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Abstract

Academic conference scheduling is the act of organizing large-scale conferences
based upon the submission of academic papers in which the author will provide
a talk. Traditionally each speaker is placed into a session where other similarly
themed talks will take place. To create an appropriate conference schedule, these
talks should be organized by thematic similarity. This requires conference organizers
to read through abstracts or extended abstracts of submissions to understand how
to place these papers together in a cohesive manner. In very large conferences
where the number of submissions may be over several hundred, this proves to be a
demanding task as it requires considerable time and effort on behalf of organizers.

To help automate this process, this thesis will utilize a form of topic modeling
called latent Dirichlet allocation which lies in the realm of natural language
processing. Latent Dirichlet allocation is an unsupervised machine learning algorithm
that analyzes text for underlying thematic content of documents and can assign
these documents to topics. This can prove to be a tremendously beneficial tool for
conference organizers as it can reduce the required effort to plan conferences with
minimal human intervention if executed correctly. To examine how this method of
topic modeling can be applied to conference scheduling, three different conferences
will be examined using textual data found within the submitted papers to these
conferences.

The goal of creating these topic models is to understand how latent Dirichlet
allocation can be used to reduce required effort and see how data set attributes
and model parameters will affect the creation of topics and allocation of documents
into these topics. Using this method resulted in clear cohesion between documents
placed into topics for data sets with higher average word counts. Improvements
to these models exist that can further increase the ability to separate documents
more cohesively. Latent Dirichlet allocation proves to be a useful tool in conference
scheduling as it can help schedulers create a baseline conference with considerable
speed and minimal effort. With this baseline conference created, schedulers are then
able to expand upon the results to help create the full conference schedule.

Keywords: natural language processing, conference scheduling, machine

learning, latent Dirichlet allocation
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1 Introduction

1.1 Background

Academic conferences are an important aspect of academia for any scholar. They provide a
forum where researchers, lecturers, and students alike can gather to learn, receive feedback
on their research, and network with other scholars in their field of interest. Speakers at
these conferences submit their research papers to the organizers of the event and then
give a talk based off the content of the paper. With some of these conferences containing
up to over one hundred speakers or more, it can be a daunting task for any conference
organizer to schedule talks by speakers in an efficient way that engages the attention of
attendees. Creating efficient conference schedules can be important for multiple reasons.
On one hand, it allows for individuals to expand their knowledge and become desensitized
to new research and developments in a particular field of interest. On another hand, if
conferences do not engage attendees or are poorly scheduled, this could potentially cast
organizers and the host university in a bad light among their peers. Poorly scheduled
conferences become disappointing for attendees, especially considering the costs involved
with attendance such as registration, travel, and accommodation fees. For these reasons,
creating an engaging conference that captures the attention of attendees is important for

all parties involved but takes considerable effort on behalf of conference organizers.

A common approach to scheduling conferences is to assign several similarly themed talks
into sessions where each talk within a session occurs consecutively one after another with
small breaks in between each session. Additionally, these sessions are scheduled in parallel
where speakers from different sessions present simultaneously during the same conference
block, a period where a group of multiple parallel sessions takes place succeeded by a break.
Due to the parallel nature of these sessions, it makes it impossible for any individual
to attend all talks causing scheduling conflicts for the attendees. While attendees can
move to different rooms during a talk or during a pause between speakers (called session
hopping), this is seen generally as being unfavorable as it can disruptive to other attendees
or presenters and may cause the individual to miss portions of the talks (Vangerven
et al. 2017)). To help minimize session hopping, schedulers can take the approach of an

attender-based perspective (ibid.) and organize conference sessions with talks that cover
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the same topic. This ensures that attendees who have their main interest in one specific
topic can stay within the room during the entire duration of the conference session to

reduce session hopping.

Tackling the problem of manually organizing talks into similar topics can be a demanding
task, especially when there are many different talks to be grouped. Each of the papers
submitted and accepted to the conference must be read and analyzed for its thematic
structure to understand the nature of the document. While typically only the abstracts or
extended abstracts to these papers are examined, this can still become a very tedious task
for large, multi-day conferences with several hundred submitted papers. If keywords are
included within the paper’s submission, this can help ease the amount of reading required
and reduce the effort required to schedule the conference yet the issue of extensive human

effort still exists.

To help reduce the required effort on behalf of conference organizers, topic modeling is a
well-recognized and useful unsupervised machine learning technique for natural language
processing (NLP). Topic modeling, specifically latent Dirichlet allocation (LDA), the
simplest form of a topic model, can be used for a myriad of different applications. LDA can
be used to "discover and annotate large archives of documents with thematic information .
. . to discover the themes that run through them, how those themes are connected to
each other, and how they change over time," (Blei 2012). LDA can become a useful tool
in this regard, as it aims to use unsupervised machine learning algorithms to automate
the process of understanding the thematic structure or topic of the textual data contained

within the research papers without the organizers needing to read each submission.

To test this method and its capabilities on analyzing text, creating topics, and organizing
talks into similar topics, multiple data sets will be used. Using three different conferences,
submitted papers from the International Conference on Stochastic Programming - 2019
(ICSP2019), Transportation Science and Logistics - 2018 (TSL2018), and Logistics and
Maritime Systems 2017 (LOGMS2017) conferences will be examined and the submitted
papers analyzed to infer the thematic structure of individual papers via LDA using Python

as the primary tool to create these LDA models.
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1.2 Research Questions

While topic modeling, specifically LDA, has been a recognized and utilized unsupervised
machine learning method for many years, it still exists as a rather new concept with Blei
et al. publishing the first research paper on the subject in 2003. Since then, multiple
expansions on this method have been used including the Pachinko Allocation Model (Li
and McCallum 2006)) or a variant on unsupervised LDA models by using a semi-supervised
LDA approach (Ramage et al. 2010), or even a fully supervised LDA model to be used in
prediction (Blei and McAuliffe 2010)). Despite these advances, unsupervised LDA models

remain a widely used and ubiquitous form of topic modeling.

Since research on LDA first began, applications of LDA for conference scheduling remains
scarce. Burke and Sabatta (2015) are pioneers in this regard, as they are the first to
apply LDA topic modeling techniques onto conference scheduling with notable success.
From the observed success in Burke and Sabatta, other authors use topic modeling for
conference scheduling such as Lau et al. (2016) who design an automated conference
scheduler recommendation system using topic modeling. However, one downfall that exists
in both of these papers is that neither provides a quantitative measure of assessing the
resulting topics from their LDA methods, rather they focus more on the act of allocating
the submitted research papers into the different conference sessions. Therefore, the goal
of this paper is to give a quantitative metric called topic coherence of the resulting LDA
models to help create the most cohesive topics for improving conference scheduling. Topic
coherence is an aggregate of multiple quantitative measures for assessing LDA models,
which has shown correlations with human interpretability (Réder et al. 2015). This leads
to the primary research question (RQ) of this paper:

RQ1: How can LDA improve upon conference scheduling efficiency, especially when topic

coherence s mazrimized?

One important intuition behind LDA is that documents within the data set can exhibit
multiple different topics, measured in probabilities (Blei 2012). Documents can belong to
multiple different topics which becomes useful in the scope of conference scheduling. The
documents exhibiting the highest probability for a certain topic would be allocated into

the topic’s corresponding conference.
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Since this paper will also study three data sets from different conferences, it also brings
to question how LDA models differ from each other depending on the data set used and
parameters of the LDA model. With the different LDA models made, will one version
have higher topic cohesion? That is, will the words placed together in topics give a clear
indication of the underlying theme of the documents? This line of thought leads to the
secondary RQ of this paper:

RQ2: How do the attributes of data sets and parameters of LDA models affect results,

and how does that affect topic cohesion and document-topic placement?

With these research questions in mind, I aim to apply LDA in the scope of conference
scheduling and examine the results to see if this method is a viable and practical tool
for conference schedulers to use when planning conferences. If results are conclusive and
informative it could be a tremendous asset to academic conference schedulers by reducing

the required effort and time needed to organize conferences regardless of its size.

1.3 Structure

The structure of the paper is divided as followed: Section 1 highlights the issue of extensive
effort required to organize conferences and present a potential solution to this issue. In
Section 2, the theoretical background of NLP and LDA will be explored. Section 3 will
present the process of creating LDA models and steps taken to make an efficient model
based on the methodology and present empirical results. Section 4 analyzes and discusses
findings while making note of any potentials downfalls and improvements that can be
made to the models. Lastly, Section 5 will summarize the findings of the paper on how
LDA can be used in conference scheduling and conclude if it is a viable alternative to

manual conference scheduling by organizers.

2 Theoretical Background

2.1 Natural Language Processing

Natural language processing is the bridge between machine learning and semantics.

Liddy (2001) describes NLP as a "range of computational techniques for analyzing and
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representing naturally occurring texts . . . for the purpose of achieving human-like
language processing,". NLP comes with two distinct focuses: one concerned with language
generation and the other focused on language processing. NLP is a widely used discipline
associated with artificial intelligence (ibid.) with many uses including Amazon’s Alexa
or other related personal assistant smart devices (Gonfalonieri 2018) as well as chatbots
found frequently on customer service pages. For this paper, the focus of NLP using LDA
will be on language processing, examining and processing the textual data provided in

submitted conference papers.

Before delving into LDA, some core concepts from NLP must be presented. As topic
modeling is a division of NLP, different terms appear which can differ from common
English vernacular. For example, one very important piece to NLP is the corpus (plural:
corpora). Corpus, a Latin word meaning body is exactly as the word implies: it is the body
of the textual data (Manning et al. 2018). In this paper, there will be three different data
sets used resulting in three different corpora formed: one corpus per conference (ICSP2019,
TSL2018, LOGMS2017). Each corpus will be a collection of all the textual data found
within individual documents —research paper abstracts and extended abstracts accepted

by conference organizers.

While seemingly obvious, the definition of a word can be misleading. While a word
implies any string of alphabetical letters with meaning, this is not a requirement for LDA.
To be more precise, the input for textual LDA are tokens. A token can be any group
of characters including alphanumeric characters or punctuation (Manning et al. 2018)).
Therefore, when a large string of text is tokenized, the result is an array of tokens that
were once separated by spaces. Even nonsensical words can be considered a token, which
could be the case when there are errors in pre-processing. For simplicity’s sake, tokens
used in the LDA model will be referred to as words when talking about individual terms

within topics and tokens when referring to the terms in the corpus as a whole.

2.2 LDA and Probabilistic Models

LDA models provide the probabilities of each document being contained within each topic,
an example of probabilistic modeling. LDA with textual data specifically is a generative

probabilistic model of a corpus, where results arise from a generative process which
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includes hidden, or latent variables, hence the name latent Dirichlet allocation (Blei .
For LDA, there is only one observed variable: the words themselves. As LDA is a Bayesian
model, this generative process creates a joint probability distribution that can be used to
compute the conditional distribution (also called the posterior distribution) of the hidden

variables using the observed variables (ibid).
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Figure 2.1: Blei (2012) Intuition behind latent Dirichlet allocation.

While the latent portion of LDA refers to the latent nature of a majority of the variables in
the model, the Dirichlet allocation portion refers to the Dirichlet distribution. The Dirichlet
distribution is a multivariate distribution with K dimensions (where K > 2) (Kotz et al.
. The Dirichlet provides a probability density function over the K dimensions,
essentially showing different probabilities for each dimension of the distribution. Figure
2.2| provides an overview of how the Dirichlet distribution is constructed. For LDA in
terms of topic modeling, each point on the figure represents a proportion while each corner
of the simplex represents the topic. The points themselves represent documents with their
position relative to the corners showing the probability of that document belonging to a
specific topic. For example, point a shows a document with a probability of 1.0 being
contained within topic A, while point b shows a document of having a 0.50 probability
of belonging to topic A and 0.50 probability to topic C. Lastly, point ¢ shows an equal
probability of one-third for the document belonging to any topic.
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B (0,1,0)

A (1,0,0) . C (0,0, 1)
b

Figure 2.2: Visualization of the Dirichlet as a 2-simplex where K = 3.

For modeling topic proportion, the Dirichlet distribution is defined as 6 ~ Dir(«)) which
can be seen in Figure in graphical interpretation with varying shapes as dictated
by «. For the Dirichlet, a € (0, 00] is a Dirichlet prior which controls the shape of the
probability density function (PDF). It is a vector from 1 to K where all « values are the
same showing a symmetric Dirichlet or all « values may differ, resulting in a asymmetric
Dirichlet distribution. As a — 0, the individual points which make up the PDF for the
Dirichlet will amass at the vertices of the simplex, such as point a in Figure 2.2] This
creates clusters of observations near each of the vertices, creating a spike near each vertex
while the center remains flat resembling a trough shape. Conversely as @ — oo, the points
will start to cluster near the center of the Dirichlet, such as point ¢, creating a large spike
in the center of the PDF. 6 = (01, 6,,0s, ... ,04) represents a vector of proportions for each

document d being contained within a specified topic (Blei, Ng, et al. 2003).

While § ~ Dir(«) models topic proportion 6 based on «, another Dirichlet distribution
models the topics themselves. Each topic is represented [, where k is the topic number.
Each fy, is drawn from a Dirichlet distribution represented by ), ~ Dir(n), where € (0, o]
represents the topic-word density. For each unique word in the corpus, there exists one
71 value which will controls the sparsity of words that lie in topics and subsequently the
topic-word probabilities for each word. With high 7, topics are constructed using a larger
proportion of words included in the corpus whereas a low 7 will create sparser topics using
less words from the corpus per topic (Blei, Ng, et al. 2003)). For more information about

the Dirichlet or its derivation, see Kotz et al. (2000).
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Figure 2.3: 3-Dimensional representation of different Dirichlet PDFs.

2.2.1 Model Variables
LDA can be formally described with the following notations (Blei 2012]):

o [1.x represents all K topics, with §; representing the first topic and Sx representing
the K-th topic. Each [, is a set of words with a probabilistic distribution over
all the words in the entire vocabulary which show topic-word probabilities: the
probability of a word being contained in a specific topic. As mentioned earlier, the

Dirichlet distribution has K dimensions.

e 041 € (0, 1] shows topic k proportion for document d; in other words, the probability
of a document belonging to the specified topic. This is often referred to as just 64 in
many texts. In Figure this can be seen as the colored histogram shown to the
right. The sum of probabilities 6, for a document d across all topics K is 1. For
example, with an LDA model using 2 topics, 6, 1 = 0.75 shows a 75% probability for
document 1 being contained within topic 1 while 6, » = 0.25 shows a 25% probability

of the same document being included into topic 2.

 Topic assignments are indicated by 2,4, for each n word in document d. The value
of this variable is an integer which ranges from 1 to K, showing the topic identity
of the word in a document. For example, 2, 5 = 2 would show that the 5th word in
document 1 belongs to topic 2. In Figure [2.1], this is visualized as the colored "coins'.
This variable is directly related to the document-topic probabilities, 8,4 as the

topics are built up using these topic-word assignments. For each highlighted word
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in the document in Figure [2.1] there is a topic using that word and an associated

probability of that word as shown to the left in the same figure.

« The only observed variable in the entire model, wq ,, is a string depicting the words
observed within the documents. If document 1 contained the text: "The cat jumped

high", w; 2 would be cat as it is the second word in document 1.

These variables begin indexing at 1, whereas in Python indexing begins at 0 which will be

reflected in future sections where topics and documents begin with indexing at 0.

LDA also includes two parameters, a and 7. These parameters are directly related to
the Dirichlet distribution where « controls the clustering of documents around each topic
while 7 controls for the sparsity of words per topic k as mentioned previously. These are
Dirichlet priors which will affect the outcome of the LDA model and must be set prior to
creating the model. To understand how each of the variables are constructed and how
they are affected by each other, see Figure 2.4, Keeping this figure in mind, the observed
words within the corpus are the basis of calculating the latent variables within this model,
save for @ and n which are set beforehand by the researcher and are therefore set outside
any of the plates. To solve for the latent variables within this model, LDA essentially
works outwards from the middle, starting with wg, to infer the other latent variables

contained within each of the plates.

K

D

Figure 2.4: Graphical model of LDA. Shaded variables represent observed variables while
non-shaded represent hidden or latent variables. The rectangles, or "plates", represent
replication for each generated variable. For example, the D represents that each variable
within are repeated D times, for each document. N represents words while K represents
topics.

2.2.2 Model Estimation

In Bayesian statistics, conditional probability, or the posterior probability, is given the

general form of P(A|B). As mentioned before, LDA is a Bayesian model, expanding
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upon Bayes’ theorem. Using the previously mentioned variables, the posterior probability
is calculated as shown in Equation (Blei 2012). In this equation, the numerator
represents the joint distribution of all random variables while the denominator represents
the marginal probability of observed terms. In other words, this denominator shows the
probability of seeing any of the words within the corpus under any of the constructed K
topics. The expanded form of the joint distribution can be seen in Equation [2.2] Since
the only observed variable is wg,,, this presents an obvious problem as the rest of the
variables are unobserved so they must be calculated using wg,. Blei, Ng, et al. (2003)
state that calculating the conditional probability as outlined in Equation is intractable

and must instead be inferred using approximation algorithms.

P(@lsK, 01.p, 21:D, wl:D)
p(wI:D)

p(Brx, 010, 21:p|w1.p) = (2.1)

K D N
p(Bik,01.p, 21.0, W1.D) = H p(Br) H p(0a) ( p(zd,nled)p(wd,n\ﬁrm Zd,n)> (2.2)

k=1 d=1

n—=

One of these approximation algorithms that can be used to approach the issue of inferring
this probability is a Markov chain Monte Carlo (MCMC), which aims "to simulate direct
draws from some complex distribution of interest" (Walsh 2002)), with the distribution
of interest being the Dirichlet distribution. A specific type of MCMC algorithm often
used with LDA is the Gibbs sampling method. This algorithm helps obtain approximate
observations from a multivariate probability distribution (such as the Dirichlet) to help
approximate joint probabilities like in Equation This method also can be applied to
approximate the latent variables within the LDA model. For more information about

MCMC and Gibbs sampling, see Walsh (2002).

2.3 Model Assessment

To gauge the effectiveness of a constructed LDA model, there are multiple measures but
one stands out to optimize the readability and interpretability of a topic. This aptly

named measure is topic coherence. Multiple different measures of topic coherence exist,
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however, this paper will focus on using Roder et al’s (2015) measure for topic coherence,
where they combine several other frequently used topic coherence methods to create topics
that they have shown to have a higher correlation with human interpretability. This
method is an intrinsic method of evaluating topic models (as opposed to extrinsic, which
uses an external reference corpus) by using sliding windows to create virtual documents
based on the window size. For example, a sliding window size of 10 would move along the
text and create vectors consisting of 10 words. Using an expansion of cosine similarity,
these vectors are compared with one another and then aggregated and averaged into a
singular C'y score, where Cy € [0,1]. This Cy score will be referred to as simply coherence

score. More information about the Cy, coherence measure can be found in Roder et al.

(2015).

While data for LDA models is often used on large archives of documents, it can still be
used on smaller sets of documents or documents with smaller lengths. One application
of using LDA models on shorter text can be found in Sokolova et al. (2016) where the
authors use LDA models on Twitter data. Since tweets can only have a maximum of
280 characters, the text is very short and yet the authors still utilize this data and use

coherence scores as their method of assessing the constructed models.

2.3.1 Alternatives to Topic Coherence

Besides coherence scores, the other measures which are commonly used to give a
quantitative metric of assessing LDA models include computing hold out probability
and model perplexity. The former is discussed in Wallach et al. (2009) where the authors
compute hold out probability based on a trained LDA model. This will calculate P(W|W'),
where W represents the test set documents and W’ represents training documents. Effective
LDA models will show high probabilities for this metric, as it supports that the tokens
from the training set documents can account for tokens introduced from the test set
documents. Closely related to this metric is perplexity as applied by Blei, Ng, et al. (2003).
The perplexity score for W test set documents is calculated in Equation using the total
number of tokens N per document d and is "equivalent to the inverse of the geometric
mean per-word likelihood," (ibid.). When the trained model is applied to the test set,

the perplexity score essentially shows how "perplexed" the model is by the introduction
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of tokens in these new documents. In this case, a lower perplexity is indicative of a
better performing LDA model as it will able to fit the test set data better versus a higher
perplexity score. Using this method on smaller data sets may be undesirable as it reduces
the amount of textual data the LDA model can be trained from which can lead to a

decrease in topic cohesion compared to using the entire data set for training.

perplexity = exp (
23;1 Nd

While these methods remained commonplace for evaluating LDA models, Chang et al.
(2009) argues that these methods have issues when associated with human interpretation.
In experiments with human subjects, subjects were asked to identify an intrusive word into
created topics. For example, the word set {cat, dog, buffalo, fox, lion, house}
is presented to subjects and would then identify house as the intruding word as it is
the only non-animal word. With word sets that have no clear intruding word such as
{money, gym, road, purple, Norway, light}, subjects would have trouble identifying
the intruding word and often pick a word at random, indicating a topic with low topic
coherence (ibid.). Using a similar measure as Wallach et al. (2009), Chang et al. use
predictive log-likelihood and compare it against the results of the human experiments
using word intrusion. They found that models with high log-likelihood were negatively
correlated with human interpretability. Based on these findings as well as the findings
from Roder et al. (2015), using topic coherence scores is the metric of interest for assessing

the created LDA models.

3 Methodology and Empirical Results

To create an LDA model, Python’s gensim module can be used to create LDA models
and assess the Cy coherence score of the resulting models. However, it is not possible to
use a string of long text and create an effective LDA model out of it. Pre-processing steps
must be taken to create the LDA model, such as putting the textual data into a format
that can be read by Python, cleaning the data, and placing the text into a corpus for the
creation of the LDA model. All the data relating to this paper was provided by organizers

of these events as well as online resources found on web pages related to these events.
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3.1 Pre-Processing

Each data set contained abstracts or extended abstracts from papers submitted to the
conference organizers. To read in the data into Python, I first took the text from each
accepted conference paper, keeping all relevant textual data from each respective data set
and converted it into a .txt file. The only portions of the data that were not included
were headers/footers on the page. Originally, the data was either in a .pdf or .xlsx
format. While .pdf files are not easily read into Python as .x1sx files, all files were
converted into a .txt format for uniformity as I created functions that could be used

across all three data sets with .txt files as the input.

After loading in the data sets from their respective directories into Python, the data was
contained in array format with each entry as one long string containing all the text from
the original file. To make the data in a manageable form, the data must be tokenized such
that the data is converted into a matrix where each row corresponds to the document
itself and each column is an individual word with all columns in sequential order of how
the text appears. It is important to note that the order of the text in an LDA model
is not important as it is a bag-of-words (BoW) model where the model is constructed
regardless of the order of the words. However, future pre-processing steps depend on the

words being in sequential order.

3.1.1 Cleaning and Tokenizing

Before tokenizing the data, it must be cleaned first. To clean the data, capitalization,
punctuation (besides hyphens which were deleted to preserve the content of the compound
word), and numbers were removed. This will make it so that words that have the same
semantic meaning (such as model and Model) will be recognized as the same word (model)
by Python. Without this step, two or more instances of the same word could appear in a
topic as separate words. Numbers were also removed as they would not be important to

have within the topics given the data sets.

With the data sets cleaned, they could then be tokenized to split each document by
word into matrix format with each document in the rows and each word contained in

the document in the columns as exemplified in Table [3.1] Many of the words originally
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contained in this matrix were words that are commonly used in the English language daily
such as prepositions. These commonly used words are known as stop words. Stop word
examples include it, or, and, the, her, on, etc. To ensure that these words do not appear
in the resulting LDA models, these stop words are removed from the data sets. A full list
of stop words is given in Appendix [A] These words are useless to include within the data
set as they give no meaning to the topics and are therefore removed. Additionally, words
were removed from the corpus if they were present in over two-thirds of all documents in
that data set. This was done to prevent common words not included in the stop word
list that would not add to topic cohesion due to prevalence. Words such as question or
research would likely be used across many papers but do not provide information on the

underlying topic of the paper.

The last cleaning step is to create n-grams for the data set. An n-gram is a string of n
consecutive words. Common examples of n-grams include bigrams and trigrams where
n = 2 and n = 3, respectively. For this paper, I only focus on using bigrams in the data
set and ensure the bigrams are only constructed if at least three instances of them appear
in the entire data set. For example, if the words stochastic and programming appear
consecutively in this order more than three times in a data set, gensim will construct a
bigram of these two words connected with an underscore such that the bigram becomes
stochastic__programming. Since this step is performed after the punctuation removal, these
two words combined essentially become their own word to be recognized by the LDA

model to help construct more unique topics.

Document Word 1 Word 2 Word 3 Word 4 Word 5
0 workload_balance megacitie adepartment industrial year

1 model passengers_ preference smartphone  base service
2 solve aim create set route

3 electric carshare charge reposition problem

Table 3.1: Subset of matrix showing cleaned textual data after removal of stop words.
Note that words connected by underscores are formed bigrams.
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3.1.2 Lemmatization and POS-Tagging

In addition to cleaning the data, additional pre-processing steps can help with the
construction of topics in the LDA model. One method is lemmatizing the words in the
data set. Lemmatization will essentially reduce a word to its basic form, its lemma. This
process removes any past/present/future tense on verbs, possessive and plural forms on
nouns, or any other inflected forms on words. For example, the words walking, walked,
walks, will all be reduced to their lemma, walk. This process is done in Python using an

external lemmatizer produced by spaCy (Honnibal and Montani 2017)).

A second step to pre-process the data is similar to a cleaning step as it will remove words
from the data set if it does not fit a certain part-of-speech (POS). Parts-of-speech includes
adverbs, adjectives, verbs, nouns, pronouns, proper nouns, etc. Each word in the data
set is tagged with a POS tag using the POS tagger developed by the Natural Language
Toolkit (NLTK) (Loper and Bird [2002). The only POS tags that were allowed to remain
in the data set were nouns, adjectives, verbs, and adverbs. Proper nouns were not included
(except with LOGMS2017) as author names should not be included in the topics and the
city names that appeared in the data set were primarily in reference to the author’s home
university, such as University of Shanghai. One downside of removing proper nouns from
the data set would remove all countries as well. If a certain country was mentioned many
times it would be removed. Looking briefly through the data sets showed that ICSP2019
and TSL2018 did not have many papers focused on specific country studies, however, the

LOGMS2017 data set did so proper nouns were kept for this data set.

After pre-processing, the corpora are constructed from the individual data sets. The
corpus from each conference becomes the main input for the corresponding LDA model as
the words in each topic are constructed using these corpora. These words are the observed

variable in the model, wgy,.

3.2 LDA Models Using Optimized K

One common issue surrounding the creation of LDA models is what to set the number of
K topics to. In the scope of conference scheduling, the number of conference blocks and

sessions is set in advance, and therefore K can be decided based on the total number of
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planned conference sessions. This portion of the paper assumes that K is not yet decided
and different values of K are tested in order to see which creates the highest scoring model
in terms of coherence score. A later section will present results from LDA models where
K is equal to the total number of sessions within each conference. This is done to present
any differences between the different methods to see if there is any difference in human

interpretation between topics and how the value of K affects document-topic placement.

Additionally, the Dirichlet priors @ and 1 must be decided in advance. As discussed
previously, these parameters affect the shape of the Dirichlet distribution and, to build an
optimal model, efficient values of & and 7 must be chosen. To see how each parameter will
affect the coherence score, multiple values of symmetric o and 7 are chosen in conjunction
with values of K and a model is created to see the coherence of the resulting model. The
combination of K, a, and n which results in the highest in-sample scoring LDA model on
each data set is chosen and results from some of these topics and document placements
are analyzed. Only a few topics from the LDA model for each data set are analyzed rather

than all for brevity.

Despite each data set not being large (see Table , constructing an LDA model and
calculating its coherence score using many different parameters can be computationally
expensive. Therefore, the symmetric a and 7 values tested for maximizing coherence score
are limited to be a« = n = {0.01,0.25,0.50,0.75,0.99}. Each of these values are tested
alongside with different values of K to show which combination of K, «;, and 7 result in
the highest coherence scoring LDA model. I chose to not have these values to not equal
or exceed 1 as a high a would cause words to begin to cluster around the center, making
it difficult to distinguish the topics from one another and generally be unhelpful when
displaying topic proportions per document, ;. n was limited to these values as a higher
1 would result in less sparse topics where, again, it would be unhelpful when showing

topic proportions for the documents and creating cohesive topics.
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ICSP2019 TSL2018 LOGMS2017

No. Docs 260 49 96
Total File Size 352 KB 217 KB 203 KB
Total Tokens
52015 41887 31092
(Pre-Cleaning)
Avg. Tokens
200 855 324
(Pre-Cleaning)
Tokens Std. Deviation
110 334 144
(Pre-Cleaning)
Total Tokens
21264 15401 15053
(Post-Cleaning)
Avg. Tokens
82 314 157
(Post-Cleaning)
Tokens Std. Deviation
46 117 68

(Post-Cleaning)

Table 3.2: Descriptive statistics of different data sets used.

The value of K primarily depends on the size of the data set used, with more documents
typically requiring a larger number of topics to characterize the data. These values of K
must be less than or equal to the documents in the data set. When K = (# of documents)
the LDA model becomes a membership model and when K < (# of documents), the LDA

is known as a mized-membership model (Blei, Ng, et al. [2003)).

With the values of K, a, and n chosen to be tested for coherence, each value is used and the
model is created with its corresponding coherence score calculated. This part is iterated

through until every combination of the parameters are tested. For example, the first
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iteration would have K =2 (K = 1 omitted as it would not provide meaningful results),
a = 0.01, n = 0.01 and the second iteration of this algorithm would be K = 3, a = 0.01,
1 = 0.01 and so forth. In ICSP2019 and LOGMS2017, experimentation showed having a K
ranging from 2 - 20 had lower coherence scores than K > 20, and to reduce computation
time, this range was set to begin at 20. Using these parameters yields a total of 25
iterations per K value tested. Each iteration creates an LDA model which also calculates
the in-sample coherence score which takes roughly 10-13 seconds per iteration (depending
on the data set) using a computer with 16 GB of RAM and an Intel i7 processor @
3.70GHz. The results from these iterations and the parameters associated with the highest
scoring model for each data set are shown in Table [3.3] Line plots showing the highest
performing model per every k is shown in Appendix [B]

K Range Alpha Eta K Coherence Score

ICSP2019 20,100]  0.25 0.99 70 0.4549
TSL2018 2,30 050 0.01 22 0.3410
LOGMS2017  [20,60]  0.25 0.99 49 0.3817

Table 3.3: Parameters used to obtain highest scoring LDA model and corresponding
coherence score.

The coherence scores were calculated using a sliding window of 50 tokens. Roder et
al. (2015) construct their Cy coherence score measure using a sliding window of 110.
The authors note that different values for this sliding window can be used, but remark
that a sliding window of at least 50 tokens should be used. Table [3.2] shows that the
average document from ICSP2019 does not have 110 tokens after cleaning and the sliding
window is set to 50. This also accounts for smaller texts found in LOGMS2017 as texts
one standard deviation below the mean have less than 110 tokens after cleaning. The

histogram displaying the token counts per document after cleaning is shown in Appendix

Bl

With the highest-scoring models identified, the parameters from Table [3.3] are used for
each of the respective corpora and the LDA model is created. From the LDA model, the
latent variables can be inferred. This includes the topics (1.5 and the topic assignments

04 for each document. The topics are reported as a list with the most frequent words
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appearing at the top of the list for each topic. The top 10 words are reported on this
list. In future sections, only the top five words are presented to preserve the readability
of tables, especially with data sets that resulted in a high number of topics. A full list
of the words and their corresponding topic-word probabilities are attached as a separate
appendix. Examining the topics is an important step to give a human interpretation
of the topic themselves as the resulting topics from the LDA model are useless unless

conference organizers can make sense out of the topics.

After the topics are presented and coherence scores are calculated, the next step is to
organize each of the documents into different topics. In this case, each topic would
be representative of a session for the conference. With topics where a large number of
documents are assigned, multiple conference sessions can be dedicated to these topics.
This is the case in the actual conference plan for ICSP2019 and LOGMS2017 where
multiple sessions were dedicated to the same topic. These sessions do not run in parallel
in case an attendee wanted to attend all talks on this topic. Document assignments
to sessions are determined by the 60, values for all documents D over K topics. The
documents are assigned to the topic where the 64, value is highest. For example, if
document 1 has 6, ; = 0.75 for topic 1 and 60, » = 0.25 for topic 2, document 1 would be
placed into topic 1 and a session is created with all other documents placed into topic 1.
An example of how the 6, matrix is constructed is shown in Table for TSL2018. The
full matrix is included as an attached appendix for all data sets. All the topic probabilities
per document (rows) sum to exactly 1 for all documents. While the entries may show a
zero probability, this number is just very small to the point the LDA model in Python
equates it to zero. Theoretically, it is impossible for a 64, value to be zero (Blei, Ng, et al.

2003).

With documents assigned to topics, the titles for each document are presented in tabular
form along with the 0, values and the session titles these documents were assigned to.
As the value for K varies greatly between these data sets, only a handful of the total

number of topics were analyzed from each conference for brevity.
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Topic 0 Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Topic 9
Document 0 0 0 0 0 0 0 0 0 0 0
Document 1 0 0 0 0 0 0 0 0 0 0
Document 2 0 0 0.0365 0 0 0 0.0104 0 0 0
Document 3 0.0350 0.0832 0.2328 0 0.0249 0 0 0 0.1031 0
Document 4 0 0 0 0 0 0 0 0 0 0
Document 5 0 0 0 0 0 0 0 0 0 0.8914
Document 6 0.0189 0 0.0634 0 0 0 0 0 0 0.0430
Document 7 0 0.0661 0 0 0 0 0 0 0.6875 0.0461
Document 8 0 0 0.0568 0 0 0 0 0 0.2572 0
Document 9 0 0 0 0 0.0103 0 0.0796 0 0 0

Table 3.4: Subset of document-topic probabilities 04 for TSL2018.

3.2.1 ICSP2019

Using the papers from the ICSP2019 conference, the model with the highest coherence
score was associated with K = 70 for the number of topics and using the Dirichlet
parameters a = 0.25 and n = 0.99. With these parameters, the resulting coherence score is
0.4549. The topics from the resulting LDA model, including the top five words contained
within these topics and the topic-word probabilities, can be seen in [3.5. All the topics
which were repeated in the LDA model were removed except for one instance which is

shown highlighted in the table.

Word 1 ‘Word 2 Word 3 Word 4 Word 5
Topic 0 0.001*"convexconcave" 0.001*"correlate" 0.001*"advance" 0.001*"plane" 0.001*"ecrm"
Topic 4  0.017*"optimisation” 0.010*"multistage" 0.008*"bound" 0.006*"class" 0.004*"point"
Topic 9  0.004*"item" 0.002*"user" 0.002*"offer" 0.002*"online" 0.002*"mechanism"
Topic 34 0.006*"game" 0.003*"player" 0.003*"tree" 0.002*"forward" 0.002*"agent"
Topic 35 0.016*"model" 0.016*"system" 0.010*"market" 0.008*"uncertainty" 0.008*"scenario"
Topic 39 0.002*"investor" 0.002*"housing" 0.002*"reverse" 0.001*"lifetime" 0.001*"purchase'
Topic 41 0.003*"reposition" 0.002*"unit" 0.002*"inventory"  0.001*'region" 0.001*"ondemand"
Topic 49 0.014*"method" 0.014*"model" 0.011*"solve" 0.010*"approach" 0.010*"solution"
Topic 54 0.008*"statistical" 0.007*"discuss" 0.006*"learning" 0.005*"talk" 0.005*"smooth"
Topic 58 0.007*"pde" 0.004*"gas" 0.003*"carlo" 0.002*"load" 0.002*"hierarchy"
Topic 69 0.002*"budget" 0.001*"uncertainty_set" 0.001*"adjustable" 0.001*"confirm" 0.001*"match"

Table 3.5: First 5 words from ICSP2019 LDA model topics using K = 70, o = 0.25,
and 1 = 0.99. Duplicate topics are removed. Note that the highlighted topic is the topic
which is repeated for all missing topic numbers.

Out of the 70 topics created by this model, only 11 of these were unique as they were not
identical to topic 0. The topics presented are a mix of specific topics and also catch-all

topics. A catch-all topic is a topic constructed of very general and common words that
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have little to no specific relationship to each other. The presence of some catch-alls can
be seen in the presented topics, especially in the scope of stochastic programming: the
theme of the ICSP conference. Topic 49 is a catch-all topic, with the words being very
general to stochastic programming and little specific relationship to each other. Other
topics including topics 34 or 39 contain words, which when placed together, are shown
to be related to a specific topic. In topic 34, the words game, player, tree, and agent
could be indicative of a topic descriptive of game theory. Topic 39 shows words such as
investor, housing, reverse, lifetime, purchase, and equity (not shown in table) which is
indicative of housing purchases, mortgages, or real estate. With the LDA model created,
the 0, values showing the probability for each document being contained within topic
k are calculated. From these probabilities, documents are placed into topics where the

probability is highest. The document assignments into topics can be shown in Figure |3.1
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Figure 3.1: Document-topic distribution based on highest 8, value for each document
for ICSP2019 where K = 70.

A large majority of the documents were placed into topic 49, a catch-all topic especially
in the scope of stochastic programming. All of the top five words within this topic are too
general to discern a specific topic from, as these are words that would be found in likely
any scientific research paper. The same is the case for topics 35, however topic 54 may be
descriptive of machine learning algorithms as it includes words such as statistical, learning,
smooth, estimation, and algorithm. Meanwhile, the rest of the topics with documents

assigned to them are very small. Topics 9 and 4 have two documents assigned to them
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while topics 58, 39, and 34 only have one. For the ICSP2019 conference, most of the
sessions contained 3-4 talks, with few containing two speakers. Note that topic 0 or
any of the identical topics appeared in the document-topic distribution. Looking at the
topic-word probabilities in topic 0, all words have a probability of 0.001 which is much
lower than some of these other topics which contain words that have a probability of 0.014

or higher which can heavily influence document-topic placement.

Deep diving into topics 54, 9, and 4, the document titles and the ICSP2019 actual
document groupings are presented in Tables [3.6] and [3.8 Topics 49 and 35 are ignored
as the number of documents assigned to these topics (176 and 60, respectively) would
be too large to assign multiple sessions to, especially with such a general topic. Using 4
talks per session, this would result in 44 sessions allocated to this topic for topic 49 and
15 sessions allocated to topic 35. Topics 58, 39, and 34 are ignored as sessions should

contain more than one speaker.
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d 0454 Document Title ICSP2019 Session Title
Document Advances In Understanding Structural ) ) . . )
0.7395 Nonlinear Programming With Probability Functions
221 Properties Of Probability Functions
Document Wasserstein Distributionally Robust Optimization: ) o L
0.5857 Data-Driven Distributionally Robust Optimization
145 Theory And Applications In Machine Learning
Document The Effect Of Curvature On The Convergence
0.5765 Statistics And Machine Learning
163 Rate Of Stochastic Gradient Descent
Stochastic Approximation Schemes For
Document . . . . .
0.5603 Topics In Stochastic Gradient Approximation Stochastic Optimization, Variational,
250
And Game-Theoretic Problems
Document . ) . Interfaces Between Learning And
0.5546 (Deep) Learning With More Parameters Than Data
209 Stochastic Optimization
Stochastic Approximation Schemes For
Document Zeroth-Order Recursive Optimization Of
0.5504 Stochastic Optimization, Variational,
168 Mean-Semideviation Risk Measures
And Game-Theoretic Problems
Document Consistency of Stationary Solutions of Coupled )
0.5316 Plenary Session
216 Nonconvex Nonsmooth Empirical Risk Minimization
Document Multi-Composite Nonconvex Optimization . . .
0.4897 Statistics And Machine Learning
244 For Training Deep Neural Network
Document Distributionally Robust Inverse Covariance Estimation: . . . .
0.4782 Applications Of Distributionally Robust Optimization
78 The Wasserstein Shrinkage Estimator
Document
0.4555 Learning Enabled Optimization Predictive Stochastic Programming
143
Zeroth-Order Nonconvex Stochastic Optimization:
Document Bounds And Approximations In Optimization
0.4201 Handling Constraints, High-Dimensionality,
31 Under Uncertainty
And Saddle-Points
Document Optimistic Likelihood Problems Using . L
0.4045 Methodological Advances In Robust Optimization
98 (Geodesiclly) Convex Optimization
Document The role of decomposition methods in )
0.3716 Plenary Session
205 stochastic programming
Document Kernel Estimation In Stochastic Optimization
0.3643 Advances In Risk-Averse Optimization
9 With Composite Risk Functionals
New Frontiers In Financial Decision Making
Document Fractional Kelly Investing And
0.3471 Under Uncertainty: Ambiguity, Stochastic Dominance
109 ‘Wealth Benchmarking
And Complex Nonlinear Portfolio Management
Document
0.3441 Software for Stochastic Programming Pre-Conference Tutorial
183
Document Advances In Wasserstein Distributionally
0.3294 Data-Driven Distributionally Robust Optimization
167 Robust Optimization

Table 3.6: Titles and 0,54 values for documents assigned to topic 54, with the actual
ICSP2019 session assignments.
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d Oa Document Title ICSP2019 Session Title

A Two-Layer Multi-Armed Bandit Approach | New Applications Of Distributionally
Document 105 | 0.7636

For Online Multi-Item Pricing Robust Optimization

Robust Active Preference Elicitation To Learn
Document 196 | 0.4532 Doing Good With Good Ro

The Moral Priorities Of Policy-Makers

Table 3.7: Titles and 6,9 values for documents assigned to topic 9, with the actual
ICSP2019 session assignments.

d Od.4 Document Title ICSP2019 Session Title

Multistage Saddle Point Problems And | Stochastic Dynamic Programming Equations:
Document 254 | 0.6262

Non-Rectangular Uncertainty Sets Decomposition Methods And Applications
A Primal-Dual Lifting Scheme For Applications Of Distributionally
Document 89 | 0.5472
Two-Stage Robust Optimization Robust Optimization

Table 3.8: Titles and 6,4 values for documents assigned to topic 4, with the actual
ICSP2019 session assignments.

While according to the words included in topic 54 seemed to be descriptive of machine
learning, looking at the titles and actual conference session assignments in Table [3.6
provides some evidence supporting this but also evidence against this as well. Some
of the documents in this table show that they were grouped up together as the actual
ICSP2019 conference organized these documents. For example, documents 163 and 244 are
assigned to be under the session Statistics and Machine Learning which is also likely why
learning or statistical appeared in this topic, supporting that this topic could be related
to machine learning. Other groupings also appear from the ICSP2019 conference schedule,
however, these are unrelated to statistics and machine learning. Stochastic Approzimation
Schemes For Stochastic Optimization, Variational, And Game-Theoretic Problems and
Data-Driven Distributionally Robust Optimization are the only other groupings from
the original ICSP2019 conference schedule. From the original ICSP2019 sessions these
documents were assigned to, 9 out of 16 of the original session titles grouped up by topic
54 include optimization in the title which supports that the LDA model was able to
organize these documents in a somewhat cohesive manner. However, given the nature of
this conference, the frequency at which optimize appears in topics and session titles is
unsurprising given over 150 documents out of the full 260 contain optimize or optimise at
least once meaning these groupings could have occurred due to similar words found in

almost all papers.
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With topics 9 and 4 in Tables and [3.8], respectively, the documents grouped together

seem to have little to no relevance with each other. Additionally, these documents were

placed into different sessions according to the actual ICSP2019 conference schedule. With

the small variation between assigned topics and the low amount of total topics documents

were assigned to, it becomes difficult to create a meaningful and engaging conference for

attendees where sessions are grouped by content similarity.

3.2.2 TSL2018

The model resulting in the highest coherence score for the TSL2018 data set were with

K =22, a =0.50, and n = 0.01. These parameters result in a coherence score of 0.3410,

lower than the ICSP2019 data set. The topics and the top five words contained within

these topics can be seen in Table (3.9 along with the topic-word probabilities of these

words.

Word 1 Word 2 Word 3 ‘Word 4 Word 5
Topic 0 0.026*"vehicle" 0.023*"demand" 0.017*"system" 0.014*"distribution" 0.013*'locker"
Topic 1 0.054*"passenger' 0.052*"service" 0.027*"transportation" 0.021*"price" 0.021*"discount"
Topic 2 0.082*"vehicle" 0.033*"congestion" 0.029*"charge" 0.027*"zone" 0.026*"emission"
Topic 3 0.020*"sequence"  0.018*"set" 0.018*"route" 0.016*"approach" 0.015*"road"
Topic 4  0.099*'facility" 0.050*"client" 0.044*"demand" 0.033*"formulation"  0.021*'capacity"
Topic 5  0.054*"delivery"  0.042*"demand" 0.036*"customer" 0.034*"courier" 0.030*"price"
Topic 6  0.043*"bundle’ 0.030*"design" 0.028*"task" 0.020*"scenario” 0.018*"service"
Topic 7 0.001*"solution"  0.001*"system" 0.001*"delivery" 0.001*"instance" 0.001*"solve"
Topic 8  0.030*"delivery"  0.026*"customer" 0.019*"vehicle" 0.013*"scenario” 0.011*"city"
Topic 9  0.035*"deadline’  0.020*"scenario" 0.019*"risk" 0.019*"space" 0.018*"vrp"
Topic 10 0.028*'reduce" 0.025*"consolidation"  0.023*"transportation’ 0.022*"truck" 0.021*"carrier"
Topic 11  0.031*"approach’ 0.026*"transportation” 0.026*"profit" 0.025*"ucc" 0.022*"passenger"
Topic 12 0.001*"carrier" 0.001*"system" 0.001*"transportation" 0.001*"customer" 0.001*"delivery"
Topic 13  0.057*"order" 0.037*"delivery" 0.026*"system" 0.025*"item" 0.024*"route"
Topic 14 0.023*"propose" 0.017*"demand" 0.017*"carrier" 0.013*"customer" 0.013*"approach"
Topic 15 0.001*"vehicle" 0.001*"demand" 0.001*"facility" 0.001*"type" 0.001*"service"
Topic 16 0.080*"solution"  0.036*"transportation” 0.032*"robustness" 0.028*"constraint"  0.027*"instance"
Topic 17 0.106*"vehicle" 0.095*"solve" 0.090*"constraint" 0.051*"visit" 0.049*"capacity"
Topic 18 0.042*"delivery"  0.026*'request" 0.025*"order" 0.019*"approach' 0.017*"customer"
Topic 19 0.047*"customer"  0.039*"share" 0.034*"delivery" 0.032*"ecommerce"  0.031*"online"
Topic 20 0.062*"system" 0.029*"design" 0.029*"logistic" 0.029*"station" 0.015*"optimization"
Topic 21  0.034*'company’  0.029*'function" 0.028*"experience" 0.025*"learn" 0.020*"service"

Table 3.9: First 5 words from TSL2018 LDA model topics using K = 22, a = 0.50, and
n = 0.01.
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Here, a similar issue with the ICSP2019 data set appears with some words contained
within topics having specific topics while others are catch-all topics. However, there seems
to be more specific topics than catch-all topics in this data set. Topic 17 is indicative of
a topic relating to vehicle routing problems, as words in the topic include vehicle, solve,
constraint, capacity, route, (not pictured) and wvehicle route (not pictured). Another
example of a specific topic would be in topic 19 which may be related to online shopping
or e-Commerce with words such as customer, delivery, ecommerce, online, and service
(not pictured). More examples include topic 2 being related to electric vehicles or topic
10 with consolidating goods in transportation for a supply chain. All of the included
topics seem to be descriptive of some sort of logistical process or related to supply chain
management. While initially this does seem like a success, this is due to the INFORMS
TSL conference being focused on transportation sciences and logistics which accounts for
the high number of transportation and logistics words in the topics. Therefore, some of
these topics such as topic 7, 15, or 18 may be a catch-all topic as it shows general words
relating to logistics and transportation sciences. After documents are allocated into topics
based upon their highest 6, value, the distribution over topics for documents is shown in

Figure [3.2
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Figure 3.2: Document-topic distribution based on highest 6, value for each document
for TSL2018 when K = 22.

The TSL2018 LDA model created a much more diverse number of topics compared to the

ICSP2019 model without concentrating an majority of documents into one topic. Out
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of all the topics in the LDA model, 17 out of the total of 22 topics have at least one

document assigned to them. While most topics are placed into topic 8, this shows that

many documents are descriptive of the words contained in this topic which may facilitate

the need for assigning multiple sessions to this topic. The same case may apply to the

other topics with a high number of documents such as topic 14 or 0. Examining the top

three topics in terms of documents assigned yields the results in Tables - The

other topics are omitted for brevity and topics with one document assigned to them are

ignored.
d Oas Document Title TSL2018 Session Title
Dynamic Pricing for Same-Day Business Modules of
Document 12 | 0.9520
Delivery Routing Urban Logistics
Same-Day Delivery with a Heterogeneous Fleet ) .
Document 21 | 0.9321 Last Mile Delivery
of Drones and Vehicles
Smart Locker Bank Design Optimization for Lockers &
Document 37 | 0.9260
Urban Omnichannel Logistics Mobile Facilities
Opportunities and threats of mixing delivery
Document 40 | 0.8682 E-Commerce
options in the e-commerce era
Are delivery-drones a solution for the
Document 7 | 0.6875 Last Mile Delivery

last-mile problem in urban areas?

Document 25 | 0.5880

Anticipating Emission-Sensitive Traffic Management

Strategies for Dynamic Delivery Routing

Green Urban Logistics

Omnichannel B2C Distribution: Modeling Approach

Document 29 | 0.4815 City Logistics
and Deployment Scenarios
Multi-Commodity Two-Echelon Vehicle Routing Routing with Electric Vehicles
Document 48 | 0.4791
Problem with Time Windows & Time Windows
Hyperconnected Last-Mile Delivery of
Document 39 | 0.4319 Urban Transportation & Congestion
Large Items in Urban Area
Scheduled Service Network Design with Resource
Document 34 | 0.3418 |  Management for Multimodal City Logistics with City Logistics

Inbound and Outbound Flows

Table 3.10:

TSL2018 session assignments.

Titles and 6,5 values for documents assigned to topic 8, with the actual
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d 0g.14 Document Title TSL2018 Session Title

On the economic and environmental benefits
Collaborative Logistics &

Document 26 | 0.9373 of collaborative transportation and
Ridesharing
the coalition configuration problem
An Iterative Auction for Carrier Collaboration Collaborative Logistics &
Document 11 | 0.9247
in Truckload Pickup and Delivery Ridesharing

Sustainable Urban distribution under
Document 36 | 0.8801 Not included in final TSL2018 conference

demand and traveling time variations

Load Dependent Electric Vehicle Routing Problem
Routing with Electric Vehicles

Document 33 | 0.6839 With Time Windows Considering
& Time Windows

Nonlinear Charging Function

Selecting Shipments at An Urban Consolidation Center
Document 20 | 0.4726 Consolidation for Urban Delivery

for Last-mile Delivery with Cost Uncertainty

Solving the Consistent Vehicle Routing
Document 2 | 0.4395 Methods for Vehicle Routing Problems

Problem via Column Generation

Table 3.11: Titles and 6414 values for documents assigned to topic 14, with the actual
TSL2018 session assignments.

d Ba0 Document Title TSL2018 Session Title
Document 46 | 0.9612 | Solving last-mile distribution problems after major earthquakes Disruption Management
Document 28 | 0.8991 Federated locker system in last mile problem with Big Data Lockers & Mobile Facilities
Document 13 | 0.8626 | Managing disruptions in urban road networks for real contexts Disruption Management

A new inventory routing approach for managing multimodal

Document 42 | 0.7158 | transportation networks: Balancing dynamic inventory supply of | Not included in final TSL2018 conference

shared/transit vehicles for serving urban passenger demand

Table 3.12: Titles and 60, values for documents assigned to topic 0, along with the
actual TSL2018 session assignments.

From these three shown topics, there is a clear increase in topic cohesion over the shown
ICSP2019 topics. While only a handful of documents in topic 54 for ICSP2019 had
relationships with each other, almost all of the documents in each presented topic are
related to one another even if they were not grouped up together in the actual TSL2018
conference schedule. For topic 8, almost all documents are related to urban logistics.
The only document which does not have a clear relationship to the other documents
is the document titled Multi-Commodity Two-Echelon Vehicle Routing Problem with
Time Windows. However, looking deeper into this document shows that the "Two-Echelon
Vehicle" portion refers to urban vehicles and city freighters which are also directly connected
to urban logistics. Furthermore, the sessions these documents were assigned to in the

actual TSL2018 conference are closely related to one another, with themes such as Green
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Urban Logistics, Business Modules of Urban Logistics, Urban Transportation & Congestion,

and Clity Logistics.

For topic 14, a similar pattern is shown where many of the documents show relationships
to one another with the main theme being on Collaborative Logistics or consolidating a
portion of the supply chain as shown in Consolidation for Urban Delivery. An alternative
theme for the documents included in this topic could be about greenhouse gas reduction
or relating to a reduction in emissions. Collaborative logistics would show a reduction
in emissions from the supply chain as would using electric vehicles. While these words
relating to emissions or greenhouse gases do not appear in the top 10 words in terms of
topic-word probability (see attached appendix), Figure shows a word cloud which
includes the top 20 words. This word cloud reveals that the words collaboration, reduce,
and environmental are also included in this topic. Because of this, documents using these
words often would be placed into this topic where most, if not all documents include some
sort of proposal for altering the supply chain which results in a reduction of emissions. In
the word cloud, the larger words represent more prominent and frequently used words as

opposed to smaller words.

TSL2018 Topic 14

profit

. 1 Sset

carrier

Figure 3.3: Topic 14 word cloud from TSL2018 using the top 20 words.

Lastly, topic 0 has the shakiest of relationships between each of the documents, but
one clear relationship exists with documents 46 and 13 as they deal with disruption
management as also supported by the session titles from the actual TSL2018 conference.
Documents 28 and 42 have an unclear relationship with the other two documents in this
topic. Given that the word locker appears in the topic-word probabilities for topic 0, it
makes sense that document 28 would be placed into this topic. For documents 42 and 36,

these documents appear in the data set that the LDA model was trained on, but these do



30 3.2 LDA Models Using Optimized K

not appear in the final conference schedule. Training the LDA model on a larger set of
data, even if it does not appear in the conference is useful as it will give the LDA more

data to train off of, a tactic used by Burke and Sabatta (2015).

3.2.3 LOGMS2017

The last data set is from the LOGMS2017 conference which uses the number of topics
K = 49 along with the Dirichlet parameters of & = 0.25 and n = 0.99 which yields a
coherence score of 0.3817. In Table [3.13] the topic-word probabilities along with the top

five words contained in each topic are shown. This data set also had identical topics that

were removed. At least one instance of this topic was kept and highlighted.

Word 1 Word 2 ‘Word 3 Word 4 Word 5
Topic 0 0.017*"container" 0.012*"network" 0.008*"resilience" 0.007*"transport" 0.006*"disruption"
Topic 1 0.001*'properly" 0.001*"study" 0.001*"logistic" 0.001*"stage" 0.001*"system"
Topic 5  0.007*"drone" 0.003*"range" 0.003*"algorithm" 0.003*"vehicle _routing" 0.002*"electric"
Topic 6  0.005*"price" 0.004*"increase’ 0.004*"port" 0.003*"event" 0.003*"transportation industry"
Topic 7 0.003*'norwegian"  0.003*"defence" 0.003*"long_ term" 0.002*"establishment" 0.002*"structure"
Topic 10 0.008*"transport" 0.007*"port" 0.006*"operation" 0.006*"compliance" 0.005*"ship"
Topic 11  0.018*'port" 0.015*"problem" 0.014*"cost" 0.013*"model" 0.013*"vessel"
Topic 12 0.007*"measure" 0.005*"technology" 0.005*"government" 0.005*"fuel" 0.005*"sulphur"
Topic 14 0.005*"technology"  0.005*"consumer”" 0.004*"environmental" 0.003*"sustainable" 0.002*"adopt"
Topic 16 0.017*'ship" 0.010*"lock" 0.010*"time" 0.006*"problem" 0.005*"stochastic"
Topic 20 0.003*"'minute’ 0.002*"presentation” 0.002*"digital" 0.002*"western" 0.002*"maersk"
Topic 23 0.006*"customer” 0.005*"cruise_industry" 0.005*'revenue management" 0.005*"cruise" 0.003*"passenger"
Topic 24 0.012*'port" 0.010*"seaport” 0.010*"supply_ chain" 0.009*"risk" 0.006*"study"
Topic 25 0.005*"sequence’ 0.005*"sort" 0.004*"'company" 0.003*"wave" 0.003*"ready"
Topic 26 0.003*'national" 0.002*"methodological"  0.002*"shift" 0.002*"joint" 0.001*"armed_ force"
Topic 29 0.008*'reefer’ 0.008*"system" 0.007*"container" 0.006*"performance" 0.005*"area"
Topic 30 0.003*'distribution" 0.002*"india" 0.002*"multimodal’ 0.002*"coastal" 0.002*"railway"
Topic 32 0.002*'railway" 0.002*"belt" 0.002*"china" 0.002*"linear" 0.002*"initiative"
Topic 34 0.006*"logistic 0.006*"railway" 0.006*"study" 0.005*"freight" 0.004*"sustainability"
Topic 39 0.008*'lag" 0.008*"model" 0.007*"uncertainty" 0.007*"risk" 0.007*"investment"
Topic 42 0.001*'stem" 0.001*"equilibrium" 0.001*"motivation" 0.001*"exchange" 0.001*"stochastic_ programming"
Topic 43 0.002*"exact" 0.001*"pickup" 0.001*"branch" 0.001*"vehicle routing" 0.001*"depot’

Table 3.13: First 5 words from LOGMS2017 LDA model topics using K = 49, a = 0.25,
and 1 = 0.99. Duplicate topics are removed. Note that the highlighted topic is the topic
which is repeated for all missing topic numbers.

In the LOGMS2017 topics, the mix of catch-all topics specific topics is shown again as
with the other data sets. For example, topics 11 and 14 contain words that are very
general to the theme of the conference: logistics and maritime systems. Other topics that

are shown to be more specific with an easily discernible theme include topic 23, which
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is clearly about the cruise ship industry as it also includes the bigram cruise_line (not
pictured). Another example of a topic where the theme can easily be recognized is in
topic 7, which is indicative of the Norwegian military or navy as it includes the acronym
FFI (not pictured) which stands for Forsvarets forskningsinstitutt (Defense Research
Institution). In topic 12, the words included are related to a topic about the use of sulfur
fuels onboard ships as the word scrubber (not pictured) also appears which relates to the

use of marine exhaust scrubbers used to remove sulfur oxide gasses from exhaust fumes.

Initially, 49 topics were created but only 22 of these were kept as 27 identical topics were
removed. With these topics in mind, the documents are then allocated to the different

topics as shown in Figure
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Figure 3.4: Document-topic distribution based on highest 6, value for each document
for LOGMS2017 when K = 49.

The document-topic distribution for LOGMS2017 closely resembles that of the ICSP2019
conference: a large proportion of the documents are clustered into one topic. As mentioned
previously, topic 11 is a catch-all topic. However, compared to the ICSP2019 data set
there are many other topics included. 18 out of the total 22 non-identical topics have at
least one document assigned to them, compared to the ICSP2019 data set which only had
11 non-identical topics with 8 of these having at least one document allocated to them.
The top 3 topics (besides topic 11) in terms of the number of documents assigned to them

are examined for their title, 64 value, and their LOGMS2017 session placement. Tables

for topics 29, 0, 39, and 24 are presented in Tables [3.14], [3.15], [3.17], and [3.15] Topics 0
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and 39 are tied for second and are both included. Topic 11 is omitted as close to half of
all documents are placed into this topic, with 47 out of the total 96 documents contained
in topic 11. Additionally, allocating documents to a catch-all topic would not be helpful

for conference organizers as there is no clear theme for the topic.

d 04,29 Document Title LOGMS2017 Session Title

Barriers to innovation diffusion in
Document 63 | 0.9479 Supply chains

the reefer chain

Empirical Evaluation of an Automated Container Terminal with Truck
Document 75 | 0.9320 Ports & Containers 1

Overpass Structures on the Storage Yard of Parallel Layout

A balanced KPI tree to measure
Document 61 | 0.9269 Supply chains

supply chain performance

Document 82 | 0.9078 Simulation based lectures for students in logistics Simulation

International Differences in the Customer Value of
Document 19 | 0.8965 Data analysis

Autonomous Driving Systems

Document 31 | 0.7732 Gaming of Possible Future Norwegian Land Forces NORS - Operations research 3

Future Trends in Logistics: A Biased View on Urban Mobility and )
Document 0 | 0.5873 Plenary Session
Its Interconnection with Transport Networks

) Solving dynamic multi-continuous berth allocation and quay crane ) )
Document 81 | 0.5226 Simulation
scheduling problems simultaneously by using simulation optimization

Document 32 | 0.5212 Logistics process mapping and simulation in a container terminal NORS - Operations research 3

Table 3.14: Titles and 0,29 values for documents assigned to topic 29, along with the
actual LOGMS2017 session assignments.

d Oa0 Document Title LOGMS2017 Session Title

Evaluating resilience of port-hinterland road-inland water ) . .
Document 72 | 0.9399 Disruptions & Resilience

shipping container transportation network

Integrated scheduling in
Document 25 | 0.9383 Scheduling

synchromodal transport

Modelling the impact of infrastructure developments on the
Document 71 | 0.8136 resilience ofintermodal container transport networks: Disruptions & Resilience

One-Belt-One-Road Case study

The role of consignees in empty )
Document 10 | 0.7787 Empty container management

container management

The value of collaboration in
Document 46 | 0.6908 Collaborative logistics
hinterland container transport

Disruption recovery and rescheduling ) . .
Document 70 | 0.6099 Disruptions & Resilience
problems in containers drayage

Table 3.15: Titles and 6, values for documents assigned to topic 0, along with the
actual LOGMS2017 session assignments.
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d 04,39 Document Title LOGMS2017 Session Title

Modeling and managing risk using portfolio optimization ) .
Document 87 | 0.9394 Risk management & Real options
techniques for maritime systems

Application of Spatial Econometrics on .
Document 17 | 0.9177 Data analysis

Logistics Performance Index

Robust Tractable Approximation of a Multistage Stochastic
Document 51 | 0.6086 Program for Empty Container Repositioning Stochastic problems 2

Considering Foldable Containers

Controlling the Cash Flow Risk in
Document 15 | 0.5685 NORS - Operations research 2

Maritime Fleet Renewal

Agility and investment lags in fleet expansion a . .
Document 91 | 0.5400 Risk management & Real options
case from bulk shipping

Stochastic programming for fleet renewal in the )
Document 37 | 0.5349 Stochastic problems 1

offshore oil and gas industry

Table 3.16: Titles and 0,39 values for documents assigned to topic 39, along with the
actual LOGMS2017 session assignments.

d 04,24 Document Title LOGMS2017 Session Title

Understanding of port collaboration:
Document 43 | 0.9425 Collaborative logistics

A case study of Thailand’s port

Document 73 | 0.9321 Natural catastrophe risk index of seaports Disruptions & Resilience

Document 66 | 0.6811 | Supply chain optimization by matrix expression | NORS - Operations research 1

A storage relocation policy for a progressive zone )
Document 18 | 0.6471 Data analysis
picking system and its simulation analysis

Intelligent Cross-sectional Yard Crane Deployment )
Document 74 | 0.6416 Ports & Containers 1

in a Transhipment Container Hub

Table 3.17: Titles and 0,24 values for documents assigned to topic 24, along with the
actual LOGMS2017 session assignments.

From the presented tables, there are clear patterns and overarching themes within each
topic even if the LDA model did not group the documents like in the actual conference
schedule. For topic 29 in Table many of the presented documents are related to
simulation and some are placed into the Simulation session from LOGMS2017. Other
documents are related to simulations such as document 31 or 32 however these are placed
into one of the NORS sessions, a group of documents that were mandatory for conference
schedulers to organize together. Other tables presented also show similar results. In
Table [3.15] three out of the four papers allocated to the Disruptions & Resilience were

placed into this topic. Looking at the words included in each of the topics, resilience
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appears as the third most common word for topic 0. However, another related theme for
this topic seems to be on shipping containers which appear as the word with the highest
topic-word probability for this topic. For topic 39, there seems to be a mix of different
themes included within the same topic. Documents 87, 15, and 91 deal with risk while
documents 51 and 37 discuss stochastic problems. The only document without a clear
association to the others is document 17, but it likely appears in this topic due to words
shared in these documents like lag, model, or uncertainty. The last topic presented, topic
24, has no common sessions according to the LOGMS2017 official conference schedule.
Regardless, there still seems to be a semantic similarity between the titles of these topics
as almost all of them describe ports. Looking at the top 5 words from topic, port and
seaport appear as well as supply chain. These words in combination could be potentially
indicative of a catch-all topic, as the wordsport and supply_chain are sure to go hand in

hand for many maritime logistics papers.

3.3 LDA Models Using Conference K

Instead of using a value of K associated with the highest coherence score for each of the
data sets, this portion will use K as determined in each of the actual conference schedules
by their total number of sessions. Here, the parameters for o and n will automatically
be determined by gensim. While setting the parameters to "auto", this causes gensim
to "learn an asymmetric prior from the corpus," (Rehfifek and Sojka 2010) for both
parameters. This is contrary to the previous section which uses pre-determined symmetric
priors. Doing so results in a vector of « values, with a unique « for all topics K in the
data set. The total number of n values becomes equivalent to the total number of unique
tokens in the corpus, which was constructed after cleaning. Histograms showing the
parameters for these data sets can be seen in Appendix [Bl This approach is done to best
emulate how conference schedulers would utilize LDA models for conference scheduling.
The textual data and the pre-processing steps remain the same as well as document-topic
placement based upon 64, values. This portion is to explore how results between a varied
K (by choosing K which maximizes coherence score) and a fixed K (from the number of
conference sessions) in conjunction with automatically determined Dirichlet parameters
may affect the results of the LDA model. Additionally, a fictional conference schedule will

be created for the different data sets and compared with the actual schedule plan. The
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goal of creating these fictional conference schedules is not to create a perfect conference,
but instead, show how LDA models can be applied to group together similar documents

to create a baseline schedule which can then be improved upon by schedulers.

3.3.1 ICSP2019

The ICSP2019 conference had a total of 72 sessions and 42 unique sessions consisting
of 6 simultaneous sessions per block. This is close to the 70 topics that the LDA model
identified as the optimal value for K from the previous section. The average value for
a used across 72 values is 0.2369, close to the symmetric a of 0.25 used in the previous
method. The average n across 1686 values is 0.0138, which is in stark comparison to
17 = 0.99 chosen in the previous model. The use of these parameters results in an LDA
model with a coherence score of 0.4568. Table [3.18 shows the results of the ICSP2019
topics when K = 72 for all top five words. All the identical topics were removed besides

the first occurrence of the topic.
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3.3

LDA Models Using Conference K

‘Word 1

‘Word 2

‘Word 3

‘Word 4

‘Word 5

Topic 0

Topic 2

Topic 3

Topic 4

Topic 5

Topic 7

Topic 9

Topic 12
Topic 14
Topic 15
Topic 17
Topic 19
Topic 22
Topic 26
Topic 28
Topic 29
Topic 31
Topic 33
Topic 34
Topic 35
Topic 37
Topic 38
Topic 39
Topic 41
Topic 45
Topic 46
Topic 49
Topic 52
Topic 53
Topic 54
Topic 55
Topic 57
Topic 58
Topic 59
Topic 61
Topic 62
Topic 63
Topic 64
Topic 66
Topic 69

0.001*"inequality"
0.259*"market"
0.203*"estimation"
0.163*"programming"
0.057*"cost"
0.150*"technique"
0.268*"network"
0.281*"model"
0.127*"convergence"
0.486*"scenario"
0.167*"sddp"
0.231*"consistent"
0.091%"cut"
0.234*"sample"
0.267*"risk"
0.200*"'combination"
0.126*"method"
0.136*"statistical"
0.186*"investment"
0.231*"system"
0.096*"theory"
0.351*"distribution"
0.128*"converge"
0.091*"flexibility”
0.086*"apply"
0.069*"bound"
0.110*"uncertainty"
0.593*"dynamic"
0.142*"parameter"
0.150*"tool"
0.143*"policy"
0.077*"resource"
0.166*"objective"
0.152*"issue"
0.194*"distribute"
0.101*"preference"
0.123*"pde"
0.149*"function"
0.095*" chanceconstrained"

0.080*"solve"

0.001*"norm"
0.054*"gain"
0.134*"efficiently"
0.132*"decision"
0.036*"stochastic"
0.132*'convex"
0.055*"relaxation"
0.049*'framework"
0.074*"avoid"

0.073*'stochastic_ programming"

0.139*'practice"
0.104*"series"
0.064*"type"
0.123*"estimator"
0.166*"riskaverse'
0.197*'option"
0.086*"solution"
0.084*"oss"
0.115*"sequential"
0.052*"time"
0.082*"field"
0.140*"ambiguity set"
0.075*"valid"
0.083*"flow"
0.061*"illustrate"
0.059*"'component"
0.062*"'provide"
0.066*"evolution"
0.094*"approach”
0.110*"learning"
0.073*"renewable’
0.055*"water"
0.112*"framework"
0.083*'strategic"
0.190*"service"
0.077*"incorporate"
0.089*"concern"
0.090*"stochastic"
0.093*"complexity”

0.061*"constraint"

0.001*"cone"
0.041*"bidding"
0.119*"error"
0.082*"multistage stochastic"
0.028*"operation"
0.127*"optimal"
0.049*"price"
0.041*"discuss"
0.067*"gradient"
0.065*"year"

0.085*" continuous”
0.000*"inequality”
0.061*"dual"
0.064*"reduce"
0.132*"multistage"
0.086*"generally"
0.085*"propose”
0.067*"additional"
0.099*"impact"
0.049*"representation”
0.067*"describe"
0.052*"reformulate"
0.075*"theoretical"
0.073*"region"
0.059*"simple"
0.056*"define"
0.045*"demand”
0.047*"properly”
0.062*"management"
0.103*"algorithm"
0.059*"source"
0.052*"wind"
0.091*"development"
0.072*"market"
0.088*"user"
0.063*"return”
0.088*"'mathematical”
0.060*"process"
0.065*"sum"

0.041*"optimization"

0.001*"conic"
0.039%"day"
0.072*"expansion"
0.039*"discrete"
0.027*"uncertainty”
0.102*'linear"
0.046*"bind"
0.041*"'datum"
0.062*'standard"
0.062*"transition"
0.071*"true"
0.000*"cone"
0.056*"variable"
0.057*"size"
0.058*"measure"
0.035*"decision_maker"
0.056*"base"
0.058*"property"
0.089*"price"
0.047*'planning”
0.057*"space"
0.047*"uncertain_ parameter"
0.068*"investigate"
0.064*'paper”
0.058*"complex"
0.052*"scheme"
0.035*"energy”
0.000*"datadriven"
0.051*"portfolio”
0.100*'major"
0.058*"power"
0.049*'generator"
0.076*' capability"
0.065*"mathematical"
0.072*"infrastructure’
0.047*"year"
0.073*"offer"
0.058*"derive"
0.059*"machine_learne"

0.041*"case"

0.001*"datadriven”
0.038*"'dayahead"
0.072*'practical _application"
0.031*"depend"
0.027*"expect”
0.082*'compute"
0.043*'pricing"
0.032*"develop"
0.055*'regularization"
0.052*"build"
0.069*"cover"
0.000*"conic"
0.055*"feasible"
0.053*"composite"
0.032*"uncertainty set"
0.035*"degree"
0.049*'algorithm"
0.053*"methodology”
0.077*"multiple"
0.042*"storage"
0.054*"game"
0.040*"enforce”
0.056*"distribution"
0.052*"global"
0.054*"probability"
0.046*"evaluate"
0.035*"level"
0.000*"cone"
0.045*"probability"
0.077*"application"
0.051*"price"
0.049*"reserve"
0.075*"employ"
0.060*"understand"
0.052*'computing”
0.043*"investor"
0.073*"complete"
0.048*"condition"
0.056*"label"

0.039*"approximation"

Table 3.18: First 5 words from ICSP2019 LDA model topics using K = 72 and
automatically determined o and 7 parameters. Duplicate topics are removed. Note
that the highlighted topic is the topic which is repeated for all missing topic numbers.

Compared to the previous LDA model for ICSP2019, this model sees a sharp increase in

unique topics. While identical topics were still present, there were 33 out of the total 72

topics which were identical to each other. Compared to the 60 out of 70 identical topics

from the previous model, this is a considerable reduction in repeating topics. Additionally,

the topic-word probabilities in this approach are much higher and varied compared to the

previous approach. This is likely due to the use of a low average asymmetric n used in this

model versus the high symmetric n from the previous model. As with the other previous
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model, the inclusion of catch-all topics is inevitable for these LDA models as well. Many of
the presented topics seem to be catch-all topics as they include general terms that may be
associated with stochastic programming. Other topics seem to have specific themes such
as with topic 53. This topic may be related to applications of stochastic programming in
finance, including words such as parameter, portfolio, financial (not pictured), and asset

(not pictured). The document-topic distribution for this data set is shown in Figure

ICSP2019 (K = 72)
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Figure 3.5: Document-topic distribution based on highest 6, value for each document
for ICSP2019 when K = 72.

A clear increase in diversity for document-topic placement is shown as not one topic holds
a majority of all the documents from the conference. Additionally, many other topics
appear as well. Where originally there were only 8 different topics that documents were
assigned to in the previous model, this version of the LDA model on the same data set
shows 35 topics having at least one document assigned to them. While a total of 66
documents were assigned to topic 69, this is a much lower number than the 176 documents
assigned to one topic from the previous model. A similar issue appears here as with
the previous model. The most prevalent topic in terms of documents assigned to them
seems to be a catch-all topic in the scope of stochastic programming with words like solve,
constraint, optimization, or approximation that are commonly found in many stochastic
programming papers. With the topics and document-topic distributions in mind, the
conference schedule based on these results is shown in Figures 3.6 - 3.10 while the actual

conference schedule is presented in Figures 3.11 - 3.15.
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3.3 LDA Models Using Conference K

in terms of the number of parallel sessions, number of days, and number of conference
Names in bold with an asterisk for the actual conference schedule indicate the session chair,

The fictitious conference schedule was created to best mimic the actual conference schedule
blocks. The ICSP2019 schedule was created only using the names of authors presenting.
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but this was not important to include for the fictitious plan so they were not indicated.
To give a more visual display of how the documents may be similar, titles were included
in the fictitious plan as well as the authors. In the fictitious conference plan, plenary
sessions and pre-conference tutorials were not included in the conference schedule despite
the text from these documents being used for training the LDA model. This keeps only

mini-symposia and regular sessions.

Topics 69, 31, and 5 were assigned a considerable number of documents, resulting in many
sessions were allocated to these topics which spanned over multiple days. Because of
the size, some of these sessions with the same topic also ended up running in parallel
which is undesirable for conference schedulers. Due to the size and groupings of some of
these conferences, an entire conference block was able to be removed from day 5 from the
time slot of 13:20 - 15:00. This is due to many more sessions containing four speakers
compared to the actual conference schedule. While some of the parallel sessions could be
assigned to this last block, the parallelism between sessions would still exist regardless.
Additionally, day 5 has one empty session as all the documents were already assigned
at this point making it difficult to fill up the remaining sessions without putting only
sessions of one speaker in these slots. Since having many one-speaker sessions seemed
inefficient as it would allocate an entire room to one speaker, some topics with only one
document assigned to them were placed together. While the relationship between these
one document topics placed together has little to no similarity, this is a common theme

for the entire created conference plan as well.

With the larger topics, some groupings exist that appear also in the actual conference
schedule but these results could potentially just be due to chance and that many of
the words in these topics are common to all stochastic programming papers. Looking
at the three sessions titled New Techniques in Multi-Stage in day 4 of the conference
(Figure 3.14), there are a total of 13 documents assigned to these sessions. In the topics
created by LDA, these documents are distributed across many different topics. Six of
these documents appear in topic 69, two in topics 31 and 5, and one document in topics
4, 12, and 46. Given that topic 69 is the largest, the placement of documents into this
topic is likely due to this topic being a catch-all topic.

For smaller topics, similar groupings for documents that also appear in the actual conference
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schedule are less likely to be due to chance. However, for all the smaller topics, none of
these have any similar groupings as they appear in the actual schedule. This does not
entirely mean they are not related to each other as some topics such as topic 53 in day
4 (Figure 3.14) have some documents which are related to portfolio management and

optimization.

3.3.2 TSL2018

The TSL2018 conference had a total of 18 sessions with all sessions being unique and not
having any conference topics which span over multiple sessions. The LDA model from
the previous section identified K = 22 for the optimal number of topics. In this portion,
K = 18 as dictated by the total number of sessions in TSL2018. Using asymmetric priors
results in an average value of a as 0.0153, a much smaller o compared to the symmetric
value of 0.25 from the previous section. The average value across 1255 7 values is 0.0658
which is close to the symmetric value of 0.01. With a combination of these parameters,
the resulting LDA model has a coherence score of 0.3126. The topics from this LDA
model are shown in Table 3.19

‘Word 1 Word 2 ‘Word 3 ‘Word 4 Word 5
Topic 0 0.023*"vehicle' 0.018*"demand" 0.013*"system" 0.012*"distribution"  0.011*"service"
Topic 1 0.039*'passenger’  0.039*"service" 0.021*"transportation" 0.019*"vehicle" 0.016*"discount"
Topic 2 0.059*"vehicle" 0.027*"emission" 0.026*"zone" 0.025*"congestion" 0.021*"type"
Topic 3  0.018*"sequence”  0.016*"approach’ 0.016*"set" 0.014*"route" 0.013*"road"
Topic 4  0.069*"facility" 0.041*"client" 0.023*"demand" 0.018*"capacity" 0.018*"formulation"
Topic 5  0.046*"delivery"  0.036*"'demand" 0.029*"customer" 0.028*"courier" 0.018*"period"
Topic 6  0.034*'bundle" 0.023*"task" 0.023*"design" 0.017*"scenario" 0.013*"service"
Topic 7 0.063*"system" 0.045*"logistic" 0.026*"design" 0.015*"provide" 0.014*"shanghai_jiao"
Topic 8  0.029*'delivery"  0.022*"customer" 0.016*"vehicle" 0.010*"city" 0.009*"scenario"
Topic 9  0.044*'deadline”  0.024*'risk" 0.020*"probability" 0.016*"vehicle" 0.016*"robust"
Topic 10 0.049*'carrier" 0.025*"reduce" 0.021*"truck" 0.020*"consolidation"  0.018*"transportation"
Topic 11  0.026*"request" 0.018*"system" 0.014*"transportation" 0.012*"service" 0.012*"passenger"
Topic 12 0.001*"bike" 0.001*"ecommerce" 0.001*"van" 0.001*"integration" 0.001*"mix"
Topic 13 0.049*"order" 0.032*"delivery" 0.021*"item" 0.020*"route" 0.020*"system"
Topic 14 0.022*"approach"  0.017*"delivery" 0.017*"customer" 0.014*"propose" 0.013*"solve"
Topic 15 0.001*'facility” 0.001*"demand" 0.001*"client" 0.001*"deadline" 0.001*"capacity"
Topic 16 0.057*"solution"  0.027*"transportation" 0.027*"robustness" 0.021*"constraint" 0.021*"darp"
Topic 17 0.037*"station" 0.026*"design" 0.024*"system" 0.016*"node" 0.016*"analysis"

Table 3.19: First 5 words from TSL2018 LDA model topics using K = 18 and
automatically determined o and n parameters.



50 3.3 LDA Models Using Conference K

The topics presented using K = 18 look nearly identical to the topics when K = 22 as
presented in Table [3.9) The topic-word probabilities are very similar as well which is
likely due to the similar n values between the two different approaches for controlling
word sparsity in topics. A bigram in topic 7, shanghai_jiao, also appears despite all
proper nouns being removed indicating a potential error in pre-processing. This bigram
is in reference to Shanghai Jiao Tong University in China, where multiple authors are
housed. This could end up incorrectly assigning some documents to this topic if authors
are from this university or references are included with this university in the citation. The

distribution of documents to topics can be shown in Figure [3.16]

TSL2018 (K = 18)

10 4

Number of Documents
(=]

Figure 3.16: Document-topic distribution based on highest 6, value for each document
for TSL2018 when K = 18.

Even with the document-topic distributions, the results are very similar despite the
changes in parameters. This change is not as noticeable as with the models used with the
ICSP2019 data set. There is only a slight difference in the distribution in topics, and this
is likely due to the removal of some topics with a decreased K. Given these results, there
is likely to be many similar document groupings as discovered using the previous LDA
model on the same data set. The fictitious and actual conference schedules are presented
side by side in Figure [3.17} In this schedule, A and B sessions run in parallel, e.g., sessions
1A and 1B run parallel to each other.
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Day1

Day 2

Day 3

Figure 3.17: TSL2018 schedules as determined by LDA model and conference organizers.

TSL2018 LDA Schedule

Sesson 1A - Topic8

Session 1B - Topic 14

Same-Day Delivery with a
Heterogeneous Fleet of Drones and
Vehicles

An Exact Approach for the Vehicle
Routing Problem with Location
Congestion

Opportunities and threats of mixing
delivery options in the e-commerce
era

On the economic and environmental
benefits of collaborative
transportation and the coalition
configuration problem

Smart Locker Bank Design
Optimization for Urban
Omnichannel Logistics

Selecting Shipments at An Urban
Consolidation Center for Last-mile
Delivery with Cost Uncertainty

Session 2A - Topic 8

Session 2B - Topic 14

Are delivery-drones a solution for
the last-mile problem in urban
areas?

Dynamic Pricing of Flexible Time
Slots for Attended Home Delivery
Services

Omnichannel B2C Distribution:
Modeling Approach and
Deployment Scenarios

Load Dependent Electric Vehicle
Routing Problem With Time
Windows Considering Nonlinear
Charging Function

Multi-Commeodity Two-Echelon
Vehicle Routing Problem with Time
Windows

Anticipatory Dynamic Slotting in
Attended Home Delivery

Session 3A - Topic 8

Session 3B - Topic 14

Research on the problem of city
medical waste vehicle routing

A LNS and branch-and-check
approach for a VRP with cross-
docking and resource

synchronizati

on

Dynamic Pricing for Same-Day
Delivery Routing

An Iterative Auction for Carrier
Collaboration in Truckload Pickup
and Delivery

Scheduled Service Network Design
with Resource Management for
Multimodal City Logistics with
Inbound and Outbound Flows

Solving the Consistent Vehicle
Routing Problem via Column
Generation

Session 4A - Topic 0

Session 4B - Topics 8, 11

Solving last-mile distribution
problems after major earthquakes

Anticipating Emission-Sensitive
Traffic Management Strategies for
Dynamic Delivery Routing

Federated locker system in last mile
problem with Big Data

Hyperconnected Last-Mile Delivery
of Large Items in Urban Area

Managing disruptions in urban road
networks for real contexts

Enhancing Express Logistics
Efficiency by Big Data and Public
Transport in Urban City

Session 5A - Topics 0, 13

Session 5B - Topics 6,4

A sharing economy and multi-period
vehicle routing model for online to
offline service network

Designing e-Commerce
Transportation Network: Challenges
and Solutions

Workload Balance in Last-Mile
Delivery in Mega-Cities

Smart Bundling for Crowdsourced
Package Deliveries

Design and Anzlysis of Dynamic
Batching Policies for E-Commerce
Order Fulfillment

Vehicle routing with space- and
time-dependent stochastic travel
times

Session 6A - Topic3, 17

Session 6B - Topics 2, 9

Real-Time Integrated Re-scheduling
for Tramway Operations

Can Tolling Schemes Really Reduce
Emissions of Freight Transportation
in Urban Area?

Road logistics connectivity and
container drayage model in
enhancing urban logistics of new
development area in Hong Kong

Mixed Fleet of Electric and
Conventional Vehicle Routing Under|
Traffic Restriction Policies in Urban
Cities

Underground Freight Pipeline
System Logistic Network Design

The Vehicle Routing Problem with
Distribution Uncertainty in
Deadlines

Session 7A - Topic0, 5, N/A

Session 7B - Topic NfA

Sustaining Accessible Transportation|
Services With Ridesharing Options

On Optimally Moving Multiple
Loads Simultaneously in Puzzle-
Based Storage Systems

A Revenue Management Approach
for Attended Home Delivery

An Approximate Dynamic
Programming Method for the Multi-
Period Technician Routing and
Experience-based Service Times and

Stochastic Customers

A NSGAIl for the DARP with

Stochastic Transportation Times

The Capacitated Mobile Facility
Location Problem

Dayl

Day 2

Day 3

TSL2018 Actual Schedule

Sesson 1A - Green Urban Logistics

Session 1B - Stochastic Problems
with Time Uncertainty

Research on the problem of city
medical waste vehicle routing

Vehicle routing with space- and
time-dependent stochastic travel
times

Anticipating Emission-Sensitive
Traffic Management Strategies for
Dynamic Delivery Routing

The Vehicle Routing Problem with
Distribution Uncertainty in
Deadlines

Can Tolling Schemes Really Reduce
Emissions of Freight Transportation
in Urban Area?

A NSGAIl for the DARP with
Stochastic Transportation Times

Session 2A - Business Modules of
Urban Logistics

Session 2B - Disruption

Dynamic Pricing for Same-Day
Delivery Routing

Solving last-mile distribution
problems after major earthquakes

A sharing economy and multi-period
vehicle routing model for online to
offline service network

Real-Time Integrated Re-scheduling
for Tramway Operations

Smart Bundling for Crowdsourced
Package Deliveries

Managing disruptions in urban road
networks for real contexts

Session 3A -

Session 3B - City Logistics

A Revenue Management Approach
for Attended Home Delivery

Underground Freight Pipeline
System Logistic Network Design

Dynamic Pricing of Flexible Time
Slots for Attended Home Delivery
Services

Omnichannel B2C Distribution:
Modeling Approach and
Deployment Scenarios

Anticipatory Dynamic Slotting in
Attended Home Delivery

Scheduled Service Network Design
with Resource Management for
Multimodal City Logistics with
Inbound and Qutbound Flows

Session 4A - Consolidation for Urban
Delivery

Session 4B - Methods for Vehicle
Routing Problems

On Optimally Moving Multiple
Loads Simultaneously in Puzzle-
Based Storage Systems

Solving the Consistent Vehicle
Routing Problem via Column
Generation

Selecting Shipments at An Urban
Consolidation Center for Last-mile
Delivery with Cost Uncertainty

ALNS and branch-and-check
approach for a VRP with cross-
docking and resource
synchronization

Road logistics connectivity and
container drayage model in
enhancing urban logistics of new
development area in Hong Kong

An Approximate Dynamic
Programming Method for the Multi-
Period Technician Routing and
Experience-based Service Times and
Stochastic Customers

Session 5A - Urban Transportation &
Congestion

Session 5B - Lockers & Mobile
Facilities

Enhancing Express Logistics
Efficiency by Big Data and Public
Transport in Urban City

The Capacitated Mobile Facility
Location Problem

Hyperconnected Last-Mile Delivery
of Large ltems in Urban Area

Federated locker system in last mile
problem with Big Data

An Exact Approach for the Vehicle
Routing Problem with Location
Congestion

Smart Locker Bank Design
Optimization for Urban
Omnichannel Logistics

Session 6A - E-Commerce

Session 6B - Routing with Electric
Vehicles & Time Windows

Designing e-Commerce
Transportation Network: Challenges
and Solutions

Mixed Fleet of Electric and
Conventional Vehicle Routing Under|
Traffic Restriction Policies in Urban
Cities

Opportunities and threats of mixing
delivery options in the e-commerce
era

Load Dependent Electric Vehicle
Routing Problem With Time
Windows Considering Nonlinear
Charging Function

Design and Analysis of Dynamic
Batching Policies for E-Commerce

Multi-Commodity Two-Echelon
Vehicle Routing Problem with Time

Order Fulfillment Windows
Session 7A - Collaborative Logistics . . .
& Ridesh Session 7B - Last Mile Delivery

Sustaining Accessible Transportation|
Services With Ridesharing Options

Workload Balance in Last-Mile
Delivery in Mega-Ci

On the economic and environmental
benefits of collaborative
transportation and the coalition
configuration problem

Are delivery-drones a solution for
the last-mile problem in urban
areas?

An Iterative Auction for Carrier
Collaboration in Truckload Pickup

and Delivery

Same-Day Delivery with a
Heterogeneous Fleet of Drones and
Vehicles

Note that titles in bold and red indicate papers that were not found in the data set used
for creating the LDA model.
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One issue encountered while creating this schedule was that some documents did not exist
in the data set used to create the LDA model and was not available to use. The titles
in sessions were set to the topics where these documents were assigned. In some cases,
more than one topic was assigned to a session as not all topics were of equal length or
a multiple of three (the number of time slots in each session). For the documents that
did not appear in the data set, they were organized into their own topic and set with the
session title N/A. Additionally, some documents were not included in the final version
of the actual conference schedule and has a total of 42 documents whereas the data set
contained 49 total documents. This is done to allow for the LDA model to be trained off

of more textual data to create more meaningful topics.

The conference schedule using LDA topics were constructed in order of topic size, with
the largest topics such as topics 8 and 14 appearing first and smaller topics and N/A
topics appearing last. In terms of similar groupings, many different documents appear
together in the same topic for the LDA schedule as with the actual conference schedule.
While topics 8 and 14 are quite broad and include the most documents, there still seems

to be an underlying theme within some of these and the documents contained within.

In the actual schedule, topic 8 is associated with the sessions on city logistics, urban
transport, green urban logistics, and last-mile delivery, all of which have a similar theme
of the use of logistics in urban spaces. In Session 2A, a document titled Omnichannel B2C
Distribution: Modeling Approach and Deployment Scenarios is contained in the same topic
as the document on Scheduled Service Network Design with Resource Management for
Multimodal City Logistics with Inbound and Outbound Flows in Session 3A. In the actual
TSL2018 schedule, both of these documents appear under Session 3B, City Logistics. For
topic 14, this topic is associated with attended home delivery, vehicle routing problems
(VRP), and collaborative logistics. While topic 8 has a clear underlying theme of logistics
in urban settings, topic 14 has a bit more of an unclear relationship with each other
which may be indicative of a catch-all topic. Despite this, similar groupings with a
common theme exist between some of the documents contained in this topic. Documents
on collaboration and consolidation appear in topic 14, including Selecting Shipments
at an Urban Consolidation Center for Last-Mile Delivery with Cost Uncertainty, An

Iterative Auction for Carrier Collaboration in Truckload Pickup and Delivery, and On the
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Economic and Environmental Benefits of Collaborative Transportation and the Coalition
Configuration Problem which all have a clear relationship with each other. These results

are similar to the results found using the other approach with the same data set.

The LDA schedule grouped up similar documents from smaller topics as well, such as in
topic 0 from Session 4A (LDA schedule), which is associated with disruption management
in the actual TSL2018 schedule. In this topic, two of the assigned documents are included in
the disruption management session (Session 2B for the actual conference schedule). Solving
Last-Mile Distribution Problems after Major Earthquakes and Managing Disruptions in
Urban Road Networks for Real Contexts are grouped in topic 0 with the clear theme of

disruption management.

As expected, the results shown here are very similar to the results presented across Tables
- where there is a clear and discernible theme across the different topics, however,
the issue of certain documents being assigned to only one topic is still prevalent which
causes an issue in creating some cohesive and similar sessions such as in the later sessions

for the LDA schedule as not many of these sessions have a common specific theme.

3.3.3 LOGMS2017

In this version of the LDA model K is set to 24, the total number of sessions in the actual
LOGMS2017 conference. Compared to the previous version where K = 49, this likely
will see a sharp decrease or complete removal of any identical topics with a much lower
number of total topics. All of the 24 asymmetric a values had an average value of 0.0648
and an average 1 of 0.0431 for each of the 1420 unique tokens. These parameters result
in a coherence score of 0.3832, a slight improvement over the other LOGMS2017 model.
These average o and n values are much lower than in the previous LDA model where the
symmetric a = 0.25 and 1 = 0.99. This change will likely play into word sparsity for each
of the topics and may significantly change topic-word probabilities. The topics for this
model are presented in Table [3.20]
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‘Word 1 Word 2 Word 3 Word 4 ‘Word 5

Topic 0 0.080*'container" 0.026*"network" 0.017*"transport” 0.011*"freight" 0.011*"model"

Topic 1 0.001*'calculation” 0.001*"branchandprice"  0.001*"intermediate" 0.001*"'framework" 0.001*"feasible"

Topic 2 0.075*"phase" 0.063*"problem" 0.030*"algorithm" 0.022*"approach” 0.021*"study"

Topic 3  0.058*"revenue_management" 0.037*"intermodal" 0.037*"target" 0.037*"select" 0.035*"service"

Topic 4  0.171*"port' 0.034*"al" 0.025*"critical" 0.025*"compete" 0.020*"form"

Topic 5  0.054*"algorithm" 0.039*"battery" 0.037*"range" 0.031*"rapidly" 0.029*"experiment"

Topic 6  0.078*"performance" 0.076*"measure" 0.048*"lag" 0.039*"country” 0.027*"level"

Topic 7 0.052*"'norwegian" 0.039*"defence" 0.033*"force" 0.026*'long _term" 0.026*"structure"

Topic 8  0.093*"vessel" 0.089*"market" 0.052*"time" 0.043*"rate" 0.041*"average"

Topic 9  0.146*"block" 0.019*"dual" 0.019*"equilibrium"  0.019*"valuation" 0.019*"stem"

Topic 10 0.020*"container" 0.019*"empty_ container' 0.018*"operation" 0.017*"transport" 0.016*"industry"

Topic 11 0.022*"cost" 0.018*"model" 0.017*"system" 0.016*"increase" 0.011*"risk"

Topic 12 0.029*"port" 0.024*"berth" 0.021*"terminal" 0.020*"vessel" 0.019*"operation"

Topic 13  0.037*"vessel" 0.028*"time" 0.027*"company" 0.027*"problem" 0.023*"truck"

Topic 14 0.059*"consumer”" 0.048*"technology" 0.039*"manager" 0.030*"energy" 0.027*"environmental"

Topic 16 0.072*"ship" 0.032*"time" 0.024*"lock" 0.020*"stochastic" 0.015*"problem"

Topic 18 0.046*"drone" 0.045*"identify" 0.044*"area" 0.027*"logistic" 0.026*"comprehensive"

Topic 19 0.067*"supply_ chain" 0.053*"logistic" 0.031*"study" 0.023*"environmental"  0.021*'railway"

Topic 20 0.280*"speed" 0.079*"emission” 0.077*"condition" 0.052*"shipping" 0.031*"vary"

Topic 21 0.035*"storage" 0.025*"product" 0.025*"voyage" 0.024*"port" 0.024*"time"

Topic 22 0.091*"port" 0.056*"seaport" 0.032*"relationship’  0.028*"study" 0.025*"collaboration"

Topic 23 0.030*"problem" 0.030*"cruise” 0.023*"solve" 0.022*"model" 0.020*"demand"

Table 3.20: First 5 words from LOGMS2017 LDA model topics using K = 24 and

automatically determined o and 7 parameters. Duplicate topics are removed. Note that
the highlighted topic is the topic which is repeated for all missing topic numbers.

Despite the decrease in the total number of topics for this data set, there still managed
to be a total of three topics that were identical to each other. One thing to note is
under the column Word 1, several words as the most probable word in the topic in
terms of topic-word probability are shared among different topics. For example, topics 4,
12, and 22 all contain port as being the most probable term in the topic with different
probabilities which can skew how documents are distributed into different topics. If a
paper uses the word port a few times, this can distribute documents into this topic even
if the document is not inherently about ports. This can become an issue, especially in
specialized conferences such as this where words like port are common to a logistics and
maritime systems conference. Using these topics, the documents are then distributed

based on the highest 6, value for each k as shown in Figure [3.18]
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Figure 3.18: Document-topic distribution based on highest 6, value for each document
for LOGMS2017 when K = 24.

Compared to the other document-topic figure shown in Figure [3.4] the placement of
documents across topics is more uniform. The previous method had documents dispersed
throughout 18 out of the total 49 topics with this method having 19 out of 24 different
topics. Additionally, fewer documents are clustered into one topic. While 47 out of the
total 96 documents were placed into topic 11 for the previous model, this shows only
36 documents organized into one topic which, coupled with the increase of coherence
score, may show an improvement of topic cohesion based on documents grouped per topic.
Based on these results, the LDA model-based conference plan is shown in Figure 3.19

with the actual conference schedule presented in Figure |3.20}
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PROGRAMME LOGMS 2017 - PARALLEL SESSIONS

T1A
Topic1l

Thursday August 24th, 10:45 - 12:15 hr

T1B
Topic 11

T1C
Topic13

TiD
Topic 12

T1

A metaheuristic for the multimodal network

flow problem with praduct qu
and empty repositioning

ity preservation

Natural catastrophe risk index of seaports

Strategic optimization of offshore wind
installations

Impact of Leadership and Government Subsidy
on Port Construction and operations

Controlling the Cash Flow Risk in Mari
Fleet Renewal

Heuri

ic based approach for generation of cost-
effective and robust supply vessel schedules

The Detention Decisions for Empty Containers
inthe Hinterland Transportation System

Solving dynamic multi-continuous berth
allocation and quay crane scheduling problems
simultaneously by using simulation
optimization

Analyzing the environmental impact of multi-
modal coastal shipping for automobile

A Modularized Discrete-Event Modeling
Approach for High-Fidelity Mega Container Port

International Differences in the Customer
Value of Autonomous Driving Systems

Implications of Berth scheduling with cold
ironing provision for different penetration

distribution in India Simulation rates
Measuring container terminals efficiency usin, Simulation based lectures for students in Logistics process mapping and simulation ina
& N ¥ & o Optimization in Roll-on Roll-off shipping € P Vpp £ N
the Data Envelopment Analysis Method logistics container terminal

T2A
Topic11

Thursday August 24th, 13:30 - 15:00 hr

T28
Topic 11

T2C
Topic13

T2D
Topic 16

T2

A Single Trade Routing Problem
off Liner Shipping

Scrubber: a potentially overestimated
compliance method for the Emission Control
Areas; The importance of involving operational
behavior changes in the evaluation

Integrated Cross-Dock Scheduling and
Assignment

Sustainability Measurement in Turkey Maritime|
Industry

Simultaneous optimization of speed and buffer
times in liner shipping

Measures to mitigate and reverse the negative
impacts of the low sulphur requirements on

short sea shipping in Europe

Scheduling appointments for trucks at
container terminals

Scheduling a series of locks along a waterway

Gaming of Possible Future Norwegian Land
Forces

Comparison between EOQ and $-EOQ by
logistics strategies under Emissions Trading
System

A balanced KPI tree to measure supply chain
perfarmance

Robust traffic management for the Kiel Canal

Online, adaptive condition-based maintenance

planning for multi-component systems under a

given operating schedule. A novel method for
and application in the mari e sector.

Modeling and managing risk using portfolio
optimization techniques for maritime systems

Block Stowage and Crane Intensi
Planning

in Stowage

The Stochastic Berth Allocation Problem

T3A
Topic1l

Thursday August 24th, 15:30 - 17:00 hr

T3B
Topic 11

T3C
Topic10

T3D
Topic 23

T3

Scenario-analysis for assessment of operational
strategies for evaluation of changeability in
complex markets: case from offshore shipping

Balancing the Economic and Environmental
performance of Seaborne Cold Chain: A Value-
based Approach

Feeder network design with transshipments at
sea

A Column-Row-Generation Approach to Liner
shipping Network Design

Innovation in road freight transport:
quantifying the environmental performance of
operational cost reducing practices

The Event Study of Oil Price Shocks on Stock
Returns of Transportation Industry in Taiwan

A Network-based Approach to Reduce
Maintenance Costs and Pollution in Empty
Container Management

A traveling salesman problem model for liner
shipping cost and CO2 minimization

Robust Tractable Approximation of a Multistage
Stachastic Program for Empty Container
Repositioning Considering Foldable Containers

Valuation of Rapid Reconfiguration: A Case
from Bulbous Bows in Container Shipping

ary operations assessment through the use
of apinion surveys

value of prediction in bulk shipping

The Stochastic Cargo Mix Problem

Agility and investment lags in fleet expansion a
case from bulk shipping

Stochastic programming for fleet renewal in
the offshore oil and gas industry

A time-driven two-echelon location-routing
problem with synchronization and sequential
delivery and pickup

F1A
Topic11

Friday August 25th, 8:30 - 9:35 hr

F1B
Topic0

F1C
Topic 10

F1D
Topic 23

Fare Class Sizes in Intermodal Container
Networks- A Revenue Management Approach

Emissions in container liner shipping A case
study of a global shipping netwark

Short sea shipping - a competitive alternative
for land-based container transportation?

Maodels of route planning for cruise shipping

A data driven supply chain facility location
problem with stochastic demand and

A Network Design Prablem for COSCO under
the One Belt One Road Initiative of China

Study on Genetic Algorithm for Vehicle Routing
Problem using Drone

On proper efficiency in multiobjective semi-
inf

e optimization

Freight Market and Real Sea Conditions

F1 uncertainties
Studying Determinants of Compliance with Considering the Special Characteristics of
Barriers to innovation diffusion in the reefer The role of consignees in empty container Maritime Environmental Legislation in the Cruise Line Revenue Management in Mixed-
chain management North and Baltic Sea Area: A Model developed | Integer Linear Programming Models for Cabin
from Exploratory Qualitative Data Capacity Allocation
Saturday August 26th, 11:30 - 13:00 hr
S1A S1B 51C $1D
Topic1l Topic0 Topics 19, 2 Topics 22,9,7,6
Sustainable Logistics Villages: A Study on
A performance measures guantitative analysis Integrated scheduling in synchromodal Logistics Villages Developed by Turkish State Understanding of port collaboration: A case
for a three stage logistics system transport Railways with Respect to the Criteria for study of Thailands port
Sustainable Logistics Using TOPSIS Method
Speen-i Optimization for Crude Oil tankers as a The value of collaboration in hinterland Scenario based military logistics modelling Block-Coordinate Methods and Stochastic
function of Cargo Inventory Cost, Demurrage, N ~ A N
51 container transport methodological and practical challenges Programming

Supply chain optimization by matrix expression

Development of a K-DST for improving
competitiveness of railway freight transport

Generalized periodic vehicle routing and
maritime surveillance

Norwegian Long Term Defence Planning

On the relationship between vessel speed,
port time and demurrage

Evaluating resilience of port-hinterland road-
inland water shipping container transportation
network

An exact approach for a vehicle routing
problem with pickup and delivery time
windows and some sample solutions

Application of Spatial Econometrics on Logistics
Performance Index

S2A
Topic11

Saturday August 26th, 14:00 - 15:30 hr

528
Topic0

s2c
Topics 21, 14, 18

52D
Topics11,5,4, 3

Real energy efficiency in the seaway

Intelligent Cross-sectional Yard Crane
Deployment in a Transhipment Container Hub

A storage relocation policy for a progressive
zone picking system and its simulation analysis

An Exact Algorithm for Electric Vehicle Routing
Problem with Recharging

On the Fuel Consumption Function for a Vessel
under Changing Sailing Conditions

Empirical Evaluation of an Automated
Container Terminal with Truck Overpass
Structures on the Storage Yard of Parallel

Layout

Maritime Inventory Routing in Roll-on Roll-off
Shipping

Price Alliance and Service Competition Among
Ports Group: Co-opetition Mechanism and
Incentives Analysis

Disruption recovery and rescheduling problems
in containers drayage

A container fleet sizing problem with
combinable containers in liner shipping

The Role of Environmental Considerations in
Consumer Decisions to Adopt Electric Vehicles

Integrating Resource and Revenue
Management into Service Network Design

Modelling the impact of infrastructure
developments on the resilience of intermodal
container transport networks: One-Belt-One-

Competition between containers ports in
Mediterranean

Road Case study

Future Trends in Logistics: A Biased View on
Urban Mobility and Its Interconnection with

Transport Networks

Chassis Management at U.S Container Ports

Figure 3.19: LOGMS2017 schedule as determined by LDA model.
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PROGRAMME LOGMS 2017 - PARALLEL SESSIONS

T1A- NORS - Operations research 1 (Aud.14)
Chair: J. Géez

Thursday August 24th, 10:45 - 12:15 hr

TiB - Environment & Sustainability 1 (Aud.22)
Chair: C. Aksu

TAC - Facility location & Network design
(Aud.23)
Chair: K. Fagerholt

TID - Empty container management {Aud.24)
Chair: Y. Bouchery

m

s.D. F1dm, "Block-Coordinate Methods and
stochastic Programming”

X. Zhang and J.5.L. Lam, "Balancing the
Economic and Environmental Performance of
seaborne Cold Chain: A Value-based Approach”

s. Backe and D. Haugland, "Strategic
optimization of offshore wind installations"

M. Yu, J.C. Fransoo and C.-Y. Lee, "The
Detention Decisions for Empty Cantainers in
the Hinterland Transportation System"

J.-). Ruckmann, "On proper efficiency in
multiobjective semi-infinite optimization”

N.K.Tran, .5.L. Lam, H. Jia and R. Adland,
"Emissions in container liner shipping — A case
study of a global shipping network”

K. Pan, D. Yang and S. Wang, "A Network Design
Problem for COSCO under the One Belt One
Road Initiative of China"

N. Dellaert, M. Steadieseifiand T. Van
'Woensel, "A metaheuristic for the multimodal
network flow problem with product quality
preservation and empty repositioning”

H. Fujikawa, "Supply chain optimization by
matrix expression”

A. Ozmen, "Sustainability Measurement in
Turkey Maritime Industry”

B. Medboen, M.B. Holm, P. Schitzand K.
Fagerholt, "Feeder network design with
transshipments at sea”

B. Legros, Y. Bouchery and J. Fransoo, "The role
of consignees in empty container
management”

Y. Kis;
approach for generation of cost-effective and
robust supply vessel schedules”

iou and I. Gribkovskaia, "Heuristic based

C. Aksuand I.M. Basaran, "Sustainable Logistics
Villages: A Study on Logistics Villages
Developed by Turkish State Railways with
Respect to the Criteria for Sustainable Logistics
Using TOPSIS Method"”

F. Wang, M. Xiang, X. Zhua, X. Xia, "Impact of
Leadership and Government Subsidy on Port
Construction and Operations"

F. Schulte, N.S. Bernat and S. Voss, "A Network-
based Approach to Reduce Maintenance Casts
and Pollution in Empty Container Management"|

T2A- NORS - Operations research 2 (Aud.14)
Chair: S.L. Nonds.

Thursday August 24th, 13:30 - 15:00 hr

T28- Data analysis (Aud.22)
Chair: V.M. Durski Silva

T2C - Scheduling (Aud.23)
chair: F. Spieksma

T2D - Liner shipping (Aud.24)
Chair: R. Dekker

T

E. Gustavsen, A.F. Tollefsen and B. Eggereide,
"Military operations assessment through the
use of opinion surveys"

). Wang, B.-Y. Lai and P.-C. Lin, "Application of
Spatial Econometrics on Logistics Performance
Index"

W. Passchyn and F. Spieksma, "Scheduling a
series of locks along a waterway"

). Xia and Z. Xu, "A Column-Row-Generation
(Approach to Liner Shipping Network Design”

M. Guttelvik and S. Glaerum, "Norwegian Long
[Term Defence Planning"

1. H. Kim and S. Hong, "A storage relocation

policy for a progressive zone picking system

and its simulation analysis"

7. 2is, M. Golias and H. Psaraftis, "Implications
of Berth scheduling with cold ironing provision
for different penetration rates”

7. vallestad, A. Weggersen, M. Christiansen, K.
Fagerholt, J.R. Hansen and J. Rakke, "A Single
Trade Routing Problem in Roll-on Roll-off Liner
Shipping”

. skalnes, K. Fagerholt, G. Pantuso and X.
Wang, "Controlling the Cash Flow Risk in
Maritime Fleet Renewal”

B. Frank and S.J. Schvaneveldt, "International
Differences in the Customer Value of
|Autonomous Driving Systems"

R.D. Koster, A. Rijal and M. Bijvank, "Integrated
Cross-Dock Scheduling and Assignment”

P. Cariou, A. Cheaitou and R. Larbi, "A traveling
salesman problem model for liner shipping cost]
and CO2 minimization"

S. Chandra, K. Fagerholt and M. Christiansen,
"Analyzing the environmental impact of multi-
modal coastal shipping for automobile
distribution in India"

G. Campos Pires, V.M. Durski Silva and C.W.
Nogueira Fernandes, "Measuring container
terminals efficiency using the Data
Envelopment Analysis Method"

[A. Pérez Rivera and M. Mes, "Integrated
scheduling in synchromodal transport”

). Mulder, W.v. Jaarsveld and R. Dekker,
"Simultaneous optimization of speed and
buffer times in liner shipping”

T3A- NORS - Operations research 3 (Aud.14)
Chair: B. Arnfinnsson

Thursday August 24th, 15:30 - 17:00 hr

T3B - Stochastic problems 1 (Aud.22)
Chair: F. Meisel

T3C - Electric vehicles & Routing (Aud.23)
Chair: B. Frank

T30 - Collaborative logistics (Aud.24)
Chair: M. Guajardo

RE]

B. Arnfinnsson, "Scenario based

tary
logistics modelling ~ methodological and
practical challenges”

F. Meisel, "Robust traffic management for the
Kiel Canal”

B. Frank and D. Xu, "The Role of Environmental
Considerations in Consumer Decisions to Adopt
Electric Vehicles”

S. Kotcharin, "Understanding of port
collaboration: A case study of Thailand’s port"

5.E. Martinussen, D.H. Bentsen, M. Halser, H.
|Ajer and U.-P. Hoppe, "Gaming of Possible
Future Norwegian Land Forces”

B. Vermeulen, T. Tan, . Eruguz-Colak and G.-
.V. Houtum, "Online, adaptive condition-based
maintenance planning for multi-component
systems under a given operating schedule. A
novel method far and application in the
maritime sector.”

C. Lee, "An Exact Algorithm for Electric vehicle
Routing Problem with Recharging”

V. Santén, M. Andreasson, I. Cedulf, C.
Finnsgard and M. Svanberg, "Short sea shipping
a competitive alternative for land-based
container transportation?”

R.B. Lopes, C.W. Nogueira Fernandes and V.M.
Durski Silva, "Logistics process mapping and
simulation in a container terminal”

S.5. Pettersen, E. Sandvik, K. Fagerhalt and B. E.
| Ashjarnslett, "Stochastic programming for fleet
renewal in the offshore oil and gas industry"

M.F. Fauske and C. Mannino, "Generalized
periodicvehicle routing and maritime
surveillance"

A. Giudici, T. Lu, C. Thielen and R. Zuidwijk,
"The value of collaboration in hinterland
container transport”

V. Prochazka, S.w. Wallace and R. Adland,
"Value of prediction in bulk shipping"

M.A. Strem, C.F. Rehn, B.E. Asbjernslett, S.0.
Erikstad and S. Pettersen, "Scenario-analysis for]|
assessment of operational strategies for
evaluation of changeability in complex
markets: case from offshore shipping”

R. Yaman, T.S. Tezer and G. Yaman, "An exact
approach for a vehicle routing problem with
pickup and delivery time windows and some
sample solutions”

V. Carlan, C. Sys and T. Vanelslander,
"Innovation in road freight transport:
quantifying the environmental perfarmance of
operational cost reducing practices”

F1A - NORS - Operations research 4 (Aud.21)
Chair: M. Guajardo

Friday August 25th, 8:30 - 9:35 hr

F1B - Stochastic problems 2 (Aud.22)
Chair: D. Pacino

FIC- Revenue management (Aud.23)
Chair: 5. Wang

F1D - NeLT - Next Logistics Technologies.
(Aud.2a)
Chair: K.H. Kim

F. Wang, X. Zhuo, X. Xia, "Price Alliance and
Service Competition Among Ports Group: Co-

opetition Mechanism and Incentives Analysis"

S. Lee, Y. Park, S. Kim and I. Moon, "Robust
Tractable Approximation of a Multistage

Stochast
Repositioning Considering Foldable

Program for Empty Container

Containers”

K. Wang, S. Wang, L. Zhen, X. Qu and H. Hu,
"Models of route planning for cruise shipping”

M.R.
for improving competitiveness of railway

m and S. Lee, "Development of a K-DST

freight transport”

B. Dong, K. Fagerholt, M. Christiansen and S.
Chandra, "Maritime Inventory Routing in Roll-
on — Roll-off Shipping"

N. Absi, D. Feillet, E. Sanlaville and X. Schepler,
"The Stochastic Berth Allocation Problem”

B.v. Riessen, R. Dekker, R. Negenborn and J.
Mulder, "Fare Class Sizes in Intermodal
Container Networks- A Revenue Management
Approach”

M. Kang and S. i, "Study on Genetic Algorithm
for Vehicle Routing Problem using Drone"”

5.M. Mirhedayatian, M. Guajardo, 5.W. Wallace
and T.G. Crainic, "A time-driven two-echelon
location-routing problem with synchronization
and sequential delivery and pickup"

. Christensen, A. Erera and D. Pacino, "The
Stochastic Cargo Mix Problem”

D. Sturm and K.
Special Characteristics of Cruise Line Revenue

ischer, "Considering the

Management in Mixed-Integer Linear
Programming Models for Cabin Capacity
Allocation”

V.N. Riaventin, K.H. Kim and C.S. Ko,

"Scheduling appointments for trucks at

container terminals”

S1A - Supply chains {Aud.21)
Chair: V. Vrysagotis

Saturday August 26th, 11:30 - 13:00 hr

S1B - Vessel speed & Energy consumption
(Aud.22)
Chair: R. Adland

$1C- Disruptions & Resilience (Aud.23)
Chair: M. Vidovic

51D - Ports & Containers 1 (Aud.24)
Chair: D. Pacino

s1

Y. Wang, LH. Lee and E.P. Chew, "A balanced
KPI tree to measure supply chain perfarmance”

E. Lindstad, H. Jia and R. Adland, "speed
Optimization for Crude Oil tankers as a function
of Cargo Inventory Cost, Demurrage, Freight
Market and Real Sea Conditions”

M. Vidovic, N. Bjelicand D. Popovic, "Disruption|
recovery and rescheduling problems in
containers drayage"

... Jiang, "Intelligent Cross-sectional Yard
Crane Deployment in a Transhipment Container]
Hub"

Y. Wang, R.Y. Shou, LH. Lee and E.P. Chew, "A
data driven supply chain facility location
problem with stochastic demand and

H. Jia, V. Prakash, R. Adland and T. smith, "On
the relationship between vessel speed, port
time and demurrage”

P. Achurra-Gonzalez, 5. Hu, K. Zavitsas, D.J.
Graham, F. Suand P. Angeloudis, "Modelling
the impact of infrastructure developments on
the resilience of intermodal container transport|
networks: One-Belt-One-Road Case study”

T.. Kim, 5.P. Moon and K.R. Ryu, "Empirical
Evaluation of an Automated Container Terminal
with Truck Overpass Structures on the Storage
Yard of Parallel Layout"

B. Castelein, H. Geerlings and R.v. Duin,
"Barriers to innovation diffusion in the reefer

chain"

F.-C. Wolff, R. Adland, P. Cariou and H. Jia, "Real
energy efficiency in the seaway”

N. Liu, H. Chen and J.5.L. Lam, "Evaluating
resilience of port-hinterland road-inland water
shipping container transportation network"”

K. shintani, A. Imai and U. Malchow, "A
container fleet sizing problem with combinable
containers in liner shipping”

V. Vrysagotis and T. Bratis, "A performance
measures quantitative analysis for a three stage|
logistics system”

C. Li and X. Qi, "On the Fuel Consumption
Function for a Vessel under Changing Sailing
Conditions"

D.K. Li, J.5.L. Lam and X. Cao, "Natural
catastrophe risk index of seaports”

D. Pacino and R. Roberti, "Block Stowage and
Crane Intensity in Stowage Planning”

S2A - Simulation (Aud.21)
Chair: H. Schuett

Saturday August 26th, 14:00 - 15:30 hr

528 - Environment & Sustainability 2 (Aud.22)
Chair: suk Lee

$2C - Risk management & Real options
(Aud.23)
C.Fulga

Ch:

520 - Ports & Containers 2 (Aud.24)
Chair: E. Twrdy

H.Li, C. Zhou, H. Chi, LH. Lee, E.P. Chew, X.F.
Yin and X. Fu, "A Modularized Discrete-Event

¥. Gu, "Scrubber: a potentially overestimated
compliance method for the Emission Control

C. Fulga, "Modeling and managing risk using
portfalio optimization techniques for maritime

E. Twrdy and M. Batista, "Competition between
containers ports in Mediterranean”

Modeling Approach for High-Fidelity Mega Areas; The importance of involving operational [systems"
Container Port Simulation” behavior changes in the evaluation”
C.Zhou, A. Stephen, H.Li, EP.Chewand LH. |T.Zis and Ha. Psaraftis, "Measures to mitigate |T. Bi-Huei, "The Event Study of Oil Price Shocks [M. Ngand W.K. Talley, "Chassis Management at

Lee, "Index based Heuristic Approach for ULD

and reverse the negative impacts of the low

on Stock Returns of Transportation Industry in

U.S Container Ports"

Sorting Operation in Third Party Logistics” sulphur requirements on short sea shippingin |Taiwan"
Europe”
G. Tasoglu and G. Yildiz, "Solving dynamic multi-|T. Freese, M. Gille, A. Hursthouse and J. ). Leonhardsen, C.F. Rehn, B.E. Asbjgrnslett and [V. Roso, . Franzén, L. Streling, C. Finnsgard, V.

continuous berth allocation and quay crane
scheduling problems simultaneously by using
simulation optimization"

Struthers, "Studying Determinants of
Compliance with Maritime Environmental
Legislation in the North and Baltic Sea Area: A
Model developed from Exploratory Qualitative
Data"

5.0. Erikstad, "Valuation of Rapid
Reconfiguration: A Case from Bulbous Bows in
Container Shipping”

Santén and M. Svanberg, "Value stream
mapping of container flows in the Port of
Gothenburg"

C.T. Bjorbaek, O. Berg and H. Schuett,
"Simulation based lectures for students in
logistics”

M.R. Kim, Y.J. Kwon and S. Lee, "A comparison
between EOQ and S-E0Q, by logistics strategies
under Emissions Trading System"

C. Christensen, C.F. Rehn, R.0. Adland, B.E.
Asbjgrnslett, S.0. Erikstad and S.-E. Fleten,
"Agility and investment |ags in fleet expansion

& case from bulk shipping”

N. Milovanovic, "Port competition in
Northwestern Europe: a case study"

Figure 3.20: LOGMS2017 schedule as

determined by conference organizers.
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The fictional conference schedule was created to best mimic the actual conference schedule,
however, it ignored a constraint that the conference schedulers had to abide by in their own
scheduling. Conference sessions T1A, T2A, T3A, and F1A from the actual schedule were
organized together under the NORS (Norwegian Operation Research Society) session title.
These research papers were required to be grouped up together for conference schedulers,
but for simplicity, this constraint was ignored as the goal was not to create the perfect

conference plan but instead show the applications of LDA in conference scheduling.

While the actual schedule had several topics spanning over multiple sessions, the LDA
model-based schedule had far more sessions dedicated to one topic. For example, topic
11 has 10 total sessions dedicated to at least one of the documents in this topic. Topic
11 could not uniformly fill up all the sessions in the fictitious conference schedule, and
therefore one document from this topic was assigned into session S2D along with three

other topics, each of which only had one document assigned to them.

Looking at some of the constructed sessions from the LDA topics show relationships
between documents while others do not. Topic 23 in session F1D shows that two documents
discuss cruise ships, while the last document discusses multiobjective optimization. These
two documents on cruise shipping appear in the same session in the actual LOGMS2017
schedule under session F1C, Revenue Management. This document on optimization
may be related to one of the cruise ship documents found in this topic. Both discuss
mixed-integer linear programming models for cabin capacity allocation which would be
related to cruise ship revenue optimization. However, the other documents from topic 23

included in T3D have somewhat of a weak relationship with the documents in F1D.

Topic 11 had the most documents assigned to this topic, and this is likely due to it
being a catch-all topic. Looking at the words presented in Table [3.20, most of the first
five words presented are very general and hard to choose a specific topic title given the
words. Looking closer at the word cloud showing the top 20 words for this topic as seen
in Figure [3.21] shows that nearly all of the top 20 words in this topic are words found
in any research paper. Only some words such as vessel, cargo, and product have a more
specific relationship to maritime logistics, however, these words are very small in the word
cloud indicating lower frequency out of all documents in this topic and lower topic-word

probability. Meanwhile, smaller topics such as topic 0 which still span over several sessions
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have a more specific theme of being related to containers. The result of this can be seen
in the LDA schedule with sessions F1B, S1B, and S2B having document titles containing
the word container in the title. All the documents in the LDA based conference schedule
S2B also appear in the actual conference schedule under the sessions titled with Ports &
Containers. This shows that the LDA model was successful in separating many of the
documents relating to containers from other topics but was not as specific in this regard
as the actual conference schedule. In the actual conference schedule, the session titled
Empty Container Management contained the document titled The Role of Consignees in

Empty Container Management, which was also assigned to topic 0.

LOGMS2017 Topic 11

system+. :

study
paper

Figure 3.21: Topic 11 word cloud from LOGMS2017 using the top 20 words.

4 Analysis and Discussion

Using machine learning techniques and algorithms can reduce the time required to organize
conferences, however, an important issue to touch upon is the human interpretability of
the results. While not many quantitative measures exist to assess the performance of
LDA models, the best judgment comes from conference organizers themselves. Natural
language itself is context-dependent, where a machine may not understand the context

surrounding the text it is programmed to analyze as a human could.

As shown by examining each of the data sets and creating fictitious conference schedules
based on LDA model results, many of the grouped documents have strong relationships
with each other under the same topic from both variations of the LDA model. While these
similar groupings mostly occurred with smaller topics, some larger topics had cohesive
groupings though this may be attributed to the large proportion of documents assigned to

catch-all topics in the data sets in both approaches. These documents may have only been



60

grouped up under the same topic only due to their frequent use of words found in almost
any submitted conference paper. The only data set which did not seem to have a catch-all
topic filled with words ubiquitous of any research paper was in TSL2018. The other data
sets had one or more topics filled with these words such as paper, model, method, solve,
etc. However, TSL2018 still had catch-all topics specific to its conference theme using
common words associated with logistics and transportation science such as system, design,
logistic, station, or optimization. These issues were far less prevalent in the TSL2018 data
set than the other data sets since many of the created topics seemed to have its own
unique theme even if they contained these common words found in many of the other

topics.

Due to these catch-all topics, it became difficult to effectively create conference sessions
as there ended up being too many documents assigned to one topic causing sessions to
run in parallel with the same topic. As described by Vangerven et al. (2017), this is
undesirable as it would likely induce attendees to session hop to another session during
the conference if a specific talk of interest were occurring simultaneously in a different
session than the attendee is currently present in. Additionally, some topics that were very
small and only had 1 or 2 documents contained within were grouped up together in the
final conference schedule despite these documents having little to no relationship with
each other. However, to make the schedule fit the total number of sessions, this had to be

done.

The method of assigning documents simply to the topic with the highest 0, value proved
to be an inefficient method as it negatively affected the cohesion of some documents placed
within sessions though this could also be due to the results of the LDA models with many
documents being placed into catch-all topics. Definitive improvements could be made
on how the documents were organized in these fictitious conference plans with the use
of stochastic programming methods as described in Vangerven et al. (2017) to minimize
session hopping, however, the use of these methods extend past the scope of this thesis

and were not considered.

Using LDA models for conference scheduling sees some benefits in speed reduction and
shows some ability to create some meaningful and cohesive topics, however, some issues

must be addressed for this method to become an appropriate tool for conference schedulers.
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These issues lie within the data used as well as with model construction, such as the steps

taken during pre-processing or with the parameters to construct LDA models.

4.1 Model Downfalls

Because LDA models are based solely on the observed words within the documents, this
does create some issues especially when it comes to sentence structure and spelling. One
issue related to spelling arises from differences in American English and U.K. English.
Since many words between these two language variants are spelled differently, these minor
differences cannot be picked up by LDA even after lemmatization. For example, while two
words such as sulfur and sulphur are the same word with different spelling, an LDA model
will recognize these two words as being completely different and separate which could
affect how topics are created and how documents are placed into topics. This occurred in

the ICSP2019 set with documents using optimize while others use optimise.

Due to the way the data was pre-processed, these steps would also affect the resulting LDA
models. As mentioned before, words that were hyphenated such as e-Commerce had the
hyphen removed such that the resulting word would be simply eCommerce. This would
pose an issue for some authors who do not use hyphens where other authors do. One
instance of this was found with the TSL2018 data set where the titles of the document use
a hyphen to describe last-mile delivery while other documents omit this hyphen. Because
of this issue, the latter variation of the word would be changed to last mile if used
frequently enough to become a bigram whereas the former variation would be changed to
lastmile due to the pre-processing steps taken to prepare the corpora. Another issue with
pre-processing occurred in the TSL2018 data set where a topic was constructed and used
the bigram shanghai_jiao. This shows that the POS tagger was not effective in removing
these words despite proper nouns being omitted during the TSL2018 pre-processing steps.

Issues relating to the LDA models can be a result of the parameters used to fine-tune the
model to maximize the coherence score. In terms of human ratings, Roder et al. (2015)
discuss that using coherence score as a measure to assess the strength of LDA models
outperforms other measures such as perplexity. How coherence scores are calculated may
have adversely affected topic construction. The ICSP2019 and LOGMS2017 data sets both

had duplicate topics included in the resulting LDA model for both variations, however, the



62 4.2 Data Set and Model Parameters

number of identical topics was increased for the variation which used an optimized K. This
is potentially due to overfitting the data while maximizing the coherence score. Coherence
scores are a result of averaging all confirmation measures where "a confirmation measure
takes a single pair S; = (W', W*) of words or word subsets as well as the corresponding
probabilities to compute how strong the conditioning word set W* supports W’," (ibid.).
If all topics were identical, the confirmation measures for the corpus would be increased

as the word sets would directly support each other yielding a high coherence score.

4.2 Data Set and Model Parameters

One reason for these downfalls could be related to the data set size in terms of text length.
Referring back to Table [3.2, TSL2018 had the highest average number of tokens post-
cleaning at 314 tokens per document. Coupled with a post-cleaning standard deviation
of 117 tokens, it shows that the length of texts in TSL2018 were much larger and more
variable than the other texts. Due to this, the LDA model for TSL2018 had much more
textual data to train off of to create more coherent and specific topics relative to the
other data sets. This can be seen in both versions of the LDA model. Looking at Table
3.10| shows nearly all of the 10 documents placed into this topic being related to urban
logistics in some form or another. Meanwhile, the ICSP2019 model struggles to group
common documents together even in smaller sessions based on the conference schedule as
in Tables and [3.8. LOGMS2017 showed an improvement in topic cohesion compared to
ICSP2019, but with lower cohesion compared to TSL2018 which can be directly attributed
to the average text lengths. While LDA can be used on short text, usually this is done
with text with much higher volume such as tweets from Twitter where thousands of tweets
are generated daily worldwide. Sokolova (2016) provides an example of using LDA on

tweets using coherence score as a metric to designate the highest performing LDA models.

Looking at how each of the documents was distributed to topics also shows how long
text may affect the document-topic placement. For both ICSP2019 and LOGMS2017,
both of the resulting LDA models placed a disproportionate number of documents into
one topic. This effect was more noticeable for ICSP2019 when using an optimized K
as over half of all documents were placed into one topic. When using the conference

determined K, the number of documents clustered into one topic was significantly reduced
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which can also be attributed to the use of asymmetric Dirichlet parameters versus the
symmetric parameters. Regardless of this reduction, both variations of the LDA model
for ICSP2019 had seemingly many catch-all topics, as it was difficult for me to discern a
theme among the words. Only the top five words were presented for each of the topics, but
even looking at the expanded list of words for each topic (attached as appendix) does not
give a much-added relationship between words. However, there may be latent thematic
structures that were not possible for me to identify based on layman knowledge in these

fields. For conference schedulers, this task will likely be easier as experts in the field.

4.2.1 Research Question 2

Returning to RQ2, the data set attributes seem to affect the results of the LDA model.
The attributes of the data sets include the number of documents and the token count
of documents. While ICSP2019 was the largest data set with 260 documents, it was
also the smallest in terms of average token count. Conversely, TSL2018 was the smallest
data set with 49 documents, yet the largest in terms of average token count. When
using an optimized K approach to creating topics, the ICSP2019 data set was much
larger than the other two data sets and topic coherence was maximized when K was
larger than the other two data sets which is likely due to the total number of documents
in ICSP2019. This could also be attributed to the fact that the INFORMS TSL and
LOGMS conferences are more specific in terms of their theme and would have many
similar words relating to the theme of the conference. With stochastic programming as
the theme for the ICSP conference, this is a much more general theme versus the other
two conferences INFORMS TSL and LOGMS which focus on transportation sciences and

maritime logistics, respectively.

When it comes to the parameters of the model, the effect of K, o, and n on the LDA
model results were clear. Perhaps the biggest attributing factor to this was from the use
of asymmetric Dirichlet parameters used in the conference determined K section. In Table
[.1] the parameters used for each LDA model, and the resulting coherence score is shown.
For the asymmetric o and 7 values, the average of these values is reported. Histograms

for these asymmetric values can be seen in Appendix [B]
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K o n Cy Score

ICSP2019 70 0.25 0.99 0.4549
Optimized K Value TSL2018 22 0.50 0.01 0.3410
LOGMS2017 49 0.25 0.99 0.3817

ICSP2019 72 0.2369 0.0138  0.4568
Conference-based K TSL2018 18 0.0153 0.0658 0.3126
LOGMS2017 24 0.0648 0.0431 0.3832

Table 4.1: Comparison between the two variants of LDA models and the parameters
used as well as resulting coherence score. Note that for the conference-based K, the «
and 7 parameters are reported as averages.

Using asymmetric Dirichlet parameters as decided by gensim created tremendous
differences, particularly with the n values between the two approaches. The optimized
K approach used a much higher n compared to the alternative approach and lower «
as well except for in the case of ICSP2019 where the two values for a were relatively
similar. For ICSP2019, using the conference-based K with asymmetric parameters caused
a considerable change to the topic-word probabilities as the number of identical topics
was reduced from 60 out of 70 in the optimized K approach to 33 out of 72 with the
conference K approach. The effect of this is seen in the top five words in topics between
the two approaches. With a higher 7, the words became less sparse in topics and no
repeat words were found in the top five words for the optimized K approach with low
topic-word probabilities for many words. With a low 7, the sparsity was higher which
caused the same word being found in multiple different topics with a much higher variation
in topic-word probabilities across the board. Using the conference-based K approach
for creating the LDA models also resulted in an increase of coherence for ICSP2019 and
LOGMS2017, but not for TSL2018. While the increase in coherence was marginal, the
effect was not well felt on the LDA model results. With ICSP2019, it was difficult to
make sense of the common theme of the documents placed together for both approaches.
Using LOGMS2017, some of the similar groupings even disappeared when using the

conference-based K approach, but this could also be due to the reduction in total topics.
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Three out of the four documents placed into the Disruptions € Resilience session for the
actual schedule were placed together in the LDA model using an optimized K, and not
in a large catch-all topic. For the conference K approach with the same data set, one
document was placed into another topic with titles that did not have a connection with

the document while the other two documents were placed into a large catch-all topic.

For these results affecting document-topic placement, the conference-based K approach
performed better on ICSP2019 and LOGMS2017 versus the alternative approach as the
documents were distributed more evenly among the topics they were assigned to. For
TSL2018, documents were distributed less evenly between topics in the conference-based
K approach. This could be related to the decrease in the total number of topics which
also, in turn, may have affected the coherence score as well. Even though the distribution
among the topics for ICSP2019 and LOGMS2017 were more uniform using a conference
K, there still existed a high number of documents concentrated solely into one topic which
presents an issue for conference organizers creating sessions, as the presence of catch-all

topics can affect topic cohesion when documents are placed into these topics.

4.3 Future Work

While the LDA models presented showed some ability to create cohesive topics for two of
the presented data sets with both approaches, other results on topics and distribution
of documents to these topics leave LDA as an approach to conference scheduling that
requires more work for it to become a much more effective alternative to manual conference
scheduling. Using topic modeling for conference scheduling is a somewhat unique
application of topic modeling. Burke and Sabatta (2015) use LDA for conference scheduling
with more success as the document-topic placement more closely resembled the schedule
created manually by conference organizers versus the hypothetical schedules presented
throughout this paper and their manually created counterparts. The methodology for
Burke and Sabatta resembles the methodology used in this paper as both papers similarly
pre-process the data. One part that remains unclear is the type of textual data used
for the LDA model. The authors state that the "approach operates directly on papers,"
making it uncertain whether the entire paper is used or just abstracts, however, given the

context it seems that the entire paper is used rather than just the abstract or a portion
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of the paper. One difference between this paper and Burke and Sabatta is that their
method of allocating documents to topics differ. The authors explain that they "allocate
papers to sessions to minimise the mean of the average sum of distances between the topic
distributions of papers assigned to a given session across all sessions,". They also claim
that "papers could be assigned to the most probable topic for a given document, this
could cause errors in the case of application papers, which are typically distributed across
multiple topics," (Burke and Sabatta [2015), an approach that was used in this paper.
However as mentioned previously, more advanced methods to allocating documents to

sessions are beyond the scope of this thesis.

Another usage of topic modeling for conference scheduling can be found in Lau et al.
(2016) where the authors use Java’s MALLET topic modeling package to implement topic
modeling in a recommendation system to be used for conference scheduling. The authors
allude the system is used on the full text of the papers, but one part which remains
unclear is that they do not mention what kind of topic modeling method they use, if it
is LDA or another method such as the Pachinko Allocation Method (Li and McCallum
2006). The authors also do not go in-depth into the methodology for pre-processing or
parameter selection besides mentioning that they do remove stop words. The authors
are clear about their method for organizing documents into topics, as they use a similar
approach as this paper where the documents are assigned to the topic with their highest
045. As the paper’s primary goal was to describe a recommendation system, it did not
provide any examples of their work on an actual data set or give comparisons against a

manually picked conference schedule.

4.3.1 Improvements

Based upon similar work such as Burke and Sabatta (2015) or Lau et al. (2016), some
changes can be made to the existing LDA model to help increase performance for conference
scheduling. One large improvement that can be made is the inclusion of the entire paper
rather than just the abstract or extended abstract. Both authors seem to indicate that their
topic models were created using the entire paper rather than portions of it which resulted
in improved performance as shown by Burke and Sabatta. In their paper, they present

that roughly 73% of all documents are grouped up together as in the actual conference
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schedule. Using TSL2018 as the best performing LDA model, only approximately 39% of
all documents were grouped as they were in the actual conference. This improvement in
performance can also be attributed to the method in which they allocated documents to
different topics which also can be used as an improvement over the allocation method
presented in this paper. Additionally, the conference used by Burke and Sabatta had
more varied topics; many sessions were not of the same theme (e.g. TSL2018 had 5 out of
14 sessions relating to urban logistics). Including the entire text of a submitted paper for
a conference would greatly benefit the performance of LDA models in their application on
conference scheduling as it would allow the trained model to have more textual data to
learn from when creating the topics, especially when words which are imperative to the

document’s topic are repeated often such as vehicle routing problem.

During the pre-processing steps, words were filtered out that were present in over two-
thirds of all the documents per data set after stop words were removed. Despite this
fact, many common words still became prominent in the created topics which become
unhelpful when organizing conferences. For each conference, a viable solution is to create
a custom list of stop words that can help remove these unhelpful words from appearing in
the topics. If logistics were appended to the current stop word list as shown in Appendix
[A] for TSL2018 or optimize for ICSP2019, this could increase topic cohesion and allow for
improved allocation of documents into topics. For this to be an effective step, n-grams
(where n > 2) should be constructed after most common English stop words are removed
(such as it, and, the, etc.) and before the expanded set of stop words are removed that are
more specific to the theme of a given conference. This way n-grams can be created that
will not be affected by the most common stop words which can help with document-topic
placement when the schedule is created. Adding additional stop words based on the
conference would also decrease the prevalence of catch-all topics, as these topics seemed

to be a major hindrance in creating effective topics.

4.3.2 LDA Model Expansions

Work on LDA has been extensive over the past several years after its inception by Blei
et al. in 2003, which allows for expanded applications and versatility with the model.

One expansion to LDA has been with the Pachinko Allocation Model proposed by Li and
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McCallum (2006). This modification of LDA can capture correlations between topics,
unlike LDA which can only capture correlations between words. Because of this, LDA has
difficulties with modeling data where topics occur frequently (Li and McCallum 2006).
This can be very beneficial for topic modeling in a conference scheduling application,
especially during a specialized conference such as INFORMS TSL or LOGMS, whose
subject is more specific than that of other conferences such as ICSP. The implementation
of this method is more complex and more difficult to implement in Python versus LDA and
was not considered for this thesis. The most basic and common form of topic modeling,

LDA, remains ubiquitous across topic modeling applications.

Another expansion of the LDA model is a supervised LDA (sLDA) model developed by
Blei and McAuliffe (2010). While LDA by itself is an unsupervised model, this supervised
version of LDA can be used to assist with conference scheduling by adding a predictive
component. In their paper, the authors use textual data along with a random variable to
perform regression using the textual data to predict the random variable. They use written
movie reviews and essays as an example for performing sLDA on, where movie reviews
are paired with numerical scores and essays are paired with their grade. Given the textual
data in the documents for sLDA and the associated response variable, the supervised
model will be able to learn from the data to create predictions of the response variable on
future textual data. This would be a fitting application to conference scheduling as the
response variable for conferences would be the number of attendees in the individual talk.
That way, given the textual data of the papers submitted to conference organizers, the
organizers could use the expected number of attendees to each talk to help optimize the
scheduling process. This would help prevent two sessions that would have high expected
attendance running in parallel. This approach aligns with the "attender-based perspective"
discussed in Vangerven et al. (2017) where the goal is to optimize participant satisfaction
by ensuring that participants will be able to attend as many of their most desired talks by
minimizing any scheduling conflicts. By minimizing scheduling conflicts on the attendee
level, this would also reduce the number of session hoppers between talks in parallel
sessions. Unfortunately, attendance records were not available for the different data sets

so this method was not used.
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4.4 Conference Scheduling Efficiency

The main motivation for performing LDA on conference data was to help improve the
efficiency of the scheduling process as outlined in RQ1. As an unsupervised learning
method, LDA can be used with minimal human intervention by feeding data into the
model after fine-tuning the pre-processing steps and dictating model parameters. The
largest benefit with LDA for conference scheduling is the speed at which it can process
documents. In Table[d.2] the times for creating the LDA models on the different data sets
are shown. This speed only involves creating the LDA model after all prior pre-processing

and cleaning steps are performed.

Processing time (sec.)

ICSP2019 7.6258

Optimized K Value TSL2018 2.6757
LOGMS2017 2.5591

ICSP2019 10.1001

Conference-based K TSL2018 1.3405
LOGMS2017 2.2415

Table 4.2: Processing times for each data set using 16 GB of RAM and an Intel i7 3.70
GHz CPU.

Being able to process and categorize potentially hundreds of documents in a fraction of a
minute far exceeds the reading capacities of humans. Conference organizers traditionally
read through the abstracts of these submitted papers and manually sort documents into
similar topics which would be infeasible to process in the amount of time a computer
would be able to do so. Readers typically range from being capable of reading 175-300
words per minute in their native language for non-fiction text while this number decreases
for second language readers (Brysbaert 2019)). Using the midpoint of the word per minute

reading speed range of 237 words per minute, it would take a human an expected 3.6
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hours only to read all the provided abstracts for all papers in the ICSP2019 data set with
a total of 52,015 tokens which does not even include the allocation of documents to topics.
This is in stark contrast to the mere 10.1 seconds it took to create the LDA model on the

ICSP2019 data set with K = 72 topics, 72 different o values, and 1686 n values.

When it comes to the efficiency of conference scheduling, the process of creating topics and
organizing documents into topics should not be judged on speed alone. A very important
aspect of this efficiency is the ability to create meaningful topics from the data. As shown
from the results and throughout the discussion section, the LDA models presented showed
promise in their ability to create topics and organize documents cohesively and sensibly.
While in its current form, LDA models would not be an appropriate method to create
conference schedules. However, the results presented in this thesis support that LDA
can be used as a good baseline or starting point for conference schedulers to begin with
for scheduling due to its proven ability to show relationships between documents and
distribute them to appropriate topics. Even in general groupings such as in TSL2018
where many documents were focused on urban logistics, conference organizers could use
this as a baseline to create more specific sessions. Additionally, if the changes described
for improvements were implemented, this could result in a tremendous increase in the
ability of the LDA models to create cohesive topics and allocate documents to make it a

very useful tool for conference schedulers.

Utilizing topic coherence for improving the efficiency of conference scheduling has
inconclusive results. While topic coherence is claimed to have positive correlations
with human interpretations by Roder et al. (2015), using this method of finding the
parameters which maximize topic coherence may have resulted in a model which overfits
the data resulting in the identical topics as seen in the ICSP2019 data set with the
optimized K. These inconclusive results are related to the fact TSL2018 results had
more topic cohesion for words placed into these topics compared to the other conferences
which had higher coherence scores such as ICSP2019 which arguably had the lowest topic
cohesion yet highest coherence score. Additionally, the documents placed into topics for
TSL2018 did show more of a direct relationship with each other compared to the other

conferences.

Further experimentation of coherence scores being applied to LDA models for conference
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scheduling should be investigated and compared with other measures for assessing LDA
models. Using predictive probability measures discussed in Wallach et al. (2009) or
perplexity measures from Blei, Ng, et al. (2003) can be examined to see if these alternative
assessment methods yield more cohesive topics despite its negative correlation with human
interpretation as pointed out in Chang et al. (2009) when used on the full papers. However,
these methods were not included as it requires the data to be split into training and test
sets. Given the small data set size from some conferences coupled with low token counts,
the resulting LDA models would not perform well. This method could be used with an

expanded data set or with papers from multiple years of the same conference.

5 Conclusion

Conference scheduling can be a long and arduous process for organizers of these conferences,
especially with large conferences that span over several days with hundreds of presenters.
Topic modeling is a common and well-known method for understanding and organizing
large archives into specific topics. The specific method of topic modeling used in this
thesis for textual data, latent Dirichlet allocation, shows usefulness even in conference
scheduling. Using LDA, the time required for organizers to plan these conferences can be
significantly reduced with hundreds of documents being processed and segregated into
different topics at speeds of less than a minute. This thesis has presented LDA models
tailored to different data sets of varying size, content, and token counts to show how
LDA models can be applied to conference scheduling and how results are affected by
parameters and data set attributes. Additionally, the efficiency of this method was called

into question with inconclusive results.

While the improvement in speed was plainly noticeable, the actual coherence of the topics
themselves assessed by human judgment leaves something desired for this method. While
many of the constructed topics and the documents assigned to them showed cohesion,
many other topics that were constructed were lacking and the documents within these
topics had seemingly no specific relationship with each other. Because of this, using LDA
in its presented form is an inefficient way to organize conferences as the inability to create
meaningful topics for conference schedules could be done more effectively by humans.

Given that there were cohesive results observed in some topics, it does provide promising
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results that LDA could be used as a baseline for conference scheduling.

While LDA has been utilized for many other applications inside and outside the scope of
textual data analysis, using this method on conference scheduling remains a somewhat
novel approach. The cohesion of the formed topics and the presence of catch-all topics
coupled with the inability for documents to be placed sensibly into topics become the
greatest barrier to this method as a substitute to manual conference scheduling. If changes
are implemented to the LDA models presented in this thesis such as increasing the amount
of textual data the model can be trained from or altering the method in which documents
are assigned to topics, improvements can be made to machine learning-based conference
scheduling. LDA shows tremendous promise for becoming a commonly used method for
organizing conferences which can reduce greatly reduce the amount of time and effort

required by organizers to create a conference schedule.
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Appendices

A Stop Words

stop_words_total = [a, about, above, after, again, against, ain,
all, am, an, and, any, are, aren, aren’t, as, at, be,
because, been, before, being, below, between, both, but, by,
can, couldn, couldn’t, d, did, didn, didn’t, do, does, doesn,
doesn’t, doing, don, don’t, down, during, each, few, for, from,
further, had, hadn, hadn’t, has, hasn, hasn’t, have, haven,
haven’t, having, he, her, here, hers, herself, him, himself,
his, how, i, if, in, into, is, isn, isn’t, it, it’s, its,
itself, just, 11, m, ma, me, mightn, mightn’t, more, most,
mustn, mustn’t, my, myself, mneedn, needn’t, no, nor, not, now,
o, of, off, on, once, only, or, other, our, ours, ourselves,
out, over, own, re, s, same, shan, shan’t, she, she’s, should,
should’ve, shouldn, shouldn’t, so, some, such, t, than, that,
that’1ll, the, their, theirs, them, themselves, then, there,
these, they, this, those, through, to, too, under, until, up,
ve, very, was, wasn, wasn’t, we, were, weren, weren’t, what,
when, where, which, while, who, whom, why, will, with, won,
won’t, wouldn, wouldn’t, vy, you, you’d, you’ll, you’re, you’ve,
your, yours, yourself, yourselves, could, he’d, he’ll, he’s,
here’s, how’s, 1i’d, 1’11, 1i’m, 1i’ve, let’s, ought, she’d,
she’1ll, that’s, there’s, they’d, they’ll, they’re, they’ve,
we’d, we’ll, we’re, we’ve, what’s, when’s, where’s, who’s,
why’s, would, able, abst, accordance, according, accordingly,
across, act, actually, added, adj, affected, affecting, affects,
afterwards, ah, almost, alone, along, already, also, although,
always, among, amongst, announce, another, anybody, anyhow,
anymore, anyone, anything, anyway, anyways, anywhere, apparently,
approximately, arent, arise, around, aside, ask, asking, auth,
available, away, awfully, b, back, became, become, Dbecomes,
becoming, beforehand, begin, beginning, beginnings, begins, behind,
believe, beside, besides, beyond, biol, brief, briefly, c, ca,
came, cannot, can’t, cause, causes, certain, certainly, co,
com, come, comes, contain, containing, contains, couldnt, date,
different, done, downwards, due, e, ed, edu, effect, eg, eight,
eighty, either, else, elsewhere, end, ending, enough, especially,
et, etc, even, ever, every, everybody, everyone, everything,
everywhere, ex, except, f, far, ff, fifth, first, five, fix,
followed, following, follows, former, formerly, forth, found,
four, furthermore, g, gave, get, gets, getting, give, given,
gives, giving, go, goes, gone, got, gotten, h, happens, hardly,
hed, hence, hereafter, hereby, herein, heres, hereupon, hes,
hi, hid, hither, home, howbeit, however, hundred, id, ie, im,
immediate, immediately, importance, important, 1inc, indeed, index,
information, instead, invention, inward, itd, it’1ll, j, Kk,
keep, keeps, kept, kg, km, know, known, knows, 1, Ilargely,
last, lately, 1later, 1latter, latterly, 1least, less, lest, let,
lets, 1like, 1liked, 1likely, 1line, 1little, ’11, 1look, looking,
looks, 1td, made, mainly, make, makes, many, may, maybe, mean,
means, meantime, meanwhile, merely, mg, might, million, miss,
ml, moreover, mostly, mr, mrs, much, mug, must, n, na, name,
namely, nay, nd, near, nearly, necessarily, necessary, need,
needs, neither, mnever, nevertheless, new, next, nine, ninety,
nobody, non, none, nonetheless, noone, normally, nos, noted,
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nothing, nowhere, obtain, obtained, obviously, often, oh, ok,
okay, old, omitted, one, ones, onto, ord, others, otherwise,
outside, overall, owing, p, page, pages, part, particular,
particularly, past, per, perhaps, placed, please, plus, poorly,
possible, possibly, potentially, pp, predominantly, present,
previously, primarily, probably, promptly, proud, provides, put,
q, 9que, quickly, quite, qv, r, ran, rather, rd, readily,
really, recent, recently, ref, refs, regarding, regardless,
regards, related, relatively, research, respectively, resulted,
resulting, results, right, run, said, saw, say, saying, says,
sec, section, see, seeing, seem, seemed, seeming, seems, seen,
self, selves, =sent, seven, several, shall, shed, shes, show,
showed, shown, showns, shows, significant, significantly, similar,
similarly, since, six, slightly, somebody, somehow, someone,
somethan, something, sometime, sometimes, somewhat, somewhere,
soon, sorry, specifically, specified, specify, specifying, still,
stop, strongly, sub, substantially, successfully, sufficiently,
suggest, sup, sure, take, taken, taking, tell, tends, th, thank,
thanks, thanx, thats, that’ve, thence, thereafter, thereby,
thered, therefore, therein, there’ll, thereof, therere, theres,
thereto, thereupon, there’ve, theyd, theyre, think, thou,
though, thoughh, thousand, throug, throughout, thru, thus, til,
tip, together, took, toward, towards, tried, tries, truly,
try, trying, ts, twice, two, wu, un, unfortunately, unless,
unlike, unlikely, unto, upon, ups, us, use, used, useful,
usefully, wusefulness, wuses, using, usually, v, value, various,
’ve, via, wviz, vol, vols, vs, w, want, wants, wasnt, way,
wed, welcome, went, werent, whatever, what’ll, whats, whence,
whenever, whereafter, whereas, whereby, wherein, wheres, whereupon,
wherever, whether, whim, whither, whod, whoever, whole, who’ll,
whomever, whos, whose, widely, willing, wish, within, without,
wont, words, world, wouldnt, www, x, yes, yet, youd, youre,
z, zero, a’s, ain’t, allow, allows, apart, appear, appreciate,
appropriate, associated, best, better, c¢’mon, <c’s, cant,
changes, clearly, concerning, consequently, consider, considering,
corresponding, course, currently, definitely, described, despite,
entirely, exactly, example, going, greetings, hello, help,
hopefully, ignored, inasmuch, indicate, indicated, indicates,
inner, insofar, it’d, keep, keeps, novel, presumably, reasonably,
second, secondly, sensible, serious, seriously, sure, t’s, third,
thorough, thoroughly, three, well, wonder]
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Figure B.1: Max coherence score over all iterations for each k.
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Figure B.2: Data set token length distribution.
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Figure B.3: Asymmetric alpha values histogram.
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ICSP2019 Asymmetric Eta Values
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Figure B.4: Asymmetric eta values histogram.
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