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Abstract

We study the equilibrium in the model proposed by Kyle in 1985 and extended to the continuous

time setting by Back in 1992. The novelty of this paper is that we consider a framework where the

price pressure can be random. We also allow for a random release time of the fundamental value of the

asset. This framework includes all the particular Kyle models proposed in the literature. The results

enlighten the equilibrium properties shared by all these models and guide the way of finding equilibria

in this context.
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1 Introduction

In mathematical finance there are different kind of models to treat the effect of privilege information or

informational asymmetries. In some models the prices are fixed exogenously, i.e. the insider does not affect

the stock price dynamics, and the privileged information is a functional of the stock price process, e.g., the

maximum, the final value, etc. This is the case of Karatzas and Pikovsky (1996), Amendiger et al. (1998),

Grorud and Pontier (1998, 2001, 2005), Imkeller et al. (2001), Corcuera et al. (2004), Biagini and Øksendal
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(2005, 2006), Kohatsu-Higa (2007), Di Nunno et al. (2006, 2011), Draouil and Øksendal (2016), Ernrst et

al. (2017) and the references therein. In some other models, the impact of the insider strategy affects the

stock price dynamics and the insider becomes a large trader as well. This is the case of Di Nunno et al.

(2008) (where the authors talk about a large insider) and Kohatsu-Higa (2007). But if market prices are

determined by the demand of the market participants the privileged information cannot be a functional of

the stock price process because this would imply the very knowledge of the future demand and that is, in our

opinion, difficult to interpret. This comment does not include models with large traders like, for instance the

paper of Cuoco and Cvitanic (1998), in the sense that it is realistic to assume that the dynamics of the stock

is affected by large investments. Neither it includes when the privileged information is exogenously given,

through the knowledge of the value of the fundamental price, or some signal of it, or the announcement time

of the release of the fundamental price, which evolves independently of the demand.

We consider this latter situation. The questions addressed in this paper deal with the characterization of

the equilibrium when we have different kind of traders and we have and insider that is a large trader with

external privilege information. We will look for the properties of the insider’s optimal strategies and mainly

how her behaviour affects the efficiency of the market, namely the conditions under which the market prices

converge to the fundamental one. These problems have been addressed in different works, with different

degrees of generality, and with very different types of insider’s privileged information and demands of the

uninformed traders.

In 1985 Kyle constructed the following model, he considers three kinds of actors in the market: market

makers, uninformed traders and one insider who knows the fundamental or liquidation value of an asset at

certain fixed released time. In the model, there is also a price function establishing the relation between

the market prices and the total demand. Kyle works in the discrete time setting and with noises given by

Gaussian random walks. Back (1992) extends the previous work to the continuous time case. These are

seminal papers which opened the way to various generalisations and extensions. To mention some, we have

Back and Pedersen (1998), who consider a dynamic fundamental price and Gaussian noises with time varying

volatility; Cho (2003), who considers pricing functions depending on the path of the demand process and

studies what happens when the informed trader is risk-averse; Lasserre (2004), who considers a multivariate

setting; Back and Baruch (2004) where the market depth depends on the market price of the stock; Aase

et al. (2012a), (2012b), who put emphasis in filtering techniques to solve the equilibrium problem; Campi

and Çetin (2007), who consider a defaultable bond instead of a stock as in the Kyle-Back model and also

consider the default time as privileged information; Danilova (2010), who deals with non-regular pricing

rules; Caldentey and Stacchetti (2010) who take a random release time into account; Campi et al. (2013),
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who consider again a defaultable bond, but this time the privileged information is represented by some

dynamic signal related with the default time; and Collin-Dufresne and Fos (2016) where the market depth

depends on the (random) volatility of the noise in the market. In a previous paper by Corcuera and Di

Nunno (2018), we tried to consider a general framework to include all the particular extensions mentioned

above and to study the general characteristics of the equilibria. The present work intends to complete this

task by including models with both, a random price pressure and a random release of information.

The paper is structured as follows. In the next section we describe the model that gives rise to the stock

prices. We discuss the insider’s optimal strategies for a general functional of the demand process and define

the concept of admissibility for pricing rules and insider strategies. In section 3 we discuss what happens

when the release time is predictable to the insider and when it is not predictable and give a characterization

of the equilibrium.

2 The model and equilibrium

We consider a market with two assets, a stock and a bank account with interest rate r equal to zero for the

sake of simplicity. With abuse of terminology we will just write “prices” even though they are sometimes

“discounted prices”. The trading is continuous in time over the period [0,∞) and it is order driven. There

is a (possibly random) release time τ < ∞ a.s., when the fundamental value of the stock is revealed. The

fundamental value process represents the actual value of the asset, which would be known only if all the

information was public. We could say, with Malkiel (2007), that the fundamental value is the intrinsic value

of the asset via an analysis of the balance sheet, the expected future dividends and the growth prospects of

a company. The fundamental value process is denoted by V .

We shall denote the market price of the stock at time t by Pt. This represents the market evaluation of the

asset. Just after the revelation time the price of the stock coincides with the fundamental value. Then we

consider Pt defined only on t ≤ τ . Obviously, it is possible that Pt 6= Vt for t ≤ τ .

We assume that all the random variables and processes mentioned are defined in the same complete filtered

probability space (Ω,F ,H,P) where the filtration H and any other filtration considered here are complete

and right-continuous by taking, when necessary, their usual augmentation, as we shall specify below.

There are three kinds of traders. A large number of liquidity traders, who trade for liquidity or hedging

reasons, an informed trader or insider, who has privileged information about the firm and can deduce its

fundamental value, and the market makers, who set the market price and clear the market.
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2.1 The agents and the equilibrium

At time t, the insider information is the full information given by Ht and her flow of information is the

filtration H = (Ht)t≥0. Since this is also the filtration with respect to which all the processes considered here

are adapted we shall omit it in the notation. Therefore the informed trader, like any other trader, observes

the market prices P but, in addition, she has access to the firm value, maybe through some signal process.

Moreover, she will have some knowledge about the random time τ . In the sequel we will consider the two

following cases:

• τ is predictable, that is there is an increasing sequence of stopping times (τn) such that a.s., τn < τ

and limn τn = τ .

• τ is not a predictable stopping time.

We assume that the fundamental value, V , is a càdlàg martingale (if not otherwise specified) such that

σ2
V (t) :=

d[V,V ]ct
dt is well defined (where [V, V ]c indicates the continuous part of the quadratic variation of V ).

Hereafter we describe in detail the three types of agents involved in this market model, namely their role,

their demand process, and their information.

Let Z be the aggregate demand process of the liquidity traders. We recall that these are a large number

of traders motivated by liquidity or hedging reasons. They are perceived as constituting noise in the market,

thus also called noise traders. It is assume that Z is a continuous martingale, independent of V , such

that σ2
Z(t) := d[Z,Z]t

dt is well defined. As it is shown in Corcuera et al. (2010) if Z has jumps there is not

equilibrium.

Remark 1 In the equilibrium model treated in this paper the random time τ and the processes V and Z are

exogenously given.

Market makers clear the market giving the market prices. They rely on the information given by the

total aggregate demand Y , which they observe, and the release time τ , that is a stopping time for them.

Hence, their information flow is: F = (Ft)t≥0, where Ft = σ̄(Ys, τ ∧ s, 0 ≤ s ≤ t). Here σ̄ denotes the σ-field

corresponding to the usual augmentation of the natural filtration (see Revuz and Yor (1999), Ch. I, Def.

4.13 and the paragraphs following this definition). That is, e.g.,

σ̄(Ys, τ ∧ s, 0 ≤ s ≤ t) :=
⋂
r>t

(σ(Ys, τ ∧ s, 0 ≤ s ≤ r) ∪N ) .
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Therefore (Pt)0≤t≤τ is an F-adapted process.

The total aggregate demand is Y := X + Z, where X denotes the insider demand process. X is naturally

assumed a predictable process and it is also assumed to be a càdlàg semimartingale such that

(A1) Xt = Mt +At +

∫ t

0

θsds, for all t ≥ 0, where M is a continuous martingale, M0 = 0, A a bounded

variation predictable process, with At =
∑

0<s≤t

(Xs −Xs−) , and θ a càdlàg adapted process.

Consistent with the original idea of Kyle (1985) and later literature, we suppose that the market makers

give market prices through a pricing rule of the form:

Pt = H(t, ξt), t ≥ 0, ξt :=

∫ t

0

λ(s, Ps, υs)dYs, (1)

where λ ∈ C1,2,2 is a strictly positive function that we call it price pressure, H ∈ C1,2, H(t, ·) is strictly

increasing for every t ≥ 0, and υ is an F-adapted locally bounded process that can be seen as a market

factor. We also assume, for simplicity, that

(H1) [υ, Y ] = 0.

This class of pricing rules includes that used in Kyle (1985) and Back (1992) where λ is deterministic, in

Back and Baruch (2004) where λs = λ(Ps), and in Collin-Dufresne and Fos (2016) where λ = λ(υs) and υ

is the (random) volatility of Z.

Now an equilibrium can be defined as

Definition 1 The triple (H,λ,X) is an equilibrium, if the prices P· := H(·, ξ·) are competitive, given X,

that is

Pt = E(Vt|Ft), 0 ≤ t ≤ τ, (2)

and the strategy X is optimal, in the sense that it maximizes the expected final wealth of the insider, given

(H,λ), where

Pt = H(t, ξt), t ≥ 0, with ξt :=

∫ t

0

λ(s, Ps−, υs−)d (Xs + Zs) . (3)

Observe that since V is a martingale, equality (2) implies that P is an F-martingale. Furthermore, from the
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assumptions on Y = X + Z and λ, we observe that ξ is a càdlàg semimartingale. Hence, applying the Itô

formula to H(t, ξt), we can see that P is also a semimartingale.

Remark 2 From the economic point of view, due to Bertrand’s type competition among market makers, in

the equilibrium, market prices are rational, or competitive, in the sense that Pt = E(Vt|Ft), 0 ≤ t ≤ τ. The

competitive price is a price such that the expectation of the market maker’s profit equals zero, see Remark 4

below. Relationship (2) gives the connection between the market evaluation P of the stock and its fundamental

value V . The filtration refers to the information available to market makers.

Example 1 Assume that we look for an equilibrium, with a deterministic release time τ ≡ T , in the set of

insider strategies X of the form

Xt =

∫ t

0

θsds,

where θ is progressively adapted and that (Zt)t≥0, the aggregate demand of the liquidity traders, is a Brownian

motion with variance σ2
Z(·) ≥ C > 0. Hence, the total demand is

Yt =

∫ t

0

θsds+

∫ t

0

σZ(s)dBs.

Then, under square integrability conditions on θ and V (see Theorem 8.1 in Liptser Shiryaev (2001))

Pt = E(Vt|Ft)

= P0 +

∫ t

0

E (θsVs| Fs)− E (Vs| Fs)E (θs| Fs)
σZ(s)

dBs, (4)

where Ft := σ̄(Ys, 0 ≤ s ≤ t) and

Bt =

∫ t

0

dYs − E (θs| Fs) ds

σZ(s)
, (5)

is an F-Brownian motion. Assume now that the strategy θ of the insider is of the form

θs = βs(Vs − Ps), 0 ≤ s ≤ T,

where (βs)0≤s≤T is deterministic. Then we have

E (θs| Fs) = βs(E (Vs| Fs)− Ps) = 0,
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and by the previous filtering results (4) and (5), we have that

Pt = P0 +

∫ t

0

λsdYs.

with

λs =
E (θsVs| Fs)

σ2
Z(s)

=
βsE

(
(Vs − Ps)2

∣∣Fs)
σ2
Z(s)

=
βsΣs
σ2
Z(s)

,

where Σs := E
(

(Vs − Ps)2
∣∣Fs) and Yt =

∫ t
0
σZ(s)dB̄s. Under the additional assumption that Vt = V0 +∫ t

0
σV (s)dB̃s where B̃ is another Brownian motion independent of B, then we have (see Theorem 12.1.

Liptser Shiryaev (2001))
d

dt
Σt = σ2

V (t)− β2
tΣ2

s

σ2
Z(t)

= σ2
V (t)− λ2

tσ
2
Z(t).

So given that prices are of the form Pt = P0 +
∫ t

0
λsdYs ( the only competitive prices for the strategies

θs = βs(Vs − Ps)), if we have an equilibrium we need that

βt =
λtσ

2
Z(t)

Σ0 +
∫ t

0
σ2
V (s)ds−

∫ t
0
λ2
sσ

2
Z(s)ds

.

But, how do we obtain λt? What about the optimality of βt?

Remark 3 In this simple example we see that if we confine the set of admissible strategies of the insider

sufficiently, the way in which prices depend on the total aggregate demand in an equilibrium is almost deter-

mined (up to a parameter!) by the rationality of prices. Later we shall call this fact dependency on a pricing

rule.

The informed trader is assumed risk-neutral and she aims at maximizing her expected final wealth. To

obtain the formula for the insider‘s wealth assume that trades are made at times 0 ≤ t1 ≤ t2 ≤ ... ≤ tN = τ.

If at time ti−1 there is an order to buy Xti − Xti−1
shares, its cost will be Pti(Xti − Xti−1

), so there is a

change in the bank account given by

−Pti(Xti −Xti−1),

and due to the fact that at the release time τ the price of the asset becomes the fundamental one, there is

the extra income: XτVτ then we have

Wτ = −
N∑
i=1

Pti(Xti −Xti−1
) +XτVτ

= −
N∑
i=1

Pti−1
(Xti −Xti−1

)−
N∑
i=1

(
Pti − Pti−1

)
(Xti −Xti−1

) +XτVτ ,
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so, if the time between trades goes to zero, we will have

Wτ = −
∫ τ

0

Pt−dXt − [P,X]τ +XτVτ . (6)

Alternatively, by integrating by parts we can write,

Wτ =

∫ τ

0

(Vt− − Pt−)dXt + [V,X]τ − [P,X]τ +

∫ τ

0

Xt−dVt (7)

Remark 4 Note that, by construction, X is predictable since Xti −Xti−1 is the number of assets ordered at

time ti−1. On the other hand these assets are bought at price Pti , the market price at time ti (that is affected

by the total demand of the asset). So we are in the context of an auction mechanism. If and order emitted

at time ti−1 was executed at prices at time ti−1 we would have the alternative expression for the final wealth,

assuming that X0 = 0, given by

Wτ = −
N∑
i=1

Pti−1
(Xti −Xti−1

) +XτPτ +Xτ (Vτ − Pτ )

= −
N∑
i=1

Pti−1
(Xti −Xti−1

) +

N∑
i=1

(
XtiPti −Xti−1

Pti−1

)
+Xτ (Vτ − Pτ )

=

N∑
i=1

Xti

(
Pti − Pti−1

)
+Xτ (Vτ − Pτ ) ,

that corresponds to a self-financed portfolio with initial value equal to zero and an additional injection of

money at time τ given by

Xτ (Vτ − Pτ ) .

This happens for the market makers investment. Their total wealth is given by

WM
τ :=

N∑
i=1

Yti
(
Pti − Pti−1

)
+Xτ (Vτ − Pτ ) ,

and since prices are competitive E
(
WM
τ

)
= 0.

For notational reasons we give the following definition:

Definition 2 Let S be a semimartingale with canonical decomposition S = N + A, where N is a square-

integrable martingale and A is a predictable finite-variation process. Let ν be a stopping time and U be an

8



adapted process, we write U ∈ Lν(S) to indicate that

E
(∫ ν

0

U2
t−d[N,N ]t +

∫ ν

0

|Ut−||dAt|
)
<∞.

In the next subsection we discuss the characterization of an insider’s optimal strategy in equilibrium in terms

of fundamental value and insider information. In the sequel we will consider two kinds of stopping times:

τ bounded, or τ finite but independent of the rest of observable random variables. In both cases, by the

assumptions that V is a martingale and X a predictable càdlàg semimartingale satisfying that X ∈ Lτ (V )

(see below), we have that E
(∫ τ

0
XtdVt

)
= 0. In fact, we can argue that, if τ is bounded, we can apply Doob’s

Optional Sampling Theorem and, if τ is finite but independent of (V, P, Z, ...) (and consequently of X), we

have that

E
(∫ τ

0

Xt−dVt

)
= E

(
E
(∫ τ

0

Xs−dVs

∣∣∣∣ τ)) = E
(
E
(∫ t

0

Xs−dVs

)∣∣∣∣
t=τ

)
= 0.

Hence,

J(X) := E (Wτ ) = E
(∫ τ

0

(Vt− − Pt−)dXt + [V,X]τ − [P,X]τ

)
,

First, we have the following proposition that simplifies the set of admissible strategies to take into account.

Proposition 1 Strategies with a continuous martingale part or with jumps are suboptimal, in the sense that

they do not maximize the expected value of (6), in the class of all predictable semimartingale strategies.

Proof. Since we assume that prices increase with Y = X + Z, strategies with a continuous martingale

part or predictable jumps will be suboptimal in the class of semimartingale strategies: in fact in (6) we can

approximate these strategies by a continuous process with zero quadratic variation and then eliminating the

negative contribution of [P,X]τ and at the same time approximating, as much as we want, the rest of the

terms in (6). �

rule0.5em0.5em

As a consequence, to find an equilibrium, we can change (A1) above by

(A1′) Xt =

∫ t

0

θsds, for all t ≥ 0, where θ a càdlàg adapted process.

and the goal of the insider becomes to maximize J(X) with

J(X) := E (Wτ ) = E
(∫ τ

0

(Vt − Pt)dXt

)
.
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We also have a general result in the case that τ is a predictable time to the insider.

Proposition 2 If τ is a predictable stopping time to the insider and X is an optimal strategy, then we have

market efficiency

Vτ− = Pτ− = Pτ a.s. (8)

Proof. If the insider’s strategy is such that Vτ− − Pτ− 6= 0 then it is suboptimal since the insider could

approximate a jump at τ with the same sign to Vτ−−Pτ− by an absolutely continuous strategy and improving

her wealth. Now, since V is a martingale and τ is predictable E (Vτ | Fτ−) = Vτ− (see Jacod and Shiryaev

(1987), Lemma 2.27). (We recall that Fτ− := F0 ∨ σ(A ∩ (τ > t) : A ∈ Ft, t ≥ 0), see, e.g., Revuz and Yor

(1999), page 46). Then there is not extra income, in average, by the possible jump of V at τ . �

rule0.5em0.5em

Remark 5 That the market efficiency is a consequence of the optimality of the insider’s strategy was already

observed, for instance, in Aase et al. (2012a). Here we obtain an extension of this result for a more general

behaviour of the fundamental value, the demand process of the noise traders and the pricing rules.

Remark 6 This efficiency situation is also the case in Campi and Çetin (2007). Here the insider knows

the default time, τ̄ , of a bond with face value 1 and consequently its fundamental value Vt = 1{τ̄>1}, and the

release time is τ = τ̄ ∧ 1. So, τ is F0-measurable and bounded. Then, they obtain

1{τ̄>1} − Pτ̄∧1 = 0 a.s.

Within this study, the authors also assume that τ̄ is the first passage time of a standard Brownian motion

independent of demand of the noise traders Z.

Remark 7 If we take the fundamental value Vt ≡ V and the deterministic fixed release time τ ≡ 1, then we

retrieve Back’s framework (1992). There it is shown that market prices converge to V when t→ 1.

In order to find the first order conditions of the optimal strategy we study the effect of an ε-perturbation of

an optimal strategy: dX
(ε)
t := dXt + εβtdt, where β is a bounded adapted processes. We denote

P
(ε)
t = H

(
t, ξ

(ε)
t

)
, ξ

(ε)
t =

∫ t

0

λ(s, P (ε)
s , υs)d

(
X(ε)
s + Zs

)
.
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And we assume that pricing rules (3) are Gateaux differentiable in such a way that

(R) P
(ε)
t − Pt = ε

∫ t

0

K(s, t)βsds+ o (ε)Rt,

for a family of strictly positive random variablesK(s, t) (ω) ,B(R+)⊗PF- measurable and for all 0 ≤ s ≤ t ≤ τ

and R a bounded progressively measurable process.

From now on, we shall write ∂i , ∂ij to denote the first and second derivatives with respect to the ith, ith

and jjh variables, respectively. We have the following proposition.

Proposition 3 Assume that the market factor υ in the price pressure λ (see (1)) is not affected by the

strategy of the insider. For any bounded adapted process β, if we take dX
(ε)
t = dXt + εβtdt, then we have

dP
(ε)
t

dε

∣∣∣∣∣
ε=0

= ∂2H(t, ξt)ηt

∫ t

0

λ(s, Ps, υs)

ηs
βsds,

with

ηt := E
(∫ t

0

∂2H∂2λdYs

)
,

where E denotes the stochastic exponential.

Proof.
dP

(ε)
t

dε

∣∣∣∣∣
ε=0

= ∂2H

(∫ t

0

∂2λ(s, Ps, υs)
dP

(ε)
s

dε

∣∣∣∣∣
ε=0

dYs +

∫ t

0

λ(s, Ps, υsθs)βsds

)
,

so
dP

(ε)
t

dε

∣∣∣∣
ε=0

∂2H
= ηt

∫ t

0

λ(s, Ps, υs)

ηs
βsds

with

ηt := E
(∫ t

0

∂2H∂2λdYs

)
.
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In fact

d

(
ηt

∫ t

0

λ(s, Ps, υs)

ηs
βsds

)
= dηt

∫ t

0

λ(s, Ps, υs)

ηs
βsds+ ηt

λ(t, Pt, υt)

ηt
βtdt

= ηt∂2H∂2λdYt

∫ t

0

λ(s, Ps, υs)

ηs
βsds+ λ(t, Pt, υt)βtdt

=
dP

(ε)
t

dε

∣∣∣∣∣
ε=0

∂2λdYt + λ(t, Pt, υt)βtdt

= d


dP

(ε)
t

dε

∣∣∣∣
ε=0

∂2H

 .

This completes the proof. �

rule0.5em0.5em

Therefore in (R) we have

K(s, t) =
λ(s, Ps, υs)

ηs
∂2H(t, ξt)ηt,

with the factorization K(s, t) = K1(s)K2(t) where

K1(s) =
λ(s, Ps, υs)

ηs
,K2(t) = ∂2H(t, ξt)ηt.

Remark 8 In Laserre (2004) the author considers pricing rules, in a multivariate setting, of the form

P it = Hi(t, ξ1
t , ..., ξ

n
t ), t ≥ 0, ξit :=

∫ t

0

λi(s)dY is , i = 1, ..., n, .

In such a way that

Ki(s, t) = λi(s)∂iH
i(t, ξ1

t , ..., ξ
n
t ),

where ∂iH , ∂ijH denote the first and second derivatives with respect to the ith, ith and jjh variables,

respectively. So we can extend the univariate results to this setting in a straightforward manner.

3 The optimality condition

For technical and modelling reasons, we require additional properties to P and the strategy X.
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Definition 3 We say that the triple (H,λ,X) is admissible if it satisfies (1) , (H1) ,
(
A1′

)
, (R) and also

(A2) X ∈ Lτ (V ), V, P ∈ Lτ (X) ∩ Lτ (Z),

(A3) K2(·)
(∫ ·

0

K1(s)2ds

)1/2

∈ Lτ (X),

We have the following theorem.

Theorem 1 If (H,λ,X) is admissible and X is optimal we have

Vt −H(t, ξt)−
λt
ηt

E
(∫ τ

t

∂2H(s, ξs)ηsdXs

∣∣∣∣Ft) = 0, a.s.-P⊗Leb on [[0, τ)). (9)

where

ηt := E
(∫ t

0

∂2H∂2λdYs

)
, 0 ≤ t < τ.

Proof. Take dX
(ε)
t := dXt + εβtdt, where β is a bounded adapted processes, then taking the admissibility

conditions in Definition 3 into account, we have

E
(
W (ε)
τ −Wτ

)
= E

(∫ τ

0

(
Vt − P (ε)

t

)
dX

(ε)
t −Wτ )

)
= εE

((∫ τ

0

(Vt − Pt)βtdt−
∫ τ

0

(∫ t

0

K(s, t)βsds

)
dXt

))
+ o(ε)

= εE
((∫ τ

0

(
Vt − Pt −

∫ τ

t

K(t, s)dXs

)
βtdt

))
+ o(ε).

Note that condition (A3) guarantees that

E
(∫ τ

0

(∫ t

0

K(s, t)βsds

)
dXt

)
= E

(∫ τ

0

(∫ τ

t

K(t, s)dXs

)
βtdt

)
.

Then
dE
(
W

(ε)
τ

)
dε

∣∣∣∣∣∣
ε=0

= 0,

implies, by (R), that

E
(∫ τ

0

(
Vt − Pt −

∫ τ

t

K(t, s)dXs

)
βtdt

)
= 0,

and since we can take βt = αu1(u,u+h](t), with αu measurable and bounded and τ is a stopping time, we

13



have that

Vt − Pt − E
(∫ τ

t

K(t, s)dXs

∣∣∣∣Ht) = 0,

a.s.-P⊗Leb on the stochastic interval [[0, τ)). Finally, since

K(t, s) =
λ(t, Pt, υt)

ηt
∂2H(s, ξs)ηs,

we obtain the result. �

rule0.5em0.5em

3.1 Case when τ is predictable to the insider

In this section we consider the case when the insider can predict the release time of information τ . Namely,

there is an increasing sequence of stopping times (τn) such that a.s., τn < τ and limn τn = τ . Moreover, we

assume that τ is bounded.

3.1.1 Necessary conditions for the equilibrium

We have the following Lemma.

Lemma 1 Under the pricing rules considered above, we have

[
P,
η

λ

]
≡ 0. (10)

Proof. By using the Itô formula together with the condition (H1) we obtain that

d

(
ηs
λs

)
= ηsdυ

(
1

λs

)
+

1

λs
dηs + d

[
η,

1

λ

]
s

= ηsdυ

(
1

λ

)
− ηs

∂yλs
λ2
s

λsdYs −
1

2
ηs
λ2
s∂yyλs − 2 (∂yλs)

2
λs

λ4
s

λ2
sσ

2
Y ds

− ηs
∂sλs
λ2
s

ds+
1

λs
ηs∂yλsdYs −

(∂yλs)
2

λs
σ2
Y ηsds

= ηsdυ

(
1

λ

)
− 1

2

λs∂yyλ− 2 (∂yλs)
2

λs
σ2
Y ηsds−

(∂yλs)
2

λs
σ2
Y ds

= ηsdυ

(
1

λ

)
− ηs

(
1

2
∂yyλsσ

2
Y +

∂1λs
λ2
s

)
ds, (11)

where ∂yλs = ∂2λs∂2Hs and dυ the differential w.r.t. υ. Again by condition (H1) and (3)
[
P,
∫ ·

0
dυ
(

1
λ

)]
= 0,

14



and this together with (11) gives (10). �

rule0.5em0.5em

Furthermore, we obtain the following result, where we omit the arguments in H and λ.

Proposition 4 If (H,λ,X) is an equilibrium, we have

(i)
d
(
η
λ

)ac
t

dt
(Vt −Ht)−

(η
λ

)
t

(
∂1Ht +

1

2
∂22Htλ

2
tσ

2
Z(t)

)
= 0,

(ii) ∂1Ht +
1

2
∂22Htλ

2
tσ

2
Z(t) = 0,

a.s. on [[0, τ)). Here
(
η
λ

)ac indicates the absolutely continuous part of the process η
λ .

Proof. (i) By Itô’s formula, we have that

∫ τ

t

∂2H(s, ξs)ηsd (Xs + Zs) =

∫ τ

t

ηs
λs
∂2H(s, ξs)dξs =

∫ τ

t

ηs
λs

(
dPs − ∂1Ht −

1

2
∂22Htλ

2
tσ

2
Z(t)ds

)
=
ητ
λτ
Pτ −

ηt
λt
Pt −

∫ τ

t

Psd

(
ηs
λs

)
−
[
P,
η

λ

]τ
t
−
∫ τ

t

ηs
λs

(
∂1Ht +

1

2
∂22Htλ

2
tσ

2
Z(t)

)
ds.

(12)

Now, by (10), Equation (9) and (12), for all t ≥ 0

0 = 1[0,τ)(t) (Vt − Pt)
ηt
λt

+
ηt∧τ
λt∧τ

Pt∧τ −
∫ t∧τ

0

Psd

(
ηs
λs

)
−
∫ t∧τ

0

ηs
λs

(
∂1Ht +

1

2
∂22Htλ

2
tσ

2
Z(t)

)
ds

+Mt, (13)

whereM is a Lévy H-martingale. Observe that the jump at τ of 1[0,τ)(t) is killed by the fact that Vτ−−Pτ− =

0, and recall the uniqueness of the canonical decomposition of (special) semimartingales. Then, we obtain

(i). Recall that (H,λ,X) is an equilibrium and that the prices are rational given X. So, by taking conditional

expectations with respect to Ft in (i) we have (ii). �

rule0.5em0.5em

As a consequence we have the following corollaries.

Corollary 1 Assume that (H,λ,X) is an equilibrium. In the case when λ is independent of υ and Vt 6= Pt

a.s. (except for a set with P⊗ Leb zero measure) on [[0, τ)) we have that

∂tλ(t, Pt) +
1

2
λ2(t, Pt)∂yyλ(t, Pt)σ

2
Y (t) = 0 a.s. on [[0, τ)). (14)

15



Proof. From (i) in the previous proposition we have that

d
(
η
λ

)ac
t

dt
(Vt −H(t, ξt)) = 0,

then Vt 6= H(t, ξt) implies that
d
(
η
λ

)ac
t

dt
= 0.

Now, since λ is independent of υ, from (11) we conclude that

1

2
∂yyλsσ

2
Y +

∂tλs
λ2
t

= 0,

and we obtain (14). �

rule0.5em0.5em

Corollary 2 Assume that (H,λ,X) is an equilibrium, then we have:

(i) Y is an F-local martingale;

(ii) If Vt 6= Pt a.s. (except for a set with P ⊗ Leb zero measure) on [[0, τ)), then η
λ is a positive local

martingale.

Proof. (i) From (ii) in Proposition 4, we have that

∂tH(t, ξt) +
1

2
∂yyH(t, ξt)λ

2
tσ

2
Z(t) = 0, (15)

and consequently

dPt = dH(t, ξt) = λt∂yH(t, ξt)dYt.

Now, since P is an F-martingale in an equilibrium and λt∂yH(t, y) > 0, we have that Y is an F- local

martingale.

(ii) From (i) in Proposition 4 and (15) we have that

d
(
η
λ

)ac
t

dt
(Vt −H(t, ξt)) = 0,

then Vt 6= H(t, ξt) implies that
d
(
η
λ

)ac
t

dt
= 0,

and this concludes the proof. �
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Example 2 As a continuation of Example 1, by the previous results about the necessary conditions for an

equilibrium, if λt = λ(t) then ηt ≡ 1 and λ has to be a constant. Moreover the efficiency condition implies

that ΣT = 0. These two conditions allow us to find the equilibrium in this example :

d

dt
Σt = σ2

V (t)− β2
tΣ2

s

σ2
Z(t)

= σ2
V (t)− λ2

tσ
2
Z(t),

so,

λ =

√√√√Σ0 +
∫ T

0
σ2
V (t)dt∫ T

0
σ2
Z(t)dt

,

since ΣT = 0, and finally

βt =
λσ2

Z(t)

λ2
∫ T
t
σ2
Z(s)ds−

∫ T
t
σ2
V (s)ds

.

This is the only possible equilibrium but we should check if the necessary conditions to have a maximum are

really sufficient. We will discuss it in the next subsection.

Example 3 In our model consider the case when H(t, x) = x;λ = λ(t, x),dZt = σtdBt, where B is a

Brownian motion, and when the class of admissible strategies are absolutely continuous: dXt = θtdt. Then,

we have that

d

(
ηs
λs

)
= −ηs

(
1

2
∂xxλsσ

2
s +

∂sλs
λ2
s

)
ds.

Then if Vt − Pt 6= 0 this implies that ∂sλs + 1
2∂xxλsλ

2
sσ

2
s = 0, so λt = λ(t, Pt) is also a local martingale.

In particular if λt = λ(Pt), it is easy to see that market prices follow a Black-Scholes model or a Bachelier

model. In fact we have that

∂xxλs = 0,

and that η
λ is a constant. Notice that, since prices are F-martingales, λ is also an F-martingale, as it is a

linear function of them. Also we have

λt = aηt

= a exp

(∫ t

0

∂xλ(Ps)dYs −
1

2

∫ t

0

(∂xλ(Ps))
2
σ2
sds

)
= a exp

(
cYt −

c2

2

∫ t

0

σ2
sds

)
= cPt + b,

17



and, if c 6= 0,

Pt − P0 = a

∫ t

0

exp

(
cYs −

c2

2

∫ s

0

σ2
udu

)
dYs =

a

c
exp

(
cYt −

c2

2

∫ t

0

σ2
sds

)
− a

c
.

Then taking P0 = a
c

Pt = P0 exp

(
cYt −

c2

2

∫ t

0

σ2
sds

)
,

and b = 0 (Black-Scholes model). If c = 0 then λt is constant and Pt = P0 + bYt (Bachelier model).

Example 4 In Collin-Dufresne and Fos (2016), the authors take strategies X absolutely continuous of the

form

dXt = βt(V − Pt)dt,

and assume that dZt = σz(t)dB
z
t , where σz(t) is a semimartingale independent of the other processes, βt

can depend on σz(t) and V is Gaussian. Notice that σz is F-adapted since corresponds to the volatility of

Y . Now, by filtering results, we have

λt =
Σtβt
σ2
z(t)

and
d

dt
Σt = − (Σtβt)

2

σ2
z(t)

= −λ2
tσ

2
z(t).

We look for a solution of the form,

λt =

√
Σt
Gt

where, according to (ii) in Corollary 2, (Gt) has to be a process such that
(

1
λt

)
is a martingale. Then

Σt = Σ0e
−

∫ t
0

σ2z(s)

Gs
ds

and

d
√
Gt = − 1

2
√
Gt
σ2
z(t)dt+ Σtd

(
1

λt

)
= − 1

2
√
Gt
σ2
z(t)dt+ dMt.

So, √
GT −

√
Gt = −

∫ T

t

σ2
z(s)

2
√
Gs

ds+MT −M0,

18



and since GT = 0 because ΣT = 0 we have

√
Gt = E

(∫ T

t

σ2
z(s)

2
√
Gs

ds

∣∣∣∣∣σ2
z(u), 0 ≤ u ≤ t

)
.

Equation (11) in Collin-Dufresne and Fos (2016).

3.1.2 Characterization of the equilibrium

In this subsection we shall give necessary and sufficient conditions to guarantee that (H,λ,X) is an equilib-

rium in the context of pricing rules satisfying

∂1H +
1

2
∂22Hλtσ

2
Z(t) = 0, (16)

∂tλt +
1

2
∂yyλtσ

2
Z(t) = 0 a.a. t ≥ 0, y ∈ R , (17)

where σ2
Z is deterministic and càdlàg. Conditions (16) and (17) specify a subclass of pricing rules and thus of

admissible strategies. Note that condition (16) is condition (ii) in Proposition 4 and condition (17) is (14).

Observe that all the functions considered in this subsection H,λ, σ2 are deterministic, see Remark 9 below.

We shall also considered, for simplicity, that V is continuous since there is not substancial difference when

we introduce jumps in the fundamental value V . Recall that the release time τ is predictable and bounded

to the insider.

From now on we shall assume the additional conditions:

(B1) ∂2H(·, ξ·)λt ∈ Lτ (X) ∩ Lτ (Z) .

(B2)
(
H−1(t, ·)(Vt)

)
0≤t≤τ , ξt ∈ Lτ (V ) and λ(t, Pt) ≥ C > 0.

We have the following necessary and sufficient conditions for the equilibrium.

Theorem 2 Consider an admissible triple (H,λ,X) with (H,λ) satisfying (16) and (17). Assume that the

fundamental value V is a continuous martingale. Then, necessary and sufficient conditions for an equilibrium

are given by:

(i) H(τ, ξτ ) = Vτ

(ii) Yt, 0 ≤ t < ess sup τ, is an F-local martingale.
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Proof. Assume (i)− (ii), we show that (H,λ,X) is an equilibrium. Set now, for t ∈ [0,∞),

I(t, y, v) :=

∫ H−1(t,·)(v)

y

v −H(t, x)

λ(t,H(t, x))
dx. (18)

After some straightforward calculations, we have that

∂1I +
1

2
∂22Iλ

2
tσ

2
Z(t) = F (t, v). (19)

Where F (t, v) ∈ C1,1. Now, consider an admissible continuous strategy X, by using Itô-Wentzell’s formula

(see for instance Bank and Baum (2004)), we have

I(τ, ξτ , Vτ ) = I(0, 0, V0) +

∫ τ

0

∂3I(t, ξt, Vt)dVt +

∫ τ

0

∂1I(t, ξt, Vt)dt

+

∫ τ

0

∂2I(t, ξt, Vt)dξt +
1

2

∫ τ

0

∂22I(t, ξt, Vt)d[ξ, ξ]t

+

∫ τ

0

∂23I(t, ξt, Vt)d[ξ, V ]t +
1

2

∫ τ

0

∂33I(t, ξt, Vt)σ
2
V (t)dt.

By construction, ξ0 = 0, dξt = λtdYt. Also by (18) and the fact that V and Z are independent, and the

admissibility conditions

∂23I(t, ξt, Vt)d[ξ, V ]t = − 1

λt
d[ξ, V ]t = −d[X,V ]t = 0,

then using (18) and (19), we get

I(τ, ξτ , Vτ ) = I(0, 0, V0) +

∫ τ

0

∂3I(t, ξt, Vt)dVt +

∫ τ

0

(Pt − Vt)(dXt + dZt)

+
1

2

∫ τ

0

∂33I(t, ξt, Vt)σ
2
V (t)dt+

∫ τ

0

F (t, Vt)dt.

rearranging the terms, we obtain

∫ τ

0

(Vt − Pt)dXt −
(
I(0, 0, V0) +

1

2

∫ τ

0

∂33I(t, ξt, Vt)σ
2
V (t)dt+

∫ τ

0

F (t, Vt)dt

)
= −I(τ, ξτ , Vτ ) +

∫ τ

0

∂3I(t, ξt, Vt)dVt +

∫ τ

0

(Pt − Vt)dZt. (20)

Recall now the expected total wealth of an insider’s strategy and taking the expectation in (20) we show

that the maximum is achieved at X. For this it is important to note that ∂33I(t, y, v) does not depend on

y and thus ∂33I(t, ξt, Vt) does not depend of ξ. Then I(0, 0, V0) + 1
2

∫ τ
0
∂33I(t, ξt, Vt)σ

2
V (t)dt+

∫ τ
0
F (t, Vt)dt

20



has the same value for any insider’s strategy. The result follows from the following points.

1. The processes
∫ ·

0
∂3I(t, ξt, Vt)dVt and

∫ ·
0
(Pt − Vt)dZt are martingales by (B2) and (A2), hence, since

τ is bounded,
∫ τ

0
∂3I(t, ξt, Vt)dVt and

∫ τ
0

(Pt − Vt)dZt have null expectation.

2. By (i) and (18) we have that λt∂22I(τ, ξτ , Vτ ) = ∂2H(τ, ξτ ) > 0 and that λt∂2I(τ, ξτ , Vτ ) = −Vτ +

H(τ, ξτ ) = 0, so we have a maximum value of −E[I(τ, ξτ , Vτ )] for our strategy X.

Assumption (ii) together with condition (B1) guarantee the rationality of prices, given X. In fact from (16)

dPt = λt∂2H(t, ξt)dYt,

so, P is an F-local martingale and, by condition (B1) it is an F-martingale. Then from (i), and on the set

{t ≤ τ} we have

Pt = E (H(τ, ξτ )| Ft) = E (Vτ | Ft) = E (E (Vτ |Ht)| Ft) = E (Vt| Ft) .

If we assume that (H,λ,X) is an equilibrium we show that (i) − (ii) hold true. First note that (i) is a

necessary condition for equilibrium by Proposition 2. Finally, from the Itô formula, we have that

dYt =
dPt

λt∂2H(t, ξt)
.

Since prices are rational, given X, then we see that (ii) holds true. �
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Remark 9 In this subsection we have assumed that λ(t, x) is a deterministic function. We could introduce

some randomness in λ(t, x, y), with the additional hypothesis (H1), and some integrability conditions with

respect to dυ
(

1
λ

)
, to conclude that if

∫ ·
0

dυ
1

λ(s,Ps,υs)
is a martingale, then Theorem 2 holds.

3.2 Case when τ is not predictable to the insider

If τ is not predictable market is not efficient. We consider stopping times that are not predictable and

independent of the rest of observable random objects (V, P, Z, ...) that is

Ht = Gt ∨ σ (τ ∧ s, 0 ≤ s ≤ t),
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with Gt independent of τ, that P(τ > t) > 0 for all 0 ≤ t < T ∈ R̄+ and that τ has a density with respect to

the Lebesgue measure. In the same way that in (13) we can obtain that for any τ in this class, we have also

0 = 1[0,τ)(t) (Vt − Pt)
ηt
λt

+
ηt∧τ
λt∧τ

Pt∧τ

−
∫ t∧τ

0

Psd

(
ηs
λs

)
−
∫ t∧τ

0

ηs
λs

(
∂1Ht +

1

2
∂22Htλ

2
tσ

2
Z(t)

)
ds+Mt.

However, now, the jump of 1[0,τ)(t) is relevant when we do the canonical decomposition. In fact if for certain

%t > 0, absolutely continuous, we have that
1[0,τ)(t)

%t

is an H-martingale, then we obtain, by the uniqueness of the canonical decomposition, that

(Vt − Pt)
d
(
η%
λ

)ac
t

dt
−
(η%
λ

)
t

(
∂1Ht +

1

2
∂22Htλ

2
tσ

2
Z(t)

)
= 0.

In our case %t := P(τ > t):

P(τ > s|Ht) = P(τ > s|τ > t)1[0,τ ](t) =
P(τ > s)

P(τ > t)
1[0,τ ](t). (21)

As a consequence everything runs parallel to the predictable case if we replace λ by λ
% . We have the following

corollaries.

Corollary 3 Assume that (H,λ,X) is an equilibrium, then we have:

(i) Y is an F-local martingale

(ii) If Vt 6= Pt, a.s. on [[0, τ)), then
η%

λ
is a positive local martingale.

Corollary 4 Assume that (H,λ,X) is an equilibrium. In the case that λt = λ(t, Pt) (independent of υ) and

Vt 6= Pt a.s. (except for a set with P⊗ Leb zero measure) on [[0, τ)) we have that

∂tλ(t, Pt) +
1

2
∂xxλ(t, Pt)λ

2(t, Pt)σ
2
Z(t)− λ(t, Pt)∂s log %s = 0,

a.s. on [[0, τ)).

Example 5 In Back-Baruch (2004), the authors consider the case where the admissible strategies are abso-

lutely continuous, dZt = σtdBt, where B is a Brownian motion, H(t, x) = x, λt = λ(Pt) and the release time

22



is random with τ ∼ exp(r) (independent of the other variables involved). In this case Equation (4) becomes

1

2
∂xxλsσ

2
s +

r

λs
= 0,

that is the Equation (1.21) in Back-Baruch (2004).

We also have the following results, where for the sake of simplicity we also assume that V is a continuous

martingale. We use the same notation as in the previous section. First we have the following result.

Proposition 5 If an admissible triple (H,λ,X) is an equilibrium, then

Vt −H(t, ξt)−
λt
ηt%t

E

(∫ T

t

∂2H(s, ξs)ηs%sdXs

∣∣∣∣∣Ht
)

= 0, a.s.-P⊗Leb on [[0, τ)),

where

%t := P(τ > t).

Proof. This a direct consequence of Theorem 1 together with the independence of τ and Gt and the

(conditional) Fubini’s Theorem (see for instance Theorem 1.1.7 in Applebaum (2004)). Also we use (21). �
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Hence we have analogous results to the predictable case if we replace λ by λ
% and the horizon by T , however

since T can be infinite we need to assume that
(
η%
λ

)
t

is well defined when t→ T . In particular we have:

Proposition 6 Assume that limt↑T
ηt%t
λt

is well defined. If an admissible triple (H,λ,X) is an equilibrium

then we have:

(i) lim
t↑T

H(t, ξt) = lim
t↑T

Vt,

(ii)
d
(
η%
λ

)ac
t

dt
(Vt −Ht)−

(η%
λ

)
t

(
∂1Ht +

1

2
∂22Htλ

2
tσ

2
Z(t)

)
= 0,

(iii) ∂1H(t, ξt) +
1

2
∂22H(t, ξt)λ

2(t)σ2
Z(t) = 0,

a.s. on [[0, τ)).

And similarly we can give sufficient conditions for having an equilibrium in the context of pricing rules
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satisfying

∂1H +
1

2
∂22Hλ

2σ2
Z(t) = 0, (22)

∂tλt +
1

2
∂yyλtλ

2
tσ

2(t)− λt∂t log %s = 0 a.a. t ≥ 0, y ∈ R. (23)

We obtain a result in line with Theorem 2.

Theorem 3 Assume that the fundamental value V is a continuous martingale. Then, there exist an equi-

librium in the set of admissible triples (H,λ,X) with (H,λ) satisfying (22) and (23) for all (t, y) ∈ R+ ×R,

if the following conditions hold:

(i) lim
t↑T

H(t, ξt) = lim
t↑T

Vt,

(ii) Yt 0 ≤ t < T, is an F-local martingale.

4 Concluding remarks

In this paper we elucidates the behaviour of an equilibrium in the market when a particular asset is traded

in presence of an insider who knows its fundamental price and tries to maximizes her portfolio. We assume,

following Kyle (1985), that the market price of this asset is fixed by the total aggregate demand and that

it obeys a very general pricing rule, by allowing the instantaneous impact of the demand, known as price

pressure, to be random. We consider also a random release time, a time when the fundamental value of

the asset becomes public. Situation changes according to the predictability or not of this release time. The

framework we consider encompasses the particular models discussed in the literature and the results give the

conditions one has to check to find an equilibrium in the particular model.
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