changes when

the FFA is far away from the strike price for strategies that are long gamma (�) (Taleb,

1997). Thus, this leads to an inverse relationship between the hedging frequency and the

variance of the P&L. While the ambition of zero variance motivates us to approximate

continuity, the presence of transaction costs makes frequent hedging unprofitable. As such,

market imperfections create a trade-off between variance reduction and hedging frequency

(Sepp, 2013).

While we account for transaction costs and only allow for discrete hedging, the risk of

illiquidity is not included in our simulation. As previously mentioned, FFA contracts and

the options that are written on them can potentially suffer from severe illiquidity, and as

such, daily rebalancing of a portfolio is hard and might only be possible at a premium.

Furthermore, Wilson (2013) address that the usual minimum trade size for FFA contracts

is five days. Such a limitation may have an impact on the ability to remain delta neutral.

However, this restriction can be somewhat managed by increasing the number of options

and, consequently, increasing the amount of FFAs needed to balance the portfolio to a

delta value of zero. While it may not invalidate our results, it is certainly a weakness that

should be acknowledged in any practical implementation of the trading strategy.

6.4 Straddle

A straddle consists of a put and a call. Based on its qualities of remaining long/short

volatility, having vegas and gammas on the same side of the market, and initially being

close to delta-neutral, Taleb (1997) defines the strategy as a first-order volatility trade. A

long straddle offers the potential of unlimited profit with a limited downside. However, as

noted by Natenberg (1994), buying straddles can be a costly affair. Excess returns are

thus obtained by recognizing when options are mispriced and exploit the situation to buy

low and sell high.

While the straddle, at time t is close to delta-neutral, changing market conditions will
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alter the delta value. The reality of time-varying factors affecting the position of the

straddle demands a strategy of countermeasures. Natenberg (1994) suggests one of the

following strategies; (1) adjust at regular intervals, (2) adjust when the position becomes

a predetermined number of deltas long/short, (3) adjust by feel, (4) don’t adjust at all.

Adjusting by feel was suggested for individuals that had a feel for the market; we prefer

the other three.

Even though we establish a strategy for when to adjust our position to underlying price

movements, the straddle will still be exposed to movements in the other input parameters.

During our holding period, the option value will also be sensitive to changes in interest

rates (rho, ⇢) and time-decay (theta, ⇥). The risk of changing interest rates will be a

negligible part of the overall risk, and the time decay of the value is inevitable for the

strategy (Schmitt and Kaehler, 1996). This leads us to not formulate a strategy for how

to manage these first-derivatives.

Our investment decision is based on whether the implied volatility is above/below our

volatility estimate, equivalent to the pure delta hedging strategy. We first simulate by

buying/selling an at-the-money straddle and hold it to TR, without additional adjustments

in the period.

The strategy is approximately delta neutral at t but will drift away along with the market.

The return (µ), volatility (�), and maximum drawdown (MDD) are calculated in the same

way as for the delta hedging strategy. The holding straddle strategy yields positive returns

with high volatility for Capesize and Panamax. For Supramax, we have positions that yield

negative returns while upholding high volatility. The trend of higher precision with higher

spreads between the filter values is gone for the straddle strategy. Interestingly, comparing

Capesize with Panamax, the lower returns obtained for Panamax are not accompanied

by lower volatility estimates. These observations make us assign the strategy’s modest

success for Capesize and Panamax to be a result of randomness. Also, as our historical

volatility term structure generally is below that of the implied volatility structure, we are

generally short straddles, a position with an unlimited downside, without being hedged.
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+1MON +1Q +3Q

Index Filter(%) µ(%) �(%) MDD(%) # µ(%) �(%) MDD(%) # µ(%) �(%) MDD(%) #

C5TC

0 14.23 42.24 231.49 48 21.30 33.61 129.56 16 24.87 12.84 18.97 16

6 16.02 40.83 231.49 47 21.30 33.61 129.56 16 24.87 12.84 18.97 16

12 15.19 41.51 231.49 45 21.30 33.61 129.56 16 24.87 12.84 18.97 16

18 15.82 42.57 231.49 41 21.20 34.78 129.56 15 26.17 12.97 18.97 13

24 15.22 45.00 231.49 36 21.20 34.78 129.56 15 26.17 12.97 18.97 13

30 16.06 46.09 231.49 34 24.95 39.07 129.56 10 29.93 12.53 16.62 6

P4TC

0 2.20 42.87 189.53 48 6.74 25.72 131.04 16 8.38 15.45 49.51 16

4 -0.70 49.16 189.53 34 7.57 28.30 131.04 13 8.43 16.00 49.51 15

8 4.98 54.13 189.53 24 6.45 30.78 131.04 11 8.09 16.54 49.51 14

12 2.59 56.01 189.53 22 3.06 33.30 131.04 9 7.89 17.20 49.51 13

16 7.40 50.79 189.53 18 3.06 33.30 131.04 9 6.90 20.65 49.51 9

20 6.20 52.09 189.53 17 -0.094 37.38 131.04 7 6.17 23.21 49.51 7

S6TC

0 -6.63 29.44 124.51 48 -2.46 23.92 91.97 16 2.99 16.01 60.88 16

2 -9.45 28.07 124.51 3 -2.53 24.76 91.97 15 2.99 16.01 60.88 16

4 -8.07 24.50 73.71 21 2.84 17.67 86.37 12 2.99 16.01 60.88 16

6 -8.83 26.97 73.71 15 0.57 21.88 86.37 7 2.99 16.01 60.88 16

8 -7.62 28.19 73.71 12 3.43 4.76 27.45 2 2.99 16.01 60.88 16

10 -16.18 34.41 73.71 7 0.06 - 27.45 1 6.42 6.09 30.97 13

Table 6.4: Descriptives for holding a straddle

The MDD estimates in table 6.4 illustrate a strategy with considerable risk. From figure

6.4 we see how the P&L unfolds over the trading period, exposing the erratic nature of

the strategy and the importance of being able to carry significant losses over prolonged

time frames in order to see the portfolio turning profitable. For example, the strategy can

be seen to be down by more than 80% for the +1MON and +1Q contracts, which in most

scenarios will require margin calls, ultimately putting additional stress on the portfolio

holder’s liquidity. As the FFA price moves away from the strike price, the delta neutrality

is lost, and our portfolio, which initially was a bet on volatility, is turning increasingly

sensitive to the direction of the FFA’s price change.

Figure 6.3: Hold straddle strategy

+1MON +1Q +3Q

Our second approach involves buying or selling straddles and hold it until the delta of the
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straddle surpasses a value of k0.1k in which the strategy is rolled over. A signal of 0.1 is

based on what is practically considered as delta neutral, noted by Schmitt and Kaehler

(1996). Our estimate of the delta of the portfolio is based on equation 6.3, in which we

acknowledge the symmetrical property of the normal distribution when calculating the

delta for puts. Similarly as for the holding strategy, our historical volatility estimate is

useful at recognizing cheap and expensive volatility, where the success of the portfolio

depends on the actual realized volatility over the period. We see that adjusting the

straddle according to delta neutrality dominates the simple holding strategy, yielding

higher returns with less risk.

+1MON +1Q +3Q

Index Filter(%) µ(%) �(%) MDD(%) # µ(%) �(%) MDD(%) # µ(%) �(%) MDD(%) #

C5TC

0 21.51 24.58 47.24 48 30.14 18.09 19.21 16 29.15 13.84 10.43 16

6 22.98 22.65 33.40 47 30.14 18.09 19.21 16 29.15 13.84 10.43 16

12 22.73 23.12 33.40 45 30.14 18.09 19.21 16 29.15 13.84 10.43 16

18 24.04 23.11 33.40 41 31.84 17.33 19.21 15 32.05 11.77 7.77 13

24 25.43 22.72 33.40 36 31.84 17.33 19.21 15 32.05 11.77 7.77 13

30 24.66 23.10 33.40 34 31.11 20.38 19.21 10 37.49 14.12 2.98 6

P4TC

0 8.05 11.87 19.92 48 7.47 8.60 15.54 16 11.43 5.80 3.73 16

4 10.34 11.96 19.92 34 7.34 9.27 15.54 13 11.52 5.99 3.73 15

8 11.49 12.15 19.92 24 7.31 9.28 15.54 11 12.21 5.57 3.73 14

12 10.98 12.57 19.92 22 8.02 9.44 15.54 9 12.38 5.76 3.73 13

16 12.65 12.82 19.92 18 8.02 9.44 15.54 9 12.86 5.75 3.64 9

20 12.67 13.21 19.92 17 9.11 10.36 15.54 7 13.52 6.46 3.64 7

S6TC

0 -0.12 7.07 20.24 48 1.92 7.35 11.77 16 5.66 5.68 10.17 16

2 0.79 7.18 20.24 34 1.41 7.30 11.77 15 5.66 5.68 10.17 16

4 0.76 7.66 20.24 21 3.57 6.28 9.39 12 5.66 5.68 10.17 16

6 1.71 8.01 20.24 15 4.14 7.34 9.39 7 5.66 5.68 10.17 16

8 4.22 4.43 5.78 12 7.65 4.95 2.62 2 5.66 5.68 10.17 16

10 4.47 3.58 5.66 7 4.15 - 2.36 1 7.82 3.24 2.11 13

Table 6.5: Descriptives for buy/sell straddle strategy

Figure 6.4: Adjusting straddle strategy

+1MON +1Q +3Q
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6.5 Time Spreads

According to Natenberg (1994), time spreading usually consists of taking opposing positions

in the same type of option with the same strike price but with different expiration dates.

Taleb (1997) classify the strategy as a complex trade with simple products owing to the

dynamics of the greeks, which are characterized by the gamma flipping from positive to

negative and the vega reversing as the portfolio matures. Analyzing an at-the-money

position, it comes apparent that a long/short time spread will increase/decrease in value as

time passes. The position will also gain/lose value if implied volatility rises/declines. The

nature of the gains process is due to the fact that time-decay will have a greater impact

on the value of the sold short-termed option than the bought long-termed option, and

similarly, changes in implied volatility will have a greater effect on the bought long-termed

option than the sold short-termed option. While a long time spread would like the implied

volatility to increase, it will lose value if the realized volatility of the underlying increases,

making the strategy short gamma and long vega. Conversely, a short time spread strategy,

is buying short-term options and selling long-term options, making it short vega and long

gamma.

In our context, the underlying asset of the option is a forward contract on a non-storable

commodity. As noted by Natenberg (1994), time spreads consisting of options based on

different underlying assets, can suffer from short-term supply and demand considerations

that are uncorrelated across the term-structure. Koekebakker and Ådland (2004) find

that the correlation between different parts of the volatility term structure for the forward

freight rate is low and sometimes even negative, this finding combined with the fact that

deviations from equilibrium cannot be arbitraged away adds an additional layer of risk to

the strategy, that would otherwise not be present in cases of a uniform underlying asset.

However, our findings from figure 5.3 show clear signs of a converging effect, which in

theory could be exploited by utilizing a time spread strategy.

We simulate the time spread strategy with a trading signal based on whether the slope

of the implied volatility curve deviates from the slope of our historical volatility term

structure. Because volatility in the short end of the curve is seemingly detached from

long-term supply and demand considerations of the freight service, we focus on the

contracts placed on the long end of the term structure. Thus, given a steeper slope in
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the implied volatility curve, mean reversion suggests that buying long term volatility

and selling short term volatility could be a profitable strategy. We calculate the slopes

implied by the term structures and compare them with the slopes given from our historical

volatility curve. This is done for the quarterly options on their first trading day. Similar

to the other strategies, we differentiate by the degree of deviation by applying a filter. We

hypothesize that a larger deviation from the historical slope increases the chance of the

implied volatility converging back to the long-term historical volatility estimate. We hold

the portfolio until TR, at which time we close the position and roll over.

We estimate the return based on the absolute value of the portfolio. The strategy’s results

are characterized by negative returns and high risk. There is no apparent correlation

between higher deviation and an increased probability of positive return. This can be

explained by the gains process of the strategy. Even if the slope of the implied volatility

curve deviates from historical measures, and this causes volatility to converge towards

our estimate, the FFA price also need to stay close to the FFA price for the strategy to

turn profitable. Furthermore, as changes in the FFA price for one contract not necessarily

is followed by the same changes in another contract, it is hard to establish FFA as a

homogeneous asset across the term structure. Conversely, information that changes the

market participants’ expectations of future profitability can have a different effect across

the volatility term structure (Koekebakker and Ådland, 2004). Thus, while the time

spread theoretically can profit from the mean reversion of volatility, the strategy is poor

at isolating the misspecified volatility and is suffering from low correlation across the term

structure.
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�FFA = 0 +1Q vs +2Q +2Q vs +3Q

Index Filter(%) µ(%) �(%) MDD(%) # µ(%) �(%) MDD(%) # µ(%) �(%) MDD(%) #

C5TC

0 4.19 3.70 5.06 16 2.79 26.31 101.94 16 1.20 16.19 41.84 16

4 6.12 1.65 4.19 11 -1.59 28.90 101.94 11 1.94 17.15 41.84 11

8 6.36 1.65 4.19 10 -2.22 30.39 101.94 10 -15.83 6.17 41.84 9

12 7.80 1.22 2.27 4 -6.39 44.04 101.94 4 -10.58 - 34.89 1

16 8.79 0.74 0.83 2 16.80 25.98 20.91 2 - - - 0

P4TC

0 0.01 2.36 4.87 16 1.52 18.84 60.95 16 2.01 7.62 25.01 16

1 0.27 2.50 2.68 10 3.58 16.05 36.45 10 2.44 8.08 18.11 13

2 1.41 2.43 1.34 4 9.12 14.37 36.45 4 1.96 8.30 18.11 11

3 1.41 2.43 1.34 4 9.12 14.37 36.45 4 2.27 7.06 18.11 9

4 -0.68 0.47 1.34 2 8.68 5.03 5.30 2 1.48 7.38 18.11 9

S6TC

0 -0.96 0.51 1.78 16 4.16 16.86 32.61 16 3.28 13.48 21.96 16

1.5 -0.96 0.51 1.78 16 4.16 16.86 32.61 16 -0.87 8.41 21.96 12

3 -0.91 0.55 1.78 11 5.90 20.02 32.61 11 -1.15 7.95 15.32 6

4.5 -0.73 0.40 1.11 6 6.56 10.83 20.26 6 - - - 0

6 -0.52 0.29 1.00 4 5.15 13.02 16.24 4 - - - 0

Table 6.6: Descriptives time spread strategy

Figure 6.5: Holding calendar spread strategy for Capesize

+1Q vs +2Q, fixed FFA +1Q vs +2Q +2Q vs +3Q

In an attempt to illustrate the complications that follow the unconventional pricing

formation of future freight rates, we simulate the time spread with fixed FFA prices for

the different contracts. The results for spreads with +1Q and +2Q can be seen in the first

column in table 6.6. The corresponding P&L process can be compared to the unbounded

P&L processes of the time spread in figure 6.5. By holding the FFA prices fixed, we see

that larger deviations from the historical volatility term structure are accompanied by

higher return and lower volatility, indicating that, given high correlation across the term

structure, time spreads can profit from mean reversion. Essentially, we demonstrate which

conditions need to be in place for the strategy to be successful, and consequently, the

considerable risks associated with the strategy.
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7 Concluding Remarks

In this thesis, we have proposed trading strategies that can exploit misspecification

of volatility in the options market. We have, using observed market prices, derived

smooth forward rate curves for each day in our sample. These forward curves enable

us to represent the historical volatility term structures for the Capesize, Panamax, and

Supramax sub-sector of the dry-bulk shipping industry. The volatility term structures

present consistent behavior across vessel sizes, with increasing volatility over a six week

time horizon before the volatility converges towards a long term equilibrium around 40%,

reflecting the volatility seen in the market for newbuildings. Volatility levels are decreasing

with vessel size for all maturities, and we see diverging volatility structures as maturity

decreases.

By comparing the historical volatility term structure with the volatility estimates implied by

the options market, we identify irregular volatility pricing in the market. We then execute

trading strategies in what we believe is a realistic representation of the market dynamics.

Our simulations assume perfect liquidity, a weakness that should be incorporated in any

consideration of our results. Further, it should be noted that the options are priced

assuming log-normal spot freight rates. And if, in reality, the market is simply accounting

for fat tails and skewness in the distribution of freight rate returns, and adapt by adjusting

the volatility estimate in the Black-Scholes formula, any identification of mispricing could

be a result of incorrect assumptions (Haug and Taleb, 2008).

Our first trading strategy exploits deviations from the empirical volatility term structure

through delta hedging. The strategy yields positive returns with low volatility. Results

indicate that mispricing is increasing with vessel size - an expected result given higher

absolute levels of volatility and more distinct features in the volatility structure. Hedging

applying the historical volatility estimate seems to be associated with higher returns

and higher volatility. Our second strategy tries to profit from volatility misspecification

through straddles. Buying straddles when implied volatility is low and selling when high,

closing the position according to a rule of delta neutrality yields high returns with lower

volatility estimates than a passive straddle strategy. Moreover, time spreading, buying

and selling volatility with different time to expiration suffer from low correlation across
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the term structure, making the strategy vulnerable to changes in supply and demand that

cannot be smoothed through a cost-of-carry relationship between forward prices.

Our findings can be interpreted as a sign of inefficiency in the freight options market,

which should invite speculators and market participants to investigate the current pricing

mechanisms present in the market. Implementation of the mentioned trading strategies

should be practically feasible, given market presence and access to capital. We hope

our thesis encourages more research within the pricing of volatility in the freight options

market.
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A1 Hedging with implied volatility

+1MON +2MON +1Q +2Q +3Q

Index Filter(%) µ(%) �(%) MDD # µ(%) �(%) MDD # µ(%) �(%) MDD # µ(%) �(%) MDD # µ(%) �(%) MDD #

C5TC

0 4.47 3.34 8.14 48 5.65 2.81 3.96 48 6.92 3.53 3.83 16 6.89 2.37 3.74 16 5.43 2.32 2.78 16

6 4.51 3.41 8.14 46 5.85 2.49 3.96 47 6.92 3.53 3.83 16 6.89 2.37 3.74 16 5.43 2.32 2.78 16

12 4.66 3.29 8.14 43 5.88 2.54 3.96 45 6.92 3.53 3.83 16 6.89 2.37 3.74 16 5.43 2.32 2.78 16

18 4.79 3.31 8.14 40 5.92 2.65 3.96 41 7.35 3.19 3.83 15 6.89 2.37 3.74 16 6.01 2.10 2.78 13

24 5.06 3.24 8.14 35 6.09 2.68 3.96 35 7.35 3.19 3.83 15 7.80 1.79 3.74 11 6.01 2.10 2.78 13

30 4.96 3.30 8.14 33 6.34 2.63 2.73 29 8.18 2.87 3.83 10 8.73 1.79 3.74 6 7.66 1.39 0.78 6

P4TC

0 1.44 2.01 2.80 48 1.45 2.19 2.87 48 2.25 1.39 1.81 16 2.29 1.39 1.03 16 2.50 1.12 0.51 16

4 1.91 2.01 2.80 32 1.98 1.96 2.40 38 2.66 1.34 1.81 12 2.50 1.16 0.95 15 2.60 1.08 0.51 15

8 2.26 2.13 2.80 24 2.41 1.82 2.40 30 2.68 1.40 1.81 11 2.93 1.02 0.95 11 2.72 1.02 0.51 14

12 2.13 2.17 2.80 22 2.55 2.02 2.40 22 2.91 1.46 1.81 9 3.15 1.00 0.95 9 2.86 0.91 0.37 13

16 2.39 2.14 2.80 18 2.63 2.04 2.40 21 2.91 1.46 1.81 9 3.15 1.00 0.95 9 3.25 0.82 0.37 9

20 2.39 2.21 2.80 17 2.50 2.10 2.40 19 3.30 1.19 1.81 7 3.48 0.57 0.56 7 3.56 0.54 0.23 7

S6TC

0 0.08 0.95 2.79 48 0.49 0.75 1.34 48 0.87 0.61 0.95 16 0.96 0.58 0.91 16 1.13 0.65 1.36 16

2 0.15 0.95 2.79 35 0.61 0.71 1.34 35 0.88 0.63 0.95 15 0.96 0.58 0.91 16 1.13 0.65 1.36 16

4 0.25 1.03 2.79 21 0.64 0.73 1.34 24 0.98 0.56 0.95 12 0.96 0.58 0.91 16 1.13 0.65 1.36 16

6 0.39 1.07 2.79 16 0.57 0.84 1.34 17 1.23 0.48 0.49 6 0.96 0.58 0.91 16 1.13 0.65 1.36 16

8 0.71 0.72 1.23 10 0.77 0.84 1.34 11 1.51 0.09 0.41 2 1.13 0.53 0.91 12 1.13 0.65 1.36 16

10 0.89 0.47 0.72 7 0.89 0.93 1.34 6 1.44 - 0.15 1 1.20 0.54 0.33 8 1.32 0.52 0.27 13

Table A1.1: Descriptives for delta hedging strategy with implied volatility
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A1.1 Capesize

+1MON +2MON

+1Q +2Q

+3Q
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A1.2 Panamax

+1MON +2MON

+1Q +2Q

+3Q
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A1.3 Supramax

+1MON +2MON

+1Q +2Q

+3Q
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A2 Hedging with historical volatility

+1MON +2MON +1Q +2Q +3Q

Index Filter(%) µ(%) �(%) MDD # µ(%) �(%) MDD # µ(%) �(%) MDD # µ(%) �(%) MDD # µ(%) �(%) MDD #

C5TC

0 4.73 3.67 13.92 48 5.86 2.95 5.89 48 7.23 3.13 5.84 16 7.01 2.28 4.61 16 5.62 2.45 3.96 16

6 4.79 3.75 13.92 46 6.05 2.67 5.89 47 7.23 3.13 5.84 16 7.01 2.28 4.61 16 5.62 2.45 3.96 16

12 4.97 3.64 13.92 43 6.09 2.72 5.89 45 7.23 3.13 5.84 16 7.01 2.28 4.61 16 5.62 2.45 3.96 16

18 5.12 3.68 13.92 40 6.15 2.83 5.89 41 7.69 2.63 5.84 15 7.01 2.28 4.61 16 6.19 2.26 3.96 13

24 5.38 3.73 13.92 35 6.39 2.83 5.89 35 7.69 2.63 5.84 15 7.81 1.92 4.61 11 6.19 2.26 3.96 13

30 5.30 3.82 13.92 33 6.75 2.60 4.88 29 8.12 2.85 5.84 10 8.74 1.96 4.61 6 7.94 1.64 0.44 6

P4TC

0 1.50 1.96 2.93 48 1.48 2.18 3.32 48 2.33 1.47 1.55 16 2.32 1.45 1.07 16 2.58 1.15 0.44 16

4 1.99 1.92 2.93 32 2.02 1.93 3.32 38 2.78 1.39 1.55 12 2.53 1.21 0.81 15 2.69 1.11 0.44 15

8 2.36 2.01 2.93 24 2.45 1.77 3.32 30 2.81 1.46 1.55 11 2.96 1.10 0.81 11 2.80 1.06 0.44 14

12 2.23 2.05 2.93 22 2.61 1.96 3.32 22 3.08 1.48 1.55 9 3.19 1.08 0.81 9 2.94 0.95 0.36 13

16 2.44 2.13 2.93 18 2.69 1.97 3.32 21 3.08 1.48 1.55 9 3.19 1.08 0.81 9 3.35 0.86 0.36 9

20 2.45 2.19 2.93 17 2.57 2.04 3.32 19 3.51 1.21 1.55 7 3.53 0.74 0.75 7 3.64 0.68 0.36 7

S6TC

0 0.10 0.96 2.81 48 0.50 0.75 1.41 48 0.88 0.61 0.98 16 0.98 0.57 0.97 16 1.16 0.64 1.43 16

2 0.17 0.96 2.81 35 0.63 0.70 1.41 35 0.89 0.63 0.98 15 0.98 0.57 0.97 16 1.16 0.64 1.43 16

4 0.27 1.05 2.81 21 0.66 0.73 1.41 24 0.98 0.57 0.98 12 0.98 0.57 0.97 16 1.16 0.64 1.43 16

6 0.42 1.10 2.81 16 0.61 0.83 1.41 17 1.25 0.48 0.51 6 0.98 0.57 0.97 16 1.16 0.64 1.43 16

8 0.75 0.74 1.28 10 0.81 0.84 1.41 11 1.56 0.14 0.31 2 1.14 0.53 0.97 12 1.16 0.64 1.43 16

10 0.97 0.41 0.60 7 0.89 0.98 1.41 6 1.46 - 0.16 1 1.22 0.53 0.28 8 1.35 0.48 0.30 13

Table A2.1: Descriptives for delta hedging strategy with historical volatility



A2 Hedging with historical volatility 49

A2.1 Capesize

+1MON +2MON

+1Q +2Q

+3Q
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A2.2 Panamax

+1MON +2MON

+1Q +2Q

+3Q
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A2.3 Supramax

+1MON +2MON

+1Q +2Q

+3Q
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A3 Hedging with modified delta

+1MON +2MON +1Q +2Q +3Q

Index Filter(%) µ(%) �(%) MDD # µ(%) �(%) MDD # µ(%) �(%) MDD # µ(%) �(%) MDD # µ(%) �(%) MDD #

C5TC

0 4.47 3.36 8.13 48 5.67 2.82 3.95 48 6.93 3.53 3.82 16 6.92 2.33 3.76 16 5.51 2.27 2.77 16

6 4.51 3.43 8.13 46 5.86 2.51 3.95 47 6.93 3.53 3.82 16 6.92 2.33 3.76 16 5.51 2.27 2.77 16

12 4.66 3.31 8.13 43 5.89 2.56 3.95 45 6.93 3.53 3.82 16 6.92 2.33 3.76 16 5.51 2.27 2.77 16

18 4.79 3.33 8.13 40 5.93 2.66 3.95 41 7.34 3.22 3.82 15 6.92 2.33 3.76 16 6.09 2.03 2.77 13

24 5.06 3.26 8.13 35 6.10 2.70 3.95 35 7.34 3.22 3.82 15 7.81 1.81 3.76 11 6.09 2.03 2.77 13

30 4.96 3.33 8.13 30 6.34 2.65 2.76 29 8.17 2.95 3.82 10 8.78 1.82 3.76 6 7.80 1.40 0.61 6

P4TC

0 1.44 2.02 2.81 48 1.45 2.19 2.87 48 2.23 1.37 1.96 16 2.26 1.34 1.06 16 2.48 1.04 0.32 16

4 1.90 2.01 2.81 32 1.98 1.96 2.38 38 2.63 1.33 1.96 12 2.47 1.09 0.88 15 2.57 1.00 0.32 15

8 2.26 2.13 2.81 24 2.40 1.82 2.38 30 2.64 1.39 1.96 11 2.88 0.97 0.88 11 2.69 0.94 0.32 14

12 2.12 2.17 2.81 22 2.55 2.03 2.38 22 2.85 1.46 1.96 9 3.08 0.96 0.88 9 2.80 0.86 0.28 13

16 2.38 2.14 2.81 18 2.62 2.05 2.38 21 2.85 1.46 1.96 9 3.08 0.96 0.88 9 3.16 0.80 0.28 9

20 2.38 2.21 2.81 17 2.49 2.11 2.38 19 3.24 1.23 1.96 7 3.39 0.57 0.47 7 3.47 0.55 0.24 7

S6TC

0 0.08 0.95 2.79 48 0.48 0.75 1.33 48 0.85 0.61 0.95 16 0.93 0.56 0.92 16 1.10 0.62 1.35 16

2 0.15 0.95 2.79 35 0.61 0.71 1.33 35 0.85 0.63 0.95 15 0.93 0.56 0.92 16 1.10 0.62 1.35 16

4 0.24 1.03 2.79 21 0.63 0.74 1.33 24 0.96 0.57 0.95 12 0.93 0.56 0.92 16 1.10 0.62 1.35 16

6 0.38 1.08 2.79 16 0.56 0.84 1.33 17 1.19 0.54 0.55 6 0.93 0.56 0.92 16 1.10 0.62 1.35 16

8 0.70 0.72 1.23 10 0.75 0.86 1.33 11 1.47 0.18 0.39 2 1.07 0.52 0.92 12 1.10 0.62 1.35 16

10 0.88 0.47 0.72 7 0.88 0.92 1.33 6 1.34 - 0.11 1 1.17 0.48 0.31 8 1.31 0.45 0.32 13

Table A3.1: Descriptives for modified delta hedging strategy
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A3.1 Capesize

+1MON +2MON

+1Q +2Q

+3Q
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A3.2 Panamax

+1MON +2MON

+1Q +2Q

+3Q
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A3.3 Supramax

+1MON +2MON

+1Q +2Q

+3Q
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A4 Hold Straddle

+1MON +2MON +1Q +2Q +3Q

Index Filter(%) µ(%) �(%) MDD # µ(%) �(%) MDD # µ(%) �(%) MDD # µ(%) �(%) MDD # µ(%) �(%) MDD #

C5TC

0 14.23 42.24 231.49 48 26.21 25.26 139.56 48 21.30 33.61 129.56 16 27.07 14.35 28.19 16 24.87 12.84 18.97 16

6 16.02 40.83 231.49 47 27.43 24.06 139.56 47 21.30 33.61 129.56 16 27.07 14.35 28.19 16 24.87 12.84 18.97 16

12 15.19 41.51 231.49 45 27.16 24.54 139.56 45 21.30 33.61 129.56 16 27.07 14.35 28.19 16 24.87 12.84 18.97 16

18 15.82 42.57 231.49 41 27.78 23.88 139.56 41 21.20 34.78 129.56 15 27.35 14.80 28.19 15 26.17 12.97 18.97 13

24 15.22 45.00 231.49 36 26.92 25.50 139.56 35 21.20 34.78 129.56 15 28.97 15.07 28.19 11 26.17 12.97 18.97 13

30 16.06 46.09 231.49 34 25.36 27.46 139.56 29 24.95 39.07 129.56 10 36.44 8.81 18.19 11 29.93 12.53 16.62 6

P4TC

0 2.20 42.87 189.53 48 7.25 34.71 166.15 48 6.74 25.72 131.04 16 8.00 16.64 50.95 16 8.38 15.45 49.51 16

4 -0.70 49.16 189.53 34 8.37 38.13 166.15 38 7.57 28.30 131.04 13 8.39 17.15 50.95 15 8.43 16.00 49.51 15

8 4.98 54.13 189.53 24 8.74 41.81 166.15 30 6.45 30.78 131.04 11 6.47 19.85 50.95 11 8.09 16.54 49.51 14

12 2.59 56.01 189.53 22 6.12 48.50 166.15 22 3.06 33.30 131.04 9 6.47 21.85 50.95 9 7.89 17.20 49.51 13

16 7.40 50.79 189.53 18 5.17 49.48 166.15 21 3.06 33.30 131.04 9 6.47 21.85 50.95 9 6.90 20.65 49.51 9

20 6.20 52.09 189.53 17 3.01 51.62 166.15 19 -0.094 37.38 131.04 7 4.70 22.66 50.95 8 6.17 23.21 49.51 7

S6TC

0 -6.63 29.44 124.51 48 -3.97 28.23 132.76 48 -2.46 23.92 91.97 16 1.70 16.85 70.24 16 2.99 16.01 60.88 16

2 -9.45 28.07 124.51 3 -2.94 30.01 132.76 35 -2.53 24.76 91.97 15 1.70 16.85 70.24 16 2.99 16.01 60.88 16

4 -8.07 24.50 73.71 21 -7.79 35.74 132.76 23 2.84 17.67 86.37 12 1.70 16.85 70.24 16 2.99 16.01 60.88 16

6 -8.83 26.97 73.71 15 -10.35 40.91 132.76 17 0.57 21.88 86.37 7 1.70 16.85 70.24 16 2.99 16.01 60.88 16

8 -7.62 28.19 73.71 12 -8.68 42.73 132.76 11 3.43 4.76 27.45 2 1.12 17.91 70.24 14 2.99 16.01 60.88 16

10 -16.18 34.41 73.71 7 4.63 14.39 29.08 7 0.06 - 27.45 1 4.80 6.11 26.14 8 6.42 6.09 30.97 13

Table A4.1: Descriptives for holding a straddle
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A4.1 Capesize

+1MON +2MON

+1Q +2Q

+3Q
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A4.2 Panamax

+1MON +2MON

+1Q +2Q

+3Q
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A4.3 Supramax

+1MON +2MON

+1Q +2Q

+3Q
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A5 Adjusting Straddle

+1MON +2MON +1Q +2Q +3Q

Index Filter(%) µ(%) �(%) MDD # µ(%) �(%) MDD # µ(%) �(%) MDD # µ(%) �(%) MDD # µ(%) �(%) MDD #

C5TC

0 21.51 24.58 47.24 48 30.27 19.39 21.98 48 30.14 18.09 19.21 16 34.27 10.47 6.58 16 29.15 13.84 10.43 16

6 22.98 22.65 33.40 47 31.38 17.99 14.45 47 30.14 18.09 19.21 16 34.27 10.47 6.58 16 29.15 13.84 10.43 16

12 22.73 23.12 33.40 45 31.64 18.32 14.45 45 30.14 18.09 19.21 16 34.27 10.47 6.58 16 29.15 13.84 10.43 16

18 24.04 23.11 33.40 41 32.56 18.76 14.45 41 31.84 17.33 19.21 15 35.61 9.31 6.58 15 32.05 11.77 7.77 13

24 25.43 22.72 33.40 36 33.57 19.32 14.45 35 31.84 17.33 19.21 15 35.39 10.86 6.58 11 32.05 11.77 7.77 13

30 24.66 23.10 33.40 34 33.65 20.42 14.45 29 31.11 20.38 19.21 10 39.99 12.17 6.58 6 37.49 14.12 2.98 6

P4TC

0 8.05 11.87 19.92 48 6.22 14.48 18.33 48 7.47 8.60 15.54 16 8.52 8.44 9.13 16 11.43 5.80 3.73 16

4 10.34 11.96 19.92 34 10.04 12.51 18.12 38 7.34 9.27 15.54 13 9.63 7.42 7.35 15 11.52 5.99 3.73 15

8 11.49 12.15 19.92 24 11.77 12.25 18.12 30 7.31 9.28 15.54 11 11.71 6.91 6.90 11 12.21 5.57 3.73 14

12 10.98 12.57 19.92 22 11.95 12.25 18.12 22 8.02 9.44 15.54 9 11.66 7.72 6.90 9 12.38 5.76 3.73 13

16 12.65 12.82 19.92 18 12.66 13.80 18.12 21 8.02 9.44 15.54 9 11.66 7.72 6.90 9 12.86 5.75 3.64 9

20 12.67 13.21 19.92 17 12.10 14.42 18.12 19 9.11 10.36 15.54 7 13.19 6.64 6.90 8 13.52 6.46 3.64 7

S6TC

0 -0.12 7.07 20.24 48 2.57 6.50 14.21 48 1.92 7.35 11.77 16 1.89 6.77 11.74 16 5.66 5.68 10.17 16

2 0.79 7.18 20.24 34 3.14 6.88 14.21 35 1.41 7.30 11.77 15 1.89 6.77 11.74 16 5.66 5.68 10.17 16

4 0.76 7.66 20.24 21 2.76 6.49 14.00 23 3.57 6.28 9.39 12 1.89 6.77 11.74 16 5.66 5.68 10.17 16

6 1.71 8.01 20.24 15 2.87 5.68 9.19 17 4.14 7.34 9.39 7 1.89 6.77 11.74 16 5.66 5.68 10.17 16

8 4.22 4.43 5.78 12 4.40 5.65 9.19 11 7.65 4.95 2.62 2 2.40 6.69 11.74 14 5.66 5.68 10.17 16

10 4.47 3.58 5.66 7 4.09 4.49 9.19 7 4.15 - 2.36 1 2.77 6.23 9.58 8 7.82 3.24 2.11 13

Table A5.1: Descriptives for buy/sell straddle strategy
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A5.1 Capesize

+1MON +2MON

+1Q +2Q

+3Q
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A5.2 Panamax

+1MON +2MON

+1Q +2Q

+3Q



A5 Adjusting Straddle 63

A5.3 Supramax

+1MON +2MON

+1Q +2Q

+3Q
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A6 Time Spread

�FFA = 0 +1Q vs +2Q +2Q vs +3Q +1Q vs +3Q

Index Filter(%) µ(%) �(%) MDD # µ(%) �(%) MDD # µ(%) �(%) MDD # µ(%) �(%) MDD #

C5TC

0 4.19 3.70 5.06 16 2.79 26.31 101.94 16 1.20 16.19 41.84 16 -1.33 31.38 121.42 16

4 6.12 1.65 4.19 11 -1.59 28.90 101.94 11 1.94 17.15 41.84 11 -4.75 31.71 121.42 12

8 6.36 1.65 4.19 10 -2.22 30.39 101.94 10 -15.83 6.17 41.84 9 -7.32 20.35 53.71 8

12 7.80 1.22 2.27 4 -6.39 44.04 101.94 4 -10.58 - 34.89 1 -6.10 21.67 53.71 7

16 8.79 0.74 0.83 2 16.80 25.98 20.91 2 - - - 0 -13.40 27.01 53.71 4

P4TC

0 0.01 2.36 4.87 16 1.52 18.84 60.95 16 2.01 7.62 25.01 16 0.20 20.90 70.38 16

1 0.27 2.50 2.68 10 3.58 16.05 36.45 10 2.44 8.08 18.11 13 5.94 19.49 70.38 11

2 1.41 2.43 1.34 4 9.12 14.37 36.45 4 1.96 8.30 18.11 11 7.42 21.42 70.38 9

3 1.41 2.43 1.34 4 9.12 14.37 36.45 4 2.27 7.06 18.11 9 7.82 19.40 21.60 7

4 -0.68 0.47 1.34 2 8.68 5.03 5.30 2 1.48 7.38 18.11 9 7.42 21.22 18.56 6

S6TC

0 -0.96 0.51 1.78 16 4.16 16.86 32.61 16 3.28 13.48 21.96 16 7.76 24.22 35.62 16

1.5 -0.96 0.51 1.78 16 4.16 16.86 32.61 16 -0.87 8.41 21.96 12 7.76 24.22 35.62 16

3 -0.91 0.55 1.78 11 5.90 20.02 32.61 11 -1.15 7.95 15.32 6 7.76 24.22 35.62 16

4.5 -0.73 0.40 1.11 6 6.56 10.83 20.26 6 - - - 0 5.28 22.87 35.62 15

6 -0.52 0.29 1.00 4 5.15 13.02 16.24 4 - - - 0 5.49 24.43 35.62 11

Table A6.1: Descriptives time spread strategy
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A6.1 Capesize

+1Q vs +2Q �FFA = 0 +1Q vs +2Q

+1Q vs +3Q +2Q vs 3Q
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A6.2 Panamax

+1Q vs +2Q �FFA = 0 +1Q vs +2Q

+1Q vs +3Q +2Q vs 3Q
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A6.3 Supramax

+1Q vs +2Q �FFA = 0 +1Q vs +2Q

+1Q vs +3Q +2Q vs 3Q


