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Abstract 
	
This thesis uses simulation and regression analysis to investigate how different evaluation 

methods affect outcomes in procurement. In order to simulate the data, we have made our own 

algorithm in R Studio to answer our proposed questions. This algorithm can easily be adapted 

by others who want to simulate similar data or run simulation with other assumptions and 

parameters. Most procurement in Norway involves evaluating tenders based on both price and 

quality aspects. Price is evaluated by using scoring rules, while quality aspects are evaluated by 

expert panels and, in some cases, adjusted by the use of normalisation. By first investigating 

scoring rules, we find that the relative scoring rules recommended by the Norwegian 

Digitalisation Agency (NDA), and the most commonly used in practice, have serious 

drawbacks, suggesting that they are not the most suitable. In addition, we know from previous 

literature that these rules are unpredictable for bidders to use. In this thesis, we therefore provide 

additional insights, showing that these relative scoring rules also weigh quality relatively less 

compared to price during evaluation. Finally, we prove that normalisation has adverse effects 

on outcomes in procurement. The NDA recommends procurers to adjust, or normalise, the 

quality scores assigned by expert panels. In this thesis, we show that normalisation changes the 

relative weight of quality in a tender evaluation, leading to arbitrarily and unpredictable 

outcomes. By rather recommending expert panels to evaluate quality aspects relatively, 

normalisation can be avoided. 
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1 Introduction 
The Norwegian public sector procures goods and services for about 500 billion NOK annually 

(Avdeling for offentlige anskaffelser, 2020a). Therefore, public procurers are subject to strict 

regulation ensuring fairness and predictability in the procurement process. The procurer uses 

evaluation methods to evaluate the various dimensions of a tender. From the 2014 EU Directive 

on Public Procurement, there are two main categories of evaluation methods stipulated; lowest 

price and the most economically advantageous tender (MEAT). In our study, we will only focus 

on the latter. Here, the procurer not only considers price and minimum requirements during 

evaluation, but also assess the tenders based on certain quality aspects (Bergman & Lundberg, 

2013, p. 74). 

When both price and quality aspects are being evaluated, we need to either transform the price 

into the same unit as quality, or the quality aspect (often a score) into monetary units. We will 

in this thesis focus on the first method; transforming price into a score and keeping the quality 

score as it is. Finally, the two scores are added together. The tender with the highest total score 

is the one that offers the highest quality possible at the best achievable price. This tender is 

therefore chosen by the procurer. 

When transforming price into a score, scoring rules are commonly used. A scoring rule provides 

mathematical formulas to calculate the price score. There are two main groups of scoring rules; 

absolute and relative. Absolute scoring rules provide benchmarks on what is seen as a high 

and/or a low price, allowing the bidders to calculate their own price scores before the bidding 

phase. On the contrary, the relative scoring rules benchmark the bids relative to each other. 

Scholars favour the absolute rules as they provide bidders with knowledge of the price/quality 

preferences of the procurer, thus enabling them to formulate their best offer possible (Dini, 

Pachini & Valetti, 2006, p. 304-317). This ensures greater predictability for both the bidder and 

the procurer. Relative scoring rules, however, do not provide bidders with any information 

regarding preferences and are therefore not predictable. Both national and international 

legislation states that an important aim of procurement is to ensure predictability in the process. 

Despite this, relative scoring rules dominate in practice. Bergman & Lundberg (2013, p. 81) 

find that relative scoring rules are three times more common in practice than absolute scoring 

rules. Furthermore, even the Norwegian Digitalisation Agency (NDA) recommends using 

relative scoring rules in procurement (Avdeling for offentlige anskaffelser, 2019). 
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Therefore, we believe that there are certain misconceptions concerning the use and impact of 

different scoring rules. More specifically, that there are misconceptions regarding the impact of 

weights in the scoring rules. As the tender is evaluated on both price and quality, the NDA 

recommends using a weighing function to assign price and quality their respective weights in 

each tender (Avdeling for offentlige anskaffelser, 2020b). These weights are supposed to reflect 

the procurer’s preferences in the trade-off between price and quality. However, the different 

scoring rules themselves also implies different weights of price compared to quality. Our 

perception is that this latter information is widely overlooked. We will in this thesis, therefore 

provide the procurer with new insights regarding how preferences are being reflected when 

using different scoring rules. 

There is also an ongoing debate regarding the quality evaluation. Typically, an expert panel 

assess the perceived quality of a product and score the tenders according to certain criteria. 

Afterwards, it is surprisingly common to adjust, or normalise, the score. Despite none of the 

bidders having a quality perceived as a maximum by the expert panel, normalisation involves 

awarding the bidder with the highest perceived quality a maximum score anyway. The quality 

score of the other bidders are then adjusted accordingly. This practice has been subject of 

discussion and criticism in Norway in recent months. Some practitioners claim normalisation 

may change the weight of quality during evaluation, thereby resulting in arbitrary and less 

predictable outcomes (Ellingsen & Haukeli, 2020). 

This study aims to investigate how different evaluation methods affect outcomes in 

procurement and we will address both the issue of relative and absolute scoring, as well as the 

question of normalisation. More specifically, we seek to examine how both different scoring 

rules and normalisation may have an impact on the preferences of the procurer, subsequently 

leading to a change in outcome of the procurement. By investigating this, we want to be able to 

comment on whether the widespread use and recommendations of relative scoring rules are 

actually rational. We also want to use our findings to draw some conclusions about 

normalisation. Is the recent criticism reasonable? 

To answer our research questions, we have cooperated with Sykehusinnkjøp, a public enterprise 

solely responsible for handling the procurement processes on behalf of all health trusts in 

Norway. At the beginning of 2020, the enterprise held a procurement portfolio consisting of 
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1860 agreements worth about 4.5 billion NOK.1 Access to these agreements make the health 

trusts able to purchase a wide variety of equipment necessary to ensure safe an efficient care of 

patients; from toilet paper and syringes, to X-ray machines and ambulance helicopters. 

Sykehusinnkjøp has given us access to their evaluation methods, enabling us to produce our 

own algorithm to simulate tender evaluations. By simulation, we are able to examine how 

different methods may have an impact on the preferences of the procurer, subsequently leading 

to a change of outcome in procurement. Furthermore, by conducting a regression analysis, we 

can investigate when normalisation have an impact on the quality score of a tender and how 

this practice may affect the overall outcome in procurement. 

Our motivation to write this thesis is threefold. First, we would like to understand evaluation 

methods in more depth because of its necessity in procurement today. Every tender in 

procurement, both in public and private sector, is subject to assessment through evaluation 

methods. Being able to cooperate with Sykehusinnkjøp, one of the biggest procurers in Norway, 

provides an unique opportunity to get a thorough understanding on how the different methods 

are being used in practice, thus bridging the gap between theory and practice. 

Second, a user study conducted by the NDA shows that many procurers display little awareness 

when choosing evaluation method. They often use the same methods for all procurements 

without considering the type of product or service being procured (Difi, 2015, p. 30). Thus, 

investigating whether different methods have an effect on the outcomes, are relevant as it 

enables procurers to make more informed decisions. 

Finally, we perceive this thesis as being an opportunity to provide new insights to evaluation 

methods. Most theory focuses on discussing benefits and drawbacks of using the different 

scoring rules in evaluation. In this thesis, we therefore want to go beyond that. What is not as 

clearly stated in literature, is that different scoring rules themselves may lead to different 

weighing in the price/quality trade-off. Also, literature hardly mention normalisation. As this 

practice lately has been subject of debate in Norway, we want to investigate this in more depth. 

Is it true that normalisation may arbitrarily change the outcomes in procurement? Thus, an 

important motivation, is to provide procurers with additional information when choosing 

between evaluation methods. 

																																																								
1 Information provided by Hanna Udnæs Hoel, Head of Department for Planning and Project Support at 
Sykehusinnkjøp’s National Services Division 
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1.1 Outline 
This thesis will be organised as follows: In Chapter 2, we present international and national 

legal framework procurers need to adhere to. Chapter 3 first presents what MEAT involves, 

narrowing our focus. Secondly, the different scoring rules used for calculating the price score 

of tenders are presented. Lastly, we will explain how quality scores are assigned, and how 

normalisation affects these scores. Chapter 4 and 5 outlines our methodological approaches, 

hereby the simulation being done, the model environment and the regression theory to be used 

in the analysis. In Chapter 6, we first provide an overview of the findings from our simulation. 

We then examine differences between scoring rules in part one of the analysis, before analysing 

normalisation in part two. Finally, in Chapter 7 we provide some concluding remarks and 

reflections upon the validity of our model. 
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2 Legal Framework 
The aim of this chapter is to provide a better understanding of the international and national 

procurement legislation Norwegian procurers are subject to. Being member of the European 

Economic Area (EEA) Agreement, Norway is obliged to ensure that the national legislation is 

in line with EU legislation. This involves incorporating international law into national law. 

Furthermore, Norwegian procurers are also subject to governmental recommendations when 

choosing among evaluation methods. 

	

2.1 The EU Directive on Public Procurement 
	
The Norwegian procurement legislation is primarily based upon EU directives that Norway is 

legally bound to implement through the EEA agreement. The most recent directive is the EU 

Directive on Public Procurement launched in 2014. It repealed and replaced the previous 

directive from 2004. The new directive was hailed by the European Parliament as a tool for 

ensuring the best value for money (rather than the lowest price) and better quality of goods and 

services (Hobson, 2016). It was therefore upgraded to enable a greater use of quality criteria 

when awarding public contracts. Up to this point, there had been a heavy reliance on price as 

the predominant award criteria, which had the unfortunate effect of frequently limiting 

innovation and encouraging short-term thinking (RIF, 2020, p. 6).   

The 2004 Directive on Public Procurement stipulated that contracts were to be awarded by 

using one out of two criteria, either (i) lowest priced tender or (ii) the most economically 

advantageous tender (MEAT). With the lowest price method, there are minimum requirements 

bidders will have to satisfy when submitting bids. The bids received will then be evaluated 

solely based on price. With MEAT, however, the procurer not only considers the price and 

minimum requirements, but also evaluates the tenders based on some quality aspects (Bergman 

& Lundberg, 2013, p. 73-74). This method is preferable for procurers when they do not know 

for certain what level of quality they prefer, as their preferences depend on the prices of 

different quality levels. 

Bergman & Lundberg (2013, p. 74 & 79) have studied the extent of how these two methods are 

being used in practice. They performed a study consisting of a sample of 189 Swedish public 

procurements. Here, they found that the lowest priced tender was used in more than one-third 
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of the procurements, while evaluation methods including both price and quality aspects 

(MEAT) were used in more than half of the procurements. We do not have any knowledge of 

similar studies performed in Norway. However, also Norwegian public procurers most 

commonly use evaluation methods assessing both price and quality aspects (Bjørnstad, 2019).  

These trends are in line with EU recommendations, as the 2014 Directive places a much greater 

emphasis on evaluation of quality criteria other than simply the price (SIGMA, 2016, p. 21). 

Article 67 (2) states that public procurers are now obliged to award pubic contracts to the “most 

economically advantageous tender” (MEAT), which is explained as follows:  

 

“The most economically advantageous tender from the point of view of the contracting 

authority shall be identified on the basis of price or cost, using a cost-effectiveness 

approach…and may include the best price-quality ratio, which shall be assessed on the basis 

of criteria, including qualitative, environmental and/or social aspects linked to the subject of 

matter of the public contract in question”.  

Based upon this definition, it is clear that the criterion considers the quality of the goods or 

services being procured, as well as the price (European Parliament, 2020). Although it is still 

possible to base an award solely on price, one interprets the directive as a strong 

recommendation of using MEAT, employing criteria other than, or in addition to, price (RIF, 

2020, p. 6). 

	

2.2 Norwegian Legislation 
	
The 2014 EU Directive on Public Procurement has been transposed into Norwegian law by the 

Procurement Act of 17th June 2016 and the Procurement Regulations of 12th August 2016. 

Both the law and the regulations apply to the procurement of goods and services made by state 

authorities and public enterprises. The main purpose of the act is to promote an efficient use of 

society’s resources. This implies ensuring that public enterprises act with integrity, so that the 

society have confidence in that public procurement will take place in a socially beneficial way 

(Regjeringen, 2017, p. 18-19).  

The Procurement Act and the Procurement Regulations specify the guidelines Norwegian 

public procurers have to adhere to during the procurement process. Public procurement must 
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be done in accordance to certain basic principles to ensure that the purpose of the law is fulfilled. 

These are enshrined in § 4: 

I. competition 

II. equal treatment  

III. predictability 

IV. verifiability 

V. proportionality 

 

These principles are the cornerstone throughout the Norwegian procurement legislation. 

Therefore, procurers have to keep the basic principles in mind when evaluating tenders and 

choosing among evaluation methods.  

	

2.3 The Norwegian Digitalisation Agency 
	

To get a better understanding on how the legislation is to be followed and interpreted, public 

procurers have access to support through the Norwegian Digitalisation Agency (NDA). This 

is the government’s foremost tool in providing guidance to public enterprises on how to 

prepare and manage a procurement process.2 NDA have the responsibility of overseeing the 

Norwegian Division for Public Procurement (NDPP). This division provides information 

about current legislation, the procurement process itself, and different evaluation methods to 

use in procurement (Avdeling for offentlige anskaffelser, 2020c). The resources are free and 

available online, and provide important guidelines when enterprises have questions regarding 

the procurement process and evaluation of tenders. 

	

	
	

																																																								
2 This responsibility will be transferred to The Norwegian Agency for Public and Financial Management (DFØ) 
01.09.2020. 
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3 Evaluation Methods 
In this chapter, we will first present the different evaluation methods that exist within MEAT. 

We will then narrow our focus to one of these main groups of methods and explain the different 

aspects of it; how the price and quality of the tender is evaluated and how they are combined 

and weighted in accordance to each other. 

When using MEAT, one is assessing both monetary values (like prices) and technical aspects 

(like quality) of tenders. It is therefore necessary to make the procurer able to evaluate the 

tenders on the basis of both dimensions. As a consequence, the use of evaluation methods under 

MEAT traditionally requires the procurer to adopt scoring rules. According to Bergman & 

Lundberg (2013, p. 75), a scoring rule can be defined as “a function that assigns a numerical 

value to different quality levels in a particular dimension or that transforms a value measured	

on one scale (price or quality) into a measure on another scale (price score or quality score, 

respectively)”.        

 

 

	

	
	

	

	

 

 

 

 

Figure 3.1: Evaluation Methods and Three Categories of Scoring Rules. Our own illustration based 
upon Bergman & Lundberg (2013, p. 75).  
	

As illustrated in Figure 3.1 above, we categorize scoring rules into three main categories; 

quality-only (2A, also called beauty contest), price-to-quality (2B) and quality-to-price (2C) 

(Bergman & Lundberg, 2013, p. 75). 

Public	
Procurement

Choice	of	evaluation	method

1.	Lowest	Price

Award	contract

2.	Most	Economically	
Advantageous	
Tender	(MEAT)

Choice	of	evaluation	method

2A.	Quality	only
Choice	of	scoring	rule	

Award	contract

2B.	Price-to-quality
Choice	of	acoring	rule

Award	contract

2C.	Quality-to-
price	
Choice	of	scoring	rule

t	contract
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With quality-only (2A), the procurer has set a fixed price and the evaluation is based only on 

the quality offered (Bergman & Lindberg, 2013, p. 75). The quality is measured in more than 

one dimension, and a scoring rule is used to assign quality scores to these quality dimensions.3 

In quality-to-price scoring (2C), the price bid is kept in monetary terms, while the quality 

criteria are given monetary values by the procurer (Bergman & Lundberg, p. 80). In price-to-

quality scoring (2B), all award criteria are converted into numerical points to be able to make a 

comparison of the submitted tenders. A scoring rule is therefore used to transform the price bids 

(in monetary terms) into points (numerical values) (Bergman & Lundberg, p. 75). 

In this thesis, we will focus on price-to-quality scoring as some features of this method are 

subject of the ongoing debate in recent months. 

 

3.1 Reflection of the Procurer´s Preferences 
When evaluating both price and quality in a procurement, it is necessary for the procurer to be 

able to reflect his true preferences on the two dimensions, respectively. This implies that he 

must address what he is willing to pay for quality, meaning what price-quality combinations 

should be equivalent when assigning a score to price and quality (Dini et al., 2006, p. 296). This 

is important with regards to the basic principles of predictability and equal treatment stated in 

the public procurement law. However, it will also increase the procurer´s chances of receiving 

the best tender possible, given his preferences (Dini et al., 2006, p. 296). 

What is common in practice, is to use a weighing function to combine the price score and the 

quality score. This function combines price and quality into a single value so that the different 

tenders can be compared to one another and ranked (Bergman & Lundberg, 2013, p. 75). For 

example, one could imagine that the procurer wanted price and quality to count equally in the 

evaluation. Then, the weighing function would require the price and quality scores to be 

multiplied with 50 % respectively. If there are several prices or quality aspects to be assessed, 

the weighing function can combine two or more price scores into a single	overall price score or 

combine two or more quality scores into a single quality score (Bergman & Lundberg, 2013, p. 

75).  Here, one could imagine that there were two quality aspects to evaluate. If the price and 

quality is weighted equally, the two quality aspects have to be weighted within those 50 % 

																																																								
3 «Choice of scoring rule» under Quality only (2A) refers to a scoring rule with different quality parameters and 
no price parameters (Bergman & Lindberg, 2013, p. 75). 
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“belonging” to the quality weighing. If the procurer wants both quality aspects to count equally 

in the evaluation, both quality scores have to be multiplied with 25 %. These percentage weights 

are used when the price and quality dimension have the same scale (both have a maximum 

score of 50 points for instance). However, one could also weigh the quality dimensions by 

designing the scales differently. If price is to be weighted 50 % it could be given a maximum 

of 50 points out of 100, and the two quality dimensions could be designed to range up to 25 

points each. Therefore, giving the dimensions 50 points each and thereafter the weights, are 

redundant. 

However, when using price-to-quality scoring, the scoring rule that transforms price into points 

are also weighting price in comparison to quality. Therefore, the choice of scoring rule also has 

an impact on how the procurer´s preferences are reflected. We have a perception that this is not 

quite understood in practice, both from what we see in NDA´s recommendations and the 

ongoing discussion today regarding normalisation. Hence, our focus in this thesis is to try to 

point out these misunderstandings by explaining and investigating this from a new point of 

view. 

In order to understand how the scoring rules will indicate different preferences, we need to 

define and explain one important concept; the monetary value of a point (MVP) (Dini et al., 

2006, p. 296). The MVP is the monetary discount necessary for a bidder to be able to obtain 

one additional point in the evaluation (Dini et al., 2006, p. 296). Knowing the MVP before 

submitting a bid, is of value for both the procurer and the bidder. When the bidders are able to 

structure their bids optimally, the procurer increases his chances of receiving the best tender 

possible given his preferences (Dini et al., 2006, p. 296-299). As this is crucial to understand 

how scoring rules reflects different preferences, we will provide an example to illustrate this. 

We will use a simplified version of an actual tender conducted by Sykehusinnkjøp in our 

analysis. Sykehusinnkjøp is to procure a hearing implant. In our simplified version, they 

evaluate the tenders based on price and one quality aspect. The water column of the implant 

represents the quality aspect. Tenders will be awarded points according to the scheme in Table 

3.1 below. In this scheme, the points are assigned linearly on the price dimension, so for 

instance if the bidder provides a price bid of 9500 NOK, he will get 2,5 price points. The bidder 

gets the maximum price points with a price of 2000 NOK. Hence, there is no point in decreasing 

the price further as he will only lose money. The highest price accepted is 10 000 NOK, which 

will be awarded zero points. On the quality dimension, we assume that there are only four 
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different water columns available in the market. An increase in the level of quality is assigned 

a value of 20 points. But what are these 20 points worth in monetary terms?  

The MVP is calculated by dividing the price range (10 000-2 000 = 8 000) by the total points 

awarded, which is 40. Hence, the MVP in this example is 8 000/40 = 200 NOK per point. This 

indicates that a reduction in the price by 200 NOK will result in one extra point for the bidder. 

It also implies that the 20 points awarded for increasing the level of quality, is worth 4 000 

NOK (200 * 20). This reflects that the procurer is willing to pay 4000 NOK for one additional 

level of quality. Furthermore, it also informs the bidder that in order to gain 20 points, he can 

either increase quality by one level (example from 5 000 mm to 10 000 mm in water column) 

or reduce the price by 4 000 NOK. What the bidder will choose to do, depends on how much it 

costs the bidder to increase the quality from 5 000 mm to 10 000 mm.  

	
Table 3.1:  Example of Evaluation Scheme 

	

If it costs more than 4 000 NOK, for instance 4 500 NOK, the bidder will be better off by 

decreasing the price bid by 4 000 NOK instead of increasing the quality by one level. 

Therefore, if the procurer´s true preferences are not reflected in the scoring rule (scheme) and 

the MVP, he could lose out on otherwise better opportunities. Let´s assume the procurer keeps 

the same awarding scheme as above, but his actual monetary value of a higher level of quality 

is 5 000 NOK instead of 4 000 NOK. We can then assume that the bidder has a budget of 5 000 

NOK to optimize his tender. Since the scheme reflects that the value of increasing the quality 

level by one, is worth less than it costs to provide (4 000 NOK versus 4 500 NOK), he provides 

a quality of 5 000 mm (which is a minimum requirement) and use the rest of his budget to 

reduce the price from 10 000 NOK to 5 000 NOK. However, if he knew that the real value of 

one level of quality was 5 000 NOK instead, he would have been better off by increasing the 
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quality as it only costs him 4 500 NOK. Thus, the bidder would have offered 10 000 mm in 

water column (using 4 500 NOK of his budget) and a price of 9 500 NOK (using the last 500 

of the budget to reduce his price). The first bid is worth 5 000 NOK for the procurer, while the 

last is worth 5 500 NOK (as the bidder are able to both provide a higher level of quality which 

is worth 5 000 NOK, and reduce the price by 500 NOK). The procurer, therefore, loses out on 

5 500 – 5 000 = 500 NOK. 

	

3.2 Evaluation of Price  
In this section, we will present different scoring rules used to transform the price into a score. 

The price can be evaluated based on either the relative offer or in absolute terms (Dini et al., 

2006, p. 304). A relative scoring rule can include the highest and/or the lowest bid as a base 

price, while an absolute scoring rule specifies benchmarks that are determined independently 

of the submitted bids. In this study, we have chosen to present four scoring rules. The first three 

are considered absolute scoring rules, while the last one is a relative rule: 

• Linear rule with price threshold 

• Linear rule without price threshold 

• Parabolic rule 

• Lowest bid scoring 

As mentioned, national legislation require that evaluation methods are in accordance with 

certain basic principles. Dini et al. (2006, p. 314) assess different scoring rules based on four 

key features; simplicity, predictability, competition and sensitivity to bid distribution. Both 

predictability and competition are mentioned as two of the five basic principles in the 

Norwegian Procurement Act. It is therefore important to have an understanding on how the 

different scoring rules perform during evaluation with regards to these two principles. 

Furthermore, one can argue that both the simplicity and the sensitivity to bid distribution of a 

rule are important parts of the rule’s predictability. Therefore, assessing how well the different 

scoring rules perform on these key features, has implications on to what extent they are in 

accordance with national law. We will in this chapter explain what is presented in present 

literature, and provide additional implications in the first part of the analysis in Chapter 6. 
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3.2.1   Absolute Scoring Rules  

Absolute scoring rules do not compare and benchmark different bidder’s price bids against each 

other when calculating the price score. Hence, they are not sensitive to bid distribution. Instead, 

they set some absolute benchmarks beforehand. Thus, it is possible to calculate the MVP before 

submitting a tender and the bidders are therefore able to optimize their tenders. These properties 

make the absolute scoring rules very predictable, since it reflects the preferences of the procurer 

and thereby the weight of price and quality. Therefore, the absolute rules are recommended in 

the literature (Dini et al., 2016, 304-315). With regards to simplicity and price competition, we 

will observe that there are some differences within this category of scoring rules.  

	
3.2.1.1   Linear Rules 

The scholars present two types of linear rules; one with a price threshold and one without a 

price threshold. First, we present the linear scoring rule with a price threshold as proposed by 

Dini et al. (2006, p. 305): 

!"#$%	'$("%	 = nn ∗ 	 (Reserve	price − Price	bid)
(Reserve	price − Price	threshold)	

	

In this formula, nn represents the maximum number of points available to be awarded to bidders 

for their price bids. We will use 4 points here, as this is the maximum points after weighting 

price 40 % (10*0.4 =4). The reserve price is defined as the highest bid allowed (Dini et al., 

2006, p. 305). A price equal to and above the reserve price, will therefore lead to no points for 

the bidder. The price threshold indicates the lower limit for which the price bids are awarded 

points. A price equal to the price threshold will award the maximum amount of price points, 

and prices beneath this point will not lead to an improved price score for the bidder.	The scoring 

rule used in the example in section 3.1 is a linear rule with a price threshold of 2000 NOK and 

a reserve price of 10 000 NOK. 

The linear rule without a threshold is presented below. The rule now only awards the maximum 

score, nn, if the good is offered for free. 

	

!"#$%	'$("%	 = nn ∗ 	(Reserve	price − Price	bid)Reserve	price 	
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The graphs in Figure 3.2 below, present the price score as a function of the price bid for the two 

rules graphically. This is useful to understand the implications of the rules. First of all, it implies 

that the linear rule without a price threshold will award lower price score for all price bids than 

the rule with a price threshold. In addition, we observe the gap is quite big for the middle range 

of prices. 

 

	
Figure 3.2: Linear Rule with and without a Price Threshold 

	

For both versions of this rule, the MVP is constant, which makes both versions of the linear 

rule very simple. The MVP can be obtained from the following formula4: 
 

>?! =	 (Reserve	price − Price	threshold)nn 	

	

However, the level of the MVP is quite different with the two rules. When using the linear rule 

with a price threshold, the MVP will be smaller compared to the rule without a price threshold. 

This is because the same amount of points is awarded along a smaller range of prices. Without 

a price threshold the MVP is 350 / 4 = 87.5 NOK per point, and with a price threshold the MVP 

is (350-150)/4 = 50 NOK per point. As a lower MVP makes it cheaper for the bidders to reduce 

																																																								
4 Where price threshold = 0 for the rule without price threshold. 
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their prices, the linear rule with a price threshold increases the price competition among the 

bidders. 

This also follows from the slope of the curves in Figure 3.2. The steeper the curve, the more 

points are awarded for a small change in price. Therefore, the steeper the slope, the more 

aggressive price competition is implied by the rule. Hence, the introduction of a price threshold 

increases the price competition between the bidders. 

3.2.1.2   Parabolic Rule 

The parabolic scoring rule is perceived as a bit more complicated. Here, the price score 

increases with lower bids, but at a diminishing rate (Dini et al., 2006, p. 307). Below, we present 

the parabolic rule proposed by Dini et al.: 

	

	

An important aspect of the parabolic rule is that it stimulates aggressive price bidding when 

price bids are close to the reserve price, while it does not incentivise further reduction for 

already low prices. This follows from the shape of the curve shown in Figure 3.3 below. 

 

Figure 3.3: Graph Parabolic Rule 
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The curve is concave, being quite flat for the lower prices and steeper for the prices close to the 

reserve price. In fact, this makes the parabolic rule more alike the linear rule with a price 

threshold compared to the linear rule without a price threshold. Due to this non-linearity, the 

MVP is not constant and needs to be calculated for each price bid. However, it will, similarly 

to the linear rule with a price threshold, be lower for the higher price range and converge against 

infinity for the lowest prices where the curve is flat. Therefore, it stimulates more aggressive 

price competition in the area close to the reserve price. 

 

3.2.1.3   Comparison between the Absolute Rules 

The graphs of the three absolute rules are shown in Figure 3.4 below. We observe that the 

parabolic rule is quite similar to the linear rule with a price threshold. Both are awarding higher 

price scores partitioned on a smaller range compared to the linear rule without a price threshold. 

Therefore, they similarly stimulate to price competition for the relevant price range, while the 

linear rule without price threshold does this to a much smaller extent.  

 

Figure 3.4: Graphs Absolute Rules 

Furthermore, the two linear rules are simpler compared to the parabolic rule. This is due to the 

linearity and constant MVP for the two former rules. All together, we can understand why the 

linear rule with a price threshold is favoured in literature.  It is highly predictable, not sensitive 

to bid distribution, simple to use and stimulates aggressive price competition.  
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3.2.2   Relative Scoring Rules 

Common for relative scoring rules, are that the calculation of the price scores depends on the 

distribution of the other price bids submitted. Hence, they are all sensitive to bid distribution. 

Therefore, it is not possible to calculate the MVP in advance of the bidding phase, causing the 

procurers´ preferences to change depending on the bid distribution. Therefore, relative scoring 

rules are not predictable (Dini et al., 2006, p. 308). However, they also vary when it comes to 

simplicity and price competition. 

 

Dini et al. (2006) presents three different types of relative scoring rules; average, highest bid-

lowest bid and lowest bid. Only the latter will be included in our study, as this rule is 

recommended by the Norwegian Digitalisation Agency and is the most commonly used in 

practice.	

 

3.2.2.1   Lowest Bid Rule 

With the lowest bid rule, each bidder’s price score is dependent on the lowest price bid 

submitted. Dini et al. (2006, p. 309) presents the formula of the lowest bid scoring rule as shown 

below: 

!"#$%	'$("% = @@ ∗	A(B%'C	D#E!"#$%	D#E 	

	

	

Since each bidder’s price bids depend on the lowest price bid submitted, none of the bidders 

are able to calculate their price scores or the MVP in advance of submitting their bids. The 

lowest bid rule is therefore considered less predictable compared to the absolute rules. This also 

explains why this rule is so sensitive to the bid distribution. Thus, an abnormally low tender 

may change the ranking if rejected (Dini et al., 2006, p. 309). However, the rule is quite simple. 

It also provides the bidders with incentives of aggressive bidding, as the likelihood of receiving 

a high score increases when bidders offer a low price. In addition, submitting very low bids 

may at the same time reduce the other bidder’s price scores. 
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3.3  Evaluation of Quality 

The scoring rules presented in chapter 3.2, are not applicable when assigning a score to the 

quality aspects. Typically, the procurer uses expert panels to assess the quality offered in 

tenders. This panel review how well the offered quality performs with regards to the procurer’s 

preferences, and award points accordingly. Points can be awarded by using an absolute or a 

relative scale (Ellingsen & Haukeli, 2020). By using an absolute scale, points are assigned based 

upon objective factors when reviewing the quality offered. Sykehusinnkjøp uses an absolute 

scale. Here, quality aspects in one tender are not compared to quality aspects in another tender. 

With a relative scale, however, points are awarded by relatively comparing the quality offered 

in the different tenders. The tender with the quality perceived as the best, is offered a maximum 

number of points and the other tenders are assigned points accordingly. 

In all procurement, procurers need to make use of either an absolute or relative scale to assess 

the quality offered in the tenders. Still, there is a major difference between procurers on what 

they choose to do afterwards. Some procurers use the quality points awarded and weigh them 

according to the decided weighting function. The sum of these points constitutes the tender’s 

total quality score. Other procurers choose to adjust, or normalise, the quality points before 

weighting them. The latter practice has been the subject of debate in recent months and will 

therefore be explained further. 

Normalisation involves awarding the tender with the highest assigned quality points a 

maximum score. This implies that one of the tenders will receive a maximum score, even when 

none of the tenders are perceived by the experts as providing the maximum quality. The NDA 

recommends using normalisation when relative scoring rules are used in the evaluation method. 

Since the tender offering the lowest price is rewarded with the maximum number of price 

points, they recommend that the highest quality also is rewarded with the maximum quality 

points. They state this is important to ensure that the original weighting between price and 

quality remains the same (Avdeling for offentlige anskaffelser, 2019). This statement has been 

criticized by Ellingsen & Haukeli (2020), who claim that normalisation can arbitrarily change 

the weight between award criteria in evaluations.  

They explain that there is a difference between performing an absolute normalisation and a 

relative normalisation. With absolute normalisation the procurer adjusts the quality points with 

the same absolute value, so the difference in quality points between tenders remains the same. 
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This is not a problem, but highly unnecessary, according to Ellingsen & Haukeli (2020). They 

provide an example to illustrate; imagine there is a competition consisting of six bidders, price 

and quality is given an equal weight in the evaluation (50 % each) and both are assessed on a 

scale from 0 to 10. The bidder offering the lowest price is awarded 10 points, while the others 

are evaluated relatively (lowest bid rule). Quality is evaluated on the basis of an absolute scale. 

The resulting scores are the following:  

	

Bidder	 Quality	(50	%)	 Price	(50	%)	 Total	score	

Bidder	A	 5	 3	 4	

Bidder	B	 4	 4	 4	

Bidder	C	 3	 6	 4.5	

Bidder	D	 2	 5	 3.5	

Bidder	E	 1	 10	 5.5	

Bidder	F	 0	 9	 4.5	

Table 3.2: Absolute Scale without Normalisation. Own illustration, source: Ellingsen & Haukeli 
(2020) 

None of the bidders provide a quality that is perceived as especially high. However, Ellingsen 

& Haukeli (2020), show that an absolute normalisation does not affect the outcome of the 

competition, as the difference between the quality points remain the same: 

 

Bidder	 Quality	(50	%)	 Price	(50	%)	 Total	score	

Bidder	A	 10	 3	 6.5	

Bidder	B	 9	 4	 6.5	

Bidder	C	 8	 6	 7	

Bidder	D	 7	 5	 6	

Bidder	E	 6	 10	 8	

Bidder	F	 5	 9	 7	

Table 3.3: Absolute Scale with Absolute Normalisation. Own illustration, source: Ellingsen & Haukeli 
(2020) 
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In this example, the absolute normalisation involves adjusting all quality scores with 5 points. 

We observe that the weighting between price and quality remain unchanged and the outcome 

is the same. Hence, absolute normalisation has no function and is unnecessary. This has an 

important implication: The weight is not affected by where the quality points are located on the 

scale. It is the difference in the quality points between the bidders that is decisive. The same 

happens if the original quality scores are given by a relative scale and an absolute normalisation 

is performed. 

 

Relative normalisation, however, involves adjusting bidders´ quality score according to the 

following formula: 
	

10 ∗ 	 HIJK#CL	'$("%	C%@E%"	M
HIJK#CL	'$("%	D%'C	C%@E%"	

	

This type of normalisation changes the difference in quality points between tenders, both when 

an absolute and a relative scale is used for assigning the original score. This is problematic. 

Using the same example as above, with initially having absolute scores as in Table 3.3, the 

scores after a relative normalisation is shown in Table 3.4. 

 

 

Bidder	 Quality	(50	%)	 Price	(50	%)	 Total	score	

Bidder	A	 10	 3	 6.5	

Bidder	B	 8	 4	 6	

Bidder	C	 6	 6	 6	

Bidder	D	 4	 5	 4.5	

Bidder	E	 2	 10	 6	

Bidder	F	 0	 9	 4.5	

Table 3.4: Absolute Scale with Relative Normalisation.  Own illustration, source: Ellingsen & Haukeli 
(2020) 
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Comparing the total score in Table 3.4 with those originally given in Table 3.3, we observe 

how relative normalisation may change the outcome of a competition in an arbitrary way. In 

this example, bidder E wins without normalisation, while bidder A wins with relative 

normalisation. As the difference in total score between the bidders has changed, the weight of 

quality change. If the procurer does not inform the bidders that they are performing a relative 

normalisation, Ellingsen & Haukeli (2020) claim this would be contrary to the basic principles 

of predictability and equal treatment, thereby under certain circumstances being illegal. 

Furthermore, Ellingsen & Haukeli (2020) do not recommend relative normalisation if the 

experts have already assessed the quality of the tenders by using a relative scale. They explain 

this by presenting two different cases where the procurer receives three tenders. 

Tender	 Quality	points	 Difference	in	
quality	points	

Quality	points	
after	relative	
normalisation	

Difference	in	
quality	points	

Tender	1	 4	 	 6.7	 	

Tender	2	 5	 1	 8.3	 1.7	

Tender	3	 6	 1	 10	 1.7	

Table 3.5: Case 1 -  Relative Scale with Relative Normalisation. Own illustration, source: Ellingsen & 
Haukeli (2020) 

If the experts perceive the quality offered in tenders 1-3 as being 4, 5 and 6, respectively, this 

imply that the procurer (and the experts) means that this difference in quality points reflects the 

relative differences in quality between them. However, if the procurer chooses to normalise the 

points relatively, the differences in points increases to 1.7.5 One can therefore pose the question 

of what price difference is really reflecting the quality differences between the tenders? Is it 1 

or 1.7? An even more interesting question is why didn’t the procurer (or experts) award quality 

points with a relative difference of 1.7 in the first time? Performing a relative normalisation 

after experts have already assessed and compared the quality, is therefore slightly confusing. In 

this example, however, the difference between the tenders are the same and does not change 

the winner. 

																																																								
5 It is important to recognise that it is only the absolute difference in quality points that changes in this case, not 
the relative difference. 
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However, this is not always the case. If the tenders had been evaluated differently, the difference 

in quality points between the bidders can also change using relative normalisation. This can be 

illustrated in Table 3.6 by a second case:  

 

Tender	 Quality	points	 Difference	in	
quality	points	

Quality	points	
after	relative	
normalisation	

Difference	in	
quality	points	

Tender	1	 4	 	 5	 	

Tender	2	 5	 1	 6.25	 1.25	

Tender	3	 8	 3	 10	 2	

Table 3.6: Case 2 - Relative Scale with Relative Normalisation. Own illustration, source: Ellingsen & 
Haukeli (2020) 

The only change from Table 3.5 to this second case, is that tender 3 is awarded 8 points instead 

of 6. Nevertheless, the differences in quality points between the bidders have now changed. 

According to Ellingsen & Haukeli (2020), this appears to be arbitrary. Instead of using relative 

normalisation, they advise the procurer to rather ensure that the quality points awarded initially 

reflects the relative quality difference between the tenders, e.g. use a relative scale.  

The arguments provided by Ellingsen & Haukeli (2020), is valuable to keep in mind when we 

in later chapters will evaluate what impact different evaluation methods may have on the 

outcome of procurements.  
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4 Simulation of Data  
The purpose of this study is to investigate how different evaluation methods affect the 

preferences of the procurer and, subsequently, may change the outcome of procurements. In 

order to do this, we have used R Studio to make an algorithm for simulating our data. More 

specifically, we are simulating the outcome of a procurement using the different evaluation 

methods presented in Chapter 3. Our aim is to provide general evidence of the more specific 

examples provided earlier in literature and debates. In this chapter, we will first present the 

model environment, then explain the reasoning behind the model setup, before describing some 

of the limitations regarding our approach. The algorithms are presented in Appendix A4 and 

the files can be provided upon request. 

 

4.1 The Model Environment 
Our model environment is a reverse auction environment, where the auction is about procuring, 

rather than selling a good or a contract. There is only one procurer. In practice, the number of 

bidders will vary among auctions. However, to be able to perform our study and analyse the 

methods within a reasonable scale, there are only two bidders in our model. 

Moreover, price-to-quality scoring involves the evaluation of both a price and quality criteria. 

Typically, a tender is evaluated on the basis of several quality criteria and prices are in practice 

continuous. Quality and price may therefore form millions of combinations. However, for the 

simplicity of this analysis, we have chosen that the model environment only consists of two 

quality criteria and five different prices (100, 200, 300, 400, 500).6 We have chosen to use an 

absolute quality scale, ranging from 0 to 10, where 10 is the best quality and 0 indicates that 

the tenders do not offer more than the minimum requirement required to participate in the 

procurement. 

Our model environment consists of two bidders, whom each offer one price and a degree of 

quality on two types of quality criteria. We will present the tenders as the following: (200,3,8), 

where 200 represents the price, and 3 and 8 are the original score that the bidder is assigned for 

quality criteria one and two, respectively. These parameters give us a total of 605 possible 

																																																								
6 These numbers could be in thousand or million and in NOK or any other currency. We will only refer to the 
numbers without a currency, for easier reading. However, it does not change the interpretation of our results.  
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combinations of tenders and 366 025 (605 * 605) possible bid combinations between the two 

bidders.7  

In the next step, different evaluation methods are included in the model environment. All 

scoring rules are modelled in accordance with the formulas presented in Chapter 3. We have 

chosen to investigate five different evaluation methods, which are presented in Table 4.1 below. 

For simplicity, we have used numbers instead of their names in the algorithm.  

	

Method	 Name	

1	 Linear	rule	with	a	price	threshold,	no	normalisation	

2	 Linear	rule	without	a	price	threshold,	no	normalisation	

3	 Parabolic	rule,	no	normalisation	

4	 Lowest	bid	rule	without	normalisation	

5	 Lowest	bid	with	normalisation	

Table 4.1: Overview of Different Evaluation Methods 

	
We have chosen not to normalise the quality score when using the three absolute scoring rules, 

as normalisation is only a topic when using relative scoring rules. In addition, this enable us to 

investigate the differences due to different scoring rules later in our analysis. Furthermore, we 

have chosen to simulate the lowest bid rule without normalisation and with a relative 

normalisation. The reason for this is that an absolute normalisation will provide the same results 

as without. As we want to investigate whether the ongoing criticism of common practice, 

namely method 5, is reasonable, this division is practical. In the rest of the thesis, we will refer 

to relative normalisation only as normalisation. 

Furthermore, we need to define the weights that are used for assessing the price and the two 

quality criteria. Since the scale is the same for all three dimensions, ranging from 0 to 10, they 

will have equal weight if we keep the scores as they are. In most cases, Sykehusinnkjøp operates 

with a 40 % weighting of price and a 60 % weighting of the quality dimensions in total. We 

have therefore chosen to do the same, meaning that the price score will be weighted by 40 %, 

and the two quality dimensions have an equal weight of 30 % each.  

																																																								
7 Half of the combinations are the same but opposite when it comes to what bidder offer what tender. 
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For the absolute rules, we have chosen a reserve price of 350 and a price threshold of 150.8 

 

4.2 The Simulation and its Output 
To compare the different methods, we have made three types of matrices which all were 

exported to Microsoft Excel and analysed further. The row and column names represent the 

combinations that bidder 1 and 2 could offer, making each cell one bid combination. The 

matrices are therefore symmetric along the diagonal.  

 

The first matrix we named “score matrix”, as this shows the total scores of the two bidders for 

different combinations of price and quality. We then made one matrix for each evaluation 

method. Table 4.2 below shows part of the score matrix for the lowest bid rule with 

normalisation. As an example, we observe that cell B13 contains the vector (7, 4). This means 

that when bidder 1 has offered the bid (100,1,0) and bidder 2 has offered (100,0,0). Bidder 1 

gets a total weighted score of 7 while bidder 2 get a total weighted score of 4. 

	

	
Table 4.2:  Score Matrix 

We also made a second type of matrix; the “rank matrix”. We have one rank matrix for each 

evaluation method, showing the ranking between the two bidders for each combination of bids 

instead of the total scores. Table 4.3 below, shows the part of the rank matrix corresponding to 

the score matrix above. The bidder with the highest score gets the value 1, and the other bidder 

gets a value of 2. If the scores are equal, both get the number 1.5 (average of 1 and 2). 

	

																																																								
8 The algorithm is coded dynamically, so all the parameters can easily be changed. The algorithm can be 
provided by request. 
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Table 4.3: Rank Matrix 
	

 

Thereafter, we used the rank matrices to compare the different evaluation methods. By 

comparing the ranking inside each cell between two rank-matrices, we made a third type of 

matrix; “the 0/1-matrix” for each pair of evaluation methods. This matrix shows the value 1 for 

the bid combinations where the ranking between the bidders are different, and 0 if they are 

equal. This matrix is used to analyse the pattern of where the different evaluation methods 

provide different winners of the procurement. A part of the 0/1-matrix, between the lowest bid 

rule with and without normalisation, is shown in Table 4.4 below. 

	

	

Table 4.4: 0/1 Matrix 
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4.3 Limitations 
There are mainly two factors making our model environment not as realistic as in practice. The 

first is the number of bidders included, while the second is the possible prices the bidders can 

offer. In collaboration with Sykehusinnkjøp, we were given access to data on several 

procurements, most of them consisting of more bidders, several quality dimensions and very 

different price ranges. In our simplified version of a procurement made by Sykehusinnkjøp in 

Chapter 3, there were actually about 30 quality dimensions and four different bidders. 

We do not scale up the model environment due to the complexity and limitations of the 

programs we used. First, R Studio is using a very long time processing the data when we make 

the combination of bids larger. However, the simulation is possible to conduct and the algorithm 

provided in Appendix A4, can easily be adapted to include several prices, quality dimensions 

or other ranges. 

Secondly, Microsoft Excel is, even with this data set, struggling with handling the matrices by 

shutting down at regular intervals. With more computer power this limitation might be possible 

to overcome. However, if the model environment and the matrices are scaled up, the analysis 

will be even more challenging to conduct and not give further results. Our purpose is to observe 

how different evaluation methods can provide different rankings for the same bids. If we 

observe different rankings for this dataset, we therefore argue that it will be transferable at a 

scaled up data set with more bidders and more price combinations. 
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5 Logistic Regression  
We use regression analysis to investigate if our findings can be proven statistically. Our aim is 

to verify that certain variables, e.g. certain characteristics of the tenders and the combinations 

of tenders in the procurement, statistically impact who is the winner of procurement contracts, 

when comparing two different evaluation methods. We will in this chapter shortly present the 

logistic regression and how to interpret the results from such regressions.  

The logistic regression is the most suitable method for our purpose. This is due to our binary 

response variables, which takes the value of 0 or 1. In the following, we will explain the concept 

of logistic regression and see how it is compared to the more well-known linear regression.  

When the response variable is binary, we are predicting the probability of Y=1, given X. This 

can be written as p(Y=1⏐X). For simplicity, let p(X) = p(Y=1⏐X) (James et al, 2013, p. 131). 

When using linear regression9, we then have  

 

 

																																																												N O = 	PQ + PS																																																	(1)	
	

were PS is interpreted as the average change in Y associated with a one unit change in X. If X 

is a dummy variable, which all of our variables are, PS is the change in probability of Y=1, 

when the dummy variable X is 1. A drawback with linear regression is that it may provide p(X) 

< 0 and p(X) > 1, which is not very sensible (James et al, 2013, p. 132). This can be observed 

in the left-hand panel of Figure 5.1. 

Figure 5.1: Linear Regression vs. Logistic Regression, Source: Le, (2018). 

																																																								
9 The Linear Probability Model (LPM) with an Ordinary Least Square (OLS) estimator. 
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With logistic regression, however, we avoid this problem by using the logistic function  

	

																																															N O = 	 %TUVTWX
1 +	%TUVTWX 																																																			(2)				

	

This logistic function is a Sigmoid function, forming a S-shaped curve as illustrated in the right-

hand panel of Figure 5.1. By using this function, we ensure a sensible prediction, taking values 

in the range between 0 and 1, regardless of the value of the predictors (James et al, 2013, p. 

132). 

By manipulating this equation, taking the logarithm of both sides, we obtain the logit or log-

odds 

																																																	ln N M
1 − N M = 		PQ + PSO																																							(3)						

	

The left-hand side of the equation is called the log-odds, or logit, and is linear in the predictors 

(James et al, 2013, p. 132). Thus, we can now interpret PS directly, as being the change in log-

odds when changing X by one unit, or for a dummy when X=1. The term, odds, is often used 

in horse racing and reflects the likelihood that an event will occur. It is the ratio of success to 

non-success. As an example, if the probability of winning a race is 20 %, you have the odds of 

¼ of winning (James et al, 2013, p. 132). However, we will mostly use the probability of Y=1, 

given X in our analysis. 

Still, the reason for presenting the log-odds is due to the importance of not mixing this 

interpretation with the commonly used linear regression. The beta coefficients from a logistic 

regression are not interpreted as change in p(X) as with linear regression. With logistic 

regression the amount that p(X) changes, due to a one unit change in X, will depend on the 

current value of X (James et al, 2013, p. 132-133). Nevertheless, regardless of the value of X, 

we can interpret the direction of the impact on Y directly. If PS is positive, then an increase in 

X will be associated with an increase in p(X). Therefore, a negative PS can be interpreted as a 

decrease in p(X) (James et al, 2013, p. 132-133).  This will be the most important feature for 

our purpose. 
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The coefficients PQ and PS are with logistic regression, estimated by using the maximum 

likelihood technique. In short, the method seeks to estimate the coefficients such that the 

resulting probabilities are closest to either 1 or 0. This intuition can be formalized as the 

likelihood function (James et al, 2013, p. 133)10:  

	

																																		ℓ PQ, PS = 	 N M]
]:_`aS

1 − N M]´ 					
]´∶_`´aQ

																		(4)					

 

 
	
	
	

 

 

 

 
	
	
	

	

	
	

																																																								
10 To run logistic regression in R, the function glm(), with argument “family =binomial”, is used. 
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6 Analysis  

In this chapter, we will study the impact of using different evaluation methods. First, we will 

present an overview of the percentage amount of bid combinations resulting in different 

winners, when pairwise comparing the different evaluation methods. Based on these findings, 

we have chosen to divide our further analysis into two parts. First, we will examine the 

differences between the scoring rules from a new angle, investigating what the differences 

really imply for the weighting of price and quality. In the last part, we will look further into the 

implications of using normalisation during the quality evaluation. 

 

6.1 Overview of Different Outcomes 
Figure 6.1 below, present an overview of the percentage amounts of bid combinations that 

results in different winners between the evaluation methods compared.11 For a better 

visualisation of the overview, we will refer to the linear rule with a price threshold as linear rule 

1, the linear rule without a price threshold as linear rule 2, and lowest bid rule without 

normalisation as just lowest bid. 

	

	
Figure 6.1: Percentage of Different Winners 
	

	

																																																								
11 In other words, we have counted the amount of 1’s occurring in the 0/1-matrices in our data. 
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From Chapter 3, we know that different scoring rules reflect different procurer preferences. 

Therefore, we expect there to be some difference between evaluation methods that use different 

scoring rules. We especially expect there to be differences between the two main groups of 

scoring rules, absolute and relative, as they are quite different with regards to predictability and 

sensitivity to bid distribution. Hence, the relatively high percentage of difference between all 

the absolute rules (linear rule 1, linear rule 2 and the parabolic rule) and the lowest bid rule are 

very well expected. 

However, what might be surprising is the relatively large amount of differences between some 

of the absolute scoring rules. We observe that the differences between the linear rules (1 and 2) 

and the difference between the parabolic rule and linear rule 2 are about the same size as the 

comparisons between the absolute and relative rules. In fact, the difference of 6.8 % between 

the two linear rules, is higher than between linear rule 1 and lowest bid rule, which is 6.5 %. 

We ran a regression to test if the differences are large enough to be perceived as statistically 

different. The results are shown in Table A1.2 in Appendix A1, and shows that the difference 

between the linear rules are in fact significantly higher. However, the coefficient is small, 

indicating a small difference.  

Furthermore, what might be surprising is that it is the two linear rules among the absolute 

scoring rules that differ the most. In comparison, the parabolic rule and the linear rule with a 

price threshold is very much alike. We have elaborated on this in Chapter 3, but the literature 

does often explain the two linear rules altogether, as if they were more alike (Dini) et al., 2006, 

p. 305). Therefore, it might be surprising that the differences within the family of linear rules 

are of such a size. By testing the difference between the two pairwise comparisons, we find that 

the odds of getting different winners are 1.55 higher in the comparison between the linear rules, 

than for the comparison of linear rule 1 and the parabolic rule.12 This implies that the use of a 

price threshold has a great impact on the outcome of the procurement.  

Furthermore, the most striking observation is that the three combinations with the highest 

percentage of different outcomes (winners), are comparisons between methods using an 

absolute scoring rule without normalisation and a relative scoring rule with normalisation. In 

other words, both the use of different scoring rules as well as differences in the way of 

evaluating the quality, results in different outcomes. For these comparisons, the percentage of 

																																																								
12 Results are provided in Appendix A1, Table A1.2. 
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different winners ranges from 10.6 % to 13.7 %.  What is striking, is that the percentage of 

different winners when comparing an absolute rule and a relative rule (expect from the 

combinations including linear rule 2), is at least doubled when the relative rule also normalises 

the quality score. As an example, we have 6.5 % outcomes with different winners when 

comparing linear rule 1 and the lowest bid rule, while the percentage is 13.4 % when comparing 

the linear rule 1 and lowest bid with normalisation. The difference between these pairwise 

comparisons are also statistically significant. See Appendix A1 Tables A1.3-A1.5. This is 

observed more clearly when comparing the lowest bid rule with and without normalisation, 

where the only difference is the normalisation. The combination has the fourth highest 

percentage, with 10.3 % of the bid combinations providing different results. This implies that 

normalisation has a great impact on who the winner of the procurement is.  

Based on these observations we will divide our further analysis into two parts. In the first part, 

we will investigate evaluation methods that only differ with regards to the scoring rule being 

used. We do this to achieve a deeper understanding of why they provide such varying results. 

Our aim is to make the procurers more aware of the differences between scoring rules. In the 

last part of our analysis, we will investigate the differences occurring due to difference in quality 

evaluation, that is, using normalisation or not. We will therefore look further into the differences 

occurring between the lowest bid rule with and without normalisation. This will provide 

insights on for what bid combinations normalisation impacts the results the most, and hopefully 

clarify some of the ongoing discussion regarding this. Our aim of both analysis is to provide a 

better understanding regarding the differences between evaluation methods, making procurers 

able to make more informed decisions on what method to use. 

 

6.2 Implications of Different Scoring Rules 
In chapter 6.1, we observed a relatively high degree of differences occurring between the 

absolute rules in those comparisons where linear rule 2 were involved. We also observed 

differences among the absolute rules and the relative rule. Therefore, we want to investigate 

these differences further. In the first section, we will examine how the scoring rules differ with 

regards to the weight of price and quality. Thereafter, we will look into when the scoring rules 

change the winner of the procurement. 

	



	34 

6.2.1   Different Scoring Rules Assign Price Different Weights 
In Table 6.1 below, we present the weighted price scores of two bidders for different price 

combinations, using the four different scoring rules. When we now consider different bid 

combinations, we are also able to calculate the price score given by the lowest bid rule. The 

column “diff bidders” shows the difference in price score between the two bidders for each bid 

combination for a specific rule. For instance, if both bidders offer a price of 100 and are 

evaluated by the linear rule 1, they both get 4 points and “diff bidders” are zero. This trait is 

observed among all scoring rules; If both bidders offer the same price, they will be awarded the 

exact same price score.  

If they do not offer the same prices, they are assigned different price scores. Then, the lowest 

price always gets the highest price score. This is a common trait of all the scoring rules, as 

procurers generally appreciate a low price. In this study, however, we investigate evaluation 

methods that also assess quality. Therefore, it is typically a trade-off between high quality and 

higher prices, and lower prices and lower quality. But how is this trade-off when using different 

scoring rules? We will see that for some scoring rules, a higher price is valued more than by 

others. 
	

	
Table 6.1: Price Scores and Difference in Price Scores for Different Price Combinations and 
Different Scoring Rules 
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The difference between the price points awarded the two bidders, reflects how much higher the 

quality score of the bidder with the highest price (the lowest price score) needs to be if his 

tender is to be assessed as equally good as the tender with the lowest price (and highest price 

score). The higher the difference in price score, the more quality points are needed from the 

bidder with the highest price in order to win. We illustrate this by looking at a numeric example 

from Table 6.1. Here, the linear rule with a price threshold (linear rule 1) is applied, and bidder 

1 and bidder 2 offer the prices of 400 and 100, respectively. Bidder 1 will get 0 points as the 

price is above the reserve price, while bidder 2 gets 4 points as the price is below the price 

threshold (10 points weighted 40 % = 4 points). The difference in price scores between the 

bidders are then 4 points. Therefore, it is required that bidder 1 at least offers a quality that 

assigns him more than 4 quality points (after weighting) in order to win. Since quality is 

weighted 60 % in total and 30 % on each dimension, one point on one of the dimensions is 

equal to 0.3 point weighted. He must therefore have an original quality score of 14 points more 

than bidder 2 in order to win (14 * 30% = 4.2 quality points). This is quite a big difference in 

quality. However, the difference in prices point is as large as it can be, as one is above the 

reserve price and the other below the price threshold. Therefore, it makes sense that bidder 1 

would have to compensate quite a lot on the quality dimension for the price to be acceptable. 

For the same price combinations, different scoring rules result in different price scores. If we 

look at the same price combination as above (400 and 100), but uses the lowest bid rule, the 

difference in price points between the bidders are 3 points instead of 4. This implies that for the 

scoring rule providing the lowest difference in price points (lowest bid in this example), the 

bidder with the highest price (and lowest price score) will to a larger extent be able to offset his 

high price (and low price score) by offering quality. In other words; With the same price, the 

bidder with the highest price needs fewer quality points to win with the lowest bid rule 

compared to the linear rule with a price threshold. Therefore, when comparing different scoring 

rules, the scoring rule with the lowest difference in price points among the bidders, are 

actually weighting price relatively more and quality relatively less than the other rules. 

Table 6.2 below, compares the scoring rules pairwise. It shows which of the scoring rules that 

result in the lowest difference in price points between the bidders for each possible bid 

combination. The colours indicate the different rules, and will also be used in tables presented 

later in this chapter. 
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Table 6.2: Rules Compared with Regards to the Difference in Price Score between Bidders 

We observe that for almost all price combinations, the linear rule 2 results in the lowest 

difference in price points compared to the other rules. As this rule results in the overall lowest 

price scores13, it might lead us to believe that this rule value price the least, relatively to the 

other rules. However, the opposite is actually the case. As the linear rule 2 results in lower 

differences in price points for the same prices, relatively less quality needs to be offered by the 

bidder with the highest price (and the lowest price score) to offset his higher price. This implies 

that with the linear rule without a price threshold, price is actually weighted relatively more and 

quality relatively less, than the other scoring rules. 

Furthermore, when comparing the linear rule 1 and the parabolic rule against the lowest bid 

rule, we observe that for most of the price combinations, the lowest bid rule results in the lowest 

difference in price scores between the bidders.14 Therefore, the bidder with the highest price, 

will favour the lowest bid rule as it takes less quality to win with a higher price compared to if 

the bidder is evaluated using one of the other two rules (the linear rule 1 and the parabolic rule). 

In other words, even though the bidders get high price points with the linear rule 1 and the 

parabolic rule, the difference between their price scores are also big. With these rules, the bidder 

with the highest price (and lowest price score) is therefore forced to offer a relatively higher 

degree of quality in order to win. 

To sum up, the linear rule without a price threshold and thereafter the lowest bid rule, provide 

the lowest differences in price scores between the bidders. Hence, it is therefore easier for the 

																																																								
13 Observed in Figure 6.1. 
14 When comparing linear rule 1 and the parabolic rule we observe that the latter has the lowest difference in 
price scores. However, for these two rules the difference between the difference in price score, are very small. 
Therefore, there are only a few bid combinations that results in different winners among the two rules. 
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bidder with the highest price to win when offering a low quality, than it is when using the linear 

rule with a price threshold or the parabolic rule. Therefore, the two former rules are weighting 

quality relatively less and price relatively more, compared to the other two rules. In addition, 

this implies that these two scoring rule reflects a higher willingness to pay for a relatively lower 

quality compared to the linear rule with a price threshold and the parabolic rule. Furthermore, 

these differences among scoring rules will, for some bid combinations, lead to different winners 

when comparing different rules. In the next section, we will take a closer look at this.  

 

6.2.2  When Does the Different Rules Provide Different Winners? 
We have already shown that different scoring rules require different amounts of quality points 

for the bidder with the highest price (and lowest price score) to win, e.g. for the winner of the 

procurement to change. Therefore, different differences in quality points among bidders are 

required to change the outcome (winner) of the procurement. Table 6.3 below shows for which 

original quality differences a change of outcome between the two rules will occur.15 

	

	
Table 6.3: Quality Difference that Lead to Different Outcomes in the Procurement 
	

To understand how these differences are found, we need to look back at Table 6.1 and the 

differences in price score for different price combinations for the different rules. In other words, 

we need to compare the columns “diff bidders” for different rules. As an example, we compare 

the linear rule 1 and the lowest bid rule for the price combination of 200 and 100.16  

																																																								
15 The colours reflect the same as in Table 6.2 above, what rule that has the lowest difference, e.g. what rule that 
first will change the winner or first let the bidder with highest price win. 
16 In Table 6.3 this example refers to the second row in column 1&4. 
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The difference in price scores between the bidders is 1 weighted point when using the linear 

rule 1, and 2 weighted points with the lowest bid rule. All quality combinations that result in 

a quality difference in the range of these differences (between 1 to 2, after being weighted), 

will lead to different winners with the two rules. The reason for this, is that the scoring rule 

with the lowest difference will experience a change of outcome with a quality difference of 1 

weighted point. For the other scoring rule however, there will not be a change of winner until 

the quality difference is 2 weighted points. Therefore, for quality difference between 1 and 2 

weighted points, the two rules will result in different winners. To get a weighted quality 

difference of 1-2 points the original quality difference need to be of 4, 5 or 6 points (4*0.3 = 

1.2, 5*0.3 = 1.5, 6*0.3=1.8).17 When the quality difference is higher than 2 weighted points, the 

bidder with the highest price wins, when using either of the rules. Hence, the rules do not result 

in different winners anymore. 

There are two factors explaining where the differences occur; the level of the two “diff bidders” 

in the comparison, and the difference between “diff bidders” for the two rules. From Table 6.3, 

we observe that for some bid combinations only one quality difference (example a difference 

of 10 points) change the outcome, while for other areas, several quality differences will change 

the outcome (example both 6, 7, 8 and 9 points in quality difference). The number of quality 

differences result from how big the difference, in the difference in price score between bidders 

(“diff bidders”), are. Obviously, there are more combinations the more quality differences that 

appears in Table 6.3. 

However, the amount of differences in outcome also depends on the level of “diff bidders” for 

the two rules. The lower the difference in price scores between both bidders (“diff bidders”), 

the lower quality difference is needed to change the outcome. Subsequently, when the quality 

difference is small (for example 2 points), the different quality combinations that hold this 

difference are higher. Likewise, if the quality difference needed to change the outcome is high 

(for instance 10 points), the quality combinations that hold this large quality difference are 

fewer. 

The percentage amount of bid combinations resulting in different winners for different price 

combinations with different pairwise comparisons of scoring rules, are shown in Table 6.4. The 

table shows for what price combinations the difference between the rules are the greatest. 

																																																								
17 Quality points of 3 and 7 are outside the range; 3*0.3= 0.9, 7*0.3 = 2.1 
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Table 6.4: Percentage Amount of Different Winners for Different Price Combinations Comparing 
Different Scoring Rules 

	

For the comparison of the linear rule 1 and 2, we observe the most differences when one bidder 

offers a price between the price threshold and reserve price, and the other offers a price close 

to the reserve price or above. This is consistent with the observation from examining the graphs 

of the two rules in Figure 3.2 in Chapter 3. The two curves are the furthest apart for the price 

ranges in the middle. Moreover, the differences between the linear rule 1 and the parabolic rule, 

also confirms the theory presented in Chapter 3; that the two rules are alike and thus not lead 

to many differences in outcome. Therefore, we observe the same patterns when comparing the 

linear rule without a price threshold and the parabolic rule, as for the two linear rules. The curve 

of the linear rule 2 is the furthest apart from the curve of the parabolic rule in the middle to high 

range of prices.  

For the comparisons of an absolute and a relative rule, we observe the opposite; namely that 

there are more differences when both prices are high or both prices are low. The reasoning 

behind this is that the absolute rules consider both 100 and 200 as low prices, as they benchmark 

them to the price threshold of 150. Similarly, they consider both 300 to 500 as higher prices, as 

they benchmark them to the reserve price of 350. However, the lowest bid rule only compares 

the prices with each other when deciding if the prices are high or low. Therefore, using this 

rule, a price of 200 in comparison to 100, becomes much higher than compared to 150 which 

is the benchmark in the linear rule with a price threshold. For the comparisons between the 

linear rule 1 and the parabolic rule against the lowest bid rule, the absolute rules have the lowest 

difference between the price scores among bidders (green and blue areas) for these bid 

combinations. Hence, for the areas where there exist the most differences, the bidder with the 
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highest price will win more often if using the absolute rule. However, this is because prices are 

considered very similar by the absolute rules for these combinations. 

	
6.2.3   Conclusion – Impact of Different Scoring Rules  
We find that both the linear rule without a price threshold and the lowest bid rule, to a larger 

extent reflects a higher willingness to pay for a relatively lower quality compared to the linear 

rule with a price threshold and the parabolic rule. Therefore, when a procurer chooses among 

scoring rules, he must be aware of the fact that these scoring rules themselves reflect different 

weighing in the price-quality trade-off. While the linear rule without a price threshold and the 

lowest bid rule places a relatively higher emphasis on price relative to quality, the linear rule 

with a price threshold and the parabolic rule places a relatively larger emphasis on quality 

relative to price. As the development of MEAT have placed a larger emphasis on the quality 

aspects in procurement, this argument should weigh heavily when choosing among rules. 

Therefore, we do not find evidence in our study that explain why the relative scoring rule is so 

widely recommended and utilized in practice. We have shown that absolute scoring rules, as 

the linear rule with a price threshold and the parabolic rule, display traits that by our opinion 

would be more favourable for the procurer. According to Dini et al., (2006, p. 307 & 318) the 

linear rule with a price threshold is to a larger extent easier to use and understand by the bidders, 

implying that the former is the most favourable. However, as this rule and the parabolic rule 

are in fact quite similar, they would to a large extent be equivalent to one another.  

Compared to the relative scoring rule, the absolute scoring rules are in general more predictable 

as well. By making each bidder able to calculate their own price score independently, each 

bidder would to a larger extent be able to customize their tenders in compliance with the 

procurer’s preferences. This is beneficial for both the bidder and the procurer. Paradoxically, 

the NDA do not even mention absolute scoring rules in their recommendations. We believe this 

practice is based upon a perception that setting a reserve price and a price threshold may be a 

challenging task for the procurer. As shown in Chapter 3, however, choosing a price threshold 

larger than zero would be more beneficial than not having any at all. In addition, if the procurer 

has just a little knowledge of his operating market, one could argue that he would be able to set 

a reserve price after all. This does not have to represent his budget constraint, but should rather 

be used as a helpful tool assuring price competition in an area the procurer finds acceptable. 
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6.3  Implications of Normalisation 
As presented in Chapter 3.3, Ellingsen & Haukeli (2020) claim that relative normalisation can 

arbitrarily change the weight between the award criteria being evaluated. This may in turn 

change the outcome of the procurement. Due to these arbitrarily changes, they state that 

practicing normalisation will be contrary to the criterion given by law regarding predictability 

and equal treatment (Ellingsen & Haukeli, 2020).  

We have in our overview shown that there are differences occurring when comparing the lowest 

bid rule without normalisation and the lowest bid rule with relative normalisation. As these two 

relative methods only differ on how to evaluate quality, all of the different outcomes arise as a 

result of normalisation. Hence, it will change the outcome of the procurement for certain bid 

combinations. Thus, to investigate if these differences are arbitrarily or not, we will examine 

when the differences occur. In order to do so, we investigate the pattern in the 0/1-matrix 

between the two methods to get a better understanding of what causes the differences. We then 

run several regressions, testing if our findings are statistically significant. Hence, we will in this 

part of the analysis present our findings and the regressions, before drawing some conclusions 

on the results. 

The Norwegian Digitalisation Agency (NDA) does not directly state that the quality score they 

recommend being normalised, are assigned on the basis of an absolute scale. They neither state 

how the normalisation is to be done, absolute or relative. However, they state the following 

(Avdeling for offentlige anskaffelser, 2019, translated to English):  

“The quality criteria are often evaluated against certain evaluation criteria, 
and there is a risk that none of the tenders will be given the maximum points 
on these criteria” 

 
Thus, we assume that the NDA’s recommendation is meant for the use of an absolute scale, as 

with a relative scale the bidder with the highest quality would actually be given the maximum 

points on these criteria. Regarding what type of normalisation the NDA refer to, it is evident 

that using an absolute normalisation will not change the weight or the outcome of the 

competition.18 According to Ellingsen & Haukeli (2020), absolute normalisation would 

therefore be unnecessary. However, for the relative normalisation we observe that the relative 

																																																								
18 Chapter 3.3, p. 19-20 



	42 

differences between the quality points of the bidders, changes. In addition, this is the method 

often used in practice, leading up to the ongoing discussion today (Ellingsen & Haukeli, 2020). 

Therefore, we assume that NDA recommends relative normalisation when using an absolute 

scale. In the following, we will refer to relative normalisation as just normalisation. 

 

6.3.1   Regressions and Findings 
For all our regressions in this part of the analysis, we have the same binary response variable, 

diff_rank_45. The variable takes the value 1 for all bid combinations that results in different 

ranking (winners) between the lowest bid rule without normalisation (method 4) and the lowest 

bid rule with normalisation (method 5), and 0 otherwise. Furthermore, all our predictors are 

dummy variables. In addition, when referring to quality score or points in the bid characteristics, 

we are referring to the original score before weighting or normalising. Our purpose of the 

regressions is to investigate if certain characteristics of the bid combinations, will increase the 

probability of observing different winners of the procurement when using the two evaluation 

methods. We will then be able to draw conclusions regarding these characteristics. Do the 

characteristics provide reasons to conclude that the outcome is changing arbitrarily? Or is there 

a reasoning behind the differences? 

We have already explained how differences in price scores between two bidders will affect how 

many additional quality points the bidder with the highest price (and lowest price score) needs 

in order to win. When two bidders offer the same price, they will always be awarded the same 

price score, regardless of what scoring rule being used in the procurement. Thus, when prices 

are equal, the decisive factor of the outcome is the quality evaluation. Methods without 

normalisation always ensures that the bidder with the highest total quality wins the 

procurement. However, if the quality score is normalised, this is not always the outcome. As 

our first finding, we observe different outcomes when the bidders offer the same prices and the 

same total quality, even if the two quality dimensions are weighted equally. This is a striking 

observation. Should there really be a difference between bidders when they offer the exact same 

price and equal total quality?  

The predictor, equal_prices, takes the value 1 if the prices are equal and 0 if they are different. 

Similar, the predictor equal_totalQ takes the value 1 if the total original quality score offered 

by the bidders are the same, 0 otherwise. With these predictors we run a logistic regression to 

test our first finding. The results are shown in Table 6.5 below. Both predictors are positive and 
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highly significant, implying that the probability of finding different winners increase when both 

prices and total quality is equal. The probability of differences is 21.4 % if the combination of 

these two characteristics occur. 

	

	 Finding 1	

(Intercept)	 -2.27 ***	
	 (0.01)   	
equal_totalQ	 0.73 ***	
	 (0.02)   	
equal_prices	 0.24 ***	
	 (0.01)   	
N	 366 025       	
AIC	 241 709    	
 *** p < 0.001;  ** p < 0.01;  * p < 0.05.	

Table 6.5: Regression Results Finding 1 
	

The observation above is caused by the fact that we have more than one dimension of quality. 

This lead us to our next finding. We observe many differences when the two bidders perform 

the best on one quality dimension each. This happens when both the price and their total quality 

are the same, but also when the prices are the same and their total quality is different. We run a 

logistic regression testing finding 2; that differences occur when the bidders perform the best 

on one quality dimension each. Table 6.6 below shows the results of the logistic regression. 
	

	 Finding 2	 Finding 2.1	

(Intercept)	 -2.32 ***	 -2.33 ***	
	 (0.01)   	 (0.01)   	
equal_prices	 0.24 ***	 0.24 ***	
	 (0.01)   	 (0.01)   	
highest_one_q	 0.24 ***	 0.15 ***	
	 (0.01)   	 (0.01)   	
equal_totalQ	        	0.65 ***	
	        	 (0.02)   	
N	 366 025       	366 025       	
AIC	 242 607    	 241 532    	
 *** p < 0.001;  ** p < 0.01;  * p < 0.05.	

Table 6.6: Regression Results Finding 2 
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The predictor, highest_one_q, is 1 if they perform the best on one quality dimension each, 0 

otherwise. We can conclude that this variable has a significant and increasing impact on the 

probability of finding differences between the evaluation methods, both when including only 

equal_prices and when adding equal_totalQ in the model. However, when including 

equal_totalQ, we observe that highest_one_q explains less, but it explains more than finding 1. 

The probability of observing a difference is 13.7 % when prices are equal and the bidders 

performs the best on one quality dimension each, while it is 21.6 % if they in addition offers an 

equal total quality. What might be surprising is the greater probability of a difference when 

prices and total quality is equal (21.6 %), compared to the situation where total quality is not 

equal (13.7%). However, the reasoning behind this, is that we need to specify the characteristics 

for the situation where total quality is not equal, more than we already have. We will revisit 

this, after shortly examining the situation when prices are different.  

We also observe differences in outcome between the methods when prices are different. 

However, in these cases, we only find differences when the bidder with the highest price also 

offers the highest total quality. This imply that even with normalisation, the bidder with the 

highest price will not be able to win if he offers the lowest total quality. The predictor, 

highest_p_q, is 1 if one of the bidder has the highest price and total quality at the same time, 0 

otherwise. The results from the logistic regression using this predictor are shown in Table 6.7 

below. The predictor is highly significant and positive, indicating a higher probability of finding 

differences with these bid characteristics. The probability of difference in this case is 19.8 %. 

 

	

	 Finding 3	

(Intercept)	 -3.03 ***	
	 (0.01)   	
highest_p_q	 1.63 ***	
	 (0.01)   	
N	 366 025       	
AIC	 222 556    	
 *** p < 0.001;  ** p < 0.01;  * p < 0.05.	

Table 6.7: Regression Results Finding 3 

	

Our next findings occur regardless of the price combination. However, as we will observe 

afterwards, it will be possible to explain the differences more accurate when separating between 
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equal prices and not equal prices. First, we observe a common feature for all combinations; 

differences occur when the difference in total quality between the bidders are low. We have 

defined three variables for “low” difference in total quality; diff_Q_low which is 1 if the total 

quality is below 5, and 0 otherwise, diff_Q_lav19 which is 1 if the difference in total quality is 

below 7 points, and 0 otherwise, and diff_Q_under11 which is 1 if the total quality is below 11 

points, and 0 otherwise. The results of the regressions with each of these predictors are shown 

in Table 6.8. The results show that the difference has to be lower than diff_Q_under11, as this 

predictor is not significant. Furthermore, if low quality is defined as under 5 or 7 (“low” or 

“lav”), it is highly significant and positive, indicating a higher probability of finding different 

outcomes for these bid combinations. Since quality under 5 explains less compared to  

when it is defined as below 7, we will use the predictor diff_Q_lav in the further analysis. 

	

	

	

	

	

	

	

	

	

	

	

Table 6.8: Regression Results Finding 4 

Moreover, as normalisation involves adjusting the quality dimension to a larger numeric value, 

we expect the effect of normalisation to be greater when the highest quality offered among the 

two bidders, is low. We define a variable for each quality dimension (q1 and q2) for each bidder 

(t1 and t2), being 1 if the q1 or q2 for t1 or t2 is lower than 4 (being in the very low range of 0-

3 out of 10), and 0 otherwise. The predictors are the following; low_q1_t1, low_q1_t2, 

low_q2_t1 and low_q2_t2. When running a logistic regression with these predictors, we 

																																																								
19 We use the Norwegian word for “low” = “lav”, as we have used “low” in the previous version  

	

	 Finding 4	 Finding 4.1	 Finding 4.2	

(Intercept)	 -2.70 ***	 -18.57 	 -2.49 ***	
	 (0.01)   	 (34.50)	 (0.01)   	
diff_Q_lav	 0.73 ***	     	        	
	 (0.01)   	     	        	
diff_Q_under11	        	 16.52 	        	
	        	 (34.50)	        	
diff_Q_low	        	     	 0.50 ***	
	        	     	 (0.01)   	
N	 366 025       	366 025    	 366 025       	
AIC	 240 133    	 235 187 	 241 511    	
 *** p < 0.001;  ** p < 0.01;  * p < 0.05.	
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observe the same positive and significant coefficient of 0.43 for all four variables. The 

regression results are shown in Table 6.9.	

	 Finding 5	

(Intercept)	 -2.86 ***	
	 (0.02)   	
low_q1_t1	 0.43 ***	
	 (0.01)   	
low_q2_t1	 0.43 ***	
	 (0.01)   	
low_q1_t2	 0.43 ***	
	 (0.01)   	
low_q2_t2	 0.43 ***	
	 (0.01)   	
N	 366 025       	
AIC	 237 450	
 *** p < 0.001;  ** p < 0.01;  * p < 0.05.	

Table 6.9: Regression Results Finding 5 

After having investigated the data in detail, we are able to explain the bid characteristics that 

results in different outcomes more specifically. Therefore, we will now summarize all the 

findings by running two regressions; the first will explain the part of the data where prices are 

equal, while the second explains the differences occurring when prices are different. In both 

regressions, we use the exact combination of predictors (or characteristics) in one interaction 

term that we believe explains the pattern of differences in each part of the data. 

All the variables remain the same, except from highest_p_q, which is removed. Instead we have 

the variables t1_highest_price and t1_highest_totalquality, where t1 stands for bidder 1. The 

variables are 1 if the bidder has the highest price or total quality, respectively, and 0 otherwise. 

All together they are catching up the same as highest_p_q, but only for bidder 1. However, the 

data are symmetric, so the results from this will be the same if we instead examined bidder 2. 

In addition, the variables catch up which bidder has the highest price and total quality. We need 

to know this, as we observe that the bidder who has the highest price and quality, also offers a 

low quality in the cases where the differences occur. Therefore, when prices are different, we 

also include the variables low_q1_t1 and low_q2_t1. Lastly, we also include the variable 

diff_Q_lav. The difference between using this variable and the two variables, low_q1_t2 and 

low_q2_t2, is that the quality for bidder two does not have to be as low as under 4 on both 

dimensions. With diff_Q_lav, only the total quality difference needs to be under 7. Therefore, 
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we chose to use this variable as it explains more of the differences. These variables are run 

together in Model 7 in Table 6.10 below. 

For equal prices we find that, equal total quality or not, the difference occur when the bidders 

perform the best on one quality dimension each, the difference in total quality is low20, and both 

have low quality on one of the dimensions.21 With the variable, diff_Q_lav, we ensure that the 

second dimension can be high, but not very different compared to the other bidder. These 

variables are run together in Model 6 in Table 6.10.  

	 Model 6	 Model 7	

(Intercept)	 -2.21 ***	 -2.18 ***	
	 (0.01)   	 (0.01)   	
equal_prices*highest_one_q*low_q1_t1*low_q1_t2*diff_Q_lav	 2.74 ***	        	
	 (0.04)   	        	
t1_highest_price*t1_highest_totalquality*low_q1_t1*low_q2_t1*diff_Q_lav        	2.53 ***	

	        	(0.06)   	
N	 366 025       	366 025       	
AIC	 238 409    	241 793    	
 *** p < 0.001;  ** p < 0.01;  * p < 0.05.	

Table 6.10: Regression Results Interaction Terms 

	

We observe from the regression results in Table 6.10, that both interaction terms are highly 

significant and have a higher positive coefficient, than when running the variables separately. 

This means that there is a much higher probability for different outcomes with the two rules 

when having these characteristic of the bids. In fact, the probability of finding a difference 

between the two methods when prices are equal and the bids have the characteristics as in Model 

6, is 62.9 %. The probability when prices are different and characterised as in Model 7, is  

58.7 %. These probabilities are much higher than when the variables are tested separately, and 

they are quite high despite a very specific situation. For robustness of our results, we have in 

Appendix A3 included all variables in one model. The results are to a great extent the same, 

especially the interaction terms are still positive and highly significant. Hence, we can conclude 

that a procurer should be especially careful using normalisation when the bids are characterised 

according to the interaction terms in Model 6 and 7. 

																																																								
20 A difference in total quality below 7 is low as there is 20 points possible in total (10 points on each dimension) 
21 Low quality on one dimension = under 4 points 	
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6.3.2   Implications of Findings 
By performing regressions, we were able to indicate what bid characteristics resulted in 

different outcomes. We will now discuss what these findings imply for the use of normalisation 

and illustrate with some examples. 

	

6.3.2.1   Normalisation Have a High Impact when Quality is Low 
We observe significantly more differences in outcome when each bidder performs the best on 

one quality dimension each and they offer the same prices and total quality. We can therefore 

conclude that the combination of quality has an important impact on the results when 

normalising, despite that the two quality dimensions are equally weighted. Without 

normalisation, we know that the difference in total quality points between the bidders are the 

decisive factor to whom win the competition. This makes intuitively sense, as the two 

dimensions are weighted the same and has the same scale from 0 to 10. Therefore, when we 

now observe that combinations like (100,0,2) & (100,1,1) can make the latter bidder win 

(instead of performing equally), normalisation seems to favour offering quality on both 

dimensions, rather than performing better on one. Hence, the weight of the two quality 

dimensions is changed, resulting in a higher weight of quality for bidder two in this case. 

However, we have also proved a significant higher amount of differences when prices are equal 

and total quality are not, but the bidders perform the best on one dimension each. With the 

tender combinations; (100,0,1) & (100,10,0), the last tender offers a quality of 9 points higher 

than the first. Still, the tenders are perceived as equally good by the method with normalisation, 

while without normalisation the second tender wins the procurement. We do not understand the 

reasoning behind such a practice, and agree with Ellingsen and Haukeli that normalisation 

seems to change the weights of quality and the outcome arbitrarily. 

The last example is somehow extreme, as each bidder are assigned a score of zero on the 

opposite dimension of each other. Therefore, a difference in quality higher than 7 is easier to 

achieve.22 However, in the regressions this is caught up by the variables for low quality. Another 

example can better explain why these differences especially occur when we have zeros in one 

dimension; (100,2,2) & (100,0,8). Also, in this case, we observe that the second bidder has a 

																																																								
22 diff_Q_lav was defined as under 7, and we proved this was significant, but not when quality where under 11 
(diff_Q_under11). 
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higher quality in total than bidder one. Therefore, the second bidder wins when using the 

method without normalisation. However, using the method with normalisation, he loses; The 

first bidder wins the first dimension (2 > 0), and thus gets 10 points here. The same does bidder 

2 with regards to the second dimension (8 > 2). However, since the first bidder has achieved 

some points on the second dimension, he gets 2/8 of the 10 points23 that bidder two (winner of 

the second dimension) is awarded.  Bidder two on the other hand, get zero points on the first 

dimension since 0/2 * 10 is still zero. Therefore, when having zero quality points on one 

dimension, the normalisation will actually not adjust that score relative to the other. Hence, the 

difference in quality points changes from being 2 points originally, to 10 points in favour of 

bidder 1. Therefore, the relative difference between the bidders increases much more on this 

dimension. On the other dimension, the relative difference only increases by 0.5 point. Thus, 

normalisation “punishes” especially harshly if a bidder is not able to offer any quality above 

the minimum requirement (0 in quality score). In addition, also in this example, the changes 

seem arbitrarily as the results depend on a “right” combination of quality in the two dimensions; 

Even if the two dimensions are weighted equally and each point of quality are originally 

intended to be equally important, the bidder with lowest total quality wins with normalisation. 

Common for all these examples, is that the quality is low in either both dimensions for both 

bidders, or low in one dimension for both bidders. In addition, the total quality difference is in 

most cases low. However, the low quality difference alone cannot explain the outcomes as it 

did for different scoring rules in section 6.2. This can be illustrated by the following bid 

combination; (100,5,8) & (100,10,7). In this example, we do not observe different outcomes, 

even if the difference in total quality are low (4 points) and they perform the best on one 

dimension each.24 Hence, normalisation probably has the highest impact when quality is low, 

which is reasonable as the adjustment to 10 points is greater for those cases. Nevertheless, the 

combination of quality is important, as if both bidders have the exact same and low quality on 

both dimensions, normalisation does not change the outcome. This coincide with the highly 

significant and positive coefficients we observe in Model 6 and 7 when the interaction of the 

predictors is tested. 

																																																								
23 Score after normalisation: 2/8 * 10 = 2,5 points	
24 Scores with normalisation: Bidder 1: 5 + 10 = 15, Bidder 2: 10 + 8,75 = 18,75. Without normalisation the 
bidder with the highest total quality always wins, e.g. bidder 2. 
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6.3.2.2   Normalisation Reflects a Higher Willingness to Pay for Low 

Quality 
We have until now, examined combinations where prices are equal in order to comment on the 

effect of low quality. For different prices, the bids also have to be characterized by low quality 

for normalisation to have an impact. However, now we observe that the quality has to be low 

for both bidders. This make sense, as we have seen that normalisation has a higher impact on 

increasing the quality score when the quality is adjusted from a low value. However, this 

implies that the impact of normalisation is even stronger as it also changes the outcome when 

prices are different and a higher quality difference is needed to change the outcome. 

We remember from chapter 6.2.1, that when bidders offer different prices, their price scores are 

also different. The greater the difference in price scores, the higher degree of quality the bidder 

with the highest price (and lowest price score) needs to offer to be able to win the procurement. 

In other words, the higher the price difference, the more difficult it is for the bidder with highest 

price to win. With normalisation, however, we observe that the bidder with the highest price 

(and the lowest price score), are able to win even if he only offers a tiny point of higher quality. 

Let us use an example to illustrate this quite striking observation; (400,1,1) & (100,0,0). In this 

example bidder one has 1 point more on both quality dimensions, in total two points out of 20 

possible. With normalisation, the quality points (before weighting) will be adjusted so the bids 

will change to (400,10,10) & (100,0,0). The relative difference between the tenders change 

from 2 points to 20 points on the quality dimension. Hence, with normalisation, the first bidder 

actually wins, even with a price 4 times higher than the other.25 We remember that the original 

score is given objectively using an absolute scale, reflecting a small difference in quality 

between the bidders. In addition, it is important to remember that having a score of 0, does not 

mean they are offering no quality at all, only no quality above the minimum requirements. One 

can therefore ask; Are the normalised scores really reflecting the relative difference of the bids 

correctly, when changing so drastically? Still, whether this is intentionally or not, normalisation 

increase the willingness to pay for low quality.  

 

																																																								
25 Total score for bidder 1 with normalisation is 1+6 = 7. Total score for bidder 2 with normalisation is 4. 
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6.3.2   Conclusion – Impact of Normalisation 
We have by the performed regressions proved that certain characteristics of bid combinations 

have a significantly higher probability of changing the outcome of the procurement. 

Normalisation changes the outcome both when prices are equal and when they are not. Common 

for both groups are the feature of low quality and the importance of a “correct” combination of 

the quality in order to win. Hence, we can conclude that normalisation causes unreasonable and 

arbitrarily changes in the weights of low qualities. This arbitrarily changes the outcome of the 

procurement, but in favour of the bidder with the highest price. Hence, it changes the procurer´s 

preferences to become more willing to pay for relatively low quality. 
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7 Concluding Remarks and Reflections 
The aim of this thesis was to investigate how different evaluation methods affect outcomes in 

procurement. In this final chapter, we will therefore provide concluding remarks to our findings, 

reflect on the validity of the model assumptions and suggest potential future extensions.  

	

7.1  Conclusion 
In our master study, we have performed bid simulations using our own algorithm. This provided 

observations on when different evaluation methods lead to different outcomes. We have proved 

that price is weighted relatively more than quality when using the linear rule without a price 

threshold or the lowest bid rule, compared to the parabolic rule and the linear rule with a price 

threshold. This is caused by the difference in price points assigned by the different rules. As the 

two former methods leads to smaller differences in price points between bidders, a lower degree 

of quality needs to be offered to compensate for a higher price. Therefore, the bidder with the 

highest price (and lowest price score) would prefer using one of these rules as it would be easier 

for him to offset his relatively high price. These findings also have implications for the procurer. 

If he prefers that quality should be weighted relatively more compared to price, we would 

recommend using one of the latter rules. However, if he prefers price to be weighted relatively 

more than quality, one of the former rules could be used. The important lesson to keep in mind 

from this analysis, is that not only weighting functions reflect the procurer’s preference in the 

trade-off between price and quality. Scoring rules themselves also lead to different weighing in 

the price-quality trade-off. As both national and international procurement legislation places a 

larger emphasis on quality in procurement, we argue that this would be an argument for using 

either the linear rule with a price threshold or the parabolic rule. 

Furthermore, there is a major difference between absolute and relative scoring rules. All of the 

three absolute scoring rules ensures the basic principle of predictability as each bidder are able 

to calculate their own price scores in advance of evaluation. This characteristic is pivotal in 

procurement, as it enables bidders to offer tenders more closely in line with the procurer´s 

preferences. This is not possible with the relative scoring rules as each bidder’s price score 

depends on the other bidders’ price bids. Therefore, the bidder has no knowledge of the 

procurer’s preferences and the trade-off between price and quality. This difference is widely 

discussed in literature, and constitutes an argument for not using the relative rules. Along with 

the observation that the relative lowest bid rule weigh price relatively more than quality, we 
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wonder why the NDA recommend using this evaluation method? Actually, none of the scoring 

rules presented by the NDA are absolute rules. We have not found any logical reasons to this 

practice and would recommend the NDA to revise their recommendations, away from the 

relative rules. These rules are unpredictable, they do not reflect the buyer´s preferences and are 

actually weighting quality less than the preferred absolute rules.  

In our regression analysis we have proved that performing normalisation on certain 

characteristics of bid combinations, have a significantly higher probability of changing the 

outcome of procurement. This happens both when prices are equal and when they are not. 

Common for both groups are the feature that normalisation has its greatest impact when 

qualities are low, highlighting the importance of a “correct” combination of the quality in order 

to win. Hence, we can conclude that normalisation causes unreasonable and arbitrarily changes 

in the weights of low qualities. These changes are in favour of the bidder with the highest price, 

changing the procurer´s preferences to become more willing to pay for low quality.  We believe 

that the NDA has not foreseen these consequences, as predictability is an important principle 

in both national and international procurement legislation today. Therefore, one could even 

argue that practicing normalisation is illegal, as it contradicts basic legal principles. 

In total, we agree with the critics, claiming normalisation is highly unnecessary and even wrong. 

When quality is evaluated by an expert panel, they assign each quality dimension a score based 

upon their perception of the offered quality. This can be done based upon an absolute or relative 

scale. If an absolute scale is used, all bidders are able to compete for the maximum amount of 

points. Hence, if none of them are able to provide the maximum quality, we argue that it is 

wrong to change the scores by relative normalisation. We have shown that this kind of 

normalisation are able to change the outcome of procurement, thereby contradicting 

procurement legislation. Moreover, if the quality were assessed based upon a relative scale, one 

of the bidders would get a maximum score regardless, and there would be no need to adjust the 

scores afterwards. Hence, in such cases normalisation is unnecessary. In line with Ellingsen & 

Haukeli (2020), our recommendation to NDA would be to rather advise procurers to use a 

relative scale for the evaluation of quality aspects if a relative scoring rule is used. In this way, 

one could prevent these arbitrary and unpredictable outcomes in procurement caused by relative 

normalisation. 
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7.2 Reflections and Future Research 
In our analysis, we have not focused on the degree of predictability between the absolute scoring 

rules and the relative scoring rules. It is clearly stated in literature that the absolute scoring rules 

are highly predictable, compared to the relative scoring rules which are not. These facts are 

therefore taken for granted, not making this a primary focus in our study. We rather wanted to 

explain the different scoring rules from a somehow different angle than already being made in 

literature. Thus, we focused more on the implications of all rules and compared them, trying to 

explain what the different scoring rules would imply for the procurer’s preferences.  

 

Furthermore, we have in our analysis used an absolute scale for the quality dimension. 

However, the points given in our simulations could just as well have been relative scores. 

Thereby, our analysis is, just as good, a proof for Ellingsen & Haukeli´s statement regarding 

arbitrarily changes in outcome when using a relative normalisation on a relative scale (Ellingsen 

& Haukeli, 2020). 

 

When we initially started our study, we wanted to investigate a new type of evaluation method, 

just recently launched by Sykehusinnkjøp. This is an evaluation method belonging to the group 

quality-to-price-scoring, and is called the Monetary Evaluation Method. In our algorithm, we 

initially performed simulations using this method as well. Discussing this type of scoring rule 

proved to be beyond the scope of our master’s thesis. However, it would be interesting to go 

further and compare the two categories of scoring rules by using a similar approach as we have 

performed in this thesis. If procurers or other students would like to experiment and investigate 

this method further, the algorithm including the monetary method can be provided. 

 

Finally, in our model and analysis we only have five prices. Therefore, there are few prices in 

the range between the price threshold and the reserve price (only 200 and 300 are inside the 

range) when using the linear rule with a price threshold. This might have limited our analysis 

with regards to the interpretation of the effect of a price threshold and a reserve price. However, 

it was important for our focus to have some prices outside the range. This was done in order to 

compare the absolute rules with the relative rule, as the latter does not consider minimum or 

maximum prices. Therefore, it could be interesting for future research, to include more prices 

in-between these upper and lower limits to examine how the differences between absolute and 

relative scoring rules are affected by how the price threshold and the reserve price are set.	



	 	 55	

References 

Avdeling for offentlige anskaffelser. (2020a, 27.05).  Tilbud steg for steg (leverandører). 

Retrieved from: https://www.anskaffelser.no/anskaffelsesprosessen/tilbud-steg-steg-

leverandorer 

Avdeling for offentlige anskaffelser. (2020b, 05.05).  Anskaffelsesprosessen steg for steg – 

Tildelingskriterium. Retrieved from: 
https://www.anskaffelser.no/anskaffelsesprosessen/anskaffelsesprosessen-steg-steg/avklare-

behov-og-forberede-konkurransen/spesifikasjoner-krav-kriterier-og-

kontraktsvilkar/tildelingskriterium 

Avdeling for offentlige anskaffelser. (2020c, 31.01). Om oss. Retrieved from: 

https://www.anskaffelser.no/om-oss 

Avdeling for offentlige anskaffelser. (2019, 16.08).  Anskaffelsesprosessen steg for steg – 

Relative poengmodellar. Retrieved from: 

https://www.anskaffelser.no/anskaffelsesprosessen/anskaffelsesprosessen-steg-steg/avklare-

behov-og-forberede-konkurransen/spesifikasjoner-krav-og-

kriterier/tildelingskriterium/evalueringsmodellar/relative-poengmodellar 

Bjørnstad, B. E. (2019, 05.02). En bedre evalueringsmodell? Anbud365. Retrieved from: 

https://www.anbud365.no/regelverk/en-bedre-evalueringsmodell/#_Hlk528572405 

Bergman, M. A., & Lundberg, S. (2013). Tender Evaluation and Award Methodologies in 

Public Procurement. Journal of Purchasing & Supply Management, 19, 73-83.  

Difi. (2015, 08.09). RAS Trøndelag. Scandic Hell Hotell. Retrieved from: 

https://www.difi.no/sites/difino/files/20150908_aws_presentasjon_og_oppgaver-print.pdf 

Dini, F., Pachini, R. & Valetti, T. (2006). Chapter 12: Scoring Rules. In Dimitri, N., Piga, G., 

Spagnolo, G. (Eds.), Handbook of Procurement, Cambridge University Press, 293-321. 

Ellingsen, C. B. & Haukeli, O. E. (2020, 18.03). Normalisering kan vilkårlig endre 

tildelingskriterienes vekt. Anbud365. Retrieved from: 

https://www.anbud365.no/regelverk/normalisering-kan-vilkarlig-endre-tildelingskriterienes-



	56 

vekt/?utm_source=Nyhetsbrev+fra+Anbud365&utm_campaign=49d9f93fc8-

EMAIL_CAMPAIGN_2019_05_22_01_20_COPY_04&utm_medium=email&utm_term=0_

580f3ce305-49d9f93fc8-175435681 

European Parliament. (2020, 04). Public Procurement Contracts. Retrieved from: 

https://www.europarl.europa.eu/factsheets/en/sheet/34/public-procurement-contracts 

Hackerearth. (2020). Practical Guide to Logistic Regression Analysis in R. Retrieved from: 

https://www.hackerearth.com/practice/machine-learning/machine-learning-

algorithms/logistic-regression-analysis-r/tutorial/ 

Hobson, C. (2016, 27.04). Can the EU directive on public procurement encourage value-

based procurement in healthcare? Medtech Views. Retrieved from: 

http://www.medtechviews.eu/article/can-eu-directive-public-procurement-encourage-value-

based-procurement-healthcare?page=1 

James, G., Witten, D., Hastie, T. & Tibshirami, R. (2013). An introduction to statistical 

learning with applications in R. New York: Springer. 

Le, J. (2018, 10.04). Logistic Regression in R Tutorial. Datacamp. Retrieved from: 

https://www.datacamp.com/community/tutorials/logistic-regression-R 

Regjeringen. (2017, 11). Veileder til reglene om offentlige anskaffelser 

(Anskaffelsesforskriften). Retrieved from: 

https://www.regjeringen.no/contentassets/df547bb0f73d43d9b90756002473f680/no/pdfs/veil

eder-offentlige-annskaffelser.pdf 

Rådgivende ingeniørers forening (RIF). (2020, 01). How to derive MEAT criteria. 

Introducing quality criteria into procurement. Retrieved from: https://www.rif.no/wp-

content/uploads/2019/12/MEAT-Criteria_final.pdf 

Statistical tools for high-throughput data analysis (STHDA). (2018, 11.03). Logistic 

Regression Assumptions and Diagnostic in R. Retrieved from: 

http://www.sthda.com/english/articles/36-classification-methods-essentials/148-logistic-

regression-assumptions-and-diagnostics-in-r/ 



	 	 57	

Support for Improvement in Governance and Management (SIGMA). (2016, 09). 2014 EU 

directives: Public Sector and Utilities Procurement. Sigma Pubic Procurement Briefs. Brief 

30. Retrieved from: http://www.sigmaweb.org/publications/Public-Procurement-Policy-Brief-

30-200117.pdf	

The Comprehensive R Archive Network (CRAN). (2020). Collinearity Diagnostics, Model 

Fit & Variable Contribution. Retrieved from: https://cran.r-

project.org/web/packages/olsrr/vignettes/regression_diagnostics.html 

	
	

 

 

 

 

 

 

 

	

	

 
	



	58 

Appendix 
A1  Regressing the Pairwise Differences from Chapter 6.1 
To statistically be able to conclude if the differences among the pairwise comparisons of 

evaluation methods from section 6.1 are statistically significant, we perform some logistic 

regressions. For these regressions, we need to simulate the data into a slightly different 

structure. Instead of having one dependent variable for each pair of evaluation methods (as 

diff_rank_45 in chapter 6.3), leading to one row of observation for each bid combination, we 

now have one row for every bid combination for each pairwise comparison.26 Hence, our 

dependent variable is called diff_rank, and takes the value 1 if the observation is a bid 

combination with different ranking, 0 otherwise. Furthermore, we have one dummy variable 

for every pair of evaluation methods, called ruleXX, where XX is the number of the two 

methods compared. We present Table 4.1 from Chapter 4 to remind you of the numeration from 

the simulation: 
 

Method	 Name	

1	 Linear	rule	with	a	price	threshold,	no	normalisation	

2	 Linear	rule	without	a	price	threshold,	no	normalisation	

3	 Parabolic	rule,	no	normalisation	

4	 Lowest	bid	rule	without	normalisation	

5	 Lowest	bid	with	normalisation	

         Table A1.1:  Overview of Different Evaluation Methods 

The dummy variables take the value 1 if the observation belongs to the given pair of methods, 

0 otherwise. All observation belongs to one of these dummies, so we must exclude one at a time 

from the regression to avoid perfect multicollinearity. In order to compare two of the dummy 

variables, we must leave out one of them as a reference group, as a regression is only testing 

whether the predictors are statistically different from the reference group, not if they are 

different from each other. In addition, we need to include all other dummies, so the reference 

group only consist of the variable of our interest. 

Table A1.2 shows the comparison between the linear rules (1&2) as the reference group, testing 

our first observation that there are more differences between the two linear rules than between 

																																																								
26 The Algorithm is presented in Appendix A4.2 
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the first linear (1) and the lowest bid rule (4). We also test if the difference between 1&2, and 

the second linear (2) and the lowest bid rule (4), is significant. In addition, we test whether there 

is a statistically higher probability of differences between the linear rules than between linear 

rule 1 and the parabolic rule (1&3). We observe that all coefficients are highly significant at 

the 1% level. The negative coefficient of rule14 prove that the differences between the linear 

rule 1 and the lowest bid rule (1&4) are significantly lower than for the two linear rules. In 

addition, the differences in the comparison of linear rule 2 and the lowest bid rule (2&4) are 

statistically higher than when comparing the two linear rules. However, the coefficients are 

small, indicating a low change in probability of different ranking between the methods. On the 

other hand, rule13 has a much higher negative coefficient, indicating the comparison 1&2 has 

a much higher probability of different ranking than in the comparison of the linear rule 1 and 

the parabolic rule (1&3). For the next tables, we have also included all dummy variables, but 

only the relevant variables will be shown.	
	

	 Coefficients	

(Intercept)	 -2.62 ***	
	 (0.01)   	
rule15	 0.76 ***	
	 (0.01)   	
rule25	 0.49 ***	
	 (0.01)   	
rule35	 0.63 ***	
	 (0.01)   	
rule14	 -0.04 ***	
	 (0.01)   	
rule24	 0.07 ***	
	 (0.01)   	
rule34	 -0.32 ***	
	 (0.01)   	
rule13	 -1.55 ***	
	 (0.02)   	
rule23	 -0.27 ***	
	 (0.01)   	
rule45	 0.46 ***	
	 (0.01)   	
N	 3 660 250       	
AIC	 1 951 748    	
 *** p < 0.001;  ** p < 0.01;  * p < 0.05.	

Table A1.2: 1&2 as Reference Group 
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The next three tables are testing the statistic relationship between the pairs of absolute and 

relative rules without normalisation, and the pairs where the method with a relative rule also 

uses normalisation. The pairs without normalisation is the reference group. Table A1.3, A1.4 

and A1.5 show a positive and significant relation for all comparisons. The coefficients are 

relatively high and indicates that normalisation has a great impact on changing the winner in 

procurement. 

 

 

	 Coefficients	

rule15	 0.80 ***	
	 (0.01)   	
N	 3 660 250       	
AIC	 1 951 748	
 *** p < 0.001;  ** p < 0.01;  * p < 0.05.	

Table A1.3: 1&4 as Reference Group 

	

	 Coefficients	

rule25	 0.41 ***	
	 (0.01)   	
N	 3 660 250       	
AIC	 1 951 748    	
 *** p < 0.001;  ** p < 0.01;  * p < 0.05.	

Table A1.4: 2&4 as Reference Group 

	

	 Coefficients	

rule35	 0.95 ***	
	 (0.01)   	
N	 3 660 250       	
AIC	 1 951 748    	
 *** p < 0.001;  ** p < 0.01;  * p < 0.05.	

Table A1.5:  3&4 as Reference Group 
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To clarify this, we have performed a regression where we instead of looking at the rules, 

investigate two variables explaining whether the two rules compared differ in the type of rule 

(absolute or relative) and if they differ with regards to normalisation. The dummy variable 

absolute_relative_diff, takes the value 1, if one of the rules in the observation is absolute and 

the other is relative, and 0 otherwise (if both are absolute or both are relative). The dummy 

variable normalization_diff takes the value 1 if one of the methods compared perform 

normalisation and the other does not, 0 otherwise. The dependent variable is still diff_rank. 	

	

	 Coefficients	

(Intercept)	 -2.76 ***	

	 (0.00)   	

absolute_relative_diff	 0.05 ***	

	 (0.01)   	

normalization_diff	 0.71 ***	

	 (0.00)   	

N	 3 660 250       	

AIC	 1 984 030    	

 *** p < 0.001;  ** p < 0.01;  * p < 0.05.	

Table A1.6: Differences Due to Category of Scoring Rules and Normalisation 

	

We observe in Table A1.6, that both variables are positive and significant at the 1% level, 

indicating the probability of observing different outcomes is higher if the methods differ in 

these two characteristics. In addition, we observe that the difference in normalisation has a 

much higher impact on the outcome, as the coefficient is larger. We are therefore investigating 

normalisation further in part two of the analysis, in addition to the differences between scoring 

rules in the first part. 
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A2  Matrices Used to Analyse Patterns in 0/1-Matrix 

between Method with and without Normalisation 
In order to get an understanding regarding the pattern in the 0/1-matrix between the two 

methods; lowest bid rule without normalisation (4) and lowest bid rule with relative 

normalisation (5), we started our search for pattern in a smaller data set. This smaller data set 

has the same parameters, only with one quality dimension instead of two. 

Table A2.1 is the first matrix we made, and shows the percentage amount of different winners 

for different price combinations. What is to be noticed from this matrix, is that when having 

one quality dimension, we do not observe differences when prices are equal. From chapter 6.3, 

we observe that normalisation in fact changes the outcome of the procurement when prices are 

equal and quality in total is equal. We argue that this is due to the combination of quality offered 

in the two dimensions. By looking at the differences between the methods, with only one 

dimension, we observe that there are no differences when prices are equal. Hence, the 

observation of different outcomes when prices are equal are dependent on having more than 

one dimension of quality.   

Price	 100	 200	 300	 400	 500	

100	 		 12.4	%	 12.4	%	 15.7	%	 12.0	%	

200	 12.4	%	 		 9.9	%	 12.4	%	 14.0	%	

300	 12.4	%	 9.9	%	 		 5.0	%	 7.4	%	

400	 15.7	%	 12.4	%	 5.0	%	 		 5.8	%	

500	 12.4	%	 14.0	%	 7.4	%	 5.8	%	 		

Table A2.1: Price Matrix 

	



	 	 63	

Furthermore, we wanted to analyse if there are certain quality combinations among the two 

bidders that result in more differences than others. Table A2.2 shows the percentage amount of 

bid combinations where the two methods lead to different winners when there are different 

quality combinations among the two bidders. The vertical columns show the highest offered 

quality, while the horizontal rows denote the quality difference between the two bidders in 

absolute terms. By quality, we here refer to the original quality score assigned by the absolute 

scale. 

We observe that the highest percentages of change occur when the highest quality is in the 

lower or medium range, especially the low range, and the absolute difference in offered quality 

is low. Hence, this is absolutely consistent with our findings from the regressions in chapter 

6.3; Normalisation has its greatest impact on the outcome when both bidders offer a low degree 

of quality, which subsequently shows that it is not necessary to provide a high degree of quality 

in order to win. 

	

Highest	quality	

Di
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		 0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

0	 0	%	 0	%	 0	%	 0	%	 0	%	 0	%	 0	%	 0	%	 0	%	 0	%	 0	%	
1	 not	

possible	
40	%	 34	%	 24	%	 12	%	 8	%	 8	%	 4	%	 0	%	 0	%	 0	%	

2	 not	
possible	

not	
possible	

32	%	 32	%	 28	%	 20	%	 16	%	 8	%	 4	%	 4	%	 0	%	

3	 not	
possible	

not	
possible	

not	
possible	

24	%	 24	%	 20	%	 20	%	 12	%	 8	%	 8	%	 0	%	

4	 not	
possible	

not	
possible	

not	
possible	

not	
possible	

16	%	 16	%	 16	%	 16	%	 12	%	 8	%	 0	%	

5	 not	
possible	

not	
possible	

not	
possible	

not	
possible	

not	
possible	

8	%	 8	%	 8	%	 8	%	 8	%	 0	%	

6	 not	
possible	

not	
possible	

not	
possible	

not	
possible	

not	
possible	

not	
possible	

0	%	 0	%	 0	%	 0	%	 0	%	

7	 not	
possible	

not	
possible	

not	
possible	

not	
possible	

not	
possible	

not	
possible	

not	
possible	

	0	%	 0	%	 0	%	 0	%	

8	 not	
possible	

not	
possible	

not	
possible	

not	
possible	

not	
possible	

not	
possible	

not	
possible	

not	
possible	

	0%	 0	%	 0	%	

9	 not	
possible	

not	
possible	

not	
possible	

not	
possible	

not	
possible	

not	
possible	

not	
possible	

not	
possible	

not	
possible	

	0%	 	0	%	

10	 not	
possible	

not	
possible	

not	
possible	

not	
possible	

not	
possible	

not	
possible	

not	
possible	

not	
possible	

not	
possible	

not	
possible	

	0%	

Table A2.2: Quality Matrix 
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The highest percentage of all, occurs when the highest quality is 1 and the difference in quality 

is 1. Hence, when one of the bidders have 1 quality point and the other has 0 points. For this 

area, as much as 40 % of the bid combinations result in different outcome. This underlines our 

argument from the implications of the findings in chapter 6.3, that normalisation “punishes” 

especially harshly if a bidder is not able to offer any quality above the minimum requirement 

(0 in quality score). 
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A3  Robustness of Logistic Regressions in Chapter 6 

A3.1   Model with all Predictors 
To test our results from the logistic regressions performed in Chapter 6 (where we only included 

the interactions terms alone), we have performed a regression including all the predictors and 

the interaction terms in one regression. The results are shown in Table A3.1.	

Table A3.1: Implications of Different Bid Characteristics on Probability 

 

We observe that all predictors are still significant, most on the 1 % level. We observe that some 

of the variables alone are now negative. However, when placed together with the interaction 

terms, the combinations we observed that resulted in changes in outcome, are still positive and 

	 Coefficients	

(Intercept)	 -3.19 ***	
	 (0.02)   	
low_q1_t1	 0.24 ***	
	 (0.01)   	
low_q1_t2	 0.38 ***	
	 (0.01)   	
low_q2_t1	 0.34 ***	
	 (0.01)   	
low_q2_t2	 0.49 ***	
	 (0.01)   	
diff_Q_lav	 0.76 ***	
	 (0.01)   	
highest_one_q	 -0.13 ***	
	 (0.01)   	
equal_prices	 0.04 *  	
	 (0.02)   	
t1_highest_price	 -0.03 ** 	
	 (0.01)   	
t1_highest_totalquality	 -0.20 ***	
	 (0.02)   	
equal_prices*highest_one_q* low_q1_t1*low_q1_t2:diff_Q_lav	 2.24 ***	
	 (0.04)   	
t1_highest_price*t1_highest_totalquality*low_q1_t1*low_q2_t1*diff_Q_lav	 1.65 ***	
	 (0.06)   	
N	 366 025       	
AIC	 229 718    	
 *** p < 0.001;  ** p < 0.01;  * p < 0.05.	
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highly significant. The coefficients of the interaction term are still high, and the probability of 

finding difference in ranking when prices are equal, the bidders win in on one dimension each, 

difference in total quality is low (defined as under 7) and both bidders offer low on quality 

dimension one, is in fact 99.88 %. For the other combination, when bidder one has the highest 

price and total quality, the difference in total quality is low and the quality for bidder one is 

low, the probability is only 39.4 % (compared to 58 % in Chapter 6). However, this is still a 

relatively high percentage. In addition, if we have a low quality for bidder two, the probability 

increases to 57 %, providing quite similar results as presented in Chapter 6. 

	
	

A3.2   Testing for Strong Multicollinearity 
When running logistic regression there are four important assumptions to be aware of (STHDA, 

2018):  

1. The outcome is a binary variable, taking values 0 or 1. 

2. There is a linear relationship between the logit and the predictors (equation 3 in Chapter 5). 

3. There are no influential values, outlier or extreme values in the continuous predictors 

4. There is no high correlation (multicollinearity) among the predictors 

 

As we are using only dummy variables as predictors (independent variables), there is no need 

to test for the second and third assumption, as these are only meaningful for continuous 

variables. The first assumption is fulfilled, as we have a binary outcome for our response 

variable. Thus, it is only necessary to investigate the assumption of multicollinearity further. 

Multicollinearity refer to the problem that occur when two or more predictors are highly 

correlated (STHDA, 2018). Two variables can be positive and negative correlated, indicated by 

1 or -1 for perfect correlation. If the correlation coefficient is 0, there is no sign of correlation. 

The problem should be fixed by removing the concerned variables.  

To test for correlation among predictors, we use a measure called Variance Inflation Factor 
(VIF). VIF measures how much the variance of the estimated regression coefficient (betas) is 

inflated, by the correlation among the predictor variables in the model (CRAN, 2020). A VIF 

of 1 for a specific predictor, means there is no correlation among the predictor and the rest of 

the predictor variables. Hence, the coefficient estimate of that predictor is not inflated at all. 
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The general rule of thumb is that VIF should not exceed 4, and a VIF of more than 10 is a sign 

of serious multicollinearity (CRAN, 2020).  

The VIF-values for our regression in Table A3.1 are presented in Table A3.2.1 below. 27 All 

values are below the value of 2. Hence, there is no sign of multicollinearity in this model and 

this assumption for logistic regression holds. 

 

	

Table  A3.2.1: VIF for the Model in Table A3.1.1 

	

A3.3   Model Accuracy 
There exists several metrics for evaluating model fit. However, we have focused on two of the 

most common; Akaike Information Criteria (AIC) and The Confusion Matrix. 

Akaike Information Criteria (AIC) is the counterpart of R-squared, that is used as a metric 

of model fit in linear regressions. However, the rule for AIC is the smaller the better. This is 

therefore, a bit useless when only having one model, because you would have to compare 

different models to understand if one is better than the other (Hackerearth, 2020). The AIC for 

this model is 229 718 as presented in Table A3.1. It is difficult to say whether this is a high 

number or not, but it is lower than most of the models in Chapter 6, where the variables are 

explaining the dependent variable alone.  

																																																								
27 We have also done this for the models using two predictors. However, the results are the same; We do not 
observe any problem regarding multicollinearity. 
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Another useful and more informative metrics for testing the model is the Confusion Matrix.28 

It is the most crucial metric, commonly used to evaluate classification models (Hackerearth, 

2020). The Confusion Matrix has the form shown in Table A3.3.1. 

	
Table A3.3.1: Confusion Matrix 

 

Positive is when Y=1, and negative is Y=0. The table show how many of the observations that 

are correctly predicting Y=1 (true positive) and correctly predicting Y=0 (true negative). 

Furthermore, false positive is those who are predicted to be positive but actually was negative, 

and the opposite for false negative (Hackerearth, 2020).  

The overall model accuracy can be calculated as  

	

True	Positives	 + 	True	Negatives
True	Positives	 + 	True	Negatives	 + 	False	Positives	 + 	False	Negatives	

	

	

Sensitivity, also called the True Positive Rate (TPR), indicates how many positive values, out 

of all the positive values, have been correctly predicted (Hackerearth, 2020). The formula to 

calculate the true positive rate is  
True	Positives	

True	Positives + 	False	Negative		

	

																																																								
28 The function confusionMatrix() from the caret package in R Studio will give you both the matrix and these 

performance metrics.  
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Specificity, also called True Negative Rate (TNR), indicates how many negative values, out 

of all the negative values, that have been correctly predicted (Hackerearth, 2020). This is 

calculated as 

	

True	Negative
True	Negative + 	False	Positive		

	

The precision of the model is how many values, out of all the predicted positive values, are 

actually positive, given by the following equation (Hackerearth, 2020): 

	

True	Positives	
True	Positives + 	False	Positives		

	
	
The Confusion Matrix belonging to our model is presented in Figure A3.2.1 below. In order to 

do make this, we randomly split our data into a test and a training set. The training data consists 

of 80 % of the data and is used to perform the logistic regression, and thereby providing 

estimates of the coefficients. The rest is test data (20 %) where the estimates are used to evaluate 

the model. Hence, the confusion matrix shows what we have predicted using our estimates on 

the test data, and what the actual values in the test data are. In order to say if the prediction is 

correct or not, we must define a limit for the predicted value to be considered as Y=1. As we 

have seen the probabilities of our models are 60 % at the highest, and also 20 % for certain bid 

characteristics, we define the predicted values to be 1 if they are 40 % or above.  

We observe the amount of correctly predicted 0´s are very high, only 348 false positive (positive 

when they in fact were negative). The amount of correctly predicted positives is much less. 

However, the amount of positives is also less. We are predicting 7 081 of the one´s to be zeros.  
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Table A3.3.2:  Confusion Matrix Belonging to our Model 

					
The metrics calculated from the Confusion Matrix is presented in Table A3.3.3. 
 
 

 

 

 

 

 

 

The overall model accuracy is quite high, 89.85 %. However, the sensitivity or True Positive 

Rate (TPR) is very low, only 6.72 %. This indicates that the model predicts the zeroes better 

than when y=1. This is reflected in the Specificity or the True Negative Rate, which is almost 

100 %. Nevertheless, the Precision is higher, indicating that a large amount of the predicted 

positive values, are in fact positive. All in all, we have an acceptable model fit, especially as 

our focus only is to indicate whether certain characteristics of the bid combinations are more 

likely to result in different outcome than others. 

	
	

 

 
	
	
	
	
	

Table	7-	A3.3.2	-	Key	Measures	Table A3.3.3: Key Measures  
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A4  Algorithms in R-Script 
In this chapter, the algorithms for the simulation are provided. We have one main algorithm 

that is used to create the matrices presented in Chapter 4. In addition, it creates the data for the 

regressions in Chapter 6.3. This is provided in part A4.1 below. In part A4.2, the algorithm 

used to create the data used in Chapter 6.1 and Appendix A1 is provided. 

	

A4.1   Main Algorithm (copied directly from R-script) 
#Input data 
max_p_score <- 10 
max_q_score <- 10 
weight_p <- 0.4 
weight_qq <- 0.6 
weight_q <- c(0.3,0.3) 
price_threshold <- 150 
reserve_price <- 350 
 
### Simulation Possible Bid Combinations ###  
quality <- seq(0,10) 
price <- seq(100,500,by=100) 
 
# making a list of combinations of price and quality (vectors of 
price and quality inside a list) 
comb <- vector("list") 
 
t=1 
for (p in price) {          
  for (q in quality) { 
    for (q2 in quality) { 
      comb[[t]] <- c(p,q,q2) 
      t=t+1 
    } 
  } 
} 
 
 
### Scoring rules / Evaluation methods ### 
lsrule1 <- function(x) { 
  if ( x > price_threshold && x < reserve_price) { 
    lsrule1_score <- max_p_score * ((reserve_price - 
x)/(reserve_price - price_threshold)) * weight_p 
    return (lsrule1_score) 
  } else { 
    if (x <= price_threshold) { 
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      return(max_p_score*weight_p) 
    } else { 
      return(0) 
    } 
  }     
} 
 
lsrule2 <- function(x) { 
  if (x < reserve_price) { 
    lsrule2_score <- max_p_score * ((reserve_price - 
x)/reserve_price) * weight_p 
    return(lsrule2_score) 
  } else { 
    return(0) 
  } 
} 
 
psrule <- function (x) { 
  if (x < reserve_price) { 
    ps_score <- max_p_score * (1-(x/reserve_price)^2) * weight_p 
    return(ps_score) 
  } else { 
    return(0) 
  } 
} 
 
lbrule <- function(x) {    # price-score lowest bid method 
  lb_score <-  (max_p_score * min(x)/x) * weight_p 
  return(lb_score) 
}      
 
q11 <- vector("numeric") 
lbruleq <- function(x) {  # tranformation rule normalization of 
quality 
  if (max(x)>0 && max(x) < max_q_score) { 
    for (i in seq_along(x)) { 
      q11[i] <- max_q_score * x[i]/max(x) 
    }  
    return(q11) 
  } else { 
    return (x) 
  } 
} 
 
### TENDER EVALUATION ### 
# lists containing vectors where each vector contains total score 
for all suppliers,  
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# and each vector is the result of one combination of bids from the 
suppliers # 
vectorrule1 <- vector("list") 
vectorrule2 <- vector("list") 
vectorrule3 <- vector("list") 
vectorrule4 <- vector("list") 
vectorrule5 <- vector("list") 
 
# List of ranking-vectors for the different methods # 
rankrule1 <- vector("list") 
rankrule2 <- vector("list") 
rankrule3 <- vector("list") 
rankrule4 <- vector("list") 
rankrule5 <- vector("list") 
 
# Variables for the data frame and regression. 
diff_rank_15 <- vector("numeric") 
diff_rank_25 <- vector("numeric") 
diff_rank_35 <- vector("numeric") 
diff_rank_14 <- vector("numeric") 
diff_rank_24 <- vector("numeric") 
diff_rank_34 <- vector("numeric") 
diff_rank_12 <- vector("numeric") 
diff_rank_13 <- vector("numeric") 
diff_rank_23 <- vector("numeric") 
diff_rank_45 <- vector("numeric") 
 
price_t1 <- vector("numeric") 
price_t2 <- vector("numeric") 
 
q1_t1 <- vector("numeric") 
q1_t2 <- vector("numeric") 
q2_t1 <- vector("numeric") 
q2_t2 <- vector("numeric") 
 
totalQ_t1 <- vector("numeric") 
totalQ_t2 <- vector("numeric") 
 
highest_p_q <- vector("numeric")  
highest_one_q <- vector("numeric") 
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l=1 
for (t1 in comb) { 
  for (t2 in comb) { 
    t11 <- sum(t1[-1]*weight_q) 
    t22 <- sum(t2[-1]*weight_q) 
    quality <- c(t11,t22)  # weighted quality score both suppliers 
     
    q1 <- c(t1[2],t2[2]) 
    q2 <- c(t1[3],t2[3]) 
    qt1 <- c(lbruleq(q1)[1],lbruleq(q2)[1])  #dim1 and dim2 for 
bidder 1 
    qt2 <- c(lbruleq(q1)[2],lbruleq(q2)[2])  #dim1 and dim2 for 
bidder 2 
    # Weightning all the quality criteria and sum for the two 
bidders 
    # then puts the total score of quality for each bidder into the 
vector "q_values" 
    q_values <- c(sum(qt1 * weight_q), sum(qt2 * weight_q)) 
     
    ls1_values <- c(lsrule1(t1[1]), lsrule1(t2[1]))  # weighted 
price score rule 1 
    vectorrule1[[l]] <- round(quality + ls1_values,digit=2) 
    rankrule1[[l]] <- rank(-vectorrule1[[l]]) 
     
    ls2_values <- c(lsrule2(t1[1]), lsrule2(t2[1])) 
    vectorrule2[[l]] <- round(quality + ls2_values,digit=2) 
    rankrule2[[l]] <- rank(-vectorrule2[[l]]) 
     
    ps_values <- c(psrule(t1[1]), psrule(t2[1])) 
    vectorrule3[[l]] <- round(quality + ps_values,digit=2) 
    rankrule3[[l]] <- rank(-vectorrule3[[l]]) 
     
    lb_values <- lbrule(c(t1[1], t2[1])) 
    vectorrule5[[l]] <- round(q_values + lb_values,digit=2) 
    rankrule5[[l]] <- rank(-vectorrule5[[l]]) 
     
    vectorrule4[[l]] <- round(quality + lb_values,digit=2) 
    rankrule4[[l]] <- rank(-vectorrule4[[l]]) 
     
    ## Storing data to be used in regressions ## 
    price_t1[l] <- t1[1] 
    price_t2[l] <- t2[1] 
    q1_t1[l] <- t1[2] 
    q1_t2[l] <- t2[2] 
    q2_t1[l] <- t1[3] 
    q2_t2[l] <- t2[3] 
    totalQ_t1[l] <- q1_t1[l] + q2_t1[l] 
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    totalQ_t2[l] <- q1_t2[l] + q2_t2[l] 
    highest_p_q[l] <- ifelse(price_t1[l] > price_t2[l] & 
totalQ_t1[l] > totalQ_t2[l]  
                             | price_t2[l] > price_t1[l] & 
totalQ_t2[l] > totalQ_t1[l], 1 , 0) 
     
    highest_one_q[l] <- ifelse(q1_t1[l] > q1_t2[l] & q2_t1[l] < 
q2_t2[l]  
                               | q2_t1[l] > q2_t2[l] & q1_t1[l] < 
q1_t2[l]  
                               | q1_t2[l] > q1_t1[l] & q2_t2[l] < 
q2_t1[l] 
                               | q2_t2[l] > q2_t1[l] & q1_t2[l] < 
q1_t1[l] , 1 , 0) 
     
    ifelse(rankrule1[[l]] == rankrule5[[l]], diff_rank_15[l] <- 0, 
diff_rank_15[l] <- 1) 
    ifelse(rankrule2[[l]] == rankrule5[[l]], diff_rank_25[l] <- 0, 
diff_rank_25[l] <- 1) 
    ifelse(rankrule3[[l]] == rankrule5[[l]], diff_rank_35[l] <- 0, 
diff_rank_35[l] <- 1) 
     
    ifelse(rankrule1[[l]] == rankrule4[[l]], diff_rank_14[l] <- 0, 
diff_rank_14[l] <- 1) 
    ifelse(rankrule2[[l]] == rankrule4[[l]], diff_rank_24[l] <- 0, 
diff_rank_24[l] <- 1) 
    ifelse(rankrule3[[l]] == rankrule4[[l]], diff_rank_34[l] <- 0, 
diff_rank_34[l] <- 1) 
     
    ifelse(rankrule1[[l]] == rankrule2[[l]], diff_rank_12[l] <- 0, 
diff_rank_12[l] <- 1) 
    ifelse(rankrule1[[l]] == rankrule3[[l]], diff_rank_13[l] <- 0, 
diff_rank_13[l] <- 1) 
    ifelse(rankrule2[[l]] == rankrule3[[l]], diff_rank_23[l] <- 0, 
diff_rank_23[l] <- 1) 
     
    ifelse(rankrule4[[l]] == rankrule5[[l]], diff_rank_45[l] <- 0, 
diff_rank_45[l] <- 1) 
     
    l=l+1 
  } 
} 
 
### OUTPUT MATRICES ###  
 
# Score Matrices - to show total scores for the two bidders for each 
bid comibnation #  
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matrix_tsrule1 <- matrix(data=vectorrule1,nrow=length(comb), 
ncol=length(comb), byrow = TRUE) 
matrix_tsrule2 <- matrix(data=vectorrule2,nrow=length(comb), 
ncol=length(comb), byrow = TRUE) 
matrix_tsrule3 <- matrix(data=vectorrule3,nrow=length(comb), 
ncol=length(comb), byrow = TRUE) 
matrix_tsrule4 <- matrix(data=vectorrule4,nrow=length(comb), 
ncol=length(comb), byrow = TRUE) 
matrix_tsrule5 <- matrix(data=vectorrule5,nrow=length(comb), 
ncol=length(comb), byrow = TRUE) 
 
rownames(matrix_tsrule1) <- as.character(comb) 
colnames(matrix_tsrule1) <- as.character(comb) 
rownames(matrix_tsrule2) <- as.character(comb) 
colnames(matrix_tsrule2) <- as.character(comb) 
rownames(matrix_tsrule3) <- as.character(comb) 
colnames(matrix_tsrule3) <- as.character(comb) 
rownames(matrix_tsrule4) <- as.character(comb) 
colnames(matrix_tsrule4) <- as.character(comb) 
rownames(matrix_tsrule5) <- as.character(comb) 
colnames(matrix_tsrule5) <- as.character(comb) 
 
write.table(matrix_tsrule1, file="matrix_tsrule1.csv") 
write.table(matrix_tsrule2, file="matrix_tsrule2.csv") 
write.table(matrix_tsrule3, file="matrix_tsrule3.csv") 
write.table(matrix_tsrule4, file="matrix_tsrule4.csv") 
write.table(matrix_tsrule5, file="matrix_tsrule5.csv") 
 
# Rank Matrices - to show the rankings for the two bidders for 
different bid combinations #  
matrix_rankrule1 <- matrix(data=rankrule1,nrow=length(comb), 
ncol=length(comb), byrow = TRUE) 
matrix_rankrule2 <- matrix(data=rankrule2,nrow=length(comb), 
ncol=length(comb), byrow = TRUE) 
matrix_rankrule3 <- matrix(data=rankrule3,nrow=length(comb), 
ncol=length(comb), byrow = TRUE) 
matrix_rankrule4 <- matrix(data=rankrule4,nrow=length(comb), 
ncol=length(comb), byrow = TRUE) 
matrix_rankrule5 <- matrix(data=rankrule5,nrow=length(comb), 
ncol=length(comb), byrow = TRUE) 
 
rownames(matrix_rankrule1) <- as.character(comb) 
colnames(matrix_rankrule1) <- as.character(comb) 
rownames(matrix_rankrule2) <- as.character(comb) 
colnames(matrix_rankrule2) <- as.character(comb) 
rownames(matrix_rankrule3) <- as.character(comb) 
colnames(matrix_rankrule3) <- as.character(comb) 
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rownames(matrix_rankrule4) <- as.character(comb) 
colnames(matrix_rankrule4) <- as.character(comb) 
rownames(matrix_rankrule5) <- as.character(comb) 
colnames(matrix_rankrule5) <- as.character(comb) 
 
write.table(matrix_rankrule1, file="matrix_rankrule1.csv") 
write.table(matrix_rankrule2, file="matrix_rankrule2.csv") 
write.table(matrix_rankrule3, file="matrix_rankrule3.csv") 
write.table(matrix_rankrule4, file="matrix_rankrule4.csv") 
write.table(matrix_rankrule5, file="matrix_rankrule5.csv") 
 
# 0/1 - Matrices - to show the difference in outcome between two 
rules #  
matrix_12 <- matrix(data=diff_rank_12,nrow=length(comb), 
ncol=length(comb), byrow = TRUE) 
matrix_13 <- matrix(data=diff_rank_13,nrow=length(comb), 
ncol=length(comb), byrow = TRUE) 
matrix_23 <- matrix(data=diff_rank_23,nrow=length(comb), 
ncol=length(comb), byrow = TRUE) 
matrix_14 <- matrix(data=diff_rank_14,nrow=length(comb), 
ncol=length(comb), byrow = TRUE) 
matrix_24 <- matrix(data=diff_rank_24,nrow=length(comb), 
ncol=length(comb), byrow = TRUE) 
matrix_34 <- matrix(data=diff_rank_34,nrow=length(comb), 
ncol=length(comb), byrow = TRUE) 
matrix_15 <- matrix(data=diff_rank_15,nrow=length(comb), 
ncol=length(comb), byrow = TRUE) 
matrix_25 <- matrix(data=diff_rank_25,nrow=length(comb), 
ncol=length(comb), byrow = TRUE) 
matrix_35 <- matrix(data=diff_rank_35,nrow=length(comb), 
ncol=length(comb), byrow = TRUE) 
matrix_45 <- matrix(data=diff_rank_45,nrow=length(comb), 
ncol=length(comb), byrow = TRUE) 
rownames(matrix_12) <- as.character(comb) 
colnames(matrix_12) <- as.character(comb) 
rownames(matrix_13) <- as.character(comb) 
colnames(matrix_13) <- as.character(comb) 
rownames(matrix_23) <- as.character(comb) 
colnames(matrix_23) <- as.character(comb) 
rownames(matrix_14) <- as.character(comb) 
colnames(matrix_14) <- as.character(comb) 
rownames(matrix_24) <- as.character(comb) 
colnames(matrix_24) <- as.character(comb) 
rownames(matrix_34) <- as.character(comb) 
colnames(matrix_34) <- as.character(comb) 
rownames(matrix_15) <- as.character(comb) 
colnames(matrix_15) <- as.character(comb) 
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rownames(matrix_25) <- as.character(comb) 
colnames(matrix_25) <- as.character(comb) 
rownames(matrix_35) <- as.character(comb) 
colnames(matrix_35) <- as.character(comb) 
rownames(matrix_45) <- as.character(comb) 
colnames(matrix_45) <- as.character(comb) 
 
write.table(matrix_12, file="matrix_12.csv") 
write.table(matrix_13, file="matrix_13.csv") 
write.table(matrix_23, file="matrix_23.csv") 
write.table(matrix_14, file="matrix_14.csv") 
write.table(matrix_24, file="matrix_24.csv") 
write.table(matrix_34, file="matrix_34.csv") 
write.table(matrix_15, file="matrix_15.csv") 
write.table(matrix_25, file="matrix_25.csv") 
write.table(matrix_35, file="matrix_35.csv") 
write.table(matrix_45, file="matrix_45.csv") 
 
 
#### CREATING A DATA FRAME WITH VARIABLES FOR THE REGRESSIONS ### 
 
# Variables created (not all are used in the thesis) 
diff_q1 <- abs(q1_t2 - q1_t1) 
diff_q2 <- abs(q2_t2 - q2_t1) 
diff_totalQ <- abs(totalQ_t2 - totalQ_t1) 
t1_highest_totalquality <- ifelse(totalQ_t1 > totalQ_t2, 1,0) 
t2_highest_totalquality <- ifelse(totalQ_t2 > totalQ_t1, 1,0) 
t1_highest_q1 <- ifelse(q1_t1 > q1_t2,1,0) 
t1_highest_q2 <- ifelse(q2_t1 > q2_t2,1,0) 
t2_highest_q1 <- ifelse(q1_t1 < q1_t2,1,0) 
t2_highest_q2 <- ifelse(q2_t1 < q2_t2,1,0) 
equal_totalQ <- ifelse(totalQ_t1==totalQ_t2,1,0) 
 
diff_prices <- abs(price_t1 - price_t2) 
is_diff_in_prices <- ifelse(price_t1 == price_t2, 0,1) 
equal_prices <- ifelse(price_t1 == price_t2, 1,0) 
both_prices_low <- ifelse(price_t1 < 300 & price_t2 < 300,1,0) 
both_prices_high <- ifelse(price_t1 > 300 & price_t2 > 300,1,0) 
t1_highest_price <- ifelse(price_t1 > price_t2, 1,0) 
t2_highest_price <- ifelse(price_t2 > price_t1, 1,0) 
 
## Making the data frame ## 
data_alt1 <- data.frame(price_t1, price_t2, q1_t1, q2_t1, q1_t2, 
q2_t2, 
                        diff_rank_15, diff_rank_25, diff_rank_35, 
diff_rank_45, 
                        diff_rank_14, diff_rank_24, diff_rank_34, 
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diff_rank_12, diff_rank_13, diff_rank_23, 
                        diff_prices, equal_prices, 
                        totalQ_t1,totalQ_t2, diff_q1, diff_q2, 
diff_totalQ, equal_totalQ, 
                        t1_highest_price, t1_highest_totalquality, 
t2_highest_price, t2_highest_totalquality, 
                        t1_highest_q1, t1_highest_q2, t2_highest_q1, 
t2_highest_q2, 
                        both_prices_high, both_prices_low, 
is_diff_in_prices, highest_p_q, highest_one_q) 
 
 
### Adding more variables to the data frame ### 
 
## Quality variables ## 
# bidder 1 and 2: low/high q1 and q2 
data_alt1$lav_q1_t1 <- ifelse(q1_t1 < 6, 1, 0) 
data_alt1$lav_q2_t1 <- ifelse(q2_t1 < 6, 1, 0) 
data_alt1$lav_q1_t2 <- ifelse(q1_t2 < 6, 1, 0) 
data_alt1$lav_q2_t2 <- ifelse(q2_t2 < 6, 1, 0) 
 
# bidder 1 and 2: low/med/high q1 and q2  
data_alt1$low_q1_t1 <- ifelse(q1_t1 < 4, 1, 0) 
data_alt1$med_q1_t1 <- ifelse(q1_t1 < 8 & q1_t1 > 3, 1, 0) 
data_alt1$high_q1_t1 <- ifelse(q1_t1 > 7, 1, 0) 
 
data_alt1$low_q2_t1 <- ifelse(q2_t1 < 4, 1, 0) 
data_alt1$med_q2_t1 <- ifelse(q2_t1 < 8 & q2_t1 > 3, 1, 0) 
data_alt1$high_q2_t1 <- ifelse(q2_t1 > 7, 1, 0) 
 
data_alt1$low_q1_t2 <- ifelse(q1_t2 < 4, 1, 0) 
data_alt1$med_q1_t2 <- ifelse(q1_t2 < 8 & q1_t2 > 3, 1, 0) 
data_alt1$high_q1_t2 <- ifelse(q1_t2 > 7, 1, 0) 
 
data_alt1$low_q2_t2 <- ifelse(q2_t2 < 4, 1, 0) 
data_alt1$med_q2_t2 <- ifelse(q2_t2 < 8 & q2_t2 > 3, 1, 0) 
data_alt1$high_q2_t2 <- ifelse(q2_t2 > 7, 1, 0) 
 
# bidder 1 and 2: total Q low/med/high 
data_alt1$low_Q_t1 <- ifelse(totalQ_t1 < 11, 1,0) 
data_alt1$low_Q_t2 <- ifelse(totalQ_t2 < 11, 1,0) 
 
# differences 
data_alt1$diff_q1_low <- ifelse(diff_q1 < 6 ,1,0) 
data_alt1$diff_q2_low <- ifelse(diff_q2 < 6 ,1,0) 
 
data_alt1$diff_Q_low <- ifelse(diff_totalQ <= 5,1,0) 
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data_alt1$diff_Q_rel_low <- ifelse((diff_totalQ >= 6 & diff_totalQ 
<= 10),1,0) 
data_alt1$diff_Q_rel_high <- ifelse((diff_totalQ >= 11 & diff_totalQ 
<= 15),1,0) 
data_alt1$diff_Q_high <- ifelse(diff_totalQ >= 16,1,0) # one of 
these must be reference group 
 
data_alt1$diff_Q_lav <- ifelse(diff_totalQ <= 6,1,0) 
data_alt1$diff_Q_med <- ifelse(diff_totalQ <= 14 & diff_totalQ >= 
7,1,0) 
data_alt1$diff_Q_høy <- ifelse(diff_totalQ >= 15,1,0) 
 
data_alt1$diff_Q_under11 <- ifelse(diff_totalQ < 11,1,0) 
 
## Price variables ##  
# prices are divided into high/low - level of prices 
data_alt1$lav_pt1 <- ifelse(price_t1 < 300, 1, 0) 
data_alt1$lav_pt2 <- ifelse(price_t2 < 300, 1, 0) 
 
# prices divided into high/medium/low - level of prices 
data_alt1$low_p_t1 <- ifelse(price_t1 < 300, 1, 0) 
data_alt1$high_p_t1 <- ifelse(price_t1 > 300, 1, 0)  
data_alt1$medium_p_t1 <- ifelse(price_t1 == 300, 1, 0)  
data_alt1$low_p_t2 <- ifelse(price_t2 < 300, 1, 0) 
data_alt1$high_p_t2 <- ifelse(price_t2 > 300, 1, 0)  
data_alt1$medium_p_t2 <- ifelse(price_t2 == 300, 1, 0)  
 
# low/high diff between prices 
data_alt1$diff_prices_lav <- ifelse(diff_prices < 300, 1,0) 
 
# high, medium, low diff - diff between prices 
data_alt1$diff_prices_low <- ifelse(diff_prices == 100, 1,0) 
data_alt1$diff_prices_medium <- ifelse(diff_prices < 400 & 
diff_prices > 100, 1,0) 
data_alt1$diff_prices_high <- ifelse(diff_prices == 400, 1,0) 
 
 
write.csv(data_alt1, file = "Data frame Alternative 1 100-500 
prices.csv") 
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A4.2   Algorithm for the Overview (copied directly from R-script) 
#Input data 
max_p_score <- 10 
max_q_score <- 10 
weight_p <- 0.4 
weight_qq <- 0.6 
weight_q <- c(0.3,0.3) 
price_threshold <- 150 
reserve_price <- 350 
 
### Simulation Possible Bid Combinations ###  
quality <- seq(0,10) 
price <- seq(100,500,by=100) 
 
# making a list of combinations of price and quality (vectors of 
price and quality inside a list) 
comb <- vector("list") 
 
t=1 
for (p in price) {          
  for (q in quality) { 
    for (q2 in quality) { 
      comb[[t]] <- c(p,q,q2) 
      t=t+1 
    } 
  } 
} 
 
 
### Scoring rules / Evaluation Methods ### 
lsrule1 <- function(x) { 
  if ( x > price_threshold && x < reserve_price) { 
    lsrule1_score <- max_p_score * ((reserve_price - 
x)/(reserve_price - price_threshold)) * weight_p 
    return (lsrule1_score) 
  } else { 
    if (x <= price_threshold) { 
      return(max_p_score*weight_p) 
    } else { 
      return(0) 
    } 
  }     
} 
 
lsrule2 <- function(x) { 
  if (x < reserve_price) { 
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    lsrule2_score <- max_p_score * ((reserve_price - 
x)/reserve_price) * weight_p 
    return(lsrule2_score) 
  } else { 
    return(0) 
  } 
} 
 
psrule <- function (x) { 
  if (x < reserve_price) { 
    ps_score <- max_p_score * (1-(x/reserve_price)^2) * weight_p 
    return(ps_score) 
  } else { 
    return(0) 
  } 
} 
 
lbrule <- function(x) {    # price-score lowest bid method 
  lb_score <-  (max_p_score * min(x)/x) * weight_p 
  return(lb_score) 
}      
 
q11 <- vector("numeric") 
lbruleq <- function(x) {  # scoringregel normalisering kvalitet 
  if (max(x)>0 && max(x) < max_q_score) { 
    for (i in seq_along(x)) { 
      q11[i] <- max_q_score * x[i]/max(x) 
    }  
    return(q11) 
  } else { 
    return (x) 
  } 
} 
 
### TENDER EVALUATION ### 
 
# lists containing vectors where each vector contains total score 
for all suppliers,  
# and each vector is the result of one combination of bids from the 
suppliers # 
vectorrule1 <- vector("list") 
vectorrule2 <- vector("list") 
vectorrule3 <- vector("list") 
vectorrule4 <- vector("list") 
vectorrule5 <- vector("list") 
 
# List of ranking-vectors from the different combination of bids # 



	 	 83	

rankrule1 <- vector("list") 
rankrule2 <- vector("list") 
rankrule3 <- vector("list") 
rankrule4 <- vector("list") 
rankrule5 <- vector("list") 
 
# Variables for the data frame and regression. 
diff_rank <- vector("integer") 
 
price_t1 <- vector("numeric") 
price_t2 <- vector("numeric") 
 
q1_t1 <- vector("numeric") 
q1_t2 <- vector("numeric") 
q2_t1 <- vector("numeric") 
q2_t2 <- vector("numeric") 
 
rule14 <- vector("integer") 
rule24 <- vector("integer") 
rule34 <- vector("integer") 
rule15 <- vector("integer") 
rule25 <- vector("integer")  
rule35 <- vector("integer")   
rule12 <- vector("integer") 
rule23 <- vector("integer") 
rule13 <- vector("integer") 
rule45 <- vector("integer")  
 
one_normalization_diff <- vector("integer") 
# 1 if one of the rules compared normalize and the other does not, 0 
otherwise 
absolutt_relative_diff <- vector("integer")  
# 1 if their is a difference in absolut/relative rule, 0 if the 
rules are the same type of rule 
 
l=1 
k=1 
for (t1 in comb) { 
  for (t2 in comb) { 
    t11 <- sum(t1[-1]*weight_q) 
    t22 <- sum(t2[-1]*weight_q) 
    quality <- c(t11,t22)  # weighted quality score both suppliers 
     
    q1 <- c(t1[2],t2[2]) 
    q2 <- c(t1[3],t2[3]) 
    qt1 <- c(lbruleq(q1)[1],lbruleq(q2)[1])  #dim1 and dim2 for 
bidder 1 
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    qt2 <- c(lbruleq(q1)[2],lbruleq(q2)[2])  #dim1 and dim2 for 
bidder 2 
    # Weightning all the quality criteria and sum for the two 
bidders 
    # then puts the total score of quality for each bidder into the 
vector "q_values" 
    q_values <- c(sum(qt1 * weight_q), sum(qt2 * weight_q)) 
     
    ls1_values <- c(lsrule1(t1[1]), lsrule1(t2[1]))  # weighted 
price score rule 1 
    vectorrule1[[l]] <- round(quality + ls1_values,digit=2) 
    rankrule1[[l]] <- rank(-vectorrule1[[l]]) 
     
    ls2_values <- c(lsrule2(t1[1]), lsrule2(t2[1])) 
    vectorrule2[[l]] <- round(quality + ls2_values,digit=2) 
    rankrule2[[l]] <- rank(-vectorrule2[[l]]) 
     
    ps_values <- c(psrule(t1[1]), psrule(t2[1])) 
    vectorrule3[[l]] <- round(quality + ps_values,digit=2) 
    rankrule3[[l]] <- rank(-vectorrule3[[l]]) 
     
    lb_values <- lbrule(c(t1[1], t2[1])) 
    vectorrule4[[l]] <- round(quality + lb_values,digit=2) 
    rankrule4[[l]] <- rank(-vectorrule4[[l]]) 
     
    vectorrule5[[l]] <- round(q_values + lb_values,digit=2) 
    rankrule5[[l]] <- rank(-vectorrule5[[l]]) 
     
    ## Storing the data ##  
    # comparison 1&5 #  
    ifelse(rankrule1[[l]] == rankrule5[[l]], diff_rank[k] <- 0, 
diff_rank[k] <- 1) 
    price_t1[k] <- t1[1] 
    price_t2[k] <- t2[1] 
    q1_t1[k] <- t1[2] 
    q1_t2[k] <- t2[2] 
    q2_t1[k] <- t1[3] 
    q2_t2[k] <- t2[3] 
     
    rule15 [k] <- 1 
    rule25 [k] <- 0 
    rule35 [k] <- 0 
    rule14 [k] <- 0 
    rule24 [k] <- 0 
    rule34 [k] <- 0 
    rule12 [k] <- 0 
    rule23 [k] <- 0 
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    rule13 [k] <- 0 
    rule45 [k] <- 0 
 
    one_normalization_diff[k] <- 1 
    absolutt_relative_diff[k] <- 1 
     
    # comparison 2&5 #  
    ifelse(rankrule2[[l]] == rankrule5[[l]], diff_rank[k+1] <- 0, 
diff_rank[k+1] <- 1) 
    price_t1[k+1] <- t1[1] 
    price_t2[k+1] <- t2[1] 
    q1_t1[k+1] <- t1[2] 
    q1_t2[k+1] <- t2[2] 
    q2_t1[k+1] <- t1[3] 
    q2_t2[k+1] <- t2[3] 
     
    rule15 [k+1] <- 0 
    rule25 [k+1] <- 1 
    rule35 [k+1] <- 0 
    rule14 [k+1] <- 0 
    rule24 [k+1] <- 0 
    rule34 [k+1] <- 0 
    rule12 [k+1] <- 0 
    rule23 [k+1] <- 0 
    rule13 [k+1] <- 0 
    rule45 [k+1] <- 0 
     
    one_normalization_diff[k+1] <- 1 
    absolutt_relative_diff[k+1] <- 1 
 
    # comparison 3&5 # 
    ifelse(rankrule3[[l]] == rankrule5[[l]], diff_rank[k+2] <- 0, 
diff_rank[k+2] <- 1) 
    price_t1[k+2] <- t1[1] 
    price_t2[k+2] <- t2[1] 
    q1_t1[k+2] <- t1[2] 
    q1_t2[k+2] <- t2[2] 
    q2_t1[k+2] <- t1[3] 
    q2_t2[k+2] <- t2[3] 
     
    rule15 [k+2] <- 0 
    rule25 [k+2] <- 0 
    rule35 [k+2] <- 1 
    rule14 [k+2] <- 0 
    rule24 [k+2] <- 0 
    rule34 [k+2] <- 0 
    rule12 [k+2] <- 0 
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    rule23 [k+2] <- 0 
    rule13 [k+2] <- 0 
    rule45 [k+2] <- 0 
     
    one_normalization_diff[k+2] <- 1 
    absolutt_relative_diff[k+2] <- 1 
     
    # comparison 1&4 # 
    ifelse(rankrule1[[l]] == rankrule4[[l]], diff_rank[k+3] <- 0, 
diff_rank[k+3] <- 1) 
    price_t1[k+3] <- t1[1] 
    price_t2[k+3] <- t2[1] 
    q1_t1[k+3] <- t1[2] 
    q1_t2[k+3] <- t2[2] 
    q2_t1[k+3] <- t1[3] 
    q2_t2[k+3] <- t2[3] 
     
    rule15 [k+3] <- 0 
    rule25 [k+3] <- 0 
    rule35 [k+3] <- 0 
    rule14 [k+3] <- 1 
    rule24 [k+3] <- 0 
    rule34 [k+3] <- 0 
    rule12 [k+3] <- 0 
    rule23 [k+3] <- 0 
    rule13 [k+3] <- 0 
    rule45 [k+3] <- 0 
     
    one_normalization_diff[k+3] <- 0 
    absolutt_relative_diff[k+3] <- 1 
     
    # comparison 2&4 # 
    ifelse(rankrule2[[l]] == rankrule4[[l]], diff_rank[k+4] <- 0, 
diff_rank[k+4] <- 1) 
    price_t1[k+4] <- t1[1] 
    price_t2[k+4] <- t2[1] 
    q1_t1[k+4] <- t1[2] 
    q1_t2[k+4] <- t2[2] 
    q2_t1[k+4] <- t1[3] 
    q2_t2[k+4] <- t2[3] 
     
    rule15 [k+4] <- 0 
    rule25 [k+4] <- 0 
    rule35 [k+4] <- 0 
    rule14 [k+4] <- 0 
    rule24 [k+4] <- 1 
    rule34 [k+4] <- 0 
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    rule12 [k+4] <- 0 
    rule23 [k+4] <- 0 
    rule13 [k+4] <- 0 
    rule45 [k+4] <- 0 
     
    one_normalization_diff[k+4] <- 0 
    absolutt_relative_diff[k+4] <- 1 
     
    # comparison 3&4 # 
    ifelse(rankrule3[[l]] == rankrule4[[l]], diff_rank[k+5] <- 0, 
diff_rank[k+5] <- 1) 
    price_t1[k+5] <- t1[1] 
    price_t2[k+5] <- t2[1] 
    q1_t1[k+5] <- t1[2] 
    q1_t2[k+5] <- t2[2] 
    q2_t1[k+5] <- t1[3] 
    q2_t2[k+5] <- t2[3] 
     
    rule15 [k+5] <- 0 
    rule25 [k+5] <- 0 
    rule35 [k+5] <- 0 
    rule14 [k+5] <- 0 
    rule24 [k+5] <- 0 
    rule34 [k+5] <- 1 
    rule12 [k+5] <- 0 
    rule23 [k+5] <- 0 
    rule13 [k+5] <- 0 
    rule45 [k+5] <- 0 
     
    one_normalization_diff[k+5] <- 0 
    absolutt_relative_diff[k+5] <- 1 
 
    # comparison 1&2 # 
    ifelse(rankrule1[[l]] == rankrule2[[l]], diff_rank[k+6] <- 0, 
diff_rank[k+6] <- 1) 
    price_t1[k+6] <- t1[1] 
    price_t2[k+6] <- t2[1] 
    q1_t1[k+6] <- t1[2] 
    q1_t2[k+6] <- t2[2] 
    q2_t1[k+6] <- t1[3] 
    q2_t2[k+6] <- t2[3] 
     
    rule15 [k+6] <- 0 
    rule25 [k+6] <- 0 
    rule35 [k+6] <- 0 
    rule14 [k+6] <- 0 
    rule24 [k+6] <- 0 



	88 

    rule34 [k+6] <- 0 
    rule12 [k+6] <- 1 
    rule23 [k+6] <- 0 
    rule13 [k+6] <- 0 
    rule45 [k+6] <- 0 
     
    one_normalization_diff[k+6] <- 0 
    absolutt_relative_diff[k+6] <- 0 
     
    # comparison 1&3 # 
    ifelse(rankrule1[[l]] == rankrule3[[l]], diff_rank[k+7] <- 0, 
diff_rank[k+7] <- 1) 
    price_t1[k+7] <- t1[1] 
    price_t2[k+7] <- t2[1] 
    q1_t1[k+7] <- t1[2] 
    q1_t2[k+7] <- t2[2] 
    q2_t1[k+7] <- t1[3] 
    q2_t2[k+7] <- t2[3] 
     
    rule15 [k+7] <- 0 
    rule25 [k+7] <- 0 
    rule35 [k+7] <- 0 
    rule14 [k+7] <- 0 
    rule24 [k+7] <- 0 
    rule34 [k+7] <- 0 
    rule12 [k+7] <- 0 
    rule23 [k+7] <- 0 
    rule13 [k+7] <- 1 
    rule45 [k+7] <- 0 
     
    one_normalization_diff[k+7] <- 0 
    absolutt_relative_diff[k+7] <- 0 
     
    # comparison 2&3 # 
    ifelse(rankrule2[[l]] == rankrule3[[l]], diff_rank[k+8] <- 0, 
diff_rank[k+8] <- 1) 
    price_t1[k+8] <- t1[1] 
    price_t2[k+8] <- t2[1] 
    q1_t1[k+8] <- t1[2] 
    q1_t2[k+8] <- t2[2] 
    q2_t1[k+8] <- t1[3] 
    q2_t2[k+8] <- t2[3] 
     
    rule15 [k+8] <- 0 
    rule25 [k+8] <- 0 
    rule35 [k+8] <- 0 
    rule14 [k+8] <- 0 
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    rule24 [k+8] <- 0 
    rule34 [k+8] <- 0 
    rule12 [k+8] <- 0 
    rule23 [k+8] <- 1 
    rule13 [k+8] <- 0 
    rule45 [k+8] <- 0 
     
    one_normalization_diff[k+8] <- 0 
    absolutt_relative_diff[k+8] <- 0 
     
    # comparison 4&5 # 
    ifelse(rankrule5[[l]] == rankrule4[[l]], diff_rank[k+9] <- 0, 
diff_rank[k+9] <- 1) 
    price_t1[k+9] <- t1[1] 
    price_t2[k+9] <- t2[1] 
    q1_t1[k+9] <- t1[2] 
    q1_t2[k+9] <- t2[2] 
    q2_t1[k+9] <- t1[3] 
    q2_t2[k+9] <- t2[3] 
     
    rule15 [k+9] <- 0 
    rule25 [k+9] <- 0 
    rule35 [k+9] <- 0 
    rule14 [k+9] <- 0 
    rule24 [k+9] <- 0 
    rule34 [k+9] <- 0 
    rule12 [k+9] <- 0 
    rule23 [k+9] <- 0 
    rule13 [k+9] <- 0 
    rule45 [k+9] <- 1 
     
    one_normalization_diff[k+9] <- 0 
    absolutt_relative_diff[k+9] <- 0 
     
    l=l+1 
    k=k+10 
  } 
} 
 
## Making the data frame ## 
data_alt2 <- data.frame(price_t1, price_t2, q1_t1, q2_t1, q1_t2, 
q2_t2, diff_rank, rule15, rule25, rule35, rule14, rule24, rule34, 
 rule12, rule13, rule23, rule45, one_normalization_diff, 
absolutt_relative_diff) 
 
write.csv(data_alt2, file = "Data frame Alternative overview.csv") 
	


