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Abstract
The aimof thiswork is to extend the classical theory of growth-optimal investments (Shannon,
Kelly, Breiman, Algoet, Cover and others) to models of asset markets with frictions—
transaction costs and portfolio constraints. As themodelling framework, we use discrete-time
dynamical systems generated by convex homogeneous multivalued operators in spaces of
random vectors—von Neumann–Gale dynamical systems. The main results are concerned
with the construction and characterization of investment strategies possessing properties of
asymptotic growth-optimality almost surely.

Keywords Capital growth theory · Transaction costs · Benchmark strategies ·
Numeraire portfolios · Random dynamical systems · Convex multivalued operators ·
Von Neumann–Gale model · Rapid paths

1 Introduction

The theory of growth-optimal investments, or capital growth theory, is a fascinating subject
having a rich and peculiar history. The central question in this field is how to invest in order to
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achieve the highest (asymptotic) growth rate of wealth in the long run. The first publication
in this strand of literature was that by Kelly [36], who considered the case of Arrow securities
(the payoff of security i is 1 if the “state of the world” is i and 0 otherwise) interpreted as a
“horse race model”. It was shown that the growth optimal investment strategy could be found
by the maximization of the expected logarithm of the portfolio return: the Kelly portfolio
rule. Kelly arrived at his results from information theory, and his paper was entitled “A new
interpretation of information rate”. The history of Kelly’s discovery is described in various
papers and books, including popular ones (see, e.g., Poundstone [48]). This discovery has
been developed and extended by various authors, in particular by Breiman [9], Algoet and
Cover [1] and Hakansson and Ziemba [32]. The paper by Algoet and Cover [1] contains the
most advanced and general mathematical treatment of capital growth theory. An authoritative
reference providing extensive coverage of the field is the volume [39] edited by MacLean
et al. A comprehensive exposition of these questions is given in the textbook “Elements
of information theory” by Cover and Thomas [14] (Chapter 16 “Information theory and
portfolio theory”). An elementary introduction to the field can be found in Chapters 17 and
18 in Evstigneev et al. [25].

When speaking of those who contributed to capital growth theory, one must necessarily
mention the name of Claude Shannon—the famous founder of the mathematical theory of
information. Although he did not publish on investment-related issues, his ideas, expressed in
his lectures on investment problems inMIT in the 1960s, strongly influencedhis collaborators:
Kelly, Breiman, Cover and others, who became the classics of the theory of growth optimal
investments. For the history of these ideas and a related discussion see Cover [13].

Cover’s [13] biographical note on Shannon mentions a discussion between Shannon and
another famous scholar, mathematical economist Paul Samuelson. Cover writes:

... In the mid 1960s, Shannon gave a lecture on maximizing the growth rate of wealth
and gave a geometric Wiener example.

At about this time, Shannon and Samuelson (a Nobel Prize winner-to-be in economics)
held a number of evening discussion meetings on information theory and economics.
It is not clear what was said in these meetings, but Samuelson seems to have become
set in his views. He published several papers arguing strongly against maximizing the
expected logarithm as an acceptable investment criterion. (It happens that maximizing
the expected logarithm is the prescription for the growth-rate optimal portfolio.)

For example, Samuelson (1969) wrote: Our analysis enables us to dispel a fallacy that
has been borrowed into portfolio theory from information theory of the Shannon type.
Samuelson goes on to argue that growth rate optimal policies do not achieve maximum
utility unless one has a logarithmic utility for money. Of course this is the case, but
it does not deny the fact that log optimal wealth has an objective property: it has a
better growth rate than that achieved by any other strategy. Since growth rate optimal
policies achieve a demonstrably desirable goal, growth rate optimal portfolios should
only have a utility interpretation as an afterthought. In fact, Samuelson (1979) wrote
a paper entitled “Why we should not make mean log of wealth big though years to
act are long.” This is a two page paper in words of one syllable that makes the point
that maximizing the expected log of wealth is not appropriate. The growth optimal
portfolio literature has been slow to develop. It is possible that Samuelson’s eloquent
admonitions had their effect.

In this discussion, Samuelson and those who followed his views later presumed implicitly
or explicitly that the problem of growth-optimal investments was equivalent to the problem
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of themaximization of logarithmic utility functionals. By and large this presumption was true
in those models which were considered at the time of the above discussion—half a century
ago. More recent studies have shown that this is not the case in more advanced and realistic
models, in particular, those describing financial markets with frictions—transaction costs
and trading constraints. Growth-optimal investment strategies over an infinite time horizon
cannot be constructed by using a consecutive “myopic” maximization procedure step by step
from t to t + 1 (t = 0, 1, 2, . . .).

A similar situation is characteristic for Evolutionary Finance—a rapidly developing area of
research that emerged in the 2000s, see the surveys in [24,26] and an elementary introduction
into the subject in [25, Chapter 20]. Evolutionary finance may be viewed as a version of
the capital growth theory with endogenous equilibrium asset prices. Counterparts of the
growth-optimal investment strategies in that context are the so-called unbeatable strategies
[2, Sect. 6]. The problem of the identification of such strategies cannot be reduced (except
for some trivial cases) to any single-agent optimization problem involving the maximization
of logarithmic or any other functionals.

The objective of this paper is to extend the classical capital growth theory to models
of financial markets with transaction costs and portfolio constraints. As a framework for
the analysis we use von Neumann–Gale dynamical systems—a class of random dynamical
systems generated by homogeneous convex set-valued operators (see the definitions in the
next section). Such dynamical systems were first considered (in the deterministic case) in the
context of the modeling of economic growth by von Neumann [56] and Gale [28]. Important
contributions to the field were made by Radner [49], Morishima [42], Rockafellar [52],
Nikaido [44], Makarov and Rubinov [40], and others. For reviews of the field see [42,44]
and [40]. In our model, random states of these systems are contingent portfolios, and paths
are self-financing trading strategies. The self-financing conditions are described in terms of
random cones in spaces of admissible portfolio vectors. Themain focus is on rapid paths, that
are defined in terms of sequences of dual variables—consistent price systems, generalizing
the notion of an equivalent martingale measure in the frictionless setting. Rapid paths may
be regarded as counterparts of benchmark strategies (Platen [46], Platen and Heath [47])
or numeraire portfolios (Long [37]). They possess a number of important properties, in
particular, it can be shown that they exhibit the fastest asymptotic growth rate of wealth with
probability one.

The paper is organized as follows. Section 2 describes von Neumann–Gale dynamical
systems and outlines their applications to capital growth theory. Section 3 states the main
assumptions and results. Section 4 contains some lemmas needed for the proof of the main
result (Theorem 1), which is conducted in Sect. 5. Section 6 establishes the property of
growth-optimality of infinite rapid paths. In Sect. 7, we introduce and analyze a model of a
financial market with transaction costs and portfolio constraints to which the results of this
paper can be applied. The Appendix assembles some auxiliary technical results used in the
paper.

2 Von Neumann–Gale dynamics applied to finance

Let (�,F, P) be a complete probability space and F0 ⊆ F1 ⊆ . . . ⊆ F a sequence of
σ -algebras containing all sets in F of measure zero. The σ -algebra Ft is interpreted as
the class of events occurring prior to time t . Vector functions of ω ∈ � measurable with
respect to Ft represent random vectors depending on these events. For each t = 0, 1, . . .,
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let Xt (ω) be a closed pointed cone1 in an mt -dimensional linear space R
mt and for each

t = 1, 2, . . ., let (ω, a) �→ At (ω, a) be a set-valued operator assigning a non-empty set
At (ω, a) ⊆ Xt (ω) to each ω ∈ � and a ∈ Xt−1(ω). Throughout the paper, the following
conditions of homogeneity and convexity will be imposed on the operator At (ω, ·). For each
ω, we have

λAt (ω, a) ⊆ At (ω, λa) (1)

for all a ∈ Xt−1(ω), λ ∈ [0,∞) and

θ At (ω, a) + (1 − θ) At
(
ω, a′) ⊆ At

(
ω, θa + (1 − θ) a′) (2)

for all a, a′ ∈ Xt−1(ω) and θ ∈ [0, 1]. (A linear combination of two sets in a vector space is
the set of pairwise linear combinations of their elements.)

We will denote for shortness by L∞
(Ft ,R

k
)
the space L∞

(
�,Ft , P,Rk

)
of essentially

bounded Ft -measurable functions of ω ∈ � with values in R
k . The norm ||x(ω)||∞ of a

vector function x(ω) in L∞
(Ft ,R

k
)
is defined as the essential supremum esssup |x(ω)|,

where | · | stands for the sum of the absolute values of the coordinates of a finite-dimensional
vector. We say that a vector function x(ω) is a random state of the system at time t and
write x ∈ Xt if x ∈ L∞ (Ft ,R

mt ) and x(ω) ∈ Xt (ω) almost surely (a.s.). The mappings
(ω, a) �→ At (ω, a) generate a multivalued stochastic dynamical system. A sequence of
random states x0 ∈ X0, x1 ∈ X1, . . . is called a path (trajectory) of this dynamical system if

xt (ω) ∈ At (ω, xt−1(ω)) (a.s.). (3)

Relation (3) can be written in the form

(xt−1(ω), xt (ω)) ∈ Zt (ω) (a.s.), (4)

where
Zt (ω) = {(a, b) ∈ Xt−1(ω) × Xt (ω) : b ∈ At (ω, a)} (5)

is the graph of the set-valuedmapping At (ω, ·). Clearly conditions (1) and (2) hold if and only
if Zt (ω) is a cone contained in Xt−1(ω)×Xt (ω). Since At (ω, a) �= ∅ for all a ∈ Xt−1(ω), the
projection of Zt (ω) on Xt−1(ω) coincides with Xt−1(ω). It is assumed that the cones Xt (ω)

and Zt (ω) depend Ft -measurably2 on ω, which means that they are determined by events
occurring prior to time t . The dynamics of the system under consideration can equivalently
be described both in terms of the mappings At (ω, ·) and in terms of the cones Zt (ω). A
sequence x0 ∈ X0, x1 ∈ X1, . . . is a path if and only if

(xt−1, xt ) ∈ Zt , t = 1, 2, . . . , (6)

where
Zt = {(x, y) ∈ Xt−1 × Xt : (x(ω), y(ω)) ∈ Zt (ω) (a.s.)}. (7)

The classical theory of von Neumann–Gale dynamics was purely deterministic. First
attempts to build its stochastic generalization were undertaken in the 1970s by Dynkin
[19–21], Radner [51] and their collaborators. However, the initial attack on the problem
left many questions unanswered. Substantial progress was made only in the late 1990s, and

1 A set X in a linear space is called a cone if it contains with any its elements x, y any non-negative linear
combination λx + μy (λ, μ ≥ 0) of these elements. The cone X is called pointed if the inclusions x ∈ X and
−x ∈ X imply x = 0.
2 A set A(ω) ⊆ R

k is said to depend Ft -measurably on ω if the graph {(ω, a) : a ∈ A(ω)} of the set-valued
mapping ω �→ A(ω) belongs to the σ -algebra Ft ⊗ B(Rk ), where B(·) stands for the Borel σ -algebra.
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final solutions to the main open problems were obtained only in the 2000s—see [23] and
references therein.

At about the same time it was observed [18] that stochastic analogues of von Neumann–
Gale dynamical systems provide a natural and convenient framework for the modeling of
financialmarkets with frictions—transaction costs and portfolio constraints. This observation
not only gave a new momentum to studies in the field and posed new interesting questions,
but also made it possible to find a key to the solution of old problems. The new, financial
interpretation of the mathematical notions and objects at hand amazingly suggested the way
of proofs in [23] that could not be found earlier.

A central goal in the theory of vonNeumann–Gale dynamics is to single out and investigate
a class of trajectories that grow faster in a certain sense than others. The key notion here is
that of a rapid path. To give its definition let us first define the important notion of a dual
path. Let X∗

t (ω) denote the dual cone of Xt (ω):

X∗
t (ω) = {p ∈ R

mt : pa ≥ 0, a ∈ Xt (ω)},
where pa is the scalar product of the vectors p and a in R

mt . For shortness, we will use
the notation L1(Ft ,R

k) for the space L1(�,Ft , P,Rk) of integrable Ft -measurable vector
functions with values in R

k . A dual path (dual trajectory) is a sequence of vector functions
p1(ω), p2(ω), . . . such that for all t = 1, 2, . . . we have pt ∈ L1(Ft ,R

mt−1),

pt (ω) ∈ X∗
t−1(ω) (a.s.), (8)

and for almost all ω,

p̄t+1(ω)b ≤ pt (ω)a for all (a, b) ∈ Zt (ω). (9)

here, p̄t+1(ω) := Et pt+1(ω) and Et (·) = E(·|Ft ) is the conditional expectation given Ft .
Denote by Z×

t (ω) the cross-dual cone for Zt (ω):

Z×
t (ω) = {(c, d) ∈ R

mt−1 × R
mt : db − ca ≤ 0 for all (a, b) ∈ Zt (ω)}. (10)

The definition of a dual path can be reformulated as follows. This is a sequence
p1(ω), p2(ω), . . . such that for all t = 1, 2, . . ., we have pt ∈ L1(Ft ,R

mt−1), condition
(8) holds and

(pt (ω), p̄t+1(ω)) ∈ Z×
t (ω) (a.s.). (11)

Let us say that a dual path p1, p2, . . . supports a path x0, x1, . . . if

pt+1xt = 1 (a.s.) (12)

for all t = 0, 1, . . .. A trajectory is called rapid if there exists a dual trajectory supporting it.
What matters in (12) is that pt+1xt is a strictly positive constant (independent of time and
random factors). The value 1 for this constant is chosen only for the sake of convenience.

The term “rapid” is motivated, in particular, by the fact that for each t = 1, 2, . . .

Et
pt+1yt
pt yt−1

= p̄t+1yt
pt yt−1

≤ p̄t+1xt
pt xt−1

= 1 (a.s.) (13)

for all paths y0, y1, . . .with pt yt−1 > 0 (a.s.). This means that the path x0, x1, . . .maximizes
the conditional expectation givenFt of the growth rate pt+1yt/pt yt−1 over each time period
(t − 1, t], the maximum being equal to 1. The growth rate is measured in terms of the dual
variables pt , which in economic and financial applications typically represent prices.

Rapid pathsmay be viewed as a generalization of benchmark strategies (Platen [46], Platen
and Heath [47]) or numeraire portfolios (Long [37]). Their idea goes back to the notion of
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a competitive path in models of economic dynamics: such paths maximize profits over each
time period (t−1, t)—seeMalinvaud [41], Radner [50], Gale [29], Peleg [45], Dasgupta and
Mitra [16], and especially the paper by Clark [11] linking this strand of literature to finance
and containing further references.

Dual paths are analogous to consistent price systems, generalizing the concept of an
equivalent martingale measure involved in classical no-arbitrage criteria (Jouini and Kallal
[38], Cvitanić and Karatzas [15], Schachermayer [54], Guasoni et al. [31], Kabanov and
Safarian [34] and others).

Let us outline a model of this kind. At each time t = 0, 1, 2, . . ., there are mt assets in
the market. A (contingent) portfolio of assets is an Ft -measurable random vector yt (ω) =
(y1t (ω), . . . , ymt

t (ω)). Those portfolios yt for which yt (ω) ∈ Xt (ω) (a.s.) are admissible at
time t . An investment/trading strategy is a sequence of admissible portfolios (yt )t≥0. The
main focus is on self-financing strategies defined by the condition

(yt−1(ω), yt (ω)) ∈ Zt (ω) (a.s.), (14)

where Zt (ω) ⊆ R
mt−1 × R

mt is the given closed cone depending Ft -measurably on ω. The
cones Zt (ω), t = 1, 2, . . ., define the self-financing constraints. Condition (14) states in
general terms that the portfolio yt−1 can be transformed to yt by buying and selling assets
under transaction costs (see an example in (15) below). Self-financing strategies are nothing
but paths in the von Neumann–Gale dynamical system with the transition cones Zt (ω). We
will deal only with such strategies, and so in what follows, “self-financing” will be omitted.

A basic example of the transition cone Zt (ω) in the financial market model with (propor-

tional) transaction costs can be described as follows. Let Sit (ω) < S
i
t (ω) be the vectors of

the asset i’s bid and ask prices: you pay S
i
t (ω) when you buy and you get Sit (ω) when you

sell. The cone Zt (ω) consists of pairs of portfolios (x, y) satisfying

m∑

i=1

S
i
t (y

i − xi )+ ≤
m∑

i=1

Sit (x
i − yi )+ , (15)

where a+ := max{a, 0}. It is assumed here that the number of assets mt does not depend on
t : mt = m. The inequality (15) means that asset purchases are made only at the expense of
sales of available assets (under transaction costs).

Questions of asset pricing and hedging in the above basic framework were considered in
the seminal paper by Jouini and Kallal [38]. Kabanov [35] proposed a geometric approach
that made it possible to extend the theory to models allowing direct (unmediated by cash)
trades between assets, and therefore, applicable to currency markets. We refer the reader to
the book by Kabanov and Safarian [34] for a detailed review of this area of research. For
more recent work see the paper [27] and references therein.

Important examples of the portfolio admissibility constraints are given bymargin require-
ments, that are present in one form or another in all real-world financial markets. Only those
portfolios x = (x1, . . . , xm) are regarded as admissible for which

M
m∑

i=1

S
i
t (−xi )+ ≤

m∑

i=1

Sit (x
i )+, (16)

where M > 1 is some constant (margin). Condition (16) means that an admissible portfolio
can always be liquidated in such a way that its long positions would compensate its short
positions with excess, as specified in (16). The purpose of such requirements is to exclude
(or at least to reduce) the possibility of the investor’s bankruptcy as a result of sudden price
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jumps. Clearly property (16) automatically guarantees the absence of arbitrage opportunities,
which makes superfluous any considerations involving the no-arbitrage hypothesis as such.

In the above example it is assumed that portfolio positions are measured in terms of
(“physical”) units of assets. However, it is often more convenient to specify positions of a
portfolio in monetary terms. In models of this kind, the coordinates xi and yi of portfolio
vectors x and y indicate the values of asset holdings at time t expressed in terms of the current
market prices Sit . The transition cone Zt (ω) consists of pairs of portfolios (x, y) such that

m∑

i=1

(1 + λ−
t,i )

(

yi − Sit
Sit−1

xi
)

+
≤

m∑

i=1

(1 − λ+
t,i )

(
Sit
Sit−1

xi − yi
)

+
, (17)

where λ−
t,i (ω) ≥ 0 and 1 > λ+

t,i (ω) ≥ 0 are the transaction cost rates for buying and selling
asset i , respectively. The inequality in (17), as well as in (15), expresses the self-financing
condition, meaning that purchases of assets can be made only at the expense of sales of other
assets. The simplest margin requirements in this setting take on the following form:

M
m∑

i=1

xi− ≤
m∑

i=1

xi+, (18)

If portfolio positions are specified in monetary terms, then the variables pit constituting a
dual path may be interpreted as market consistent discount factors.

The framework in which the transition cones Zt (ω) are described in terms of portfolio
values has the following advantage. Practically all models that can be used for practical
computations are based on some assumptions of stationarity: “tomorrow” must to some
extent resemble “today”. In the framework of (17), a natural assumption of this kind is that
the process of asset returns (Sit − Sit−1)/S

i
t−1 is stationary, which is a common hypothesis in

finance (lying in the basis, e.g., of the Black-Scholes formula). Analogous conditions for (15)
wouldmean stationarity of the price process—a less plausible hypothesis, having a number of
implications that might be viewed as paradoxical (e.g. the phenomenon of “volatility-induced
growth”, see [17] and [25, Sect. 18.4]).

A detailed description and analysis of a financial market model of the above type is given
in Sect. 7.

3 Assumptions and results

Let us formulate the assumptions that will be used in this paper. Let |·| denote the norm of a
vector in afinite-dimensional spacedefined as the sumof the absolute values of its coordinates.
For a finite-dimensional vector a, we will denote by B(a, r) the ball {b:|b − a| ≤ r}.

Let us introduce the following conditions.

(A1) For every t = 0, 1, . . ., there exists an Ft -measurable random vector qt (ω) ∈ X∗
t (ω)

satisfying

Ht (ω)−1|a| ≤ qt (ω)a ≤ Ht (ω)|a|, a ∈ Xt (ω), ω ∈ �, (19)

where Ht (ω) ≥ 1 is an Ft -measurable function with E ln Ht (ω) < ∞.
This condition implies, in particular, that the cone Xt (ω) is pointed.

(A2) For every t = 1, 2, . . . , ω ∈ � and a ∈ Xt−1(ω), there exists b ∈ Xt (ω) such that
(a, b) ∈ Zt (ω).
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(A3) There exist constants Kt (t = 1, 2, . . .) such that |b| ≤ Kt |a| for any (a, b) ∈ Zt (ω)

and ω ∈ �.
(A4) For each t = 1, 2, . . . , there exists a bounded Ft -measurable vector function z̊t =

(x̊t , ẙt ) such that for all ω ∈ �, we have

(x̊t (ω), ẙt (ω)) ∈ Zt (ω), (20)

and
B(ẙt (ω), εt ) ⊆ Xt (ω), (21)

where εt > 0 is some constant.

Theorems 1 and 2 we formulate below hold under the assumptions (A1)–(A4).

Theorem 1 Let assumptions (A1)–(A4) hold. Let x0(ω) be a vector function in X0 such that
B(x0(ω), δ) ⊆ X0(ω) for some constant δ > 0. There exists an infinite rapid path with initial
state x0.

This result generalizes to general cones Xt (ω) the analogous result in [8] pertaining to
the case, where Xt (ω) are the standard non-negative cone Rmt+ .

The proof of Theorem 1 is based on a previous result [7, Theorem 1] on finite rapid paths.
We formulate it as Theorem 2 below. The versions of the basic definitions for a finite time
horizon are as follows. Let N > 1 be a natural number. A path over the finite time horizon
from 0 to N is a sequence x0 ∈ X0, . . . , xN ∈ XN satisfying (6) for all t = 1, . . . , N . A dual
path p1, p2, . . . , pN+1 is a sequence of vector functions such that

p1 ∈ L1(F1,R
m0), . . . , pN ∈ L1(FN ,RmN−1), pN+1 ∈ L1(FN ,RmN ),

pt (ω) ∈ X∗
t−1(ω) (a.s.), t = 1, 2, . . . , N + 1,

and
(pt (ω), p̄t+1(ω)) ∈ Z×

t (ω) (a.s.), t = 1, . . . , N . (22)

A dual path p1, p2, . . . , pN+1 supports a path x0, x1, . . . , xN if (12) holds for t = 0, . . . , N .
A trajectory x0, x1, . . . , xN is called rapid if there exists a dual trajectory p1, p2, . . . , pN+1

supporting it.

Theorem 2 Let x0(ω) be a vector function in X0 such that B(x0(ω), δ) ⊆ X0(ω) for some
constant δ > 0. For each N ≥ 1, there exists a finite rapid path x0, . . . , xN with the initial
state x0.

This theorem extends to general random cones Xt (ω) earlier results obtained in [22] (also
for the finite-horizon case) in a setting where Xt (ω) = R

mt+ .

Remark 1 To prove Theorem 1 we construct an infinite rapid path by passing to the limit
from finite ones, whose existence is stated in Theorem 2. The latter theorem is proved in [7,
Theorem 1] under the assumptions (A1)–(A4). However, not all of these assumptions are
needed to deduce the former result from the latter. In the course of the proof of Theorem 1
given in Sect. 3, we rely only upon conditions (A3) and (A4) and the fact that the cones
Xt (ω) are pointed; assumptions (A1) and (A2) are not used.

An important property of infinite rapid paths is their asymptotic growth-optimality holding
under a fairly general assumption (A5) we formulate below. Let us say that a path (xt )∞t=0
is asymptotically growth-optimal if for any other path (x ′

t )
∞
t=0 there exists a supermartingale

(ξt )
∞
t=1 such that

∣∣x ′
t

∣∣ / |xt | ≤ ξt .
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We introduce following condition (A5).
(A5) There exist a real number γ > 0 and a natural number l such that for every t ≥ 0 and

every random vector yt ∈ Xt , one can find random vectors yt+1 ∈ Xt+1, . . . , yt+l ∈ Xt+l

satisfying with probability one

(yt (ω) , yt+1 (ω)) ∈ Zt+1 (ω) , . . . , (yt+l−1 (ω) , yt+l (ω) + y (ω)) ∈ Zt+l (ω) (23)

for all y ∈ L∞ (Ft+l ,R
mt+l ) with |y(ω)| ≤ γ |yt (ω)|.

Theorem 3 Let condition (A5) and condition (A3) with a constant Kt = K independent of
t hold. Let mt ≤ m where m is some fixed number. Then any rapid path is asymptotically
growth-optimal.

The property of asymptotic optimality, as defined above, has the following important
implications. If |yt |/|xt | ≤ ξt , t = 1, 2 . . . (a.s.), where ξt is a supermartingale, the following
assertions hold.

(a) With probability one

sup
t

|yt |
|xt | < ∞,

i.e. no strategy can grow asymptotically faster than x0, x1, . . . (a.s.).
(b) The strategy x0, x1, . . . a.s. maximizes the exponential growth rate

lim sup
t→∞

1

t
ln |xt |.

(c) We have

sup
t

E
|yt |
|xt | < ∞ and sup

t
E ln

|yt |
|xt | < ∞, (24)

and moreover, supt in (24) can be replaced by supτ where τ ranges through the set of
all stopping times with respect to the filtration F0 ⊆ F1 ⊆ . . . ⊆ F .

Assertion (a) follows froma.s. convergence of non-negative supermartingales; (b) is imme-
diate from (a); the first part of (c) holds because ξt is a non-negative supermartingale; the
second part of (c) is obtained by using Jensen’s inequality and the supermartingale property:
E(ln ξt+1|Ft ) ≤ ln E(ξt+1|Ft ) ≤ ln ξt . The possibility of replacing supt by supτ in (24)
follows from Doob’s optional sampling theorem (see, e.g., Grimmett and Stirzaker [30], pp.
491–495).

Note that the above properties (a)–(c) remain valid if |xt | and |yt | are replaced by φt (ω, xt )
and φt (ω, yt ) respectively with any function φt (ω, b), possibly random and depending on t ,
which satisfies the following condition (L).

(L) There exist non-random constants 0 < s ≤ S such that s|b| ≤ φt (ω, b) ≤ S|b| for all
t, ω and b ∈ Xt (ω).

4 Three lemmas

We begin with three simple lemmas needed for the proof of Theorem 1.

Lemma 1 Let X be a cone in R
k , d an element in X∗, and y a vector in X such that

B(y, ε) ⊆ X. Then

dy ≥ ε

k
|d|. (25)
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Proof We have d(y − h) ≥ 0 for any h with |h| ≤ ε. Consequently,

dy ≥ max|h|≤ε
dh = εmax

i
|di | ≥ ε

k
|d| [d = (d1, . . . , dk)],

which yields (25). ��

Put

Ct := mt ||x̊t ||∞
εt

(t ≥ 1), C0 := m0δ
−1, (26)

where x̊t is defined in (A4) and

Ct := Ct−1 . . .C1C0 (t ≥ 1),

where δ is the constant for which B(x0(ω), δ) ⊆ X0(ω). Define

K t := Kt . . . K1||x0||∞ (t ≥ 1).

Lemma 2 Let (xt )Nt=0 be a rapid path and (pt )
N+1
t=1 a dual path supporting it (1 ≤ N ≤ ∞).

Then
|xt | ≤ K t (a.s.), (27)

for t = 0, 1, . . . , N and
E |pt | ≤ Ct (28)

for t = 1, . . . , N + 1.

Proof Inequality (27) is immediate from (A3). To prove (28) we write

||x̊t ||∞E |pt | ≥ E |pt ||x̊t | ≥ Ept x̊t ≥ E p̄t+1 ẙt = E pt+1 ẙt ≥ E
εt

mt
|pt+1| (29)

(t ≥ 1). Here the third inequality holds because (pt (ω), p̄t+1(ω)) ∈ Z×
t (ω) (a.s.) and

(x̊t (ω), ẙt (ω)) ∈ Zt (ω). The last inequality is valid by virtue Lemma 1 since pt+1(ω) ∈
X∗
t (ω) (a.s.) and B(ẙt (ω), εt ) ⊆ Xt (ω). From (29) and (26) we get E |pt+1| ≤ Ct E |pt |

(t ≥ 1) and it remains to observe that E |p1| ≤ m0δ
−1. Indeed, by virtue of (25),

1 = p1x0 ≥ δ

m0
|p1| (a.s.) (30)

because p1(ω) ∈ X∗
0(ω) (a.s.) and B(x0(ω), δ) ⊆ X0(ω). Consequently,

|p1| ≤ m0δ
−1, (31)

which completes the proof. ��

Lemma 3 For each t = 1, 2, . . . and for almost all ω, if

(c, d) ∈ Z×
t (ω) and d ∈ X∗

t (ω), (32)

then
|d| ≤ Ct |c|. (33)
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Proof This follows from the inequalities

|c| ||x̊t ||∞ ≥ |c||x̊t (ω)| ≥ cx̊t (ω) ≥ d ẙt (ω) ≥ εt

mt
|d| (34)

holding for almost all ω and all (c, d) satisfying (32). Note that the third inequality in (34) is
valid because (c, d) ∈ Z×

t (ω) and (x̊t (ω), ẙt (ω)) ∈ Zt (ω), and the fourth is a consequence
of Lemma 1. ��

Remark 2 We point to a distinction between Lemmas 2 and 3. Relations (28) and (29) hold
in terms of expectations while (33) and (34) are valid for almost all ω and all (c, d) satisfying
(32). It might seem that the former lemma is a direct consequence of the latter, but one has to
be cautious here: we know that (pt (ω), p̄t+1(ω)) ∈ Z×

t (ω) (a.s.), but it is not assumed that
(pt (ω), pt+1(ω)) ∈ Z×

t (ω) (a.s.).

5 Proof of themain result

Denote by Pt the set of Ft -measurable mt−1-dimensional vector functions pt (ω) such that
E |pt (ω)| < ∞ and pt (ω) ∈ X∗

t−1(ω) (a.s.). Let Qt be the set of Ft -measurable mt -
dimensional vector functions qt (ω) such that E |qt (ω)| < ∞ and qt (ω) ∈ X∗

t (ω) (a.s.).
To alleviate notation we will often omit “ω” when this does not lead to ambiguity.

Proof of Theorem 1 By virtue of Theorem 2, for each natural number N there exist a finite
rapid path x0(N ), . . . , xN (N ) with x0(N ) = x0 and a dual path p1(N ), . . . , pN+1(N ) sup-
porting it.

We will construct by induction for each t = 1, 2, . . . a triplet of vector functions

(xt , pt , qt ) ∈ Xt × Pt × Qt (35)

such that

(pt , qt ) ∈ Z×
t (a.s.), (36)

(xt−1, xt ) ∈ Zt (a.s.), (37)

pt xt−1 = 1 (a.s.), (38)

qt−1 − Et−1 pt ∈ X∗
t−1(ω) (a.s.), if t ≥ 2, (39)

and a sequence of integer-valued Ft -measurable random variables

t < Nt
1 < Nt

2 < . . . (40)

such that
xt (N

t
k) → xt , pt (N

t
k) → pt , qt (N

t
k) → qt (a.s.) as k → ∞, (41)

and Nt
1, N

t
2, . . . is a subsequence of N

t−1
1 , Nt−1

2 , . . . which can be represented as

Nt
m = Nt−1

k(m), (42)

where 0 < k(1) < k(2) < . . . are Ft -measurable integer-valued random variables.
Define

qt (N ) := Et pt+1(N ) (0 ≤ t ≤ N ). (43)
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Observe that for each t = 1, 2, . . . and N ≥ t , we have

|xt (N )| ≤ K t (a.s.), E |pt (N )| ≤ Ct , E |qt (N )| ≤ Ct+1, (44)

(pt (N ), qt (N )) ∈ Z×
t (a.s.), (45)

(xt−1(N ), xt (N )) ∈ Zt (a.s.), (46)

pt (N )xt−1(N ) = 1 (a.s.), (47)

qt−1(N ) = Et−1 pt (N ) (a.s.), (48)

where the inequalities in (44) follow from (27), (28) and (43), relations (45)–(47) hold because
p1(N ), . . . , pN+1(N ) is a dual path supporting the path x0(N ), . . . , xN (N ), and (48) is valid
by the definition of qt−1(N ).

Note that relations (45)–(47) will remain valid if we replace N ≥ t by any random
N (ω) ≥ t . This is also true for (48) if N (ω) is Ft−1-measurable. Indeed, we have

qt−1(N (ω), ω) =
∑

m

1{N (ω)=m}qt−1(m, ω) =
∑

m

1{N (ω)=m}Et−1 pt (m, ω)

= Et−1

∑

m

1{N (ω)=m} pt (m, ω) = Et−1 pt (N (ω), ω) (a.s.). (49)

Let us construct a triplet (35) and a sequence (40) satisfying for t = 1 all the conditions
(36)–(42) except for (39).Wewill apply PropositionA.1 (see theAppendix) to the sequence of
3n-dimensionalF1-measurable randomvectorsw1(N ) = (x1(N ), p1(N ), q1(N )) (N ≥ 1).
For each N = 1, 2, . . ., these vectors satisfy conditions (44) with t = 1, which implies that
lim inf E |w1(N )| < ∞. By virtue of Proposition A.1, there exists a vector function w1 =
(x1, p1, q1) and a sequence ofF1-measurable integer-valued functions 1 < N 1

1 < N 1
2 < . . .

satisfying (35) and (41) with t = 1. Since the sets Z×
t (ω) and Zt (ω) are closed, the relations

(p1(N
1
k ), q1(N

1
k )) ∈ Z×

1 , k = 1, 2, . . . (a.s.), (50)

(x0, x1(N
1
k )) ∈ Z1, k = 1, 2, . . . (a.s.), (51)

p1(N
1
k )x0 = 1, k = 1, 2, . . . (a.s.) (52)

yield in the limit (36)–(38) for t = 1. Note that ||x1||∞ < ∞ because (x0, x1) ∈ Z1 (a.s.),
and so ||x1||∞ ≤ K1||x0||∞.

Suppose a triplet (35) and a sequence (40) satisfying (36)–(42) are constructed for some
t ≥ 1; let us construct such a triplet and a sequence for t + 1. Since Nt

k(ω) ≥ t + 1, relations
(45)–(48) (with t + 1 in place of t) imply

(pt+1(N
t
k), qt+1(N

t
k)) ∈ Z×

t+1 (a.s.), (53)

(xt (N
t
k), xt+1(N

t
k)) ∈ Zt+1 (a.s.), (54)

pt+1(N
t
k)xt (N

t
k) = 1 (a.s.), (55)

qt (N
t
k) = Et pt+1(N

t
k) (a.s.) (56)

for all k = 1, 2, . . .. The last equality holds because the integer-valued random variable Nt
k

is Ft -measurable [see (49)]. By the construction of the triplet (xt , pt , qt ) and the sequence
Nt
k , we have

qt (N
t
k) → qt (a.s.), xt (N

t
k) → xt (a.s.). (57)

By virtue of (56) and (57), we have

Et pt+1(N
t
k) = qt (N

t
k) → qt (a.s.). (58)
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We apply the conditional version of the multidimensional Fatou’s lemma (see the
Appendix, Proposition A.3) to the sequence of Ft+1-measurable random vectors pk(ω) :=
pt+1(Nt

k(ω), ω) whose values belong to the cone C(ω) := X∗
t (ω) (a.s.), depending Ft -

measurably on ω. The conditional expectations Et |pk(ω)| are finite (a.s.) because
Et |pt+1(N

t
k(ω), ω)| = Et

∑

m

1{Nt
k=m}|pt+1(m, ω)|

=
∑

m

1{Nt
k=m}Et |pt+1(m, ω)| < ∞ (a.s.)

(cf. (49)), where Et |pt+1(m, ω)| < ∞ (a.s.) since E |pt+1(m, ω)| < ∞. Furthermore,
Et pk(ω) → qt (ω) (a.s.) by virtue of (58)]. Consequently, Proposition A.3 can be applied,
and we obtain that there exists a sequence 1 < k1(ω) < k2(ω) < . . . of Ft+1-measurable
integer-valued functions and an Ft+1-measurable vector function pt+1(ω) ∈ C(ω) (a.s.)
such that

pkl → pt+1 (a.s.) as l → ∞, (59)

qt − Et pt+1 ∈ C(ω) (a.s.). (60)

Since qt ∈ Qt , inequality (60) implies that pt+1 ∈ Pt+1. Indeed, we have ẙt (ω) ∈ Xt (ω)

and qt − Et pt+1 ∈ C(ω) = X∗
t (ω) (a.s.), consequently, qt ẙt − Et pt+1 ẙt ≥ 0 (a.s.), which

yields

||ẙt ||∞ E |qt | ≥ Eqt ẙt ≥ EEt pt+1 ẙt = Ept+1 ẙt ≥ εt

mt
E |pt+1|.

The last inequality follows from Lemma 1 because pt+1(ω) ∈ C(ω) = X∗
t (ω) (a.s.) and

B(ẙt , εt ) ⊆ Xt (ω) (a.s.).
By setting nt+1

l := Nt
kl
, we obtain a sequence

t + 1 < nt+1
1 < nt+1

2 < . . . (61)

of Ft+1-measurable integer-valued functions such that

pt+1(n
t+1
l ) → pt+1, xt (n

t+1
l ) → xt (a.s.) as l → ∞ (62)

by virtue of (59) and (57). Note that the first inequality in (61) holds because nt+1
1 = Nt

k1
>

Nt
1 > 1. In view of (53)–(55), we get

(pt+1(n
t+1
l ), qt+1(n

t+1
l ) ∈ Z×

t+1 (a.s.), (63)

(xt (n
t+1
l ), xt+1(n

t+1
l ) ∈ Zt+1 (a.s.), (64)

pt+1(n
t+1
l )xt (n

t+1
l ) = 1 (a.s.). (65)

Since the sequence p(l) := pt+1(n
t+1
l ) converges for almost all ω, it is bounded for

almost all ω. By virtue of (63) and Lemma 3, the sequence q(l) := qt+1(n
t+1
l ) is a.s.

bounded too. Lemma 3 can be applied because by definition, qt+1(N ) = Et+1 pt+2(N ), and
so qt+1(N ) ∈ X∗

t+1 (a.s.) [recall that pt+2(N ) ∈ X∗
t+1 (a.s.)].

For x(l) := xt+1(n
t+1
l ), we have |x(l)| ≤ K t+1 (a.s.) according to (27). Therefore

we can apply Proposition A.1 to the sequence of Ft+1-measurable random vectors vl :=
(x(l), q(l)). By virtue of this proposition, there exists a sequence 1 < l(1) < l(2) < . . .
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of Ft+1-measurable integer-valued random variables and Ft+1-measurable random vectors
xt+1 ∈ Xt+1 (a.s.) and qt+1 ∈ X∗

t+1 (a.s.) for which

x(l(m)) = xt+1(n
t+1
l(m)) → xt+1, q(l(m)) = qt+1(n

t+1
l(m)) → qt+1 (a.s.). (66)

Since the sets Z×
t+1(ω) and Zt+1(ω) are closed, it follows from (63)–(66) and (62) that

(pt+1, qt+1) ∈ Z×
t+1 (a.s.), (67)

(xt , xt+1) ∈ Zt+1 (a.s.), (68)

pt+1xt = 1 (a.s.). (69)

We have |xt+1| ≤ K t+1 (a.s.) because |x(l)| ≤ K t+1 (a.s.). Since qt+1 ∈ X∗
t+1 (a.s.) and

(pt+1, qt+1) ∈ Z×
t+1 (a.s.), by Lemma 3 we get |qt+1| ≤ Ct+1|pt+1|, and so qt+1 ∈ Qt+1

as long as pt+1 ∈ Pt+1, which was shown above. Thus the triplet (xt+1, pt+1, qt+1) ∈
Xt+1 ×Pt+1 ×Qt+1 satisfies all the conditions listed in (36)–(39) (with t + 1 in place of t).

It remains to define the sequence Nt+1
m , m = 1, 2, . . . , of Ft+1-measurable random

integers by
Nt+1
m := nt+1

l(m) = Nt
k(l(m)) [nt+1

l := Nt
k(l)]. (70)

The sequence Nt+1
m is strictly increasing in m because the sequences Nt

k , k(l), n
t+1
l and

l(m) are strictly increasing. We have Nt+1
1 > t + 1 since Nt

1 > t and k(l) > 1. By using
formulas (66) and (62), we obtain

xt+1(N
t+1
m ) → xt+1, pt+1(N

t+1
m ) → pt+1, qt+1(N

t+1
m ) → qt+1 (a.s.).

thus the sequence Nt+1
m possesses all the properties required for t + 1 in (41) and (42) [the

latter follows from (70)].
We have constructed for each t = 1, 2, . . ., vector functions xt (ω), pt (ω), qt (ω) satisfying

(35)–(39). Consider the sequences x0, x1, . . . and p1, p2, . . .. It follows from (37) that the
former is a path. Let us show that the latter is a dual path. The inequalities (39) (with t + 1
in place of t) and (36) imply that there exists a vector function ht ∈ Qt such that for almost
all ω,

qt (ω) = (Et pt+1)(ω) + ht (ω), ht (ω) ∈ X∗
t (ω), (71)

and (pt (ω), qt (ω)) ∈ Z×
t (ω). The last inclusion means that qt (ω)b ≤ pt (ω)a for all (a, b) ∈

Zt (ω). Taking into account (71), we get

b(Et pt+1)(ω) + bht (ω) ≤ apt (ω), (a, b) ∈ Zt (ω). (72)

Since b ∈ Xt (ω) as long as (a, b) ∈ Zt (ω), we obtain that bht (ω) ≥ 0 [see (71)]. Conse-
quently, we get

b(Et pt+1)(ω) ≤ apt (ω), (a, b) ∈ Zt (ω),

i.e. (pt (ω), (Et pt+1)(ω)) ∈ Z×
t (ω), which proves that p1(ω), p2(ω), . . . is a dual path. It

remains to observe that p1, p2, . . . supports x0, x1, . . . by virtue of (38). ��

6 Growth-optimality of rapid paths

Proof of Theorem 3 Let x0, x1, . . . be a rapid path supported by a dual path p1, p2, . . .. Let
us first observe that for any path (yt ) the sequence pt+1yt (t = 1, 2, . . .) is a non-negative
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supermartingale with respect to the filtration F1 ⊆ F2 ⊆ . . .. This is immediate from the
relations:

Et pt+1xt = p̄t+1xt ≤ pt xt−1 (a.s.), t = 1, 2, . . .

following from (9).
Further, consider any y ∈ L∞ (Ft+l ,R

mt+l ) with |y(ω)| ≤ γ |yt (ω)|. By using (9) and
(23), we have

pt+l yt+l−1 ≥ p̄t+l+1(yt+l + y) = p̄t+l+1yt+l + p̄t+l+1y ≥ p̄t+l+1y (a.s.) (73)

because p̄t+l+1yt+l ≥ 0 (a.s.). The last inequality is valid since yt+l (ω) ∈ Xt+l (ω) and
pt+l+1 (ω) ∈ X∗

t+l (ω) (a.s.), which yields pt+l+1yt+l ≥ 0 (a.s.) and so p̄t+l+1yt+l ≥ 0
(a.s.). Put

y = p̄t+l+1

| p̄t+l+1|γ |yt |. (74)

Then |y(ω)| = γ |yt (ω)| and y ∈ L∞ (Ft+l ,R
mt+l ). Consequently, (73) can be applied to y

defined by (74). Observe that

p̄t+l+1y = || p̄t+l+1||2
| p̄t+l+1| γ |yt | ≥ | p̄t+l+1|(mt+l)

−1γ |yt |, (75)

where || · || is the Euclidean norm in R
mt+l (we use the inequality || · || ≥ | · |/√mt+l ).

Further, the equality pt+l+1xt+l = 1 implies p̄t+l+1xt+l = 1, and so

| p̄t+l+1||xt+l | ≥ 1, (76)

and it follows from (A3) with a constant Kt = K independent of t that

|xt+l | ≤ Kl |xt |. (77)

By combining (76) and (77), we get

| p̄t+l+1| ≥ K−l |xt |−1, (78)

and by using (75), (73) and (78), we obtain

pt+l yt+l−1 ≥ K−l(mt+l)
−1γ |yt ||xt |−1 ≥ K−lm−1γ |yt ||xt |−1 (a.s.), (79)

which yields
pt+1yt ≥ Et+1 pt+l yt+l−1 ≥ K−lm−1γ |yt ||xt |−1 (a.s.). (80)

Since pt+1yt is a non-negative supermartingale, the proof is complete. ��

7 A financial market model

In this section we consider a model for a financial market with transaction costs and portfolio
constraints in which the cones Xt (ω) and Zt (ω) are polyhedral. We check conditions (A1)–
(A5) guaranteeing that Theorems 1, 2, and 3 can be applied to the model. Additionally, we
verify assumption (L) and the following conditions (F) and (A4′) that will be used further in
our work.
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(F) There exist Ft -measurable random vectors ft,p(ω), p = 1, . . . , P , such that for each
ω we have ft,p(ω) �= 0,

Xt (ω) =
⎧
⎨

⎩
a : a =

P∑

p=1

ft,p(ω)cp for some cp ≥ 0, p = 1, . . . , P

⎫
⎬

⎭
. (81)

and

θt |c| ≤ |
P∑

p=1

ft,p(ω)cp| ≤ t |c|, c = (c1, . . . , cP ) ∈ R
P+, (82)

where 0 < θt < t (t = 0, 1, . . .) are constants and P is a natural number.
(A4′) For every t ≥ 1 there exist a strictly positive constant αt > 0 and a bounded

vector function ẑt (ω) = (x̂t−1(ω), ŷt (ω)) such that x̂t−1(ω) is Ft−1-measurable, ŷt (ω) is
Ft -measurable and B(ẑt (ω), αt ) ⊆ Zt (ω) for all ω.

Clearly (A4′) implies (A4).
We consider a market where m assets are traded at dates t = 1, 2, . . .. Random vectors

a(ω) ∈ R
m are interpreted as (contingent) portfolios of assets. Positions ai (ω) of the portfolio

a(ω) = (a1(ω), . . . , am(ω)) ∈ R
m aremeasured in terms of their values in themarket prices.

We omit ω in the notation where it does not lead to ambiguity.
For each t = 0, 1, . . . and i = 1, . . . ,m the following Ft -measurable random variables

are given: margin requirement coefficients for long and short positions 0 < μ+
t,i < μ−

t,i ,

market asset prices St,i > 0, transaction cost rates for selling and buying assets 0 ≤ λ+
t,i < 1,

λ−
t,i ≥ 0, dividend or interest yield rates for long and short positions 0 ≤ D+

t,i ≤ D−
t,i . We

denote by Rt,i = St,i/St−1,i the return on asset i .
Portfolio constraints in the model are specified by the cones

Xt (ω) =
{

a ∈ R
m :

m∑

i=1

μ+
t,i (ω)ai+ ≥

m∑

i=1

μ−
t,i (ω)ai−

}

, (83)

where a− = (−a)+. The random variables μ±
t,i can be used to define margin requirements

as in the following two particular cases of (83):

Xt (ω) = {
a ∈ R

m : |a+| ≥ Ut |a−|} , or (84)

Xt (ω) =
{

a ∈ R
m :

m∑

i=1

(1 − λ+
t,i (ω))ai+ ≥ Ut

m∑

i=1

(1 + λ−
t,i (ω))ai−

}

, (85)

where Ut > 1 are constants. In both (84) and (85), Ut can be interpreted as a margin
requirement coefficient: a trader must be able to liquidate the long positions of her portfolio
to cover the short positions with excess determined by Ut . In (84) no transaction costs are
taken into account in the liquidation value. In (85), there are proportional transaction costs
specified in terms of λ±

t,i .
Trading in the market under consideration proceeds as follows. At each date t , the trader

receives the dividend on her portfolio a(ω) purchased at the previous date. The amount of
dividend is specified by the function dt (ω, a) defined by the formula

dt (a) =
m∑

i=1

(D+
t,i a

i+ − D−
t,i a

i−).
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Here D±
t,i specify the amount of dividend received or returned for each unit of cash invested

in asset i . (We assume that dividends on short positions must be returned. The dividend rates
for long and short positions might be different due to the presence of taxes on dividends).
The dividends received or returned for a physical unit of asset i are D±

t,i St−1,i .
After that, the trader rearranges her portfolio a(ω)with added dividend to a portfolio b(ω)

subject to the self-financing constraint ψt (ω, a, b) ≥ 0, where

ψt (a, b) =
m∑

i=1

(1 − λ+
t,i )(Rt,i a

i − bi )+ −
m∑

i=1

(1 + λ−
t,i )(Rt,i a

i − bi )− + dt (a).

The first sum represents the amount of money the trader receives by selling assets, the second
sum is the amount of money she pays for buying assets, including transaction costs.

The above description of the model corresponds to the cones

Zt (ω) := {(a, b) ∈ Xt−1(ω) × Xt (ω) : ψt (ω, a, b) ≥ 0} . (86)

As a liquidation value function, which appears in condition (L), we can use

φt (ω, b) =
m∑

i=1

(1 − λ+
t,i (ω))bi+ −

m∑

i=1

(1 + λ−
t,i (ω))bi−. (87)

Conditions under which the function (87) satisfies (L) are given in Proposition 2 below.
A natural instance of this model is when asset 1 represents cash deposited with a bank

account and the other assets are shares of stock. Then St,1 = 1 and λ±
t,1 = 0 (the value is

expressed in terms of cash and there are no transaction costs for cash). The random variables
D±
t,1 are interest rates for lending and borrowing and the random variables D±

t,i , i ≥ 2,
are dividend yield rates on stock. Different dividend yield rates for long and short positions
correspond to the situation when some assets pay dividends in a currency different from asset
1 and there is a bid-ask spread in the exchange rates.

Observe that Zt (ω) is indeed a cone: clearly it contains with any vector (a, b) all vectors
λ(a, b), where λ ≥ 0. Also it is convex, since the function ψt (a, b) is concave as follows
from the representation

ψt (a, b) =
m∑

i=1

[(1 − λ+
t,i )(Rt,i a

i − bi ) + D+
t,i a

i ]

−
m∑

i=1

[(λ−
t,i + λ+

t,i )(Rt,i a
i − bi )− + (D−

t,i − D+
t,i )a

i−],

where the first sum is a linear function of a, b and the second sum is a convex function of
a, b.

We introduce the following assumptions. To shorten the notation, we put �+
t,i = 1 − λ+

t,i

and �−
t,i = 1 + λ−

t,i .

(B1) For each t , there exist constants Rt , Rt , �t , �t , Dt such that 0 < Rt ≤ Rt,i (ω) ≤ Rt ,
0 < �t ≤ �+

t,i (ω), �−
t,i (ω) ≤ �t , D

−
t,i (ω) ≤ Dt for all i , ω.

(B2) For each t , there exists a constant μt such that μ
−
t,i (ω)/μ+

t, j (ω) ≥ μt for all ω, i �= j ,

and μt > νt , where νt := max{(�t+1Rt+1 + Dt+1)/(�t+1Rt+1 + Dt+1);�t/�t }
and Dt ≥ 0 is a constant such that Dt ≤ D+

t,i (ω) for all ω, i .

Observe that for the particular examples of the cones Xt (ω) in (84) and (85), if condition
(B1) is satisfied then (B2) will hold if Ut > νt for each t .
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Proposition 1 Let conditions (B1) and (B2) hold. Then the cones Xt (ω) satisfy conditions
(F) and (A1) and the cones Zt (ω) satisfy conditions (A2), (A3) and (A4′).

To prove Proposition 1 we will need the following auxiliary result .

Lemma 1 Let conditions (B1), (B2) hold. Then

(a) For each t there exists a constant C1
t > 0 such that if a ∈ Xt (ω) then |a+| − νt |a−| ≥

C1
t |a|.

(b) For each t there exists a constant C2
t such that if a ∈ Xt−1(ω), b ∈ Xt (ω) and |b| ≤

C2
t |a|, then (a, b) ∈ Zt (ω).

Proof (a) Consider the non-random cone X̃t = {a ∈ R
m : μt |a−| ≤ |a+|}. Condition

(B2) implies that Xt (ω) ⊆ X̃t . Observe that since μt > 1 we have X̃t ∩ (−X̃t ) = {0}.
The continuous function ht (a) = |a+| − νt |a−| is strictly positive on the compact set
X̂t = X̃t ∩ {a : |a| = 1}. Indeed, since ht (a) ≥ (μt − νt )|a−| on X̃t , then the equality
ht (a) = 0 would imply |a−| = 0, and hence |a+| = ht (a) = 0, so that |a| = 0. Then
ht (a) attains a strictly positive minimum on X̂t , which can be taken as C1

t .
(b) Let b ∈ Xt (ω). It is straightforward to check that for any numbers x, y we have (x −

y)+ ≥ x+ − y+ and (x − y)− ≤ x− + y+. Using this, we obtain for any a ∈ Xt−1(ω)

ψt (a, b) ≥
∑

i

((�+
t,i Rt,i + D+

t,i )a
i+ − (�−

t,i Rt,i + D−
t,i )a

i−) −
∑

i

(�+
t,i + �−

t,i )b
i+

≥ (�t Rt + Dt )|a+| − (�t Rt + Dt )|a−| − 2�t |b+|
≥ (�t Rt + Dt )(|a+| − νt−1|a−|) − 2�t |b|
≥ C1

t−1(�t Rt + Dt )|a| − 2�t |b|.
Then statement (b) can be fulfilled with the constant C2

t = C1
t−1(�t Rt + Dt )/(2�t ),

since in that case ψt (a, b) ≥ 0, implying (a, b) ∈ Zt .
��

Proof of Proposition 1 Let us observe that the cones Xt satisfy (F). We first show that each
cone Xt is polyhedral. Put ft,i, j = ei−(μ+

t,i/μ
−
t, j )e j for i �= j ,where ei is the i-th basis vector

in R
m . Suppose a ∈ Xt (ω), a �= 0. Denote by I = {i : ai > 0}, J = { j : a j < 0} the sets of

indices of positive and negative coordinates ofa andput δ = (
∑

j∈J μ−
t, j |a j |)/(∑i∈I μ+

t,i a
i ).

Clearly, δ ≤ 1 as a ∈ Xt . Then

a = δ
∑

i∈I

∑

j∈J

aiμ−
t, j |a j |

∑

k∈J
μ−
t,k |ak |

ft,i, j + (1 − δ)
∑

i∈I
ai ei .

Hence the cone Xt can be represented in the form (81) with m2 generators: ft,i, j and ei for
i, j = 1, . . . ,m, j �= i .

Since ft,p(ω) �= 0,we can assumewithout loss of generality that all the generators ft,p(ω)

of the cone Xt (ω) are normalized: | ft,p(ω)| = 1. Then the second inequality in (82) will
hold with t = 1.

To prove the first inequality in (82), observe that the minimum of the continuous function
v(c, f1, . . . , fP ) := | ∑p cp f p| is strictly positive on the compact set {(c, f ) : c ∈ R

P+, |c| =
1, f p ∈ X̃t , | f p| = 1, p = 1, . . . , P}. Then θt can be taken equal to this minimum.
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Let us check condition (A1). In the proof of Lemma 1, we observed that the cones Xt (ω)

is contained in the non-random cone X̃t = {a ∈ R
m : μ|a−| ≤ |a+|}. Put qt = e, where

e = (1, . . . , 1) ∈ R
m . Indeed, qt ∈ X∗

t (ω) since for any a = (a1, . . . , am) ∈ Xt (ω)

qt (ω)a =
m∑

i=1

ai = |a+| − |a−| ≥ (μt − 1)|a−| ≥ 0.

Note that the continuous function qt (a) = ∑m
i=1 a

i is strictly positive on the compact set
X̂t = X̃t ∩ {a : |a| = 1}. Indeed, since qt (a) ≥ (μt − 1)|a−| on X̃t , the equality qt (a) = 0
would imply |a| = 0. Then qt (a) attains a strictly positive minimum Qt ≤ 1 on X̂t . Define
Ht = Q−1

t . Therefore, for any a ∈ Xt (ω)

H−1
t |a| ≤ qt (ω)a ≤ Ht |a|,

which implies that assumption (A1) is satisfied.
Condition (A2) follows from statement (b) of Lemma 1 since for any a ∈ Xt−1(ω),

0 ≤ C2
t |a| and so (a, 0) ∈ Zt (ω).

Let us prove (A3). Suppose (a, b) ∈ Zt . Since for any numbers x, y we have (x − y)+ ≤
x+ + y− and (x − y)− ≥ y+ − x+, we obtain

0 ≤ ψt (a, b) ≤
∑

i

((�+
t,i + �−

t,i )Rt,i + D+
t,i )a

i+ +
∑

i

(�+
t,i b

i− − �−
t,i b

i+)

≤ (2�t Rt + Dt )|a| + �t |b−| − �t |b+| ≤ (2�t Rt + Dt )|a| − C1
t �t |b|, (88)

where in the last inequality we used that b ∈ Xt (ω) and according to statement (a) of
Lemma 1, we have �t |b+| − �t |b−| ≥ �t (|b+| − νt |b−|) ≥ C1

t �t |b|. This implies the
validity of (A3) with the constant Kt = (2�t Rt + Dt )/(C1

t �t ).
Now we will prove condition (A4′). Let x̂ = (1, . . . , 1) ∈ R

m . Put ẑt = (x̂, ŷt ) with
ŷt = (C2

t /2)x̂ . Observe that there exists δt > 0 such that B(ẑt , δt ) ⊂ R
2m+ and therefore

B(ẑt , δt ) ⊂ Xt−1 × Xt . Since |ŷt | < C2
t |x̂ |, then one can find 0 < αt ≤ δt such that

|yt | ≤ C2
t |xt | for any zt = (xt−1, yt ) ∈ B(ẑt , αt ). Then statement (b) of Lemma 1 implies

zt ∈ Zt for such zt . Hence, the pair (ẑt , αt ) satisfies condition (A4′). Therefore all conditions
(A1)–(A4) are satisfied and then Theorems 1 and 2 hold. ��

Let us assume that assumptions (B1) and (B2) hold with constants μt , Rt , Rt , �t , �t , Dt

not depending on t . Under these assumptions the following assertion is valid, guaranteeing
that Theorem 3 holds in the model at hand.

Proposition 2 Let assumptions (B1) and (B2) hold with constantsμt , Rt , Rt ,�t ,�t , Dt not
depending on t. Then

(a) Zt (ω) satisfy condition (A3) with constant K not depending on t and condition (A5)
with l = 1,

(b) the function φt (ω, b) defined in (87) satisfies condition (L).

Proof (a) From the proof of statement (a) of Lemma 1 one can see that if the constants from
condition (B1) do not depend on t , then it is possible to choose C1

t independent of t .
Then (88) implies that Kt can be chosen independent of t .
Let us prove that (A5) holds. It follows from the proof of Lemma 1 that the constant
C2
t can be chosen independent of t . Let γ = C2/(m + 1) and consider any yt ∈ Xt .

Put yt+1 = γ |yt |x̂ , where x̂ = (1, . . . , 1) ∈ R
m . Then B(yt+1, γ |yt |) ⊆ R

m+ ⊆ Xt+1.
Hence for any y ∈ L∞ (Ft+1,R

m) such that |y| ≤ γ |yt | we have yt+1 + y ∈ Xt+1 and
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|yt+1+y| ≤ C2|yt |. Hence, statement (b) of Lemma 1 implies that (yt , yt+1+y) ∈ Zt+1,
so condition (A5) holds with l = 1.

(b) Finally, we prove that the functionφt (ω, b) satisfies condition (L). The second inequality
in condition (L) holds with S = 1. Let us prove the first inequality. Since Xt (ω) ⊆ X̃t =
{a ∈ R

m : μ|a−| ≤ |a+|}, for every b ∈ Xt (ω) we have

φt (ω, b) ≥ �|b+| − �|b−| ≥ (
� − �/μ

) |b+|.
Condition (B2) implies that μ� > �. Using that and |b+| ≥ |b−|, the above inequality
yields φt (ω, b) ≥ s |b| with constant s = (

� − �/μ
)
/2 > 0. ��
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Appendix

Let (�,F, P) be a probability space and wN (ω) (ω ∈ �, N = 1, 2, . . .) a sequence of
random vectors in Rn .

Proposition A.1 If lim inf |wN (ω)| < ∞ a.s. (which is so, in particular, when
lim inf E |wN (ω)| < ∞), then there exists a sequence of integer-valued random variables
N1(ω) < N2(ω) < . . . and a random vector w(ω) such that

limwNk (ω)(ω) = w(ω) (a.s.) (89)

and
E |w(ω)| ≤ lim inf E |wN (ω)|. (90)

Proof Define ξ(ω) = lim inf |wN (ω)|. Since ξ(ω) < ∞ (a.s.), for almost all ω there exists
a sequence ν = (Nk)

∞
k=1 of natural numbers Nk and a vector w ∈ R

n such that

Nk < Nk+1, lim |wNk (ω)| → ξ(ω), limwNk (ω) = w, |w| = ξ(ω), (91)

Denote by A the set of (ω, v,w) satisfying (91). This set is measurable with respect to
F × B(N∞) × B(Rn), where N∞ := N × N × . . . is the product of a countable number of
copies of the discrete spaceN := {1, 2, . . .}with the product topology. By virtue ofAumann’s
measurable selection theorem (see e.g. [10]), there exist measurable ν(ω) = (Nk(ω))∞k=1
and w(ω) such that (ω, ν(ω),w(ω)) ∈ A for almost all ω. This yields (89) and (90) because
E |w(ω)| = Eξ(ω) = E lim inf |wN (ω)| by Fatou’s lemma. ��

Let C be a pointed closed cone in R
n . We write a ≤C b if b − a ∈ C .

Proposition A.2 Let pk(ω), k = 1, 2, . . ., be integrable random vectors with values in C such
that the sequence Epk(ω) converges a.s. to a vector q ∈ R

n. Then there exists a sequence

123

http://creativecommons.org/licenses/by/4.0/


Mathematics and Financial Economics

of integer-valued random variables 1 < k1(ω) < k2(ω) < . . . and an integrable random
vector p(ω) such that

lim
l→∞ pkl (ω)(ω) = p(ω) (a.s.)

and

Ep(ω) ≤C q.

Proposition A.2 is a version of the multidimensional Fatou’s lemma—an important result
in measure theory first obtained in connection with applications in Mathematical Economics
bySchmeidler [55] and then developed in various directions byHildenbrand [33],Artstein [3],
Balder andHess [5],Cornet et al. [12], and others. PropositionA.2 extendsSchmeidler’s result
from the case C = R

n+ to the case of a general cone C , and Proposition A.3 establishes an
analogous fact for conditional expectations. For proofs of these propositions (under somewhat
more general assumptions) see [6].

Let G be a sub-σ -algebra of F and let C(ω) be a pointed closed convex cone in R
n

depending G-measurably on ω. A random vector p(ω) is said to be conditionally integrable
(with respect to the σ -algebra G) if E[|p(ω)| |G] < ∞ (a.s.), where | · | stands for a norm in
R
n .

Proposition A.3 Let pk(ω), ω ∈ �, k = 1, 2, . . ., be conditionally integrable random
vectors such that pk(ω) ∈ C(ω) (a.s.) and the conditional expectations E[pk(ω)|G] converge
a.s. to a random vector q(ω). Then there exists a sequence of integer-valued random variables
1 < k1(ω) < k2(ω) < . . . and a conditionally integrable random vector p(ω) such that

lim
l→∞ pkl (ω)(ω) = p(ω) (a.s.)

and

E[p(ω)|G] ≤C(ω) q(ω) (a.s.).
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