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Summary 
 

This work is a follow-up to Lillestøl (2019). The context is the use of sample data to support 
claims of tax fraud at eateries, where the possibilities of embezzlement are overreporting of 
take-away sales and underreporting of cash payments. Ratios of sales amounts of opposing 
types are computed from the sample and used as estimates for the true yearly ratios. 
Decisions are made by comparison with the reported ratios in the taxpayer’s yearly income 
statement, allowing for sampling risk. To this end, a “risk distribution” is established and its 
quantiles used as decision limits. There are different ways of doing the calculation and to 
establish the accompanying risk distribution, among them models based on Gamma-
assumptions, as detailed in Lillestøl (2019). They may lead to different results, more or less 
favorable to the taxpayer. The chosen method therefore must be fair and defensible. In this 
connection, some relevant issues have surfaced, mainly related to independence and 
conditioning. The objective of this paper is to explore these issues and provide some 
recommendations on the choice of method.  
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1. The context 

 
This paper investigates some theoretical issues concerning risk evaluations for a class of sample audit 

estimates applicable to the tax review of take-away eateries, as detailed in Lillestøl (2019). The 

context is as follows:  A key quantity for the tax authority reported in the yearly income statements is 

the percentage of yearly take-away sales (15% VAT) as opposed to the percentage of sales consumed 

at the premises (25% VAT). The latter may be underreported. Another quantity of interest for the tax 

authority is the percentage of sales paid by card as opposed to paid by cash, as the latter offers 

opportunity to underreport.  Following the suspicion of underreporting, the tax authority has 

sampled some opening dates and observed the sales on these days, i.e. sales amounts and type of 

sales. From this, they extrapolate to see if the reported numbers for the whole year are justified or 

not.2    

The findings from inspection visits at a pizzeria on three samples dates are given in Table 1, where 

the opposing typing of sales are named ForHere vs ToGo and Cash vs Card. 

Table 1 Sales amount (NOK) and number of sales (#) at inspection on three sampled dates 

Date ForHere ToGo Cash Card Total 
 NOK (#) NOK (#) NOK (#) NOK (#) NOK (#) 

14.05.2014 838 ( 5) 1664 ( 5) 969 ( 2) 1533 ( 8) 2502 (10) 
25.05.2014 969 (6) 6307 (28) 1944 (12) 5332 (22) 7276 (34) 
18.06.2014 2274 (11) 2283 (12) 699 ( 5) 3858 (18) 4557 (23) 

Total  4081 (22) 10254 (45) 3612 (19) 10723 (48) 14335 (67) 
 

We assume that there is a true yearly percentage of sales of each opposing type, named type 1 and 

type 2, which may differ from the reported percentages. The aim of the sampling is to estimate the 

true percentage accompanied with an uncertainty judgment, say by providing a  limit on the true 

percentage with an attached probability guarantee accounting for sampling errors.   

There are several ways to go about this. The approach used by the tax authority, in this case, was to 

calculate the fractional amounts paid for each opposing type for each day separately. These numbers 

were then averaged over the three days to provide estimates of the true yearly percentage amounts 

of each type. Crude risk calculations are possible, although a basis of essentially three observations is 

weak, and with conditions required for normal approximation hard to justify.3   

An alternative approach advocated in Lillestøl (2019) is to aggregate all sales amounts of each type 

and divide by the total sales amount. This is taken as estimates of the true yearly percentages, and 

risk calculations are possible, based on distributional assumptions on the individual sales.  Note that 

the first approach involves the number of observations each day, in a sense irrelevant, while the 

second approach goes free of this.4  Take ForHere to be type 1 sale and ToGo to be type 2 sale. Then 

the aggregated sales amounts are S1=4225 and S2=10110, and so the ratio of ForHere sales is 

R=4081/(4081+10254)=0.285. In case the reported ForHere% is 20%, the sample appears somewhat 

unfavorable to the taxpayer. However, if the lower limit guaranteed with high confidence (say 95%) 

turns out to be less than 20%, there is no clear evidence in disfavor of the taxpayer.  So, what is a 

 
2 Comparisons could be made with percentages known from the eatery business at large, as well as to prior 
year reports and the one for the current year, first available at the end of the year.  
3 In this case, formal risk calculations were not performed by the tax authority. 
4 In fact, the first day visit to the eatery covered only about half of the opening hours.  
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reasonable lower limit on ForHere% accounting for sampling error, more than the reported 20% or 

less than 20%? And, what if the reported ratio was 15% or as low as 10%.  This may be crucial for any 

follow-up actions by the tax authority.  

The sample turned out the number of sales and the amount ratios for the two pairs of opposing 

types of sales displayed in Table 2, together with the reported ratios. 

Table 2. Amount ratios: Sampled and reported 

Type of sale ForHere ToGo Cash Card 

No. of sales 22 45 19 48 
Ratio (R) 28.5%  71.5% 25.2% 74.8% 
Reported 10.3% 89.7% 12.7% 87.3% 

 

The paper will examine some questions related to the use of a sampled ratio 𝑅  as estimate of the 

long run ratio 𝜌.  With a sample over a time span of three opening days out of about 360 openings 

days for a year, it is in effect a finite population problem. However, analytically it is more convenient 

to treat the problem within an infinite horizon context. This Is justified, since sample is small relative 

to the population.  Let 𝑆1 and 𝑆2   be the sums of sampled sales of each opposing type, type 1 and 

type 2.  Focusing on the of type 1 sales we then take 

𝑅 =
𝑆1 

𝑆1 +𝑆2 
    as estimate of 𝜌 =

𝐸(𝑆1 )

𝐸(𝑆1) +𝐸(𝑆2 )
 

We take 𝜌 as the true ratio, and when the sampled ratio 𝑅 conflicts with the one reported, suspicion 

is raised. However, benefit of doubt should be given to the taxpayer by some calculation accounting 

for sampling error.5 The calculation will be performed by establishing a risk distribution of some 

kindand use an appropriate quantile as decision limit. 6   We will enumerate the opposing types so 

that the lower quantiles are the relevant ones.  The risk distribution can be established several ways, 

same distribution-free and some based on distributional assumptions.  Both frequentist and Bayesian 

approaches are available. Some also offer estimates of the long run ratio 𝜌 other than 𝑅. The 

proposed models in Lillestøl (2019) all assume independent Gamma-distributed sales amounts, and 

beyond that, different levels of complexity. In this paper we examine theoretical issues raised in 

connection with some of these approaches.  In case knowledge of the Gamma-distribution and its 

relation to the Beta-distribution is lacking, some basics are given in an Appendix. 

 

2. The modelling issues 

 
For the moment, we assume that the number of sales of each type regarded as given, say 𝑛1 and 𝑛2.  

Assume that the sales amounts are independent and follow a Gamma-distribution with common 

scale parameters, but possibly different shape parameters for the two groups. It then follows by 

theory (see Appendix) that 𝑅  will have a Beta-distribution with parameters determined by the two 

involved shape parameters. The parameters are easily estimated from data by the maximum 

likelihood method. The fitted distributions are given in Figure 1 

 
5 Some may argue that E(R) should be taken as the true ratio. Our choice is the more convenient theoretically. 

In practice, the choice does not matter much, and the users are not likely not think in these terms anyway. 
6 The name risk distribution may be ill conceived. However, it aims to cover different conceptions for 
establishing a distribution to support claims and decisions taken.   
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Figure 1. Fitted Beta distribution of R from Gamma-assumptions 

 

 This leads to simple evaluations based on the quantiles of the fitted Beta-distributions, easily 

obtained by most statistical software as given in Table 3.    

Table 3.  Quantiles of R obtained from fitted Beta-distributions 

 ForHere Cash 
Quantile 1% 5% 10% 20% 1% 5% 10% 20% 

Beta-quantile 0.215 0.232 0.240 0.254  0.165 0.180 0.189 0.200 

 

Question: To what extent is this simple calculation justified and fair to the taxpayer?  

In case common scale is not realistic, the model may be widened to account for this, leading to an 𝑅 

with a distribution related to the so-called Beta-prime distribution.  Although a more complicated 

distribution, the risk calculation is numerically simple and, for the user, the added complexity is 

hidden in the software.  These two models consider, in a sense, separate incoming streams of 

customers for each type, say the staying customers and the take-away customers. Alternatively, one 

could imagine one stream of customers, and add a parameter representing the probability that an 

incoming customer is a take-away customer.  Now the ratio 𝑅  will have a complicated distribution, 

but still possible to handle analytically or by simulations.  We have here assumed calculations within 

the classical (frequentist) statistical paradigm, where the model is estimated and then used for risk 

calculations.  In case the Bayesian paradigm is favored, one may seek the posterior distribution of 𝑅 , 

based on prior distributions on the underlying parameters.  The posterior distribution thus obtained 

is not analytically tractable and may be obtained by simulation techniques. The implementation will 

be the same for the simple and widened models.    

The assumption of Gamma-distributed sales may be tested on the sampled (although limited) data.  

Then the required distribution of 𝑅  follows from the independence assumption by theory. This leads 

to relatively simple risk calculations.  However, two interesting practical and theoretical issues have 

surfaced in connection with this approach: 

1. The taking of sample size as given 

2. The forced independence of 𝑆1 and 𝑆2  
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Taken as objections, a brief refutation may be as follows: (1) The sample size bears no relation to the 

parameter of interest. It is natural to follow the common practice in observational studies, where 

statisticians with few exceptions condition on the sample size.7 Moreover, conditioning makes long 

run interpretations, like confidence limits, more relevant to the individual case under study.8 

(2) Independence between customers purchase amounts is the natural assumptions.  Clearly, 

positive dependence between of S1 and S2 will arise when calculated on daily basis, but this is due to 

the number of sales of each type is dependent on a common factor, namely the total number of 

customers on a specific day.  However, our estimate by 𝑅  is not dependent on this grouping. In fact, 

the sales amounts occur symmetrically, and may be aggregated in any order.  What matters here is 

the total number of observations and not when they are taken.9  We then imagine that the size of 

the study represented by total number of sales 𝑛 to observe is prechosen and then then observe 𝑛1 

and 𝑛2 and take them as fixed in the risk calculation. This is the basis for the simple risk calculation 

based on the Beta-distribution in Lillestøl (2019).  It may be argued that this is unreasonable, and 

that the variation in the number of sales is relevant and should be taken into account in the risk 

calculation.  

In the following, we will look further into the conditioning arguments for by studying models where  

𝑛1 and 𝑛2 are not fixed, but random. In a sense, the two issues (1) and (2) are tied together, as 

correlation between 𝑆1 and 𝑆2 may be explained within a model where the number of customers of 

each type, say 𝑁1 and 𝑁2, are correlated random variables, for instance having some kind of bivariate 

Poisson distribution. Natural models with random number of sales will have the following density 

factorization 

(1)     𝑓(𝑥, 𝑛 𝜑 , ψ ) = 𝑓1(𝑥|𝑛; 𝜑 ) ∙ 𝑓2(𝑛;  ψ) 

where 𝑥 represents a vector of observables, including the sales amounts, and 𝑛 represents the 

number of sales. Here 𝜑  and ψ are parameter vectors, 𝜑 of primary interest and ψ of minor interest 

(nuisance parameters). From this follows that inference about  𝜑  should be made from 𝑓1 by 

conditioning and inference about ψ  should be made from 𝑓2 by marginalization.10 11 

Two classes of models may be imagined, either modelling one stream of customers or separate 

streams for the two opposing types of sales. In the former case, the type of sale may be represented 

by a probability parameter included in the parameter vector of interest 𝜑. The issue is whether  a 

given model fulfill (1) with 𝑛 = 𝑛1 + 𝑛2 or with  𝑛 = (𝑛1, 𝑛2) , that is, condition with respect to the 

total number of observations or possibly with respect to the individual numbers itself. In the 

probabilistic one-stream model mentioned above, equation (1) provides justification for conditioning 

on 𝑛 = 𝑛1 + 𝑛2 but not on 𝑛 = (𝑛1, 𝑛2). 

The structure of extended models allowing random number of observations are given in Figure 2 for 

one-stream and Figure 3 for two-stream. Here the square boxes contain observable random variables 

where 𝑋𝑖  is the vector of 𝑁𝑖  sales mounts of type i (i=1,2). The unboxed quantities are (vector) 

 
7 Statisticians frequently go beyond that, by taking the observed values of explanatory variables (the 
regressors) to be given as well (conditional inference).   
8 See the overview article in Statistical Science on the roles of conditioning in inference by N. Reid (1995), in 
particular the pages 138 and 154. 
9 However, sampling dates for visits reduces the risk collecting data from days with some special customer 
behavioral pattern. Three days are then a compromise between getting enough representative data and 
available resources. 
10 See formula (3.1) and accompanying text in Reid (1995). 
11 A more thorough discussion may involve conceptions of sufficiency and ancillarity. 
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parameters, either of importance or nuisance.  The parameters of importance are those which 

determine the theoretical ratio ρ to be estimated by 𝑅 (circled), which in turn is determined by the 

observable variables. The parameters of importance and the definition of ratio ρ may depend on the 

choice of model, and possibly on the position taken, i.e. whether one have decided to condition on 

the N’s at the outset or not. The sales amounts are all assumed conditionally independent, given the 

prior quantities in the graph, and having common distribution with expectation µi expressed in terms 

of θi for each type of sale (i=1,2). In Figure 3 the dotted line indicates that correlation between  𝑁1 

and 𝑁2 is induced by an additional parameter to the model. 

   

 

 

Figure 2. One-stream model 

For the one-stream model in Figure 2, the parameters of interest will be 𝜑 = (𝑝1, 𝑝2, 𝜃1, 𝜃2) and the 

nuisance parameter ψ = (λ). Here 𝜌 =
𝑝1 𝜇1

𝑝1 𝜇1 +𝑝2 𝜇2 
 is to be estimated. For this model, the joint 

density of the observables fulfills the factorization of formula (1) above, and the inference and risk 

calculations can be made conditional on N. This weakens the arguments for taking both  𝑛1 and 𝑛2 

fixed as in the non-random case.    

 

 

Figure 3. Two-stream model with correlation 

 

For the two-stream model in Figure 3, the parameters of interest will be 𝜑 = (λ1, λ2, 𝜃1, 𝜃2) and the 

nuisance parameter ψ = (λ0). Here 𝜌 =
λ1 𝜇1

λ1 𝜇1 +λ2 𝜇2 
 is to be estimated. For this model, the joint 

density of the observables does not fulfill the factorization of formula (1) above, and inference 

conditional on the number of sales is unjustified.  

In principle, one may adopt a model of the above kind, with distributional assumptions, more or less 

justified by data. We then have the opportunity to estimate the parameters of interest, and then 𝜌 

from the appropriate formula by plug-in, instead of using the simple ratio 𝑅 of aggregated sales. We 

have essentially three levels of sophistication: 

θ2 

θ1 

p2 

p1 
N1 

N2 

N 

X1 

X2 

λ 
 R 

 

R 

θ2 

θ1 

λ2 

λ1 N1 

N2 

X1 

X2 

λ0 
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1. Model-based estimation and risk calculations 

2. Estimate by 𝑅 and do risk calculation in view of a model 

3. Estimate by 𝑅 and do simplistic/schematic risk calculation 

In practice, the tax-authority analyst may prefer to stay clear of disputable models and use the 

empirical ratio 𝑅 anyway. Some kind of schematic risk judgment may also be preferred. That is, the 

latter may be preferred in practice. The use of 𝑅 with (𝑛1, 𝑛2) fixed and look-up quantiles of the 

Beta-distribution is of this kind. Extended models trying to explain more, and in some cases irrelevant 

features of the data, will incur higher risks. On the other hand, neglecting sources of variation, say by 

unjustified conditioning, may lead to underestimation of the risks. One could hope that the risk 

calculated on different assumptions are not much different. This may settle any disputes on the use 

of simple models. However, if they are different, our investigations may indicate the size of added 

necessary safety margins. 

This study will explore some of these issues, partly by theory and partly by simulations. The next 

section includes some basic statistical theory with specific distributional assumptions.   

 

3. Some statistical theory 

 
Initially we assume a fixed number of sales of each type, coming from Gamma-distributions, later to 

be used as conditional building blocks for the random models. For further details see Appendix. 

Let 𝑆𝑖  for i=1,2 be sums of 𝑛𝑖 sales each with distribution 𝐺𝑎𝑚𝑚𝑎(𝛼𝑖 , 𝛽) , i.e.  Gamma-distributed 

with common scale parameter 𝛽 but possibly different shape parameters 𝛼𝑖.  Then  𝑆1 and 𝑆2 are 

independent with 𝑆𝑖 distributed 𝐺𝑎𝑚𝑚𝑎(𝑛𝑖𝛼𝑖 , 𝛽), 𝑖 = 1,2. Moreover, the distribution of  𝑅 =
𝑆1 

𝑆1 +𝑆2 
 

will be  𝐵𝑒𝑡𝑎(𝑛1𝛼1, 𝑛2𝛼2), not dependent on 𝛽.  This provides a convenient distribution for 

calculating decision limits. The only thing we need is estimation of the two shape parameters.   

Noting that  𝐸(𝑆𝑖) = 𝑛𝑖 ∙ (
𝛼𝑖

𝛽
) , 𝑖 = 1,2, it follows that  

𝐸(𝑅) =
𝑛1 𝛼1

𝑛1 𝛼1 +𝑛2 𝛼2 
=

𝐸(𝑆1)

𝐸(𝑆1) +𝐸(𝑆2) 
= 𝜌, 

In the case of common scale, the scale parameters cancels and 𝑅 becomes an unbiased estimate of 

𝜌. In a sense, we can interpret 𝛼1 and 𝛼2 as weighing factors applied to  𝑛1 and 𝑛2 in the natural 

estimate of the two types of sales, 
𝑛𝑖 

𝑛1 +𝑛2 
, i=1,2, when all sales amounts have the same expectation.  

The above theory reflects a two-stream model with 𝑛1and 𝑛2 given. It may cause some concern that 

the expectation 𝐸(𝑅) depends on 𝑛1and 𝑛2, inasmuch 𝑅 is intended to be an estimate of an 

expected yearly ratio. This may be understood in the following context:  In effect, our target will be 

𝜌 =
𝑝1 𝛼1

𝑝1𝛼1 + 𝑝2𝛼2 
, where 𝑝𝑖  is the probability that a sale is of type i (i=1,2).  Then 𝑅 is obtained by 

replacing 𝑝1 and 𝑝2by their observed estimates �̂�𝑖 =
𝑛𝑖 

𝑛1 +𝑛2 
, i=1,2. In this sense, the estimate 𝑅 is 

asymptotically unbiased. In the case 𝑆𝑖 ~ 𝐺𝑎𝑚𝑚𝑎(𝑛𝑖𝛼𝑖, 𝛽𝑖), 𝑖 = 1,2 with differing scale parameter, 

the ratio  𝑅 =
𝑆1 

𝑆1 +𝑆2 
  no longer follows the standard a Beta-distribution. We now have  

𝐸(𝑅) ≠ 𝜌 =
𝐸(𝑆1)

𝐸(𝑆1) +𝐸(𝑆2) 
=

𝑛1 (𝛼1/𝛽1)

𝑛1 (𝛼1/𝛽1) +𝑛2 (𝛼2/𝛽2) 
, 
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but a similar asymptotic interpretation may be given. Extension of the theory above may provide a 

suitable distribution for calculating decision limits for the case of not common scale as well (see 

Appendix). 

The above considerations indicate some problems with the two-stream model. We will therefore 

examine a one-stream model in some generality. At the outset, we do not assume that the sales are 

Gamma-distributed.  We take the total number of observations 𝑛 as given, in order to contrast the 

case above when the number of both types are given.   

Imagine one stream of sales and for each sale probabilities 𝑝1 = 𝑝 and 𝑝2 = 1 − 𝑝  of being of type 1 

or type 2. The aggregated sales amounts may be represented by 

𝑆1 = ∑ 𝐼𝑖
𝑛
𝑖=1 𝑋𝑖

(1)
              𝑆2 = ∑ (1 − 𝐼𝑖)𝑛

𝑖=1 𝑋𝑖
(2)

 

Here 𝐼𝑖 = 1 if the ith sale is of type 1 and  𝐼𝑖 = 0 if the ith sale is of type 2. Assume that  

 𝐼𝑖, 𝑖 = 1,2, … , 𝑛 are independent with 𝐸(𝐼𝑖) = 𝑃(𝐼𝑖 = 1) = 𝑝, 𝑖 = 1,2, … , 𝑛.  Furthermore assume 

𝑋𝑖
(𝑗)

, 𝑖 = 1, ,2, … , 𝑛 are independent identically distributed with expectation  𝜇𝑗 = 𝐸 (𝑋𝑖
(𝑗)

) , 𝑗 = 1,2. 

Moreover, assume that (𝐼𝑖, 𝑋𝑖
(1)

, 𝑋𝑖
(2)

) are mutually independent. Note that the expressions above 

are just formal representations where sales not belonging to the stream are excluded by zeros. This 

representation is useful for theory development and for simulation, as will be demonstrated in later 

sections. It follows that 

𝑅 =
𝑆1 

𝑆1 +𝑆2 
→ 𝜌 =

𝑝1 𝜇1

𝑝1 𝜇1 +𝑝2 𝜇2 
  in probability 

In the case of Gamma-distributed sales,  this is expressed by the Gamma-parameters as 

𝜌 =
𝑝1 (𝛼1/𝛽))

𝑝1(𝛼1/𝛽1) + 𝑝2(𝛼2/𝛽2) 
 , which is reduced to  𝜌 =

𝑝1 𝛼1

𝑝1 𝛼1 +𝑝2 𝛼2 
, in the case of common scale. 

For this model we do not readily have a distribution for calculation of decision limits like the Beta 

distribution above. This can be overcome by various generally applicable numerical techniques, like 

numerical integration and simulation, as demonstrated in later sections.   

Let us end this section by preparation for the extension to models where the number of sales is taken 

to be random. This is dealt with for both one-stream and two-stream models in separate sections 

below, where issues of dependence are examined. With one stream of customers arriving randomly, 

we may assume that the number of sales 𝑁 in the sampled period is Poisson distributed with 

parameter 𝜆, in short 𝑁~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆 ). We then have 

𝑃(𝑁 = 𝑛) =
𝜆𝑛

𝑛!
𝑒−𝜆; 𝑛 = 0, 1, 2, 3, … 

Then 𝐸(𝑁) = 𝑉(𝑁) = 𝜆, i.e. expectation and variance coincide.  If we, as above, assume the type of 

sale are determined randomly with probabilities 𝑝1 and 𝑝2, then the number of sales of each type in 

the sampled period will respectively be 𝑁1~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆 𝑝1) and  𝑁2~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆 𝑝2) and 

independent. The parameter of interest is now 

𝜌 =
𝜆𝑝1 𝜇1

𝜆𝑝1 𝜇1  + 𝜆𝑝2 𝜇2 
=

𝑝1 𝜇1

𝑝1 𝜇1  + 𝑝2 𝜇2 
 

i.e. the same as in the fixed n case, as 𝜆 cancels out.  
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In the case of separate streams of customers for the opposing types of sales, the Poisson distribution 

may serve a building block for constructing a bivariate Poisson distribution for the number of sales of 

each type 𝑁1 and 𝑁2 with correlation, as will be seen in section 7. 

 

4. Risk calculation by resampling 
 

Risk calculations are based on assumptions involving the elements: conditioning, independence and 

distribution. In Lillestøl (2019) the risk calculations for 𝑅 are, in the common frequentist setting 

(section 5), based on the Gamma assumption. Conditional on the number of observations of each 

type this leads to a Beta-distribution for 𝑅 in  case of common scale and its extension for different 

scale.  If the model is extended, taking the total number as given, and adding a parameter for type 1 

(say), the unconditional distribution of 𝑅  is no longer Beta.   In this case, measures of the 

uncertainties may be derived by numerical integration or approximate reasoning. However, both are 

heavily dependent on the model chosen and its technicalities.  A more widely applicable approach 

would be to judge the uncertainties by resampling.  Different ways of doing this exist, as well as 

different modes of the calculation from each resample.  We have mainly the following: 

Modes of resampling: 

A. Resampling directly from the set of observations with replacement 

B. Resampling from the estimated model, say of Gamma-type 

Modes of calculation: 

1. Direct computation of 𝑅 

2. Compute parameter estimates of model and estimate 𝜌 by plug-in. 

 The risk calculation in Lillestøl (2019) in the frequentist setting are of type B1, but examples of B2 

are given in the Bayesian setting.  Note that the combination A1 offers the opportunity to do risk 

calculations without distributional assumptions, and example will be given below.  The plug-in 

estimates may seem impractical but may be used for checks of internal consistency.  Within a 

Bayesian context, where parameters typically are computed by MCMC-methods, the plug-in may 

seem more natural. We then have samples from the joint posterior of the parameters, and plug-in 

then gives a sample from the posterior of  𝜌 as well. 

We will now examine some variants of the models and their risk calculation, both within the 

frequentist and the Bayesian framework. Among others, we will contrast the case when the number 

of observations are taken as given and the case when the number of observations is taken as random 

determined by a Poisson-model. 

 First, we consider resampling with replacement from the observed data and calculation of 𝑅  (case 

A1). We consider three situations: (i) fixed with (n1, n2)=(22, 45) in the case of ForHere/ToGo and 

with (n1, n2)= (19, 48) in the case of Cash/Card, (ii) fixed n= n1+n2 =67 and (iii) random N.  In the cases 

(ii) and (iii) we estimate the probability of a type 1 sale as follows:  𝑝 =
22

67
 in case of ForHere, and 

𝑝 =
18

67
  in the case of Cash. In case (iii) we use  𝜆 =67 for the expected number of sales in a period of 

length as given. 

A resampling with 10 000 repeats was made to obtain an empirical distribution of 𝑅.  Histograms for 

case (ii) of fixed total n are given in Figur 4 (bin size 0.05), where the curves (in red) are the smoothed 
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versions. Histograms for case (iii) are similar with seemingly the same dispersion, but for cases (i) 

they are less dispersed. This is seen in Figure 5 where the smoothed histograms for case (i) and (ii) 

are displayed together, and where case (iii) will overlap the red curve for case (ii) and is not 

displayed. 

 

  

 Figure 4. Histograms of R by resampling from actual observations for fixed n: 

(Left: ForHere/ToGo, Right: Cash/Card) 

  

Figure 5. Distributions of R by resampling from actual observations: 

(Left: ForHere/ToGo, Right: Cash/Card) 

 

We see clearly the difference between conditioning on (n1, n2) and on just n=n1+n2. It may come as a 

surprise that the distribution in case of random N is not noticeable different from fixed n.12 For 

making decisions we are interested in the lower quantiles of the distributions. They are given as in 

Table 4.13 

 

 
12 The graphs indicate that the distribution is slightly shifted upward in the case of conditioning on both n1 and 
n2.  This may affect the tail probabilities, but our investigations go directly to these, since they are the main 
basis for decisions. 
13 The boldfaced line in this and later tables indicate the methods that stand out from the discussion at the end. 
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Table 4. Quantiles of R: Resampling with replacement from actual observations (A1) 

 ForHere Cash 
Quantile 1% 5% 10% 20% 1% 5% 10% 20% 

(i) fixed n1 n2 0.222 0.238 0.248 0.260  0.179 0.193 0.201 0.213 
(ii) fixed n 0.139 0.175 0.194 0.222  0.103 0.135 0.153  0.178 
(iii) random N 0.137 0.172 0.193 0.220  0.103 0.136 0.156 0.181 

 

First, we note that case (i) gives quantiles on the level of the Beta-quantiles given in Table 3. In fact, 

they are slightly above and therefore less favorable to the taxpayer. Next, we see a striking 

difference between case (i) and (ii) i.e.  fixing the number of sales of each type and fixing the total 

number of sales. Quantiles for the latter case are far below the corresponding ones for the former, 

reflecting the added uncertainty with one more parameter. On the other hand, we see that the 

quantiles for the random case are not much different from the fixed total case, despite the adding of 

one more parameter. We have argued above in favor of conditioning on the total number of sales.  In 

practice, this gives the taxpayer a large benefit of doubt, compared to conditioning on the number of 

sales of each type.   

A commentary in Lillestøl (2019) may leave the impression that the fixed assumption does not matter 

in the numerical sense. We see here that this is not the case. In fact, choosing one conception over 

the other may lead to different conclusions. In the current case, where the ratios reported by the 

taxpayer are 10.3% ForHere and 12.7% Cash, the choice would have no implications when using 

common 5% risk level.  However, at the 1% risk level, the low Cash% quantile comes to rescue for the 

taxpayer. 

A demonstration that the choice of model does not matter for the conclusion of guilt may of course 

strengthen the case for the tax authority. However, one should be prepared to handle the case when 

different approaches lead to different conclusions.  What if taxpayer had reported ratios of about 

20%? We are then back to the validity of the conditioning argument given above, stating that the 

statistically sound practice is to report conditioned on the total number of observations.      

We have seen that adding a risk element for type of sale have led to wider distribution, and lower 

quantiles (in favor of the taxpayer). However, adding another risk element, the total number of sales 

(keeping its expectation fixed), did not alter the risks noticeably. It is of some interest to see what 

happens if we go in the other direction and remove a risk element. This will be the case if the 

amounts are neglected altogether, and the fraction 𝑛1/(𝑛1 + 𝑛2) is used as estimate. This may be 

justified if we knew that all sales amounts are (approximately) equal. We then have a model with just 

one parameter (p) in the fixed case, and two parameters (p and 𝜆) in the random case. We then get 

the quantiles given in Table 5. 

Table 5. Quantiles: Resampling with probabilities as observed fraction (neglecting amounts) 

 ForHere Cash 
Quantile 1% 5% 10% 20% 1% 5% 10% 20% 

Fixed n 0.209 0.239 0.254 0.284 0.164 0.194 0.209 0.239 
Random N 0.200 0.235 0.254 0.280 0.160 0.194 0.203 0.237 
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Now the quantiles are just below the ones in Table 4,  the case of fixing  the number of sales of both 

opposing types, but taking advantage of the amounts   This illustrates (i) that the variation in the 

sales amounts is a major component of the risk and  (ii) the danger of assuming unjustified simplicity 

and end up with illusionary low risks. On the other hand, the number of sales of the opposing types 

are the main determinants of the level of the ratio. 

In the following sections we will examine separately the role of conditioning and independence 

within random arrival models, first one stream model and then the two-stream model. For each 

model, we first examine some of its properties, in general and then adding the assumption of Poisson 

arrivals and Gamma sales amounts. Then follows actual quantile calculations with comparisons for 

different modes of calculation. Both frequentist and Bayesian calculations are examined.     

 

5. One stream random arrival model: Properties 
 

In this section we will examine some consequences of taking the total number of sales 𝑁 random. At 

the outset, we do not specify the distribution of 𝑁 or the distribution of the sales amounts but, for 

simplicity, we assume that all sales amounts (type 1 or type 2) comes from a common distribution.   

Let the observations be  (𝑋𝑖,𝐼𝑖,) ; 𝑖 = 1,2 … . , 𝑁, where 𝑋𝑖, is the ith sales amount and 𝐼𝑖, is the 

indicator for type of sale, i.e. equal to 1 for type 1 sale and equal to 0 for type 2 sale. The total 

number of sales 𝑁 is assumed random. The aggregated sales amounts of each type may now be 

written 

𝑆1 = ∑ 𝐼𝑖
𝑁
𝑖=1 𝑋𝑖               𝑆2 = ∑ (1 − 𝐼𝑖)𝑁

𝑖=1 𝑋𝑖  

Assume that the sales amounts are independent from a common distribution with expectation 𝐸(𝑋)  

and variance 𝑉(𝑋), and that the type of sales (e.g.  cash or card) are independent and independent 

of its amount and determined by a common probability p of type 1 sale.  Assume further that the 

total number of sales is determined independent of the other variables by a distribution with 

expectation 𝐸(𝑁) and variance 𝑉(𝑁). In particular, it is of interest to examine the case when 𝑁 is 

Poisson-distributed. 

The expected sums of sales amounts are 

𝐸(𝑆1) = 𝑝 ∙ 𝐸(𝑁) ∙ 𝐸(𝑋)            𝐸(𝑆2) = (1 − 𝑝) ∙ 𝐸(𝑁) ∙ 𝐸(𝑋) 

and their variances are 

𝑉(𝑆1) = 𝑝 ∙ 𝐸(𝑁) ∙ 𝑉(𝑋) + (𝑝 ∙ (1 − 𝑝) ∙ 𝐸(𝑁) + 𝑝2 ∙ 𝑉(𝑁)) ∙ (𝐸(𝑋))
2

 

𝑉(𝑆2) = (1 − 𝑝) ∙ 𝐸(𝑁) ∙ 𝑉(𝑋) + (𝑝 ∙ (1 − 𝑝) ∙ 𝐸(𝑁) + (1 − 𝑝)2 ∙ 𝑉(𝑁)) ∙ (𝐸(𝑋))
2

 

The covariance becomes 

  

𝐶(𝑆1, 𝑆2) = 𝑝 ∙ (1 − 𝑝) ∙ (𝑉(𝑁) − 𝐸(𝑁)) ∙ (𝐸(𝑋))2 

In the case of 𝑁 Poisson-distributed with parameter  𝜆  we have   𝐸(𝑁) = 𝑉(𝑁) = 𝜆, and get 

𝑉(𝑆1) =  𝜆 ∙ 𝑝 ∙ (𝑉(𝑋) + (𝐸(𝑋))
2

) 

𝑉(𝑆2) =  𝜆 ∙ (1 − 𝑝) ∙ (𝑉(𝑋) + (𝐸(𝑋))
2

) 
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We see that the covariance is zero in the Poisson case.  For distributions with  𝑉(𝑁) > 𝐸(𝑁), so-

called overdispersion, the covariance is positive. A prominent example of this, is the negative 

binomial distribution, which offers a good alternative to the Poisson distribution, in case data 

indicates overdispersion.   For 𝑉(𝑁) < 𝐸(𝑁), the covariance becomes negative, which in particular is 

so for 𝑉(𝑁) = 0.  However, this is the unconditional distribution.  After conditioning on 𝑁 we have 

independence.  With the Poisson assumption we have unconditional independence as well. 

The expectation and variance of 𝑅 are not easily derived, but first order approximations are given by  

𝐸(𝑅) ≈ 𝑝           𝑉(𝑅) ≈
𝑝(1−𝑝)

𝐸(𝑁)
(1 +

𝑉(𝑋)

(𝐸(𝑋))
2) 

Example 1: Let 𝐸(𝑁) = 60,  p= 0.3, 𝐸(𝑋) = 200  and 𝑉(𝑋) = 1002, i.e.  the standard deviation is 

half the expected sales amount.  We then get  𝑉(𝑅) ≈
0.3∙0.7

60
(1 +

1002

2002) = 0.004375, so that the 

standard deviation of the ratio is approximately is 0.065.  When sales are Gamma distributed, we 

may simulate the distribution of R by taking the shape parameter 𝛼 = 4  and scale parameter 𝛽 =

0.02.  In addition to the case with N being Poisson with expectation 60, we simulate the case with 

fixed n at 60 and the case with both types fixed at 18 of type 1 and 42 of type 2, at fraction 0.3.  

Simulation with 10 000 repetitions gave the smoothed histograms in Figure 5 representing the 

probability density of R.  

  

Figure 5. Simulated distributions of R as smoothed histograms for Example 1 

We see the narrow distribution in the fixed n=(18,42) case in comparison with the wider distribution 

in the random E(N)=60 case. It turns out that the fixed total n=60 case is hardly distinguishable from 

the random case and is not shown. Lower quantiles for the three cases are given in Table 6. 

Table 6. Quantiles of simulated distribution of R for Example 1 

Quantile 1% 5% 10% 20% 50% 

Fixed n=(18,42) 0.234 0.251 0.261 0.275 0.299 
Fixed n=60 0.156 0.194 0.216 0.242 0.300 
Random E(N)=60 0.151 0.191 0.215 0.243 0.299 



14 
 

 

We see that the consequence of assuming the total number of sales fixed, which may be justified as 

above, is only microscopic different from allowing the total to be random. On the other hand, the 

consequence of assuming the number of sales of each type fixed, is dramatic in disfavor of the 

taxpayer.  

 

6. One stream random arrival model:  Risk calculations from the data 

 
We will now examine whether the conclusions of the preceding sections remain the same for 

estimation and risk calculations of various types for our data, assuming Gamma-distributed sales. We 

will examine this within both the frequentist and Bayesian framework.  

Frequentist framework 

For both situations, fixed and random, we assume the individual sales are Gamma-distributed.  A 

common scale was justified for the ForHere/ToGo typology, while different scales were required for 

the Cash/Card typology. Parameter estimates obtained by maximum likelihood are given in Table 7. 

 

Table 7. Estimates of Gamma-parameters: Shape and Scale 

Type of sale ForHere ToGo Cash Card 

Shape 2.72 3.43 1.86 4.72 
Scale 0.0150 0.0150 0.0097 0.0210 

 

Remark. As check we compute the Cash-ratio estimate  𝜌 =
18

67
∙

1.86

0.0097
18

67
∙

1.86

0.0097
 +

49

66
∙

4.72

0.0210
 
= 0.252, which is right 

on the direct calculation of 𝑅  in Table 2.  For the For-Here ratio, using the constant scale formula, we 

get  𝜌 =
22

67
∙2.72

22

67
∙2.72 +

45

66
∙3..43  

= 0.279, which is somewhat lower than the direct calculation.  This 

illustrates that it may be worthwhile to adopt the non-restricted model to have internal consistency. 

The resampling is performed as follows: Type of sale is generated using p equal to the fraction 

observed and amounts according to a Gamma-distribution with parameters as estimated in Table 7.  

The total number of observations are the actual n=67 (fixed case) or generated according to a 

Poisson distribution with expectation 67 (random case).   With this data, we either calculate 𝑅  

directly (case B1) or estimate Gamma-parameters and use the formula for 𝜌 (case B2). That is 

𝜌 =
𝑝1∙

𝛼1
𝛽1

𝑝1∙
𝛼1
𝛽1

+𝑝2∙
𝛼2
𝛽2

  or   𝜌 =
𝜆1∙

𝛼1
𝛽1

𝜆1∙
𝛼1
𝛽1

+𝜆2∙
𝛼2
𝛽2

  , whichever appropriate 

 

A resampling with 10 000 repeats was made to obtain an empirical distribution, from which we 

obtain the lower quantiles as given in Table 8. 
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Table 8. Quantiles: Four frequentist modes of calculation   

 ForHere Cash 
Quantile 1% 5% 10% 20% 1% 5% 10% 20% 

B1 Fixed n 0.149 0.185 0.204 0.228 0.120 0.155 0.175 0.200 
B1 Random N 0.147 0.184 0.204 0.229 0.121 0.154 0.173 0.199 
B2 Fixed n 0.152 0.186 0.204 0.228 0.123 0.157 0.175 0.199 
B2 Random N 0.149 0.185 0.204 0.229 0.120 0.156 0.175 0.200 

 

We see, not too surprisingly, that the two modes of calculation (B1 and B2) give almost identical 

quantiles. Again, it seems that taking the total number of sales random does not noticeably affect the 

calculated risks.    

Remark. The One-stream Gamma model with type of sale taken to be random allows analytic 

probability calculations by conditioning on the number of Type 1 sales n1 for given total number of 

sampled sales n.  This opportunity is briefly addressed and dismissed in the Appendix.    

 

The Bayesian framework 

Consider the Bayesian formulation with sales independent Gamma-distributed with different 

shape and scale-parameters for each type of sale, and with type (e.g. Cash/Card) determined 

by independent Bernoulli-variables with constant probabilities (p, 1-p). This gives a model 

with five parameters, for which we assume independent non-informative priors.14  The 

posterior distributions of the parameters are obtained by MCMC simulations, using the 

R2OpenBUGS implementation of the WinBUGS package, see Sturz et.al. (2005).  A sample of 

10 000 vectors from the joint posterior distribution was obtained. The means of the marginal 

posteriors (Bayes estimates) are given in Table 9. 

Table 9. Means of marginal posteriors of Type 1 probability and the Gamma-parameters 

Type of sale ForHere ToGo Cash Card 

Prob 0.338 0.662 0.283 0.717 
Shape 2.48 3.54 1.79 4.65 
Scale 0.0136 0.0156 0.0094 0.0207 

 
   

Each sample from the joint posterior distribution of the model parameters may be used to provide 
samples from the posterior av the quantity of interest. We have essentially two different methods: 

The plug-in method is repeated calculations of 𝜌 from the  formula 𝜌 =
𝑝1 (𝛼1/𝛽))

𝑝1(𝛼1/𝛽1) + 𝑝2(𝛼2/𝛽2) 
 and the 

simulation method is repeated calculation of 𝑅  from simulated sales amounts for each sample from 
the joint posterior of the parameters.  While the former method aims at a posterior parameter 
distribution, the latter aims at the posterior predictive distribution, which is slightly different. From 

 
14 This is implemented by assuming a Gamma(0.001, 0.001) prior for each of the four Gamma-parameters, that 
is with expectation 1 and variance 1000, and a uniform prior over the [0,1]-interval for the Bernoulli-
parameter. 
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the 10 000 derived observations of the quantity of interest, we obtained the quantiles given in the 
first two rows of Table 10. 15    
 

Table 10. Quantiles: Three Bayesian modes of calculation 

Variable ForHere Cash 
Quantile 1% 5% 10% 20% 1% 5% 10% 20% 

Plug-In 16.6 19.7 21.7 24.1 13.3 16.2 17.8 20.0 
Predictive 15.1 18.6 20.6 23.1 11.3 14.4 16.3 18.8 
Random Pred 11.2 15.9 18.5 21.9   8.4 12.3 14.7 17.8 

   

For both methods, plug-in and predictive, the total number of sales is taken as fixed at n= 67.  We see 
that the quantiles, obtained by conditioning, are slightly different from the corresponding frequentist 
ones in Table 8.  They were not expected to be identical, since the ways of generating repeats are 
different. In the Bayesian case, the repeats come from the MCMC algorithm, generating samples 
from the joint posterior.  It is likely that this makes more effective use of the correlation of the 
parameters. This have turned out differently for the two methods. For the plug-in method, quantiles 
are raised for both ForHere and Cash. For the predictive method, the quantiles are lowered for Cash, 
but not appreciably for ForHere. For illustration we have added calculations for the predictive case, 
taking the number of sales not fixed, coming from a Poisson distribution with expectation 67.  
Contrary to the frequentist calculations above, this lowers the quantiles appreciably. However, since 
we have justified conditioning on the total, this causes no worry.   
 

The tax authority will typically have prior information of the sales amounts. This may be quantified in 

terms of informative prior distributions. The obtained posteriors may be interesting, at least for 

throwing light on their suspicion, but may be dismissed as evidence in preparing the case against the 

taxpayer.  

Well justified calculations are those in Table 8 and 10 marked in boldface. Suppose the decision limit 

is the common 5% quantile, and recalling the reported ForHere 10.3% and Cash 12.7%, we see that 

this is lower whatever justifiable calculation chosen, and therefore nails the taxpayer.  If the more 

conservative 1% quantile is taken decision limit, it remains so for ForHere, but for Cash the decision 

will depend on which of the justifiable calculations chosen.  

 

7. Two-stream random arrival model:  Properties 

 
In this section and the subsequent one we will assume that the sales of the opposing two types 

comes from separate streams. This may not be reasonable in the context of the case at hand but may 

be so in other contexts. As indicated above, this leads to a narrower risk distribution, less favorable 

to the taxpayer in the case of fixed  n1 and n2.  We have argued that this is unreasonable, and that 

the number of sales should be taken as random and now denoted 𝑁1 and 𝑁2 (see Figure 2). The total 

sales amounts of each type are written as 

𝑆1 = ∑ 𝑋𝑗
(1)𝑁1

𝑗=1              𝑆2 = ∑ 𝑋𝑗
(2)𝑁2

𝑗=1    

 
15 In Lillestøl (2019), the plug-in case (first row) was erroneously reported as the predictive case (second row, 
not reported). However, the difference is minor and does not alter the conclusions. 
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Assume that the sales amounts {𝑋𝑗
(𝑖)

; 𝑗 =  1, ,2, . . , 𝑁𝑖; 𝑖 = 1,2} are all independent and with common 

distribution for each stream independent of 𝑁1 and 𝑁2, which are possibly positively correlated. Let 

for i=1,2  𝐸(𝑁𝑖) = 𝜆𝑖 and  𝐸 (𝑋𝑗
(𝑖)

) = 𝜇𝑖  .  It follows that the expectation, variance and covariance of 

the sum of sales are  

  𝐸(𝑆𝑖) = 𝐸(𝑁𝑖) ∙ 𝐸 (𝑋𝑗
(𝑖)

)     

 𝑉(𝑆𝑖) = 𝐸(𝑁𝑖) ∙ 𝑉 (𝑋𝑗
(𝑖)

) + 𝑉(𝑁𝑖) ∙ (𝐸𝑋𝑗
(𝑖)

)2 

 

𝐶(𝑆1, 𝑆2) = 𝐸𝑋𝑗
(1)

∙ 𝐸𝑋𝑗
(2)

∙ 𝐶(𝑁1, 𝑁2) 

With 𝑁1 and 𝑁2 independent,  𝑆1 and 𝑆2 are still independent, but  correlation between  𝑁1 and 𝑁2 

implies correlation between 𝑆1 and 𝑆2 as well. We now add distributional assumptions as follows:   

Assume for i=1,2  𝑋𝑗
(𝑖)

 ~ 𝐺𝑎𝑚𝑚𝑎(𝛼𝑖 , 𝛽𝑖); 𝑗 = 1,2, … , 𝑁𝑖   where 𝑁𝑖  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖).   Positive 

correlation  is achieved by taking 𝑁𝑖 = 𝑁00 + 𝑁0𝑖  ; 𝑖 = 1,2, with independent Poisson variables 

𝑁0𝑖  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆0𝑖); 𝑖 = 0,1,2, so that 𝜆𝑖 = 𝜆00 + 𝜆0𝑖; 𝑖 = 1,2. 16  With the assumptions above, the 

covariance becomes  𝐶(𝑁1, 𝑁2) = 𝜆00  and the correlation is therefore given by: 

𝜌(𝑁1, 𝑁2) =   
𝜆00

√𝜆1 ∙ √𝜆2

 

It follows, with shorthand notation 𝜇𝑖 = 𝐸𝑋𝑗
(𝑖)

= 𝛼𝑖/𝛽𝑖 , that the expectations, variances, covariance 

and correlation for the total amounts of each type is given by 

𝐸(𝑆𝑖) = 𝜆𝑖 ∙ 𝜇𝑖       𝑉(𝑆𝑖) = 𝜆𝑖(1 + 𝛼𝑖) ∙
𝛼𝑖

𝛽𝑖
2   

𝐶(𝑆1, 𝑆2) = 𝜆00 ∙ 𝜇1 ∙  𝜇2  

𝜌(𝑆1, 𝑆2) = √
𝛼1𝛼2

(1 + 𝛼1)(1 + 𝛼2)
∙ 𝜌(𝑁1, 𝑁2) 

 

The parameter of interest is now17 

𝜌 =   
𝜆1 ∙ 𝜇1

𝜆1 ∙ 𝜇1 + 𝜆2 ∙ 𝜇2
=

𝜆1 ∙
𝛼1
𝛽1

𝜆1 ∙
𝛼1
𝛽1

+ 𝜆2 ∙
𝛼2
𝛽2

 

The expectation of 𝑅  is not readily available, but first order Taylor approximation shows that 𝐸(𝑅) ≈

𝜌. Second order approximation  indicates that there will be a bias proportional to 𝜆00(𝜇1 − 𝜇2), i.e. 

likely underestimation in the case  of  𝜇1 < 𝜇2,  and positive correlation.18 The approximation also 

indicates that the variance of 𝑅  will decrease with 𝐶(𝑁1, 𝑁2). 

 
16 For application and software for this distribution see Karlis and Ntzoufras (2005) 
17 Do not confuse the two different uses of the Greek letter 𝜌.  
18 Note that the above provides approximations for the unconditional finite sample distribution and does not 

provide any asymptotic results. 
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The question is now how much this will affect conclusions and which of the parties will be favored. 

Relevant here is not so much the mean, but the (estimated) tail probabilities. 

We will now study the effect of correlation on the yearly (population) level and in the context of a 

sample of days and projections made for the year. The study is based on simulations, which go as 

follows:  

 

1. Simulate 𝑁0𝑖  for i=0,1,2 and compute 𝑁1 and 𝑁2 . 

2. Simulate 𝑋𝑗
(𝑖)

  for  j=1,2, …,𝑁𝑖   i=1,2 and compute 𝑆1 and 𝑆2 

3. Repeat 1-2 for the number of periods and add to 𝑆1 and 𝑆2 
4. Compute ratio  𝑅 = 𝑆1/(𝑆1 + 𝑆2) 

    
We will present a numerical example with specifications close to the actual case in Lillestøl (2019). 

Here the sample was three days from a population of 360 days.  With day as period, we may repeat 

and then accumulate the results. However, due to the additive property of both the Poisson 

distribution and the Gamma-distribution, this is not necessary, as long as the distribution parameters 

for the days are the same.   For convenience, we may just as well take three days as the period length 

and a year of 120 periods.  

Example 2: Assume 𝛼1 = 𝛼2 = 4  and  𝛽1 = 𝛽2 = 0.02, so that sales are Gamma distributed with 

expectation 200 and standard deviation 100, regardless of type. Assume that 𝜆1 = 21 and  𝜆2 = 39, 

so that the total expected number of sales is 60.19 For chosen 𝜆00 we have the correlation  

𝜌(𝑁1, 𝑁2) =
𝜆00 

√21√39
= 0.0349 ∙ 𝜆00 

Now 𝜆00 = 6 implies 𝜆01 = 15 and 𝜆02 = 33 and  𝜌(𝑁1, 𝑁2) = 0.209, while 𝜆00 = 9 implies 𝜆01 =

12 and 𝜆02 = 30 and  𝜌(𝑁1, 𝑁2) = 0.314.  In any case, the expected totals are   𝜆1 ∙ 𝜇1 = 4200 and, 

𝜆2 ∙ 𝜇2 = 7800 with standard deviations  𝜎1 = 1024.7 and 𝜎2 = 1396.4, respectively, so that  

𝜌 =
4200

4200 + 7800
= 0.35 

This case will be compared with the case of 𝜆1 = 21 and  𝜆2 = 39 with no correlation, I.e.  𝜆00 = 0.  

Simulations of 10 000 repeats for the given specifications and calculation of 𝑅 turned out means 

slightly below 0.35 for all specifications of correlation, in fact 0.3495 in the case of no correlation, 

and close to that in the cases of correlation as well. The standard deviations were equal to 0.0693 in 

the case of no correlation, and 0.0637 and 0.0605 respectively for the cases of increasing correlation. 

Thus, the mean of the distribution of 𝑅  is seemingly not affected by the correlation. On the other 

hand, the spread of the distribution is clearly decreasing by increasing positive correlation. However, 

the effect is minor. This is illustrated in Figure 6 by smoothed histograms of the simulated 𝑅, to 

represent the true probability density of 𝑅 for the case of covariance 0 and 9, i.e. correlation 0.314.20  

 
19 Splitting into daily expectations this is 7+7+7 and 13+13+13 respectively.  
20 The corresponding calculation of 𝑅 based on simulation of 1000 repeats for one year of daily data averaged 

0.3499 with standard deviation 0.0058. Taking the average as an estimate of the theoretical 𝜌, its standard 

error is about 0.0006.  Noting that our parameter specification leads to 𝜌 = 0.35,  this is taken as an empirical 

verification of the approximate expectation formula. 
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 Figure 6. Distribution of R for zero correlation versus moderate correlation 

Lower quantiles of the distribution are for the cases 𝜆00 = 0, 6, 9 in Table 11. 

Table 11. Quantiles: Three different correlation 

Quantile 1% 5% 10% 20% 30% 40% 50% 

𝜆00 = 0 0.1950 0.2385 0.2615 0.2910 0.3129 0.3312 0.3490 
𝜆00 = 6 0.2038 0.2455 0.2680 0.2955 0.3153 0.3324 0.3490 
𝜆00 = 9 0.2090 0.2503 0.2725 0.2985 0.3176 0.3338 0.3490 

 

We see that the introduction of positive correlation in the data, only reduces the variability of 𝑅 to a 

minor degree. 

 

8. Two-stream random arrival model:  Risk calculations based on the data  
 

In this section we will examine to what extent the introduction of random number of sales in the 

two-stream model will widen the risk distribution and make it more favorable to the taxpayer. Jn 

order to calculate the risk distribution for the two-stream Poisson-Gamma model, we need estimates 

of the three additional parameters of the bivariate Poisson distribution. In principle, they may be 

obtained by the EM-algorithm, e.g using the algorithm of Karlis (2003). However, in our data we only 

have three days of observed number of sales of the opposing types, which is the minimum for 

carrying this any further.21 It turns out that values close to those of Table 12 give a good fit to the 

data, simplified for illustrative purposes. The table shows no correlation between the number of 

ForHere and ToGo customer. The correlation between the number of Cash and Card customers is 

19/√19 ∙ 48 = 0.63.   

 

 

 
 
21 In technical terms we are left with zero degrees of freedom, with no opportunity to judge the uncertainty. 
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Table 12. Well-fitted Lambda-parameters 

Type of sale ForHere/ToGo Cash/Card 
𝜆00 0 19 
𝜆01 22 0 
𝜆02 45 29 

 

The risk distribution is established by simulating the model with Gamma-assumptions (using the 

parameter estimates given above in Table 6 followed by direct computation of R. First (n1, n2) is taken 

as fixed and then with (N1, N2) simulated as dependent Poisson variables from lambdas as given in 

Table 12. The distributions are displayed in Figure 7 for ForHere/ToGo (left and Cash/Card (right). 

Quantiles of the distribution are given in Table 13. 

 

 

Figure 7.   Densities of simulated R for ForHere/ToGo (left) Cash/Card (right) 

 

Table 13. Quantiles for two-stream frequentist model 

 ForHere Cash 
Quantile 1% 5% 10% 20% 1% 5% 10% 20% 

Fixed 0.212 0.229 0.240 0.253 0.180 0.197 0.208 0.223 
Random 0.148 0.183 0.203 0.230 0.139 0.172 0.189 0.211 

 

We see that fixed computation gives relatively high lower quantiles to the disfavor of the taxpayer. 

The introduction of randomness has lowered the quantiles considerably, more so for ForHere 

(independent arrivals) than for Cash (dependent arrivals), in line with theory indicating that the 

variance decreased with increased correlation.  Note that the effect of random arrivals for the two-

stream model is different from the one-stream model, where random N and fixed n gave 

approximately the same quantiles. For the one-stream model, the ForHere 1% quantile was about 

0.15 and for Cash about 0.12. The above shows again that it would be unfair to the taxpayer to 

condition on both numbers.  Here the adding of randomness obtains about the same fairness as 

conditioning on n in the one-stream model, where we had no need to add randomness to the total 

number of customers. 
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Bayesian approach 

For the Bayesian approach two calculations are presented with the Poisson-Gamma distributional 

assumption, one with (n1,n2) fixed and one the full model with random  (N1,N2).   Again, non-

informative priors are used as input to an MCMC-algorithm.  

The posterior distribution of 𝜌  is obtained by the plug-in method and portrayed in Figure 8. The 

corresponding lower quantiles are given in Table 14.  

 

 

 

Figure 8. Posterior densities of Rho for ForHere/ToGo (left) Cash/Card (right) 

Table 14. Quantiles for Bayesian two-stream model (plug-in approach) 

 ForHere Cash 
Quantile 1% 5% 10% 20% 1% 5% 10% 20% 

Fixed 0.141 0.206 0.229 0.251 0.133 0.190 0.217 0.246 
Random 0.125 0.170 0.192 0.216 0.110 0.158 0.187 0.222 

 

We see that the low quantiles for the two cases are lower than the corresponding frequentist case. 

This may reflect that the Bayesian approach with a non-informative prior is better to pick up the true 

joint variability involving the lambda-parameters, where the frequentist estimation is based on data 

with zero degrees of freedom. In particular, note the high quantiles in the frequentist fixed case, 

which are clearly deceptive.  

 

9. Conclusion 
 

In this paper we have examined the consequences of several modes of calculating decision limits, 

based on different models and different conditioning, in the frequentist as well as in the Bayesian 

context.  Theoretical  analysis as well as computations have led to the conclusion in favor of 

conditioning with respect to the total number of sales and this gives similar results across different 

modes of computation, by resampling from actual observations or based on the one-stream model 

with Gamma-distributional assumption, direct simulation or plug-in, frequentist or Bayesian. This 

have turned out justifiable decision limits, fair to the taxpayer. It is demonstrated that conditioning 
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on both types will typically lead to decision limits unfair to the taxpayer, as the case with the two-

stream model with Gamma-Beta theory.  Recommended methods are the ones boldfaced in Tables 4, 

8 and 10. The choice may depend on the context and to what extent the parties and the decision 

maker (e.g. a court) will understand and accept evidence based on statistical assumptions.  With risk 

of low acceptance, the resampling method of Table 4 may be a wise choice, but with thrust that 

more advanced methods are accepted, the methods displayed boldface in Table 8 or Table 10 may 

be defensible, in accordance with the tentative conclusions in Lillestøl (2019).  Note however that 

their quantiles do not coincide completely. Of course, the best situation would be that the conclusion 

drawn from the sample evidence is the same irrespective of choice between the three recommended 

modes of computation (or other reasonable modes as well). Then, of course, the method simplest to 

communicate is chosen, which can be supported by another reasonable one, if challenged.    For the 

current case the reported 10.3% ForHere sale is below the 1% quantile for all three recommended 

methods and the conclusion of underreporting is well supported.  The reported 12.7%  Cash-sales is 

below the 5% quantile for any of the three methods, and is close to the 1% quantiles for the two 

methods based on the distributional assumption, but is above for the resampling method.  Thus, a 

definite conclusion may be dependent on which strength of evidence is requested.  

Instead of relating to tabled quantiles one could simply report the calculated (estimated) probability 

of a result as extreme as the one reported or beyond, with our choice of Type 1 sales, a low tail 

probability.  Of course, this may be calculated by any of the methods examined above.  More direct 

analytic computations are also possible, as demonstrated in the appendix with R-code for the one-

stream comma scale Gamma-model with given total number of observations. However, they are not 

recommended for reasons given in the appendix.. 
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Appendix: Distribution theory 

 
Let 𝑋 ~ 𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽) denotes a sale amount 𝑋 with a Gamma-distribution determined by 

parameters (shape = 𝛼, scale = 𝛽).  The probability density is  

𝑓(𝑥; 𝛼, 𝛽) =
𝛽𝛼

Γ(𝛼)
∙ 𝑥𝛼−1𝑒−𝛽𝑥 ;  𝑥 ≥ 0  

with expectation  𝐸(𝑋) =  𝛼/𝛽 and variance 𝑉(𝑋) =  𝛼/𝛽2. Here Γ(∙) is the Gamma-function. 

 Let 𝑋𝑖 , 𝑖 = 1,2,3, …   be consecutive sales assumed independent with distribution  

𝑋𝑖  ~ 𝐺𝑎𝑚𝑚𝑎(𝛼𝑖 , 𝛽) i=1,2,3,.. .i.e. with common scale-parameter 𝛽, but possibly differing shape-

parameters 𝛼𝑖.  Then the distribution of the sum  𝑆 = 𝑋1 + 𝑋2+ ⋯ + 𝑋𝑛  ~  𝐺𝑎𝑚𝑚𝑎(𝛼1 + 𝛼2 + ⋯ +

𝛼𝑛, 𝛽), i.e.   𝑆 ~ 𝐺𝑎𝑚𝑚𝑎(𝑛𝛼, 𝛽) in the case of common 𝛼𝑖 = 𝛼. 

Let 𝑆1 and 𝑆2 be sums of independent sales with distribution  𝑆𝑖 ~ 𝐺𝑎𝑚𝑚𝑎(𝛼𝑖, 𝛽) i=1,2.   Then the 

ratio 𝑅 =
𝑆1 

𝑆1 +𝑆2 
  has a Beta-distribution with parameters   (shape1 = 𝛼1, shape2 = 𝛼2), denoted 

𝑅~ 𝐵𝑒𝑡𝑎(𝛼1, 𝛼2). The probability density is   

𝑓(𝑟; 𝛼1, 𝛼2) =
𝑟𝛼1−1(1 − 𝑟)𝛼2−1

𝐵(𝛼1, 𝛼2)
 ; 0 ≤ 𝑟 ≤ 1 

where 𝐵(∙ , ∙) is the Beta-function. The expectation foe the Beta-distribution is  𝐸(𝑅) =
𝛼1 

𝛼1 +𝛼2 
.   

In the case that 𝑆1 and 𝑆2 are obtained as sums of 𝑛1 and 𝑛2 common scale Gamma-variables  

𝑅~ 𝐵𝑒𝑡𝑎(𝑛1𝛼1, 𝑛2𝛼2), from which it follows that  

 

𝐸(𝑅) =
𝑛1 𝛼1

𝑛1 𝛼1  + 𝑛2 𝛼2 
 

In the case 𝑆𝑖 ~ 𝐺𝑎𝑚𝑚𝑎(𝛼𝑖 , 𝛽𝑖), 𝑖 = 1,2 with differing scale parameter, the ratio  𝑅 =
𝑆1 

𝑆1 +𝑆2 
  no 

longer follows the standard a Beta-distribution, but now has probability density is given by 

𝑓1(𝑟; 𝛼1, 𝛼2, 𝛽1, 𝛽2) =
𝑟𝛼1−1(1 − 𝑟)𝛼2−1

𝐵(𝛼1, 𝛼2)
∙

𝛽1
𝛼1𝛽2

𝛼2

(𝑟𝛽1 + (1 − 𝑟)𝛽2)𝛼1+𝛼2
;   0 ≤ 𝑟 ≤ 1 

Here the first factor is ordinary Beta-density, which obtains in the case of 𝛽1 = 𝛽2 , when the second 

factor is one.  Its expectation and variance are complicated formulas, but approximate expressions 

may be obtained.  However, tail probabilities are easily calculated numerically to any degree of 

accuracy.  In the case that each of  𝑆1 and 𝑆2 are obtained as sums of 𝑛1 and 𝑛2 common scale 

Gamma-variables, possibly different for the two groups, the density becomes 

𝑓1(𝑟; 𝑛1𝛼1, 𝑛2𝛼2, 𝛽1, 𝛽2).  

Take the number of sales of each type (𝑁1, 𝑁2)  to be random, and with constant probabilities 

(𝑝1, 𝑝2) for each type of sale. For a given total number of sales 𝑛, if follows (assuming independence) 

that 𝑁𝑖  ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝑝𝑖), 𝑖 = 1,2. By conditioning it follows that the marginal density of  𝑅 is 

𝑓2(𝑟; 𝑛, 𝑝𝑖 , 𝛼1, 𝛼2, 𝛽1, 𝛽2) = ∑ 𝑓2(𝑟; 𝑘𝛼1, (𝑛 − 𝑘)𝛼2, 𝛽1, 𝛽2)

𝑛

𝑘=0

𝑏𝑖𝑛(𝑘; 𝑛, 𝑝𝑖) ;  𝑖 = 1,2 

In particular, this holds for the common scale case 𝛽1 = 𝛽2  and cancel out.  Similar formulas hold for 

cumulative probabilities, replacing the density functions 𝑓𝑖 by the cumulative ones  𝐹𝑖; 𝑖 = 1,2.  
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There is a caveat here, since there is a positive probability of no sales of a specific type, leading to a 

distribution with positive probability at the end of range at zero and one. However, this probability is 

negligible in real applications..  

The cumulative formula is here used to calculate the (estimated) probability of a sampled result just 

as extreme or beyond the 10.3% reported for ForHere sales with common scale model. 

 

The R-code take advantage of the built-in function pbeta returning cumulative Beta-probabilities for 

vectorized combinations of (shape1, shape2). However, be aware of possible numerical problems 

causing false results and complete crash. This may be due to how the underlying integral algorithm 

handles the behavior of the density at zero and/or the evaluation of the Beta-function for large 

shapes, which again is most critical at zero sales of any type. In the case above with 67 observations, 

there were no problem, but the problem occurs with a slightly larger dataset. For the above reasons, 

this analytic approach is not recommended, as good alternatives are found outlined in the paper.    

 

  



NORGES HANDELSHØYSKOLE
Norwegian School of Economics

Helleveien 30

NO-5045 Bergen

Norway

T +47 55 95 90 00

E nhh.postmottak@nhh.no

W www.nhh.no


