
Norwegian School of Economics
Bergen, Fall 2019

Machine learning for automated

stratigraphy classification

An empirical study to label subsurface formations in the Johan Sverdrup field

Petter Søland & Mikkel Vatne Thue

Supervisors: Mario Guajardo & Julio Cesar Góez

Master thesis, Economics and Business Administration

Major: Business Analytics

NORWEGIAN SCHOOL OF ECONOMICS

This thesis was written as a part of the Master of Science in Economics and Business

Administration at NHH. Please note that neither the institution nor the examiners are

responsible – through the approval of this thesis – for the theories and methods used, or

results and conclusions drawn in this work.

i

Acknowledgements

This thesis was written as a part of the Master of Science in Economics and Business

Administration, with a major in Business Analytics, at the Norwegian School of Economics

(NHH). This thesis constitutes 30 ECTS in our master’s degree.

We would like to express our greatest appreciation to the entire Pro Well Plan team

for their valuable inputs and the resources they provided. Especially thanks to Khushal

Adlakha for the continuous guidance and support this past semester.

We would also like to thank our supervisors, Mario Guajardo & Julio Cesar Góez, for the

fruitful discussions and their encouragement throughout the entire process.

Norwegian School of Economics

Bergen, December 2019

Petter Søland Mikkel Vatne Thue

ii

Abstract

This thesis explored to what extent different supervised machine learning algorithms

can be used to label subsurface formations in wells. It was explored through empirical

study using wireline logs from the Johan Sverdrup field as inputs. The results from three

different machine learning models were compared with the addition of a benchmark model;

two LightGBM models, one LSTM model and a Logistic Regression model as a benchmark.

The data set consisted of 31 wells in the Johan Sverdrup field with a total of 406 666

labeled observations and the corresponding measured properties at different depth points

in the wells.

The two LightGBM models both performed better than the benchmark. The results

obtained from the neural network were significantly worse than both LightGBM models

and the benchmark. Due to time- and computational constraints, we were not able to

fully utilize the potential of the neural network (LSTM). Hence, additional tuning and

model stacking could potentially lead to improved results.

The best performing model was LightGBM 2, the model that utilized a stratified training-

and validation split. Here, sequential observations from the same well were randomly

split across the training- and validation data. This model yielded an accuracy of 79.17%.

However, this model overfitted significantly to the training- and validation data. Further,

LightGBM 1, the model that utilized a customized stratified training- and validation

split, had a slightly lower accuracy of 77.58%. Here, all sequential observations from the

same well were kept in the same data set, which caused significantly less overfitting to the

training- and validation data. Based on this, we concluded that out of the models tested

in the thesis, LightGBM 1 had the highest potential to generalize on unseen data.

The classification accuracy of around 80%, and the insight gained from the interpretable

machine learning method, can be of great contribution and create significant value to

experts currently performing the labeling of the formations in a manual fashion.

Keywords – Machine Learning, Interpretable Machine Learning, SHAP, LightGBM,

Deep Learning, LSTM, Logistic Regression, Wireline Logs, Formation Prediction, Johan

Sverdrup, Stratigraphy

Contents iii

Contents

1 Introduction 1
1.1 Thesis Structure . 3

2 Background 4
2.1 Problem Explanation . 4

2.1.1 Defining a Well . 5
2.1.2 Defining Formations and Groups 6
2.1.3 Structure of a Well . 6

2.2 Wireline Logging . 8
2.2.1 Gamma Ray Log . 9
2.2.2 Resistivity Log . 10
2.2.3 Density Log . 11
2.2.4 Neutron Porosity Log . 11
2.2.5 Sonic Log . 12

2.3 Literature Review . 13

3 Methodology 16
3.1 Machine Learning . 16

3.1.1 Logistic Regression . 16
3.1.2 LightGBM . 18
3.1.3 Recurrent Neural Network . 22

3.2 Model Tuning . 25
3.2.1 Tuning the Logistic Regression 26
3.2.2 Tuning the Gradient Boosting Machine 28
3.2.3 Tuning the Neural Network . 29

3.3 Model Evaluation . 32
3.3.1 Bias-Variance Dilemma . 32
3.3.2 Train/Test Split . 34
3.3.3 Performance Measures . 36

3.4 Model Explanation . 37
3.4.1 Additive Feature Attribution . 38

4 Data Processing 42
4.1 Description of the Data Set . 42
4.2 Feature Engineering . 48
4.3 Data Restructuring . 50

5 Analysis and Results 52
5.1 Experimental Setting 1 - Logistic Regression 52

5.1.1 Experimental Framework . 52
5.1.2 Results . 54

5.2 Experimental Setting 2 - LightGBM 1 56
5.2.1 Experimental Framework . 56
5.2.2 Results . 58
5.2.3 Model Explanation . 59

5.3 Experimental Setting 3 - LightGBM 2 64

iv Contents

5.3.1 Experimental Framework . 64
5.3.2 Results . 65
5.3.3 Model Explanation . 67

5.4 Experimental setting 4 - LSTM . 71
5.4.1 Experimental Framework . 71
5.4.2 Results . 73

5.5 Summary . 75

6 Discussion 79
6.1 Validity of Results . 79
6.2 Domain Knowledge . 80
6.3 Further Research . 81

6.3.1 Other Areas and Approaches . 82
6.3.2 Transfer Learning . 83
6.3.3 Model Ensembling . 84

6.4 The Potential of Machine Learning in Stratigraphy Classification 84

7 Conclusion 86

References 88

Appendix 94
A1 GitHub Repository . 94
A2 Data . 94
A3 Crossplot matrix . 95
A4 Boxplots . 97
A5 Predicted vs. Actual . 99
A6 Original name and corresponding numerical values 104

A6.1 Groups . 104
A6.2 Formations . 105

List of Figures v

List of Figures
2.1 Definition of a well . 5
2.2 Illustration of the structure of a well . 7
2.3 Illustration of a wireline tool . 8
2.4 Lithologies’ effect on Gamma Ray . 10
3.1 Example of a decision tree . 19
3.2 Level-wise vs leaf-wise growth . 21
3.3 Recurrent Neural Network feedback loop 22
3.4 Structure of an LSTM node . 24
3.5 Relationship between bias and variance 33
3.6 Implementation of SHAP for model interpretation 38
4.1 Distribution of the formations . 43
4.2 Crossplot of original formations . 44
4.3 Crossplot of groups . 45
4.4 Crossplot of all formations . 48
4.5 Input shape for LSTM networks . 51
5.1 Predicted vs actual - Logistic Regression 56
5.2 Predicted vs actual - LightGBM 1 . 59
5.3 Accumulated feature importance for LightGBM 1 61
5.4 Feature importance LightGBM 1 - formation undifferentiated nordland gp 62
5.5 Feature importance LightGBM 1 - formation skade fm 63
5.6 Predicted vs actual - LightGBM 2 . 67
5.7 Accumulated feature importance for LightGBM 2 68
5.8 Feature importance LightGBM 2 - formation undifferentiated nordland gp 69
5.9 Feature importance LightGBM 2 - formation skade fm 70
5.10 Predicted vs actual - LSTM . 75
5.11 Well 16/2-7 A - Predicted vs actual formation and group for all models . 77
A3.1 Crossplot matrix of the formations in the data set 95
A3.2 Crossplot matrix of the groups in the data set 96
A4.1 Boxplot of the gamma ray separated by well 97
A4.2 Boxplot of the deep resistivity separated by well 98
A4.3 Boxplot of the medium resistivity separated by well 98
A5.1 Well 16/3-7 - Predicted vs actual formation and group for all models . . 100
A5.2 Well 16/2-14 T2 - Predicted vs actual formation and group for all models . 101
A5.3 Well 16/3-6 A - Predicted vs actual formation and group for all models . 102
A5.4 Well 16/2-7 A - Predicted vs actual formation and group for all models . 103

vi List of Tables

List of Tables
4.1 Descriptive statistics of the data set before filter was applied 46
4.2 Filter . 47
4.3 Descriptive statistics of the data set after filter was applied 47
5.1 Experimental setting 1 - Framework . 53
5.2 Logistic Regression accuracy on blind wells 54
5.3 Experimental setting 2 - Framework . 57
5.4 LightGBM 1 accuracy on blind wells . 58
5.5 Experimental setting 3 - Framework . 64
5.6 LightGBM 2 accuracy on blind wells . 66
5.7 Experimental Setting 4 - Framework . 72
5.8 LSTM accuracy on blind wells . 73
5.9 Accuracy for all models on blind wells . 76
A2.1 Missing values for variables in original data set 94
A6.1 Group dictionary . 104
A6.2 Formation dictionary . 105

1

1 Introduction

Operating in today’s oil and gas industry is a challenging task. The companies’ core

tasks are usually performed in challenging conditions where weather and unforeseen

circumstances can lead to delays and downtime. Because of the resources involved,

production delays and downtime quickly becomes a huge expense for the parties involved

(Wells, 2019).

Likewise, the drilling industry suffers from a complex and fragmented planning process

where accessing high-quality data is the biggest bottleneck (Andresen, 2019). The

companies are forced to manage more and more wells as the competitiveness and the

requirement to operate at the highest potential increase. The push for profitability forces

the engineers to put their energy and focus to the most profitable wells. As a result, a

significant amount of wells are producing below their potential. According to Wells (2019),

as little as 20% of wells are actively operated, leaving up to 80% of wells operating at a

sub-optimal performance. Furthermore, the complex nature of the drilling industry also

means that thousands of decisions have to be made, for instance, with respect to logistics,

equipment, and staffing. Changes in the operation will, therefore, impact the safety, the

performance, and the cost of the drilling process (Czypionka, Gulewicz, Keith & Rey,

2016).

In order to cope with these complex processes and reduce downtime, there has been

an extensive focus on innovation and technology within the industry. Cloud computing

services have made it possible to store and analyze data at a relatively low cost, which

in turn has made data collection a top priority for most companies in the industry for a

number of years already. Now, there seems to be a shift in priorities where companies

move towards the application of methods within artificial intelligence in order to visualize

and analyze available information (Crooks, 2018). This shift has a large potential for cost

savings, and some estimate that better utilization of technology in order to make drilling

faster and more accurate could reduce the costs for energy companies by as much as $73

billion within five years (Nasralla, 2018).

The large consequences in terms of profitability, safety, and performance also mean that

gaining a deeper understanding of the reservoir strata becomes very important in order to

2

improve well economics and to ensure a more accurate and efficient decision making process

(Czypionka et al., 2016). Today, most companies utilize experts’ domain knowledge to

manually interpret geological elements, such as rock-samples directly collected from a

well, in combination with different well logging measurements, in order to identify the

geological structures of a well. However, collecting multiple physical samples from a well

is a very expensive process, and as a result, only a few samples are normally collected

per well. This forces geologists to make interpretations of the subsurface formations

mostly based on other geological information, such as wireline logs and drilling penetration

rates (Steingrimsson & others, 2011). Despite the fact that the industry has a lot of

available data, it is lagging behind when it comes to digital-analysis. Since there are

large consequences when it comes to downtime, there is reason to believe there is great

potential in more data-driven decision making.

The cost of uncertainties related to the stratigraphy of a well, can be huge. Through

firsthand experience and extensive market research, Magnus Tvedt (CEO of PWP), has

found that if a drilling-company is given inadequate or wrongful information about the

stratigraphic layers of a well, it can cause errors resulting in 1-7 days of downtime. Each

day of downtime will, on average, cost 5 million NOK. Furthermore, lousy stratigraphy

interpretation can lead to a well design that is sub-optimal or even result in failure. If

a well design fails, the negative economic impact will result in added costs of hundreds

of millions of NOK. As previously discussed, making the drilling industry faster and

more accurate would not only require a lot of data, but also a well-structured database

where data is accessible and ready to be analyzed. Automatic stratigraphy interpretation

through wireline logs will improve and streamline a very manual task, liberating experts

to do other value-creating tasks, which will further improve the well design (M. Tvedt,

personal communication, December 17, 2019).

Because of the proved explanatory power of wireline logs, and sophisticated machine

learning techniques’ ability to identify patterns in large amounts of data, it is interesting

to examine how the application of such techniques can help automate today’s manual

interpretation process. The main objective of this thesis will, therefore, be to explore

different machine learning techniques’ ability to automatically identify unique subsurface

structures in wells, using wireline logs as input.

1.1 Thesis Structure 3

This leads to the following research question:

To what extent can machine learning techniques use wireline logs to label subsurface

formations?

We will address this problem statement empirically, using well-data from the Johan

Sverdrup field. All of the methods used in the thesis were implemented in Jupyter

Notebooks, using the Python programming language, in Amazon Web Services (AWS)

(Van Rossum & Drake Jr, 1995). The code written for this thesis can be found in the

GitHub repository located in Appendix A1.

1.1 Thesis Structure

This thesis is compiled by 7 chapters. Chapter 2 gives a detailed explanation of the

problem at hand and introduces relevant background information about the structure of a

well, stratigraphic formations, and wireline logs. Chapter 3 presents the methodological

framework of the algorithms used to address our problem statement and describes how these

are implemented and evaluated. Chapter 4 describes the data and how it was preprocessed

before it was introduced to the models. In chapter 5, four different experimental approaches

are analyzed, and the result is presented. Chapter 6 presents a discussion with respect to

the limitations and validity of the results, together with suggestions for further research.

Finally, Chapter 7 summarizes and concludes this thesis.

4

2 Background

This chapter serves as an essential introduction to the fundamental concepts and techniques

relevant to our problem statement. The first section discusses the problem at hand and

describes how a well in our data set is structured. The second section gives a brief overview

of the different logs used to classify formations. Lastly, an overview of relevant scientific

literature is discussed.

2.1 Problem Explanation

As previously introduced, the main objective of this thesis is to study how different

machine learning techniques can use wireline logs to label subsurface formations. By

combining state of the art machine learning techniques’ ability to learn from big data,

and the proved explanatory power of well logs with respect to subsurface structures, there

is reason to believe that automation of the classification process can create significant

value for all parties involved.

By Norwegian law, companies are obligated to share recorded drilling logs to the Norwegian

Petroleum Department (NPD) (Directorate, 2019). From these publicly available sources,

our collaborating partner, Pro Well Plan (PWP), has gathered and pre-processed more

than 2000 data sets on unique wells across the Norwegian Continental Shelf. About 600

of these well data sets are labeled in great detail with rock-formations, by professionals

from various companies in the industry. We saw it as a great opportunity to utilize the

availability of this data to answer our problem statement.

Together with PWP, we decided to address this problem empirically, using data from

the Johan Sverdrup field. The Johan Sverdrup field was chosen because it is a new and

promising field for the future of oil production at the Norwegian Continental Shelf. The

field was discovered in 2010, and it is the third-largest Norwegian discovery of all time.

The first production phase was started in October 2019. The field is expected to continue

its production for more than 50 years, and will at its peak, account for more than 30%

of the total oil production in Norway (Equinor, 2019). Furthermore, because the Johan

Sverdrup field was discovered so recently, the data collection is performed using more

2.1 Problem Explanation 5

advanced equipment, which is likely to yield data of higher quality compared to data

recorded for older wells. This is important since good data quality will be crucial for the

performance of the machine learning techniques utilized in the thesis.

2.1.1 Defining a Well

The question at hand deals with two different parts that both originate from wells; the

subsurface formations and the wireline logs, also known as well logs. It is, therefore,

important to understand what formations are how these are structured in a well. The

definition of a well is based on the Norwegian Petroleum Directorate definition of a well:

"a borehole which is drilled in order to discover or delimit a petroleum deposit and/ or to

produce petroleum or water for injection purposes, to inject gas, water or other medium,

or to map or monitor well parameters" (Norwegian Petroleum Directorate, nda). However,

as illustrated in Figure 2.1, a borehole can have one or more wellbores, also known as well

paths. Since our data set consists of individual well paths, a well in this thesis is defined

as the individual wellbores that have been drilled.

Figure 2.1: A well in this thesis is defined as the individual wellbores, identified by
the colors blue, red, and green in the figure. Reprinted from "Well classification" by
Norwegian Petroleum Directorate (ndb).

6 2.1 Problem Explanation

2.1.2 Defining Formations and Groups

In addition to the definition of a well, it is also crucial to understand what a formation is

and how it can be distinguished from groups. Both formations and groups can be

described as lithostratigraphic units that are classified based on their physical and

mineralogical characteristics, in addition to their relationship with surrounding rocks.

A lithostratigraphic unit is defined based on its composition of the three main types of

rock, sedimentary, igneous, or metamorphic-equivalent. The most important take-away

from this is the principle that younger layers are established over older layers, meaning

the sequence of the formations matters as the younger layers will depend on the older

layers and vice versa (Geological Survey of Norway, 2015). Lithostratigraphic units

can be separated into formations and groups. A formation is the primary formal unit

of lithostratigraphic classification, while a group refers to a succession of two or more

contiguous or associated formations with significant and diagnostic lithologic properties

in common (Salvador & Murphy, 1998).

2.1.3 Structure of a Well

During the drilling of the wells, different measurements are collected in order to analyze

the strata further. The measurements can be seen in conjunction with, for instance, the

formations in the well. An example of such can be seen in Figure 2.2. In the figure, we

have plotted six wireline logs from well 16/5-2 S, one of the wells in our data set, against

the true vertical depth of the well on the y-axis. The figure illustrates how the wells

in our data set are structured and how each well can be viewed as a subsection of the

subsurface strata. By plotting the different wireline logs against the true vertical depth,

it is possible to visualize the changes in the logs, depending on the depth point in the

well. Furthermore, Figure 2.2 also shows the formations and the corresponding group at

each depth point. Each color in the "Formations"-plot represents a unique formation,

and the same goes for each color in the "Group"-plot. As can be seen in the figure, the

formations in the well vary depending on the depth of the well and the values for the

different wireline logs.

In Figure 2.2, we have highlighted a subsection in order to illustrate the main objective of

2.1 Problem Explanation 7

the thesis clearly. As can be seen in the highlight, the values of gr, rdep, rmed and nphi

change as the formation changes. In this case, there is a significant drop in the values of

the above-mentioned logs; however, in some cases, the change might be more subtle. The

goal of the thesis is to investigate the extent to which machine learning models are able

to learn the patterns and other information from the wireline logs, in order to correctly

label the formations.

Figure 2.2: Illustration of the structure of a well. The figure illustrates the values of
the wireline logs in well 16/5-2 S at each depth point and the corresponding formation
and group. Each color in the formation plot corresponds to a unique formation in the
data set. This is also true for the groups. The highlighted subsection of the figure shows
how the values of the wireline logs change when the formation and group changes.

If we compare the formations to the groups, Figure 2.2 further shows how formations close

8 2.2 Wireline Logging

to each other often have similar properties, placing them in the same "parent"-group.

Furthermore, proper domain knowledge is highly beneficial when working with machine

learning. Knowledge about the input data can, for instance, help when determining the

data processing pipeline. In this thesis, the input data is wireline logs, and it is therefore

important to have some knowledge of the process behind the information extraction and

the information contained in the logs.

2.2 Wireline Logging

To get accurate information about the structure of the lithostratigraphic units in a well,

extracting core samples of reservoir-rock would give the most accurate results. However,

this is a very comprehensive and expensive process, and therefore not common practice

in the industry today (Dubois, Bohling & Chakrabarti, 2007). With the high number of

core samples required to get sufficient information about a well, other methods are crucial

in order to interpret ground stratification characteristics effectively.

Figure 2.3: Illustration of a wireline tool. Reprinted from "Feasibility and Design of
Hydraulic Fracturing Stress Tests Using a Quantitative Risk Assessment and Control
Approach" by Bérard et al. (2019).

2.2 Wireline Logging 9

The most common method in today’s industry is wireline logging or downhole logging.

Wireline logging can be described as a process of recording detailed information about

geological formations, plotted against each depth-point of the well (Leyland, 2017). This

information is retrieved by lowering a wire, equipped with different types of measuring

tools, down the borehole. The various measuring tools then record different signals, such

as resistivity, density, or porosity, at each given depth-point of the well. This can be done

in between drilling operations or at the end of drilling (Vakarelov, 2016).

2.2.1 Gamma Ray Log

A gamma ray log, or natural radiation log, contains the measured radiation decay from

rocks in subsurface formations. The logging tool measures the total gamma ray activity,

which is a sum of isotopes emanating from three different chemical elements; Uranium,

Thorium, and Potassium (Olejnik, Karaffa & Fleming, nd). The isotopes released from

these chemical elements can form nuclear energy-level structures, which lets us identify and

measure the presence of radioactive elements through the release of gamma ray radiation

(Stark, 2018).

When isotopes are liberated from rocks in the formations, the released energy will be

reduced consecutively as atoms collide in the rock-formation. This process is called

"Compton Scattering" and will continue to occur until the energy level is so low that

it is absorbed by the rock-formation. In other words, the measured gamma ray value

will depend on how powerful the initial release radioactive elements were and how much

Compton Scattering the radioactive elements have encountered. The level of Compton

Scattering will depend on the density of the formation (Glover, 2014).

Gamma ray is a useful tool when it comes to lithology interpretation. Even if the gamma

ray log alone does not give us enough information to define unique lithology-formations,

it becomes valuable when combined with other logs (Glover, 2014).

It is also important to note that the reliability of the gamma ray measure will depend

on the borehole quality. Since the gamma ray measuring tool is typically going through

the center of the borehole, intervals of measured values can be affected if the hole suffers

from caving. An example of caving can be seen at the top of Figure 2.4. When caving

10 2.2 Wireline Logging

Figure 2.4: Graphic overview of the effect different types of lithologies have on Gamma
Ray. Reprinted from "Petrophysics MSc Course Notes" by Glover (2014). The figure
illustrates how different types of rocks can be separated by different levels of gamma ray.
It also shows how the borehole width and caving can affect the reliability of measures.

occurs, we will have more drilling mud between the formation and gamma ray and with

that reduce the radioactive signal produced by the formation. Higher mud density will

give greater underestimation (Glover, 2014).

2.2.2 Resistivity Log

Resistivity logs, or electrical logs, measures the resistivity of subsurface formations through

electrical signals. There are three main types of resistivity measures, shallow-, medium-,

and deep resistivity. The resistivity tool identifies hydrocarbon-bearing versus water-

bearing zones, as this can help us indicate permeable zones, and to determine rock-porosity

(Asquith, Krygowski, Henderson & Hurley, 2004). A rock is composed of thousands or

millions of grains, and the density of these grains will depend on the porosity of the given

rock. If a rock has high porosity, the space between the grains is bigger, which makes

the rock more permeable. A permeable rock can carry more fluids, such as water and

2.2 Wireline Logging 11

oil. A rock’s grains are non-conductive, or in other words, they are not able to transfer

electricity, making them highly resistive. On the contrary, water will be highly conductive,

and with that have very low resistivity.

Because the solid materials are non-conductive, a rock’s ability to transfer electricity will

almost explicitly be a function of the fluids in the pores (Rider, 2011). Hydrocarbons

(petroleum) have higher resistivity compared to saltwater, and saltwater has higher

resistivity compared to freshwater. As a result, resistivity measures can help separate

different types of formations. As an example, sandstone formations will have higher

resistivity than shale formations, because shale formations have more water in the clay

(Asquith et al., 2004).

2.2.3 Density Log

A density log is a record of a formation’s bulk density. The bulk density is the overall

density of a rock, which includes both the solid matrix and the fluid that is enclosed in

the rock. The log can be used to calculate the porosity and the hydrocarbon density, but

its most important use case is in the identification of certain minerals (Rider, 2011).

The tool subjects the formations to medium-energy gamma rays in order to measure the

attenuation between the tool source and the detectors. The tool is, in reality, measuring the

electron density, which in turn is closely related to the common density of the formations.

Research has shown that the density tool’s depth of investigation is very shallow, most

likely around 10cm for average densities, meaning the tool is profoundly affected by hole

conditions (Rider, 1991).

2.2.4 Neutron Porosity Log

The neutron log is a record of how a formation reacts to neutron bombardment. Since

formations with high water content absorb neutrons rapidly, the log is in principal a

measure of the water content in the formation. The log is used to measure the porosity of

a formation, and this works very well as a discriminator between oil and gas (Rider, 2011).

The neutron porosity log is often combined with the density log on compatible scales,

12 2.2 Wireline Logging

and the combination of the two logs is one of the best subsurface lithology indicators

available. This is due to the fact that both the neutron log and the density log both

measures the porosity of a formation, and differences between the two logs can be useful

when identifying certain formations (Rider, 1991).

The tool consists of a neutron source and two detectors where the detectors register the

degradation in energy of the neutrons radiated from the source. The reason the neutron

log tool works so well in identifying the water content of the formations is the fact that

neutrons have no electrical charge, and the mass is equivalent to that of a hydrogen nucleus.

That means that the neutrons will lose energy when they collide with hydrogen nuclei,

whereas colliding with nuclei with heavier or lighter mass will not result in significant

energy loss (Rider, 1991).

2.2.5 Sonic Log

A sonic log, also known as an acoustic log, indicates the time it takes for high-frequency

pulses to travel through formations that are close to the borehole. The sonic log tool

consists of an acoustic transmitter and two receivers, spaced at different distances from the

transmitter, and the tool is mostly run hole-centered. This is done in order for the sonic

pulse is radiated symmetrically and so that the measurements come for all sides of the

hole simultaneously. Since the formations have different capacities when it comes to the

transmission of sound waves, the log can be used to evaluate the porosity in liquid-filled

holes (Rider, 1991).

The measurements from the sonic tool are often cross-multiplied with the measurements

from the density in order to make the acoustic impedance log. Qualitatively a geologist

can use the sonic log to identify source rocks, overpressure, and to some extent, fractures

(Rider, 2011).

It is important to note that the measurements from the sonic log tool can be affected by

poor boreholes. An example of a poor hole is caving, as was seen in Figure 2.4. Since

prolonged exposure to drilling muds can cause deterioration, the sonic logs that are

registered soon after logging are the most reliable measurements (Rider, 1991).

2.3 Literature Review 13

2.3 Literature Review

This section will give a brief overview of the available research related to the problem

statement, while the literature in regards to the models will be discussed in Section 3.

Machine Learning and Stratigraphy

In recent years, machine learning has successfully been implemented in order to solve

numerous different problems. In particular, deep learning has recently proven to perform

classification tasks at a human level, in what can be described as an AI-revolution (Chollet,

2018).

An example of what to expect can be observed in the promising results that artificial

neural networks (ANN) have shown on reservoir data. Ayala & Ertekin (2005) proposed

the implementation of an ANN in gas-condensate reservoirs, and their tool is capable

of assisting the engineers when they are designing an optimized exploration scheme for

a particular reservoir under consideration for development. Another method has been

developed using an ANN linked to the particle swarm optimization (PSO) tool, where the

goal is to forecast the productivity at the initial stages of the development of horizontal

well drilling (Ahmadi, Soleimani, Lee, Kashiwao & Bahadori, 2015).

Further, Wang, Yang, Zhao & Wang (2018) used a data mining and a machine learning

approach in order to classify the reservoir pore structure in the Mesozoic strata. Their

technique classified the pore structure into four types with a cross-validation accuracy of

75%. In addition, Zazoun (2013) developed an ANN in order to predict fracture density

from conventional well logs. Their study demonstrated a good agreement between the

neural network model prediction and core fracture measurements, indicating that the

inputs in conventional well logs are suitable inputs in a neural network model.

Machine Learning Contest

Machine learning has also been implemented in order to classify the facies, in oil wells, using

well-logs as input. This application gained increased popularity through the SEG machine

learning contest, launched by Brandon Hall in 2016 (Hall, 2016). In this competition, a

14 2.3 Literature Review

data set consisting of nine wells from the Hugoton and Panoma fields in southwest Kansas

and northwest Oklahoma was provided, and the goal was to achieve the highest facies-

classification accuracy. During the competition, more than 300 entries were submitted

by 40 teams, and the top five contributions achieved an accuracy of 0.62 - 0.6388 on two

blind wells. All top five contestants used an XGBoost model in Python (Hall & Hall,

2017).

The above-mentioned data set was also the basis for some attempts at using deep learning

models to predict the facies as discussed by Hall (2019). One of the deep learning models

was a one-dimensional convolutional neural network (CNN) proposed by Imamverdiyev &

Sukhostat (2019). The 1D-CNN model showed statistically significant improvements and

outperformed many of the models they used as a comparison. Imamverdiyev & Sukhostat

(2019) conclude that their deep learning model can be useful for future research and facies

identification. Lasscock (2019) also experimented with deep learning through the use of

an LSTM-model, treating the input as a time series problem.

In summary, research shows that machine learning has proved to be a useful tool in the

oil and gas industry and that well logs are considered useful inputs when predicting facies

in oil wells. However, it is important to keep in mind that the stratification, the layering

that occurs in most sedimentary rocks, is very different in different areas of the world

(of Encyclopaedia Britannica, 2014). This means that the measurements found in the

well logs are different, and without testing, there is no guarantee that the models used to

classify facies in other areas of the world will perform just as well on strata in a different

area.

Implementations on the Norwegian Continental Shelf

Since most of the previously discussed research is based on strata in other parts of the

world than Norway, it is interesting to see how certain machine learning models will

perform on a data set with wells from the Norwegian Continental Shelf. When it comes to

facies predictions in Norway, there have been some attempts at classifying facies through

machine learning, where the first attempt came as early as 1992. Bølviken, Storvik,

Nilsen, Siring & Van Der Wel (1992) addressed in their paper whether a computer can be

programmed to identify depositional facies from a set of wireline logs through what is

2.3 Literature Review 15

now known as supervised learning. The conclusion was that the results of the tests are

promising, and as new algorithms have been developed, it would be relevant to see how

well the new models will perform. The most recent attempt using machine learning to

classify facies through wireline logs in Norway came from Bøe (2018). In his master’s thesis,

he used an XGBoost model on input data from an area on the Norwegian Continental

Shelf. The thesis gives a good background for the use of machine learning on wireline logs.

However, we note that in his thesis, the models was compared using Root Mean Square

Error (RMSE) on a classification task. Therefore, we are not able to draw conclusions

from the machine learning section of his thesis.

To the best of our knowledge, there have recently been no attempts at using machine

learning to classify the formations in a well using wireline logs as input, on the Norwegian

Continental Shelf. Further, most of the attempts have used traditional machine learning

only, and with the promising result that deep learning has shown lately, classification of

formations through the use of deep learning models is definitely an area worth researching.

It is also worth noting that all the above-mentioned research that included classification

tasks in wells aimed at classifying the facies. Formations are different from facies in the

sense that a formation corresponds to a body of rock that is distinguishable from the rock

above and below in the stratigraphic sequence, while facies is a set of rocks that were

deposited in the same sedimentary environment (Rey, Galeotti & others, 2008). As far

as we know then, there has been no research on formation classifications using machine

learning and, in particular, deep learning, with wireline logs as input.

16

3 Methodology

This chapter is divided into three parts, where the first section presents the theoretical

framework for the algorithms used in our thesis. The second part of the chapter relates to

how the algorithms have been implemented. The third section describes how the models

were evaluated. Lastly, the theoretical framework of the interpretable machine learning

method SHAP is introduced.

3.1 Machine Learning

3.1.1 Logistic Regression

The Logistic Regression model was used as a benchmark in order to evaluate if additional

effort, through feature engineering and construction of more complex and computationally

expensive models, would be worthwhile with respect to both resources and increased

performance. The model is a technique from the field of statistics and is by many

considered the go-to method for classification problems with a binary outcome (Géron,

2019). The Logistic Regression model is based on the Logistic Function, which can be

seen in Equation 3.1 and the output of the function is the probability for all values of X

(James, Witten, Hastie & Tibshirani, 2013).

p(X) =
e�0+�1X

1 + e�0+�1
(3.1)

Through manipulation and by taking the logarithm of both sides, we are given Equation

3.2. The left-hand side of the equation is known as the log-odds or logit and the equation

shows that the Logistic Regression model in Equation 3.1 has a logit that is linear in X

(James et al., 2013). It is important to note that the Logistic Regression model is different

from a Linear Regression model in the sense that a one-unit increase in X changes the log

odds by �1. However, since the relationship between p(X) and X is not linear, as seen in

Equation 3.1, �1 does not correspond to the change in p(X) associated with a one-unit

3.1 Machine Learning 17

increase in X, but the change in p(X) would depend on the current value of X (James

et al., 2013).

log

✓
p(X)

1� p(X)

◆
= �0 + �1X (3.2)

In order to calculate the coefficients in the logistic function, the maximum likelihood

method is preferred. The intuition behind is that we aim to find estimates for �1 and �0

such that the predicted probability p̂(xi), using Equation 3.1, corresponds to the observed

probability in the data set (James et al., 2013). The mathematical equation for the

likelihood function can be seen in Equation 3.3.

`(�0, �1) =
Y

i:yi=1

p(xi)
Y

i0:yi0=1

(1� p(xi0)) (3.3)

To generalize the Logistic Regression model so that it supports multiple classes, the

Logistic Regression model is combined with a Softmax Regression model. The Softmax

Regression model first computes a score sk(X) for each class k, using Equation 3.4 (Géron,

2019).

sk(X) = X⌧✓(k) (3.4)

When the score of each class k for the instance X is calculated, the probability p̂k for

each class k can be estimated, using Equation 3.5, where K is the number of classes, s(X)

is a vector containing the scores of each class for the instance X and �(s(X))k is the

estimated probability that the instance X belongs to class k, given the scores of each class

for that instance (Géron, 2019).

18 3.1 Machine Learning

p̂k = �(s(X))k =
e(sk(X))

PK
j=1 e

(sj(X))
(3.5)

When the probability p̂k that the observation X belongs to class k has been calculated,

the regression classifier simply predicts the class with the highest estimated probability

(Géron, 2019).

3.1.2 LightGBM

This section serves as a short overview of decision trees and boosting algorithms.

Furthermore, since the Light Gradient Boosting Machine (LightGBM) algorithm is built

on a boosted decision tree algorithm, the LightGBM paragraph of this section does not

go into further details in regards to decision trees and boosting, but focuses instead on

aspects of LightGBM that may differ from other boosting algorithms.

Decision Trees

Tree-based prediction methods are based on the segmentation of the predictor space into

a number of simpler regions as exemplified in Figure 3.1 (James et al., 2013). The regions

of the predictor space are known as terminal nodes or leaves and the segments of the trees

that connect the internal nodes are referred to as branches. In Figure 3.1 the leaves are

the predictions 5.11, 6.00, and 6.74, while the internal nodes are indicated by the text

"Years<5.5" and "Hits<117.5" (James et al., 2013).

3.1 Machine Learning 19

Figure 3.1: Example of a decision tree. Reprinted from "An Introduction to Statistical
Learning" by James et al. (2013). The figure is an example of a regression tree in which
the predicted salary of a baseball player is a function of the number of years the player
has played and the number of hits he has made in the previous year. If the player has
played less than 4.5 years in the major leagues the predicted salary is 5.11. Contrary,
if the player has played 4.5 years or more in the major leagues his predicted salary will
depend on whether or not his number of hits were above or below 117.5.

Algorithm 1 Building a regression tree. Reprinted from "An Introduction to Statistical
Learning" by James et al. (2013)

1. Use recursive binary splitting to grow a large tree on the training data, stopping only
when each terminal node has fewer than some minimum number of observations.

2. Apply cost complexity pruning to the large tree in order to obtain a sequence of
best subtrees, as a function of ↵.

3. Use K-fold cross-validation to choose ↵. That is, divide the training observations
into K folds. For each k = 1, ..., K:
(a) Repeat Steps 1 and 2 on all but the kth fold of the training data.
(b) Evaluate the mean squared prediction error on the data in the left-out kth fold,

as a function ↵.
Average the results for each value of ↵, and pick ↵ to minimize the average
error.

4. Return the subtree from Step 2 that corresponds to the chosen value of ↵.

Algorithm 2 exemplifies how a regression tree is built and can be seen in conjunction

with Figure 3.1. Both Algorithm 2 and Figure 3.1 are examples of a regression tree,

but we note that a classification tree works in the exact same way as the regression tree

described except that instead of predicting a quantitative response, the prediction is a

qualitative one. The effect of this is present in the way the predicted response of an

observation is given. In a regression tree the predicted response of an observation is

given by the mean response of the observations that belong to the same terminal node.

20 3.1 Machine Learning

A classification tree on the other hand, predicts the observation to belong to the most

commonly occurring class of training observations in the region to which it belongs (James

et al., 2013). Despite some of the advantages of a decision tree; it is easily interpreted,

and can handle qualitative predictors well, by itself a decision tree generally has a lower

predictive performance than some of the other machine learning models. However, the

aggregation of decision trees, through for instance boosting, can significantly improve the

prediction power of a decision tree (James et al., 2013).

Boosting

Boosting is an approach for improving the prediction results from a decision tree. In

boosting, several trees are grown sequentially, meaning that each tree in the model is

grown using information from the previously grown trees (James et al., 2013). With this

approach a new tree is grown from the residuals rather than the outcome of the model.

The decision tree that was grown from the residuals is then added to the fitted function in

order to update the residuals. Lastly, the final prediction is given by the weighted average

of all sequentially grown predictors (James et al., 2013). Mathematically boosting can be

expressed using Algorithm 2.

Algorithm 2 Boosting for Regression Trees. Reprinted from "An Introduction to
Statistical Learning" by James et al. (2013)

1. Set f̂(x) = 0 and ri = yi for all i in the training set
2. For b = 1, 2, ..., B repeat:

(a) Fit a tree f̂ b with d splits (d + 1 terminal nodes) to the training data (X, r)
(b) Update f̂ by adding in a shrunken version of the new tree:

f̂(x) f̂(x) + �f̂ b(x) (3.6)

(c) Update the residuals,

ri ri � �f̂ b(xi) (3.7)

3. Output the boosted model,

f̂ b(x) =
b=1X

B

�f̂ b(x) (3.8)

3.1 Machine Learning 21

LightGBM

Boosted trees have recently grown in popularity due to its efficiency, accuracy, and

interpretability. However, in recent years boosted trees have faced challenges due to the

emergence of big data. A conventional boosted tree scans all the data instances in order

to estimate the information gain of all the possible split points, for every feature in the

data set. As a result, handling big data using boosted trees is very time consuming (Ke,

Meng, Finley, Wang, Chen, Ma, Ye & Liu, 2017).

To resolve this issue, LightGBM was created. The LightGBM algorithm is different from

traditional boosted trees in the sense as includes two new techniques; Gradient-based

One-Side Sampling (GOSS), and Exclusive Feature Bundling (EFB). The result is an

algorithm that can accelerate the training process by more than 20 times while achieving

almost the same accuracy (Ke et al., 2017).

The idea behind GOSS is that the instances with larger gradients will contribute more to

the information gain, meaning that when down sampling the data instances it is important

to keep the instances with large gradients. The small gradients will then randomly be

dropped and the result is a treatment that can lead to a more accurate gain estimation

than uniformly random sampling, with the same target sampling rate (Ke et al., 2017).

EFB is based off the idea that in real applications, although there are a large number of

features, the feature space is quite sparse. It is therefore possible to reduce the number of

effective features without loosing important information by the use of a bundling algorithm

(Ke et al., 2017).

Figure 3.2: Level-wise vs leaf-wise growth. Reprinted from "LightGBM and XGBoost
Explained" by Kurita (2018).

Some of the other ways in which LightGBM is different from traditional tree-based models

is the use of a leaf-wise tree growth approach instead of a level-wise tree growth approach,

as can be seen in Figure 3.2. The level-wise growth approach is less prone to overfitting,

22 3.1 Machine Learning

however, since it is less flexible, the leaf-wise growth approach tend to achieve lower loss

and the flexibility makes it a suitable choice for large data sets (Shi, 2007). Furthermore,

LightGBM uses histogram-based algorithms instead of pre-sort based algorithms. The

utilization of histogram-based algorithms leads to reduced cost of calculating the gain for

each split since the algorithm will bucket features with continuous values into discrete

bins and then use the bins to construct feature histograms during training. Once the

histogram has been constructed, the time complexity will be based off the number of bins

which will be smaller than the full data set (Ke et al., 2017).

3.1.3 Recurrent Neural Network

In our thesis, we have utilized a Recurrent Neural Network (RNN) in order to make

predictions. As is illustrated in Figure 3.3, the Recurrent Neural Network is different from

a feedforward network. In particular, an RNN iterates through the sequence elements

while simultaneously maintaining a state that contains information relative to the previous

information (Chollet & Allaire, 2018). In other words, where as a feedforward network

only considers the current input, the looping mechanism in an RNN allows it to take into

consideration the previous inputs as well as the current input (Donges, 2018). Due this,

RNNs are better equipped to detect patterns in the input sequence and are therefore often

used for time series forecasting (Weller, 2018).

Figure 3.3: Recurrent Neural Network feedback loop. Reprinted from "A Survey on
the Application of Recurrent Neural Networks to Statistical" by De Mulder et al. (2014).

3.1 Machine Learning 23

A downside of RNNs is the computational power required to run the algorithms. The

fact that they take both past and present inputs are taken into consideration means

they compared to other algorithms they are very computational expensive. Another

problem more prevalent in RNNs compared to other algorithms is the problem of

vanishing/exploding gradients. Vanishing/exploding gradients occurs when the gradient

of the network ends up with many similar numbers. If the gradient values then become

extremely small or extremely large they are not able to contribute to- or they resulte

in very large updates to the weights of the model (Brownlee, 2017a). If this is the

case information from the earlier steps might be lost as the model is not able to carry

the information forward. The fact that this is such a common problem in RNNs, the

networks are often described as networks with short-term memory. To resolve this issue a

modification of the traditional RNN was created, Long Short-Term Memory (LSTM).

LSTM

Long Short-Term Memory networks were introduced by Hochreiter & Schmidhuber (1997)

and their solution to the short-term memory problem is the use of additional neural

networks. The addition networks regulate the flow of information through the sequence

chain which allows past information to be reinjected at a later time (Nguyen, 2018). The

neural networks within the network itself are referred to as gates and in an LSTM network

there are three gates in total. These are the forget gate, the input gate and the output

gate. Together they have the ability to remove or add information to the cell state. This

means that each LSTM unit makes decisions by considering the current input, previous

output and previous memory (Yan, 2016). Figure 3.4 shows a detailed explanation of the

repeating module in an LSTM network and will, in combination with Equation 3.9, serve

as a brief overview of the network.

The first sigmoid activation function from the left in the illustration is what is called the

"forget gate layer", ft. In the forget gate, the output of the previous block, ht�1, multiplied

by the weight, Wf , is concatenated with the current input, xt, multiplied by the weight

Uf and the bias of the forget gate, bf , is added. Next, a sigmoid activation function is

applied, making sure the output is compressed between 0 and 1. An activation function

can in many ways be seen as a valve and determines how much and what information

24 3.1 Machine Learning

Figure 3.4: Structure of an LSTM node. Reprinted from "Understanding LSTM
Networks" by Olah (2015).

that should be passed on to the next layer (V, 2017). As can be seen in 3.9, the same

structure applies to both the input gate, it, and the output gate, ot. However, the bias

and weights are individual for each of the gates.

ft = �(Wfxt + Ufht�1 + bf)

it = �(Wixt + Uiht�1 + bi)

eCt = tanh(WCxt + UCht�1 + bC)

Ct = ft � Ct�1 + it � eCt

ot = �(Woxt + Uoht�1 + bo)

ht = ot ⇤ tanh(Ct)

(3.9)

In addition to the previously mentioned gates, LSTM has a cell state, Ct. To calculate

the cell state, the Hadamard product of the forget gate, ft, and the previous cell state,

Ct�1, is added element-wise to the Hadamard product of the input gate, it, and eCt. Here,
eCt is a vector of new candidate values that could be added to the state.

Lastly, the output vector, ht is calculated as the Hadamard product of the output gate, ot

3.2 Model Tuning 25

and the current cell state Ct after a tanh activation function has been applied. The tanh

activation function makes sure that the values are between -1 and 1.

To summarize, by combining all the elements in 3.9, the LSTM network is able to use

past information in addition to current information when making predictions. The forget

gate is a neural network that decides what information from the cell state that should be

thrown away, while the input gate decides what new information that will be stored in

the cell state. This consists of a layer that decides which values to update in addition to

a layer that creates a vector of new candidate values that potentially will be added to the

cell state. The output gate in combination with the a filtered cell state determines what

prediction that are being made (Olah, 2015).

3.2 Model Tuning

For machine learning, one can generally say that finding the optimal combination of

tuning parameters is a very time-consuming and challenging task. By applying machine

learning techniques, such as LightGBM and deep learning, hundreds of decisions need to

be made. All of which will have a significant impact on the model outcome. Examples of

such parameter-decisions can be the number of boosted trees to pick, what loss function

the model should try to minimize, and so on. If we make inadequate or wrongful decisions

with respect to parameters, we might experience things like overfitting to our training

data, or that the model will not be able to learn at all. We can divide parameters into two

separate categories; consistent parameters and hyperparameters. This section discusses

the approaches taken in order to tune the machine learning models. Since the model

tuning is such an important part of our thesis and algorithms have different, and intricate

tuning parameter, the section is divided into subsections for each individual model.

Consistent parameters

Some parameters remained the same throughout the whole training process. Consistent

parameters are usually problem specific and must be chosen with intuition based on

what you are trying to predict. For instance, it is essential to choose a loss function that

reflects the multi-class problem at hand. If we were to choose a loss function suited for a

26 3.2 Model Tuning

regression problem, the model would be penalized more by predicting class 10 compared

to predicting class 2 if the target class was 1. In a regular classification problem, there is

not a numerical relationship between the classes, hence predicting class 10 and 2 would

be equally wrong.

Hyperparameters

Hyperparameters, also known as tuning parameters, are parameters that control the

models’ training process and have a critical effect on the models’ ability to learn. As

machine learning techniques get more sophisticated, the number of hyperparameters

to tune is rapidly increasing, making it harder and harder to tune machine learning

models manually. In other words, model tuning has become a very challenging and

time-consuming task, even for researchers with an extensive machine learning experience

and domain knowledge. Although it is possible to gain some tuning-skills, manual tuning

is likely to yield sub-optimal results at best. Ideally, one would run a grid-search on

every possible combination of hyperparameters to secure that you have found the global-

minimum. However, it is neither efficient nor possible for people without a supercomputer

to complete that kind of parameter-search (Chollet & Allaire, 2018). As a result, the

application of hyperparameter optimization algorithms has almost become a necessity

when building good performing machine learning models.

Essentially, a tuning algorithm can be described as an optimization algorithm trying to

minimize a given loss function. This is done by looping over sets of hyperparameters

where the goal is to identify the combination that returns the lowest validation error

(Bissuel, 2019).

3.2.1 Tuning the Logistic Regression

Compared to the other state of the art machine learning techniques we applied in this

thesis, Logistic Regression required less tuning efforts. At the same time, it was crucial

for the model outcome that the few parameters that needed to be specified were chosen

with respect to the classification problem in hand.

3.2 Model Tuning 27

Consistent Parameters

To build a well functioning Logistic Regression classifier, there are two key parameters to

specify; the loss function and the solver.

Loss function:

By giving the multi_class parameter the value multinomial, we made sure that the

Logistic Regression model applied multinomial logistic loss to evaluate its training

performance. Essentially, the logistic loss function, or log loss, penalize wrong classifications

by calculating the accuracy of the prediction. One can interpret minimizing log loss as

maximizing class accuracy, but instead of just generating a single predicted label, it

calculates separate probabilities for each distinct class. This makes it possible to penalize

the model more when it predicts the actual class to be less likely. In other words, we

get an increase in log loss as the predicted probability for the actual class diverges from

1 (Collier, 2015). When we have multiple classes, the log loss function can be defined

mathematically as in Equation 3.10.

� 1

N

NX

i=1

MX

j=1

yij log pij (3.10)

Here, N represents the number of samples, M the number of possible classes, yij indicates

if class j is the correct classification for sample i by yielding 0 or 1, and pij equals the

probability for sample i to be labeled with class j. Following this logic, a Log Loss close

to 0 would indicate that we have a good classifier (Collier, 2015).

Solver :

To identify the optimal solver, we trained our Logistic Regression model strategically

numerous times, while choosing a different solver for each training-run. The solver we

used to train our final benchmark model was lbfgs, or L-BFGS. L-BFGS is short for

Limited-memory Broyden–Fletcher–Goldfarb–Shanno, and because it requires a limited

amount of computer memory to run, this is a very effective and popular solver to use. This

algorithm is based on the same principals as the Newton’s method for gradient descent

(Fu, 2016).

28 3.2 Model Tuning

Hyperparameters

As mention above, to build our Logistic Regression benchmark, limited tuning efforts

were required. However, in order to avoid overfitting, we experimented with applying

different levels of regularization. In all essence, regularization tries to reduce model

complexity/flexibility by regularizing or shrinking the model’s coefficients towards zero

(Gupta, 2017). Since we used lbfgs as our solver, the only regularizer we could use was l2 -

ridge regularization. The argument C was tuned in order to identify the "optimal" level of

regularization. In other words, the level of regularization yielding the lowest training loss.

3.2.2 Tuning the Gradient Boosting Machine

Consistent Parameters

We utilized the "lightgbm" package in python in order to build a well functioning LightGBM

model. In the package, there was one key parameter we needed to specify that would stay

consistent throughout the tuning process; objective, number of classes, and loss function.

Objective and Number of classes :

In our data, the 31 wells from the Johan Sverdrup field included 38 distinct

rock- formations. We specified the parameters objective and nclassesasmulti �

classificationand38accordingly.

Loss Function:

To reflect our multi-classification problem, the loss function we used to train our model

was Multi Logistic Loss. This was the same loss function as for our Logistic Regression

Benchmark.

Hyperparameter Optimization

Both our LightGBM models were tuned using a Bayesian optimization algorithm.

Bayesian Optimization:

The Bayesian optimization algorithm was chosen because of its ability to pick the most

3.2 Model Tuning 29

promising hyperparameters by considering the results of historical tuning runs. This

makes it more effective compared to other tuning methods such as grid- and random

search. These methods evaluate different sets of hyperparameters completely uninformed

of previous results, forcing them to spend a considerable amount of time evaluating poor

hyperparameter combinations (Koehrsen, 2018).

The Bayesian optimization algorithm consists of two main components, an objective

function and a probabilistic surrogate model built of the objective function. The algorithm

takes individual sets of hyperparameters, feed them to the surrogate model, and picks

the set of parameters with the best performance-score. These hyperparameter-values

are then applied to the objective function. This process will run in a loop, where the

surrogate model will be updated with the actual performance from the objective function

continuously throughout the process. In other words, the Bayesian model will then make

increasingly informed "bets" on which set of hyperparameters that are likely to perform

better on the objective function until the number of specified iterations is reached (Kapil,

2019).

The hyperparameters we have tuned for both LightGBM models are:

1. Learning rate (learning_rate)

2. Number of estimators (n_estimators)

3. Minimum child weight (min_child_weight)

4. Max tree depth (max_depth)

5. Feature fraction (feature_fraction)

6. Number of leaves (num_leaves)

3.2.3 Tuning the Neural Network

Finding a good tuning strategy is especially important when tuning a neural network, as

each training run takes significantly longer to run compared to some of the other models

used in this project.

30 3.2 Model Tuning

Consistent Parameters

Activation Function

As mentioned in Section 3.1.3, an activation function calculates the weighted sum of the

inputs and adds a bias to it in order to determine whether a neuron should be activated

or not. Without an activation function, the neural network treats the assignment as

a linear regression problem and will thereby not be able to learn complex non-linear

relationships from the data. In summary, the main purpose of an activation function

is to introduce non-linearity into the output of a neuron (V, 2017). For a multi-label

classification problem, the softmax activation is recommended. The softmax activation

function highlights the largest values and normalizes the outputs so that they sum to 1,

meaning each element can be interpreted as class probabilities (Gómez, 2018).

Loss Function

The loss function used for our neural networks was the same as the loss function used

in our previously described models. In a neural network, Multi Logistic Loss is called

categorical crossentropy, but it is essentially the same.

Hyperparameter Optimization

Optimizer and Learning Rate

As with other optimization problems, the goal of machine learning is to find the weights

that will minimize the loss function. The loss function can be viewed as a high-dimensional

optimization landscape in which we are trying to reach the bottom. The optimizer we use

can be viewed as the recipe we use in order to search for the global minima. Instead of

updating the weights at random, the optimizer will calculate the loss, and after n-iterations,

pick the weights that yielded the lowest loss. Next, the optimizer will update the weights

in small steps based on given parameters.

The optimizer takes a defined learning rate as input. The learning rate is a hyperparameter

that specifies how much to change the model in response to the estimated error each time

the model weights are updated. It is important to find the right balance between a high

and a low learning rate, as a low rate may result in a long training process and might

3.2 Model Tuning 31

lead to the model being stuck in a local minimum and a too rate may result in the model

learning a sub-optimal set of weights too fast or an unstable training process (Brownlee,

2019d).

In our models, we experimented with both different learning rates and two types of

optimizers, namely Adam and RMSProp. RMSprop is one of the most popular optimization

algorithms used in deep learning, only surpassed by Adam (Bushaev, 2018). Adam has, in

practice, become the default algorithm due to its effectiveness and good results (Brownlee,

2017b). However, there are still some cases in which the RMSprop algorithm yields better

results than Adam, and we, therefore, chose to include both as part of our tuning.

Dropout Rate

Another hyperparameter to be tuned is the dropout rate. This hyperparameter tries

to prevent overfitting by randomly setting a fraction rate of input units to 0 at each

update during training time and thereby introduce random variability (Srivastava, Hinton,

Krizhevsky, Sutskever & Salakhutdinov, 2014). Since the subsequent nodes learn from

the previous nodes, the random variability introduced by dropout can possibly interrupt

the introduction of noisy patterns (Brownlee, 2019b).

Batch size

The batch size refers to the number of samples the model will go through before updating

the weights. When a batch is completed, the model will calculate the loss based on the

predictions compared to the actual values and adjust the weights accordingly. Consequently,

the batch size defines how often the weights of the model will be updated (Brownlee,

2019a).

Epochs

Epochs refers to the number of times the model will run through the entire data set

during training. The hyperparameter should be set in a way that leads to a decrease in

the loss with every additional epoch. Setting the number of epoch too high might lead to

overfitting whereas, it might be difficult for the model to pick up patterns with a number

of epochs that are too low (Brownlee, 2019a). In our thesis, we experimented with a

different number of epochs. However, a high number of epochs is very time consuming

and computationally expensive.

32 3.3 Model Evaluation

3.3 Model Evaluation

3.3.1 Bias-Variance Dilemma

When working with machine learning, one of the most important decisions you need

to make is how to validate your models. Not only does validation give you a better

understanding of the models, but it also represents a very valuable measure of how

unbiased and generalized the performance is. There are numerous ways of validating the

models, but the basis of all validation techniques is how you decide to split the data.

By splitting the data, the main objective is to understand how the model will perform

when it is introduced to unseen data, like in a real-world scenario. To make the model

reliable, it is therefore crucial that the way you decide to split your data reflects the type

of data you are dealing with (Grootendorst, 2019). As an example, if you are dealing

with time-series data and use a randomized split, the model outcome will be unreliable as

future information will be leaked to the training process of the models.

In machine learning, it is normal to measure a model’s performance by a prediction error

term. At large, this error term can be decomposed into three prediction-error components

(Brownlee, 2019c):

• Bias: refers to the oversimplified assumptions made to make the target function

easier to learn. A model with high bias will pay less attention to the training data

and with that return a high loss for both training and validation data. A state

referred to as underfitting in the literature. One could picture a linear algorithm. A

linear algorithm is fast and easy to interpret, but it is less flexible.

• Variance: refers to how much the predicted values vary each time the model uses

new data to train a model with high variance is heavily influenced by the details of

the training data and does not generalize well to unseen data. A state referred to as

overfitting in the literature.

• Irreducible error: represents noise that naturally exists in our data, usually as a

consequence of incomplete features or inherent randomness in the data. The only

way to reduce this error will be to clean the data.

3.3 Model Evaluation 33

Why is it a bias-variance "trade-off"?

Algorithms with low variance and high bias have a simpler underlying structure and can

be described as being less complex, such as regression. On the contrary, algorithms with

high variance and low bias have a more flexible underlying structure and can be described

as being more complex, such as decision trees. In other words, the level of bias and

variance is heavily dependant on the underlying algorithm applied to make the predictions.

Since an algorithm can not have both high complexity and low complexity at the same

time, there will always be a "trade-off" between bias and variance.

In Figure 3.5, we can see an illustration of the simplified mathematical equation of

total error: Total error = Bias2 + V ariance + Irreducible Error. To reach the total

error equilibrium, one would seek to find the perfect balance between bias and variance.

However, since the underlying target function is unknown, it would be impossible to

calculate the exact bias and variance error (Singh, 2018).

Figure 3.5: Illustration of the relationship between bias and variance. Reprinted from
"Bias-variance dilemma?" BY Almaliki (2018).

How is then possible to identify if we have high/low bias or variance?

In practice, we have a common technique to determine if machine learning models are

prone to overfit or not. The technique involves comparing the error rate from training

data with the error rate from test data. When both training- and test error are high,

the model oversimplifies its predictions, meaning it underfits to the training data. When

training error is low, and the test error is high, the model has put too much weight on

34 3.3 Model Evaluation

details in the training data, or in other words, the model is overfitting to the training

data (Singh, 2018).

How to deal with over- and underfitting models?

To balance bias and variance in our models, there are some possible solutions, depending

on which model you are trying to build. To reduce overfitting, it would be beneficial to

collect more data and increasing the size of our training set. This will give the model

more data to generalize on and possibly make it easier to deduct patterns that explain the

output. However, it is important to note that more training data do not necessarily lead

to reduced overfitting. It might also just introduce more noise to the model, which can

make it even harder to generalize. Other techniques, such as regularization and feature

reduction, can also be helpful to reduce overfitting. By manually removing irrelevant

information, you can potentially help the model generalize more efficiently.

To deal with underfitting, the best way would be to build a more complex model

construction. This can be adding more trees to a Random Forrest model or to increase

the number of nodes and hidden layers for neural networks.

3.3.2 Train/Test Split

A common practice in machine learning is splitting the data set into training-, validation-

and test sets. This is crucial, as the only way you can know how well your model

will generalize on new data is to actually try it out on unseen data. Through a

train/validation/test split, we can train the model on the training set, choose the best

performing hyperparameters based on how it performs on the validation set and evaluate

the model on data the model has not yet seen. This way, we can get an estimate of the

generalization error (Géron, 2019).

In our thesis, we needed to make sure that the three data sets had a realistic distribution

of the formations, in order to test the reliability of the machine learning models. As

previously discussed, the models are built on the training data, updated continuously

based on how well it performs on validation data, and evaluated on the accuracy of test

data predictions. Thus, an uneven distribution can lead to models that perform worse

on new data, compared to models in which the distribution of the formations was evenly

3.3 Model Evaluation 35

spread across all data sets. It was also important that there were no formations, or as

few formations as possible, that were represented in the test set and not in the train- and

validation sets. This is due to the fact that it is impossible for a supervised model to

predict a formation it does not know exists. This means that all formations present in the

test data should also be present in the validation- and training data sets. The sum of

these two steps is normally referred to as a stratified split.

In the Python programming language, this is normally done through a simple function.

However, since the goal of the thesis was to predict rock-formations, we needed to consider

the fact that these formations have developed over thousands of years. As was discussed

in Section 2.1.3, the formations depend on the composition of the materials that go

into making it throughout geological history. As a result, formations close to each other

are likely to be similar to each other (Brookshire, 2018). This makes the depth-vise

sequential information and the location of the well very important when trying to predict

rock-formations for each given depth-point of a well. It also means that since the features

in each row in a well usually only have a relatively small percentage change from the

observation above and below, a normal stratified split would indirectly reveal information

about the target variable through the validation process, by spreading observations from

the same well across all data sets. The test set, the data set that is supposed to be

representing how the data would be obtained and predicted in "real life", would now

contain information from wells that are also present in the train- and validation.

If we were to evaluate our models based on a test set that had been stratified in the

normal way, we would have obtained artificially good results that would not have been

representative of the actual predicting power of the models. When the models then would

be used to predict on unseen data, they would no longer have access to information about

the correct formation for observations close to the target formation. Hence, it would

be much more difficult for the models to make predictions on unseen data. As a result,

the accuracy of the models’ predictions on a completely blind test set would likely be

significantly lower compared to the accuracy of the data stratified in a traditional way.

However, this does not mean that it would be impossible for a model, trained and validated

on a normal stratified split, to pick up generalized patterns, but it means the accuracy on

the test set might be unreliable. This makes it important to hold out a few blind wells,

36 3.3 Model Evaluation

and if the models perform well on completely blind test data that is representative for the

population, it would indicate that the model has generalized well.

To overcome the challenge of splitting the data in so that the formations were correctly

distributed, while simultaneously keeping the wells intact, we designed our own solution.

This solution was heavily inspired by a StackOverflow-suggestion (Ali Amin-Nejad, 2019).

Customized Stratified Train/Test Split

The designed solution first calculated the percentage-distribution of the formations in the

total data set. This was then used as a target in which the wells were assigned to either

the train- validation- or test set, depending on both the percentage-distribution of the

formations in the given well and the number of wells already assigned to the respective

data sets. The function would make sure that the correct percentage of wells would be

distributed across the three data sets, while at the same time keeping an even distribution

of formations. This way of splitting the data set led to a train set with 17 unique wells, a

validation set with 9 unique wells, and a test set with 5 unique wells. This split, with these

exact wells, was consistently used as a starting point for all of our models discussed in the

thesis. The python code for the customized solution can be found using the URL-link to

the public GitHub repository in Appendix A1.

Lastly, we would like to emphasize the focus we have had on keeping a set of test wells

completely separate from our models that were identical for all models. This is a crucial

step regardless of which machine learning technique you are applying, but since we have

experimented with different degrees ways of splitting the data, it was especially important

this thesis. Without testing the models on completely blind wells, we would neither be

able to obtain reliable performance measures nor compare our results across models.

3.3.3 Performance Measures

Since some of the formations in data set occurred much more frequently than others,

simply computing the accuracy of the predictions could potentially be misleading. When

the data set is skewed, a model that only predicts the formation that is most common will

3.4 Model Explanation 37

automatically gain an accuracy equal to the percentage distribution of that formation. To

resolve this, we used a few different performance measures.

We first calculated the precision and recall of the classifier. The precision is the accuracy

of the positive predictions, calculated as True Positive (TP), divided by the sum of True

Positive and False Positive (FP). The recall refers to the ratio of positive instances that

are correctly detected by the classifier and is calculated as True Positive (TP) divided by

the sum of True Positive and False Negative (FN). As can be seen in Equation 3.11, these

measures can be combined into a single metric known as the F1 score, which makes it

easy to compare different classification models. As can be seen in the Equation 3.11, the

calculation of the F1 score will give a high weight to low values, meaning the F1 score

will only be high if both precision and recall are high. For multi-class problems, the F1

score is equal to the accuracy of the predictions (Géron, 2019). This thesis uses the two

terms, F1 score and accuracy, interchangeably.

precision =
TP

TP + FP

recall =
TP

TP + FN

F1 = 2 ⇤ (precision ⇤ recall)
(precision+ recall)

(3.11)

The same performance measures were also applied at the group-level. As previously

discussed, a lot of the formations within a specific group had similar properties, meaning it

was relevant to check whether the predicted formation was in the same group as the actual

formation. If this was the case, it would mean that the model would be more accurate

than if it predicted a formation in a different group. This added extra understanding to

the models’ predicting power.

3.4 Model Explanation

A lot of times, identifying the reason why a machine learning model makes a specific

decision, might be as important as the actual accuracy of the prediction itself. At the

same time, the large amount of data used to make accurate predictions requires complex

38 3.4 Model Explanation

model structures, making it harder and harder for researchers and experts to interpret the

connection between the models’ input and output (Lundberg & Lee, 2017). In other words,

there is a trade-off between model complexity and interpretability, where researchers

either have to choose accuracy or interpretability. With the goal of eliminating this

trade-off, several methods have recently emerged in order to make it possible to interpret

the connection between the input and the prediction of complex models.

3.4.1 Additive Feature Attribution

Shapley Additive Explanations (SHAP)

For the purpose of our thesis, we have applied the SHapley Additive exPlanations, or SHAP

(SHAP-Developers, nd), framework to better understand how two of our best performing

models have made their predictions. SHAP is a framework that connects game theory and

local explanations to give a consistent measure of feature importance for a given machine

learning model (Lundberg, 2017). As illustrated in Figure 3.6, the prediction explanation

method SHAP, takes some input data together with a complex machine learning model

and generates an explanation for a given prediction. SHAP, combines several already

existing methods, to be able to keep both local and global interpretability of a model.

By global interpretability, we are referring to the fact that we are evaluating the feature

impact on the complete set of observations in our test data. By local interpretability, we

are referring to the fact that we are evaluating feature importance for a specific class.

Figure 3.6: Implementation of SHAP for model interpretation, reprinted from
"Interpretable Machine Learning" (Molnar, 2019).

Even though the SHAP -value is based on the old coalition game theory Shapley Value

introduced by Lloyd Shapley in 1953 (Roth, 1988), it is important to note that the values

3.4 Model Explanation 39

represent two different measures. SHAP utilizes several components to calculate its values,

where one of the main component is Shapley values, or Shapley regression. The remaining

components of the SHAP calculations is Shapley sampling and quantitative input influence

feature attributions, in addition to connections to other attribution methods such as

LIME and DeepLIFT (Lundberg & Lee, 2017). In other words, calculating SHAP -values

is a very computationally complex process. This section will provide an explanation of

SHAP, that will allow the reader to understand how SHAP -values can be used to interpret

model-behavior. However, it excludes detailed explanations of Shapley regression, LIME

and DeepLIFT.

The additive feature attribution method SHAP can help us explain our model’s output,

by attributing an effect �i to all input-features, and summing the total attribution from

all features to approximate the output of the original model f(x). Additive feature

attribution can be defined as a linear function for binary variables, as defined in Equation

3.12 (Lundberg & Lee, 2017).

g(z
0
) = �0 +

MX

i=1

�iz
0

i, (3.12)

Where z
0 2 {0, 1}M , M = number of simplified input features, and �i 2 R. Here, z0

i = 1

when the variable is observed, else z
0
i = 0.

Equation 3.12, shows how the simplified model g(z0
) can approximate the feature-impact

from a complex model f(x) by approximating output z
0 using the attribution value �i

for each of the individual features. This definition implies that by satisfying the three

natural properties, local accuracy, missingness, and consistency, there is only one solution

to assign the weights �i to the linear model g(z0
) (Lundberg & Lee, 2017).

Natural Property 1 (Local Accuracy)

The natural property local accuracy defined in Equation 3.13, says that the output of

the simplified model g(z0
) must equal the output of model f(x) for each prediction being

40 3.4 Model Explanation

explained.

f(x) = g(z
0
) = �0 +

MX

i=1

�iz
0

i (3.13)

Natural Property 2 (Missingness)

The natural property missingness defined in Equation 3.14, says that a missing feature x
0
i

from the original model, requires the feature to have no impact in to the simplified model

g(z
0
).

x
0

i = 0 =) �i = 0 (3.14)

Natural Property 3 (Consistency)

The natural property consistency defined in Equation 3.15, says that if removing a feature

in one model always makes a bigger difference in another model, it should be valued as

more important in the first model compared to the second. For two models f and f
0 , let

f
0
x(z

0 \ i) represent setting z
0
i = 0 and the original model fx(z

0
) = f(hx(z

0
))

f
0

x(z
0
)� f

0

x(z
0 \ i) � fx(z

0
)� fx(z

0 \ i) (3.15)

This implies that: �i(f
0
, x) � �i(f, x)

To summarize, SHAP provides a unified measure of feature importance where every unique

observation of input-data is assigned a SHAP -value. Depending on which model you are

evaluating, the returned SHAP -values will differ. Since the two models, we have analyzed

through SHAP are built using the tree-based algorithm LightGBM, our predictions are

outputted as probabilities. As a result, the SHAP -values we will be analyzing is presented

in the log-odds space. For each class, the sum of these SHAP -values �ij (row i and column

j) and mean prediction ŷ will add up to the total log-odds probability P of predicting class

x. In other words, ŷ can be referred to as the base value, which represents the value that

would be predicted if we did not know any features for this particular output (Molnar,

2019). This can be defined as seen in Equation 3.16.

3.4 Model Explanation 41

Px =
X

�ij + ŷ (3.16)

The Log-odds scale is based around 0 and ranges from infinity negative to infinity positive.

It represents a binary scenario for each class, where 0 equals 50% likelihood of predicting

a given class. In other words, high positive log-odds values represent a probability closer

to 100% and low negative values a probability closer to 0%.

42

4 Data Processing

For this project, we were given access to a data-repository containing separate data sets

for wells spread across the Norwegian Continental Shelf. Since the models are only able

to learn from the input given, the data wrangling and restructuring was one of the most

crucial parts of the thesis. The structure of the data sets, the feature engineering, and

the choices made when it comes to the processing will affect the models directly. The

first section of the chapter refers to the descriptive statistics of the data sets. Proper

knowledge of the data set was crucial in order to make the correct decisions in regards

to the structure, cleaning, and the feature engineering of the data. The second section

discusses the feature engineering while the last section talks about the data restructuring.

4.1 Description of the Data Set

The descriptive statistics that was the basis for the decision made in the thesis are the

same as are presented. It is based on the training set only in order to avoid what is known

as data snooping bias, overfitting on the test set by, for instance, selecting a particular

kind of machine learning model because you have analyzed the full data set (Géron, 2019).

Distribution of Formations

An important discovery was the skewness in the distribution of the formations in the data

set. As can be seen in Figure 4.1, most of the formations were either undifferentiated or

had no formal name. In fact, those two formations combined accounted for 53.44% of all

the formations in the data set. An uneven distribution is not ideal, as it might lead to

the algorithms not being able to predict the less common formations.

4.1 Description of the Data Set 43

Figure 4.1: Distribution of the formations in the data set. The figure illustrates the
skewness in the percentage distribution of the formations. Only the formations that
accounted for more than 1% of the total observations are included in the figure. The data
set contained 13 additional formations.

The skewness of the formations and the large number of undifferentiated formations

were especially a problem since the formations did not necessarily have very distinct

feature-characteristics. An example of this can be seen in Figure 4.2. In the figure, three

of the input variables are plotted against each other, and the colors represent unique

formations in the data set. From the figure, it is clear that the formation from Figure

4.1 that was most common in the data set, the undifferentiated formation, has a lot of

variation in the input values. The formation contains values spread across the whole plot.

The fact that the variation is so large and that it is the undifferentiated formation that

accounts for the highest variation would make it more difficult for the models to separate

the formations based on the input.

44 4.1 Description of the Data Set

Figure 4.2: Crossplot of original formations. Each color represents a unique formation.
The figure shows the input variables gr, dt, and tvd plotted against each other. From
the figure it can be seen that the most common formation, undifferentiated, has a lot of
variation. The formation can be found on the entire specter of values in all the plots.

To resolve this, we labeled all the formations that were either labeled as undifferentiated

or no formal name with the corresponding group for that formation. For instance,

an undifferentiated formation in the group nordland gp would get the label

undifferentiated_nordland gp. In doing so, the number of formations in the data set

went from 28 to 38. We also note that in order to improve the readability of some of the

figures, the formations and groups were given a numerical value. A table in which the

numerical value and the corresponding formation and group can be found in Appendix A6.

The implementation of the additional formations partly solved the problem of the high

variability of the undifferentiated formations since the groups had more distinct features,

compared to the individual formations. This can be seen in Figure A3.2, where the colors

of the individual groups are mostly grouped and not spread across the plots. A cross-plot

on a group level containing all input variables can be found in Appendix A3. Despite the

4.1 Description of the Data Set 45

solution resulting in lower variability in the undifferentiated formation, there were still

some issues. The solution did not take into account the possibility that there might be

several formations that were undifferentiated within the group. If that was the case, they

would all be labeled the same. This would especially be an issue if the formation was

labeled correctly in a different well since that would mean two different formations would

have two different labels. As there was no way for us to resolve this issue, we implemented

the solution above and noted that it might be a cause of error.

Figure 4.3: Crossplot of the groups in the data set. Each color represents a unique
group. The figure shows the input variables gr, dt, and tvd plotted against each other.
From the figure it can be seen that the groups have relatively distinct values as the colors
are mostly grouped.

46 4.1 Description of the Data Set

Descriptive Statistics

After doing some data exploration we found out that five of the wireline logs; True vertical

depth (tvd), Gamma ray log (gr) (Section 2.2.1), Medium Resistivity Log (rmed) (Section

2.2.2), and Deep Resistivity Log (rdep) (Section 2.2.2), were consistently collected for

most of the wells. Some of the wireline logs included a large number of missing values, but

there were still enough observations that they could be used for some of the models. These

logs include Sonic log (dt) (Section 2.2.5), Neutron porosity log (nphi) (Section 2.2.4)

and Density log (rhob) (Section 2.2.3). A table containing all variables in the original

data set with the corresponding number of missing values can be found in Appendix A2.

Through our data exploration, we also observed some obvious errors in the data set. For

instance, gr contained some negative valuesm, while rmed contained some extremely large

values. As can be seen in Table 4.1, Rmed had a mean of 26.38 and a standard deviation

of 1191.49, but with a median value of 1.3176 it was evident that both the mean and

the standard deviation were highly influenced by some of the outliers in the variable. The

outliers in the data set can also be seen in the boxplots in Appendix A4.

Table 4.1: Descriptive statistics of the data set before filter was applied

tvd gr rmed rdep dt nphi rhob
count 342392 342392 337681 337644 204108 141932 141588
mean 1151.6 78.75 26.38 3.44 128.1 0.35 2.25
std 557.23 37.33 1191.49 28.22 33.51 0.15 0.19
min 133.0 -1.24 0.17 0.18 48.12 -0.06 1.37
25% 671.93 55.57 0.89 0.9 95.0 0.22 2.1
50% 1166.66 82.56 1.32 1.32 141.55 0.34 2.25
75% 1632.93 102.96 1.78 1.77 151.92 0.48 2.41
max 2497.9 1163.44 62290.77 2316.71 220.3 1.82 2.99

To solve this problem, we implemented a filter where all values above or below certain

thresholds would be removed from the data set. Implementing such a filter can be

problematic, as it might lead to correct values being removed, making the models incapable

of predicting correct values. On the other hand, outliers and incorrect values might distort

the models’ ability to generalize well on new data, making it important to find the right

balance between a too strict and too mild filter. The values chosen can be seen in Table

4.2 and was set to the 99.95 percentile of the variables, based on recommendations from

Pro Well Plan.

4.1 Description of the Data Set 47

Table 4.2: Filter

Min Max
gr 0 244.72

rmed 0 1573.66
rdep 0 431.3

As can be seen in Table 4.3, when we applied the filter, the numerical description of the

data set changed drastically. For instance, the standard deviation of rmed changed from

1191.49, before the filter was applied, to 22.52 after the filter was applied, and there

were no longer negative values in gr.

Table 4.3: Descriptive statistics of the data set after filter was applied

tvd gr rmed rdep dt nphi rhob
count 337174 337174 337174 337174 202621 140017 141220
mean 1151.29 78.76 2.69 2.94 128.24 0.35 2.25
std 553.35 36.83 12.53 15.26 33.48 0.15 0.19
min 133.0 0.01 0.17 0.18 48.12 -0.06 1.37
25% 674.94 55.58 0.89 0.9 95.15 0.22 2.1
50% 1165.89 82.8 1.32 1.32 141.64 0.34 2.25
75% 1626.89 103.08 1.78 1.76 151.96 0.48 2.41
max 2494.91 244.7 813.07 431.24 220.3 1.82 2.99

Crossplot matrix

After the filtering of the data set and the inclusion of additional formations, it was

important to investigate the results of the data cleaning through a new cross-plot. A

cross-plot on formation level, containing all input variables, can be found in Appendix A3

Figure A3.1 indicates that the variability of the formations went down compared to what

was evident in Figure 4.2. Other conclusions that can be drawn from the figure is that

formation 29 is mostly present in the top part of the wells. Furthermore, since a lot of the

colors are overlapping, it is clear that some of the formations contain fairly similar values.

This can indicate that the formations might not be linearly separable, an observation that

is helpful when determining which algorithms to implement.

48 4.2 Feature Engineering

Figure 4.4: Crossplot of all formations. Each color represents a unique formation. The
figure shows the input variables gr, dt, and tvd plotted against each other. From the figure
it can be seen that the formations are grouped to some degree. For instance, it is evident
from the plot in which tvd and gr are plotted against each other that formation 29 is
mostly present in the part of the wells where the values of tvd are low, meaning the top
part of the wells. However, since a lot of the colors are overlapping it can also be seen
that some of the formations contain fairly similar values.

4.2 Feature Engineering

In terms of feature engineering, we applied a few different methods with a goal of improving

the predicting power of the models.

4.2 Feature Engineering 49

Feature Scaling

The fact that some of the variables in the data set had very different scales could potentially

cause a problem for some of the machine learning algorithms. Since a lot of the algorithms

use Euclidean distance between two data points, the algorithms only take in the magnitude

of the feature and neglect the units. This means that the features with high magnitudes

will have a stronger influence than the features with low magnitudes (Asaithambi, 2017).

In order to resolve this problem, we used the standard scaling method. As can be seen

in Equation 4.1, standardization of a feature is done by subtracting the mean of the

feature from all values so that the feature has a mean equal to zero. The values are then

divided by the standard deviation of the feature so that the resulting distribution has

unit variance. Since standardization is much less affected by outliers, compared to, for

instance, min-max scaling, this method was chosen for our data set.

z =
x� µ

�
(4.1)

Feature Transformation

Further, we also transformed the longitude and latitude variables, as described in the

Equation 4.2 in order to scale them. Since longitude and latitude represent a three-

dimensional space, the highest and lowest value will, in reality, be close to each other.

However, this would not be picked up by a machine learning algorithm, meaning that

simply using longitude and latitude for machine learning might cause a problem. By

mapping longitude and latitude to x, y, and z coordinates, the points that are close in

reality will also be close in the data set. When this was done, we could then scale the

variables using the standard scaling method described in Equation 4.1.

x = cos(lat) ⇤ cos(lon)

y = cos(lat) ⇤ sin(lon)

z = sin(lat)

(4.2)

50 4.3 Data Restructuring

Above and Below

Considering the way rock-formations are formed where formations close to each other

are likely to depend on each other, as previously discussed, it could be beneficial for the

models to have access to information about the other observations. In order to potentially

increase the predicting power, we experimented with the inclusion of some of the features

from the observation above and below. For instance, an observation at row 30 would also

be fed the gamma ray value for the observation at row 29 and 31.

4.3 Data Restructuring

3-Dimensional Data Set

Since the input of an LSTM network has to be a 3D-array, we needed to restructure the

data to fit the specifications seen in Figure 4.5. To do so, we used Lasscock (2019)’s

code as inspiration and built on that. When the data was restructured, each batch used

information from the four observations above and the four observations below in order to

make predictions. Further, the data was structured in a way that takes the depth into

consideration. This was motivated by the combination of the fact that the gates in the

algorithm allow LSTM-networks to have a memory and the importance of depth when

labeling a formation.

4.3 Data Restructuring 51

Figure 4.5: Illustration of the input shape for LSTM networks. Reprinted from
"Understanding Input and Output shapes in LSTM | Keras" by Verma (2019).

Generator Function

Another issue we encountered when running the LSTM-models, however, was that we

quickly ran out of memory and were forced to stop the tuning process. The problem was

that each time the model ran through an epoch, one complete pass through the whole

training set, the model would not remove the already loaded data, but rather add the

data set of the next epoch. As a result of this, fine-tuning the models would have been

impossible as it requires running way more epochs than we were able to. To resolve this

issue, we created a generator function that would load one batch at a time and remove the

batch again. This generator function utilized the same restructuring as described above,

but it would do it on each batch instead of the whole data set. As a result, we were able

to resolve the memory issue and better tune our LSTM-networks.

52

5 Analysis and Results

We have built, trained, and evaluated four different machine learning models in order to

predict rock-formations as accurately as possible. One Logistic Regression model, which

will function as our benchmark, two LightGBM models, and one LSTM model. Each

model was trained separately with varying tuning efforts, using different sets of features

as input. The following section will describe how each individual model was structured,

trained, and we will present the results obtained on the test wells. An explanation of

the theoretical framework of the machine learning techniques Logistic Regression, Light

Gradient Boosting Machine (LightGBM) and Recurrent Neural Network (LSTM) can be

found in Section 3.1.1, 3.1.2 and 3.1.3.

5.1 Experimental Setting 1 - Logistic Regression

5.1.1 Experimental Framework

For our first experiment, our main objective was to build a basic model that could function

as a baseline for the rest of our analysis. This benchmark will be used as a reference to

evaluate if additional effort, through feature engineering and construction of more complex

and computationally expensive models, will be worthwhile with respect to both resources

and increased performance. The model was trained using the framework in Table 5.1.

5.1 Experimental Setting 1 - Logistic Regression 53

Machine Learning Algorithm:
Logistic Regression
Input Features:
’gr’, ’rdep’, ’rmed’, ’tvd’
Feature Engineering:
’x’, ’y’, ’z’
Total Data Shape:
(406 666, 20)
Hyperparameter Tuning:
Manual trial and error based on intuition
Objective:
Multi-class
Loss:
Multi logarithmic loss
Regularization:
l2 - Ridge regression

Table 5.1: Experimental setting 1 - Framework

To summarize Table 5.1; The baseline model was created using Logistic Regression, an

algorithm that is significantly simpler compared to other more recent machine learning

techniques. Nonetheless, it is still a powerful algorithm that can help us gain valuable

insight with regards to the relationship between our input features and target variable

(Shulga, 2018).

The baseline model was given a pre-cleaned and pre-processed data set, following the

steps described in Section 4. This left us with an initial set of features consisting of; three

distinct well log measures, coordinates of the well, two separate depth measures, and our

target variable formation. This will hereafter be referred to our initial data set. None of

the feature engineered variables were introduced to our benchmark model.

As for all our models, we have used our own stratified split function described in Section

3.3.2 to divide our data set into three parts; training-, validation- and test data. This is

done in order to effectively tune and monitor our benchmark model’s ability to generalize.

The model was built and trained using the python-package sklearn and the function

LogisticRegression (Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel,

Prettenhofer, Weiss, Dubourg & others, 2011). To tune the model, we used a manual

approach based on the intuition described in Section 3.2.1, Tuning the Logistic Regression.

54 5.1 Experimental Setting 1 - Logistic Regression

5.1.2 Results

In terms of results, the baseline model yielded surprisingly accurate predictions on the test

set with a total accuracy of 70.63%. As can be seen in Table 5.2 The highest accuracy

was achieved on well 16/2-7 A with an accuracy of 85.92%, whereas the lowest accuracy

was achieved on well 16/2-14 T2 with a score of 58.46%. Table 5.2 also shows that for

all the wells, the model had better accuracy on group level. This suggesting that the

wrong predictions were usually not too far off since it often predicted formations within

the correct group. The total accuracy on group level was 93.47%, and the accuracy was

above 90% for all wells in the test set. It was interesting to see that the highest accuracy

on group level was achieved on the well that had the lowest score on formation with an

accuracy of 95.6%. A possible explanation of this is the previously discussed similarities

between formations within the group. It also suggests that despite the relatively poor

performance when predicting the formations, the model might have picked up on some

trends in the data set.

Table 5.2: Logistic Regression accuracy on blind wells

LogReg
Formation Group

16/3-7 0.692 0.9312
16/2-14 T2 0.5846 0.956
16/2-11 A 0.6317 0.9384

16/3-6 0.7656 0.9062
16/2-7 A 0.8592 0.9415

Total 0.7063 0.9347

This can also be seen in Figure 5.1, which illustrates both the predicted formation vs.

the actual formation and the group that corresponds to the predicted formation vs. the

actual group. In Figure 5.1, the well in which the model had the lowest- and the well in

which the model had the highest accuracy are presented. Each color in the formation plot

corresponds to a unique formation in the data set. This is also true for the groups. A

comparison of the predicted values for all models on each well can be found in Appendix

A5.

Figure 5.1 serves as a good illustration of the fact that the model performed better on

group level than on the formations since the predicted formations typically corresponded

5.1 Experimental Setting 1 - Logistic Regression 55

to a formation within the correct group for both wells. When looking at the comparison

of well 16/2-14 T2, we can see that the model, in reality, performed significantly worse on

the prediction of the formations than the accuracy of the well suggested. The accuracy

was boosted by the fact that approximately the first third of the well consists of the

same formation, and this was predicted correctly. However, as soon as the formations

changed, the model struggled to predict correctly. It can also be seen that the model had

difficulties with the transitions between the formations. This, in combination with the

fact that the formation was within the correct group, suggests that for this particular well,

the model might not have been able to separate the different formations from each other

due to the similar characteristics of the formations in that group. When looking at the

comparison of the well in which the model had the highest accuracy, we can see some of

the same trends in which the transitions were the most difficult parts to predict. However,

compared to the predictions of well 16/2-14 T2, the transitions are predicted significantly

better. The figure suggests that the bottom area of the wells is the most difficult part to

predict. This makes sense, considering the fact that the bottom part of the wells usually

is more fragmented, compared to the top part of the wells.

56 5.2 Experimental Setting 2 - LightGBM 1

(a) Well 16/2-14 T2 (b) Well 16/2-7 A

Figure 5.1: The Logistic Regression model’s predicted formations and groups compared
to the actual for the best and worse well. Each color represents a unique formation and
group. The figure illustrates the areas in which the model predicted correctly and where
the model was not able to make the right predictions.

5.2 Experimental Setting 2 - LightGBM 1

5.2.1 Experimental Framework

For our second experiment, we wanted to see if a boosted classification tree would be able

to outperform our benchmark model. Here, our main objective was to build a model that

was trained on a data structure that replicated how it would be implemented in reality.

Our hypothesis was that by replicating a real-world data structure, the model would be

able to generalize better, and with that, be able to label our test set more accurately. The

framework we used to train the model can be seen in Table 5.3.

5.2 Experimental Setting 2 - LightGBM 1 57

Machine Learning Algorithm:
LightGBM
Input Features:
’tvd’, ’gr’, ’rdep’, ’rmed’, ’dt’, ’nphi’, ’rhob’
Feature Engineering:
’x’, ’y’, ’z’, ’gr_above’, ’gr_below’, ’rmed_above’, ’rmed_below’, ’rdep_above’,
’rdep_below’, ’gr_rmed’, ’gr_rdep’
Total Data Shape:
(406 666, 20)
Hyperparameter Tuning:
Bayesian optimization
Objective:
Multi-class
Loss:
Multi logarithmic loss
Learning Rate:
0.05
Regularization/Dropout:
L1

Table 5.3: Experimental setting 2 - Framework

To summarize Table 5.3; The model was built using the tree-based boosting algorithm

LightGBM. LightGBM was chosen because it is a high-speed algorithm that requires less

memory to run. It also provides a detailed description of feature importance which, gives

valuable insight for further analysis.

For this model as well, the data was divided into training-, validation- and test sets using

our own splitting function, described in Section 3.3.2.

The model was trained and validated numerous times in a strategic manner. We started

off by feeding the model our pre-processed initial data set, as described in Section 4,

before we added each of the feature engineered variables, one by one, to see if they added

any value to our models. Feature importance was evaluated continuously throughout the

training process. This helped us make individual assessments on whether we should keep

each of the individual variables as input or not.

Following the tuning process described in Section 3.2.2, a hand-picked set of

hyperparameters was tuned using a Bayesian optimization approach, to help us identify

the "best" tree structure. After numerous tuning runs on different sub-sets of our complete

portfolio of features, the best performing model was trained on 19 input variables; our

58 5.2 Experimental Setting 2 - LightGBM 1

complete initial data set, above and below values for gamma ray, medium resistivity, deep

resistivity, and re-calculated coordinate values.

5.2.2 Results

With respect to the results, the LightGBM model without a randomized shuffled training

and validation split yielded a total accuracy of 77.58%, a 6.95pp increase in accuracy

compared to our previously discussed benchmark model. As can be seen in Table 5.4,

the wells in which the model yielded the highest and lowest accuracy were 16/2-7 A

and 16/2-14 T2, with accuracy of 88.8% and 58.3%, respectively. Furthermore, the

model performed very well on the group level, with a total accuracy of 94.23%. This

indicates that even if the model missed on a specific formation, it is in general able to

pick up patterns sufficiently enough from our training data that it is able to predict a

formation with properties close to the target formation. This is also the case for the worse

performing well, well 16/2-14 T2, where the model had an accuracy of 91.53% on group

level. For most of the wells in the test set, LightGBM 1 obtained a higher accuracy on

both formation- and group level, compared to our Logistic Regression benchmark. This

suggests that the LightGBM model was able to identify stronger predictors from the

training data compared to the Logistic Regression.

Table 5.4: LightGBM 1 accuracy on blind wells

LGBM 1
Formation Group

16/3-7 0.7132 0.945
16/2-14 T2 0.583 0.9153
16/2-11 A 0.8569 0.9472

16/3-6 0.8109 0.9332
16/2-7 A 0.888 0.9673

Total 0.7758 0.9423

In Figure 5.2, the wells of which the model achieved the highest- and lowest formation

accuracy are plotted against each other. By analyzing Figure 5.2, we can also see that the

model is able to predict formations within the same group very accurately for both wells.

However, by comparing the model’s prediction on a formation level, the difference between

the two wells becomes more prominent. For well 16/2-14 T2, the first long sequence of

formations is predicted quite accurately, but as we move further down the well, the model

5.2 Experimental Setting 2 - LightGBM 1 59

had trouble differentiating between similar formations within the same group. For well

16/2-7 A, the model is able to distinguish similar formations much better, predicting the

long- to mid-length sequences of the same formations very accurately. In general, if we

consider the model’s predictions on all blind wells (as illustrated in Appendix A5), there is

a clear trend that the transitions between the formations are the most difficult segments

to predict, especially for the bottom, more fragmented, part of the well. Therefore, it is

impressive to see how precise the model is able to predict the transition-points between

the formations for well 16/2-7 A.

(a) Well 16/2-14 T2 (b) Well 16/2-7 A

Figure 5.2: LightGBM 1’s predicted formations and groups compared to the actual for
the best and worse well. Each color represents a unique formation and group. The figure
illustrates the areas in which the model predicted correctly and where the model was not
able to make the right predictions.

5.2.3 Model Explanation

Going further, it is also interesting to take a closer look at how the model made its

predictions. As discussed in Section 3.4, the package SHAP was utilized to analyze how

60 5.2 Experimental Setting 2 - LightGBM 1

the different input features influenced the model’s predictions. As a quick reminder, SHAP

helps us make automated calculations of additive feature importance. The outputted

SHAP value is given at a log-odds scale, where the value indicates how much the specific

observation added, or decreased, the probability for predicting a particular formation. We

will first analyze the predictions on a global level by studying Figure 5.3, before we dig

deeper, and look at the feature effects for two formations with high sample frequency in

test data by studying Figure 5.4 and Figure 5.5.

To study the input features’ effect at a global level, we have plotted the accumulative

average SHAP values for all input features in Figure 5.3, ordered from highest to lowest

influence on the model’s predictions. By global level, we are referring to the fact that we

are evaluating the model on the complete test set. In this figure, the first 19 formations

with the highest cumulative SHAP -values were given a unique color while the remaining

19 are marked in turquoise. The formations are colored in descending order, starting with

the formation with the highest accumulated mean SHAP -values, marked in dark blue.

Figure 5.3 clearly shows that the depth variable tvd was the most important feature with

respect to the models ability to separate between the classes. Further, the well logging

measures acoustic log (dt), density log(rhob), neutron porosity (nphi), and gamma ray

(gr), in combination with the two location indicators x and y, added additional context

and predictive power to the model. The specific influence these features’ had on the model

output will be discussed in greater detail at the end of this section.

5.2 Experimental Setting 2 - LightGBM 1 61

Figure 5.3: The figure illustrates the SHAP feature importance for LightGBM 1,
measured as mean absolute SHAP -values. The first 19 formation is represented by a
unique color, the remaining 19 is represented by the turquoise color. True vertical depth
was, accumulated for all formations, the most influential feature.

The coloring in Figure 5.3 indicates that, depending on which formation we are talking

about, the individual features had a varying impact on the model output. Even though the

fluctuations in predictive power for the unique formations were quite low, it is interesting

to note that for formation skade fm, and especially undifferentiated nordland group, the

depth measure was particularly important. High depth importance suggests that the

two formations generally can be found at a specific depth range of the well. To further

investigate such formation-characteristics, we took it a step further and plotted the feature

62 5.2 Experimental Setting 2 - LightGBM 1

importance for each variable against two of the formations with the highest sample

frequency in our blind test data.

Figure 5.4: The SHAP summary plot for LightGBM 1 illustrates the relationship
between the original feature value and the impact on the predicted class undifferentiated
nordland gp. The feature impact is shown on the horizontal dispersion on the x-axis.
The coloring of the points indicates if the original feature value was high (violet) or low
(blue). As an example, a low original feature value for true vertical depth increase the
models predicted probability of classifying the observation undifferentiated nordland gp.
On the other hand, a high feature value for true vertical depth, would push the predicted
probability for class undifferentiated nordland gp towards 0.

Figure 5.4 gives us a detailed look at the model’s feature importance for the formation

undifferentiated nordland gp. By studying the SHAP values, we are now able to identify at

what depth-range of the well undifferentiated nordland gp normally can be found. The most

influential feature tvd, has a clear negative relationship to the formation undifferentiated

nordland gp, where low depth values increase the probability for the observed value to be

classified as undifferentiated nordland gp, and vice versa. Next, we can also see that the

model identified a positive relationship between the acoustic log dt, and neutron porosity

5.2 Experimental Setting 2 - LightGBM 1 63

nphi. To summarize, we can say that an observation close to the surface of the well with

a high measured value of dt and nphi, and a mid-range value of rhob, would make it very

likely for the model to output undifferentiated nordland gp as the predicted formation.

Figure 5.5: The SHAP summary plot for LightGBM 1 indicates that medium true
vertical depth values increase the models predicted probability of classifying the observation
skade fm.

Going further, we can take a brief look at the feature importance for the formation skade

fm in Figure 5.5. Here, it is interesting to notice that all three location indicators x, y, and

z is among the strongest predictors for skade fm. In other words, this formation seems

to be location-specific. To summarize, certain locations given by x, y, and z, mid-range

depth measures, and high values of dt, would make it very likely for the model to output

skade fm as the predicted formation.

64 5.3 Experimental Setting 3 - LightGBM 2

5.3 Experimental Setting 3 - LightGBM 2

5.3.1 Experimental Framework

For our third experiment, our main objective was to re-structure our training and validation

data to get as many samples of each individual formation as evenly distributed as possible.

This would give the model more examples of each formation to train on, which again

could help the model pick up more patterns with respect to the relationship between our

input features and the individual formation layers. By evenly stratifying our training- and

validation data this way, the series of observations for each well was randomly split across

the data sets. As discussed in Section 3.3.2, this gave our model bias because it was given

information about nearby formations through the training and validation process. To get

reliable test results, it was therefore crucial that we kept the original structure of our test

data. If we were to stratify our test data in a similar manner, we would most likely get

unrealistically accurate results, as the model would have been given information indirectly

that it would not have access to in reality. The framework used to train the model can be

seen in Table 5.5.

Machine Learning Algorithm:
LightGBM
Input Features:
’tvd’, ’gr’, ’rdep’, ’rmed’, ’dt’, ’nphi’, ’rhob’
Feature Engineering:
’x’, ’y’, ’z’, ’gr_above’, ’gr_below’, ’rmed_above’, ’rmed_below’, ’rdep_above’,
’rdep_below’, ’gr_rmed’, ’gr_rdep’
Total Data Shape:
(406 666, 20)
Hyperparameter Tuning:
Bayesian optimization
Objective:
Multi class
Loss:
Multi logarithmic loss
learning rate:
0.05
Regularization/Drop-out:
L1

Table 5.5: Experimental setting 3 - Framework

5.3 Experimental Setting 3 - LightGBM 2 65

To summarize Table 5.5; This model was built using the tree-based boosting algorithm

LightGBM. We started off with the same training-, validation- and test split as for all the

other models, but in order to get an even distribution of our target variable, we applied

the function StratifiedShuffleSplit from sklearn and specified formations as our stratifying

criteria (Pedregosa et al., 2011). Our initial test set remained completely untouched

throughout this data restructuring process.

Following the tuning process described in Section 3.2.2, the model was trained and

validated using a Bayesian optimization approach, while taking the best performing subset

of features from Experimental Setting 2 in Section 5.2 as input.

5.3.2 Results

As can be seen in Table 5.6, the LightGBM model with a randomized training and validation

split outperforms the previously discussed models with respect to both formation- and

group accuracy. The model yielded a total accuracy of 79.17%, which is an 8.54pp

increase from our benchmark model, and a 1.59pp increase from our first LightGBM

model. The formation-accuracy on individual wells are mostly higher than LightGBM 1,

except for the first two wells 16/3-7 and 16/2-14 T2. For the other wells the increased

formation-accuracy was between 1.29 and 5.28 percentage points, compared to LightGBM

1. Similarly to the previously described models, the best performance was returned for well

16/2-7 A, now with an accuracy of 91.84%. Going further, it was also interesting to see

that even if the formation-accuracy decreased for well 16/3-7 and 16/2-14 T2 compared

to the first LightGBM model, we saw an increase in group-accuracy with 1.66pp and

2.98pp, respectively. This indicates that even though the classifier on average had more

wrong predictions than LightGBM 1, the formations predicted were mostly formations

with similar characteristics to our actual formations, as they were in the same group.

Although the accuracy metric provides useful information, we have in the earlier sections

of our analysis seen that it, in some cases, can be a bit misleading. As a result, we will

now take a closer look at the model’s actual performance on the wells with the highest-

and lowest accuracy. The results for 16/2-14 T2 and 16/2-7 A are illustrated in Figure

5.6.

66 5.3 Experimental Setting 3 - LightGBM 2

Table 5.6: LightGBM 2 accuracy on blind wells

LGBM Stratified
Formation Group

16/3-7 0.7091 0.9616
16/2-14 T2 0.5698 0.9451
16/2-11 A 0.8698 0.9651

16/3-6 0.8637 0.9559
16/2-7 A 0.9184 0.9807

Total 0.7917 0.9621

By studying the worst-performing well 16/2-14 T2 in Figure 5.6, we can see that the

model seems to be predicting the transition-points between formations more accurately

compared to LightGBM 1. On the other hand, it also seems to have slightly more

difficulties identifying distinct characteristics for formations within the same group. This

means that the model, on average, miss-predicts the target formation to be a similar

formation within the same group. This was also discussed, considering our recent analysis

of the accuracy in Table 5.6. For well 16/2-7 A, the LightGBM algorithm continues to

perform impressively well. After training the model on a stratified data set, the model was

able to classify both formations and transition-points between formations very accurately,

even for the lower, more fragmented, part of the well.

5.3 Experimental Setting 3 - LightGBM 2 67

(a) Well 16/2-14 T2 (b) Well 16/2-7 A

Figure 5.6: LightGBM 2’s predicted formations and groups compared to the actual for
the best and worse well. Each color represents a unique formation and group. The figure
illustrates the areas in which the model predicted correctly and where the model was not
able to make the right predictions.

5.3.3 Model Explanation

To learn more about LightGBM 2’s behavior, we looked at how the individual features

influenced the model’s predictions. Similar to the model explanation of LightGBM 1, we

started by analyzing the predictions at a global level. Next, we studied the individual

feature effects for the formations undifferentiated nordland gp and skade fm, the same

two formations as analyzed before. This way, we could effectively compare the feature

importance between the two tree-based models.

68 5.3 Experimental Setting 3 - LightGBM 2

Figure 5.7: The figure illustrates the SHAP feature importance for LightGBM 2,
measured as mean absolute SHAP -values. The first 19 formation is represented by a
unique color, the remaining 19 is represented by the turquoise color. True vertical depth
was, accumulated for all formations, the most influential feature.

Figure 5.7 shows the input features’ effect at a global level. It was interesting to see

the significant increase in SHAP-values for all features compared to LightGBM 1. This

suggests that the individual features now have become stronger predictors, each influencing

the model more compared to previous model LightGBM 1. From the figure, it can be seen

that for this model as well, the depth feature tvd had the most substantial cumulative

influence on the model’s predictions. However, for the next eight features, there were some

minor re-ordering of the most important features. The most noticeable change was that

5.3 Experimental Setting 3 - LightGBM 2 69

all the three distance measures were ranked as the fourth, sixth, and seventh strongest

predictors for the model. This indicated that the model found more prominent patterns

concerning the relationship between location and the unique formations.

The coloring in Figure 5.7 indicated that there were few changes compared to the

previous model, LightGBM 1. First and foremost, it is worth noting that the formation

undifferentiated norland gp (marked in light blue) now was influenced less by the depth

feature tvd relative to the other features. However, it was still, by far, the most important

feature for that formation, meaning for certain depth points, it is likely that the observation

is undifferentiated norland gp.

Figure 5.8: The SHAP summary plot for LightGBM 2 indicates that low true vertical
depth values increase the models predicted probability of classifying the observation
undifferentiated nordland gp.

To further investigate these formation-characteristics, we plotted all SHAP -values against

each individual feature. To be able to compare the results, this was plotted for the

same two formations as for the model, LightGBM 1. Figure 5.8 depicts the model’s

70 5.3 Experimental Setting 3 - LightGBM 2

characteristics of formation undifferentiated nordland gp. The color scale goes from red to

blue, where red represents a high value of the given observation, and blue represents a

low value. Considering the most influential feature tvd, the model found a clear negative

relationship between depth and probability when predicting undifferentiated nordland gp.

For the remaining features, the most noticeable difference was the fact that the location

features y and z, were of significant importance. To summarize, an observation close to

the surface of the well, high measures of dt and nphi, in addition to a medium to low value

of y and a high value of z, will push the predicted probability for the model to output

undifferentiated nordland gp towards 100%.

Figure 5.9: The SHAP summary plot for LightGBM 2 indicates that medium true
vertical depth values increase the models predicted probability of classifying the observation
skade fm.

Next, for formation skade fm in Figure 5.9 the individual features’ relative effect on the

predicted probability did not changed much. We can see that location, thorough feature y

and x, have climbed up a few places, giving location an even bigger impact on the model’s

5.4 Experimental setting 4 - LSTM 71

predicted probability for the observation to be classified skade fm. To summarize, certain

locations given by x, y, and z, a medium to high depth value, high dt, in addition to a

low rdep and rhob, would push the model’s predicted probability for classifying skade fm

towards 1.

5.4 Experimental setting 4 - LSTM

5.4.1 Experimental Framework

For our neural network experiment, we wanted to see if an LSTM-network would be able

to pick up on the importance of the data structure in a well. Here too, our main objective

was to build a model which that trained on a data structure that replicated a real-world

scenario as close as possible. Our hypothesis was that by replicating a real-world data

structure, the model would be able to use some of the information geologists are using

in regards to how the formations were formed. Since formations close to each other are

likely to depend on each other, a model with memory might be able to pick up on the

depth-vise sequential information and the importance of the location of the well. The

framework we used to train the model can be seen in Table 5.7.

72 5.4 Experimental setting 4 - LSTM

Machine Learning Algorithm:
LSTM
Input Features:
’tvd’, ’gr’, ’rmed’, ’rdep’
Feature Engineering:
’x’, ’y’, ’z’
Total Data Shape:
(337 280, 8, 9)
Hyperparameter Tuning:
Random grid search
Objective:
Multi-class
Loss:
Categorical Crossentropy
Learning Rate:
0.01
Drop-out:
0.5
Batch Size:
128
Activation Function:
Softmax
Optimizer:
Adam
Network Structure:
Layer1: LSTM
Layer2: Dropout
Layer3: Dense

Table 5.7: Experimental Setting 4 - Framework

To summarize Table 5.7; The model was built using an LSTM-algorithm. LSTM was

chosen due to the promising results it has shown on time series data and the fact that

it could potentially pick up on patterns in the data set as a result of the memory gates

discussed in Section 3.1.3.

In terms of features, the original features were chosen, where longitude and latitude were

represented as x, y, and z, as discussed in Section 4.2. The train- and validation set had

a shape of (337 280, 8, 9), where 337 280 refers to the number of observations, 8 to the

number of variables used to predict, and 9 represents the observations each row in an

observation has access to, in addition to the row itself. For instance, when predicting the

formation in row 10, the model has access to the information in the variables in row 10

plus the information in the variables in row 6-9 and 11-14.

5.4 Experimental setting 4 - LSTM 73

The network consisted of an LSTM-layer, followed by a dropout layer with a rate equal to

0.1. The output layer of the model was a dense layer with a softmax activation function.

The optimizer chosen for the network was Adam.

5.4.2 Results

As can be seen in Table 5.8, the LSTM model performed significantly worse than all the

previously discussed models. The model had the lowest accuracy of all models, with a

total accuracy of 62.72%. This was 16.45pp lower than the highest performing model,

and compared to the benchmark model, which obtained an accuracy of 70.63%, it was

7.91pp lower. Table 5.8 shows that the lowest accuracy on the individual wells in the

test set came from the predictions of well 16/2-14 T2, and the highest accuracy came

from the predictions of well 16/3-6 with accuracy of 42.06% and 77.76%, respectively.

The LSTM model’s accuracy on these wells was significantly lower than the accuracy of

the other models obtained on the same wells. It is also interesting to see that despite the

fact that the accuracy on the group level was higher than the accuracy on the formations,

even these are far below the ones obtained by the other models we explored. The total

accuracy on group level was 79.84%, an accuracy that was 13.63pp lower than the total

accuracy of the benchmark model and 16.37pp lower than the highest obtained group

total accuracy. Furthermore, whereas all the accuracy, obtained by the benchmark model

on individual wells, were above 90%, the LSTM model did not have a single accuracy

above this score. The highest overall score came from the group level on well 16/3-6 and

was 85.06%.

Table 5.8: LSTM accuracy on blind wells

LSTM
Formation Group

16/3-7 0.5994 0.8362
16/2-14 T2 0.4206 0.7728
16/2-11 A 0.6734 0.7594

16/3-6 0.7776 0.8506
16/2-7 A 0.6469 0.7786

Total 0.6272 0.7984

For this model as well, it is interesting to investigate the prediction against the actual

formations. Figure 5.10 illustrates how poor the model performed when prediction the

74 5.4 Experimental setting 4 - LSTM

formations in well 16/2-14 T2. From the very beginning, the model was unable to predict

the formation, and as can be seen, some of the formations that were predicted were, in

addition to being wrong, also in the wrong group. This is very interesting, considering

the fact that the first formation present in well 16/2-14 T2 was the formation that was

observed the most in the entire data set, and all the previously discussed models were

able to predict this part with very high accuracy. Furthermore, we can see that the model

struggled with close to all the formations in that particular well. The well in which the

LSTM model obtained the highest accuracy, well 16/3-6, depicts a model that is somewhat

able to predict the formations, despite the fact that this model too struggles with the

transitions between the formations and groups. We can see that contrary to well 16/2-14

T2, the first part of the well was predicted perfectly, and a large section of in the middle of

the well was also predicted with fairly high accuracy. In this well, most of the prediction

errors that occurred were towards the bottom of the well. This is similar to what we

observed in the other models and originates from, as previously discussed, the fact that

the bottom part of the wells usually is more fragmented, compared to the top part of the

wells.

5.5 Summary 75

(a) Well 16/2-14 T2 (b) Well 16/3-6

Figure 5.10: The LSTM model’s predicted formations and groups compared to the
actual for the best and worse well. Each color represents a unique formation and group.
The figure illustrates the areas in which the model predicted correctly and where the
model was not able to make the right predictions.

5.5 Summary

In this analysis, we have examined how accurately the machine learning techniques

Logistic Regression, LightGBM, and LSTM have been able to label wells with subsurface

formations. To perform these predictions, the models were given different sets of wireline

logs, recorded professionally by various companies in the drilling industry. The wells we

have studied are located on the Norwegian Continental Shelf, or more specifically, in the

Johan Sverdrup field. A complete comparison of the performance for the individual modes

is shown in Table 5.9.

76 5.5 Summary

Table 5.9: Accuracy for all models on blind wells

LogReg LGBM 1 LGBM 2 LSTM
Formation Group Formation Group Formation Group Formation Group

16/3-7 0.692 0.9312 0.7132 0.945 0.7091 0.9616 0.5994 0.8362
16/2-14 T2 0.5846 0.956 0.583 0.9153 0.5698 0.9451 0.4206 0.7728
16/2-11 A 0.6317 0.9384 0.8569 0.9472 0.8698 0.9651 0.6734 0.7594

16/3-6 0.7656 0.9062 0.8109 0.9332 0.8637 0.9559 0.7776 0.8506
16/2-7 A 0.8592 0.9415 0.888 0.9673 0.9184 0.9807 0.6469 0.7786

Total 0.7063 0.9347 0.7758 0.9423 0.7917 0.9621 0.6272 0.7984

The total accuracy illustrated in Table 5.9, shows that the models were able to pick up

meaningful formation-patterns by combining information from different wireline logs. On

a group-level, all models, except for LSTM, managed to predict formations placed in the

same group remarkably accurate, with the best model yielding an average accuracy of 96%.

However, on a formation-level, the differences between the models become more prominent,

with total accuracies ranging from 63-79%. For all wells, the top part was predicted

quite accurately, and because about 1/3 of the wells consisted of the same formation, this

boosted the accuracy significantly. As we moved further down the wells, the models had

more trouble differentiating between similar formations within the same group. In general,

if we consider all the models’ predictions for all blind wells (as illustrated in Appendix

A5), there is a clear trend that the transition-points are the most difficult segments to

predict, especially for the lower, more fragmented, part of the well.

To illustrate this trend, we have included a summary of all the models’ predictions for

well 16/2-7 A in Figure 5.11. Figure 5.11, shows how most of the models were able to

separate between similar formations with high accuracy. Further, it is very impressive

to see how precise the LightGBM 2 model (c) was able to label the long- to mid-length

sequences of the well, and even more so for the precise labeling of the transition-points

between each formation for the lower, more fragmented part of the well.

5.5 Summary 77

(a) Logistic Regression (b) LightGBM 1

(c) LightGBM 2 (d) LSTM

Figure 5.11: Well 16/2-7 A - Predicted vs actual formation and group for all models

78 5.5 Summary

To study how the features influenced our two best performing models to make its

predictions, the package SAHP was utilized. We found that true vertical depth was,

undoubtedly, the most important feature to determine which to predict. We found that the

formation undifferentiated nordland group was, for both LightGBM models, characterized

by a negative relationship with true vertical depth, and a positive relationship with

the acoustic log measures (dt) and neutron porosity (nphi). In other words, when the

observation was located at the top of our blind wells and had high values of acoustic

and neutron porosity log, the model predicted the observation it to be undifferentiated

nordland group with high probability. In addition, we found that both LightGBM models

identified the formation skade fm as being location-specific, not only with respect to true

vertical depth, but also the coordinates of the well. In short, the models gave the observed

value a high probability of being skade fm if were found at a medium to high depth point,

had low values of dt, rdep, and rhob, while being located at specific locations in the Johan

Sverdrup field.

79

6 Discussion

Although the analysis showed that the application of machine learning could be helpful

when classifying formations in the Johan Sverdrup field, there are some non-negligible

limitations in the presented solution and some interesting areas for further research. In

the thesis, we used a supervised learning approach, and the discussed models were able to

predict the formations in the Johan Sverdrup field with relatively high accuracy, and the

accuracy on the group level was even better. The supervised learning approach means

that only the formations that the models have been exposed to can be predicted at a

later point. This leads to an important point when working with machine learning; the

availability of data and the quality of the available data. In the first part of this chapter,

we will discuss the validity of our results before we elaborate further on the importance of

domain knowledge. Lastly, some interesting suggestions for further research are presented.

6.1 Validity of Results

In terms of the validity of results, we note that throughout the entire process, the test set

was kept separated from the train- and validation sets. As mentioned in Section 3.3.2, this

was crucial in order to calculate the models’ performance on unseen data and to compare

the models to each other. Despite our effort to test the model as accurately as possible, it

is important to highlight the fact that the test accuracy varies significantly within the

individual wells in the test set. It is, therefore, possible that a different way of splitting

the data could have yielded different results. This implies that the results are somewhat

uncertain, and the degree of uncertainty of the models is an interesting area for further

research.

Furthermore, the data itself played a major role in this thesis. As was discussed in Section

3.3.2, much time was spent making sure the data sets were representative of the strata in

the Johan Sverdrup field in order for the models to be able to generalize well. We argued

that this was important considering the fact that if there were formations in the test set

that the model had not been trained on, the model would not be able to predict that

formation.

80 6.2 Domain Knowledge

The data set we utilized in the thesis was collected from the Norwegian Petroleum

Directorate (NPD), which can be considered a valid source of information. However, as

was seen in Section 4.1, more than half of the formations in the data set were either

unlabeled or had no formal name. The data sets were reported to NPD from various

sources and at different periods, meaning that the quality of the reported data might

be of varying quality. The time aspect of the data collection is of relevance since the

equipment being used has changed and improved throughout the years, and the fact that

different companies have collected the information can also mean that differences in the

data collection process, between the companies, can influence the results. Whereas a

human, labeling the formations, can utilize the experience and potentially other types of

measurements in order to identify the correct formations, the machine learning algorithms

presented in this thesis are only able to make predictions based on the data given to it.

In other words, if an algorithm is "fed" erroneous data, it will pick up false patterns, and

with that, make incorrect classifications.

6.2 Domain Knowledge

In the present hype around machine learning, it can seem as if anyone can use machine

learning, and no matter the task, the results will always be good. Companies are racing

to implement machine learning in their everyday tasks as it is presented as the solution to

all problems you might face.

In this hype, it can be easy to forget the importance of domain knowledge when working

with machine learning. The problem statement at hand in this thesis can be viewed as a

data science problem, but it is important to keep in mind that both the input- and output

variables are geological variables. A deep understanding of how formations are formed,

what values can be expected for the characteristics in certain formations, and other details

related to the geology is definitely helpful when working with such a technical task. When

we started working on the thesis, we had no previous knowledge of the geological aspect

tackled in this thesis, and a lot of time was spent reading up on geological topics relevant

to the problem (i.e., wireline logs and stratigraphy). In addition, we have collaborated

closely Pro Well Plan’s experienced team of geologists, which have given us valuable

support and suggestions throughout the whole process. Working on such a technical

6.3 Further Research 81

geological task has definitely shown us the importance of solid domain knowledge as we

would not have been able to obtain the results achieved in this thesis without the guidance

from Pro Well Plan.

Furthermore, better domain knowledge opens up for the possibility to analyze the results

in a more technical way by, for instance, investigating the wells in the train- and validation

set in which the models had the weakest performance. By investigating the performance

on individual wells further, it is potential for additional feature engineering and or a

different tuning approach of the models, in order to have the models pick up on patterns

were observed to be difficult to identify. A combination of solid domain knowledge and the

interpretable machine learning solution presented can also lead to better understanding

and potentially increase the predicting power further.

6.3 Further Research

The thesis opens up for several areas of further research. As was seen in Section 5.5,

LightGBM 2, the model in which the train and validation set was stratified in the normal

way, had the highest accuracy on the test set. The accuracy of 79.17% was 1.59pp

above the second-best model, LightGBM 2. Despite the LightGBM 2 model achieving

the highest accuracy, there are some problems related to the normal stratified split in

our case, as was discussed in Section 3.3.2. During training and validation, the normal

way of stratifying introduces information from the train set into the validation set. This

is not necessarily a problem, as long as the model is able to generalize well on a blind

test set. However, the fact that the model will tune the parameters using observations

that are almost identical to observations in the train set can lead to serious overfitting.

Overfitting refers to the production of an analysis that fails to reliably predict on unseen

data since the analysis corresponds too closely or exactly to a particular data set (Lexico,

nd). In our research, we observed that the best performing model, LightGBM 2, had an

accuracy on the validation set equal to 99.96%. When we see this in conjunction with

the overall accuracy obtained on the test set, it is clear that the model has overfitted to

the train and validation set. Furthermore, the fact that the validation accuracy is close to

100% also means that the model will not be able to learn further from the provided train

and validation set, even with additional tuning efforts. A validation accuracy equal to

82 6.3 Further Research

100% means that the model has no room for improvement and has, therefore, reached its

maximum performance.

Contrary to LightGBM 2, the second-best performing model, LightGBM 1, did not overfit

to the train- and validation set nearly as much. LightGBM 1 used data sets from our

customized splitting function, which kept all sequential observations from the same well

in the same data set. The fact that the observations in the wells were not split up meant

the models could potentially pick up on important information in regards to the layers, as

was discussed in Section 3.3.2. Furthermore, since the observations close to each other in

a well are likely to contain similar values, our function avoided the leakage of information

from the train set into the validation. The result was a model that obtained a validation

accuracy was equal to 79.06%. The validation accuracy was only 1.48pp higher than the

total accuracy on the blind wells, which indicates that LightGBM 1 did not overfit to the

train- and validation set and still has a lot of potential for improvement through further

tuning. It is, therefore, safe to say that the most promising model for further research is

LightGBM 1, despite the fact that it had a lower test accuracy than LightGBM 2 on the

blind wells.

In terms of the LSTM-model, we would like to emphasize the limited tuning efforts due

to the time- and computational constraint. The number of epochs we were able to run

and the fact that we were not able to experiment with the tuning of the hyperparameters

as much as needed meant that it was not surprising that the model was unsuccessful.

Through a better model tuning and the inclusion of the newly announced package Keras

Tuner, the results might have been different. Furthermore, as was seen in Section 5.5, the

LSTM-network obtained an accuracy of 77.76% on well 16/3-6, an accuracy that was

only slightly below some of the other models. This indicates that there is potential for

improvement through additional tuning. As a result, despite the fact that the model had

the weakest performance on this particular test set with the model tuning described in

Section 5.4, we argue that it does not exclude it from further research.

6.3.1 Other Areas and Approaches

The code written for this project was written in a way that makes it highly reusable

and therefore, applicable, to other oil-fields in which similar well logging data sets are

6.3 Further Research 83

available. The re-usability was important through our entire project, and as a result,

future analysis on other wells would be less time-consuming. By using the code available

in the GitHub repository found in Appendix A1, a lot of the data wrangling and data

cleaning will be automated, leaving more time for the analysis and tuning of the models.

Since the research of the thesis was limited to the Johan Sverdrup field, another area

of further research is the application of the models on wells in different fields. It would

be interesting to compare the accuracy of the predictions obtained in this thesis to the

accuracy obtained in other areas.

Furthermore, the analysis of our two best performing models, LightGBM 1 and LightGBM

2, in Section 5, showed that true vertical depth undoubtedly was the most important

feature when predicting formations. To maximize the accuracy of our predictions, we

decided to keep this variable as an input feature for all experiments performed. However,

for further research, it would be interesting to see if the models would be able to pick up

other patterns with regards to formation characteristics, by only taking features related

to rock-properties (e.g., wireline logs) as input.

6.3.2 Transfer Learning

Even though the performance of the LSTM model was significantly worse, then the other

models presented in the thesis, the neural network has an advantage over the other in

terms of weight sharing. Weight sharing, also known as transfer learning, has become

increasingly popular within the field of deep learning and describes the process of utilizing

the weights of a network that has been trained on a large data set (Chollet, 2018). An

interesting approach would be to train the model on the full data set, consisting of all 614

wells spread across the Norwegian Continental Shelf, and then use the weights to further

train the model on individual fields. If the original data set is large- and general enough,

the pre-trained network can in, effect, be used as a generic model and its features could

be used for other classification problems, even if the new problems contained different

classes than the classes available in the original data set (Chollet, 2018). As an example,

a neural network trained to classify formations could, through transfer learning, add value

to a network tasked with classifying formations in different locations or even a different

classification problem altogether, for instance, facies.

84 6.4 The Potential of Machine Learning in Stratigraphy Classification

6.3.3 Model Ensembling

Another approach that can be interesting to investigate further is model ensembling.

Model ensembling is a technique in which the predictions of different sets of models are

pooled together in order to improve the final prediction. It relies on the assumption that

different models trained independently will look at different aspects of the data, which in

turn will lead to a more accurate description of the data (Chollet, 2018). By, for instance,

combining the predictions from the models in the thesis through a weighted average, where

the best performing classifiers would be given a higher weight than the worse performing

classifiers, we could have utilized the diversity in the models. Additionally, we could have

used model stacking, a technique in which the predictions from one or more models are

fed to a different model.

Further research on the effect of model ensembling in the field of formation classification,

using wireline logs as input, could potentially lead to increased predicting power and

possibly better results than what was achieved in this thesis. This is further backed by the

fact that the LSTM model had the highest accuracy on well 16/3-6, whereas all the other

models achieved the highest accuracy on well 16/2-7 A. This suggests that the models

looked at different aspects of the data set, and combined, they could potentially have

yielded better predictions on the test set.

6.4 The Potential of Machine Learning in Stratigraphy

Classification

As discussed in the introduction, a more streamlined and data-driven approach to

stratigraphy interpretation can have a huge economic impact on the drilling companies

involved. By liberating the experts from their manual task of stratigraphy interpretation,

they can focus their time and resources on other tasks that can further improve the well

design. An automatic stratigraphy interpretation can help lower the risk of downtime

and failure, and thereby potentially saving the companies millions (M. Tvedt, personal

communication, December 17, 2019).

In this thesis, we found that machine learning can, with relatively high accuracy, label wells

6.4 The Potential of Machine Learning in Stratigraphy Classification 85

in the Johan Sverdrup field with subsurface formations. However, the results varied quite

a lot between the individual wells in our test set, even for our two best performing models,

LightGBM 1 and LightGBM 2. This indicates that models would require additional

work before they could generalize better on unseen data, and be fully integrated into

the well design process. On the other hand, by utilizing the proposed algorithms, the

geologists can get clear indications on what the models have predicted, both with respect

to performance and its way of "thinking". This means that the geologists can focus their

time and resources on the formations in which the algorithms are less certain of, freeing

up time for deeper analysis into the more difficult cases. In addition, we found that the

interpretable machine learning solution presented in Section 3.4 can be of great assistance

when analyzing and finding geological patterns for the difficult formations.

86

7 Conclusion

The purpose of this thesis was to investigate to what extent machine learning techniques

can use wireline logs as input in order to label subsurface formations. To achieve this, we

compared four different experimental approaches with three different machine learning

algorithms. The models were trained-, validated-, and tested on wells in the Johan

Sverdrup field. The models were compared using an accuracy measure on a blind test set,

seen in conjunction with a plot in which the predicted values were compared to the actual

values. Furthermore, Shapley Additive Explanations (SHAP) was used as an interpretable

machine learning approach in order to better understand how the LightGBM models

made their predictions.

The main conclusion that can be drawn from the thesis is that sophisticated machine

learning techniques are able to classify subsurface formations with relatively high accuracy.

The two best performing models were both built using a LightGBM algorithm, but with

two different approaches to the training- and validation split. The model that yielded the

highest accuracy was the model identified as LightGBM 2, with an accuracy of 79.17%.

The accuracy was 1.59pp higher than the accuracy of the model identified as LightGBM

1, which had an accuracy of 77.58%. Despite this, we concluded that LightGBM 1 had

the highest potential for further research of the models compared in the thesis. Due to

severe overfitting to training- and validation data in LightGBM 2, we argued that the

model not would be able to learn further and thereby not be able to improve the accuracy

of the predictions. LightGBM 1, on the other hand, did not overfit nearly as much, which

indicates that additional tuning can potentially increase the accuracy further.

The main contribution of the thesis can be split into three parts. Firstly, our research

showed that machine learning could predict subsurface formations in the Johan Sverdrup

field with an average accuracy of around 80%. Secondly, we showed how the interpretable

machine learning method SHAP can be used to gain a deeper understanding of how

models utilize information from wireline logs to make its predictions. These two findings

can be of great assistance to engineers and geologists currently performing the labeling

of the formations in a manual fashion. By utilizing the classification methods described,

experts can spend more time on other value-creating tasks. Lastly, the code written

87

for the project is generalized, meaning it can be applied to any data set with a similar

structure. For further work, we proposed tuning the models further and testing other

machine learning techniques in addition to investigating the models’ ability to classify

formations in other areas.

88 References

References

Ahmadi, M. A., Soleimani, R., Lee, M., Kashiwao, T., & Bahadori, A. (2015).
Determination of oil well production performance using artificial neural network (ann)
linked to the particle swarm optimization (pso) tool. Petroleum, 1 (2), 118–132.

Ali Amin-Nejad (2019). Complex dataset split - stratifiedgroupshufflesplit. Retrieved 02
November, 2019, from https://stackoverflow.com/questions/56872664/complex-dataset-

split-stratifiedgroupshufflesplit.

Almaliki, Z. A. (2018). Bias-variance dilemma? Retrieved 29 November, 2019, from
https://towardsdatascience.com/bias-variance-dilemma-74e5f1f52b12.

Andresen, P. A. (2019). Digital well delivery requires contextualization. Retrieved
20 November, 2019, from https://www.offshore-mag.com/drilling-completion/article/

14069059/digital-well-delivery-requires-contextualization.

Asaithambi, S. (2017). Why, how and when to scale your features. Retrieved 15
November, 2019, from https://medium.com/greyatom/why-how-and-when-to-scale-your-

features-4b30ab09db5e.

Asquith, G., Krygowski, D., Henderson, S., & Hurley, N. (2004). Basic well log analysis.
American Association of Petroleum Geologists.

Ayala, L. F. & Ertekin, T. (2005). Analysis of gas-cycling performance in gas/condensate
reservoirs using neuro-simulation, 10.

Bissuel, A. (2019). Hyper-parameter optimization algorithms: a short review. Retrieved
20 November, 2019, from https://medium.com/criteo-labs/hyper-parameter-optimization-

algorithms-2fe447525903.

Bøe, H. W. (2018). Enhanced lithological description of the jurassic sequence in the viking
graben and oseberg terrace using machine learning. Master’s thesis, NTNU.

Bølviken, E., Storvik, G., Nilsen, D. E., Siring, E., & Van Der Wel, D. (1992). Automated
prediction of sedimentary facies from wireline logs. Geological Society, London, Special
Publications, 65 (1), 123–139.

Brookshire, B. (2018). Scientists say: Stratigraphy. Retrieved 02 December, 2019, from
https://www.sciencenewsforstudents.org/blog/scientists-say/scientists-say-stratigraphy.

Brownlee, J. (2017a). A gentle introduction to exploding gradients in neural networks.
Retrieved 02 November, 2019, from https://machinelearningmastery.com/exploding-

gradients-in-neural-networks/.

Brownlee, J. (2017b). Gentle introduction to the adam optimization algorithm for deep
learning. Retrieved 23 November, 2019, from https://machinelearningmastery.com/adam-

optimization-algorithm-for-deep-learning/.

Brownlee, J. (2019a). Difference between a batch and an epoch in a neural network.
Retrieved 27 November, 2019, from https://machinelearningmastery.com/difference-

between-a-batch-and-an-epoch/.

References 89

Brownlee, J. (2019b). A gentle introduction to dropout for regularizing deep neural
networks. Retrieved 27 November, 2019, from https://machinelearningmastery.com/

dropout-for-regularizing-deep-neural-networks/.

Brownlee, J. (2019c). Gentle introduction to the bias-variance trade-off in machine
learning. Retrieved 03 December, 2019, from https://machinelearningmastery.com/gentle-

introduction-to-the-bias-variance-trade-off-in-machine-learning/.

Brownlee, J. (2019d). Understand the impact of learning rate on neural network
performance. Retrieved 25 November, 2019, from https://machinelearningmastery.com/

understand-the-dynamics-of-learning-rate-on-deep-learning-neural-networks/.

Bushaev, V. (2018). Understanding rmsprop - faster neural network learning. Retrieved
25 November, 2019, from https://towardsdatascience.com/understanding-rmsprop-faster-

neural-network-learning-62e116fcf29a.

Bérard, T., Chugunov, N., Desroches, J., & Prioul, R. (2019). Feasibility and design
of hydraulic fracturing stress tests using a quantitative risk assessment and control
approach. Petrophysics – The SPWLA Journal of Formation Evaluation and Reservoir
Description, 60 (1), 113–135.

Chollet, F. (2018). Deep learning with Python. Manning Publications Co.

Chollet, F. & Allaire, J. J. (2018). Deep Learning with R (1st ed.). Greenwich, CT, USA:
Manning Publications Co.

Collier, A. (2015). Making sense of logarithmic loss. Retrieved 03 December, 2019, from
https://www.r-bloggers.com/making-sense-of-logarithmic-loss/.

Crooks, E. (2018). Drillers turn to big data in the hunt for more, cheaper oil.
Retrieved 28 October, 2019, from https://www.ft.com/content/19234982-0cbb-11e8-

8eb7-42f857ea9f09.

Czypionka, R. D., Gulewicz, D., Keith, D., & Rey, M. (2016). Reservoir facies impact on
drilling, completion and production in the cardium tight oil play. In AAPG Annual
Convention and Exhibition.

De Mulder, W., Bethard, S., & Moens, M.-F. (2014). A survey on the application of
recurrent neural networks to statistical language modeling. Computer Speech Language,
30.

Directorate, N. P. (2019). Wellbore - factpages - npd. Retrieved 05 December, 2019,
from https://factpages.npd.no/factpages/Default.aspx?culture=en&nav1=wellbore&nav2=

Attributes.

Donges, N. (2018). Recurrent neural networks and lstm. Retrieved 03 November, 2019,
from https://towardsdatascience.com/recurrent-neural-networks-and-lstm-4b601dd822a5.

Dubois, M. K., Bohling, G. C., & Chakrabarti, S. (2007). Comparison of four approaches
to a rock facies classification problem. Computers and Geosciences, 33 (5), 599–617.

Equinor (2019). Johan sverdrup, the north sea giant, is on stream. Retrieved 17 December,
2019, from https://www.equinor.com/en/news/2019-10-johan-sverdrup.html.

90 References

Fu, Z. (2016). Comparison of gradient descent, stochastic gradient descent and l-
bfgs. Retrieved 27 November, 2019, from http://www.fuzihao.org/blog/2016/01/16/

Comparison-of-Gradient-Descent-Stochastic-Gradient-Descent-and-L-BFGS/.

Geological Survey of Norway (2015). Stratigraphy. Retrieved 04 December, 2019, from
https://www.ngu.no/en/topic/stratigraphy.

Géron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow:
Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media.

Glover, P. (2014). Petrophysics msc course notes. Retrieved 15 October,
2019, from http://homepages.see.leeds.ac.uk/~earpwjg/PG_EN/CDContents/GGL-

66565PetrophysicsEnglish/Chapter11.PDF.

Grootendorst, M. (2019). Validating your machine learning model. Retrieved 20
November, 2019, from https://towardsdatascience.com/validating-your-machine-learning-

model-25b4c8643fb7.

Gupta, P. (2017). Regularization in machine learning. Retrieved 02 December, 2019, from
https://towardsdatascience.com/regularization-in-machine-learning-76441ddcf99a.

Gómez, R. (2018). Understanding categorical cross-entropy loss, binary cross-entropy
loss, softmax loss, logistic loss, focal loss and all those confusing names. Retrieved23
November, 2019, from https://gombru.github.io/2018/05/23/cross_entropy_loss/.

Hall, B. (2016). Facies classification using machine learning. The Leading Edge, 35 (10),
906–909.

Hall, B. (2019). Developments in machine and deep learning for facies classification.
Retrieved 27 November, 2019, from https://www.linkedin.com/pulse/developments-

machine-deep-learning-facies-brendon-hall/.

Hall, M. & Hall, B. (2017). Distributed collaborative prediction: Results of the machine
learning contest. The Leading Edge, 36 (3), 267–269.

Hochreiter, S. & Schmidhuber, J. (1997). Long short-term memory. Neural computation,
9 (8), 1735–1780.

Imamverdiyev, Y. & Sukhostat, L. (2019). Lithological facies classification using deep
convolutional neural network. Journal of Petroleum Science and Engineering, 174,
216–228.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical
Learning – with Applications in R, volume 103 of Springer Texts in Statistics. New
York: Springer.

Kapil, D. (2019). Hyperparameter search: Bayesian optimization. Retrieved 21
November, 2019, from https://medium.com/analytics-vidhya/hyperparameter-search-

bayesian-optimization-14be6fbb0e09.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T.-Y. (2017).
Lightgbm: A highly efficient gradient boosting decision tree. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Eds.), Advances in
Neural Information Processing Systems 30 (pp. 3146–3154). Curran Associates, Inc.

References 91

Koehrsen, W. (2018). A conceptual explanation of bayesian hyperparameter
optimization for machine learning. Retrieved 20 November, 2019, from
https://towardsdatascience.com/a-conceptual-explanation-of-bayesian-model-based-

hyperparameter-optimization-for-machine-learning-b8172278050f.

Kurita, K. (2018). Lightgbm and xgboost explained. Retrieved 10 December, 2019, from
https://mlexplained.com/2018/01/05/lightgbm-and-xgboost-explained/.

Lasscock, B. (2019). Using deep learning to predict well-log facies. Retrieved 06 November,
2019, from https://www.linkedin.com/pulse/using-deep-learning-predict-well-log-facies-

ben-lasscock/.

Lexico (n.d). Overfitting. Retrieved 18 December, 2019, from https://www.lexico.com/

definition/overfitting.

Leyland, L. (2017). The importance and applications of well logging. Retrieved 27 October,
2019, from https://medium.com/@welllogging/the-importance-and-applications-of-well-

logging-3fe97fd1fa0e.

Lundberg, S. (2017). A game theoretic approach to explain the output
of any machine learning model. Retrieved 13 December, 2019, from
https://github.com/slundberg/shap?fbclid=IwAR0BANPPafSR0-HjHoK5bd-

UV8keczQo2PmQG76cbPAdJ5lTnDVTues2v6k.

Lundberg, S. M. & Lee, S.-I. (2017). A unified approach to interpreting model predictions.
In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
& R. Garnett (Eds.), Advances in Neural Information Processing Systems 30 (pp.
4765–4774). Curran Associates, Inc.

Molnar, C. (2019). Interpretable Machine Learning. https://christophm.github.io/

interpretable-ml-book/.

Nasralla, S. (2018). Digitalization can save oil upstream business $73 billion a year:
Woodmac. Retrieved 04 November, 2019, from https://www.reuters.com/article/us-oil-

digital-savings/digitalization-can-save-oil-upstream-business-73-billion-a-year-woodmac-

idUSKCN1NH0QR.

Nguyen, M. (2018). Illustrated guide to lstm’s and gru’s: A step by step explanation.
Retrieved 02 November, 2019, from https://towardsdatascience.com/illustrated-guide-to-

lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21/.

Norwegian Petroleum Directorate (n.da). Npd guidelines for designation of wells and
wellbores. Retrieved 01 December, 2019, from https://www.npd.no/globalassets/

1-npd/regelverk/tematiske-veiledninger/eng/guidelines-for-designation-of-wells-and-

wellbores.pdf.

Norwegian Petroleum Directorate (n.db). Well classification. Retrieved 01 December,
2019, from https://www.npd.no/en/facts/wells/well-classification/.

of Encyclopaedia Britannica, T. E. (2014). Stratification. Retrieved 15 November, 2019,
from https://www.britannica.com/science/stratification-geology.

Olah, C. (2015). Understanding lstm networks. Retrieved 30 November, 2019, from
https://colah.github.io/posts/2015-08-Understanding-LSTMs/.

92 References

Olejnik, J., Karaffa, M. D., & Fleming, A. H. (n.d). Gamma-ray logs. Retrieved 20
October, 2019, from https://igws.indiana.edu/AllenCounty/gammaRay.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Machine
learning in python. Journal of machine learning research, 12 (Oct), 2825–2830.

Rey, J., Galeotti, S., et al. (2008). Stratigraphy: terminology and practice. Editions
Technip.

Rider, M. (1991). The geological interpretation of well logs.

Rider, M. (2011). The geological interpretation of well logs.

Roth, A. E. (1988). The Shapley value: essays in honor of Lloyd S. Shapley. Cambridge
University Press.

Salvador, A. & Murphy, M. A. (1998). International ttratigraphic guide — an abridged
version. Episodes., 22 (4), 255.

SHAP-Developers (n.d). Shap (shapley additive explanations). Retrieved 07 December,
2019, from https://shap.readthedocs.io/en/latest/#.

Shi, H. (2007). Best-first decision tree learning. Master’s thesis, The University of Waikato.

Shulga, D. (2018). 5 reasons "logistic regression" should be the first
thing you learn when becoming a data scientist. Retrieved 04 December,
2019, from https://towardsdatascience.com/5-reasons-logistic-regression-should-be-the-

first-thing-you-learn-when-become-a-data-scientist-fcaae46605c4.

Singh, S. (2018). Understanding the bias-variance tradeoff. Retrieved 29 November,
2019, from https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-

165e6942b229.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).
Dropout: a simple way to prevent neural networks from overfitting. The journal of
machine learning research, 15 (1), 1929–1958.

Stark, G. (2018). Gamma ray. Retrieved 19 November, 2019, from https://

www.britannica.com/science/gamma-ray.

Steingrimsson, B. et al. (2011). Geothermal well logging: Geological wireline logs and
fracture imaging. Short Course on Geothermal Drilling, Resource Development and
Power Plants, El Salvador.

V, A. S. (2017). Understanding activation functions in neural networks. Retrieved
25 November, 2019, from https://medium.com/the-theory-of-everything/understanding-

activation-functions-in-neural-networks-9491262884e0.

Vakarelov, B. (2016). The "art" of well log correlation: practical tips and other musings.
Retrieved 27 October, 2019, from https://www.linkedin.com/pulse/art-well-log-correlation-

practical-tips-other-musings-boyan-vakarelov/.

Van Rossum, G. & Drake Jr, F. L. (1995). Python tutorial. Centrum voor Wiskunde en
Informatica Amsterdam, The Netherlands.

References 93

Verma, S. (2019). Understanding input and output shapes in lstm: Keras. Retrieved 24
November, 2019, from https://medium.com/@shivajbd/understanding-input-and-output-

shape-in-lstm-keras-c501ee95c65e.

Wang, X., Yang, S., Zhao, Y., & Wang, Y. (2018). Improved pore structure prediction
based on micp with a data mining and machine learning system approach in mesozoic
strata of gaoqing field, jiyang depression. Journal of Petroleum Science and Engineering,
171, 362–393.

Weller, M. (2018). Recurrent neural networks for time series forecasting. Retrieved 02
November, 2019, from https://www.novatec-gmbh.de/en/blog/recurrent-neural-networks-

for-time-series-forecasting/.

Wells, P. (2019). What you need to know about digital wells and field optimization.
Retrieved 18 October, 2019, from https://www.arundo.com/thejourney/what-you-need-

to-know-about-digital-wells-and-field-optimization.

Yan, S. (2016). Understanding lstm and its diagrams. Retrieved 05 October, 2019, from
https://medium.com/mlreview/understanding-lstm-and-its-diagrams-37e2f46f1714.

Zazoun, R. S. (2013). Fracture density estimation from core and conventional well logs
data using artificial neural networks: The cambro-ordovician reservoir of mesdar oil
field, algeria. Journal of African Earth Sciences, 83, 55–73.

94

Appendix

A1 GitHub Repository

Link to GitHub repository:

pro-well-plan/thesis_stratigraphy_prediction_2019

A2 Data

Table A2.1: Missing values for variables in original data set

Variable Missing values
depth 0
md 0

main_area 0
long 0
lat 0
title 0
tvd 0
gr 0

formation 0
field 0

group 0
rmed 4711
rdep 4748
dt 138284

nphi 200460
rhob 200804
dts 214110
rsh 342392
hgr 342392

hrhob 342392
hrdep 342392
hnphi 342392
hrsh 342392

hrmed 342392

A3 Crossplot matrix 95

A3 Crossplot matrix

Figure A3.1: Crossplot matrix of the formations in the data set

96 A3 Crossplot matrix

Figure A3.2: Crossplot matrix of the groups in the data set

A4 Boxplots 97

A4 Boxplots

Figure A4.1: Boxplot of the gamma ray separated by well

98 A4 Boxplots

Figure A4.2: Boxplot of the deep resistivity separated by well

Figure A4.3: Boxplot of the medium resistivity separated by well

A5 Predicted vs. Actual 99

A5 Predicted vs. Actual

100 A5 Predicted vs. Actual

(a) Logistic Regression (b) Light GBM Not Stratified

(c) Light GBM Stratified (d) LSTM

Figure A5.1: Well 16/3-7 - Predicted vs actual formation and group for all models

A5 Predicted vs. Actual 101

(a) Logistic Regression (b) Light GBM Not Stratified

(c) Light GBM Stratified (d) LSTM

Figure A5.2: Well 16/2-14 T2 - Predicted vs actual formation and group for all models

102 A5 Predicted vs. Actual

(a) Logistic Regression (b) Light GBM Not Stratified

(c) Light GBM Stratified (d) LSTM

Figure A5.3: Well 16/3-6 A - Predicted vs actual formation and group for all models

A5 Predicted vs. Actual 103

(a) Logistic Regression (b) Light GBM Not Stratified

(c) Light GBM Stratified (d) LSTM

Figure A5.4: Well 16/2-7 A - Predicted vs actual formation and group for all models

104 A6 Original name and corresponding numerical values

A6 Original name and corresponding numerical values

A6.1 Groups

Table A6.1: Group dictionary

Group name Group number
basement 0

cromer knoll gp 1
hegre gp 2

hordaland gp 3
nordland gp 4
rogaland gp 5
rotliegend gp 6
shetland gp 7
statfjord gp 8
undefined gp 9
vestland gp 10
viking gp 11

zechstein gp 12

A6 Original name and corresponding numerical values 105

A6.2 Formations

Table A6.2: Formation dictionary

Formation name Formation number
balder fm 0
blodøks fm 1
draupne fm 2
eiriksson fm 3
ekofisk fm 4
grid fm 5

heather fm 6
hod fm 7

hugin fm 8
intra draupne fm ss 9
intra heather fm ss 10
kupferschiefer fm 11

lista fm 12
no formal name_hordaland gp 13
no formal name_nordland gp 14
no formal name_rotliegend gp 15

rødby fm 16
sele fm 17

skade fm 18
skagerrak fm 19
sleipner fm 20

sola fm 21
svarte fm 22
tor fm 23

tryggvason fm 24
undifferentiated_basement 25

undifferentiated_cromer knoll gp 26
undifferentiated_hegre gp 27

undifferentiated_hordaland gp 28
undifferentiated_nordland gp 29
undifferentiated_rotliegend gp 30
undifferentiated_statfjord gp 31
undifferentiated_undefined gp 32
undifferentiated_vestland gp 33
undifferentiated_zechstein gp 34

utsira fm 35
våle fm 36

åsgard fm 37

