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Abstract

In this thesis we investigate whether unsupervised and semisupervised machine learning

methods can be applied to detect undiscovered erroneous tax returns, and how the

properties of the underlying data affect method performance. To do this we test the

two fully unsupervised clustering algorithms K-means and DBSCAN, as well as the two

semisupervised approaches One-Class Support Vector Machines and autoencoders. We

use a sample of real anonymous tax returns, and evaluate model performance in situations

where erroneous returns constitutes a minor percentage of the dataset.

Model performance suggest that our methods are not suited to serve as stand alone

solutions for identifying faulty returns, with relatively low F1-scores between 0.1 and

0.15. Considering the resources needed to manually control a submitted tax return this

would likely not be economically feasible. The underwhelming performance is especially

clear when compared to a supervised boosted trees benchmark. However, a supervised

approach would most likely not be able to detect undiscovered errors on its own.

To further study the less supervised methods behaviour we simulate new tax returns based

on the original sample, where the differences between normal and faulty tax returns are

exaggerated. We find that this improves model performance, but the most exaggerated

differences would perhaps not occur in real life. The largest improvement did however

stem from changes to the distribution of the tax return features, and this property might

be more linked to what can be found in the data population.

If another data sample with these traits exist in the Tax administrations database, these

methods would be promising. Even if that is not the case, the possibilities of utilizing the

methods in combination with other approaches, to uncover new errors, is by itself worth

researching further.

Keywords – Unsupervised Learning, Semisupervised learning, Tax returns, Anomaly

detection, K-means clustering, DBSCAN, One-Class SVM, autoencoders
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1 Introduction

Income and wealth tax accounts for approximately 20% of state revenues in Norway

(Ministry of Finance, 2019), of which a considerable portion stems from individual

taxpayers. Since personal taxes constitutes a significant amount of the National Budget,

both deliberate and unintentional personal tax avoidance will have negative impacts on

society and the state’s welfare offerings if left unchecked. Therefore, active prevention of

tax evasion is of great social importance.

The Norwegian Tax Administration is responsible for ensuring that all taxes and fees are

paid in full and in due time - providing the financial basis for the welfare state. The Tax

Administration use considerable resources on investigating and identifying incorrect tax

returns. Since it is not possible to control all tax returns, one of the main problems is

selecting returns for manual control. A survey from 2012 indicates that only about 5% of

personal tax returns contain errors (Thorsager et al., 2016), meaning that one are in effect

looking for needles in a haystack. Historically, this has been done by setting rules and

thresholds which capture returns prone to mistakes (Berset et al., 2015). A drawback of

this method is that far too many returns are flagged, and manual investigation is needed

to select the final set of returns for further control. In the past years, however, the use

of machine learning techniques for control selection has gained attention (Smedsvik and

Christophersen, 2018).

Machine learning techniques are often grouped by degree of supervision. Briefly explained,

supervision refers to whether a machine learning model must be explicitly instructed on

what to look for. In the context of detecting incorrect tax returns, a supervised machine

learning model would need to be presented with labelled examples of correct and faulty

returns, and then be trained to best separate the two types from each other. So far,

the Tax Administration has seemingly concentrated on supervised learning methods,

investigating and grouping taxpayers according to the likelihood of errors in their tax

returns. Developing supervised learning models requires preparatory work, since they are

dependent on labelled data with known correct and faulty examples in order to predict

the likelihood of errors in new filings. Supervised learning models generally perform better

the more examples of correct and incorrect behaviour they have been fed (James et al.,
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2017), causing this preparatory process to potentially consume a large amount of resources.

Furthermore, as the models are generated from examples of past behaviour, they might

struggle to detect new and unseen types of errors and methods of tax avoidance.

Techniques with less supervision are often referred to as unsupervised learning, and

comprise multiple techniques used to group and detect patterns and relationships in data.

Unsupervised learning algorithms do this based on properties of the data itself and without

the need for an explicit response variable. They are not guided by examples of what to

look for. The two approaches can also be mixed in a semi-supervised learning approach.

These techniques use examples of normal returns without errors during training, but they

do not need examples of the anomalous, faulty data (Chandola et al., 2009). This reduces

the need for preparatory work and data labelling. It may also broaden the scope of which

errors could be detected by the models since the types of anomalies to look for does not

have to be decided on and labelled in advance.

We would like to investigate whether unsupervised and semisupervised learning methods

can be used to address the challenge of faulty tax returns. Specifically, we focus our

attention on methods which can be suited for anomaly detection, that is, methods capable

of detecting tax returns that somehow deviates from the majority.

The flexibility of unsupervised and semisupervised approaches should make them suited

to detect new types of tax return irregularities that might not be caught by existing

models. A key reason to use unsupervised and semisupervised anomaly detection is

that tax return errors will presumably change over time. As tax-forms and regulations

change, the type of errors which occur might change as well. In addition, individuals

who deliberately avoid taxes could evolve and find new methods of evasion in line with

the Tax Administrations efforts. Thus, rule based and supervised learning methods that

are dependent on characteristics of previous evasion strategies could struggle to detect

these individuals. In order to detect these forms of tax irregularities we test a variety of

methods aimed at anomaly detection. If the less supervised methods manages to correctly

identify faulty tax returns, including them in the manual control selection could benefit

the Tax Administration.

Both the access to real tax return data and the literature on unsupervised anomaly

detection within the field is limited. Given that anomaly detection requires tailoring to
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each field and problem (Chandola et al., 2009), the limited work on the subject means

there are few studies that investigate suitable methods, and under which circumstances

these generate useful results. Consequently, our focus during method selection will be to

test a broad spectrum of available techniques. Even though we have gained access to real

tax data, the selection of variables and predictors is limited compared to what is available

for the Tax Administration. Because of this, we find that a useful contribution will be to

conduct an initial study into which methods may be best suited for anomaly detection in

tax type data, and the circumstances where these can be appropriate. Therefore, the work

presented in this thesis would provide a proof of concept and starting point for further

investigation of the subject.

In this thesis we use data on three different groups of tax returns provided by the Norwegian

Tax Administration. The first group is a control group consisting of tax returns with no

known errors. The second group contains returns that have been flagged by the Automatic

Control Abroad (Automatisk Kontroll Utland, AKU) scheme. During the period we are

studying the Tax Administration received information on foreign assets and income of

Norwegian tax payers, whilst the same individuals had to self-report this information

without knowledge of the automatic control. Individuals flagged in this process have had

discrepancies between their self reported and externally reported assets or income. The

third group of tax returns consists of filings selected for manual control based on the Tax

Authorities internal selection process, and which were found to contain errors resulting in

additional tax payments for the individuals in question (referred to as the TIL group).

The distinction in detection method for the two last groups warrants the investigation into

whether the models distinguish between the different types of anomalies. The two latter

groups are used as examples of anomalous returns, whereas the control group represent

the majority class of normal observations.

There have been previous studies into what separates and characterize different groups of

taxpayers (Andersson and Lillestøl, 2017) and (Andersson et al., 2012). These studies

suggest there might be some intrinsic differences between the returns of tax-payers with

different types of errors, and that they can to some extent be identified by supervised

learning algorithms. It is therefore interesting to see if these suggested differences also can

be detected and utilized by less supervised machine learning algorithms, which perhaps
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can be less rigid and capture a broader spectrum of anomalies than their supervised

counterparts. If this proves to be the case the case, including less supervised learning

methods in manual control selection may prove a useful addition for the Tax Administration

detection efforts.

Specifically, we investigate four unsupervised and semisupervised methods to detect

anomalous returns from the AKU and TIL observations amongst a larger group of control

observations. The methods tested includes K-Means clustering, DBSCAN, One-Class

Support Vector Machines, and autoencoders. The models’ performance is benchmarked

against a supervised Boosted Tree model, which was proven useful by Andersson et al.

(2012) on this type of data. As the methods we employ are contingent on the properties

of the data and different classes of observations, we further investigate some select

transformations of the original dataset to see how changes in these properties affect model

performance. Overall, this can be summarized into two research questions:

1. How well does the less supervised methods discussed in this thesis perform on

detecting anomalous, faulty tax returns.

2. How does changing the properties of the underlying dataset influence the performance

of the methods discussed in this thesis.
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2 Background

2.1 Background

The first predictive model used by the Tax Administration was developed more than

ten years ago (Smedsvik and Christophersen, 2018). It was a model used to predict the

willingness to pay for people that owe tax, in order to target the Administration’s use

of resources. Since then, the adoption of, and focus on, predictive models has increased.

The attention has seemingly been on supervised models, building on prior knowledge

and finding statistical relationships in order to detect future incidents (Smedsvik and

Christophersen, 2018). The Tax Administration possess vast amounts of financial data

on Norwegian citizens, and they already allocate substantial resources towards utilizing

this data to improve their operations with predictive models. Regardless, there is unused

potential which unsupervised and semisupervised learning methods could exploit to reveal

new information and relationships. One of the advantages of these methods is the fact

that they do not need labelled errors in order to train the models. This means that the

methods are not influenced by old bias.

One area in which the Tax Administration focus on employing statistical and predictive

models is for selecting tax returns for manual control. The goal is for every individual to

pay the correct amount of tax, however, not all tax-returns can be subjected for control

after submission as this would demand far to many resources. Because of this, one of the

main problems is to select the right individuals to receive extended controls. Due to the

disproportional amount of correct compared to faulty tax returns, the choice of which tax

returns to manually control becomes an anomaly detection problem.

2.2 Literature Review

The use of machine learning to detect errors and anomalies in tax data has been applied

by Tax Administrations both domestically and abroad, including in the United States,

Chile, Canada and Australia (González and Velasquez, 2013). This research is often

performed in-house, and the results are not necessarily published. The Norwegian Tax

administration does, however, report on some of their developments within the field
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in their publication "Analysenytt". More recent developments include models which

predict the likelihood of errors on reported tax deductions (Thorsager et al., 2016), and

models which score the likelihood of errors in bi-monthly VAT statements (Berset et al.,

2016). The Norwegian Tax Authorities do not report on the details of implementation,

for instance which algorithms are used or how the models are trained. This means that it

is not possible to compare their methods with other approaches directly. Even so, the

models reportedly have impressive precision. Of the observations sent to control, 71% of

observations in the tax deduction case contained errors (Thorsager et al., 2016), while

34-48% of observation in the VAT-statements contained errors (Berset et al., 2016).

A few published studies exist on unsupervised and semisupervised anomaly detection

on tax data and other types of financial datasets. Roux et al. (2018) tackles the issue

of underreported tax returns in Bogotà Colombia in "Tax Fraud Detection for Under-

Reporting Declarations Using an Unsupervised Machine Learning Approach". Apriori

auditing of tax returns in order to label data is time consuming and resource demanding,

resulting in a lack of historic labelled data in Colombia. In order to address that challenge

Roux et al. (2018) studied the performance of unsupervised learning techniques to detect

underreporting of the Colombian Urban Delineation tax, consisting of 2,3% of a licensed

construction project’s budget. They assumed that similar tax declarations should pay

similar taxes. By clustering the tax declarations and investigating how anomalies in the tax

returns compared to the others in the same group they hoped to identify underreporting.

After the analysis 10 declarations were presented to an expert auditor, where five had been

marked normal and five was marked as suspicious. None of the five normal samples were

flagged by the auditor, indicating that the model did not miss suspicious declarations. Of

the five suspicious samples, the auditors flagged one as suspicious by their own methods.

This indicates that the model flagged other reports than the expert. The dataset used in

this study was fully unsupervised with no available labels, meaning that the tax returns

had to go through a manual control afterwards in order to establish whether they actually

contained errors or not. A long auditing period of up to six months hindered the ability

to check if the flagged projects indeed were underreporting, and thus if the expert or the

model had the correct classification. This highlights some of the challenges of unsupervised

research, namely that it is difficult to evaluate the models’ performance properly.
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The use of Unsupervised Machine learning techniques to detect fraud has also been

employed by Schreyer et al. (2017) in the article "Detection of Anomalies in Large-

Scale Accounting Data using Deep Autoencoder Networks". Schreyer et al. (2017) use

Autoencoders to detect fraud in accounting data as an alternative to today’s common

technique of hand-crafted rules derived from known fraud cases. Even though the rules

are fairly successful, Schreyer et al. (2017) points out the limited ability of generalization

and thus the fraudsters opportunity to gradually circumvent the rules. The Autoencoder

models appeared to provide a highly adaptive anomaly assessment. The models were

tested on two real world datasets extracted from SAP ERP instances, consisting of the

entire population of journal entries for one fiscal year. They achieved effective models

with high f1 − scores of 0.323 (dataset A) and 0.169 (Dataset B), and less false positives

than benchmarked methods (PCA, One-Class SVM, Density based local outlier factor

and DBSCAN). They also got qualitative feedback from auditors and forensic accountants

on the observed anomalies that underpinned the models capacity of detecting journal

entries with high relevance for a follow-up audit.

2.2.1 Characteristics of Norwegian Tax Payers

An extension of the dataset used in this thesis, with the addition of one extra group of

tax payers, has previously been featured in a characteristics analysis by Andersson and

Lillestøl (2017). The report was a follow up of a SNF-report by Andersson et al. (2012).

The additional group of taxpayers consists of individuals who have voluntarily disclosed

previously unreported foreign wealth (the FRIV group). In the characteristics analysis

Andersson and Lillestøl (2017) identified select features which could serve to distinguish

the different groups. The methods used for the analysis were simple categorization,

multiple correspondence analysis and classification trees. In this description we focus on

the findings for the AKU, TIL and control groups, since these are the groups we have

access to in our analysis.

As part of the multiple correspondence analysis, Andersson and Lillestøl (2017) studied

three different plots which highlighted different aspects of, and relationships in, the

dataset. First, the different variables were plotted against the four most pronounced

eigenvalue dimensions. A group variable with the four groups of taxpayers was included

as a supplement variable. The plot indicated that the joint return code correlated with
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dim 1 from the eigenvalue, the person code correlated with dim 1 and 2, debt and wealth

correlated with dim 3, whilst income correlated with dim 4. The group variable did not

seem to correlate with any of the four dimensions. However, given that it represent a

mean of all the entries, and that it was only included as a supplementary variable, the

low correlation did not come as a surprise (Andersson and Lillestøl, 2017).

Andersson and Lillestøl (2017) also made a bi-plot of the variables, where variables plotted

close together tend to act together. The control group seemed to be mostly associated

with mid-range income, and a centrality code indicating that they lived in more rural

places compared to the other groups. The AKU and TIL groups themselves were plotted

close together, making them hard to distinguish. Variables associated to AKU and TIL

were: no wealth, a single joint return code, being the reference person and living in

urban areas. Finally, Andersson and Lillestøl (2017) graphed a representative selection

of individuals from each of the four groups. The individuals were shown to have a high

degree of overlapping (Andersson and Lillestøl, 2017), suggesting that the groups might

be difficult to distinguish from each other.

The last analysis conducted in Andersson and Lillestøl (2017) was classification trees used

to study feature importance. When comparing TIL observations to the control group

they found that no wealth and no debt, alongside the SKM-groups 10 or 18, were the

most important features to distinguish the two groups from each other. With these splits

Andersson and Lillestøl (2017) achieved correct classification for 66% of the returns that

were classified as TIL observations (in a balanced population with the same number from

the TIL and control groups). For AKU observations the tree picked SKM groups 14 or 13

(people with temporary residence end emigrated people), in addition to returns reporting

income above 670 000 NOK and low to no debt as important for separating the classes.

After the first split with the SKM-codes 83% of the observed returns were in the AKU

group, while 61% in the other node was correctly classified as AKU.
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3 Data

The data used in this thesis has been provided by the Norwegian Tax Administration to

select researchers at the Norwegian School of Economics, and has previously been used for

research into characteristics and categorization of different types of tax-payers with special

interest for the Tax Authorities (Andersson and Lillestøl, 2017). The dataset contains

panel data on personal tax returns from the years 2003 to 2012, with observations split

across three different groups of taxpayers.

The first group of tax-returns includes individuals who have been subject to additional

taxes due to errors in their filed returns. They have been selected for enhanced control by

the Norwegian Tax Authorities, where the control uncovered incorrect information which

had lead to a tax advantage, and where the errors were unlikely to be the result of simple

mistakes or done in good faith (The Norwegian Tax Administration, 2020).

The second group of tax returns includes individuals who have been flagged with

discrepancies in the Automatic Control Abroad (henceforth AKU) scheme. For the

period in question, Norwegian tax-payers were required to self report relevant foreign

assets and income along with their personal tax returns. At the same time, the Tax

Administration received relevant tax information from other OECD countries on Norwegian

residents, without this practice being common knowledge to the public. Individuals flagged

in this process have failed to appropriately disclose foreign assets or income. Individuals

with smaller discrepancies between their tax returns and AKU data are excluded, as this

could likely be caused by exchange rate differences. Specifically, tax returns with less than

a 10 000 NOK difference have been removed from the dataset. The third and final group

consists of a reference group with no known errors (Andersson and Lillestøl, 2017).

Considering that the information in tax returns is highly sensitive personal data, several

restrictions have been added to the dataset. First, social security numbers have been

replaced by unique serial numbers. Address information have been replaced by a centrality

indicator, all figures have been rounded to the nearest 1 000 and any taxpayer which would

have been amongst the highest earning in the time period has been removed (Andersson

and Lillestøl, 2017).

Furthermore, the number of available features has been reduced from that of a full tax
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return. While the standard tax return can contain approximately 600 different attributes

(Andersson et al., 2012), the dataset used for this analysis contains 16 variables. These

16 variables were selected as part of the aforementioned characterization analysis, based

on previous studies into what characterize individuals who avoid taxes (Andersson and

Lillestøl, 2017). In addition to these 16 variables, each observation is associated with

an observation class. This is either "AKU" for those flagged in the AKU control, "TIL"

for those who have received additional taxes and "CONT" for members of the random

sample control group. A limited number of features can be beneficial as it reduce the

computational load of performing machine learning analysis, as well as potentially removing

non-relevant features which can negatively impact the analysis. However, as the variables

were not selected specifically as part of this analysis, a risk is that features which either

alone or in combination with others separate the three groups in a material way have

been omitted. The discussion around the features will be revisited in section 3.4.

The panel data is not complete for each individual over the entire 2003-2012 period. Some

observations are added to, and some are removed from, each of the three groups every year,

resulting in a combined increase of 26% in the source data from 2003 to 2012 for all three

tax-payer groups. For this thesis we concentrate on the year 2012, as this includes both

the most recent observations as well as having the largest number of observations. This

limitation center our analysis on within-year differences, which we consider as a sensible

scope for our investigation. In addition, Andersson and Lillestøl (2017) found indications

of some intrinsic differences between the groups in year 2012, and we are interested in

investigating if they are pronounced enough to be identified by less supervised methods

as well.

3.1 Variable Description

Of the 16 included explanatory variables, eight are categorical and eight are numerical.

The categorical variables are presented in table 3.1. While some require little additional

explanation, we would like to comment on others. The variable SKM-Group indicates the

taxpayer status of the individual in question. Person Code indicates if the information

regards the reference person themselves, their partner or a child. Classification Code refers

to which sector the person in question is employed in. Delivered Tax Return refers to
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whether or not the individual has actively filed their tax return, as opposed to submitting

the pre-filed version. History Code indicates whether or not the person has had their tax

returned manually controlled before, and finally Joint Return Code indicates if the tax

return is filed independently, distinctively or jointly with another entity or person.

Categorical Variables

English variable name (Norwegian) Category
Marital status (Sivilstand) 1 - Unmarried

2 - Married
3 - Widowed
4 - Divorced/separated

SKM-Group (SKM-Gruppe) 10 - Fully tax liable resident
13 - Emigrants
14 - Temporary Resident
20 - Local tax liable, resident
30 - Local tax liable, non
resident
40 - Estate
70 - Diplomat

Person code (Personkode) 1 - Reference Person
2 - Married, youngest partner
3 - Child

Classification code (Klassifikasjonskode) 1 - Primary Industry
2 - Agriculture & Industry
3 - Industry
4 - Service & Ind, Rural
5 - Service & Ind, Urban
6 - Service, Rural
7 - Service, Urban

Delivered tax return (Har levert SA) J - Yes
N - No

History code (Historiekode) J - Yes
N - No

Joint return code (Samskattkode) E - Distinctively
F - Jointly
_ - Independently

Centrality code (Sentralitetskode) 0 - Rural
1 - Less Rural
2 - Less Urban
3 - Urban

Table 3.1: Overview of the different categorical variables, including category levels.
Adapted from Andersson and Lillestøl (2017)

The numerical attributes include the relatively self explanatory Year of Birth (Fodselsaar)

featuring the tax payers birth year, as well as Filing Year (Aar) indicating which year

the return in question was filed. In our case this will only be the year 2012. Numerical
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attributes also include two variables related to income, two variables related to debt and

two variables related to wealth, as summarized in table 3.2

Numerical Variables

English variable name (Norwegian) Description
Personal income (person_inntekt_lonn) What the tax payer

himself fill out as
income on the tax
return

Norwegian income after tax deductions (ib_alm_int_e_serf) Income on the tax
return after tax
deductions

Net wealth (netto_form_stat) Two variables which
both describe the net
wealth of the tax
payer that fiscal year

Domestic net wealth (ib_netto_formue)
Domestic Debt(gjeld_kun_ib ) Tax payers domestic

debt
Domestic and foreign debt(gjeld_ib_ub) Tax payers domestic

and foreign debt

Table 3.2: Overview of the different numerical variables, including description. Adapted
from Andersson and Lillestøl (2017)

3.2 Descriptive Statistics

The successfulness of unsupervised anomaly detection is largely contingent on there being

some dimensions in which the faulty observations, that is tax returns from either the AKU

or TIL group, tend to differ from those that are normal (Chandola et al., 2009). These

differences can be apparent from looking at the data, or they can be more hidden and

dependent on the combination of observed attributes. Either way, producing descriptive

statistics can help give an overview of the data at hand, and will provide initial indication

as to whether the three groups of tax payers differs in any material way. We would like

to note that a similar summary and presentation of the dataset has been conducted by

Andersson and Lillestøl (2017). However, for the sake of the reader, we include a similar

presentation here.

The first categorical variable is marital status, presented in Figure 3.1. For individuals in

the AKU group the most common is to be unmarried, and very few are widowed. For
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individuals in the CONT and TIL groups being unmarried and married is equally common,

and being widowed is the least frequent. Of the categorical this is one of the features

where the AKU group stands out compared to the others.

Figure 3.1: Marital status

The SKM-group is the second variable where the AKU group differ from the others. It is

most common to be a temporary resident among the AKU individuals, with status as a

fully taxable resident second. For individuals in the TIL and CONT groups it is by far

most common to be a fully taxable resident. The other taxpayer statuses, as listed in

table 3.1, are of negligible size.

Figure 3.2: SKM-group. 10 - Fully tax liable resident, 13 - Emigrants, 14 - Temporary
Resident, 20 - Local tax liable, resident, 30 - Local tax liable, non resident, 40 - Estate,
70 - Diplomat

For the Person Code variable presented in figure 3.3, the distribution across the three

categories is similar for all the taxpayer groups, with it being most common to be the
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reference person, then the married youngest partner and lastly a child. Being a child or

the youngest partner in a marriage is however more common in the control group than

the others.

Figure 3.3: Person code

It is more common to actively deliver your tax return when you are in the AKU or TIL

group, whilst the opposite is true for the control observation, presented in figure 3.4.

Figure 3.4: Delivered tax return

Having had your tax return manually controlled before is uncommon for all the groups, as

presented in figure 3.5. However it is more common for AKU than control observations,

and even common for individuals in the TIL group.

It is most common to fill out the tax return independently, and least common to fill it out
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Figure 3.5: History code

jointly across all three groups, presented in figure 3.6.

Figure 3.6: Joint Return code

Centrality is also similar across the groups. It is most common to live centrally, and the

frequency drops the more rural the place. This feature is strongest for the AKU group,

but it holds for the others as well, presented in figure 3.7.

The majority of individuals in all three groups have a registered income between 0 and

500.000 NOK, independent of whether we study the reported personal income, or the

calculated income after tax deductions. As shown in Figure 3.8, the distribution of the
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Figure 3.7: Centrality code

Figure 3.8: The distribution of Norwegian Income After Tax Deduction (left) and
Personal Income (Right)

two different income variables are fairly equal. The distribution of income is also fairly

equal across all three groups of taxpayers, although the AKU group has a somewhat

higher percentage individuals with an income above NOK 1.000.000.

The two wealth variables have an almost identical distribution, as presented in Figure 3.9.

In the TIL group there is a higher percentage of zero wealth individuals, while observations

in the AKU-group are more likely to be in the 0 - 500.000 range. Very few individuals

have a wealth above NOK 500.000, regardless of group affiliation.

The variables recording debt have more apparent differences, presented in figure 3.10 .

All of the individuals in the AKU or TIL groups are registered with zero Domestic and
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Figure 3.9: The distribution of Net Wealth (left) and Domestic Net Wealth (right)

Figure 3.10: The distribution of Domestic and Foreign Debt (left) and Domestic Debt
(right)

Foreign Debt for the year 2012. This is also the case for most of the observations in the

control group. Looking at the variable which records domestic debt only, there seem to

be some differences between the groups. Most notably are individuals in the TIL group

more likely to have debt than the others.

Looking at the descriptive statistics, the three groups seem to follow a similar distribution

across the different categories in several of the variables. For example, category 7 is the

most common Classification Code in all three taxpayer groups, followed by category 5.

This pattern is also apparent for the two income variables, as well as the the Centrality

Code, History Code and Joint Return Code. However, for Marital Status it is more

common to be unmarried amongst the AKU observations, and for the SKM-Group AKU

observations are most likely to be in category 14, while category 10 is by far the most

common for TIL and CONT observations. The models should learn to distinguish which
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observations are anomalies that differ from the majority in some way. For our analysis

the observations flagged as anomalies should be the ones in the AKU and TIL group.

Considering that few variables separate the AKU and TIL observations from the control

group in a very pronounced way, it will be interesting to study if the less supervised

approaches manages to flag the correct observations as anomaly candidates. Although

some differences exist, they might not be pronounced enough to distinguish the three

groups alone. That being said, there might exist combinations of variables that better

separate the different groups of taxpayers from each other, which are not apparent from

this analysis.

3.3 Data Preprocessing

All data is subject to some initial preprocessing steps before it is included in the models.

First, observations with missing values are removed from the sample. This includes 1142

observations with NA values, 47 observations with NULL values and 3 observations with

a Birth Year value of 1000. This leaves 21 734 observations in total for the year 2012,

split across 2962 AKU observations, 9588 TIL observations and 9184 CONT observations.

All models studied in this thesis require numerical values only, while the tax dataset

contains a mix of categorical and numerical data. In such cases, common practise is to

transform categorical variables into dummy variables, converting each category value to a

binary variable with value 0 or 1 depending on whether the category was present in the

original observation or not. In addition to requiring numerical values, the methods are

sensitive to the spread of the variables. Two incomes that differ with 100 000 NOK could

be interpreted as 1000% further apart from each other than two people that have a 100

year age difference. In order to avoid this, the numerical variables are standardized. This

is done by subtracting the mean, and dividing with the standard deviation, resulting in

values with mean 0 and standard deviation of 1. The scaled values are now going to have

the same relative effect on the models.

3.4 Feature Selection

As with all machine learning methods, the less supervised approaches discussed in this

thesis can be crucially impacted by the choice of variables used in the models. For labelled
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classification, sensible selection strategies includes and excludes variables in ways which

contributes positively to class prediction. However, with truly semi- or unsupervised

approaches, this is more difficult as there is no clear way to definitively determine the

successfulness of any classification made from the models.

There are several reasons as to why limiting the number of features might benefit an

unsupervised or semisupervised learning model. First, it can be desirable to remove

features that are irrelevant for the problem in question. Simplified models with fewer

variables can be preferable both in terms of run time and interpretation, provided the

dimensionality reduction does not have an adverse impact on performance. Furthermore,

some clustering algorithms risk collapsing with high dimensional data, giving an added

benefit from removing less relevant variables (Dy and Brodley, 2004). Secondly, it might be

beneficial to remove redundant features which contributes with little new information (Dy

and Brodley, 2004). Not only do redundant features contribute to increased dimensionality,

but they can also impact clustering results (Dy and Brodley, 2004). As an example, if two

variables are highly correlated and refers to almost the same concept, they would with

many algorithms give twice the weight of the other attributes to that particular aspect of

the data. If this double weight does not reflect some natural aspect of the phenomena we

try to model, reducing the redundancy could be considered.

Solorio-Fernández et al. (2019) outlines filtering features based on the properties of the

data itself as an approach to unsupervised feature selection. This method can be used

independently of which machine learning is applied later (Solorio-Fernández et al., 2019).

As we explore a range of semi- and unsupervised algorithms in this thesis, we take a

filtering approach to variable selection. This permits using the same dataset across all

methods without bias towards the algorithms used in variable selection, which facilitate

more straightforward model comparison. It should be noted that as the dataset do

have labels these could be utilized to select the variables which yields best anomaly

class predictions for each method. However, as we primarily employ semisupervised and

unsupervised algorithms, we prefer to limit the use of information which would not be

available in a less stylized application. Overall, we take a conservative approach to feature

selection.

A visual inspection of the variable distributions in chapter 2.2 suggest some degree of
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Figure 3.11: Pearson’s correlation coefficients for numerical variables

correlation between multiple variables, for example Net Wealth and Domestic Net Wealth.

Numerical variables are evaluated using Pearson correlation for continuous quantitative

variables, and categorical variables are evaluated using Cramér’s V. Correlation is only

calculated for the 2012 observations. We note that almost all variables are considered to

have a significant correlation with p ≈ 0 both when evaluating Pearson’s correlation test

for quantitative variables and when using the Chi-Square test for categorical variables.

This is also the case when the correlation coefficient is of a modest size. Correlation is

calculated using a relatively large number of observations, n = 21 734, and we expect this

to cause somewhat exaggerated estimates of significance.

As expected we observe from figure 3.11 that the two net wealth variables are close to

perfectly correlated, with a correlation coefficient of ≈ 1. Furthermore, Personal Income

and Norwegian Income After Tax Deductions are moderately to highly positively correlated

with a score of ≈ 0.5. As a last remark, we note that the two net wealth variables are

moderately positively correlated with Norwegian Income After Tax deductions, with a
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Figure 3.12: Cramers V’ coefficients for categorical variables

score of ≈ 0.4.

For the categorical variables illustrated in figure 3.12, Marital Status and Joint Return

Code have a correlation coefficient of ≈ 0.6. Secondly, Classification Code and Centrality

Code have a fairly high correlation of ≈ 0.5. This is not unexpected as they both include

some measure of centrality. Furthermore, the variable pairs Marital Status and Person

Code, and Person Code and Joint Return Code have modest correlation coefficients of

≈ 0.3

In order to remedy potential issues related to redundancy, and to minimize the concern of

double weighted features, we exclude some of the most correlated variables from further

analysis. Specifically, we remove the three variables Domestic Net Wealth, Classification

Code and Joint Return Code. With this selection most of the available features are intact

and used in the models.

In addition, a smaller dataset with fewer features is included and tested as well. This
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dataset further removes correlated variables, leaving the seven features Delivered Tax

Return, Marital Status, Centrality Code, Domestic Debt, Norwegian Income After Tax

Deductions, Net Wealth and finally Birth Year. This reduction also leans on the analysis

in chapter 3.2, where most of the selected variables for the small dataset seems to, in

some extent, be able to separate the groups from each other. In a practical application

of the methods discussed in this in paper, supporting feature selection by using domain

knowledge into what specifically separates the groups, might yield better separation of

normal an anomalous observations. A discussion surrounding the SKM-group variable

can be found in chapter 6.6.

3.5 Use of Labels

Even though this thesis is about unsupervised machine learning, the dataset we use does

contain labels. Labels are used in order to validate the results, and get a definitive answer

on the performance of the methods for detecting anomalies in these tax returns. As this

thesis is primarily aimed as an initial investigation, we are not only interested in how

the models perform, but also the considerations which has to be made in a practical

application where the anomalies will not be labelled. Because of this, we disregard the

labels for a portion of the thesis, and rather use them for in the final validation stages in

model selection and evaluation.
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4 Methodology

4.1 Machine Learning and Anomaly Detection

In this thesis we explore machine learning and anomaly detection. Common for all

machine learning methods is that they use existing observations of a specific phenomena

in combination with statistical theory, pattern recognition and inference to produce new

information, estimates or predictions(Murphy, 2013).

Chandola et al. (2009) defines anomaly detection as the problem of finding patterns in

data that do not conform to expected or normal behaviour. Anomaly detection can be

tackled using a wide variety of techniques, employing concepts from fields such as statistics,

machine learning, data mining and information theory. The need for such a wide range

of techniques stems from the fact that anomaly detection is a non-trivial problem. Both

defining what constitutes a normal region of behavior and drawing the line for anomalous

observations can be challenging. In addition, and depending on the context of the problem,

true anomalous behaviour might not be discernible from the normal region of behaviour,

or not be separable from noise in the dataset (Chandola et al., 2009).

Machine learning methods are typically grouped according to degree of supervision.

Supervised learning methods consist of algorithms which can predict or classify a specific

feature of an observation, based on that observation’s other characteristics (Hastie et al.,

2017). In order to make sensible predictions, supervised learning models must get some

idea of which explanatory variable values are associated with different values of the

response variable. For the tax data this would be training the algorithm on a set of

observations where the group affiliation is presented as a label feature. In other words,

one needs to supervise the learning by instructing the model of what is correct behaviour.

If the training data is representative for the phenomena we are exploring, supervised

learning methods can yield highly useful information. It is, however, not always plausible

or practical to use supervised learning methods, mainly due to the need for labeled data.

Unsupervised learning methods are often used for finding structures and patterns in data

(Hastie et al., 2017), without guidance on what specific features to focus on. Since we do

not instruct the model on what we specifically want to find, the learning is considered
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unsupervised. The fact that unsupervised learning methods do not need a response variable

makes them more accessible to use, and applicable to a wide range of domains and datasets.

However, unsupervised methods demand more prior knowledge about the underlying data

and domain in order to identify useful outputs from the models, when the possibility for

standard validation with labels disappears. Since the Tax Administration are domain

experts they have good prerequisites for this preparatory work.

It is also possible to take a semisupervised approach. Semisupervised learning algorithms

do need some labelled data, but only from the normal, non-anomalous class of observations.

They do not need to be provided examples of previous anomalies. This can be preferable

to the fully supervised case, as it can be difficult to obtain good examples of all types

of anomalies, and the type of anomalies present in the dataset may change over time

(Chandola et al., 2009). This makes semisupervised learning suitable for the Norwegian Tax

Administration, as they have great access to labeled data, but not exhaustive knowledge

on the anomalies that might occur.

Based on the works of Chandola et al. (2009) and other applications of unsupervised

anomaly detection on financial data we have selected four anomaly detection approaches

to implement on our dataset. These are selected based on performance in other financial

applications, in addition to representing a range of different approaches towards anomaly

detection, and allows us to tackle the challenge from multiple angles. As we take an

exploratory approach to tax data anomaly detection, it is preferable to investigate a

range of approaches. The methods we have selected are K-Means Clustering, DBSCAN,

One-Class Support Vector Machines and autoencoders. The methods range from pure

clustering algorithms with k-means, to clustering for noise with DBSCAN, and transition

to separation using hyperplanes with One-Class Support Vector Machines and lastly deep

learning with autoencoders.

4.2 K-means Clustering

In general, clustering involves grouping data together so observations within the same

cluster are more similar than observations in different clusters. There exists a wide range of

clustering algorithms, with K-means being one of the most well-known. K-means clustering

has the benefit of being relatively straightforward. This makes it an interesting starting
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point for both clustering and anomaly detection analyses. With K-means clustering we

partition the observations into a predefined number of clusters, C = {C1, C2, ..., Ck},

with the goal that every observations in each cluster are as similar as possible to each

other. Cluster assignment is performed in a way that ensures that every observation

belongs to one and only one cluster and that no clusters overlap (James et al., 2017).

Formally, K-means clustering seek to minimize the within-cluster variation - the aggregate

dissimilarity between each observation in each cluster (James et al., 2017):

minimize

K∑
k=1

W (Ck) (4.1)

Dissimilarity is measured by the squared Euclidean distance, giving the following definition

of the within-cluster variation:

W (Ck) =
1

|Ck|
∑

x1,x2∈Ck

n∑
j=1

(x1j − x2j)2 (4.2)

Where x1 and x2 is a pair of observations assigned to cluster Ck, and j = {1, 2, ..., n}

represent the different attributes associated with each observation. The Euclidean distance

is then calculated as the sum of squared attribute differences. |Ck| is the number of

observations assigned to cluster Ck, leading to W (Ck) expressing the average squared

Euclidean distance between each pair of observations in cluster k (James et al., 2017).

Finding the global minima when minimizing the within-cluster distance is rarely feasible

as the number of possible combinations explodes with the number of clusters and the size

of the dataset. Therefore, the K-means clustering algorithm utilizes random initialization

of the cluster centers and use this initial position to locate a local minimum instead (James

et al., 2017). The process of is done in an iterative fashion:
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1. Set a number of clusters k and initialize the clusters with randomly selected

observations as the cluster centers.

2. Calculate the squared Euclidean distance from every observation to each cluster

centre and assign each observation to the nearest cluster.

3. Recalculate the position of the cluster centres to be the mean value of all

observations assigned to the cluster.

4. Repeat steps 2 and 3 until the algorithm converge and there is no change in

cluster assignment from one iteration to the next

While this approach gives highly efficient computation, there is no guarantee

that the best partition of the dataset is found (James et al., 2017). We therefore follow

the recommended strategy of creating multiple clusters with random initialization and

selecting the best one, to reduce the risk of randomly selecting a disproportionately bad

partition.

4.2.1 Cluster Validation

Given that clustering is an unsupervised learning technique it can be difficult to evaluate

the quality of the clusters produced. For K-means, one of the key decisions is determining

the number of clusters k. To determine k we use an internal validation criteria known

as the Elbow Method. The elbow method studies the average within-cluster distance to

determine optimal k. The average within-cluster distance (AWD) can be defined as the

sum of all within-cluster pairwise distances divided by all the possible within cluster pair

combinations:

AWD =
K∑
k=1

∑
x1∈Ck,
x2∈Ck,
x1<x2

d(x1, x2) /
K∑
k=1

|Ck|(|Ck| − 1)

2
(4.3)

Where d(x1, x2) is the distance method used to generate the cluster. The Elbow method

is based on an intuitive principle of trying to determine k in a fashion that best reflects

the underlying structure of the data: Assuming that there exists an unknown number of

K∗ different groupings naturally in the dataset, a k which is smaller than K∗ would result

in clusters which contains observations from multiple natural groups and thus clusters

with a relatively high average within-cluster distance (Hastie et al., 2017). As k increase
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towards K∗ one would expect the average within-cluster distance to decline sharply as

the natural groups becomes increasingly separated by the clusters. As k passes K∗, the

"excess" clusters will consist of smaller partitions of the already separated natural groups.

This should further reduce the average within-cluster distance, but the reduction from

each successive increase in k would be smaller, as the clusters already consists of naturally

similar observations (Hastie et al., 2017).

Using this principle, we generate multiple k-means partitions, with k ranging from 1 to a

sufficiently large number to hopefully allow us to identify a k close to K∗. Plotting the

AWD of each K-means, the elbow principle indicates that a k which corresponds to sharp

decline in the AWD curve (an elbow point) would be a sensible choice of k.

4.2.2 Cluster Analysis for Anomaly Detection

The use of K-means clustering for anomaly detection is based on two key assumptions.

First, normal observations form large and dense clusters, and anomalous observations

form smaller and sparser clusters. Second, normal data should lie closer to the cluster

centers, while anomalies should lie towards the outer edges (Chandola et al., 2009). In

our approach we have implemented two filters which flag anomaly candidates in the

K-means clusters based on the two assumptions. First, all observation that belongs to

a cluster containing less than a given percentage of all observations are flagged. This

threshold must be set by the user. For example, if the threshold for classifying a cluster

as a small cluster is 10%, then all observations that belong to cluster with less than 10%

of total observations are flagged as anomalies. This approach introduce a new tuning

parameter, which requires active consideration of what cluster size should be considered

so small that they might contain anomalies. Since cluster sizes varies with each solution

the size threshold should be considered in light of the actual cluster structure at hand in

combination to prior domain knowledge and assumptions.

Second, all observations which can be considered outliers within their own clusters are

flagged as anomalies. This evaluation is based on the Euclidean distance from each

observation to their cluster center. Formally, within every cluster an observation is

considered an outlier if their distance to the center is more than 1.5 times the interquartile

range above the third quartile of all the distances to the center in that cluster. The 1.5
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times interquartile range above the third quartile is a common definition of an outlier

(Keller, 2014). The outlier evaluation does not introduce any new tuning parameters.

4.3 DBSCAN

Density Based Spatial Clustering of Applications with Noise, or DBSCAN, is another

widely used clustering method. As opposed to K-means which assigns every observation

to a cluster, density based clustering methods assumes that clusters are continuous dense

regions in the data space, which are separated by low density areas (Hahsler et al.,

2019). Therefore, observations with many close neighbours are assigned to clusters, while

observations that lie far away from others with few neighbours are treated as noise and

are not assigned to any cluster. DBSCAN has the added benefit of being able to capture

clusters with arbitrary shapes, without assuming convex or hyper-spherical shapes such

as k-means. This allows for cluster structures which might be more representative of the

actual data (Hahsler et al., 2019).

To cluster using the DBSCAN algorithm we need to specify two parameters which

determines how the clusters, data points and noise are defined. The first is neighboring

distance, ε, and the second is minimum numbers of neighbors, MinPts. Data points with

more than MinPts neighbors (including the observation itself) within the neighboring

distance ε are defined as core points. These observation are considered to be in the densest

areas of the data space, and determine the location of the clusters. Every data point within

a ε distance from a core point is considered to be part of the same cluster. Observations

which are assigned to a cluster but are not core points themselves are defined as border

points. This is the case when an observation’s number of neighbors is smaller than MinPts,

but the observation is within ε of a core point. If an observation is not a core point nor a

border point it is defined as noise, and is not assigned to any cluster. This is the case when

the observation’s number of neighbours is below MinPts, and the observation is longer

than ε from any other core point (Schubert et al., 2017b). The concept and definitions is

illustrated in Figure 4.1. ε is defined by circles, and MinPts=4.

DBSCAN can be defined for a number of different distance measures. In our

implementation we use the squared Euclidean distance, as defined for K-means clustering

in equation 4.2.
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Figure 4.1: DBCSAN with MinPts = 4. ε is represented by the circles. The Figure is
adapted from (Hahsler et al., 2019)

The core points and noise are deterministic, and the DBSCAN algorithm will only produce

one solution for these points given the combination of MinPts and ε provided . Cluster

labels and border points are, however, assigned on a first come first serve basis, and

may change if the dataset is permuted(Schubert et al., 2017b). The original DBSCAN

algorithm assigns border points to the first cluster they appear in, and then jump over

that observation in later iterations. This is done because users often desire unique cluster

assignment, as well as requiring less memory. In our implementation of DBSCAN, we

treat observations with no cluster assignment (the noise) as anomaly candidates, and the

instability of boarder point assignment will not affect our analysis. Using this approach,

the DBSCAN algorithm offers a rather different perspective than k-means clustering.

However it is possible to attack anomaly detection with DBSCAN in the same way as

at k-means, looking at the clusters and their properties to find anomalies. If that is the

approach you use, the distribution of border points can be crucial, and this is something

one should be aware of. Given that we try to find different ways of discovering anomalies

and already have implemented k-means we are not going to go further with that approach.
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4.4 One-Class Support Vector Machines

Support Vector Machines (SVM) are originally from the field of supervised learning, and

is normally used for two-class classification (James et al., 2017). The One-Class SVM

(OC-SVM) is an adaptation of this approach, where the goal is to distinguish one minority

class from the majority of observations, as opposed to distinguishing two classes from

each other. This is done by modelling the region where the majority group of observations

reside, and separating observations which falls within or outside this region. Since we only

model the region of majority observations, the OC-SVM can operate semisupervised or

even fully unsupervised (Brownlee, 2020). In this thesis, we explore the semisupervised

approach, where we model normal tax returns, and use the established boundaries to

classify new observations as either normal or anomalous.

SVMs use the notion of separating hyperplanes to distinguish two classes from each other.

Given n observations in a p-dimensional feature space, the goal is to establish a hyperplane

which separates most of the observations from each class at either side of the plane (James

et al., 2017). For the OC-SVM, we do not try to distinguish two classes from each other.

Instead, we try to model observations so that a hyperplane separates the majority class

observations from the origin in the feature space (Schölkopf et al., 2001). In our case the

majority class consists of the control group. The OC-SVM can be though of as a normal

SVM where all the majority data represent the first class, while the origin becomes the

only member of the second class during training (Maglaras and Jiang, 2015).

The general idea is to determine the hyperplane in a way where most observations from

the majority class of observations falls on one side of this plane, defining the region of

normal behaviour. When new observations are introduced, observations which fall inside

the boundaries of the plane are defined as normal, while observations which falls outside

are classified as anomalous observations (Schölkopf et al., 2001). Our goal is that the

AKU and TIL observations fall outside of the hyperplane, while the control observations

in the test set fall inside.

There are an infinite number of different planes which could separate the anomalies from

the majority. Thus, in order to determine the exact position of the separating hyperplane,

an additional requirement is included. The hyperplane in the OC-SVM is determined
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Figure 4.2: The training of an OC-SVM. The Figure is adapted from (Maglaras and
Jiang, 2015)

to maximize the margin between the origin in the feature space and the observations

from the majority class, as this will define the smallest possible segment as the normal

region (Schölkopf et al., 2001). An illustration of the training process for the OC-SVM is

presented in figure 4.2.

A strict boundary would likely lead to some degree of overfitting to the training data.

Therefore, the OC-SVM introduce the parameter ν which dictates the allowance for

observations that cross the margin or the plane itself. ν is a real valued parameter which

can take values ranging from 0 to 1, bounding the percentage of observations in the

training set which are allowed to be classified as belonging to the minority class (Schölkopf

et al., 1999). Depending on the application, some suggest setting ν to the expected ratio

of outliers in the data (Brownlee, 2020). A smaller ν corresponds to a harder margin, and

vice versa. In the illustration in figure 4.2, the margin is strict, ν = 0. With ν one also

introduces a slack variable, ξi, which determines how much a particular observation xi

violates the margin or the plane. The full problem is defined by Schölkopf et al. (1999):

min
w,ρ,ξi

1

2
||w||2 +

1

νn

N∑
i=1

ξi − ρ, subject to (4.4)
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(h(xi)w) ≥ ρ− ξi ∀i, ξi ≥ 0 ∀i (4.5)

Where w and ρ define the position of the separating hyperplane, and n denotes the number

of observations in the training set. h(xi) represents a linear or non-linear transformation of

observation xi, that will be discussed in more detail shortly. A detailed explanation of the

representation above is outside the scope of this discussion, but we would like to highlight

some key aspects. As with the traditional SVMs, only variables which violate the margin

contributes to the position of the hyperplane. These observations support the separating

hyperplane, and are referred to as support vectors. It is possible to deduct that the value

of ν corresponds to a upper bound on the number of outliers permitted, as well as a lower

bounds on the fraction of support vectors used (Schölkopf et al., 1999). Theoretically, it is

possible to solve the minimization problem using the Lagrangian function. Following the

Lagrangian solution, class prediction for observation x is given by the decision function

f(x) (Schölkopf et al., 1999):

f(x) = sign(
N∑
i=1

αi〈h(x), h(xi)〉 − ρ) (4.6)

Where x is the new observation to be classified, 〈h(x), h(xi)〉 is the inner product between

x and the other observations xi and αi is a Lagrangian multiplier. One of the factors which

makes SVMs applicable to a wide range of problems is that the separating hyperplane

need not be determined in the original feature space, where linearly separability is unlikely.

Instead, both traditional SVMs and the OC-SVM utilize the principle of enlarging the

feature space, where linear boundaries will generally achieve better separation of the

training data (Hastie et al., 2017). This is feasible as the computation only requires

knowledge of the inner product of each pair of observations, and the transformation of

h(x) need not even be specified, but only requires knowledge of the kernel function K

(Hastie et al., 2017):

K(x1, x2) = 〈h(x1), h(x2)〉 (4.7)

A kernel is a function that quantifies similarities between two observations. However, the
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kernel function can represent similarities which are non-linear, and expand the possible

feature space almost indefinitely without having to actually work with the data in the

enlarged feature space (James et al., 2017). Popular choices for kernel functions are the

Radial Basis kernel and the Neural Network Sigmoid kernel (Hastie et al., 2017):

Radial Basis: exp(−γ
p∑
j=1

(x1j − x2j)2) (4.8)

Sigmoid: tanh(γ 〈x1, x2〉 + k) (4.9)

Although the observations are separated by a hyperplane in the enlarged feature space

formed from the kernel, this does not necessarily translate to a linear decision boundary

in the original feature space. Consequently, the introduction of non-linear kernels allows

SVMs to express non-linear decision boundaries in all shapes and sizes.

As stated earlier, the OC-SVM can be implemented both as a semisupervised and fully

unsupervised method (Brownlee, 2020). In the semisupervised case, the separating

hyperplane is defined using tax returns which are known to be normal and without errors.

The hyperplane then defines a region of normal behaviour, and ν regulates potential

overfitting to the normal data in the training sample. In the fully unsupervised approach

the OC-SVM exploit the fact that anomalies are rare occurrences, which do not affect the

overall structure of the dataset. However, as one expects the anomalies to be different

from the normal observations, these might play a larger role in determining the hyperplane,

and in a greater extent become support vectors. In this case, ν might be a bit higher than

for the semi-supervised case, as we would expect more anomalies in the training set to

lie on the outside of the hyperplane in order to achieve a good class separation, as well

as still controlling for overfitting to the normal data. This of course depends on where

the anomalous observations lie in the enlarged feature space, and to which extent they

differ from the majority class. Given that this is not known in advance the unsupervised

approach might add more uncertainty to the output of the model. As it has to be examined

whether the anomalies actually end up on the right side of the hyperplane in order for this

approach to work, the fully unsupervised might require even more validation afterwards.

Considering that the Tax Administration do have access to a fair amount of normally
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labelled data from their manual controls, we believe that the semisupervised approach

could be an attractive option for them, and use this in further analyses.

4.5 Autoencoders

An autoencoder is a feed forward neural network that attempts to copy its input to its

output. If the autoencoder simply copied the input to the output it would not be very

useful. Instead, autoencoders are designed in a way which restricts them from perfectly

copying the input, forcing the model to prioritize which aspects to copy. This results

in a model which learns useful properties of the data, while disregarding less important

information (Goodfellow et al., 2016).

The autoencoder consists of two parts, an encoder and a decoder. Most commonly the

encoder and decoder are symmetrical architectures consisting of several layers of neurons,

each layer followed by a nonlinear function and shared parameters (Schreyer et al., 2017).

Both the input and output layer have the same number of nodes as the number of features

in the training data (Hawkins et al., 2002). Internally the autoencoder has hidden layers

that are compressed in the encoder towards a latent space, before being expanded again

in the decoder. This gives the autoencoder a funnel shape, also referred to as "bottleneck"

architecture. An example of this structure is shown in figure 4.3. The funnel is what

forces the autoencoder to not just copy the input to the output. When it is not possible

to transfer all the information through the shrinking layers in the encoder, only the most

important characteristics are pushed forward and used in the decoder in order to try and

reconstruct the input in the output layer, with as low reconstruction error as possible.

During training the autoencoder tries to determine what information to push forward in

order to minimise this error.

For training the autoencoder we use a set of N observations, X = x1, x2, .., xn. Each

observation xi consists of a vector of K attributes (xi1, x
i
2, .., x

i
k). xij denotes the jth

attribute of the ith observation. The encoder mapping fθ(·) maps an input vector xi

to the compressed representation zi in the latent space Z (Schreyer et al., 2017). The

compressed representation should contain the most salient properties of the data, which

in turn enable the decoder to reconstruct the input with as low reconstruction error as

possible. The latent representation is mapped back by the decoder gθ(·) to a reconstructed
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Figure 4.3: Illustration of the autoencoder adapted from Schreyer et al. (2017)

vector x̂i, as presented in figure 4.3 The nonlinear encoder and decoder of an autoencoder

with several layers can be defined by:

f lθ(·) = σl(W l(f l−1θ (·) + bl), and glθ(·) = σ
′l(W

′l(gl−1θ (·) + dl) (4.10)

Here σ and σ′ denote the non-linear activation function. θ denote the model parameters

{W, b,W ′
, d}, W ∈ RdxXdz and W ′ ∈ RdzXdy are the weight matrices, b ∈ Rdz , d ∈ Rdy

are offset bias vectors and l denotes the number of hidden layers. For interested readers a

closer description of activation functions and neural network architectures can be found

in Goodfellow (2016).

In order to minimize the dissimilarity of a given observation xi and the reconstructed

x̂i = gθ(fθ(x
i)) the autoencoder try to learn a set of optimal model parameters θ∗ during

training, resulting in xi ≈ x̂i. The training objective can be expressed as:

argmin
θ
||X − gθ(fθ(X))||, (4.11)

for every observation X (Schreyer et al., 2017). During the training a loss function is

minimized. In our case we minimize the mean squared error:
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MSE =
1

n

n∑
i=1

(xi − x̂i) (4.12)

As we do not want the autoencoder to simply learn the identity function, the number of

neurons in each consecutive hidden layer is reduced giving Rdx > Rdz . The restriction

forces the model to learn the optimal parameters θ∗ for creating a "compressed" version

of the most common attribute distributions and their dependencies(Schreyer et al., 2017).

Detecting anomalies with autoencoders can be done in a semisupervised or fully

unsupervised way. For the semisupervised approach, the training set contains data

we know or presume is only normal data. During training the weights are updated in

order to minimize the mean square error, or mean reconstruction error for the training

patterns. Properties that are common in the input are more likely to be reproduced well

by the trained autoencoders. When we later test the data, the anomalous observations

are in theory going to differ from the normal data. The autoencoder should to struggle to

reconstruct the anomalous data because it has never seen it before, resulting in a high

reconstruction error. This reconstruction error is what is used to measure the outlierness

of the observations and find the outliers or anomalies in the data (Hawkins et al., 2002).

In the fully unsupervised method we exploit the fact that anomalies occur very rarely in

the dataset. Infrequent outliers will be worse reproduced by the autoencoder, resulting in

a higher reconstruction error, because the model is going to focus on reconstructing the

properties from the majority class i order to minimise the overall reconstruction error.

Rare occurrence of faulty tax returns is the case in the real world as well. Thus, the

fully unsupervised approach would be an applicable alternative. However, as with the

OC-SVM, we use the semi-supervised approach in our analysis.

4.6 Machine Learning with Mixed Data Types

Many Machine Learning Algorithms are unable to handle mixed data types in their raw

form without any form of conversion. This stems from the fact that most algorithms are

implemented using similarity or distance measures which are dependent on numerical

data only. One example of this is the Euclidean distance, used as the distance measure in

this thesis. Common practise is to transform categorical variables into dummy variables.
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However, this approach does have some drawbacks. First, it can greatly increase the size of

the dataset, causing poor computational performance to the point of infeasibility (Huang,

1998). Considering the limited size of our dataset this is not of great concern, but the

dataset does grow from 13 features to 35 after dummifying. Using dummy variables can

also affect the interpretation of distances between observations, as the weight of numeric

or categorical variables might be misleading or skewed. As an example, consider two

observations with different Martial Status. Using dummy encoding in combination with

the squared Euclidean distance gives these two observations an added distance of 2 from

this feature, since they now differ by 1 in two separate dummy encoded variables. On the

other hand, scaled numerical variables with a mean of 0 and standard deviation of 1, will

perhaps have a smaller contribution to the Euclidean distance because they often occur in a

relatively small interval, and are only counted once. Consequently, using dummy variables

introduce some assumptions to the importance of categorical versus numerical variables.

This could potentially affect the analysis if the weighting does not represent the underlying

relationships in the dataset. Alternative measures such as Gower’s similarity coefficient

can in such cases be more suited as they better balance between categorical and numerical

attributes. Even so, testing the performance of different algorithms using non-standard

distance measures would be a topic for a separate thesis, and is not something which will

be considered here. Using dummy variables is common practice in most applications, and

will suffice for the purpose of our investigation.

4.7 Estimation, Validation and Evaluation

Before we can evaluate the method’s performance several considerations have to be made

to get a concise evaluation. Some considerations are what performance measures to use

and how the methods tuning parameters should be determined. These decisions critically

affect outcome and evaluation.

4.7.1 Measuring Model Performance

In order to evaluate and compare the models we need a way to summarize the models’

performance. Performance metrics must be considered in terms of what the goal of the

analysis is, the structure of the underlying dataset and so forth. In anomaly detection a
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positive prediction corresponds to an anomaly, while a negative class prediction represent

a normal observation. The errors can then be divided in false positives and false negatives.

False positives are objects the model thinks are anomalies, that in fact are normal, and

false negatives are objects the model think are normal but in fact are anomalies. The

counterparts are true positives and true negatives, that are correctly classified by the

model (Müller and Guido, 2016). Measures that use these terms to evaluate performance

are dependent on labels in order to identify if a positive or negative prediction is true

or false. In a practical application the Tax Administration cannot use these measures

until after a manual control is conducted, and they would then probably only prioritize

identifying true and false positives. In the thesis we use the measures to evaluate the

actual performance of the models, to be able to give an opinion on the fit of the models

on our data. But other measures might be used in a true unsupervised approach.

A comprehensive way to evaluate binary classification models is through a confusion

matrix. This is a matrix where the rows correspond to the true classes, and columns

correspond to the predicted class. The result is a matrix showing the number of samples

that belong to the four divisions true positive, true negative, false positive, false negative

(Müller and Guido, 2016).

predicted negative predicted positive

negative class TRUE NEGATIVE FALSE POSITIVE

positive class FALSE NEGATIVE TRUE POSITIVE

Since the confusion matrix gives a good overview of the distributions of the different classes

and error, but is cumbersome to inspect, it is common to use measures that summarize

the information rather than the confusion matrix itself. (Müller and Guido, 2016).

4.7.1.1 Precision, Recall and F-score

Precision, recall and F1-score are ways to summarize the errors of a model that take the

difference between a false positive error and false negative error into account. In contrast,

an accuracy score would simply divide the number of correctly classified observations

by the whole dataset. Precision measures the amount of objects predicted as positive

that actually are positive. If the goal is to limit the number of false positives, then

precision is a suitable measure. Recall, on the other hand, measure the amount of positive
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objects captured by the model. When it is important to find all the positive cases, recall

is a good measure. In most cases, however, both precision and recall are important

(Müller and Guido, 2016). When determining how to score the models’ performance, the

consequences of false positives and false negatives must be taken into account. For the Tax

Administration, the manual control needed in order to determine if a tax return actually

contain errors is a time consuming and costly affair. This translates to a high cost for false

positive results. On the other hand, many false negatives can accumulate to substantial

missed tax incomes for the government. These considerations must be balanced. A way

of combining the precision and recall in a harmonious way is with the F1-score:

F1 = 2× precision× recall
precision+ recall

(4.13)

The F1-score is a good measure for binary classification on imbalanced datasets as it takes

both precision and recall into account. This makes it suited for our tax return dataset. If

we were to classify every tax return as normal we would get an accuracy of 95%, which

seems very impressive, but that model would not be very helpful. When is comes to

understanding and explaining the score, F1 − score is less intuitive than accuracy, but it

is more suited for this kinds of unbalanced cases (Müller and Guido, 2016).

4.7.2 Generalizing on New Data

In this thesis we study different types of machine learning methods that require different

considerations when estimating model parameters and validating the results. The two

unsupervised clustering methods try to find the natural clusters in the data, which can

be used later to detect anomalies. The models are validated based on properties of the

clusters’ structure, and not the anomaly prediction of each observation,. This means that

they use all available data, instead of splitting it into a training and test set. The fact

that we validate against the structure of the data, might reduce the risk of overfitting

to what we are trying to predict. It is possible to fit new data to these methods, but if

a lot of new data is provided, it is likely that new natural clusters occur, as errors and

regulations evolve, calling for the method to be run again in order to fully represent this

new dataset. When deciding to use a clustering method you should therefore try to find

a "recipe" on how to cluster your data, in order to make this re-run of the method as
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streamlined as possible, without the need of a full process every time there is a small

change in the underlying data.

The two semisupervised methods are intended to be fitted with new data. They should

be able to make accurate predictions on new unseen data given that it contains the same

characteristics as the training data. We want models that generalize well on new data. It

is therefore important to test the models using both a training and test set, and to use a

validation method to investigate how well the models predict on seen and unseen data.

Particularly in supervised learning, where labels on all classes are included both in the

training and testing phase, it is easy to make overly complex models which overfit to the

training data and generalize poorly on unseen data (Müller and Guido, 2016). When it

comes to less supervised models, however, there is limited access to labels on the different

classes. This reduces the ability of making complex models to capture the peculiarities of

the different classes, and thus overfitting on them. However, it is still possible to overfit

on the normal class of observations during training for the semisupervised methods. This

would result in the models not recognising the characteristics of the normal data in the

test set, and marking a lot of normal data as anomalies. This can happen if, for example,

the hyperplane in OC-SVM follows the training data to closely. If this is the case, many

control observations in the test set could fall on the other side of the plane and be classified

as anomalies. Another example is if the autoencoder learns the training set to well, and

the new control observations get a high reconstruction error. The models could also be

too simple and lead to underfitting, resulting in a high false negative rate.

4.7.3 Validation

Statistical models’ performance can be sensitive to which data is included in the training

and test phases, and estimates done on the basis of one sample can be highly variable

(James et al., 2017). Considering this, only selecting and testing one sample can lead to

highly uncertain estimates and more uncertainty around model selection and evaluation.

In standard supervised classification approaches, a common practice is to implement cross-

validation strategies to get more precise and less variable estimates of model performance

(James et al., 2017). One of the most widely used approaches is K-folds cross validation

where the full dataset is randomly split into k separate parts. One of the k folds is used

to test the model, while the remaining k-1 folds are used to train the model. Model
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performance is then calculated as the average performance across the k different folds.

Averaging model performance across multiple random samples leads to less variability and

more certain estimates (James et al., 2017). In this thesis, we validate the performance

from each split using the F1-score. It is, however, possible to use other validation measurse,

depending on the data and labels available. A discussion on alternative validation of our

methods when labels are not available is presented in chapter 5.1.

The 2012 tax-returns featured in our dataset are split across 9184 control observations,

9588 observations from the TIL group and 2962 observations from the AKU group. Due

to this, we need to restructure the data in order for observations from the AKU and TIL

groups to in fact be anomalous. In our analysis we include observations from both the

AKU and TIL groups as anomaly candidates in each model. The restructuring is done

by undersampling observations from the AKU and TIL groups. Inspired by Thorsager

et al. (2016), we set the percentage of anomalous observations to approximately 5% of

the control data. We acknowledge that this portion might not reflect the true rate of

anomalous tax returns, but for the purposes of this analysis we consider it a sensible

fraction. This, however, leaves very few observations from the AKU and TIL groups.

When selecting only a couple of hundred observations, we are more vulnerable to ’lucky’

or ’unlucky’ draws of anomaly observations which consequently increase variability in

estimates of model performance. To accommodate for this, anomaly observation selection

is folded. In order to make use of all of the available AKU data, and have the same amount

of AKU as TIL in the test sets, we loop through the AKU and TIL observations between

13 and 18 times, depending on the method. The proportion of AKU and TIL is 5% of the

control data in the test set. Ideally, the control data is included for training and testing

the models should also be varied using a k-folds approach as this would reduce uncertainty

even further. Given the number of models and the number of tuning parameters we want

to test, it is not feasible for us to have a k-fold on the control data in combination with

the undersampling. This would expand the computational load extensively. We prioritize

to utilize all of the AKU data, and have a simple train test split on the control data.

However, in order to reduce the risk of a strange split of control data, we check that

the two data sets have a similar ratio of observations. This evaluation can be found in

appendix A3. We do acknowledge that this approach increase variability and uncertainty

of model performance, and that selection of model parameters could benefit from being
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validated against a larger sample. Still, as our primary goal is to get an indication of

suitable approaches we find it a fair compromise considering the data an resources at

hand.
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5 Analysis

We want to investigate how well the four methods discussed in this thesis are able to

detect anomalous, faulty tax returns in our provided data sample. Before evaluating model

performance we discuss how the models’ tuning parameters are determined. After which

we evaluate model performance on the full dataset, discussed in chapter 3.4. A smaller

dataset is also tested to see if the methods perform better with fewer, and maybe less

redundant variables. We also investigate which observations are flagged as anomalies, in

order to get a more detailed image of model performance. Lastly, the unsupervised models

are benchmarked against supervised boosted trees, in order to put model performance

into perspective. After we have investigated how well our chosen methods perform on

the real tax return samples, we study how the two top performing methods fare when

the properties of the dataset change. This way we are able to examine how differences in

properties effect the methods.

5.1 Parameter Tuning

All methods discussed in chapter four contains one or more tuning parameters which

need to be determined. A tuning parameter is a parameter where the value has to be

chosen before running the model. Because the choice of values for the tuning parameter

is going to have a considerable impact on the end performance of the model, this must

be determined carefully. There are different approaches for different methods and types

of models. In supervised machine learning it is common to look at how different tuning

parameters affect the end predictions of the model, and compare that to the labels in the

training and test set. In a real unsupervised learning case one would not have these labels

when tuning the models. It would therefore be necessary to use other methods to validate

the tuning parameters. This could be done by using different plots or characteristics of

the models giving an indication of the fit of the model to the data, supported by use of

domain knowledge. When we validate our methods, we first try to determine how the

models could be validated using an unsupervised approach, before evaluating model fit

using the actual class labels.
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5.1.1 Autoencoder

There are a number of tuning parameters and structures of deep neural networks which

needs to be decided upon before training. This range from the depth of the network and

number of neurons in each layer, to choice of activation function, optimizer, learning rate,

batch size and so on. To add to the complexity, the parameters influence each other,

meaning how they are combined also impact the end result. This makes it quite infeasible

to test every single combination of parameters to find the ultimate values. One approach

is to select a range of values for each parameter based on how they have performed on

similar tasks, and test a subset of these combinations. We started with the parameters

used in Schreyer et al. (2017), and added well known parameters to this. The parameters

tested are presented in table A5.5.

Activation function Learning rate Batch size
relu 0.1 15
tanh 0.01 30
selu 0.001 45

sigmoid 0.0001 60
128

Table 5.1: Hyperparamters tested for the Autoencoders

The search for the best combination of tuning parameters was done with random search,

meaning that a subsection of the different number of combination was tested. We ended

up with an initial selection of 16 models, with different combination of the parameters.

The six best performing models were tested with both 2000 ephocs and 3000 ephocs. We

also experimented with different depths in autoencoder. The input- and output layers of

an autoencoder consist of the same number of neurons as the number of parameters in

the dataset, which is 35 after one-hot encoding the variables. The latent space consist

of 3 neurons. When deciding on the depth of the autoencoder we explored a number of

hidden layers where the number or neurons was doubled from one new layer to another.

For example, the simplest structure became 35-4-3-4-35 number of neurons in each layer.

The second contained 35-8-4-3-4-8-35, and so on up to 35. This resulted in four models

with varying depth.

The metric we used to determine the best performing models is the MSE of the

reconstruction error. This gives an indication of how well the decoder reconstruct the
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input data. In a real unsupervised application without labels, the loss metrics are the

only metrics available. Since MSE is also what is being used to determine the anomalies,

this approach runs the risk of overfitting on the data. One way to adjust for this would

be to split some of the training data in a validation set, and use this to validate model

fit. If the MSE on the validation set was high, and the MSE on the training set was low,

it would indicate that the model was overfitting. This approach however requires that

you have enough data in the training set. In our case we already have less data than we

would hope for for a deep neural network. Because we actually do have labels we choose

to use all available data in the training set, and rather use the F1, precision and recall

values to find the best model, amongst the models with the lowest MSE.

Because the results from the autoencoder are not fully deterministic we ran the models

five times in order to get a stable mean of the results. After evaluating the six best

performing models in terms of MSE, we made the final selection on the basis of the models’

F1-score. Notably, the best performing model in terms of F1-score was not the model

with the lowest MSE loss. This might indicate some degree of overfitting when solely

looking at the MSE measure, underscoring the importance of validating the results from

the training data with different methods before choosing the end model. The model with

the highest F1-score consists of three hidden layers. The architecture of the model is

Encoder: 35-16-8-4, latent space: 3, Decoder:4-8-16-35. The model is trained for 2000

ephocs, with activation function tanh, learning rate 0.01 and batch size 30.

In contrast to the OC-SVM and the clustering methods where the amount of anomalies

predicted is decided automatically by the models, the number of anomalies the autoencoder

pick must be decided upon after the model is run. There are several approaches that can be

used in order to decide number of anomalies. In our analysis we know the dataset contains

approximately 5% anomalies. As threshold we choose to set |number of anomalies| × 2.

This is further discussed in chapter 5.2.

5.1.2 K-means

Since pure clustering algorithms generally do not produce any predictions, they are often

validated based on requirements to their internal structure. Considering that the internal

structure of the clusters depend on the entirety of the input data, it is less common to
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use cross validation techniques such as k-folds and train-test-validation splits to estimate

the fit of the models. The K-means algorithm only has one tuning parameter, k, which is

estimated using the internal validation method discussed in chapter 4.2.1. AWD values

are calculated for k’s in the range of 1:60 for a sample of dataset combinations. Looking

at the AWD values, we find that k’s in the region of 6 to 9 seems to be good choices. We

select k = 9. A plot of the AWD values can be found in appendix A4.

After k is selected, final K-means models are generated for each of the anomaly fold and

control observation combinations. In order to minimize the risk of finding a particularly

bad local solution we generate 100 K-means solutions for each fold and select the best

one. Anomaly selection is done as described in section 4.2.2.

Finding the optimal threshold parameter for cluster size can be difficult. In our solution,

we select a subset of possible threshold values based on how many anomalies are predicted.

Where one would need further domain knowledge to separate the different solutions, we

select the final, best performing model based on the F1-score. We find that, in our case,

an optimal threshold lie around 10%. This means that observations in clusters which

contain less than ten per cent of all observations are flagged as anomaly candidates. As

discussed in chapter 4.2.2, the number of anomalies flagged from the K-means clusters are

a function of two factors: cluster size and distance from the cluster center. The number

of anomalies flagged due to the distance from their cluster center is independent of the

cluster size threshold parameter, and might vary from solution to solution. In the winning

model, an average of 810 observations (8%) are flagged as anomalies. Of these 570 stem

from small clusters and the remaining 240 are outliers in larger clusters.

5.1.3 DBSCAN

As the second fully unsupervised clustering method, DBSCAN, is also evaluated based

on requirements to the internal cluster structure. As discussed in chapter 4.3 the final

cluster structure of the DBSCAN algorithm is decided by parameters MinPts and ε, which

determines how many observations must be within a given distance from each other in

order to constitute a cluster. There are multiple evaluation methods and heuristics for

selecting MinPts and epsilon. A standard heuristic is selecting MinPts = 2× dim, where

dim is the dimensionality of the dataset (Schubert et al., 2017a). For our tax return dataset
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this is 2 × 35 = 70 with one hot encoded categorical variables. After MinPts is found,

the recommended procedure is to produce a K-nearest neighbours distance plot to get an

overview of the average distance from each observation to its MinPts nearest neighbours

(Schubert et al., 2017a). The idea is that for any given MinPts the KNN-distance plot will

give an indication of a sensible value of ε, where the elbow point of the graph represent

an ε which combined with MinPts work well together in generating clusters.

Using the recommended MinPts of 70, the models break down in our case, regardless of ε

value. Here a break down can mean two things. Either the model only outputs one cluster

besides from noise, indicating that it is not capable of finding the underlying structures in

the dataset. Secondly the number of anomalies is much higher than the expected number

of anomalies. If this happens you have to try a different combinations of MinPts and ε,

and validate the output based on the number of anomalies and clusters in combination

with domain knowledge. Because we have labels, we do this validation based on the

F1-score. Seeing that the tuning parameter selection heuristics did not produce usable

clusters, we test a wider range of MinPts and ε values, as presented in table 5.2.

MinPts 2, 3, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80
ε 0.1, 0.5, 1.0, 1.15, 1.25, 1.4, 1.5, 1.75, 2.0, 3.0, 5.0, 7.0

Table 5.2: Tuning parameters tested for DBSCAN

Using this approach, we find that MinPts values ranging from 3-20 in combination with an

ε of 1.0-1.5 seems to generate useful cluster structures data. The best results is produced

with a MinPts and ε of 10 and 1.0 respectively.

5.1.4 OC-SVM

OC-SVM is tuned searching for parameters in the range presented in 5.3. As with the

other models we limit our search to solutions which finds up to 10% anomalies. In a real

application without labels the choice between the remaining models would come from a

mix of domain knowledge and a validation set passed to the model in order to control for

overfitting, as discussed for the autoencoders. If more than a predetermined threshold of

observations from the validation set lands on the anomaly side of the hyperplane, this

could indicate the the models overfits to the training data. When that threshold is fulfilled,

domain knowledge, reasonable parameters and number of anomalies have to dictate model
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choice. In this analysis we instead exploit our labels and choose the model with highest

F1-score. The two best performing models do in fact have a ν of 0.05, following the

suggestion of using a ν equivalent to expected anomalies. The best model combines a ν of

0.05 with a γ of 10 using a Sigmoid Kernel.

Kernel Function ν Degree (For Polynomial) γ (For Radial & Sigmoid)
Linear 0.001 2 0.000001

Polynomial 0.005 3 0.00001
Radial 0.01 4 0.0001
Sigmoid 0.05 0.001

0.1 0.01
0.15 0.1
0.20 1
0.30 10
0.40 100

1000

Table 5.3: Hyperparamters tested for the One Class Support Vector Machine

All tuning parameters used in all models discussed in this analysis can be found in

Appendix A5.

5.2 Results

When investigating model performance, we have chosen to include precision and recall, as

well as the F1-score which represents a balanced measure of the two. While the F1-score

does weigh the consideration between false positives and false negatives, it is affected

by the number of anomalies predicted. As an example of this, consider a dataset with

5% anomalies. Randomly predicting 5% of observations to be anomalies would yield an

expected F1-score of 0.05. However, selecting 100% of observations and classifying them

as anomalies would almost double the expected F1-score to 0.095. As a result of this, the

F1-score might provide a slightly skewed representation of model performance in situations

where the cost of false positives is particularly high. Knowing this, studying recall and

precision, as well as F1-score, provide valuable information which aids model assessment

and balancing catching enough errors while not getting to many false positives.

In the case of selecting returns for manual control, the inclusion of many false positives could

prove particularly costly, as model predictions must be verified by manual investigation

by the Tax Administration. Manual investigation is time consuming and expensive, and
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the target should be to uncover as many discrepancies as possible during this process.

Considering this, we impose an added constraint on model selection. Given that the

dataset only contains approximately 5% anomalous observations, we rule out solutions

which produce anomaly predictions on more than 10% of all observations, as mentioned in

section 5.1. More than 10% anomalies would cause what we consider to be an unreasonable

amount of false positives. This allows us to still consider the F1-score which provides

an important balance on precision and recall, whilst limiting the sheer number of false

positives. The 5% anomaly share and doubled 10% limit is, to some degree, selected for

illustrative purposes. In an actual application of the methods discusses in this thesis, the

“double the expected amount of anomaly”-threshold might be altered to better suit the

false-positive false-negative trade off. Within the 10% limit, model selection is performed

on the basis of F1-score.

The best performing model for each method is displayed in table 5.4. The figures presented

represent the average score of each of the folds which are tested.

Model Precision Recall F1 Score Number of anomalies predicted
K-Means 0.103 0.162 0.119 8.1%
DBSCAN 0.111 0.229 0.149 9.6%
OC-SVM 0.126 0.179 0.147 7.1%

Autoencoder 0.092 0.264 0.138 10.0%

Table 5.4: Comparison on the best performing models using both AKU and TIL
observations as anomaly candidates

The models have quite similar performance, with DBSCAN as the best model and K-means

in last place. K-means is on par with the other models in terms of precision, but capture

very few of the total anomalous observations. The OC-SVM has the highest precision of all

models, but just a slightly higher recall than K-means. The low recall is at least partially

influenced by the fact that the two models flag fewer observations as anomalies than the

DBSCAN and autoencoder. Still, the relatively high precision cause the OC-SVM to have

the second highest F1-score, just 0.002 points behind DBSCAN. Not flagging to many

anomalies whilst having a relatively high precision could be beneficial considering the

high cost of false positives. Even though the DBSCAN has a slightly higher F1-score, the

OC-SVM can be considered a better method by the fact that the higher precision makes

it more cost-effective compared to the others.
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The models perform approximately twice as good as random selection. This cannot be

considered very impressive, especially if the goal is for the methods to be a stand alone

solution for manual control selection. Only between 16,2% and 26,4% of anomalies in the

test data are flagged. In other words, most errors evade detection. Furthermore, if the

Tax Administration were to employ these methods directly on this data, they would have

to manually control between 9.1 and 8.7 normal tax returns for every return with errors.

So far, it does not seem like the methods are adequately capable of capturing the subtle,

but present, differences between the control observations and the AKU and TIL group.

One explanation for this might be that there is too much noise in the dataset caused by

redundant or correlated variables. We therefore test the same four methods on a smaller

dataset with fewer features, as discussed in chapter 3.4. Considering that there exists

domain knowledge into what differs between the three groups, narrowing feature selection

to variables which shows potential for class distinction might prove beneficial. Still, in a

practical application where the specific distinctions between the anomalous and normal

observation are less studied this might be more difficult. Specifically, one risks removing

variables that are important for error detection because the type of errors which the

models could detect is not known beforehand. The results of the analysis on the smaller

dataset is presented in table 5.5. The models’ tuning parameters have been re-estimated

for this dataset, and model selection follows the same guidelines as previously.

Model Precision Recall F1 Score Number of anomalies predicted
K-Means 0.170 0.116 0.134 3.8 %
DBSCAN 0.124 0.194 0.150 8.4 %
OC-SVM 0.094 0.183 0.124 10.0 %

Autoencoder 0.066 0.187 0.127 10.0 %

Table 5.5: Comparison on the best performing models using both AKU and TIL
observations as anomaly candidates on a dataset with a reduced number of features

The effects of reducing the number of features varies from model to model. K-Means

sees an increased average F1-score from 0.119 to 0.134. Estimated F1-score also increases

marginally for DBSCAN from 0.149 to 0.150. The OC-SVM does not see the same

increased performance, with an F1 reduction from 0.147 to 0.124. This is also the case

for the Autoencoder, with a reduction in F1 from 0.138 to 0.127. Interestingly, K-means’

precision of 0.17 on this dataset is the highest precision of all methods, regardless of

whether we compare it to the results from the original or reduced dataset. The increase
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in precision is probably related to the fact that only 3.8% of observations are flagged as

anomalies. In fact, the high precision is combined with the lowest recall we have seen so

far. This illustrates that high precision alone is not enough for a model to be helpful, and

highlight the importance of recall when evaluating performance.

The clustering methods seems to benefit from reducing the number of variables, while the

OC-SVM and autoencoders report poorer performance. A possible explanation for the

improved performance for the clustering methods could be that they use the Euclidean

distance to compare the objects. The Euclidean distance might become more unclear with

additional features because the differences between objects fades. This explanation is

uncertain, given that we have a somewhat limited number of features to begin with, but the

influence might still be there. Furthermore, using the Euclidean distance in combination

with one-hot encoded categorical features might also explain some of performance increase

from reducing the number of variables. As mentioned in section 4.6, there is a risk that the

difference in how the numerical and categorical features are evaluated the with Euclidean

distance might influence these methods in a negative way, which is alleviated when the

number of features is reduced. It seems like the OC-SVM and autoencoder handle the

higher dimensional of the dataset in a better way.

The removal of additional variables from the smaller dataset might not have been as

well-founded as variable selection for the original dataset. In addition the OC-SVM

and autoencoder see a more pronounced decline in performance, than the incline for the

clustering methods. More importantly, the incline in clustering performance is still not

high enough for us to conclude that it would be economically feasible to use it in a real

application given the cost of low precision, and lack of results with such a low recall.

Based on this we are going to continue with the larger dataset for the remainder of the

thesis.

5.2.1 Investigating Flagged Anomalies

Going forward, we are primarily concerned with the two methods showing the greatest

potential, DBSCAN and OC-SVM. These two methods are based on different approaches

to detect anomalies, and are both designed to handle unbalanced datasets and anomaly

detection. Seeing that the two perform the best out of all the methods, but still not
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very satisfactory, we are interested in seeing what types of observations the two flag as

anomalies.

In total for all folds DBSCAN flags 2508 observations as anomalies. The OC-SVM flags

1306 observations. The difference between the two is partly caused by the fact that

DBSCAN on average flags a higher percentage of observations as anomalous. In addition,

DBSCAN makes predictions on a somewhat larger dataset as it does not require a train-test

split. For DBSCAN, 40% of all observations flagged as anomalies are control observations,

while approximately 30% are observations from the AKU group, and 30% are observations

from the TIL group. This indicates that on average, DBSCAN does not prefer one type

of anomaly over the other. We would like to emphasize that these results are aggregated

for all folds, and that the control observations are present in multiple folds and can be

predicted as anomalies several times. Every observation that has been flagged as an

anomaly one or more times is counted. Looking at the total percentage of observations,

we find that while 40 % of all flagged observations are from the control group, these

only constitute 11 % of the total control observations. This means that the same control

observations are flagged in multiple iterations. Combined for all folds, the DBSCAN

manages to pick up 25% of all AKU observations and 25% of all TIL observations.

For the OC-SVM, 20% of all observations flagged as anomalies are from the control group,

while approximately 37% are observations from the AKU group, and 43% are observations

from the TIL group. Out of total observations, however, only 6% from the control group

are flagged. Again, this means that the same control observations are flagged as anomaly

candidates over and over again. Across all folds, the OC-SVM manages to pick up a 16%

of all AKU observations combined, and 18% of all TIL observations.

When looking closer at the observations that are flagged, four features stand out. These

are Income After Tax Deductibles, Debt, Delivered Tax Return and Marital status. These

are the features where the flagged observations differ the most from the full dataset. The

plots in figure 5.1 to 5.4 illustrate the anomalies that was flagged by both DBSCAN and

OC-SVM.

In the full dataset the largest income group is the one with an income after tax between 0

and 500.000 as presented on the right hand side in figure 5.1. Among the observations

flagged as anomalies, the percentage earning more than 500.000 is larger than the
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Figure 5.1: Distribution of Income for Observations Flagged as Anomalies (Left),
Compared to the Overall Distribution of Income in the Dataset (Right)

Figure 5.2: Distribution of Domestic Debt for Observations Flagged as Anomalies (Left),
Compared to the Overall Distribution in the Dataset (Right)

percentage earning between 0 to 500.000, shown on the left side in figure 5.1. The

distribution of income is similar across the AKU, TIL and CONT observations which are

flagged as anomalies. This indicates that high income is one traits that the models notice

and that affects the anomaly prediction. However, the models does not seem to be able to

distinguish the control observations with high income from AKU and TIL, even though

there are slightly more AKU observations with an income above 1.000.000, than in the

two other groups.

Looking at the original distribution of domestic debt, shown in the right panel in figure

5.2, the TIL group stands out as having more debt than the others. The TIL group

also has the largest percentage of observations with more than NOK 1 million in debt.
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Figure 5.3: Distribution of the Delivered Tax Return variable for Observations Flagged
as Anomalies (Left), Compared to the Overall Distribution in the Dataset (Right)

From the left plot of the predicted anomalies it can seem like the models were able to

capture this, since the most common debt across all three groups is over 1 million. This is

particularly true for the AKU and TIL observations, with more than 75% of observations

belonging to that category. The control group does however differ somewhat, with almost

as many with 0 debt as 1 million. This illustrates that not one feature is important in

itself, but that it is the sum of features which plays a part, and the control observations

noted here probably have some other features that influenced the anomaly prediction.

The next feature we want to comment on is delivered tax return, illustrated in figure A4.2.

Approximately 75% of observations flagged as anomalies had actively delivered their tax

return. In the full dataset this proportion is approximately 60% in the AKU and TIL

groups, and almost 40% in the control group. This indicates that Delivered Tax Return is

an important variable for marking observations as anomalies. However, it is seemingly

not combined with other variables by the models in a way where it effectively manages

to separate the true erroneous observations from control observations which also have

delivered their tax returns.

The last feature we want to comment on is Marital status, presented in figure 5.4. As
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Figure 5.4: Distribution of the marital status variable for Observations Flagged as
Anomalies (Left), Compared to the Overall Distribution in the Dataset (Right)

mentioned in section 3.2, this is one of the features that most clearly separates AKU

observations from the other groups of tax returns, with more observations belonging the

the unmarried category. Because of this, it might seem like an important variable to

identify AKU observations. Looking at the anomalies that are flagged by DBSCAN and

OC-SVM, it does however not come across that they emphasize this distinction. A higher

percentage of flagged AKU observations are unmarried, but the most common category for

all three groups of flagged observations is being married. This is an example of a category

which that seem promising for distinguishing the groups, but that the less supervised

methods are not able to detect.

After evaluating performance on our tax return data, we find that none of the models can

be said to be very impressive, at least not if the goal is for the methods to be a stand alone

solution for manual control selection. The methods do not seem to identify and utilize the

underlying differences in the dataset in a way which separates observations from the AKU

and TIL groups from the control observations. One hypothesis was that this might be due

to noise in the data, thus an additional, smaller dataset was tested with the same methods.

Using a smaller dataset did improve performance for the clustering methods, but had a

negative impact on the OC-SVM’s and autoencoder’s performance. Furthermore, reducing

the number of features did not improve the clustering based methods’ performance to
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a point where they could be considered satisfactory. Looking at the observations that

were flagged as anomalies by DBSCAN and OC-SVM, we find that the models are able to

identify some categories which separates the three groups, such as having delivered your

tax return. Still, many control observation that had also delivered their tax return got

picked as well. Other variables, such as Marital Status, did not seem to be emphasised in

anomaly selection to the extent we perhaps had expected based on the analysis in chapter

3.2, where the most common category in the predicted anomaly observations was married

and not unmarried

That being said, it is difficult to fully evaluate model performance on their own, without

comparison to other possible approaches. In order to better evaluate the performance

of the less supervised approaches discussed in this thesis, we test the same sample of

tax returns with a supervised method benchmark. This gives a better understanding of

how well the performance can be when the models know what to look for, and where the

models might be better at using the important subtitles in the data to distinguish the

groups.

5.3 Boosted Trees Benchmark

As mentioned in chapter 2.2.1, a version of this dataset has previously been examined

in two studies where supervised methods were used as part of characteristic analyses.

Andersson et al. (2012) found that boosted trees made good predictions on this type of

data. This analysis was based on the same type of tax returns, but the "anomaly group"

was different, consisting of tax returns from individuals who had voluntarily disclosed

foreign assets. From Andersson and Lillestøl (2017) and Andersson et al. (2012) we observe

that this group differs from the control observations to a greater extent than the AKU

and TIL groups do. Andersson et al. (2012) also used additional features, which may

affect model performance. The datasets are still similar enough that the applicability of

boosted trees should hold for us as well. We therefore use boosted trees as a benchmark

for the unsupervised methods discussed in this analysis, in order to compare and discuss

model performance. All the trees have been through a tuning process to insure good

performance.

The trees have been tested under different circumstances in order to better compare
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the results to the unsupervised models. First, the boosted tree model was computed

on a balanced dataset to see how well boosted trees perform with the best possible

conditions. This resulted in an F1-score of 0.778, precision of 0.763 and recall of 0.795,

clearly outperforming the unsupervised models. That being said, it is not surprising that

the trees do better. First, they have labels during training, meaning they have the ability

to learn what to look for to efficiently separate the classes. Second, in this scenario the

three types tax returns are balanced, meaning that the model get an equal amount of

data to train on and does not have to balance how much weight to put on each class.

Next, the boosted trees are tested on an unbalanced dataset. Unbalanced classes are,

after all, most often the case in the real world, and that added twist would level the

ground a bit more between the trees and our methods. The package we use to make the

boosted trees is called Caret. This has a sampling parameter that can be set to "smote",

which rebalances the dataset when executing the method. Smote weighs two methods

that can be used to rebalance data. The first is downsizing the dataset by reducing the

control group. The second is up-scaling the AKU and TIL group by resampling those

observations. This helps the model make the right predictions also in an unbalanced case.

The reason to resample inside the method, instead of doing it outside as above, is that the

first method might lead to overly optimistic estimates of the performance. In addition,

it introduce more model uncertainty as you do not know if the models could handle the

unbalanced real world (Kuhn, 2019). With this approach the model achieved a F1-score

of 0.34, precision of 0.269 and recall of 0.466.

Finally, we emulate a scenario which is even more similar to what the less supervised

methods would be used for. Now the difference in how the AKU and TIL observations

were discovered is important when designing the train and test set. The TIL errors was

discovered based on the Tax Administrations own controls. This means that they would

have prior labels on the same groups of error that they could use in their supervised

learning models or to make rule based controls. The AKU group, however, was discovered

due to the cooperation with OECD. This entails that these errors might have gone

undiscovered, were it not for the information sharing. AKU is also a group the Tax

administration would not have any prior labels on. In the last model the AKU group is

labelled as normal data in the training set, because in this scenario the Tax administration
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does not have labels on them. Only the TIL group is labelled as anomalous in the training

set. In the test set however both AKU and TIL are labelled as anomalies, since both

groups actually are faulty regardless of the label information Tax administration posses.

Now only the control group is labelled as normal in the test set. This resulted in a F1-score

of 0.188, precision of 0.137 and recall of 0.302.

In addition to looking at the performance measures, it is interesting to see what proportion

of the three groups is captured in the three scenarios. It is especially interesting to see

how many AKU observations the model is able to capture in the last scenario compared

to the first. An overview of the proportion of groups among the observations flagged as

anomalies is presented in table 5.6

Group Scenario 1 Scenario 2 Scenario 3
AKU 43% 18% 4%

Control 21% 73% 86%
TIL 36% 9% 10%

Table 5.6: Proportion of the three groups predicted as anomalies

As presented in table 5.6 the tree-based models seem to be better at capturing AKU than

TIL when both labels are available, especially when the dataset provided to the model

is unbalanced (Scenario 2). When the AKU label is removed from the training set, the

model has problems with capturing the AKU group. This is exactly what to expect from

a supervised model. Even though the third scenario is rather stylized and perhaps far

from reality, it illustrate the difficulties supervised models can have on catching "new"

anomalies in the data. In scenario 1 where everything is balanced and all labels are

provided, the trees show promising performance. As we make the scenarios more realistic

in terms of class balancing and available labels, the performance drop rapidly. These

scenarios might not be entirely accurate to a real application, but point to some of the

advantages of less supervised methods compared to the fully supervised.

Even after the AKU group is labelled as belonging to the normal group, the supervised

method had a higher performance than the unsupervised. We never suspected that the

less supervised methods would be able to measure up to the performance of the supervised

on this data sample where the labels are available. However, we had thought that the

performance would be more similar in scenario 3 for the supervised, compared to the less

supervised methods. One reason for the supervised continued higher performance might
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be that the TIL and AKU groups have quite similar features, resulting in the supervised

model still being able to predict some AKU observations as anomalies just because they

were similar to the TIL observations. On the other hand, there was a sharp decline in

predicted anomalous AKU observation from scenario 2 to scenario 3. In other words, most

AKU observations does not get predicted as an anomaly by the tree model in scenario

3. Instead, it seems the model is that much better at predicting the TIL observations

compared to the less supervised models in terms of F1-score, that this weighs up for the

loss of AKU predictions.

5.4 Simulation

As stated, we theorize that the observed performance in the less supervised approaches

stems from the fact that they are unable to clearly identify the variables which most

effectively separate the different groups of tax returns from each other, described in section

5.2.1. In this thesis we use AKU and TIL observations as examples of the type of faulty

tax returns which can be found. These are, of course, not representative for all types of

erroneous tax returns. This makes it interesting to study how changing the properties

of the underlying dataset influence the performance of the less supervised methods. To

investigate how changing the properties of the tax returns affect model performance, we

simulate seven datasets based on the tax returns provided in the original sample. The

goal of the simulation is to exaggerate the differences that already exist in the dataset, in

order to see how much the anomalous observations should differ from the majority class

for the models to distinguish them from each other.

The number of tax return features the Tax Administration possess is much larger than

what is used for this thesis. It is therefore possible that some of these features have

larger differences, or better separates erroneous tax returns, than what is the case in

our sample. If these kinds of features exist, it would be interesting to investigate the

effect larger class differences have on the methods. Furthermore, simulating data with

differing structures might help us uncover useful information about the inner workings

of the models. It is important to note that altering the underlying data would affect

all machine learning methods, independent of degree of supervision. In this section we

study how the performance of the DBSCAN and OC-SVM are affected by increased class
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differences. This means that we focus on change in model performance in itself, and not

in relation to the supervised benchmark.

In order to get a cleaner comparison of the effects of changing the characteristics of normal

and anomalous tax returns we choose one group to represent the anomalous observations.

Since AKU seems to separate slightly more from the control observations than those in

the TIL group, presented in section 3.2, we use AKU observations as the baseline for

simulating new anomalous observations. To precisely study the effects of changing the

underlying data, the models are estimated and tested again on data where only AKU tax

returns are included as anomaly observations. To ensure the best starting point for the

comparison, the tuning parameters for the models are re-estimated in the same manner

as described in section 5.1. The results are presented in table 5.7.

Model Precision Recall F1 Score Number of anomalies predicted
DBSCAN 0.120 0.204 0.151 9.1 %
OC-SVM 0.100 0.193 0.132 9.8 %

Table 5.7: Comparison on the best performing models using only AKU observations as
anomaly candidates

Illustrated in table 5.7, the performance of the DBSCAN model with only AKU

observations as anomalies is slightly better than when the TIL group was included.

This is due to an increase in precision, while there is a minor decline in the recall. This

might be caused by model capturing fewer anomalies over all. The OC-SVM is subject to

the opposite effect. The OC-SVM predict more anomalies, resulting in a higher recall,

but the decrease in precision is bigger resulting in a decrease in the F1-score compared to

the first model.

The simulated dataset contains the same number of features as the large dataset discussed

in section 3.4, where 6 are numerical an 6 are categorical. Since we theorize that the

sub-par performance is due to an inability to identify more subtle differences, we focus our

attention on how the methods perform when the differences between control observations

and erroneous returns becomes more pronounced overall, as opposed to studying the effects

of altering single variables. Considering this, we increase the differences between the two

groups of tax returns across all features. In other words, we exaggerate the differences in

the numerical variables as well as altering the distribution of the categorical variables.
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The numerical variables are simulated from a Gaussian distribution using the sample

mean and variance for the AKU and control observations. In the simulated dataset new

variables are drawn from this distribution. The motivation behind the simulation, was

to be able to investigate how different properties in the underlying dataset influence the

methods. The number of features used in this thesis is much smaller than what the Tax

Administration actually posses. The hope is that the simulation analysis might give some

indications of how other variable might be suited for use in the methods in a future feature

selection process. As we do not know the distributions of any of the other variables, a

simple assumption is to use Gaussian distribution.

Looking at the initial data analysis in section 3.2, the true distributions of our numerical

variables are, however, most likely not Gaussian. A distinction from Gaussian distribution

is that the original variables’ distributions seems to be skewed and have a longer right tail.

This indicates that the original variables might have gamma or log-normal distributions.

This difference in distributions between the simulation and the original dataset may have

a practical impact on the predictions.

In order to investigate the effects of using the Gaussian distribution, we first simulate a

dataset with the same mean and variance as estimated for the original sample. In this

dataset the categorical features also have the same probabilities as in the original sample.

This allows us to better isolate the effect the difference in distributions might have on the

methods.

The categorical features are simulated from a categorical distribution, where the probability

of each category is based on the original samples of control and AKU observations. When

we simulate changes to the distributions of the categorical variables we alter them in a

way which makes the distribution of each categorical variable more different between the

two types of observations. Based on our prior data analysis, and the analysis performed

by Andersson and Lillestøl (2017), we changed the distribution of the features that seems

to occur most frequently in AKU, and made the opposite adjustment on these features in

the control group.

To best study model performance under changing circumstances, we simulate seven

datasets. We start with a baseline simulation with no increase in variable difference. This

can later be compared to the six next simulated datasets.
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We continue with simulations with four gradual increases in the difference between control

and AKU observations. The increase in difference in the mean for the numeric variables

is 200%, 100%, 50% and 10% respectively. We keep the same variance throughout all the

simulated datasets. For example, in the simulated dataset with the most exaggerated

differences (200%), we calculate the difference between the mean in the control group and

AKU group, and multiply this difference with 200%. We then add half this difference

to the mean in one group and subtract it from the mean in the other, increasing the

distance between the mean of the two groups. The adjustments made to the categorical

variables were to move 20 percentage points (pp), 10 pp, 5 pp or 1 pp, respectively, from

one category to one or two other categories in the same variable. For example, in the

simulated dataset with the most exaggerated differences (20pp), the probabilities for

the variable Delivered Tax Return are changed from the original distribution of P(J) =

35% and P(N) = 65% to P(J) = 15% and P(N) = 85% for the control observations, and

from P(J) = 60% and P(N) = 40% to P(J) = 80% and P(N) = 20% for the anomaly

candidates. All the changes to the categorical variables can be found in appendix A2.

The last simulation we do is to alter numeric and categorical variables separately to study

the extent to which the two types of variables effect the methods.

Model Dataset Precision Recall F1 Score % anomalies predicted
DBSCAN base simulation 0.213 0.316 0.267 6,5%
DBSCAN 10% num and 1 pp cat 0.233 0.317 0.269 6,5%
DBSCAN 50% num and 5 pp cat 0.214 0.331 0.260 7,4%
DBSCAN 100% num and 10 pp cat 0.138 0.202 0.164 6,9%
DBSCAN 200% num and 20 pp cat 0.171 0.236 0.199 6,6%
DBSCAN 50% num 0.241 0.327 0.277 6,5%
DBSCAN 5 pp cat 0.241 0.361 0.289 7,2%

Table 5.8: Comparison on DBSCAN on simulated dataset

As presented in table 5.8, the baseline prediction with no changes in values has a F1-score

of 0.267 for the DBSCAN model. This represent a sharp increase from the real data tested

in table 5.7. This change is also present when comparing the baseline simulation on the

OC-SVM with the results on the real observations in table 5.7. This is perhaps most

likely caused by the transition to the Gaussian distribution for the numerical variables.

Considering that the mean and variance are estimated from the original data sample, this

may also support our suspicion that the original variables have a different distributions.
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Looking further at the results from DBSCAN simulations we find that model performance

improve the most by using the baseline simulation. Performance is further improved in the

10% change simulation, although not by much. Following this, DBSCAN’s performance

decrease sharply from the 50% to 100% change simulations. We first thought this decline in

performance was caused by the simulated AKU observations making their own clusters as

the difference between them and the simulated control data increased. After investigating

the clustering structure we found that this was not the case. In fact, the anomalies

seemingly only moved from being noise points to belonging to the largest cluster, and not

to their own cluster. We are not completely sure why this happens, but there seems to be

some contradictory effects when calculating the difference.

We also want to get an overview of how changing only one type of variable affect the

models. We therefore test increasing the difference in the numerical variables by 50% and

changing the probabilities of the categorical variables by 5pp separately. This way we

can study how the increased differences affect the models when introduced separately

rather than together. Interestingly, only changing the categorical variables gives better

results than only changing the numerical ones, or changing them both together for the

DBSCAN method. While the differences are marginal, this could be partially caused by

the Euclidean distance favouring the categorical variables as discussed earlier.

As illustrated in table 5.9, F1-score improvement follows the increase in differences more

closely for the One-Class SVM. From the baseline simulation to the 200% increase in

change simulation, there is a steady increase in F1-score from 0.404 to 0.668. Again,

we observe that changing the categorical variables with a 5pp shift in the probability

distribution has a better impact on performance than increasing the differences in the

means of the numerical variables with 50%.

Model Dataset Precision Recall F1 Score % anomalies predicted
OC-SVM base simulation 0.405 0.402 0.404 5,5%
OC-SVM 10% num and 1pp cat 0.426 0.429 0.428 5,6%
OC-SVM 50% num and 5pp cat 0.441 0.462 0.452 5,8%
OC-SVM 100% num and 10pp cat 0.419 0.601 0.494 8,0%
OC-SVM 200% num and 20pp cat 0.548 0.855 0.668 8,7%
OC-SVM 50% num 0.414 0.462 0.437 5,5%
OC-SVM 5pp cat 0.462 0.455 0.458 7,2%

Table 5.9: Comparison on DBSCAN and OC_SVM on simulated dataset
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Changing the properties of the underlying dataset influence the methods in a notable

way. The sharpest incline in performance for both methods was caused by simulating new

variables under the assumption of a Gaussian distribution. The OC-SVM also saw a sharp

incline from increasing the difference in the variables as well. This increase in performance

is interesting, and give an indication of how the methods operate. While the OC-SVM

had an intuitive performance increase, in line with what we expected beforehand, the

DBSCAN’s behavior is more difficult to explain. We have not managed to pinpoint why

it exhibits this behaviour, but it would be an interesting topic for further research. If the

Tax administration expect errors with features exhibiting the same properties investigated

in the simulation, they can use this analysis if they were to investigate these methods on

other variables or data samples.
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6 Discussion

Four unsupervised and semisupervised methods have been tested on their ability to

correctly identify and separate anomalous faulty tax returns from normal observations

without errors. In the analysis in the previous chapter we discovered that model

performance was not as strong as we had hoped, and we speculate that this might

be caused by an inability to distinguish the three groups of tax payers from each other.

In other words, the less supervised methods are not able to detect the differences between

the three groups, and thus not able to separate them.

6.1 Predicted Anomalies by our Methods

When investigating the observations flagged by the models to be anomalies, we did notice

that they were more extreme compared to the full dataset. By extreme we refer to

observation with uncommon feature values, compared to the rest of the observations. The

plots in section 5.2.1 indicates that the flagged anomalies have feature values which occur

less often than in the original sample. That being said, they do not separate the values

common for AKU and TIL, but those that are extreme or uncommon over all, resulting in

the control group occurring in much the same proportion as AKU and TIL. This indicates

that the models are not able to find the features where observations from the AKU and

TIL group stands out compared to the control observations

Given that the observations that are marked as anomalies by the models often are the more

extreme values, some of these observations could also be detected by simpler methods,

for instance rule based selection. A benefit our less supervised approaches have over rule

based methods are that they do not need instructions on which extreme values to look for.

Furthermore, the more advanced methods, such as the One-Class SVM and autoencoders,

may be better apt at identifying local anomalies, where features are unusual in relation

to other observed features of that observation, but not in relation to the entire dataset.

While we do not uncover clear evidence of this in our analysis, it would be an interesting

topic for further investigation.
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6.2 Supervised Learning Benchmark

In addition to the less supervised methods, we tried identifying faulty tax returns with

boosted trees as a supervised machine learning benchmark. Not surprisingly, the supervised

approach had better performance in terms of F1-score, precision and recall. As discussed,

the supervised method uses labels to pinpoint the differences between each group, enabling

it to capture specific characteristics of the erroneous tax returns. As unsupervised methods

look more at the properties of the entire observation, they might struggle to separate

the classes when only a few dimensions are relevant. Particularly the fully unsupervised

clustering algorithms, K-means and DBSCAN, consider each observation as a whole, and

does not make any considerations to distinct values of particular features. Practically this

means that two observations which differs slightly across all features might be evaluated

equally to two observations which are identical except for one feature with larger differences.

Considering that the data sample used in this thesis only seems to vary in some dimensions,

this might contribute to the performance differences we observe between the approaches.

The semisupervised methods might be better than the fully unsupervised at separating

classes based on specific traits, because they can learn how to discover the normal

observations, and separate based on those. On the other hand, the semisupervised

methods are only capable of finding these subtle traits in the normal observations they

learn during training, while the fully supervised might find important traits in the other

group as well, as they train with labels on all the groups. In our case the supervised

method can find subtle, but important traits in the AKU and TIL group, and not only

the control group.

The performance of the boosted tree method varied based on the scenarios it was put

trough. In the best scenario we used a balanced dataset and provided the correct labels on

all observations, resulting in an F1-score of 0.795. This score is quadruple that of the best

unsupervised and semisupervised methods tested in this thesis. The third scenario we

developed was a stylized example illustrating how a supervised model would fare in a more

realistic "anomaly detection scenario". Here, the supervised model’s performance dropped

to an F1-score of 0.188. While this was still an improvement on our less supervised models,

it illustrates how sensitive performance can be to the circumstances in which the model is

employed.
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Testing the boosted trees under a best case scenario with balanced classes and all labels

illustrates that there, at least to a reasonable extent, exists differences between the groups

which can be used to separate faulty returns from the majority class of normal observations.

Even so, the F1-score of 0.795 for the boosted trees represent a best-case scenario, which

is not very applicable to an anomaly detection case. The primary argument for including

less supervised learning algorithms for the purposes of anomaly detection is that they

are capable of identifying errors which does not have to be specified in advance. When

looking for new types of errors in tax returns, which you do not know what looks like,

and do not have labelled observation on, balancing classes is impossible. Consequently,

while the performance of the boosted trees in the best case scenario serve to illustrate

that there exists differences between the majority class of normal observations and the

observations we have used as examples of erroneous tax returns, it cannot be considered

representative for the performance a supervised approach would have in the situations we

consider appropriate for our less supervised methods.

It is important to note that less supervised approaches seems to primarily be appropriate

in situations where you need the flexibility which comes with not having to specify exactly

what to look for. For tax return errors which are recurrent year after year, and where the

Tax Administration already have a solid collection of labelled observation, such as those

discussed in (Thorsager et al., 2016), supervised approaches seemingly have a superior

performance, as illustrated by our comparison to the "best case" boosted trees.

6.3 Simulation

Machine learning methods are often sensitive to the input data, and it is often difficult

to generalize the result across multiple data samples. Since the data sample used in this

thesis is very small compared to the population of data samples in the Tax Administration

possess, we wanted to test the methods on data with slight different properties. This

might give an indication as to how the methods could perform on one of the other data

samples in the Tax administrations database. The simulation is based on the tax returns

we use throughout the thesis. This is done in order to have a basis in tax type data, as

well as enabling comparison to the other results. The simulated dataset differ both in

terms of a different underlying distribution of the numerical values, as well as an increased
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difference between the variables in the control and AKU group. The simulated dataset

was tested on the two best performing methods, DBSCAN and OC-SVM.

The simulation study gave mixed results. The OC-SVM performed as expected, with

increased prediction accuracy as class differences increased. This was not the case for

DBSCAN. Performance improved for small increases in the class differences, but then the

performance declined as the difference between the variables in the control group and AKU

group increased. This seems to be the opposite of what to expect. When the difference

between the variables in the two groups increase, one should expect the Euclidean distance

between the observations to increase as well, resulting the the anomalous AKU observations

to fall out of the control group clusters, and become noise. We hypothesised that this

was caused by the AKU data making their own clusters when the differences between

the groups exceeded a certain point, instead of becoming noise. This, however, did not

seem to be the case. Rather, some effects seems to work in opposite directions making it

more difficult for the DBSCAN to distinguish AKU data as noise when class differences

increase. We have not managed to uncover specifically why this happens. As mentioned

earlier, we suspect that the use of Euclidean distance, and particularly in combination

with dummy encoded categorical variables, influence DBSCAN’s ability to predict on

datasets with more features, which might become more pronounced as class differences

increase. We do not know that this for a fact happens, and an investigation into different

distance measures might therefor be an interesting topic for further research. This might

uncover more information on the behavior we see in the simulation as well. The OC-SVM

could have an advantage as group differences increase. Given that the model learns to

identify normal behaviour, it seems to be better able to separate observations as normal

and anomalous when the differences increase.

From the simulation exercise we also observe an increase in the models’ performance

between the original data analysis in table 5.4 and the simulated datasets with no changes

made to the estimated parameters, presented in the first rows of table 5.8 and 5.9. We

postulate that the original data sample have another distribution than Gaussian, causing

the performance differences from the base case. Instead, most of the numerical variables

shows signs of having a gamma- or log-normal distribution. These distributions can be

more centered around the mean than the standard Gaussian distribution. They also
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have a one-sided tail, as compared to the Gaussian distribution’s symmetrical shape.

Estimating the mean and variance parameters from a non-Gaussian distribution, and

generating data from Gaussian distribution defined by said parameters, might skew the

data in a way which increase performance. Specifically, we hypothesize that the transition

to Gaussian distributions with symmetrical tails, as opposed to one-sided gamma or

log-normal distributions, will cause some observations from each group to drift further

apart by altering how the variance affect the distance from the mean. Thus, increasing

the models’ ability to separate the two classes. If the Tax Administration try to fit the

methods to other features, this might indicate that the models gets increased performance

if the distribution is more dispersed than what is the case in our original data sample.

6.4 Practical Application

When determining how the methods discussed in this thesis perform on detecting

anomalous, faulty tax returns, more than just F1 score, precision and recall should

be considered. This is especially true if the end goal is to determine whether the methods

are suitable to determine if the Tax administration should send an observation to manual

control or not. We are not going to go look into what constitutes if it is economically

feasible for the Tax administration to actually use a method. We do however have a brief

discussion of important aspects to include in an analysis investigating this. Aspects such

as ease of implementation, prepossessing requirements, how to validate the results, how to

maintain the methods and uncertainty of the results should all be considered. All of these

aspects effect if the method is economically viable, or if the cure is worse than the disease.

Some degree of prepossessing is needed for all four methods, including scaling, cleaning

and one-hot encoding. This is however standard practise and what is expected to some

degree by every machine learning method. For the unsupervised clustering methods there

is limited need to use resources on labeling the data. On the other hand, unsupervised

approaches requires prior knowledge of the field and the data. This is needed as the

methods require the user to have some idea of how many anomalies are expected and in

what extent they might differ from the normal data, in order to generate useful cluster

structures, set reasonable thresholds and determine parameters. The last tuning can

be done in combination with rules of thumb and validation techniques, but the final
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decision should be done with some linkage to prior knowledge. Considering that the

Tax Administration in fact are domain experts, we expect that the requirements to prior

knowledge will not be prohibitive for them to utilize unsupervised methods.

One drawback when it comes to maintaining the clustering models compared to methods

with training and test data, built to be able to predict on new data, is that the clusters

might need re-estimating in a greater extent. This is due to a rising uncertainty of the

underlying structure of the data that determine the clusters when huge amounts of new

data is introduced. They can handle new data, but this rise in uncertainty is another

point where prior knowledge can be used to determine when the cluster structure should

be re-checked. This means that the clustering methods might need a relatively small

amount of resources prior to clustering, given that you have some knowledge about the

data, but they need more resources when maintaining the models. Another benefit of this

approach, where there is no train and test set, is that the risk on overfitting on the data

is smaller, because the data is validating against structures of the data, and not on how

the methods perform on the data. An additional factor influencing the uncertainty of the

results is how deterministic the final results are. Here DBSCAN have an advantage over

k-means. In DBSCAN, for every given tuning parameter, the noise and core points are

deterministic. For K-means on the other hand, the clusters can change for each iteration,

demanding more resources on running the method several times in order to get a more

stable result.

The semisupervised methods require additional resources and preparatory work prior to

implementation. First and foremost, the methods require normal, non-erroneous, data,

or what is expected to be normal data. This is information the The Tax Administration

posses, as the manual control process itself generates vast amounts of labelled normal

tax returns, or at least, tax returns where they have not identified any errors. This last

aspect is important, and illustrates why training data should be selected carefully. The

normal tax returns are what is used to teach the models what is normal behavior, and

what to separate new observations on. If the data they use for this purpose does actually

contain a lot of errors, the model is most likely going to have a harder time detecting

those errors. Even so, the models have the ability to be used fully unsupervised if the

errors actually are anomalous as explained in section 4.4. This makes the methods robust
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if some errors still ends up in the supposedly normal training data. Training the models

with presumed normal data is however going to inflict less uncertainty to the end result.

If normal labels are available this would be preferable to use, but a lack of labels does not

necessarily prevent the use of these methods.

As mentioned earlier, the semisupervised methods run a risk of overfitting to the normal

data. This entails that you might need to use a cross validation method when training

to reduce this risk, and the model you end up with should be validated in manner that

can detect overfitting. How deterministic the end result is varies between the methods.

For the OC-SVM, once the parameters are found, the result is deterministic. Since the

autoencoder is initialised with random weights, the end result might vary. This entails

that you should run the autoencoder several times in order to get a result stable enough

for further investigation.

6.4.1 Tax Administrations Evaluation Prior to Manual Control

Selection

In a practical application, observations flagged as anomalies must be subjected to manual

control in order to determine if they in fact are erroneous. The Tax Administration apply

domain knowledge when evaluating the output of predictive models, and observations

that are flagged might not be subjected to actual control (Berset et al., 2016). Although

Berset et al. (2016) reference a qualitative evaluation of valued added tax controls flagged

by their predictive models, it is not unthinkable for this approach to be combined with

unsupervised error detection in personal tax statements as well. This might effect the

upper threshold for false positive from the model, and allow for a lower precision in

exchange for higher recall, because the predicted outputs goes through a second check

before they are sent to a full investigative manual control. This must however be evaluated

in light of economic feasibility.

6.5 Method Performance Comparison

Even though none of the methods we have applied does exceedingly well as is, we find

that the OC-SVM do have some traits which might make it favourable above DBSCAN

and the other methods discussed in this thesis. Looking at the results in table 5.4, we
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find that performance in terms of the F1-score is almost identical between DBSCAN and

the OC-SVM, although the OC-SVM model flags relatively fewer anomalies in total. It

also has a higher precision score. Given the previous discussion on the F1 measure and

sensitivity to the number of positive predictions made, this indicates that the OC-SVM in

fact is the best performing model. We do see that the OC-SVM has the worst performance

on the reduced size dataset. As previously discussed, this might indicate that the OC-SVM

suffers when information is reduced, and that it to some extent is more robust to higher

dimensional data. Considering that the use-case for unsupervised error detection is aimed

at discovering rare and unknown types of anomalies, a reduced need for feature engineering

and selection could be an extra benefit.

From the simulation exercises we also experience that the OC-SVM performs more

intuitively and exhibits more stable behaviour than the DBSCAN. While it would have

been interesting to compare this performance to the autoencoders, a simulation experiment

on autoencoders was prohibited both by their highly unstable and variable performance

combined with the sheer resources needed in order to successfully fit an autoencoder

model. In itself this is also a reason why we consider the OC-SVM to have the most

promise of all methods explored in this thesis. Of the two methods that should handle

higher dimensional data exploration and anomaly detection the best, the OC-SVM shows

a robustness and ease of use which instinctively seems more attractive. As the OC-SVM

evaluates observations in relation to a non-linear decision boundary, discussed in chapter

4.4, it is also perhaps better equipped to flag observations which are only anomalous

in some dimensions, or in relation to other feature values in that observation, than the

clustering methods.

Even though the OC-SVMs shows the most promise, the performance of the models on

the original dataset is not good enough for us to recommend using them as a stand alone

solution for detecting errors in tax returns. If however, there exist tax return features with

different properties and more predictive powers in the Tax Administrations databases,

unsupervised machine learning have many benefits which can provide a good addition to

the other supervised methods. Investigating unsupervised anomaly detection on other

samples of tax data, or employing the methods in combination with other approaches,

would help further evaluating the performance of these methods



6.6 Method Critique 73

6.6 Method Critique

This thesis is written as an initial investigation into the use of unsupervised and

semisupervised machine learning to detect anomalous faulty tax returns. We have

therefore investigated multiple methods from a number of different angels and kept a

broad scope. A drawback of this approach is that every method is investigated rather

briefly. This means that while we get an initial indication of model performance on our

tax return dataset, we risk overlooking solutions which could have yielded better results.

One example of this is using the standard, Euclidean distance as the dissimilarity measure

in our clustering methods, although other measures might be better suited for mixed data

types. Another example is that we only test one method of selecting anomalies from the

K-means clustering structure. The strategy for selecting observations from a K-means

cluster as anomalies is based on two simple assumptions of anomaly behaviour, which we

have tried to reflect in our measures. However, including different weighting on the two

assumptions or exploring different ways of capturing these might have been beneficial.

Another area where our analysis might have benefited from a more extensive approach is

the simulation exercise. This analysis is meant as a supplement to the analyses done on

the original tax data, in order to get a better understanding of the models’ performance,

and test a scenario with other features. After investigating the variables, the assumption

of Gaussian distribution does not seem to be true on our data. We tried to accommodate

for this by first having a base simulation, and isolating the effect of differing distribution.

Another approach could be to try other distributions, for example log-normal or gamma.

Throughout the thesis we have tried to keep the unsupervised and semisupervised use-cases

in mind. Considering that the primary application of our less supervised methods would

be to detect new and unknown forms of errors, validating the models fit by using labels

would be impossible in a real scenario. We therefore try to make active considerations as

to how these methods would be employed in a real application. However, as we do not

posses the required domain knowledge to evaluate our less supervised models, labels are

used to some extent both for estimating the models’ tuning parameters and evaluating

performance. One could both argue that labels should have been used to a greater or lesser

extent. Utilizing labels more actively had allowed us to further customize our models to

the data sample. This could have yielded better performance scores and perhaps clearer
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recommendations of tuning parameters’ values. On the other hand, relying less on labels

had allowed us to better investigate a real application of the methods, dedicating more

attention to aspects such as unsupervised model validation.

As a final note we would like to discuss a more specific weakness in our analysis. When

selecting features for the dataset with fewer variables (discussed in chapter 3.4 and

presented in table 5.5) the variable SKM-group was removed by mistake. This was done

on the basis of an error in the correlation analysis, where the SKM-group was incorrectly

shown to have a high correlation with Centrality Code and Classification Code. In an

attempt to investigate if removing correlated and possibly redundant features would aid

model performance, the variable was excluded. SKM-Group is in fact not highly correlated

with any other variable, and one of the variables where we see a clear distinction for

the AKU observations. Consequently, the SKM-group should have been included in the

smaller dataset as well. As the inclusion of SKM-group could have improved performance,

the analysis should ideally be done again. The mistake was unfortunately discovered

rather late. After assessing the situation, with the knowledge that the small dataset was

not used for the rest of the thesis, we concluded that the best use of resources was to focus

on other improvements of the thesis. We still chose to include the analysis in table 5.5 as

part of this thesis. Although the inclusion of SKM-group would have impacted the results,

we find that the smaller dataset still highlight interesting aspects of the four methods.

6.7 Further Research

As stated, this thesis aims to serve as a basis for further research into unsupervised

anomaly detection on tax return data. The methods discussed have F1-performances

which could be viewed as rather unimpressive, at least in comparison to the fully supervised

benchmark. Even so, detecting unspecified errors is difficult, and models with seemingly

low F1-scores might still prove useful either alone or in combination with other evaluation

methods. Considering this, a further application of the concepts discussed here could

benefit from quantifying what exactly constitutes adequate performance. And in extension,

what determines if the models are economically feasible.

Based on our initial analysis, several interesting topics for further investigation emerged.

First, as we evaluate the semisupervised approaches to be particularly suited for the Tax
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Authorities, looking further into these could be considered. The OC-SVM is highlighted

as the most promising method in this analysis, but it would be interesting to study how

the autoencoders fare on a larger data sample, where they might show increased stability

and improved performance. In addition, the semisupervised method Self Organizing Maps

was considered for this thesis, but not included in the final analysis as we had to limit

the scope of our investigation. Still, the method showed some promise and should be

investigated further.

While we experienced that the semisupervised approach performed best in our analysis,

it would be interesting to continue investigating the clustering approach as well. In a

further investigation of clustering based methods we would exploring other and perhaps

more suited distance measures for mixed data types. The performance of DBSCAN

seemed relatively promising on the original data sample. If it is desirable to utilize

clustering approaches, we would prioritize a further investigation into the counter intuitive

performance the DBSCAN displayed in the simulation analysis.

Another aspect that would be an interesting topic for further research is the assumption

of Gaussian distributed variables in the simulation. Specifically, it could be interesting to

study how increased variable differences affect model performance when the numerical

variables are more similar to those found in the original tax return sample. This could

be done by using other variable distributions, for example log-normal or gamma that

looks suitable based on the initial data analysis in section 3.2. As a starting point of an

analysis into other distributions, we wanted to quantify the difference in distribution of

the original dataset and our Gaussian distributed simulation. The dataset used as the

simulation dataset is the base case.

In order to estimate the difference between the original variable distributions and the

distributions in the simulated data we calculate the Kullback-Leibler divergence, or KL-

divergence. The KL-divergence is an asymmetrical measure on the difference between two

distributions over the same event space. If the distribution of the original dataset is P(X)

and distribution of the simulated dataset is Q(X), then the KL divergence on a finite set

of χ is defined as (Bigi, 2003):
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D(P ||Q) =
∑
x∈χ

P (x)log
P (X)

Q(X)
(6.1)

The KL divergence comes from information theory, and can be interpreted as the average

number of bits of information wasted by encoding the events from a distribution P with a

code based on the imprecise distribution Q. The smaller the relative size, the more similar

is the two distributions of the two variables, with the smallest size being 0 if the two are

identical (Bigi, 2003). The KL-divergence by using the simulated distribution to explain

the original dataset for all the control and AKU variables is presented in table 6.1.

Feature KL Divergence Control KL-Divergence AKU
Personal income 3.48 3.57

Birth Year 1.70 1.79
Net Wealth 4.36 2.42

Domestic Debt 3.66 2.60
Income after tax deduction 3.02 2.20

Table 6.1: KL divergence on each feature from original dataset to simulated

The feature with the smallest distance to the simulated dataset is the Birth Year. Overall,

it seems like the simulated AKU features better resemble the original variable distributions

than those in the simulated control group. This might indicate that they are a bit wider

dispersed than the control group, where more of the observations gather in the middle. To

investigate this further, a density plot of the features comparing the original and simulated

data is created, in addition to plotting the KL divergence for the finite space. The plots

for the Income After Tax Deductions variable are presented in figure 6.1. Equivalent plots

for the other simulated numerical variables can be found in appendix A1.

The density plots support some of the suspicions about the distributions. The original data

is exclusively positive values, while the simulated also include negative values. The original

variables have a right tail,while the Gaussian simulation is symmetric. The original dataset

also seems to be more concentrated around the mean, while there is a more dispersed

distribution in the simulated dataset. This might make it easier to distinguish the AKU

data in either tail in the simulated dataset, than in the denser original dataset. The KL

divergence plot illustrate that the difference between the two distributions is biggest in

the tail areas, which seems reasonable when looking at the density plot.
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Figure 6.1: Topleft Density plot control group original and simulated income after tax
deductions. Bottomleft Density plot AKU group original and simulated income after tax
deductions. Topright KL-divergence plot control group original vs simulated income after
tax deductions. Bottomright KL-divergence plot AKU group original vs simulated income
after tax deductions.
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7 Conclusion

In this thesis we have investigated how select unsupervised and semisupervised machine

learning methods perform on detecting anomalous faulty tax returns for the Norwegian

Tax Administration. In extension we have also investigated what the methods are

capable of detecting, and how different properties of the underlying dataset influence their

performance. The key motivation was to study whether these are suitable approaches that

are applicable for the Tax Administration in order to detect new forms of errors. The end

goal is that these methods might result in less tax errors influencing tax revenue and the

National budget in the future, while not being to resource demanding.

In our analysis we use tax returns of individuals who have been flagged via the AKU scheme

and individuals who have been subject to an additional tax payment as representatives of

faulty tax returns which should be discovered by our less supervised models. Overall, we

find that while the models are able to separate the most extreme returns regardless of

group affiliation, they struggle to separate the true erroneous returns from the control

observations. If the AKU and TIL observations used in this thesis are representative of

the types of new and unknown forms of tax return errors we theorized that our models

would discover, our initial analysis suggest that the less supervised methods are unable to

effectively identify erroneous tax returns on their own on our data.

The supervised methods used as a benchmark in this thesis had better performance

than our less supervised approaches. This was however expected as they have access to

labels. We experience that class differences must be present to a greater extent with

less supervised approaches than with supervised models in order to correctly separate

classes. It is important to note that the methods discussed might prove useful in other

contexts. In this analysis we have evaluated model performance as if they were used

directly to select observations for manual control. For this application we consider the

models to have too poor performance to be considered economically viable on our data

sample. However, the methods could also be employed for more traditional data discovery

purposes, where the findings would be used as the basis for supervised selection models,

or be subject to further investigation before being used as a basis for manual control

selection. Considering that the models do identify observations which stand out in some
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respect, such applications might still prove a useful addition to the supervised methods.

Of the methods discussed the OC-SVM stands out with a good and intuitive performance.

The fact that they are more stable and intuitive, and perhaps better able to pinpoint the

observations that differ from the majority, reduces the uncertainty of the methods. Their

intuitive nature might enable the Tax Authorities to transfer their domain knowledge

to best utilize the methods in an effective way. Furthermore, the Tax Authorities are in

a unique position in terms of the quantity and quality of their labels. In addition, the

resources available to the Tax administration allows them to investigate the output from

the semisupervised models to determine if they are successful at finding errors.

Utilizing less supervised methods to detect faulty tax returns is not an out of the box

solution. Further investigation into whether they have the potential of helping the Tax

Administration find new errors in the future is needed. Still, it shows promise as an

approach to detect new information in the data that you did not now you were looking

for.
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Appendix

A1 KL Divergence plots

Figure A1.1: Topleft Density plot control group original and simulated birth year.
Bottomleft Density plot AKU group original and simulated birth year. Topright KL-
divergence plot control group original vs simulated birth year. Bottomright KL-divergence
plot AKU group original vs simulated birth year.
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Figure A1.2: Topleft Density plot control group original and simulated Domestic Debt.
Bottomleft Density plot AKU group original and simulated Domestic Debt. Topright
KL-divergence plot control group original vs simulated Domestic Debt. Bottomright
KL-divergence plot AKU group original vs simulated Domestic Debt.
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Figure A1.3: Topleft Density plot control group original and simulated income after tax
deductions. Bottomleft Density plot AKU group original and simulated income after tax
deductions. Topright KL-divergence plot control group original vs simulated income after
tax deductions. Bottomright KL-divergence plot AKU group original vs simulated income
after tax deductions.
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Figure A1.4: Topleft Density plot control group original and simulated personal income.
Bottomleft Density plot AKU group original and simulated personal income. Topright
KL-divergence plot control group original vs simulated personal income. Bottomright
KL-divergence plot AKU group original vs simulated personal income.
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Figure A1.5: Topleft Density plot control group original and simulated net wealth.
Bottomleft Density plot AKU group original and simulated net wealth. Topright KL-
divergence plot control group original vs simulated net wealth. Bottomright KL-divergence
plot AKU group original vs simulated net wealth.
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A2 Changes to the Dataset in the Simulations

Base case Control group

English variable name Category Values
Marital status 1 - Unmarried

2 - Married
3 - Widowed
4 - Divorced/separated

1 - 0.39
2 - 0.43
3 - 0.07
4 - 0.1

SKM-Group 10 - Fully tax liable resident
13 - Emigrants
14 - Temporary Resident
20 - Local tax liable, resident
30 - Local tax liable, non
resident
40 - Estate
70 - Diplomat

10 - 0.92
13 - 0.02
14 - 0.05
20 - 0
30 - 0.01
40 - 0
70 - 0

Person code 1 - Reference Person
2 - Married, youngest partner
3 - Child

1 - 0.68
2 - 0.2
3 - 0.12

Delivered tax reurn J - Yes
N - No

J - 0.35
N - 0.65

History code J - Yes
N - No

J - 0.02
N - 0.98

Centrality code 0 - Rural
1 - Less Rural
2 - Less Urban
3 - Urban

0 - 0.09
1 - 0.06
2 - 0.17
3 - 0.68

Table A2.1: Base Case Simulation Categorical features on Control group
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Base case AKU group

English variable name Category Values
Marital status 1 - Unmarried

2 - Married
3 - Widowed
4 - Divorced/separated

1 - 0.70
2 - 0.24
3 - 0.05
4 - 0.01

SKM-Group 10 - Fully tax liable resident
13 - Emigrants
14 - Temporary Resident
20 - Local tax liable, resident
30 - Local tax liable, non
resident
40 - Estate
70 - Diplomat

10 - 0.345
13 - 0.11
14 - 0.545
20 - 0
30 - 0
40 - 0
70 - 0

Person code 1 - Reference Person
2 - Married, youngest partner
3 - Child

1 - 0.90
2 - 0.045
3 - 0.055

Delivered tax reurn J - Yes
N - No

J - 0.60
N - 0.40

History code J - Yes
N - No

J - 0.03
N - 0.97

Centrality code 0 - Rural
1 - Less Rural
2 - Less Urban
3 - Urban

0 - 0.04
1 - 0.03
2 - 0.08
3 - 0.85

Table A2.2: 20% change simulation Categorical features on control group
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20% change control group

English variable name Category Values
Marital status 1 - Unmarried

2 - Married
3 - Widowed
4 - Divorced/separated

1 - 0.19
2 - 0.63
3 - 0.07
4 - 0.11

SKM-Group 10 - Fully tax liable resident
13 - Emigrants
14 - Temporary Resident
20 - Local tax liable, resident
30 - Local tax liable, non
resident
40 - Estate
70 - Diplomat

10 - 0.92
13 - 0.02
14 - 0.05
20 - 0
30 - 0.01
40 - 0
70 - 0

Person code 1 - Reference Person
2 - Married, youngest partner
3 - Child

1 - 0.48
2 - 0.30
3 - 0.22

Delivered tax reurn J - Yes
N - No

J - 0.15
N - 0.85

History code J - Yes
N - No

J - 0.02
N - 0.98

Centrality code 0 - Rural
1 - Less Rural
2 - Less Urban
3 - Urban

0 - 0.19
1 - 0.16
2 - 0.17
3 - 0.48

Table A2.3: 20% change Simulation Categorical features on control group
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20% change AKU group

English variable name Category Values
Marital status 1 - Unmarried

2 - Married
3 - Widowed
4 - Divorced/separated

1 - 0.90
2 - 0.04
3 - 0.05
4 - 0.01

SKM-Group 10 - Fully tax liable resident
13 - Emigrants
14 - Temporary Resident
20 - Local tax liable, resident
30 - Local tax liable, non
resident
40 - Estate
70 - Diplomat

10 - 0.145
13 - 0.21
14 - 0.645
20 - 0
30 - 0
40 - 0
70 - 0

Person code 1 - Reference Person
2 - Married, youngest partner
3 - Child

1 - 0.90
2 - 0.045
3 - 0.055

Delivered tax reurn J - Yes
N - No

J - 0.80
N - 0.20

History code J - Yes
N - No

J - 0.23
N - 0.77

Centrality code 0 - Rural
1 - Less Rural
2 - Less Urban
3 - Urban

0 - 0.04
1 - 0.03
2 - 0.08
3 - 0.85

Table A2.4: 20% change Simulation Categorical features on AKU group
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10% change control group

English variable name Category Values
Marital status 1 - Unmarried

2 - Married
3 - Widowed
4 - Divorced/separated

1 - 0.29
2 - 0.53
3 - 0.07
4 - 0.11

SKM-Group 10 - Fully tax liable resident
13 - Emigrants
14 - Temporary Resident
20 - Local tax liable, resident
30 - Local tax liable, non
resident
40 - Estate
70 - Diplomat

10 - 0.92
13 - 0.02
14 - 0.05
20 - 0
30 - 0
40 - 0.01
70 - 0

Person code 1 - Reference Person
2 - Married, youngest partner
3 - Child

1 - 0.58
2 - 0.25
3 - 0.17

Delivered tax reurn J - Yes
N - No

J - 0.25
N - 0.75

History code J - Yes
N - No

J - 0.02
N - 0.98

Centrality code 0 - Rural
1 - Less Rural
2 - Less Urban
3 - Urban

0 - 0.14
1 - 0.11
2 - 0.17
3 - 0.58

Table A2.5: 10% change Simulation Categorical features on control group
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10% change AKU group

English variable name Category Values
Marital status 1 - Unmarried

2 - Married
3 - Widowed
4 - Divorced/separated

1 - 0.80
2 - 0.14
3 - 0.05
4 - 0.01

SKM-Group 10 - Fully tax liable resident
13 - Emigrants
14 - Temporary Resident
20 - Local tax liable, resident
30 - Local tax liable, non
resident
40 - Estate
70 - Diplomat

10 - 0.245
13 - 0.16
14 - 0.595
20 - 0
30 - 0
40 - 0
70 - 0

Person code 1 - Reference Person
2 - Married, youngest partner
3 - Child

1 - 0.90
2 - 0.045
3 - 0.055

Delivered tax reurn J - Yes
N - No

J - 0.70
N - 0.30

History code J - Yes
N - No

J - 0.13
N - 0.87

Centrality code 0 - Rural
1 - Less Rural
2 - Less Urban
3 - Urban

0 - 0.04
1 - 0.03
2 - 0.08
3 - 0.85

Table A2.6: 10% change Simulation Categorical features on AKU group
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5% change control group

English variable name Category Values
Marital status 1 - Unmarried

2 - Married
3 - Widowed
4 - Divorced/separated

1 - 0.34
2 - 0.47
3 - 0.07
4 - 0.11

SKM-Group 10 - Fully tax liable resident
13 - Emigrants
14 - Temporary Resident
20 - Local tax liable, resident
30 - Local tax liable, non
resident
40 - Estate
70 - Diplomat

10 - 0.92
13 - 0.02
14 - 0.05
20 - 0
30 - 0
40 - 0.01
70 - 0

Person code 1 - Reference Person
2 - Married, youngest partner
3 - Child

1 - 0.62
2 - 0.225
3 - 0.155

Delivered tax reurn J - Yes
N - No

J - 0.70
N - 0.30

History code J - Yes
N - No

J - 0.02
N - 0.98

Centrality code 0 - Rural
1 - Less Rural
2 - Less Urban
3 - Urban

0 - 0.115
1 - 0.085
2 - 0.17
3 - 0.63

Table A2.7: 5% change Simulation Categorical features on control group
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5% change AKU group

English variable name Category Values
Marital status 1 - Unmarried

2 - Married
3 - Widowed
4 - Divorced/separated

1 - 0.75
2 - 0.19
3 - 0.05
4 - 0.01

SKM-Group 10 - Fully tax liable resident
13 - Emigrants
14 - Temporary Resident
20 - Local tax liable, resident
30 - Local tax liable, non
resident
40 - Estate
70 - Diplomat

10 - 0.295
13 - 0.145
14 - 0.56
20 - 0
30 - 0
40 - 0
70 - 0

Person code 1 - Reference Person
2 - Married, youngest partner
3 - Child

1 - 0.90
2 - 0.045
3 - 0.055

Delivered tax reurn J - Yes
N - No

J - 0.65
N - 0.35

History code J - Yes
N - No

J - 0.08
N - 0.92

Centrality code 0 - Rural
1 - Less Rural
2 - Less Urban
3 - Urban

0 - 0.04
1 - 0.03
2 - 0.08
3 - 0.85

Table A2.8: 5% change Simulation Categorical features on AKU group
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1% change control group

English variable name Category Values
Marital status 1 - Unmarried

2 - Married
3 - Widowed
4 - Divorced/separated

1 - 0.38
2 - 0.44
3 - 0.07
4 - 0.11

SKM-Group 10 - Fully tax liable resident
13 - Emigrants
14 - Temporary Resident
20 - Local tax liable, resident
30 - Local tax liable, non
resident
40 - Estate
70 - Diplomat

10 - 0.92
13 - 0.02
14 - 0.05
20 - 0
30 - 0
40 - 0.01
70 - 0

Person code 1 - Reference Person
2 - Married, youngest partner
3 - Child

1 - 0.67
2 - 0.20
3 - 0.13

Delivered tax reurn J - Yes
N - No

J - 0.34
N - 0.66

History code J - Yes
N - No

J - 0.03
N - 0.97

Centrality code 0 - Rural
1 - Less Rural
2 - Less Urban
3 - Urban

0 - 0.095
1 - 0.065
2 - 0.17
3 - 0.67

Table A2.9: 1% change Simulation Categorical features on control group
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1% AKU group

English variable name Category Values
Marital status 1 - Unmarried

2 - Married
3 - Widowed
4 - Divorced/separated

1 - 0.71
2 - 0.23
3 - 0.05
4 - 0.01

SKM-Group 10 - Fully tax liable resident
13 - Emigrants
14 - Temporary Resident
20 - Local tax liable, resident
30 - Local tax liable, non
resident
40 - Estate
70 - Diplomat

10 - 0.33
13 - 0.12
14 - 0.55
20 - 0
30 - 0
40 - 0
70 - 0

Person code 1 - Reference Person
2 - Married, youngest partner
3 - Child

1 - 0.90
2 - 0.045
3 - 0.055

Delivered tax reurn J - Yes
N - No

J - 0.61
N - 0.39

History code J - Yes
N - No

J - 0.04
N - 0.96

Centrality code 0 - Rural
1 - Less Rural
2 - Less Urban
3 - Urban

0 - 0.04
1 - 0.03
2 - 0.08
3 - 0.85

Table A2.10: 1% Simulation Categorical features on AKU group
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A3 Variable Distribution in Train-Test split of Control

Observations

Birth Year Personal Income Income After Tax Deductions
Train Test Train Test Train Test

Min 1914 1912 0 0 0 0
1st Quart. 1952 1950 0 0 102 000 103 750
Median 1967 1966 216 000 204 500 213 000 213 000
Mean 1965 1965 266 276 260 455 269 510 259 825

3rd Quart. 1981 1981 433 000 433 000 345 000 346 000
Max 1995 1995 3 589 000 3 493 000 21 846 000 12 218 000

Net Wealth Domestic Debt Domestic & Foreign Debt
Train Test Train Test Train Test

Min 0 0 0 0 0 0
1st Quart. 0 0 0 0 0 0
Median 0 0 10 000 9 000 0 0
Mean 513 685 389 482 419 004 420 689 185 032 157 758

3rd Quart. 352 500 366 250 410 000 388 000 0 0
Max 370 148 000 28 925 000 13 784 000 11 859 000 99 107 000 10 363 000

Table A3.1: Variable Distribution Test-Train Split of Control Observations - Numerical
Variables

Marital Status SKM-Group
Category Train Test Category Train Test

1 39.76 % 38.55 % 10 92.20 % 92.4 %
2 43.14 % 42.90 % 13 2.30 % 2.65 %
3 6.24 % 7.62 % 14 4.88 % 4.23 %
4 10.78 % 10.78 % Other 0.62 % 0.72 %

Other 0.08 % 0.14 %

Person Code Centrality Code
Category Train Test Category Train Test

1 67.64 % 67.50 % 0 8.96 % 8.99 %
2 20.02 % 20.91 % 1 5.86 % 6.00 %
3 12.34 % 11.57 % 2 16.52 % 16.75 %

Other 0.00 % 0.02 % 3 68.66 % 68.26 %

Delivered Tax Return History Code
Category Train Test Category Train Test

J 35.56 % 35.59 % J 2.32 % 1.91 %
N 64.44 % 64.41 % N 97.68 % 98.09 %

Table A3.2: Variable Distribution Test-Train Split of Control Observations
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A4 Elbow Plot for K-means Cluster

Figure A4.1: Elbow plot for the K-means clusters using the large dataset and both
AKU and TIL observations as anomaly candidates (as discussed in table 5.4)
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Figure A4.2: Elbow plot for the K-means clusters using the small dataset and both
AKU and TIL observations as anomaly candidates (as discussed in table 5.5)

A5 Tuning Parameters
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Selected Tuning Parameters for the Models Presented in Table 5.4
K-Means k = 9

Cluster Size Threshold = 10%
DBSCAN ε = 1.5

MinPts = 10
OC-SVM ν = 0.05

γ = 10
Kernel = Sigmoid

Autoencoder Epochs = 2000
Batch Size = 30
Learning Rate = 0.01
Activation Function = Tanh

Table A5.1: The tuning parameters used on the models whose results are presented in
table 5.4. This is for the large dataset with 12 variables, and using both AKU and TIL
observations as anomalies.

Selected Tuning Parameters for the Models Presented in Table 5.5
K-Means k = 11

Cluster Size Threshold = 5%
DBSCAN ε = 0.5

MinPts = 5
OC-SVM ν = 0.1

γ = 1
Kernel = Radial

Autoencoder Epochs = 2000
Batch Size = 30
Learning Rate = 0.0001
Activation Function = RELU

Table A5.2: The tuning parameters used on the models whose results are presented in
table 5.5. This is for the small dataset with 7 variables, and using both AKU and TIL
observations as anomalies.

Selected Tuning Parameters for the Models Presented in Table 5.5
DBSCAN ε = 1.4

MinPts = 10
OC-SVM ν = 0.1

γ = 0.01
Kernel = Sigmoid

Table A5.3: The tuning parameters used on the models whose results are presented in
table 5.7. This is for the large dataset with 12 variables, and using only AKU observations
as anomalies.
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Selected Tuning Parameters for the Models Presented in Table 5.5
This refers to DBSCAN models on the simulated datasets

base simulation ε = 1.75
MinPts = 3

10% num and 1pp cat ε = 1.75
MinPts = 3

50% num and 5pp cat ε = 1.75
MinPts = 3

100% num and 10pp cat ε = 1.75
MinPts = 3

200% num and 20pp cat ε = 1.75
MinPts = 3

50% num ε = 1.75
MinPts = 3

50pp cat ε = 1.75
MinPts = 3

Table A5.4: The tuning parameters used on the models whose results are presented in
table 5.8

Selected Tuning Parameters for the Models Presented in Table 5.5
This refers to OC-SVM models on the simulated datasets

base simulation ν = 0.005
γ = 0.000001
Kernel = Radial

10% num and 1pp cat ν = 0.05
γ = 0.1
Kernel = Radial

50% num and 5pp cat ν = 0.05
γ = 0.1
Kernel = Radial

100% num and 10pp cat ν = 0.005
γ = 0.000001
Kernel = Sigmoid

200% num and 20pp cat ν = 0.05
γ = 0.1
Kernel = Sigmoid

50% num ν = 0.05
γ = 0.1
Kernel = Radial

50pp cat ν = 0.05
γ = 0.1
Kernel = Radial

Table A5.5: The tuning parameters used on the models whose results are presented in
table 5.9



102 A5 Tuning Parameters

Figure A5.1: NHH logo


