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Abstract

This paper considers contingent claims on a commodity when both
the spot price and the convenience yield are generated by diffusion
processes. By adopting the Gibson and Schwartz (1990) assumptions
on the economy, we derive analytical solutions to both the futures
price and the European call option.!

1 Introduction

Brennan and Schwartz (1985) interpret a copper mine as a contingent claim
on future production of output. The essence is to obtain optimal management
strategies and the corresponding project value. The spot price of copper is
assumed to follow a geometrical Brownian motion, and the convenience yield
rate is assumed constant. Similar assumptions have been adopted in articles
related to other commodities.?

*I thank Steinar Ekern and Knut K. Aase for helpful comments and discussions.

LAfter T wrote the first draft of this paper, I became aware of Jamshidian and Fein
(1990), who use a somewhat different approach. The results stated as Propositions 1 and
2 in their paper are equivalent to Theorems 1 and 2 below.

2See, e.g., Bjerksund and Ekern (1990), Kemna (1987), Lund (1987), Mac-Kie Mason
(1988), Paddock, Siegel, and Smith (1988), and Pindyck (1988 b).



Empirical evidence suggests that modeling the commodity spot price pro-
cess as a geometrical Brownian motion is not obviously unreasonable, whereas
assuming a non-stochastic and even constant convenience yield rate is more
questionable.?

In a recent article analyzing long-term oil-related assets, Gibson and
Schwartz (1990) take an important step to a more realistic model of the
economy by introducing a stochastic convenience yield rate. The convenience
yield rate is described by an Ornstein-Uhlenbeck process. The authors es-
timate the necessary input parameters for evaluation, and use a numerical
method to approximate the value of long-term oil-related assets (futures con-
tracts).

This paper adopts the Gibson-Schwartz assumptions on the economy. By
using the equivalent martingale-approach, we derive analytical solutions to
both futures contracts on the commodity and European call options written
on the commodity.

2 Assumptions

The assumptions on the economy in this paper are similar to Gibson and
Schwartz (1990), and will only be stated briefly here. The first assumption
is that the spot price S(¢) of the commodity is described by a geometrical
Brownian motion, i.e.,

dS(t) = uS(t)dt +nS(t)dW (t). (1)

In Eq. (1), p is the drift term, n is the volatility term, and dW (¢) is the
increment of a standard Brownian motion, W (¢).*

The second assumption is that the instantaneous net marginal conve-
nience yield rate 6(¢) on the commodity is described by an Ornstein-Uhlenbeck

3See, e.g., Brennan (1991), Gibson and Schwartz (1990), Kemna (1987), and Pindyck
(1988 a).
4The assumption may equivalently be stated as

T
S(T) = S(t)exp {(u —30°)(T —t) + n/t dW(S)}

where ¢t and T > t are different dates.



Process, 1.€., dé(t) = k(a — 6(t))dt + odZ(t). @)

In Eq. (2), « is the long range mean to which 6(¢) tends to revert, k& is the
speed of adjustment, o is the volatility term, and dZ(t) is the increment of
a standard Brownian motion, Z(t).> We define

X0 = [ " 5(s)ds (3)

where X (t) represents the cumulative convenience yield rate from date 0 to
date ¢.5

The third assumption is that the risk free interest rate r is constant
through time, and the the fourth assumption is that there is a constant
market price A per unit of convenience yield risk.

By invoking the usual assumptions of perfect frictionless markets and ab-
sence of risk-free arbitrage opportunities, the market value of any contingent
claim B(S, d,t) must satisfy the partial differential equation

%77252B55+p770'SB55+%UZB55+(T-&)SBs—i—(k(Oé—é) —Ao)Bs+B,—rB =0
(4)

5The assumption may alternatively be written as
T
5(T) = 05(t) + (1 — B)a + oe*7 / eFdZ(s)
t

where we define § = e #T=% cf Merton (1990) Egs. (5.108) and (5.109). &(T) is
normally distributed with mean and variance

BT = 06(6)+(1-0)a

Var6(T)] = 216(1—92)

respectively.
6Tt is shown in Appendix A that

X(T) = X(t (1—0)%(6(t)—a)+a(T—t)

T
+ ka/ dZ (s _kT/ ek dz(s)
t

where ¢ and T > t are alternative dates, and 6 is defined in footnote 5. X (7T') is normally
distributed.



c.f. Eq. (4) in Gibson and Schwartz (1990). In Eq. (4), p is the correlation
coefficient between the increments dW(t) and dZ(t) of the two Brownian
motions.

3 Risk Adjustment and Evaluation

Let
Y(T)=Y(T,S(T),X(T)) (5)

be the pay-off from a contingent claim at the maturity date 7. The main
result from the equivalent martingale theory” is that the current value of this
contingent claim may be expressed by

VY (D) = e "V B Y (T)] (6)

where E;/[-] represents the expectation taken under the equivalent martingale
probability measure. Note that by inserting Y (7T') = 1 into the evaluation
formula just above, we obtain the current value of a one-dollar discount bond
with time to maturity 7' — ¢.

In the economy outlined in the section just above, the relation between
the true probability measure and the martingale probability measure is®

dW(t) = dw*(t) — (H20=") g, (7)
dZ(t) = dZ*(t) — Adt. (8)
The fraction in Eq. (7), (x4 6(t) — r)/n, may be interpreted as the market

price per unit of oil risk, and corresponds to the definition of A" in Gibson
and Schwartz (1990) footnote 7. In Eq. (8) above, A represents the market

"See, e.g., Aase (1988), Cox and Ross (1976), Harrison and Kreps (1979), and Harrison
and Pliska (1981).
8Eq. (7), combined with Eq. (3), implies

T T
/t dW(s):/t dW*(s) = E=2(T — ) — L(X(T) - X(#)).



price per unit of convenience yield risk.?

The current value of the contingent claim is found as follows: First, insert
Egs. (7) and (8) into the arguments S(7) and X (T') of Y in Eq. (5) by using
footnotes 4 and 5. Second, express the future pay-off Y (T) as a stochastic
integral over the processes W*(t) and Z*(t). Third, apply the evaluation
formula in Eq. (6) by taking the expectation, and discounting back at the
risk-free rate, r.1°

4 A Self-Financing Portfolio

Consider a portfolio with initial value P(0) = S(0) at date 0, and where the
convenience yield is continuously reinvested. The value of this self-financing
portfolio at the future date T is

PT) = exp {/OT 5(s)d8} S(T). ()

By inserting Eq. (7) into Eq. (1), and Eq. (8) into Eq. (2), and some rearranging,
we obtain the two transformed “risk-neutral” processes
ds(t)

ol (r — 8(t))dt + ndW*(t)
oA

ds(t) = k ((a - 7) - 6(t)> dt + odZ* (1)

stated in Jamshidian and Fein (1990).

0The transformation in Eqgs. (7) and (8) will not be proved directly, but are direct
consequences of the Girsanov theorem, see, e.g., Cox and Huang (1989) p. 276. However,
we have already noted that the general evaluation formula in Eq. (6) provides consistent
market prices on riskless dicount bonds. Furthermore, we show in the two following sec-
tions that the evaluation procedure also provides consistent market prices for two other
self-financing portfolios, i.e., a commodity portfolio where the convenience yield is contin-
uously reinvested, and a claim on future delivery of the commodity.

In our economy, with two dimensions of uncertainty (in addition to the time dimension),
we claim that every future pay-off Y = Y(T,S(T"), X(T')) can be replicated by a dynamic
self-financing portfolio consisting of the three basic portfolios described just above. Fur-
thermore, we claim that our price system, by which we obtain consistent market prices
for the three basic self-financing portfolios, can be extended to evaluate every contingent
claim.



To prevent risk-free arbitrage opportunities, the value at the current date ¢
of receiving this self-financing portfolio at the future date T must be

VI[P(T)] = P(t). (10)

Both as an illustration and as a partial verification of Eqs.(7) and (8), we
evaluate this simple contingent claim by the procedure outlined above. First,
rewrite the future pay-off in Eq. (9) by using the defition of X (¢) in Eq. (3),

P(T) = exp{X(T)} S(T).

Next, use the expression of S(7T') stated in footnote 4

P(T) = exp {(u — %nZ)(T —t)+ n/tTdW(s) —i—X(T)} S(t).

Insert Eq. (7), use footnote 8 and the definition of P(t), and obtain

Pr) =esp{ (r= 3T = 04 [ W)} Pl

By applying the evaluation rule in Eq. (6) above, i.e., by taking the expecta-
tion of the expression just above, and discounting back at the risk-free rate
of return, we get

VIP(T)) = e T OEP(T)]
= ¢ rI-Dpr lexp {(r — 1PN T —t) +1 /tT dW*(s)H P(t)
- PO

which is the desired result.!!

In the typical case, the evaluation of a contingent claim is far more com-
plicated. The derivations of the main results, presented in the following
sections, are thus relegated to the appendixes.

UTnserting the partial derivatives of P

ps = L
Pss = Ps;=Pss=PFPss=0
Pt = (SP

into Eq.(4) verifies that P(t) satisfies the PDE.

6



5 The Value of a future delivery

Theorem 1 The current value (at date t) of a claim on a future delivery of
the commodity on the future date T is

VIS(T)] = S(t)exp{[—a+ (oA —onp) + 1(2)?*| (T — 1)
— 1[6(t) — a+ LHox—onp) + (1)%0?] (1 - 0)
+ () 50—}
where § = e #T—1)

Proof: See Appendix B and C.

The absence of risk-free arbitrage opportunities implies that the futures
price F' is determined by the relation

Vi[S(T) - F] = 0. (11)

We may thus conclude that the futures price on a contract on the commodity
with time to maturity (7' — t) is

F(T —t,8,0) = e"T=OV,[S(T)] (12)

where the argument 7' — ¢ is time to maturity, and V;[S(T')] is given by
Theorem 1 above.

Consider the hypothetical case where the speed of adjustment £ is large.
The interpretation is that the force pushing the convenience yield rate J(t)
back to its mean « is strong, c.f. Eq. (2). With k sufficiently large, this
means that the stochastic property of d(¢) will vanish. From Theorem 1, it
is straightforward to verify that

Jlim V[S(T)] = e*T05(1) (13)
— 00
which is the evaluation formula in the case of a constant proportional con-

venience yield rate 6(¢) = a. Eq. (13) translates into the futures price being
F = e(rfa)(Tft).



6 The European Call Option

Theorem 2 The current value (at date t) of an European call option with
exercise price K and maturity date T is

VI(S(T) = K)*] = VAI[S(T)IN[di] — e """V K N[dy)]
where N[-] is the standard cumulative normal distribution, and we define
In (Vi[S(T)]/K) +r(T —t) + 567

d, = -
dy = In (%[S(T)]/K) :|— (T —_ t) _ _0_2
o* = (i —2ponp+ (})°0°) (T —1)

+ 2(%2077/) ()0 )(1—9)
+ ()50 -0
Proof: See Appendix D.

By examining Theorem 2, we see that the expressions have a structure
similar to the famous Black-Scholes option pricing formula. As a special case
of Theorem 2, we have

Jlim Vi[(S(T) — K)"]
—00
_ e Og (N In(S(t)/K) + (r — a+ in*)(T —t)
il —t
rtre) oy [RUSO/E) + (=0 = BP)(T 1) "
il —t

which corresponds to the option value when the convenience yield rate is
constant, §(t) = a. With a = 0, we have the standard Black-Scholes option

pricing formula.
By applying the evaluation formula in Eq. (6) to the identity

(S(T) - K)" = (K = 8(T))" = S(I) - K,
and inserting the result in Theorem 2, we obtain
V(K = S(T))*] = =Vi[S(D)N[~di] + e """V K N[~ds].

The expression just above represents the current value of an European put
option with time to maturity 7" — ¢ and exercise price K.

8



7 Conclusion

This paper presents the formula for the futures price and the European call
option when the commodity price follows a geometrical Brownian motion,
and the convenience yield rate follows an Ornstein-Uhlenbeck process. The
results are natural generalizations of the standard Black-Scholes economy
where the underlying asset pays a constant proportional dividend.

The formulas provide useful benchmarks when considering some more
complex contingent claims for which no closed form solutions are known.
Moreover, by knowing the equivalent martingale measure, under which con-
tingent claims prices may be represented as the discounted expected future
pay-off, simulation techniques may be easily implemented to approximate
the current market value, particularly for European style derivative assets.'?

12Gee, e.g., Boyle (1977).



A The derivation of X (T) — X (t)

Eq. (2) implies

/tT do(s) = /tT k(o — 6(s))ds + /tT odZ(s)
= ka(T =) _k/tT5(5)d8+a/tTdZ(s). (15)
It follows that

5(T) — 5(t) = /T 4 (s). (16)

t
Insert Eq. (16) and the implication of the definition in Eq. (3),

X(T) = X(1) = /tTcS(s)ds, (17)
into Eq. (15), and obtain
5(T) — 6(t) = ka(T —t) — k (X(T) — X(t)) + o /tT dZ(s).  (18)

Inserting the equation from footnote 5 into the lefthand side of Eq. (18), and
rearranging, leads to the result stated in footnote 6.

B The derivation of V[S(T)]

In this appendix, we evaluate a claim on a future delivery of the commodity,
ie.

VIS(T)] = e "I B [S(T). (19)

From footnote 4, it follows that the discounted future pay-off may be ex-
pressed as

e "TDS(T) = S(t) exp {(u —r—1in)+ /tT dW(s).} (20)

We want to express 1 [, dW (s) by the two processes W*(t) and Z*(t). Mul-
tiply through the expression in footnote 8 by 7, and use the equation in

10



footnote 6 to substitute for X (7') — X (¢). Some rearranging leads to

n [ awis)

By inserting Eq. (21) into Eq.

pay-off as
eTIO8(T) =

= —(/L—T—i-a—%(f)\)(T_t)
+ La—6t) - Lo (1-0) (21)
+ n/tTdW*(s)—%U/tTdZ*(S)

T
+ %JeikT/ e dz*(s).
t

(20), we may express the discounted future

S(t)exp{— (30’ +a — o) (T —1)
+1 (a—6(t) — to) (1 - 0)

+n /tT A (s) — %a/f 47*(s)
—i—%ae‘kT /tT ekst*(s)}

S(t) exp {z"} (22)

where we for notational convenience denote the exponent by z*. It follows
from stochastic calculus that

o=

Furthermore, we have

(7]
— (4P +a—LtoX) (T 1) (23)
(o= 3(t) — o) (1—0).
E; {(n tTdW*(s)> = (T 1) (24)




E:K"/wa*(s)> (%U/tTdZ*(S)>: = gonp(T —1t) (27)
K / dW* (s )( —kT/tTekst*(s)>: = (§)’onp(1 —0) (28)
(b [ 470 (ot [ iz )] = o) e

Eqgs. (23) - (29) implies that the variance of the exponent z* in Eq. (22)
above is

R‘I»—A

0* = E{[(z)] - (B[]
(n* = 22omp + (£)%0?) (T — 1)
+ 2(($)onp = ($)%0*) (1 - 0) (30)
+ (122 (1-6%).
The exponent z* is normally distributed, and the right hand side of Eq. (22)
is hence log-normally distributed. The value of the contingent claim is thus

VIS = Ef[e " TOS(T)]
= E;[S(t) exp{z"}]
= S(t)exp {ji+ 307} (31)

where we have applied the standard formula for the expected value of a log-
normal random variable. Inserting /i and 62 into Eq. (31) leads to the result
stated as Theorem 1.

C WS(T)] satisfies the PDE

This appendix shows that the the current value of a claim on future delivery
of the commodity, stated as Theorem 1 above, satisfies the partial differential
equation in Eq. (4). For notational convenience, define for the moment

U(t,S,6) = Vi[S(T)].
The partial derivatives of U are as follows:

Uy = % (32)

12



Ugs = 0 (33)
W o= (16 1)
Uss = (1-0)(3)°¥ (35)
Uss = —(1-0)3% (36)
Uy = a—zoX+onp—3(3)%0° (37)

+ 00 —af + toA0 — tonpf + (5)°0%0 — 5(3)°0%0°

By inserting Eqs. (32) - (37) into Eq. (4), it is straightforward to verify that
U(t,S,0) = Vi[S(T)] satisfies the partial differential equation.

D The derivation of V;[(S(T) — K)™]

In this appendix, we evaluate an European call option written on the com-
modity with time to maturity 7" — ¢ and exercise price K. Apply the evalu-
ation formula in Eq. (6)

Vv [(S(T) _ K)"‘] _ e—r(T—t)E: [(S(T) o K)+] . (38)

By rearranging, and using the definition in Eq. (22), we may express the
right hand side of Eq. (38) as

Vi [(S(T) - K)Y] = E; [(S(t)eZ* - e—’"<T—t>K)+] . (39)

Recall from Appendix B that the exponent z* is normal with expected value
¢ and variance 62, c.f. Egs. (23) and (30).

By using standard results used for evaluating the classical Black-Scholes
European call option, we get

v [(s(r) - K)']

= exp{ﬂ+ %62} S(t)N [

— exp{-r(T =)} KN lln(S(t)/K) _ET(T_t) +N] (40)
Recall from Eq. (31) in Appendix B that
VIS(T)) = exp {fi + 36} S(2). (41)

13



By inserting Eq. (41) into Eq. (40), and rearranging, we obtain the resul
stated as Theorem 2.

14
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