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Abstract
As renewable energy sources are gaining increasing importance on the global electricity

scene, the importance of understanding their implications increases accordingly. This thesis

aims to increase electricity market participants’ understanding of how the introduction of

intermittent renewables in the energy mix will affect electricity price dynamics. Specifically,

we examine whether wind power production has an effect on electricity price volatility in

Norway. By doing so, we provide research on an unexamined market, which is particularly

interesting due to its hydro-reliance and wind power potential.

In our analysis, based on electricity price data from 2013 to 2019, we have found that

there is a significant positive relationship between wind power production and intra-

weekly electricity price volatility in Norway. This finding has implications for Norwegian

electricity consumers and producers, as increased price volatility creates both challenges

and opportunities. Increased price volatility encourages investment in flexible supply and

consumption, and we argue that such an investment may offset the disadvantages of the

uncertainty associated with price fluctuations. In the analysis of wind power’s effect on

intra-daily volatility, however, we do not find an equivalent significance. Thus this finding

provides interesting opportunities for future research as global investments in wind power

continue to increase.

Keywords – Electricity prices, Volatility, Wind power, Norway
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1 Introduction
Electricity markets are gaining increasing importance in the global economy. As the world

is facing challenges related to climate change, depletion of natural resources, and growing

energy demand, the involvement of the electricity markets is required beyond their core

activities. There is undeniable evidence that electricity markets are going through an

era of global change, and the changes are mostly related to the transition towards a

more sustainable energy mix (Kyritsis et al., 2017). The integration of renewable energy

sources is expected to minimize, and even prevent, some of the above-mentioned challenges

through the mitigation of climate change, diversification of the energy mix and security

of energy supply. To foster this integration, and the sustainable transition, governments

across the globe, are implementing policies with the aim of incentivizing investment in

renewables. These activities are reshaping today’s electricity markets and provoking

fundamental changes to the dynamics of deregulated electricity prices. The latter should

be of great concern to electricity producers, consumers, and even policymakers, and is a

direct effect of the increasing penetration of renewables in the energy mix.

Electricity prices display dynamics considerably different from those of financial assets

and even other commodities (Vehviläinen and Pyykkönen, 2005; Kyritsis et al., 2017).

These dynamics reflect the idiosyncrasies of the power system, which are mainly attributed

to the instantaneous nature of electricity. Without the ability to store electricity, any

changes in supply or demand result in frequent price jumps, and this trait is presumed to

be enhanced by the introduction of intermittent renewable energy sources, namely solar

and wind (Woo et al., 2011). Specifically, the intermittency of renewables is assumed to

introduce unpredictability to a market that is fundamentally volatile due to its underlying

properties. Hence, as the role of renewables becomes increasingly important, so does the

need to have a clear understanding of their impact on electricity prices. Our research

question arises from this and is stated as follows:

Can wind power production explain electricity price volatility in Norway?

The relationship between renewables and electricity price levels have been subject to

thorough investigation in the field of energy economics (see Sensfuß et al., 2008; Brown,

2012; Cludius et al., 2014; Clò et al., 2015; Hu et al., 2010; Kyritsis et al., 2017). The
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findings conclude that when the share of intermittent renewables in the electricity mix

increases, electricity price levels decrease. This price diminishing effect caused by renewable

electricity generation is known in the literature as the merit-order effect, and its presence

has been established in a number of electricity markets across the globe. The effect is

attributed to the zero-marginal cost of renewables, which shifts the electricity supply curve,

also called the merit-order curve, to the right, lowering the electricity prices. The literature

on the merit-order effect establishes an important relationship between renewable energy

sources and electricity price dynamics, and due to the conclusiveness of the findings, it

has become a mainstay in the research on renewables and electricity prices.

The literature examining the effect of renewables on electricity price volatility is, however,

inconclusive. Even though the number of studies is less compared to that of the merit-

order effect, the research on volatility has increased over the years, both in the form of

subordinate studies to a study of the price level and as stand-alone studies. There are,

however, no clear consensus in the findings of the empirical studies. While the majority of

the papers find a significant positive relationship between renewable electricity generation

and electricity price volatility (Green and Vasilakos, 2010; Woo et al., 2011; Milstein and

Tishler, 2011; Ketterer, 2014; Clò et al., 2015; Kyritsis et al., 2017), others argue partially

for a negative relationship (Mauritzen, 2011; Rintamäki et al., 2017). Consequently, there

is a need for more research on this topic as the importance of renewable energy sources

continues to increase.

Among the research on the relationship between renewables and electricity price

volatility, no thorough, empirical study has been conducted for a country strongly

reliant on hydropower production, such as Norway. Hydropower displays extraordinary

characteristics when exposed to electricity price fluctuations as it has the ability to make

a commodity that is fundamentally non-storable, storable. Consequently, there is a gap

in the literature regarding how an increasing intermittent renewable power generation

will affect electricity price volatility in a hydro-reliant country. Norway has the last two

years doubled its wind power capacity, and more importantly, it is considered to be one

of three European countries best suited for further expansion (Enevoldsen et al., 2019).

As the investments in wind power capacity increases, so does the relevance of its impact.

Combined with the fact that Norway holds half of the European hydropower capacity,
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making it the largest producer of hydropower in Europe, the Norwegian conditions make

a compelling case for why Norway should be investigated to fill the above gap in the

literature.

The analysis of our research question is conducted in two turns. First, we use an Ordinary

Least Square (OLS) estimation to examine the relationship between wind power production

and electricity price volatility in Norway. We measure volatility as the standard deviation

of prices and run two regressions, one with daily standard deviation as our dependent

variable and one with weekly standard deviation. Secondly, in order to better argue for

a causal relationship, we implement a Two-Stage Least Squares (2SLS) estimation by

introducing wind speed as an instrumental variable for wind power production. In both

analyses, we use time series regressions, and based on the literature review, we expect

to observe a positive relationship between wind power production and electricity price

volatility.

The results of our analysis of the relationship between wind power production and electricity

price volatility indicate that the positive relationship found by several other researchers

also holds for Norwegian electricity prices when looking at intra-weekly volatility. This

implies that the increasing importance of wind power production in Norway will have

implications for electricity producers and consumers. However, we do not find the same

significance for intra-daily price volatility. We provide several explanations for why we

observe the differing results and mainly attribute the differences to model weaknesses.

Our findings of a positive impact of wind power production on intra-weekly price volatility

have, nevertheless, implications for electricity market participants in the form of increased

uncertainty. However, we argue that the increased price volatility also provides investment

opportunities that would not be considered if prices were stable.

Through this thesis, we believe that contributions have been made to the existing literature.

Firstly, we have added to the inconclusive base of research on the effect of wind power

production on electricity price volatility by documenting a positive effect on Norwegian

intra-weekly price volatility. We do so by using data as recent as 2019, which encompasses

the recent period of increased renewable penetration in the Norwegian electricity market,

making the research topical. Secondly, by investigating Norway, we provide research on

a market with a rapidly growing wind power industry, which is particularly interesting
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due to its reliance on hydropower production. Thirdly, model-wise, we have accounted for

more control variables than any other empirical research on this topic. Combined with

our inclusion of a 2SLS analysis, we have thus devoted more focus to causality than any

other related study, which argues for the reliance of our results.

The thesis will be structured as follows. In the next chapter, we will present the

characteristics of electricity prices, followed by a review of existing literature on renewables

and electricity price dynamics. Based on the literature review, we will then develop our

hypotheses for the relationship between wind power production and electricity price

volatility. The third chapter introduces the data used in this thesis and elaborates on the

models and methodology used in our analyses. In addition, we present some descriptive

statistics. In the fourth chapter, we present and discuss the results of our analyses with

respect to our hypotheses and compare the different estimation approaches. In the fifth

and final chapter, we conclude our findings and discuss any limitations to the thesis, in

addition to suggestions for future research.
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2 Literature Review
Our intention with this thesis is to examine whether wind power production can explain

electricity price volatility in Norway. The relationship between intermittent renewables and

electricity price dynamics has been widely investigated in the existing literature. However,

no consensus has been reached for the effect on electricity price volatility. Further, no

research has attempted to investigate whether the effect is present in a hydro-reliant

country. In this chapter, we introduce the dynamics of electricity prices and elaborate on

the existing findings and inconsistencies in the literature.

2.1 Electricity Price Dynamics and Drivers

The literary interest in electricity prices rose with the global deregulation of the electricity

markets about three decades ago. The deregulation removed price controls and introduced

competition, and hence price variations skyrocketed (Knittel and Roberts, 2005). In

combination with the idiosyncrasies of the power system, the restructuring of the electricity

markets brought about fundamental changes in the dynamics of wholesale electricity

spot prices, which are significantly different from those of equity and commodity prices

(Vehviläinen and Pyykkönen, 2005; Kyritsis et al., 2017). These dynamics have been

researched by a number of studies, including studies by Nogales et al. (2002), Knittel and

Roberts (2005), Karakatsani and Bunn (2008), Escribano et al. (2011), and Uritskaya and

Uritsky (2015). We present these dynamics in the following.

Volatility is found to be one of the principal characteristics of the deregulated electricity

prices, predominantly attributed to the non-storability of electricity. Due to its

instantaneous nature, electricity consumption and production have to be continuously

balanced, meaning any supply or demand shock will affect the prices immediately, resulting

in frequent price jumps or spikes (Escribano et al., 2011). This effect is further amplified by

an inelastic demand for electricity in the short run and a strong mean-reverting behavior,

resulting in tremendous volatility (see Knittel and Roberts, 2005; Higgs and Worthington,

2008; Milstein and Tishler, 2011). Furthermore, electricity prices are known to display

multiple seasonality, corresponding to a daily, weekly, and yearly periodicity and mainly

due to a highly weather-dependent electricity demand (Nogales et al., 2002; Escribano
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et al., 2011). All of the above characteristics constitute the dynamics of electricity prices

and should be accounted for in any attempt to model the prices.

The electricity price dynamics reflect the pricing mechanism. The electricity demand

curve is steep and highly inelastic, reflecting the consumers’ limited ability to change

their consumption patterns in the short-run (Kyritsis et al., 2017). The complexity of

electricity prices does, however, mostly arise from the shape of the supply curve, which is

steeply increasing, discontinuous and convex (Karakatsani and Bunn, 2008) and composed

of all electricity-producing energy sources, their capacities and their marginal costs of

production. A stylized illustration of this curve is found in Figure 2.1. The energy sources

appear on the curve in the order of their marginal costs, with the cheapest being situated

to the far left, and the power sources with higher marginal costs constituting the right

part of the curve. Due to this established order of the energy sources, the electricity

supply curve is also known as the merit-order curve, and we will use the two names

interchangeably. The order entails that the energy sources with lower marginal costs will

always be prioritized in electricity production. As a result, the merit-order curve moves

with the capacity of these energy sources, which are mainly intermittent renewables with

near-zero marginal costs.

Figure 2.1: The Merit-Order-Curve
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2.2 Renewables and Electricity Price Levels

The relationship between intermittent renewable energy production and electricity prices

has been subject to thorough investigation. The studies find that there is a negative effect

of increased renewable power generation on electricity spot price levels, and the findings

are conclusive across markets. Due to the conclusiveness of the results, this effect has

been established as the most important implication of an increasing share of renewables

in the energy mix.

Sensfuß et al. (2008) were some of the first to establish a relationship between renewable

electricity production and electricity price levels. By investigating the German electricity

market, they found that the increasing share of renewables in the German energy mix

reduced the average market spot price by 7.83 €/MWh. The findings by Sensfuß et al.

(2008) were later followed by the studies of Nicolosi and Fürsch (2009) and Cludius et al.

(2014), which confirmed the negative relationship between renewable power production

and electricity prices in the German market. The price diminishing effect of renewables

on the electricity spot prices was attributed to changes in the electricity supply curve, and

thus it was named the merit-order effect. As renewable energy sources constitute the far

left part of the merit-order curve, due to near-zero marginal costs, an increase in capacity

for these energy sources would shift the merit-order curve to the right, resulting in the

observed reduction in German electricity prices.

The merit-order effect is ultimately driven by electricity demand, the slope of the supply

curve, and the variable renewable energy sources (Kyritsis et al., 2017). The demand, and

particularly residual demand, which is the demand not served by intermittent renewables,

determines the intersection with the supply curve. In turn, the slope of the supply curve

decides which energy source’s marginal costs set the prices. Thus the fuel and hydro

prices constituting the supply curve play an important role in the size of the merit-order

effect and the setting of the equilibrium electricity price (Kaminski, 1997; Mjelde and

Bessler, 2009; Mohammadi, 2009; Huisman et al., 2014).

As Norway is highly reliant on hydropower, this has traditionally been the decisive energy

source in the setting of Norwegian electricity prices (Kjaerland, 2007). Nevertheless, as

Norwegian wind power production is increasing, this may be subject to change. The

reason is that wind power displays even lower marginal costs than hydropower due to
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the latter considering the opportunity cost of postponing production. As a result, wind

production appears to the left of hydropower on the merit-order curve, controlling the

supply shifts. Regarding the conventional energy sources, such as coal and gas, they are

barely used in Norwegian electricity production, with coal not even being present in the

energy mix for mainland Norway. Gas, although previously important, is now only used

to a limited extent in the northern parts of Norway. However, due to its importance in

Europe and the increasing power exchange between Norway and Europe, gas’ impact on

Norwegian electricity prices should not be disregarded.

2.3 Wind Power and Electricity Price Volatility

Although an increase in renewable electricity production delights consumers and the

Norwegian industry with lower electricity prices, there may be associated challenges. The

theory of the merit-order effect suggests that the renewables’ intermittency would lead to

frequent changes in the supply curve, and consequently, price fluctuations. In contrast to

the conclusive literature on electricity price levels, there is, however, no similar consensus

in the findings of the effect of wind power production on electricity price volatility.

The majority of studies examining the effect of renewable power production on electricity

price volatility find a positive relationship. A large proportion of these studies use a

General Autoregressive Conditional Heteroscedastic (GARCH) model, as introduced by

Bollerslev (1986), which investigates the effect of mostly wind power generation on the

electricity price level and price volatility in an integrated approach. A noteworthy such

study is a study from Ketterer (2014), which analyzes the effect of intermittent wind

power on electricity price behavior in Germany. By using daily data on a basic GARCH

model, Ketterer finds that the variable wind power production reduces the electricity

price level and increases the price volatility. Her findings from the German market are

further confirmed by the more recent study by Kyritsis et al. (2017), which extends the

GARCH model of Ketterer to a GARCH-in-Mean model with both solar and wind power

as exogenous variables. Kyritsis et al. (2017) find that both solar and wind power reduces

German electricity prices; however, that they affect volatility in different ways. While

solar power reduces the volatility of electricity prices due to its covariance with peak

demand, wind power increases the price volatility by challenging the electricity market

flexibility. Moving away from the German market, Pereira and Rodrigues (2015), using
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an ARX-ERGARCH model, investigate the behavior of electricity prices in Italy with

the same conclusions reached. Their study finds the same negative impact of wind power

on electricity price levels in Italy and the same significant positive relationship between

intermittent wind power generation and Italian electricity price volatility. This argues

that the results from the various GARCH analyses are consistent across markets.

The increasing effect on electricity price volatility from wind production has also been

established using other model approaches. Through scenario analyses, Green and Vasilakos

(2010) and Milstein and Tishler (2011) evaluate the impact of intermittent renewables

on hourly electricity price dynamics in the UK and Israel, respectively, concluding that

also for these markets the introduction of such energy sources amplifies price volatility. In

addition, more traditional econometric models such as Ordinary Least Squares (OLS) were

used in the studies by Woo et al. (2011) and Clò et al. (2015) with the same conclusion

reached for the Texan and Italian market. Both of these studies include time fixed effects

in their modeling, but while Clò et al. (2015) include wind exchange as an important

driver of Italian electricity prices, Woo et al. (2011) has a greater focus on the inclusion

of gas prices and nuclear production as these are essential drivers of Texan electricity

prices. Regardless, both studies find significant results indicating that increased wind

power increases electricity price volatility, though by modeling electricity prices rather

than volatility and primarily viewing volatility as a measure of uncertainty rather than

price fluctuations.

Even though the majority of the literature establishes a positive relationship between wind

power production and electricity price volatility, some literature argues in the direction

of a negative one. In their study, Rintamäki et al. (2017) find contradictory results for

the German and Danish market, with wind power decreasing electricity price volatility in

the latter market. Rintamäki et al. (2017) base their methodology on that of Mauritzen

(2011) and use historical price fluctuations as their independent variable, calculated as

the standard deviation of a day and a week. Through the application of a SARIMA

model, both studies find that while daily and weekly electricity price volatility rises

with increased wind power production in Germany, only intra-weekly price volatility

increases correspondingly in Denmark. This means that they find a negative relationship

between daily wind production and Danish intra-daily volatility. The negative relationship
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is explained by Denmark’s interconnectedness to Norway and Norway’s reliance on

hydropower, as hydropower stabilizes the price fluctuations because hydropower reservoirs

make electricity storable. Hydropower’s stabilizing effect on volatility is also argued in the

descriptive paper by Dong et al. (2019), which finds that electricity prices in Sweden are

more stable compared to those in Denmark and the PJM area, attributing the findings

to Sweden’s investment in hydropower. Nevertheless, Dong et al. (2019) still observes a

positive relationship between volatility in Sweden and wind power, which argues in favor

of the majority of the results.

In between the significant empirical findings, we find a study that argues for a non-

significant relationship between wind power production and electricity price volatility. In

their study of the Nordic electricity market, Liski and Vehviläinen (2016) estimate the

price reduction that follows from the entry of wind power, and they also comment on

its effect on volatility. According to Liski and Vehviläinen (2016)’s findings, there is no

significant relationship between wind power output and price volatility in Norden, which

is not in line with the results from the above discussed empirical studies. A reason for

this may be that the authors use the system price for the entire Nordic region in their

regression analysis, rather than the clearing price for each bidding area. Hence, Liski and

Vehviläinen (2016) use a theoretical and fictitious price instead of the actual equilibrium

price affected by changes in supply and demand. Accordingly, we place little emphasis on

this study.

2.4 Hypothesis Development

Based on the established dynamics of electricity prices and the above literary findings,

we expect to find a positive relationship between Norwegian wind power production and

electricity price volatility. We base this prediction on the largely consistent results across

markets and model approaches, as well as the theoretical foundation of electricity supply

and demand. An increase in intermittent wind power production is assumed to cause

frequent changes in the supply curve, resulting in price fluctuations. Thus, we expect

our results to be in line with those of Ketterer (2014), Kyritsis et al. (2017), Pereira and

Rodrigues (2015), Woo et al. (2011) and Clò et al. (2015).

The results from Mauritzen (2011) and Rintamäki et al. (2017) may argue in the opposite
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direction and of a negative relationship between wind power production and price volatility

in Norway. We emphasize the fact that the two studies view volatility as actual price

fluctuations and that Denmark is part of the NordPool area, same as Norway. Nevertheless,

Norway differs from Denmark with regard to its primary source of electricity, as Denmark

is already primarily reliant on wind power. When Denmark increases its wind production,

they sell their surplus to Norway, benefitting from Norway’s historically stable hydro-

driven prices. However, when wind production increases in Norway, it is solely used in

the Norwegian electricity production as the intermittent, zero-cost renewables are always

prioritized. Hydropower may be able to stabilize some of the price fluctuations. Thus, we

may observe a less prominent relationship between wind power and Norwegian electricity

price volatility, as Dong (2019) argues for the Swedish market. Nevertheless, we have no

reason to believe that an increased wind production in Norway will lead to a decrease in

volatility for Norwegian electricity prices, and thus the initial prediction stands. Based on

the above discussion, we thus develop our first hypothesis regarding our results:

Hypothesis 1 (H1): Increasing the wind power production leads to an

increase in price volatility for Norwegian electricity spot prices.

Based on the theory of the merit-order effect, we want to extend on Hypothesis 1 and

take a closer look at the variations in the wind power production and its effect on price

volatility. The average wind production within a day or a week encompasses periods of

both stable and fluctuating wind production, and stable wind production is not expected

to have the same effect on price volatility as a fluctuating one. The latter is associated

with frequent changes to the merit-order curve, whereas the former may be linked to only

one shift in the curve. To account for these varying effects, we would like to examine how

the volatility of wind power production can explain the volatility in the electricity prices.

As volatility is a measure of price variation, we believe the inclusion of variations of wind

power production may better explain the price volatility. This reasoning leaves us with

the following second hypothesis:

Hypothesis 2 (H2): Increasing the wind power volatility leads to an increase

in price volatility for Norwegian electricity spot prices.

We expect Hypothesis 2 to hold if Hypothesis 1 does, but we do not necessarily expect

Hypothesis 1 to hold even if Hypothesis 2 does. This expectation is based on the assumption
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that if an increased level of wind production is associated with increased electricity price

volatility, so should increased variations in wind production, as the latter is presumed to

lead to more frequent changes in the merit-order curve.
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3 Data and Methodology
In this chapter, we will present the data and methodology used to analyze our research

question. First, we present the data sources and sample selection and explain any data

modifications. Next, we introduce our model and the associated variables before we

describe the methodology for the two hypotheses. Finally, we elaborate on the descriptive

statistics.

3.1 Data Sources and Sample Selection

We use two primary sources of data in our analysis. NordPool provides us with data

on day-ahead electricity spot prices and consumption. The rest of the data, including

data on wind power production, is provided from Wattsight through Lyse. Since we

use day-ahead prices in our modeling, we would prefer to use day-ahead forecasts of our

independent variables. That way, we would be using the actual data used in the setting

of electricity prices. However, since such forecasts are not available, and predicting the

variables might lead to problems (see Pagan and Nicholls, 1984), we use actual data as a

proxy for the forecasts, in line with the methodology of Nicolosi (2010) and Kyritsis et al.

(2017). Accordingly, we assume perfect information about the conditions in the market

the following day.

The data on electricity prices are obtained from Norway’s NO2 bidding area, which

encompasses the southwestern part of Norway. The area prices are the actual market

clearing prices offered to consumers and producers, in contrast to the system price, which

is a fictional price used as an indication of the price level in Norway. By using the area

prices, we aim to correct for the possible mistake made by Liski and Vehviläinen (2016)

in their analysis and to observe a more accurate relationship between wind production

and price volatility. We choose NO2 as our area of interest as we want to correct for wind

transmissions with Denmark, and NO2 is the only area connected to Denmark through a

power cable.

The time span of our data set ranges from 2013 to 2019, which constitutes all data

available at NordPool. The data from NordPool and Wattsight is all high frequency, and

the majority of it is collected on an hourly basis, with some exceptions for the control
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variables. As we are interested in daily and weekly volatility, we aggregate our data in

accordance with the current volatility measure. Hence, we create two different data sets,

one with daily observations and the other with weekly observations. The first data set

thus includes the daily standard deviation of electricity prices, the already available daily

data as well as daily averages of the hourly data. A concern raised regarding this data set

was the variations in observations for weekends, as some energy sources are not traded

during the weekends. To avoid the possible bias related to any imputation method, we

choose to remove the weekend observations from our data set, leaving us with a data

set of only weekdays of 1826 observations. As for the second data set, no such removals

have been made. In order to accord with a weekly volatility measure, we simply divide

the weekly sum of the data on the number of observations per week, meaning the data

including weekend observations is divided by seven, whereas the data with only weekdays

is divided by five. This modification leaves us with 366 observations, which is still a

substantial amount of observations due to our data’s long time span.

Apart from the above modifications, no other changes have been made to the data set.

We detect some outliers, or price spikes, in the data for electricity prices, as expected

from the literature on electricity price dynamics. Due to these aforementioned dynamics,

we do not consider these price spikes to be abnormal observations, and removal of them

would contradict with our aim of explaining such spikes.

3.2 Discussion of Model and Variables

Our model aims to investigate the effect of wind power production on electricity price

volatility in Norway. Hence, our dependent variable is the standard deviation of Norwegian

electricity prices, and our independent variable is wind production in Norway. To account

for other effects that might explain Norwegian electricity price volatility, we include

selected control variables from the literature review.

3.2.1 Dependent Variable(s): Daily and Weekly Standard

Deviation

Standard deviation is a well-established measure of volatility in financial markets. It

is a measure of price dispersion or variance, and generally, it determines the variations
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between a group of observations and its mean.

There are several variations of the standard deviation formula, and the calculation methods

differ somewhat across markets and literature. In finance, a standard deviation is almost

exclusively applied to the rate of return of an investment. Another variant of this

calculation is the use of log-returns rather than simple returns, which is mostly used

for compounded returns (Calafiore and Massai, 2016). Both of these calculations are

found in commodity markets as well, see studies from Karali and Power (2013) and

Regnier (2007), respectively. However, in commodity markets, we also find instances

where the rate of return has been replaced by prices. In their study of relative volatility

of commodity prices, Arezki et al. (2014) subtract the price average from the price at

time t to measure volatility, and this is also done by Fernandez-Perez et al. (2016) in their

study of idiosyncratic volatility. In the literature on electricity price dynamics, we find

the calculation of standard deviation of price to be most prevalent, also for the research

similar to ours, including studies from Rintamäki et al. (2017) and Mauritzen (2011). In

order to be able to compare our results, we base our calculations on the methodology of

these two and thus calculate our standard deviation, and thus volatility, as the standard

deviation of prices.

With regard to the time span of the volatility measure, most literature investigating

electricity price dynamics examine the intra-day volatility, meaning they examine the price

variations within a day, see Milstein and Tishler (2011), Ketterer (2014) and Dong et al.

(2019) among others. In addition, a small sample of studies also addresses the weekly

volatility in their analyses, including the studies by Mauritzen (2011) and Rintamäki et al.

(2017). We choose to include both measures as independent variables for several reasons.

Firstly, we would like to investigate whether the different measures provide different

results. When we aggregate to weekly data, we may smooth out some of the spikes in our

variables, including the price spikes, which might lead to less clear relationships. On the

other hand, the analysis of Hypotheses 2 may give us more prominent relationships for the

weekly data, as the variations in the variables may appear to be greater than those of daily

data. Secondly, one can argue that the intra-day volatility is not really volatility in terms

of risk. In financial markets, volatility is usually a measure of the riskiness of an asset;

however, as all prices for the day are set one day ahead, there really is no uncertainty



16 3.2 Discussion of Model and Variables

related to the prices within a day. Consequently, a weekly measure might thus be a better

measure of risk. Besides, we find it beneficial to be able to compare our results to studies

such as the one of Rintamäki et al. (2017), which further argues for the inclusion of both

measures.

As discussed in Chapter 2, most modeling of electricity price volatility has been done by

using a variety of GARCH models. In these models, where the volatility analysis usually

comes second to an analysis of the merit-order effect, the standard deviation is derived

from the model, resulting in a conditional standard deviation that changes over time as a

function of past errors (Bollerslev, 1986). Due to the fact that this standard deviation, or

variance, is calculated only based on past observations, a GARCH variance is considered

to be a prediction of volatility, rather than an actual measure. Thus, as we are looking

to model an actual relationship between our variables, the inclusion of such a variance

might bias our results. Furthermore, a GARCH model is only able to provide a volatility

measure per hour, day, or week, predicted from past hours, days, and weeks. As a result,

GARCH cannot provide us with measures of intra-daily or intra-weekly volatility, which

are our dependent variables of interest. On top of this, the GARCH standard deviation is

considered to be an abstract measure of volatility in the sense that it is less interpretable

due to its calculation. In contrast, the standard deviation measure discussed initially

is easily interpreted, comparable across markets, and with great applicability for power

producers, hence we are confident in our decision of independent variables.

Based on the above discussions we calculate our dependent variables as follows:

SDDaily =
q

1
24�1

P24
h=1(ph � p̄d)2 SDWeekly =

q
1

7�1

P7
d=1(p̄d � p̄w)2

In the calculations of daily standard deviation, p̄d is the average price within a day, and

ph is the hourly price. The weekly standard deviation is calculated similarly, only ph is

substituted by p̄d, and we subtract the daily average within that week, p̄w.

3.2.2 Independent Variable: Wind Power Production

Our main independent variable is wind power production in Norway. Due to data

availability, we use production for the whole of Norway, not just the NO2 area, which is

our bidding area in focus. By doing so, we assume an interconnectedness between the

bidding areas without congestions and that a change in the national supply curve for the
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electricity market will lead to a change in the supply curve for the NO2 area. This is a

legitimate assumption as the Norwegian power grid is well developed, and the five price

areas are closely linked through seemingly well-functioning power cables. Furthermore,

wind power production is dependent on the same drivers across Norway. These drivers

constitute installed capacity of windmills, the angle of the windmills and thus the wind

direction, and naturally, the amount of wind (Hau, 2013).

Even though we consider wind power production to be an exogenous variable due to it

being fundamentally non-controllable, there may be some unobservable conditions affecting

the dependent variable through the independent one. We formally test and control for

this possibility in the second half of our analysis and evaluate the above-mentioned drivers

of wind production as possible instruments in a 2SLS instrumental variable approach.

As mentioned in section 3.1 we emphasize that the wind power production we use in our

analysis is the actual, historical wind power production in Norway. As electricity spot

prices are set the day ahead, it is the forecasted determinants that are used in the price

setting. Though, due to the lack of forecasted data, we use actual production and thus

assume perfect information regarding the conditions the following day.

In the analysis of Hypotheses 1 we use the natural logarithm of the wind power production,

given as ln(WindProd) in the model. In the analysis of Hypothesis 2, however, we use

the standard deviation of wind power production in order to examine the effect of wind

power variations on electricity price volatility. Thus the wind variable is given in the

model as ln(�WindProd). In all models, wind power production is reported in MWh.

3.2.3 Control Variables

In this section, we discuss the control variables included in our model. The variables are

mainly identified through the literature review as drivers of electricity prices and thus

believed to affect volatility. We only include variables relevant for the Norwegian market,

and to add additional credibility for their inclusion, they have been vouched for by Lyse.

3.2.3.1 Consumption NO2 (Consumption)

The first variable we control for is electricity consumption for the NO2 area. As electricity

prices are set by supply and demand mechanics, demand is a fundamental variable in
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electricity price modeling (Knittel and Roberts, 2005; Karakatsani and Bunn, 2008).

Furthermore, the demand affects the size of the previously introduced merit-order effect

and, thus, the price fluctuations. Based on this and the prediction by Bessembinder and

Lemmon (2002), which states that spot price volatility is higher (lower) during periods

of high (low) demand, we expect to find a positive relationship between electricity price

demand and price volatility. To account for this relationship, we include consumption in

100 MWh as a proxy for demand, as done by Huisman et al. (2014), among others. For

countries with sufficient access to controllable energy sources, electricity supply will never

be lower than demand, and consumption will always equal demand. As Norway has plenty

of controllable hydropower, this applies to our data. Consumption is primarily driven by

weather and temperature (Escribano et al., 2011), and consequently, the variable includes

most of the seasonal effects found to be drivers of electricity prices.

3.2.3.2 Hydrological Balance (Hydro)

As the primary power source in Norway, hydropower needs to be accounted for due to

its effect on electricity supply. The variable of hydrological balance shows the amount of

water in the water reservoirs in Norway, including the surrounding snow, compared to

what is considered normal. Hence, the variable takes the value of 0 for normal water levels,

negative values for lower levels, and positive values for higher levels. The hydrological

balance represents the marginal cost of producing hydropower, which essentially is the

alternative cost of producing hydropower. A positive hydrological balance means much

water stored in the reservoirs and hence a lower marginal cost of producing hydropower.

Conversely, a negative hydrological balance means that the water level is low, resulting in

a higher marginal cost. In the models, we include the data for hydrological balance as

absolute values. However, as we believe the positive and negative values may influence

the volatility differently, as argued by Simonsen (2005), we include an interaction term

that takes the value of 1 for positive values.

3.2.3.3 Wind Production in Denmark (WindProdDK)

We include wind production in Denmark as a control variable. When it is windy in

Denmark, Danish electricity prices decrease following the merit-order effect (see Hu et al.,

2010), and Danish electricity is transmitted to Norway if the Norwegian prices are lower
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than Danish prices. This transmission happens exclusively through a cable that goes

from the Danish DK1 area to Norway’s NO2, and it results in a decrease in the prices

in the NO2 area. Ideally, we would include the wind exchange from NO2 to Denmark’s

area to control for this effect. However, because of a possible simultaneity bias due to

the exchange’s dependence on the Norwegian price level, we use the Danish wind power

production as a proxy. We quote the variable of WindProdDK in 100 MWh.

3.2.3.4 Gas Price(Gas)

Fuel prices are found in the literature to be important determinants of the electricity

supply curve (Mohammadi, 2009). The gas price determines the marginal cost of electricity

production when gas production is part of the merit-order curve that intersects with the

demand curve. Even though gas is only used to a certain extent in Norway, it still remains

the third most preferred energy source after hydro and wind. Besides, it is an important

electricity source in Europe, and with increasing power exchange between Norway and

Europe, we need to consider its effect on Norwegian prices.

3.2.3.5 CO2 Certificate Price (CO2)

Changes in the CO2 price, which is the price of the EU CO2 emission allowance, are found

in the literature to have an impact on electricity prices through its effect on fuel price (see

Huisman et al., 2014). Despite the lack of use of fuel power in the Norwegian electricity

grid, we choose to include the CO2 price due to its effect on European electricity prices, as

the rest of Europe still includes much thermal power in their energy mix. When the prices

increase in Europe, Norway benefits from exporting electricity. Though when we export

to European markets, the European prices are imported to Norway, and consequently, it

affects the Norwegian price level.

3.2.3.6 EUR/NOK Exchange Rate (EURNOK)

The EUR/NOK exchange rate is included to account for macroeconomic effects in Norway.

In addition, the variable is included to separate out the effect on volatility that comes

from changes in the CO2 price, and not changes in the exchange rate as the CO2 price is

quoted in euros.
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3.3 Methodology

In the following, we explain the econometric methods used to analyze our research question.

We use time series regressions for all our models and run two main regressions for each

of our two hypotheses, one with intra-daily volatility as a dependent variable and one

with intra-weekly volatility. We include seasonal effects in the regressions to capture any

seasonality that may affect price volatility, which may be different from the seasonality

affecting price. For the intra-day models, we include day-of-week and month-of-year fixed

effects, and for the intra-week models, we account only for monthly effects. With regard

to the model specification, we create our base model based on the three most important

drivers of electricity prices in Norway; wind power, consumption, and hydrological balance.

Next, we add the other control variables in order of their presumed importance and check

for significance and model fit improvements.

Time series regressions assume stationarity in their variables in order to detect relationships

between two or more variables (Wooldridge, 2012). To account for this, we check for

stationarity in all of the above-defined variables through an Augmented Dickey-Fuller

(ADF) test for unit roots. To be certain of the results, we run additional tests with the

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test and difference the variables that show

non-stationarity or questionable results. We provide explanations for the interpretation

of these differenced variables when encountered. Further, we conduct formal tests for

autocorrelation and heteroscedasticity and adjust for these features by adding Newey-West

robust standard errors. In the following, we explain more thoroughly how we analyze our

two hypotheses.

3.3.1 Wind Production and Electricity Price Volatility (H1)

In order to analyze how wind power production affects electricity price volatility, we

construct the following model:

ln(SDt) = ↵0 + �1ln(WindProdt) +
P

i=2 �iXt +
P

j=1 �jTt

where the dependent variable ln(SDt) is the natural logarithm of the standard deviation

measures defined in 3.2.1 for time t. The independent variable is given as the natural

logarithm of wind power production at time t included in the model as ln(WindProdt).
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All our previously defined control variables are included in Xt, and the final part of the

equation includes the various time effects as the vector Tt.

We run two regressions with the above model. First, we regress the daily standard deviation

on intra-daily averages or daily values of the previously defined variables. Secondly, we

regress the weekly standard deviation on intra-weekly averages of the variables. To be

able to interpret our wind coefficient as an elasticity, we have taken the natural logarithm

of both the volatility metric and the variable of wind production. Consequently, the

coefficient of wind can be interpreted as follows: A 1% increase in wind power production

leads to a �1% increase in the relevant standard deviation. With regard to the other

variables, they are kept at levels as there is no interpretation reasoning for why they should

be changed, nor does the modification improve the model fit or change the significance.

For this model, ln(SDt) is found to be stationary both for daily and weekly measures. As

for the control variables, the daily data of WindProd, Hydro, and WindProdDK are

all found to be stationary at the 5% level. For the weekly data, however, WindProd, is

found to be non-stationary, and thus we take the first difference of this variable, leaving

us with the following interpretation: A 1% change from last week to this week will lead to

an increase in intra-week volatility by �1%. We follow the same procedure for all other

variables found to be non-stationary and find them all to be stationary after taking the

first difference. Thus they are integrated of order one, I(1), and we can use them in our

regression (Wooldridge, 2012).

3.3.2 Wind Power Volatility and Electricity Price Volatility (H2)

To analyze our second hypotheses, we modify the previous model to include the standard

deviations of several of the independent variables:

ln(SDt) = ↵ + �1ln(�WindProd,t) +
P

i=2 �i�X,t +
P

j=i+1 �jXt +
P

k=1 �kTt

Our dependent variable ln(SDt) remains unchanged and is still defined as the natural

logarithm of the daily or weekly standard deviation for time t. The independent variable

in this model is, however, now given as the natural logarithm of the standard deviation of

wind power production at time t, included in the model as ln(�WindProd,t). This variable

is thus aimed to capture the changes in wind power and its effect on price volatility.

Accordingly, the standard deviations of the control variables are included in the vector
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�X,t, and the variables that are left unchanged are found in the vector Xt. The final part

of the model is the same as before and includes the various time effects as the vector Tt.

Also for this model, we run two regressions, one for daily data and one for weekly data.

The wind power coefficient is kept as an elasticity, interpreted as explained in 3.3.1, but

now as the standard deviation. All other variables are kept at levels as in the previous

analysis. Concerning stationarity, SD and WindProd, as well as Consumption, Hydro,

and WindProdDK are found to be stationary by both the ADF and KPSS test, for both

weekly and daily data. This implies that the variables are all integrated at order zero,

I(0), and we can include them undifferenced in the model (Wooldridge, 2012). As for the

remaining three variables, they are found to be non-stationary for daily data, and thus we

include them as first-differences.

3.4 Descriptive Statistics

In the final part of this chapter, we present the descriptive statistics for the data used in

our analysis. First, we present summary statistics for all of our variables and graphically

illustrate the dynamics of our dependent and independent variable. We then elaborate on

the results from a correlation matrix and address any possibility for multicollinearity.

3.4.1 Summary Statistics

The first table in the following contains summary statistics for the daily data. This means

that it contains the already available daily data as well as daily averages of the hourly

data, all weekends excluded. In the second table, we have aggregated to weekly data,

leaving us with an average per week. Both of the data sets described below are used as

a basis for the regressions in the subsequent chapter, though with some of the variables

log-transformed, differenced or included as standard deviations in the final regression

models. The data described in this section is thus the unmodified data set available prior

to these transformations.
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Table 3.1: Summary Statistics Daily Data

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

Price (EUR/MWh) 1,826 32.1 10.3 5.4 25.3 38.7 78.1
WindProd (MWh) 1,826 336 217 47 179 432 1,741
Consumption (100 MWh) 1,826 40.8 7.0 29.6 34.1 46.5 60.6
Hydro 1,826 �4.6 8.4 �25.0 �9.6 1.5 18.9
WindProdDK (100 MWh) 1,826 15.5 10.6 0.4 6.5 22.7 44.6
Gas (p/therm) 1,825 49.9 12.2 26.1 42.0 58.6 81.3
CO2 (EUR/ton) 1,826 10.0 7.3 2.8 5.1 13.0 29.8
EURNOK 1,826 9.0 0.7 7.3 8.4 9.6 10.3

Table 3.2: Summary Statistics Weekly Data

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

Price (EUR/MWh) 366 31.6 9.9 8.1 24.8 37.5 63.9
WindProd (MWh) 366 339 192 67 195 414 1,574
Consumption (100 MWh) 359 40.0 6.9 29.6 33.5 46.3 56.6
Hydro 365 �4.6 8.3 �24.9 �9.6 1.4 17.9
WindProdDK (100 MWh) 366 15.6 6.7 3.4 10.7 20.2 34.1
Gas (p/therm) 365 49.9 12.2 26.3 42.2 58.4 79.2
CO2 (EUR/ton) 365 10.0 7.3 3.0 5.1 13.1 29.2
EURNOK 365 9.0 0.7 7.3 8.4 9.6 10.2

The electricity prices have a mean value of 32.1 and 31.6 EUR/MWh for the daily and

weekly data set, respectively. As the two data sets are based on the same initial data, we

would expect the two means to be the same, but the difference is attributed to the removal

of the weekend observations in the daily data set. This causes the mean electricity price

to decrease in the weekly data set, implying that weekend electricity prices tend to be

lower than those of the weekdays. Gas, CO2, and EURNOK all have the same mean in

both data sets as the weekend data is not present in either of them.

Hydrological balance is the only control variable to hold negative values, which is explained

by the aforementioned variable definition. Interestingly enough, we find the mean to be

negative, implying that the water levels in the selected time period overall are below

normal. We observe no negative values for Norwegian electricity prices, which has been

observed for other countries, notably in windy Denmark. This is non-surprisingly not

found for the NO2 area as hydropower is the dominant power source, and it always holds
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a marginal cost above 0.

Worth mentioning from the two above tables is that all of the variables’ maximum values

are lower for the weekly data, indicating that some of the highest values are evened out

when aggregated to weekly averages. This is also illustrated in the plot in Figure 3.1

below, which show that the spikes observed in the electricity prices are lower and less

frequent in the weekly data than in the daily.

Figure 3.1: Evolution of Norwegian Electricity Prices

The figure displays the evolution of average daily and weekly electricity prices within the
NO2 bidding area during the period 2013-2019. The prices are stated in EUR/MWh.

The summary statistics for wind power production do not truly illustrate the growth this

sector has experienced in the last couple of years. To illustrate this, we include a plot

with both the daily and the weekly average wind power production below in Figure 3.2.

As displayed, the production has grown exponentially during the selected time span, and

as the capacity has grown, so has the fluctuations in production levels. We also observe

for this plot that the spikes are more prominent in the daily wind production than in the

weekly production.
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Figure 3.2: Evolution of Norwegian Wind Power Production

The figure displays the evolution of average daily and weekly wind power production
in Norway during the period 2013-2019. The production is stated in MWh.

3.4.2 Pearson’s Correlation Matrix

In the following, we analyze the Pearson’s correlation coefficients between the variables

included in our regression models. We do this to determine whether or not we should be

concerned about multicollinearity, namely a high correlation between our independent

variable of interest and the other exogenous variables. All variables appear in the form

they take in the regressions, meaning some appear as first differences, natural logarithms,

and standard deviations. That way, we reveal alarming correlations between the actual

variables used in our analyses in the subsequent chapter. We present two correlation

matrices associated with the analysis of each hypothesis, one for daily data and one for

weekly data. In neither of the matrices, we find correlations above 0.5, which indicates a

limited likelihood of a multicollinearity issue in either of our models. Despite this, there

are a few correlations we would like to comment on.

In the matrices associated with Hypothesis 1, the correlation between daily WindProd

and WindProdDK stands out as we find it to be 0.48. This raises a concern that the

weather conditions in Norway and Denmark are so similar that the wind power plants

produce electricity at the same time in both countries. To test whether we have a

formal multicollinearity issue in our regression, which may harm the interpretability of
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the regressions, we conduct a Variance Inflation Factor (VIF) test. A VIF score of 1

indicates no collinearity, and any score below 5 is considered acceptable (Levshina, 2015).

Our VIF test for the regression with daily data shows a value of 1.3, and we thus reject

multicollinearity being an issue. For the weekly data, this correlation no longer stands out

as it is there reduced to 0.194. None of the remaining control variables have a noteworthy

high or low correlation with our variable of interest.

Table 3.3: Hypothesis 1, Daily Data

(1) (2) (3) (4) (5) (6) (7) (8)
(1) ln(SDDaily) 0.2343 0.0847 0.1895 0.0824 -0.0046 0.0076 0.0119
(2) ln(WindProd) -0.0857 0.0303 0.4784 -0.0505 -0.027 -0.018
(3) �Consumption 0.0081 -0.108 -0.0709 -0.0161 0.0106
(4) Hydro -0.0166 -0.0141 0.0294 0.0183
(5) WindProdDK -0.0241 -0.0146 -0.027
(6) �Gas 0.0592 -0.0013
(7) �CO2 2e-04
(8) �EURNOK

Table 3.4: Hypothesis 1, Weekly Data

(1) (2) (3) (4) (5) (6) (7) (8)
(1) ln(SDWeekly) 0.1005 0.3431 0.0961 0.1925 -0.0636 -0.0023 -0.0024
(2) �ln(WindProd) -0.031 0.0174 0.194 -0.0249 -0.0683 0.0551
(3) Consumption 0.1014 0.4122 -0.2395 -0.0345 -0.0429
(4) Hydro -0.0238 0.0029 0.088 0.0694
(5) WindProdDK -0.1155 -0.0936 0.0115
(6) �Gas 0.2242 -0.0256
(7) �CO2 -0.0146
(8) �EURNOK

For the data used in the analysis of Hypothesis 2, none of the correlation coefficients

between our variable of interest and the control variables in the daily data stand out as

possible issues. For the weekly data, on the other hand, there are a few variables that

show slight correlations with WindProd making them worth investigating. The standard

deviations of WindProdDK, Gas, and CO2 correlate with the standard deviation of

WindProd with coefficients between 0.22-0.34. We, therefore, conduct another VIF test

to check if this could cause any issues with the interpretation of the weekly regression

models in Hypothesis 2. The VIF test is once again 1.3, indicating that the inclusion of

these variables does not cause an issue and that we should include them to prevent any

possible omitted variable bias.
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Table 3.5: Hypothesis 2, Daily Data

(1) (2) (3) (4) (5) (6) (7) (8)
(1) ln(SDDaily) 0.1638 0.3267 0.1895 0.4376 -0.0046 0.0076 0.0119
(2) ln(�WindProd) 0.0853 0.0227 0.1684 -0.038 -0.0235 -0.0119
(3) �Consumption 0.0655 0.3047 -0.0796 -0.0286 0.0019
(4) Hydro 0.1445 -0.0141 0.0294 0.0183
(5) �WindProdDK -0.0061 0.012 -0.055
(6) �Gas 0.0592 -0.0013
(7) �CO2 2e-04
(8) �EURNOK

Table 3.6: Hypothesis 2, Weekly Data

(1) (2) (3) (4) (5) (6) (7) (8)
(1) ln(SDWeekly) 0.2149 0.3484 0.1631 0.2778 0.0732 0.1892 -0.0287
(2) ln(�WindProd) 0.08 0.1721 0.2825 0.2235 0.341 -0.0418
(3) �Consumption 0.2068 0.1926 0.0381 0.0479 -0.0599
(4) �Hydro 0.0844 0.0038 0.0782 0.0113
(5) �WindProdDK 0.0699 0.0342 0.0471
(6) �Gas 0.3084 -0.0698
(7) �CO2 -0.1116
(8) �EURNOK

The correlation between our volatility measures and the wind production variables show

correlations in the range of 0.1005-0.2343. This signifies a positive relationship between

our dependent and independent variable, which is in line with our expectations. However,

further analyses are necessary to fully test our hypotheses.
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4 Results and Discussion
In this chapter, we will present the results from our analyses of Hypothesis 1 and 2. In

the first section, we interpret the results from an OLS estimation, addressing the two

hypotheses separately. Next, we use an instrumental variable approach to be better able

to argue causality, and in the second section, we thus explore the results from a 2SLS

estimation.

4.1 Determining Causal Effects through OLS

4.1.1 Wind Production and Electricity Price Volatility (H1)

In the following section, we will present the results from our analysis of Hypothesis 1,

which aims to explain the effect of wind power production on electricity price volatility.

We use the time series regression model outlined in 3.3.1 and run regressions for both

daily and weekly observations. First, we start by regressing SDDaily on WindProd alone.

In the next step, we include the control variables introduced in section 3.2.3 to reduce

any omitted variable bias and increase estimate precision. As we do not detect any

multicollinearity issue in 3.4.2 and thus have no reason to doubt the coefficient estimates,

we choose to include them all in our final model. As the last step, we add day-of-week and

month-of year fixed effects to the model to control for any unobserved seasonality that

might affect the price volatility. The regressions are displayed in Table 4.1. We follow

the same procedure for the weekly data and intra-week electricity price volatility and

present the corresponding results in Table 4.2. The motivation for the two analyses is

to see whether it is decisive, which volatility measure is used; hence, the inclusion serves

as a robustness check. Based on the literature review, we however, expect wind power

production to have a significant effect on price volatility in Norway for both time horizons.

The table below includes five different time series regressions. The first model regresses

ln(SDDaily) on WindProd. Model (2) controls for the presumed most important drivers

of electricity prices in Norway and model (3) includes all variables defined in 3.2.3.

Models (1) through (3) include no fixed effects, whereas regression (4) includes day-of-

week fixed effects, and model (5) also adds month-of-year fixed effects. To correct for
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detected heteroscedasticity and autocorrelation, we use Newey-West standard errors in all

regressions.

Table 4.1:
Intra-Daily Electricity Price Volatility and Wind Production in Norway

The table displays time series regressions for the relationship between Norwegian wind power

production and intra-daily electricity price volatility in Norway’s NO2 bidding area. The results

are based on a sample of 1826 daily observations ranging from 2013 to 2019, excluding weekends.

Models (1) through (3) include no seasonal fixed effects, whereas model (4) and (5) include fixed

effects for day-of-week and month-of-year. Newey-West heteroscedasticity and autocorrelation

corrected standard errors are displayed in parentheses.

Dependent variable:
ln(SDDaily)

(1) (2) (3) (4) (5)
ln(WindProd) 0.321⇤⇤⇤ 0.324⇤⇤⇤ 0.341⇤⇤⇤ 0.344⇤⇤⇤ 0.268⇤⇤⇤

(0.080) (0.071) (0.072) (0.072) (0.061)

�Consumption 0.058⇤⇤⇤ 0.058⇤⇤⇤ 0.056⇤⇤⇤ 0.054⇤⇤⇤
(0.014) (0.013) (0.013) (0.012)

Hydro 0.027⇤⇤⇤ 0.027⇤⇤⇤ 0.027⇤⇤⇤ 0.029⇤⇤⇤
(0.007) (0.007) (0.007) (0.006)

PosHydro 0.010 0.011 0.011 0.012
(0.014) (0.014) (0.014) (0.012)

WindProdDK �0.002 �0.002 �0.004
(0.004) (0.004) (0.004)

�Gas 0.013 0.015 0.024⇤⇤
(0.013) (0.013) (0.012)

�CO2 0.024 0.023 0.042
(0.044) (0.043) (0.041)

�EURNOK 0.201 0.236 0.328
(0.433) (0.431) (0.375)

D-O-W FE No No No Yes Yes
M-O-Y FE No No No No Yes
Observations 1,825 1,825 1,823 1,823 1,823
R2 0.055 0.100 0.100 0.109 0.230
Adjusted R2 0.054 0.098 0.096 0.103 0.220
F Statistic 105.927⇤⇤⇤ 50.594⇤⇤⇤ 25.289⇤⇤⇤ 18.436⇤⇤⇤ 23.342⇤⇤⇤

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01

From the above regression table, we find that the coefficient for WindProd is significant

and positive through all models at the 1% level. This indicates that an increase in daily



30 4.1 Determining Causal Effects through OLS

average wind production leads to an increase in electricity price volatility in Norway,

and the results are therefore supportive of Hypothesis 1. The WindProd coefficient

stays relatively constant for models (1) through (4) but changes slightly in model (5)

when monthly fixed effects are added. This suggests that the preceding coefficients are

overestimated and that some of the volatility caused by seasonal variations is captured by

the wind coefficients. When controlling for the monthly effects, we reduce the omitted

variable bias, and with no previous indication of issues with multicollinearity, we argue that

the inclusion of months increases the reliability of our WindProd coefficient. Assuming

that model (5) is our better model, the findings suggest that a 1% increase in Norwegian

wind production is associated with a 0.268% increase in price volatility. The economic

significance may seem questionable; however, as average daily wind production often

increases by 50-100 percent, its impact on electricity price volatility is considered to be

sizeable. Hence, our first analysis argues in favor of Hypothesis 1.

As to our control variables, we observe variations with regard to significance. Consumption

is significant for all regressions and rather constant with a narrow range of 0.054-0.058.

The sign of the coefficient is consistently positive, which is in line with microeconomic

theory and the literary findings. The statistical significance is solid at a 1% level, with

increasingly precise estimates as more control variables are added to the models. Also

the economic significance is considered solid as the variable is quoted in 100 MWh, and

the average change in demand from one day to another is 105 MWh. Given table (5), it

signifies that a change in the demand from day to day of 100 MWh results in a change in

volatility of 5.4%, given the differenced variable and the log-level regression.

The coefficient for Hydro is significant and positive for all regressions, and it remains

relatively stable. The output thus complies with our literary findings that hydropower is

an important driver of electricity prices in Norway. With a level-log interpretation, the

coefficient is also economically significant, as the results signify that a 1 unit increase

or decrease in hydrological balance, which is associated with a change in the marginal

cost of hydropower production, is associated with a 2.9% change in Norwegian intra-daily

electricity price volatility. Interestingly enough, the interaction term of PosHydro shows

no significance, implying that there is no difference between the effect from positive or

negative abnormality to the hydrological balance on daily volatility.
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The coefficient for WindProdDK is surprisingly not positive, which is contradictory to

the findings of Rintamäki et al. (2017), emphasizing the importance of transmission lines

between Denmark and Norway on volatility. As we cannot say from our analysis that the

coefficient for WindProdDK is significantly different from zero, we cannot interpret it,

nor can we say anything about the impact of transmission with Denmark on Norwegian

price volatility. We note that we are not using the exchange data from Denmark to NO2

due to potential biases but rather the total wind production in Denmark, which may

affect the results.

The remaining variables are consistently not significant, with the exception of Gas turning

significant in model (5) when controlling for monthly fixed effects. This implies that the

gas price follows a seasonal pattern and that gas does have a significant effect on intra-daily

price volatility when monthly effects are controlled for. As for CO2 and EURNOK, their

coefficients show no significance, and thus we cannot interpret the coefficients as being

different from zero.

Addressing the seasonal effects, we see that the day-of-week effects have no noteworthy

effect on either of the coefficients. We find this reasonable as we have excluded the

weekends from the daily data sets, and one could suspect that any change in volatility

during the week would be related to changes in the pattern of behavior during the

weekend. Conversely, we observe changes in several of our coefficients when monthly fixed

effects are added to the model, and most notably, we observe changes in our coefficient

of interest, as discussed above. We are, however, slightly surprised that the coefficient

for consumption does not display any changes when adding the monthly effects, as we

would assume consumption to vary slightly with the months. However, as this variable is

first-differenced, it makes sense that the changes in consumption from day to day does

not vary much with the months, and we would rather expect to see a different result in

this coefficient for a non-differenced variable. Nevertheless, we observe that the adjusted

R2 for the model almost doubles when adding monthly fixed effects, which argues for

continuing the inclusion of them in the succeeding models.

Even though some of the coefficients are not as expected, they are not unreasonable, and

hence we have no reason to doubt the accuracy of the model as a whole or the initial

interpretation of our variable of interest.
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Table 4.2:
Intra-Weekly Electricity Price Volatility and Wind Production in Norway

The table displays time series regressions for the relationship between wind power production in

Norway and intra-weekly electricity price volatility in Norway’s NO2 bidding area. The results

are based on a sample of 366 weekly observations during the period of 2013 to 2019. Models

(1) through (3) include no seasonal fixed effects, whereas model (4) includes fixed effects for

month-of-year. Newey-West heteroskedasticity and autocorrelation corrected standard errors are

displayed in parentheses.

Dependent variable:
ln(SDWeekly)

(1) (2) (3) (4)
�ln(WindProd) 0.225⇤⇤ 0.242⇤⇤ 0.232⇤⇤ 0.239⇤⇤

(0.099) (0.096) (0.103) (0.097)

Consumption 0.039⇤⇤⇤ 0.038⇤⇤⇤ 0.135⇤⇤⇤
(0.009) (0.010) (0.020)

Hydro 0.009 0.010 0.007
(0.008) (0.008) (0.008)

PosHydro 0.027 0.027 0.030⇤⇤⇤
(0.018) (0.018) (0.010)

WindProdDK 0.004 0.011
(0.008) (0.007)

�Gas 0.010 �0.003
(0.016) (0.017)

�CO2 0.015 0.027
(0.062) (0.071)

�EURNOK �0.090 �0.194
(0.534) (0.456)

M-O-Y FE No No No Yes
Observations 365 357 357 357
R2 0.010 0.146 0.148 0.321
Adjusted R2 0.007 0.136 0.128 0.282
F Statistic 3.707⇤ 15.029⇤⇤⇤ 7.541⇤⇤⇤ 8.368⇤⇤⇤

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Table 4.2 displays the corresponding results from the analysis of intra-weekly volatility

and weekly data. For these regressions, WindProd is also found to be significant for all

models. The coefficient ranges from 0.225-0.242, which shows that it remains relatively

constant even when monthly effects are added, indicating that weekly wind production

does not capture the same seasonality as the daily production. However, we note that

WindProd in these regressions is given as the first difference of the natural logarithm of

the weekly average wind production. This leaves us with the following interpretation of

the estimated coefficient of model (5): A 1% increase in wind production from last week

to this week leads to an increase in volatility of approximately 0.239%. The differencing

of the variable may thus be the reason why we do not observe the same change in the

coefficient when controlling for months. The different interpretation also affects our ability

to compare the magnitude of the coefficients with the daily model. Nevertheless, more

importantly, we see that the estimated WindProd coefficients are significant and positive,

which shows that despite using different volatility measures and aggregation levels, the

wind production holds its significance, further supporting Hypothesis 1.

The Consumption coefficient is also significant for this analysis. The coefficient is relatively

consistent through models (2) and (3), however, it increases in model (4) when monthly

effects are included. This result is more consistent with our belief that consumption

includes some monthly seasonality, which becomes apparent in this model when the

variable is included as a non-differenced variable. Assuming model (4) is the better model,

the coefficient estimate of Consumption implies that a change in demand of 100 MWh is

associated with a 13,5% change in volatility, which is a considerable amount.

The estimated coefficient for Hydro shows no significance in either of the weekly models

displayed above, implying that the weekly average of the hydrological balance does not

have a significant impact on Norwegian electricity price volatility. This is interesting

as we observe a significance for the daily data set. However, with weekly hydrological

balance being the average of the daily observations within a week, the averaging may

smooth out the peaks, making it harder to establish a relationship between Hydro and

SDWeekly. Nevertheless, we observe for this analysis that the coefficient for PosHydro

becomes significant when monthly fixed effects are added. This indicates that when water

levels are higher than normal, a change in the hydrological balance will impact weekly
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volatility, which is in line with the findings of Simonsen (2005).

We observe no significance in the remaining control variables, which mostly reflects the

results from the analysis of daily volatility. We find the coefficients in this model to be

reasonable as well, and thus we see no reason to doubt the accuracy of the model and its

estimates.

4.1.2 Wind Power Volatility and Electricity Price Volatility (H2)

In this section, we present the results from our analysis of Hypothesis 2. In this hypothesis,

we explain the effect of the variations in wind power production on electricity price

volatility and include the standard deviation of the control variables where possible. The

motivation for this second analysis is that we believe the variations in the variables can

better explain variations in electricity prices, and more so than a single decrease and

increase in the variables. For the analysis of Hypothesis 2 , we use the time series regression

model outlined in 3.3.2 for daily and weekly volatility and data. We follow the same

procedure as for Hypothesis 1 and start by regressing SDDaily on the new �WindProd before

we stepwise include the control variables and seasonal effects. The regressions for the

daily data are displayed in Table 4.3, whereas the analysis for weekly is presented in Table

4.4. Same as for Hypothesis 1, we expect our second hypothesis to hold and thus expect

wind power volatility to have a significant effect on price volatility in Norway. In addition,

we expect the regression models in the analysis of this hypothesis to explain more of the

variation in our dependent variable compared to the models used for our first hypothesis.

The following table includes five different time series regressions. The first model regresses

SDDaily on �WindProd. Model (2) includes the daily standard deviation of consumption as

well as hydrological balance and its interaction term. In model (3), we include all variables

defined in 3.2.3, however, we now include the standard deviation of wind production

in Denmark. As in the daily analysis of Hypothesis 1, model (1) through (3) includes

no fixed effects, whereas regression (4) includes day-of-week fixed effects and model (5)

also adds month-of-year fixed effects. Also for this analysis, we correct for detected

heteroscedasticity and autocorrelation by using Newey-West standard errors in all the

regressions.
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Table 4.3:
Intra-Daily Electricity Price Volatility and Norwegian Wind Power Volatility

The table displays time series regressions for the relationship between Norwegian wind power

volatility and intra-daily electricity price volatility in Norway’s NO2 bidding area. The results

are based on a sample of 1826 daily observations ranging from 2013 to 2019, excluding weekends.

Models (1) through (3) include no seasonal fixed effects, whereas model (4) and (5) include fixed

effects for day-of-week and month-of-year. Newey-West heteroskedasticity and autocorrelation

corrected standard errors are displayed in parentheses.

Dependent variable:
ln(SDDaily)

(1) (2) (3) (4) (5)
ln(�WindProd) 0.199⇤⇤⇤ 0.164⇤⇤⇤ 0.104⇤⇤ 0.104⇤⇤ 0.110⇤⇤⇤

(0.059) (0.051) (0.044) (0.044) (0.039)

�Consumption 0.342⇤⇤⇤ 0.233⇤⇤⇤ 0.228⇤⇤⇤ 0.236⇤⇤⇤
(0.066) (0.061) (0.062) (0.061)

Hydro 0.025⇤⇤⇤ 0.018⇤⇤⇤ 0.019⇤⇤⇤ 0.023⇤⇤⇤
(0.007) (0.006) (0.006) (0.006)

PosHydro 0.008 0.012 0.012 0.015
(0.015) (0.013) (0.013) (0.011)

�WindProdDK 0.001⇤⇤⇤ 0.001⇤⇤⇤ 0.001⇤⇤⇤
(0.0001) (0.0001) (0.0001)

�Gas 0.014 0.016 0.016
(0.011) (0.011) (0.011)

�CO2 0.017 0.016 0.031
(0.039) (0.040) (0.040)

�EURNOK 0.581 0.601 0.609
(0.402) (0.401) (0.373)

D-O-W FE No No No Yes Yes
M-O-Y FE No No No No Yes
Observations 1,825 1,825 1,821 1,821 1,821
R2 0.027 0.154 0.257 0.260 0.322
Adjusted R2 0.026 0.152 0.254 0.255 0.313
F Statistic 50.289⇤⇤⇤ 82.673⇤⇤⇤ 78.530⇤⇤⇤ 52.852⇤⇤⇤ 37.031⇤⇤⇤

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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From the analysis of Hypothesis 2 with daily data, we find that the coefficient for �WindProd

is significant and positive through all models in the range of 0.10-0.199. Its standard errors

decrease as control variables are included, indicating that the coefficient estimate for wind

power volatility becomes increasingly efficient when more of the variance in the error term

is accounted for. Also, in this analysis, day-of-week fixed effects have a minimal effect

on the coefficients; in fact, our coefficient of interest remains constant between model (3)

and (4). Conversely, �WindProd becomes more significant in model (5) when the monthly

effects are included, making us more certain that the coefficient estimate in model (5)

is significantly different from zero. The coefficient in our final regression shows that a

1% increase in wind power volatility is associated with a 0.11% increase in the electricity

price volatility. This finding supports Hypothesis 2 stating that intra-daily variance in

wind production has a significant impact on intra-daily electricity price volatility. In

addition, as suspected, the adjusted R2 for this model is higher than for the model used in

Hypothesis 1, implying that the variance of the variables may better explain the variation

in daily electricity prices than single changes in the values.

For the control variables, they mostly display the same significance as the analysis of

the daily data in Hypothesis 1, but with the exception of WindProdDK. The coefficient

for WindProdDK is now significant when we control for its variations, meaning that

a one-unit increase in Danish wind power volatility is associated with a 0.1% increase

in Norwegian electricity price volatility. The economic significance for this may seem

questionable, but as the standard deviation of WindProdDK changes on average by

approximately 210.2 units from one day to the other, the impact on electricity price

volatility is on average 21.02%. This indicates that there, in fact, is a relationship between

Danish wind production and Norwegian price volatility, but only apparent when we control

for the variations of the variable.
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Table 4.4:
Intra-Weekly Electricity Price Volatility and Norwegian Wind Power

Volatility

The table displays time series regressions for the relationship between Norwegian wind power

volatility and intra-weekly electricity price volatility in Norway’s NO2 bidding area. The results

are based on a sample of 366 daily observations ranging from 2013 to 2019. Models (1) through

(3) include no seasonal fixed effects, whereas model (4) includes fixed effects for month-of-year.

Newey-West heteroskedasticity and autocorrelation corrected standard errors are displayed in

parentheses.

Dependent variable:
ln(SDWeekly)

(1) (2) (3) (4)
ln(�WindProd) 0.297⇤⇤⇤ 0.243⇤⇤⇤ 0.088 0.167⇤⇤

(0.093) (0.085) (0.078) (0.069)

�Consumption 0.344⇤⇤⇤ 0.305⇤⇤⇤ 0.274⇤⇤⇤
(0.047) (0.045) (0.054)

�Hydro 0.033 0.033 0.071
(0.082) (0.084) (0.088)

PosHydro 0.189⇤⇤ 0.211⇤⇤ 0.193⇤⇤
(0.090) (0.089) (0.077)

�WindProdDK 0.045⇤⇤⇤ 0.050⇤⇤⇤
(0.013) (0.013)

�Gas �0.018 �0.052
(0.036) (0.034)

�CO2 0.583⇤⇤⇤ 0.671⇤⇤⇤
(0.178) (0.184)

�EURNOK �0.446 0.085
(1.681) (1.651)

M-O-Y FE No No No Yes
Observations 366 358 357 357
R2 0.046 0.174 0.227 0.330
Adjusted R2 0.044 0.164 0.210 0.292
F Statistic 17.621⇤⇤⇤ 18.527⇤⇤⇤ 12.798⇤⇤⇤ 8.740⇤⇤⇤

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Table 4.4 displays the regressions from our analysis of Hypothesis 2 with weekly data.

Model (3) stands out in this table, as the variable of interest for the first time turns out

to be non-significant. This indicates that some of the variations in WindProdDK, Gas,

CO2, and EURNOK may be absorbed by the wind coefficient in model (2), making it

overestimated. This raises the concern of multicollinearity. Even though the correlation

between wind production and these variables is modest as seen in 3.4.2 and our official

VIF test is passed with no values higher than 1.3, the results may indicate that the modest

correlation we see between the standard deviation of wind power production and the

control variables may, in fact, bias our results when the latter variables are omitted. We

investigate this further by adding the relevant control variables to the model one by one

and find that the decrease in the �WindProd coefficient is primarily a consequence of adding

�WindProdDK and �CO2 to the model (see Appendix A1). This signifies that we are able to

control for the co-varying effect between variations in Norwegian wind production and

variations in Danish wind production and the CO2 price when adding the latter two to

the model. This again is, to some extent, confirmed by the significant positive coefficients

for �WindProdDK and �CO2.

Furthermore, from the same regression table, we observe that the coefficient for �WindProd

turns significant again in model (4) when the monthly effects are added. This, in turn,

indicates that the wind production coefficient also captures time-varying fixed effects,

making it underestimated. When adding the month-of-year dummies to the model, we

control for the contradictory effect that there is less volatility in some months where it

is also windy, notably the months of winter and fall, which are significant and negative

(shown in Appendix A2). When controlling for both the co-varying control variables and

the contradictory fixed effects, we believe we are able to successfully reduce the omitted

variable bias and increase the reliability of our main coefficient of interest. Based on

the successive result in model (5), we interpret that a 1% increase in weekly wind power

standard deviation is associated with an increase of 0.167% in the standard deviation of

electricity prices. This complies with our previous results, and once again, the findings

are supportive of our hypothesis.

The control variables display similar results as in the analysis of weekly volatility in

Hypothesis 1. Hydro is still not significant even though we here include the standard
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deviation, but PosHydro is, indicating that the variation in the positive values of

hydrological balance has an effect on price volatility. More interesting is the change

in the coefficient for �CO2. For the first time, we include the standard deviation of the

CO2 price as we can only calculate this for the weekly data, and this variable’s significance

indicates that the variations in CO2 prices have an effect on electricity price volatility.

This is surprising compared to the previous analysis; however, it somehow confirms our

suspicions that variations in the independent variables may better explain variations in

electricity prices.

4.2 Determining Causal Effects through 2SLS

To better be able to argue for causality between wind production and electricity price

volatility in Norway, we choose to conduct a Two-Stage Least Squares (2SLS) estimation.

So, we control for a situation where the assumption of exogeneity does not hold and any

issue related to unobservable macroeconomic conditions affecting our main independent

variable. We start by discussing the possible instruments for wind power production.

Next, we present our analyses and compare the results to those of OLS.

4.2.1 Discussion of Instrument

As introduced in 3.2.2, wind power production is primarily driven by installed wind power

capacity and wind speed. These variables do not impact electricity prices or volatility

directly, only indirectly through their effect on wind production. Hence, we consider them

as possible instruments for wind production in a 2SLS analysis.

For an instrument to be considered good, it has to fulfill the conditions of exclusion and

relevance (Wooldridge, 2012). We can formally test the relevance condition by regressing

wind production on the two instruments separately. By doing so, we find both wind power

capacity and wind speed to be relevant in explaining wind production. The exclusion

condition, on the other hand, needs to be discussed, and we raise some concerns regarding

the exogeneity of wind power capacity. Changes in wind power capacity are likely to be

driven by macroeconomic factors that may also affect electricity prices or volatility, such

as political incentives or economic growth. We run a Sargan test for overidentification

with the two potential instruments, and the test results indicate that at least one of the
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instruments is endogeneous. In addition, we run a weak instrument test, which concludes

that at least one instrument is strong. As we consider wind speed to be completely

exogenous, we conclude that wind power capacity is the endogenous instrument, and thus

we proceed with wind speed as our instrument.

We use wind speed data from Lista in Agder in Norway, which contains the largest wind

park within the NO2 area that has been operating continuously throughout our selected

time period. The data is gathered from Meterologisk Institutt’s database. We would have

preferred to use data for wind speed captured by all Norwegian wind farms, however as

very few wind parks have been operating since 2013 and creating such a data set would

result in much manual work, we test with the data from Lista. Regressing wind speed

from Lista on Norwegian wind power production results in an F statistic above the rule of

thumb of 10 (Wooldridge, 2012) (see Appendix A3 and A4), and we conclude that also

the relevance assumption is met for this instrument.

4.2.2 Wind Production and Electricity Price Volatility (H1)

Table 4.5 constitutes two regression tables which encompass the final OLS regressions

from table 4.1 and 4.2 together with the 2SLS versions of the models for both daily and

weekly data. The models with daily data are displayed to the left, and the models with

weekly data are placed to the right. The associated first stage regressions can be found in

Appendix A3. For the daily data, we observe that the coefficients for WindProd differ

greatly between the two model approaches. For the Instrumental Variable estimation,

we find our variable to be non-significant and negative, which is very different from our

previous OLS results and from what we have seen in the literature. In the table with

weekly data, we again find the wind production variable to be non-significant also for

this data, even when controlling for all seasonal fixed effects and control variables. The

different results question our initial OLS analysis and raise a concern of whether those

results are valid or if we are looking at a potential rejection of our Hypothesis 1.
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Table 4.5:
2SLS Estimation of Norwegian Wind Power Production on Intra-Daily and

Intra-Weekly Electricity Price Volatility

The table displays the estimated OLS and 2SLS coefficients for the effect of Norwegian wind

power production on intra-daily and intra-weekly electricity price volatility in Norway’s NO2

bidding area. The models with daily data are displayed to the left, and the models with weekly

data are placed to the right. The 2SLS model uses wind speed from Lista in Agder in Norway as

instrument for wind power production. The results are based on a sample of 1826 daily and 366

weekly observations raging from 2013 to 2019, and all models include time fixed effects. Newey-

West heteroskedasticity and autocorrelation corrected standard errors are displayed in parentheses.

Dependent variable:
ln(SDDaily)

OLS 2SLS
(1) (2)

ln(WindProd) 0.268
⇤⇤⇤ �0.170

(0.061) (0.157)

�Consumption 0.054
⇤⇤⇤

0.043
⇤⇤⇤

(0.012) (0.012)

Hydro 0.029
⇤⇤⇤

0.031
⇤⇤⇤

(0.006) (0.007)

PosHydro 0.012 0.009

(0.012) (0.013)

WindProdDK �0.004 0.006

(0.004) (0.005)

�Gas 0.024
⇤⇤

0.021

(0.012) (0.013)

�CO2 0.042 0.027

(0.041) (0.046)

�EURNOK 0.328 0.258

(0.375) (0.377)

D-O-W FE Yes Yes

M-O-Y FE Yes Yes

Observations 1,823 1,823

R
2

0.230 0.164

Adjusted R
2

0.220 0.153

F Statistic 23.342
⇤⇤⇤

Note:
⇤
p<0.1;

⇤⇤
p<0.05;

⇤⇤⇤
p<0.01

Dependent variable:
ln(SDWeekly)

OLS 2SLS
(1) (2)

�ln(WindProd) 0.239
⇤⇤

0.094

(0.097) (0.152)

Consumption 0.135
⇤⇤⇤

0.134
⇤⇤⇤

(0.020) (0.020)

Hydro 0.007 0.008

(0.008) (0.008)

PosHydro 0.030
⇤⇤⇤

0.029
⇤⇤⇤

(0.010) (0.010)

WindProdDK 0.011 0.013
⇤

(0.007) (0.007)

�Gas �0.003 �0.004

(0.017) (0.017)

�CO2 0.027 0.024

(0.071) (0.071)

�EURNOK �0.194 �0.162

(0.456) (0.458)

M-O-Y FE Yes Yes

Observations 357 357

R
2

0.321 0.317

Adjusted R
2

0.282 0.278

F Statistic 8.368
⇤⇤⇤

Note:
⇤
p<0.1;

⇤⇤
p<0.05;

⇤⇤⇤
p<0.01

4.2.3 Wind Power Volatility and Electricity Price Volatility (H2)

Similar to the observations above, we find the same striking results of no significance

for our �WindProd variable in the 2SLS estimation, as displayed in Table 4.6. The first

stage regressions can be found in Appendix A4. The 2SLS estimation thus implies that

the variations of wind production do not have an impact on Norwegian electricity price

volatility when using wind speed from Lista as an instrument, for either one of the two
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volatility measures. This again questions our OLS results in section 4.1 and whether or

not Hypothesis 2 should be rejected.

Table 4.6:
2SLS Estimation of Norwegian Wind Power Volatility on Intra-Daily and

Intra-Weekly Electricity Price Volatility

The tables displays the estimated OLS and 2SLS coefficients for the effect of Norwegian wind

power volatility on intra-daily and intra-weekly electricity price volatility in Norway’s NO2

bidding. The models with daily data are displayed to the left, and the models with weekly

data are placed to the right. The 2SLS model uses wind speed from Lista in Agder Norway as

instrument for wind power production. The results are based on a samples of 1826 daily and 366

weekly observations raging from 2013 to 2019, and all models include time fixed effects. Newey-

West heteroskedasticity and autocorrelation corrected standard errors are displayed in parentheses.

Dependent variable:
ln(SDDaily)

OLS 2SLS
(1) (2)

ln(�WindProd) 0.104
⇤⇤ �0.195

(0.044) (0.141)

�Consumption 0.228
⇤⇤⇤

0.194
⇤⇤⇤

(0.062) (0.063)

Hydro 0.019
⇤⇤⇤

0.023
⇤⇤⇤

(0.006) (0.007)

PosHydro 0.012 0.012

(0.013) (0.011)

�WindProdDK 0.001
⇤⇤⇤

0.001
⇤⇤⇤

(0.0001) (0.0001)

�Gas 0.016 0.012

(0.011) (0.012)

�CO2 0.016 0.015

(0.040) (0.040)

�EURNOK 0.601 0.575
⇤

(0.401) (0.349)

D-O-W FE Yes Yes

M-O-Y FE Yes Yes

Observations 1,821 1,821

R
2

0.260 0.263

Adjusted R
2

0.255 0.254

F Statistic 52.852
⇤⇤⇤

Note:
⇤
p<0.1;

⇤⇤
p<0.05;

⇤⇤⇤
p<0.01

Dependent variable:
ln(SDWeekly)

OLS 2SLS
(1) (2)

ln(�WindProd) 0.167
⇤⇤

1.020

(0.069) (1.539)

�Consumption 0.274
⇤⇤⇤

0.303
⇤⇤⇤

(0.054) (0.088)

�Hydro 0.071 �0.014

(0.088) (0.190)

PosHydro 0.193
⇤⇤

0.183
⇤

(0.077) (0.098)

�WindProdDK 0.050
⇤⇤⇤

0.015

(0.013) (0.066)

�Gas �0.052 �0.118

(0.034) (0.127)

�CO2 0.671
⇤⇤⇤

0.155

(0.184) (0.918)

�EURNOK 0.085 0.970

(1.651) (2.185)

M-O-Y FE Yes Yes

Observations 357 357

R
2

0.330 0.076

Adjusted R
2

0.292 0.024

F Statistic 8.740
⇤⇤⇤

Note:
⇤
p<0.1;

⇤⇤
p<0.05;

⇤⇤⇤
p<0.01
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4.3 Comparing OLS and 2SLS

From the above regression tables, we see that the results from the OLS and 2SLS

estimations differ widely. The OLS estimation displays a positive and significant

relationship between our wind power production coefficient, both in the analysis of

Hypothesis 1 and Hypothesis 2 for both daily and weekly volatility. In contrast, the

2SLS analysis shows no significance for our variable of interest in either of the regressions,

meaning we cannot interpret the coefficient as being different from zero. The differing

results raise the question of which estimation approach to rely on, and consequently,

whether or not we should reject our hypotheses.

OLS provides the best linear unbiased estimates for a regression, given that its assumptions

hold. If, however, the endogeneity assumption is violated, the OLS coefficient estimates

are biased, and we would not be able to rely on the regression results. To determine

which estimation to base our conclusions on, we test for endogeneity in our initial OLS

model. We run a Durbin-Wu-Hausman test for each of the four final models, and the

results find no indication of endogeneity in the weekly models. Accordingly, we base our

interpretation of these models on the OLS estimations. For the daily models, however,

we reject the null hypothesis of no endogeneity, both in the analysis of Hypothesis 1 and

Hypothesis 2. This result implies that the OLS estimates for daily wind power production

are biased, and consequently, we rely on the 2SLS results in the interpretation of the

relationship between daily wind power production and price volatility.

At first glance, it is difficult to comprehend what can cause the endogeneity issue, as

wind power production is fundamentally non-controllable (Jacobsen and Zvingilaite, 2010;

Kyritsis et al., 2017). Wind production is further mainly driven by wind speed, which is

clearly exogenous to our model. The issue is thus assumed to be related to the other main

driver of wind power production, namely the wind power capacity. Capacity expansions

are likely to be driven by macroeconomic factors, such as political incentives, that also

affect electricity prices and volatility. When not accounted for, these correlations may

cause an omitted variable bias, resulting in endogeneity. Furthermore, the model may be

subject to a simultaneity bias caused by the relationship between electricity prices and

wind power capacity. An increase in electricity prices increases the expected profitability

of an installed wind turbine, which may motivate a capacity expansion. Assuming that the
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increase in capacity leads to an increase in wind power production, we have a simultaneity

bias causing an endogeneity issue.

Another simultaneity bias may be related to the maintenance of the wind turbines. When

the wind turbines are under maintenance, the wind power capacity is reduced for a short

period of time, which likely reduces the total wind power production. In order to optimize

the maintenance activities and reduce the associated costs, maintenance may be moved

to periods with stable lower electricity prices in an attempt to reduce the revenues lost

due to the shut down of the turbines. If the case is that the timing of the wind turbine

maintenance depends on electricity price dynamics, our dependent variable has an effect

on our main independent variable, which leaves us with a second possible simultaneity

bias.

In addition to the above issues, we may have a bias in our coefficient estimates related

to the exclusion of the interactions constituting a ‘perfect storm’. A perfect storm is a

meteorological phenomenon that occurs when strong wind, mild temperature, and heavy

rain hit simultaneously (J.E. Høie, personal communication, February 18, 2020). The

event results in a collective effect on prices and price spikes much stronger than that

caused by any of the variables alone. By not accounting for these interactions, it may

appear as wind power has a more significant effect on volatility than it has because the

estimated coefficient captures the effect caused by the perfect storm. Ideally, we would

control for these interactions in our models. Still, due to the uncertainty related to when

the storm strikes and thus, the impossible task of recognizing the phenomenon in the

data, we have not been able to do so.

Despite the above discussions, it is difficult to fully grasp why we observe endogeneity

only in our models of daily volatility. The changes in wind power capacity are massive

operations that require substantial planning and organizing. Thus it is not reasonable to

believe that macroeconomic factors or changes in electricity prices will have an effect on

installed capacity in a day, or a week for that matter. More plausible is the discussion of

the perfect storm if one assumes that the storm lasts a couple of hours. If so, the bias

may be decisive in the daily calculations, but less important when the data is averaged

over a week. However, as a perfect storm normally lasts for several days or even weeks, it

suggests that the exclusion of the perfect storm interactions is not the issue. Thus, we
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rely the most on our discussion of the bias related to maintenance. The maintenance of

the wind turbines normally lasts 12-18 hours, meaning that it has a sizeable effect on

daily wind production. When we aggregate to weekly data, the same effect may be less

prominent as the data is averaged over a longer period. This may be the reason why we

observe the differing results from the endogeneity tests. Based on the above discussions,

we believe the latter issue constitutes the most plausible explanation as to why we observe

endogeneity only in our daily models. However, we do not rule out that there may be

other unexplained factors that affect our OLS results.

As we base our analysis of the relationship between wind production and intra-daily

volatility on the 2SLS estimates, we find no significance for our wind production coefficient.

This finding is contrary to the majority of previous research investigating daily volatility,

which finds a positive relationship between the two variables in question. There may

be several reasons why we observe this. Firstly, we may have a bias also in our 2SLS

estimates. Even though our instrument of wind speed at Lista passes the formal tests, it

may be weak enough to increase the variance in the error term such that it is difficult

to prove statistical significance. This increased variance is one of the disadvantages of

the 2SLS method. We know that our instrument is not perfect as it only represents wind

surrounding one wind park, whereas our independent variable of interest is the total

Norwegian wind production.

Secondly, we may have an issue regarding the use of actual wind power production as a

proxy for forecasted wind production. Because electricity prices are based on day-ahead

weather forecasts, we may have cases where we find no relationship between actual wind

production and price volatility, simply because the forecast is slightly off. This may be a

more significant issue for the daily data than weekly because one day of mismatch may

have a greater impact on the relationship between wind power and price volatility for a

day than for a week. Thirdly, even though we have a hard time explaining it, it may be

that the non-significant relationship we observe between daily wind production and price

volatility is true, simply because there is no relationship.

Coming back to our hypotheses, the results from our 2SLS analysis of daily volatility

argue in favor of a rejection of our two hypotheses. Conversely, for our analysis of weekly

volatility, we rely on the results from the OLS analyses, which argues in favor of our
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hypotheses. Due to the spread in our discoveries, we can only conclude that Norwegian

wind power and wind power volatility has a significant effect on intra-weekly Norwegian

electricity price volatility. However, we cannot conclude when it comes to intra-daily

volatility. We thus find that our hypotheses hold partially.

4.4 Implications

Our findings of a positive relationship between wind power production and intra-weekly

volatility have implications for energy market participants. As wind production increases

in Norway, due to more extreme weather and a further commitment to renewable energy

sources, this established relationship becomes more important. More volatile electricity

prices are often associated with the disadvantages of uncertainty, but we believe increased

price volatility also provides opportunities for consumers and certain producers of electricity.

By investing in flexibility, hydropower producers and consumers can increase earnings

and save costs by exploiting the electricity price peaks and troughs. That way, the

disadvantages frequently attributed to the increased price volatility caused by increased

wind power production can be partially offset by the benefits of adjusting to it.

Norway’s hydropower reliance provides unique flexibility to a market that is fundamentally

rigid. By storing water, the hydropower reservoirs operate as electricity batteries that

can be utilized to even out the price peaks (Regjeringen, 2019). The level of flexibility is,

however, limited by the size of the water reservoirs and how fast the water is converted to

electricity. While changes to the first factor require unpopular interventions in nature, the

latter can be improved by investing in another water turbine. When electricity demand

and prices are high, producers find it profitable to increase the production, and with

several water turbines, they can produce more electricity within the profitable periods.

Ultimately, the increased supply will lower the prices and smooth out the price spikes.

Consequently, an investment in additional water turbines results in profits for producers

and stability for consumers.

Hydropower producers can also exploit the electricity price troughs by investing in

technology that increases the inflow of water to the reservoirs. Such an investment could

be the installment of electric pumps. When electricity prices are low, the pumps enable

the transmission of water from low-level reservoirs to high-level ones, so that the water
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can be stored in the latter reservoir until electricity demand and prices increase. Thus,

producers buy cheap electricity to pump up the water and receive high prices for the

electricity when released. Again, this technology enables producers to control the supply

and smooth out the price fluctuations. Today, this is already done to some extent in

Norway through seasonal storage, however, our findings suggest that this technology could

also be implemented on a weekly basis.

Norway’s ability to exploit the price peaks and troughs are attributed to the country’s

large water reservoirs and elevation differences. Due to the low marginal costs of

operating hydropower, the storage of electricity is cheaper in Norway than in countries

more reliant on conventional energy sources. In addition, only hydropower enables the

storage of a considerable amount of electricity. With the increased importance of wind

power production in Norway and the rest of Europe, Norway’s ability to stabilize the

price volatility also increases in importance. Increasing wind production in Europe, in

combination with the development of several new transmission cables, facilitates that

Norway can serve as a battery for the whole of Europe (Graabak et al., 2017).

Increased intra-weekly volatility also creates opportunities for consumers. The above

adjustments made by hydropower producers are relatively expensive and only profitable

in periods with high volatility. The consumers, on the other hand, can implement less

costly technologies to adjust to the volatile electricity prices by making their consumption

more elastic to price changes, also in the short term. Such technologies take the form

of electricity consuming devices which are automatically turned on and off based on the

electricity prices, such as automatic water heaters and electric vehicle chargers. As of

now, only a part of a consumer’s electricity demand is flexible, due to electricity being

a necessity. However, in line with increasing price volatility, we expect to see increasing

innovation in this field and new ways to make consumption more flexible.

To conclude, the predicted increase in intra-weekly electricity price volatility, caused by

an increase in wind power production, creates not only threats, but also opportunities

for consumers and producers. The key to the possibilities is an investment in flexibility.

Consumers are most likely unable to adjust their demand to the point where they can

completely smooth out the price fluctuations alone, as they need some electricity to function.

However, if the producers adjust their supply first, the importance of consumer flexibility
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may decrease. Nevertheless, due to the costly investments for electricity producers, we

would most likely be looking at an investment in flexibility from both parties. If the

market participants succeed with their adjustments, the disadvantages of the volatile

electricity prices may be offset.



49

5 Conclusion and Limitations

5.1 Conclusion

The aim of this thesis has been to examine the effect of increased wind power production

on electricity price volatility in Norway. As renewable energy sources are gaining increasing

importance on the global electricity scene, through its mitigation of climate change and

security of energy supply, the importance of understanding its implications increases

accordingly. In Norway, wind power has penetrated the electricity mix through extensive

investments in wind power capacity. In combination with the ongoing development of

electricity transmission systems between European countries, the capacity expansion is

predicted to affect future Norwegian electricity supply. We wanted to investigate how this

change to the electricity mix will affect the already volatile electricity prices, and how

Norway’s reliance on hydropower affects the results. Hence, our research question was

stated as the following:

Can wind power production explain electricity price volatility in Norway?

In order to answer the research question, we formulated two hypotheses for the relationship

between wind power production and electricity price volatility, based on a literary review

of research on renewables and electricity prices. Despite the lack of consensus in previous

studies investigating the relationship between wind power production and electricity price

volatility, we landed on the two hypotheses based on our accumulated knowledge of

electricity price dynamics and the merit-order effect. The intuition behind the hypotheses

is that the intermittency of wind power results in frequent shifts in the merit-order

curve as renewable, zero-marginal cost energy sources are always prioritized in electricity

production. Accordingly, we expected to find a positive relationship between wind power

production and electricity price volatility and wind power volatility and electricity price

volatility for both intra-daily and intra-weekly volatility.

In our results chapter, we present the findings from an Ordinary Least Square (OLS)

estimation and an Two-Stage Least Squares (2SLS) analysis with wind speed as an

instrument for wind power production. The two estimation methods display differing

results with regard to the significance of our independent variable of interest, which



50 5.1 Conclusion

we mainly attribute to a bias in our OLS analysis of daily data. We thus rely more

on the 2SLS estimations in the interpretation of the relationship between daily wind

production and intra-daily volatility. Our empirical findings suggest that there is a

positive relationship between weekly wind power production and intra-weekly electricity

price volatility in Norway. This finding is in line with the results from the other studies

examining intra-weekly volatility, hereunder the studies from Rintamäki et al. (2017)

and Mauritzen (2011). Conversely, we find no significance for our wind power coefficient

in the 2SLS analysis of intra-daily volatility, and thus we cannot say anything about

the relationship between daily wind power production and intra-daily price volatility.

This finding is surprising, as the majority of literature finds significance for daily wind

production, either positive or negative (Mauritzen, 2011; Woo et al., 2011; Ketterer, 2014;

Pereira and Rodrigues, 2015; Clò et al., 2015; Kyritsis et al., 2017; Rintamäki et al., 2017).

We provide explanations for why we observe this result, and we suggest that it might be

related to a bias also in our 2SLS model related to our available instrument. However, we

cannot rule out that there simply is no relationship between Norwegian daily wind power

production and intra-daily price volatility, as this market has never been investigated

before.

Our finding of a positive relationship between weekly wind power production and intra-

weekly electricity price volatility has implications for Norwegian electricity producers and

consumers. As the importance of wind power continues to increase, so does the benefits of

investing in flexible supply and consumption. Norwegian hydropower producers can exploit

the price peaks and troughs by installing additional water turbines or electro pumps.

As a result, they can smooth out the price fluctuations while profiting on the actions.

Consumers can invest in technology that automatically adjusts their consumption based on

the current electricity price levels, resulting in a more elastic demand curve and presumably

less frequent price spikes. All in all, the increasing focus on environmental concerns and the

integration of renewables in the energy mix, provokes changes to the electricity markets,

and these changes will affect market participants whether they appreciate it or not.
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5.2 Limitations

In this section, we elaborate on the limitations of the thesis and discuss the implications

they may have had for our analysis and the subsequent results.

Firstly, we have made noteworthy modifications to our dataset. The dataset was modified

to correspond to our two volatility measures, and accordingly, our hourly observations

were aggregated to daily and weekly data. This particular data aggregation has been done

for most studies examining the electricity price dynamics, however, it may still affect our

results. The aggregation smoothes out some of the spikes in our variables, which may

cause us to dismiss some less prominent relationships. Also, due to the non-existence of

weekend data for fuel prices, we were forced to remove all weekend observations from

the daily data sets. Although the data set remained large, we omit some information

about changes in behavioral patterns. Nevertheless, the potential issue related to the data

removals may still be secondary to the issues likely to arise from an imputation method.

Further, we have used several proxies to make up for the lack of data on our independent

variables. Mainly, we have substituted day-ahead forecasts with actual data and thus

assumed perfect information regarding the conditions the following day. This assumption

does not necessarily hold. Hence, the use of proxies may cause us to draw conclusions

based on imperfect measures. Data availability also affected our choice of instrument in

the 2SLS analysis. As there exists no complete data of the total wind speed surrounding

all wind parks in Norway given our selected time period, we may have ended up with a

weaker instrument for Norwegian wind power production than if this data was available.

Consequently, the non-significance we observe for our analysis of intra-daily volatility may

be attributed to this limitation.

Lastly, we need to discuss the possible limitations to our assumption of no congestions in

the Norwegian power grid. Again due to data availability, we mostly use variable data for

the whole of Norway rather than data specific for the NO2 area. In fact, only the data on

consumption is available as region-specific. This is plausible under the above assumption,

however, if the assumption does not hold, we may observe changes in the independent

variables without observing an effect in the prices of the NO2 area, even though there

could be one. A violation of the above assumption would also affect the applicability of
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our results. As there is no national bidding price for the Norwegian market, we were forced

to select the prices of one of the bidding areas. Thus, if the assumption of no congestions

in the power grid does not hold, then the established relationship between wind power

production and electricity price volatility may not apply to the whole of Norway. Ideally,

the latter issue could be limited by conducting analyses for all bidding areas, however,

due to the time restrictions of this thesis, this is out of our scope.

5.3 Future Research

Our main recommendation for future research is to further investigate the relationship

between wind power production and intra-daily electricity price volatility in hydro-reliant

markets. One approach is to examine the presence of such a relationship in other hydro-

reliant countries such as Sweden or Switzerland, in order to draw a common conclusion

for hydro-dependent markets. Another approach is to investigate the other bidding areas

of Norway, to examine whether our results in fact do apply to the whole of Norway. This

would help extend the inconclusive base of literature on wind power production and

intra-daily electricity price volatility, and understand the true causes of our non-significant

result. The analysis should also be done for intra-weekly volatility, as although we find

results concluding with the literature for this volatility measure, the research is still scarce.

Secondly, we would encourage future research to dig deeper into the possible implications

of our findings of a positive effect of wind power production on intra-weekly electricity

price volatility. As we discuss in the final part of our analysis, we believe increased

volatility creates both challenges and opportunities for consumers and producers, and a

broader understanding of these becomes increasingly important as investment in wind

production increases. One angle is to conduct a qualitative analysis through interviews

of the Norwegian industry, households, or hydropower producers in order to map how

increased volatility would affect their activities. Once these effects are established, and

perhaps later quantified, a new research opportunity could arise in the form of optimization

of investments in flexibility, given different volatility levels.

Furthermore, there are future research opportunities related to the impact of the

development of transnational electricity transmission cables on electricity price dynamics.

In some of our results, we find a significant effect of wind power production in Denmark
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on Norwegian electricity price volatility, implying that there may exist a relationship

there that is not yet fully explored. At the time of writing, new transmission cables

are being built between Norway and Germany and Norway and the UK. Accordingly, it

would be interesting to explore whether an increased interconnectedness between more

countries increasingly reliant on wind power production will affect Norwegian electricity

price behavior.
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Appendix

Table A0.1:
Investigation of non-significant main independent variable in model (3) of

Table 4.4

This table displays the adding of the control variable one by one to better understand

what makes the independent variable go from significant to non-significant in model (3)

in Table 4.4. The data used is exactly the same, the only difference is the inclusion of

variables. Also here, Newey-West standard errors are the ones displayed in parenthesis.

Dependent variable:
ln(SDWeekly)

(1) (2) (3) (4) (5)

ln(�WindProd) 0.243⇤⇤⇤ 0.179⇤⇤ 0.175⇤⇤ 0.088 0.088
(0.085) (0.082) (0.081) (0.079) (0.078)

�Consumption 0.344⇤⇤⇤ 0.314⇤⇤⇤ 0.314⇤⇤⇤ 0.306⇤⇤⇤ 0.305⇤⇤⇤
(0.047) (0.046) (0.046) (0.045) (0.045)

�Hydro 0.033 0.049 0.048 0.033 0.033
(0.082) (0.085) (0.086) (0.084) (0.084)

PosHydro 0.189⇤⇤ 0.152⇤ 0.155⇤ 0.209⇤⇤ 0.211⇤⇤
(0.090) (0.090) (0.090) (0.089) (0.089)

�WindProdDK 0.043⇤⇤⇤ 0.043⇤⇤⇤ 0.045⇤⇤⇤ 0.045⇤⇤⇤
(0.013) (0.013) (0.013) (0.013)

�Gas 0.026 �0.017 �0.018
(0.039) (0.037) (0.036)

�Co2 0.586⇤⇤⇤ 0.583⇤⇤⇤
(0.177) (0.178)

�EURNOK �0.0446
(1.681)

M-O-Y FE No No No No No
Observations 358 358 357 357 357
R2 0.174 0.196 0.197 0.227 0.227
Adjusted R2 0.164 0.185 0.184 0.212 0.210
F Statistic 18.527⇤⇤⇤ 17.174⇤⇤⇤ 14.355⇤⇤⇤ 14.653⇤⇤⇤ 12.798⇤⇤⇤

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Table A0.2

Model (4) in Table 4.4 is extended to display the dummy variables for each month.
Dependent variable:

ln(SDWeekly)
ln(�WindProd) 0.167⇤⇤

�Consumption 0.274⇤⇤⇤

�Hydro 0.071

PosHydro 0.193⇤⇤

�WindProdDK 0.050⇤⇤⇤

�Gas �0.052

�Co2 0.671⇤⇤⇤

�EURNOK 0.085

February �0.644⇤⇤⇤

March �0.506⇤⇤

April �0.458⇤⇤

May 0.116

June �0.040

July �0.535⇤⇤⇤

August �0.425⇤⇤

September �0.775⇤⇤⇤

October �0.539⇤⇤⇤

November �0.377⇤⇤

December �0.519⇤⇤⇤

Observations 357
R2 0.330
Adjusted R2 0.292
F Statistic 8.740⇤⇤⇤

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Table A0.3:
First Stage of 2SLS Estimation of Norwegian Wind Power Production on

Intra-Daily and Intra-Weekly Electricity Price Volatility

The tables display the first stage of the 2SLS estimations of Hypothesis 1. The models with daily

data are displayed to the left, and the models with weekly data are placed to the right. The

instument used to estimate wind power production is wind speed from Lista in Agder, Norway.

The results are based on a samples of 1826 daily and 366 weekly observations raging from 2013

to 2019, and all models include time fixed effects.

Dependent variable:
ln(WindProd)

ln(Windspeed) 0.496
⇤⇤⇤

(0.034)

�Consumption �0.019
⇤⇤

(0.008)

Hydro 0.006
⇤⇤⇤

(0.002)

PosHydro 0.007
⇤⇤⇤

(0.002)

WindProdDK �0.006

(0.009)

�Gas �0.044

(0.031)

�Co2 �0.207

(0.258)

�EURNOK �0.009
⇤⇤

(0.004)

D-O-W FE Yes

M-O-Y FE Yes

Observations 1,823

R
2

0.424

Adjusted R
2

0.417

F Statistic 57.568
⇤⇤⇤

Note:
⇤
p<0.1;

⇤⇤
p<0.05;

⇤⇤⇤
p<0.01

Dependent variable:
�ln(WindProd)

�ln(Windspeed) 0.659
⇤⇤⇤

(0.053)

Consumption 0.005

(0.007)

Hydro �0.00002

(0.003)

PosHydro �0.004

(0.003)

WindProdDK �0.008

(0.008)

�Gas �0.030

(0.026)

�Co2 0.178

(0.210)

�EURNOK 0.003

(0.005)

D-O-W FE No

M-O-Y FE Yes

Observations 357

R
2

0.360

Adjusted R
2

0.324

F Statistic 10.272
⇤⇤⇤

Note:
⇤
p<0.1;

⇤⇤
p<0.05;

⇤⇤⇤
p<0.01
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Table A0.4:
First Stage of 2SLS Estimation of Norwegian Wind Power Volatility on

Intra-Daily and Intra-Weekly Electricity Price Volatility

The tables display the first stage of the 2SLS estimations of Hypothesis 2. The models with daily

data are displayed to the left, and the models with weekly data are placed to the right. The

instument used to estimate the standard deviation of wind power is wind speed from Lista in

Agder, Norway. The results are based on a samples of 1826 daily and 366 weekly observations

raging from 2013 to 2019, and all models include time fixed effects.

Dependent variable:
ln(�WindProd)

ln(�Windspeed) 0.206
⇤⇤⇤

(0.018)

�Consumption �0.133
⇤⇤⇤

(0.032)

Hydro 0.002

(0.003)

PosHydro 0.0002
⇤⇤⇤

(0.0001)

�WindProdDK �0.010

(0.013)

�Gas �0.048

(0.043)

�Co2 �0.068

(0.356)

�EURNOK �0.015
⇤⇤⇤

(0.005)

D-O-W FE Yes

M-O-Y FE Yes

Observations 1,821

R
2

0.143

Adjusted R
2

0.132

F Statistic 12.989
⇤⇤⇤

Note:
⇤
p<0.1;

⇤⇤
p<0.05;

⇤⇤⇤
p<0.01

Dependent variable:
ln(�WindProd)

ln(�Windspeed) 0.001
⇤⇤⇤

(0.0001)

�Consumption �0.024

(0.032)

�Hydro 0.0003

(0.047)

PosHydro 0.025
⇤⇤⇤

(0.008)

�WindProdDK 0.040

(0.025)

�Gas �0.173
⇤

(0.102)

�Co2 0.133

(0.863)

�EURNOK 0.074
⇤

(0.041)

D-O-W FE No

M-O-Y FE Yes

Observations 357

R
2

0.564

Adjusted R
2

0.540

F Statistic 22.956
⇤⇤⇤

Note:
⇤
p<0.1;

⇤⇤
p<0.05;

⇤⇤⇤
p<0.01


