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Abstract 
In this master thesis, we have analysed how individual insurance customer data can be used to 

assess customer risk across multiple insurance policies. Our dataset contains 63 variables 

about the characteristics of each customer and five associated response variables provided by 

Frende Forsikring. We have modelled the responses for claim propensity, claim frequency, 

and total claim size for each customer. To evaluate the value of this customer data, we have 

used multiple machine learning algorithms. These include XGBoost, LightGBM, random 

forest, GLM and deep neural networks. We have also used different ensemble techniques to 

gain further performance improvements from these models. 

 

By comparing results achieved using customer insurance premium as the only explanatory 

variable to the results achieved using all the additional customer characteristics we could 

observe a considerable increase in predictive performance. Our findings show that gradient 

boosting techniques can increase performance compared to generalized linear models. We 

also observed that using multiple models in ensembles can increase performance compared to 

any single model when assessing customer claim propensity and frequency. Although we 

found stacked ensembles using multiple underlying models to provide increased performance 

when used on claim propensity and frequency, we found a strong case for the use of 

generalized linear models when modelling total claim size. Our thesis proposes a novel three-

step ensemble model that uses claim propensity and claim frequency to determine the total 

claim size of a customer, which may improve performance of total claim predictions. 

 

Overall, our results show promise in using individual customer data to supplement the 

traditional individual policy risk assessments. The results also underline the potential of 

advanced ensembles to increase predictive performance on the individual customer data. The 

results accentuate the importance of selecting the appropriate models and suitable error 

metrics to achieve good predictive performance across different response variables. Our 

findings illustrate the transparency issues associated with using highly flexible statistical 

learning tools when compared to generalized linear models. 
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2 Introduction 
 
2.1 Background 
This master thesis is written to conclude our master’s degree at Norwegian School of 

Economics (NHH). 

 

Differentiated pricing in casualty insurance is widespread both within insurance companies 

and academia. Estimating the total expense of each customer per year, per insurance policy, is 

integral to the profitability and sustainability of an insurance company. With increasing 

amounts of data available on each customer, and customers often holding multiple insurance 

products, it has become increasingly viable to model aggregated customer risk in addition to 

modelling individual policy risk. These models are computationally expensive, but have 

become increasingly viable due to an exponential increase in computing power and new 

statistical models allowing greater flexibility and the use of many explanatory variables. 

 

2.2 Motivation 

The insurance industry in both Norway and internationally is characterized by fierce 

competition for customers. Although there are slight differences between the insurance 

companies and their product offerings, the policyholder will perceive products to be largely 

similar. The homogenous nature of insurance products means pricing is often the primary 

criterion for the customer to base their choice of insurance company on. We can assume that 

less risky customers are willing to pay less for their insurance than risky customers, which 

makes it essential to be able to offer less risky customers competitive prices. If the prices are 

set too high, the only customers susceptible to take out insurance are risky customers. This is 

known as an adverse selection issue, where the incentives of the two parties are misaligned 

and there is an asymmetric information pattern where the customer knows more about its own 

behaviour than the insurance company does. Pricing customer risk correctly is therefore 

critical to attract and keep profitable insurance customers and to stay competitive. 

 

Today, Frende have well-performing models to calculate the risk of individual policies. With 

increasingly more data available on customer and customer relationship level, they are 

interested in evaluating individual customer risk across one or multiple individual policies in 

addition to the existing individual policy risk models. Frende provides a broad range of 
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different private customer insurance products, and we want to explore whether individual 

customer information associated with all these products can provide additional value to their 

existing risk assessments. We will do this by modelling the probabilities of each customer 

making a claim, the frequency of claims, and the total claim amount in a given year, and see if 

predictions benefit from the additional customer data provided. To achieve this, we will use 

different machine learning models in multiple configurations to see how we can best leverage 

the individual customer data across these three response variables. We can describe the total 

claim as 

 

𝑈! =#𝑆!,#𝐵!

$!

#%&

				𝑤ℎ𝑒𝑟𝑒	𝐵! 	→ 	 {0,1} 

 

where Ui is the total claim U for customer i, Ai is the number of claims A for customer i, and 

Si,k is the average claim size given by customer i and claim k, and Bi a binary indicator B 

describing if customer i has made a claim.   

 

2.3 Utilization of R and R packages 

We are performing all modelling and calculations in our thesis using the open-source 

programming language R. R is free to use and provides an extensive library of statistical 

extensions through packages available in CRAN (The Comprehensive R Archive Network). 

We have extensively used the “caret” package to provide a uniform interface for classification 

and regression models. Our neural network models use the R-package “Keras”, which 

employs the underlying open-source machine learning platform Tensorflow. The individual 

packages used for our models will be described in the method section.  
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3 Method 
 

3.1 Machine learning in statistical learning 

Breiman (2001) distinguishes between two statistical modelling paradigms. One assumes data 

are generated by a given stochastic data model, while the other uses algorithmic models and 

treats the data mechanisms as unknown. Machine learning is considered part of the latter and 

focuses on best predicting the dependent variable and puts less emphasis on the relationship 

between the dependent variable and the predictors.  

 

3.1.1 Supervised and unsupervised learning 

The learning process of machine learning algorithms can be divided into two main categories, 

supervised and unsupervised learning (Hastie et al., 2004). Supervised learning algorithms 

build mathematical models from data sets containing both inputs and the desired output 

(Russel & Norvig, 2013). Unsupervised learning is algorithms that learn from non-labelled 

data and tries to find commonalities between observations and react to new data based on 

these findings. In our thesis, we will focus on supervised learning, as all our observations are 

labelled with response variables. The response variables can take the form of a continuous 

response, a binary classification response with two potential outcomes, or a multi-

classification response with multiple potential classes.  

 

3.1.2 Training and test data  

For training purposes, datasets are often divided into multiple parts. Training sets are used to 

fit the optimal parameters to minimize a pre-determined loss function. To benchmark the 

model, part of the dataset is withheld to see how well the models can predict these unseen 

observations. The withheld data is called the test set. Some algorithms provide the opportunity 

to tune hyperparameters to improve model performance on a given dataset. A hyperparameter 

is a parameter whose value is set before the model training begins and is used to maximize the 

usefulness of the learning approach (Claesen & De Moor, 2015). In such instances, the 

training set may be divided into two parts: One to train the model on, and one validation set to 

evaluate model performance on unseen data. The validation set provides an unbiased 

evaluation of the model performance on unseen data when training, and is used to prevent 

overfitting (Ripley, 2007). Overfitting is when the model adapts well to the dataset it is 

trained on, but it does not generalize well on unseen data. 
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3.1.3 Cross-validation and hyperparameter tuning 

One downside of using validation sets to evaluate model performance outside the training set 

is that we essentially “waste” a part of the training set, as those observations cannot be used to 

train the model. One way to use all observations for training purposes, but still make sure the 

model does not overfit, is by using cross-validation. Cross-validation has several benefits over 

a dedicated validation set. A common technique is k-fold cross-validation (McLachlan, Do & 

Ambroise, 2005). It partitions the training set into k equal sized subsamples, retains a single 

subsample as validation data to test the model, and the remaining k −1 subsamples are used as 

training data. The process is repeated k times with each of k subsamples used exactly once as 

the validation data (Breiman & Spector, 1992). The results can then be averaged for 

comparison purposes. 

 

The partitions of data can be selected to make sure the mean response value is approximately 

equal by using stratified k-fold cross-validation, especially useful in training classification 

models (Molinaro, Simon, & Pfeiffer, 2005). In stratified k-fold cross-validation, the 

partitions are selected so that the mean response value is approximately equal in all the 

partitions. In the case of binary classification, this means that each partition contains roughly 

the same proportion of the two types of responses. 

 

3.1.4 Bias-variance tradeoff 

When choosing the appropriate models to predict response variables, one important 

consideration is the bias-variance tradeoff. We can illustrate the bias-variance tradeoff by 

decomposing the expected mean squared error (MSE) into two fundamental quantities in the 

following way 

 

𝐸	2𝑦& −	f6(x&):
'
= 𝑉𝑎𝑟 =f6(𝑥&)? + A𝐵𝑖𝑎𝑠 =f6(𝑥&)?D

'
. 

 

Here, y0 is the observed response, and 𝑓6(x0) is the response function of explanatory variables 

x0. We see that the MSE (𝐸	2𝑦& −	f6(x&):
'
) can be decomposed into a variance term 

𝑉𝑎𝑟 =f6(𝑥&)? and a bias term A𝐵𝑖𝑎𝑠 =f6(𝑥&)?D
'
. To minimize the MSE, a statistical model needs 

to achieve low bias and low variance simultaneously. Variance refers to the amount by which 

𝑓6 would change if we used a given model on a different training data set. Bias refers to the 
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error introduced by approximating a complex real-life problem by a simpler model. A linear 

regression model would have a high bias if modelling a non-linear problem, and a low bias if 

estimating a linear problem. Using flexible methods generally introduce more variance and 

decrease bias, while less flexible methods have lower variance and increased bias (James et 

al., 2013). Finding an optimal tradeoff between the two extremes is key to increase model 

performance. This is called the bias-variance tradeoff, and it is an important consideration 

when finding the appropriate model to a given problem. Increasing model flexibility will 

decrease MSE on the training data but the improved results might not transfer to the test set. 

Instances where training performance increases but test performance on out-of-sample data 

decreases is called overfitting. Using validation and cross-validation sets is critical to ensure 

models are not overfitted. 

 

3.2 Probability distributions 

A probability distribution is a mathematical function that describes the probabilities of the 

occurrence of an experiment’s possible outcomes (Ash, 2008). In the following section, we 

will introduce the probability distributions that are used later in this thesis. We will present 

conventions for how each of the distributions can be parameterized and describe the 

parameters.    

 

3.2.1 Normal distribution 

The normal distribution, also known as gaussian distribution, is the best-known probability 

distribution. It is often called a bell curve and is applied frequently as an analytical tool in 

statistics. The gaussian distribution is a continuous probability distribution with support on 

𝑌 =	∈ (−∞,∞). The probability density function (PDF) of the normal distribution is 

perfectly symmetric and light-tailed. It can be formulated in the following way 

 

𝑓(𝑦) =
1

𝜎√2𝜋
𝑒(

)
'*
+(,
- .

"

 

 

where 𝜇 is the mean, which is equal to the mode and median in a normal distribution, σ is the 

standard deviation and 𝜎' is the variance. We say that the response Y follows a standard 

normal distribution when µ = 0 and 𝜎' = 1. 
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3.2.2 Gamma distribution 

There are three different parameterizations of the gamma distribution that are commonly used. 

We will focus on the exponential distribution with shape parameter α and an inverse scale 

parameter 𝛽 = )
/
 , where β is the rate parameter, and 𝜃 is the scale parameter. The size of the 

shape parameter α affects the skewness and the kurtosis level of the distribution. The gamma 

distribution is a continuous probability distribution with support on 𝑌 =	∈ (0,∞). The 

probability density function (PDF) of the gamma distribution is moderately skewed and 

moderately heavy-tailed. It can be parameterized the following way 

 

𝑌~𝛤(α, 𝛽)≡Gamma(α, 𝛽) 

 

𝑓(𝑦; α, 𝛽) =
𝛽0𝑦0()𝑒(1+

𝛤(α) 	𝑓𝜎𝑟	𝑦 > 0		α, 𝛽 > 0 

where the gamma function is 

 

𝛤(α) = (α − 1)!, 𝑓𝑜𝑟	𝑎𝑙𝑙	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 

 

The expectation or mean of the distribution can be written as 0
1

 , and the variance of the 

distribution can be written as 0
1"

. The gamma distribution is often used to model claim sizes in 

insurance applications. 

 

3.2.3 Log-normal distribution  

Log-normal is a continuous probability distribution with support on 𝑌 =	∈ (𝑂,+∞). If 

𝑙𝑜𝑔(𝑌) follows a normal distribution with expectation 𝜇 and variance 𝜎', we say that 𝑌 

follows a log-normal distribution with the parameters µ and 𝜎'. The expectation or mean µ 

explains differences in expectation and variance. The PDF of the log-normal distribution can 

be described as 

 

𝑙𝑜𝑔(𝑌)~𝑁(𝜇, 𝜎') 

 

𝑓(𝑦; 𝜇, 𝜎') =
1
𝑦 ∗

1
𝜎√2𝜋

𝑒2(
(45+(,)"

'-" 7 
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where expectation or mean is given by 

𝐸(𝑌) = exp f𝜇 +
𝜎'

2 g 

and the variance is 

 

𝑉𝑎𝑟(𝑌) = [𝑒𝑥𝑝(𝜎') − 1] 𝑒𝑥𝑝(2𝜇 + 𝜎') . 
 

The log-normal distribution is frequently used to model claim sizes in insurance applications, 

just like the gamma distribution. 

 

3.2.4 Inverse gaussian distribution 

The inverse gaussian distribution is a continuous probability distribution with support on 𝑌 =

	∈ (0,∞). The distribution is very skewed with a steep top. The probability density function 

(PDF) of the Inverse Gaussian distribution can be written the following way 

𝑓(𝑦; 𝜇, 𝜆) = k
𝜆

2𝜋𝑦8 𝑒
2(9(+(,)

"

',"+ 7
, 𝑓𝑜𝑟	𝑦 > 0, 𝜇 > 0, 𝜆 > 0	 

where expectation or mean is given by 

𝐸(𝑌) = 𝜇 

 

and the variance is 

Var(𝑌) =
m8

𝜆  

 

The inverse gaussian distribution has positive support and is therefore particularly useful in 

insurance and economic data applications where non-positive responses do not occur. 

 

3.2.5 Poisson distribution 
The Poisson distribution is a classical probability distribution describing count data. The probability 

distribution is discrete with support on 𝑌 =	∈ ℕ0 (all natural numbers starting from 0). The Poisson 

distribution only has one parameter 𝜇 that defines the expectation and the shape of the probability 

mass function (PMF). The PMF can be written the following way 

𝑓(𝑦; 𝜆) = 𝑃𝑟(𝑌 = 𝑦) =
𝜆+𝑒(9

𝑦!  
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Where the mean equals the variance 

𝐸(𝑌) = Var(𝑌) = 	𝜆 

 
The Poisson distribution is often used to describe count data, and in insurance applications it 

is commonly used to describe the claim frequency.  

 
 
3.2.6 Negative binomial distribution 

The negative binomial distribution is a discrete distribution with support on the integer 

number of successes 𝑌 =	∈ ℕ0. It is similar to the Poisson distribution in many aspects, but it 

allows for overdispersion, which occurs when the variance is larger than the expectation. The 

probability density function (PDF) can be formulated as 

 

𝑓(𝑦; 𝑟, 𝑝) ≡ 𝑃:(𝑌 = 𝑦) = o
𝑦 + 𝑟 − 1

𝑦 p 𝑝:(1 − 𝑝)+ 

 

where r is the number of successes, y is the number of failures, and p is the probability of 

successes. 

 

The expectation or mean is given by 

𝐸(𝑌) = 𝜇 =
𝑝𝑟
1 − 𝑝 

 

and the variance is given by 

Var(𝑌) = 𝜇(1 + 𝑦𝜇) 

 

The negative binomial distribution is useful for count data when the data is overdispersed, as 

overdispersed data makes the Poisson distribution less suitable. 
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3.3 Models 
 

We have used three main types of models in our thesis to predict claim risk, claim frequency, 

and total claim size of customers. We will distinguish these as generalized linear models, 

decision trees, and neural networks. 

 

3.3.1 Generalized linear model 

Nelder and Wedderburn (1972) introduced Generalized Linear Model (GLM). It is a flexible 

generalization that allows for response variables with error distribution models other than a 

normal distribution. The GLM consists of three elements: an exponential family of probability 

distributions, a linear predictor which is a linear function of covariates, and a link function, 

which is a function of the response variable’s mean, and equal to the linear predictor (Pan & 

Yang, 2011).  

 

The GLM framework uses the response variable Yi, an independent stochastic variable with 

distribution f having mean µi = E(Yi | Xi = xi) which depends on explanatory variables xi 

through link function g, so that g(µi) = ηi, where ηi = 𝑥!;β is called the linear predictor. The 

linear predictor ηi has linear coefficients β = {β0, …, βp} and the distribution of the response 

variable is in the exponential family. Parameter estimation in GLM is done via maximum 

likelihood estimates using iteratively reweighted least squares (IRLS) or Newton-Raphson 

(N-R). Solving weighted least squares can be described as a minimization problem of the 

form 

β(<=)) =		
arg𝑚𝑖𝑛

β #𝑤!(β(<))	|𝑦! − 𝑓!(β)|'	
5

!%)

 

 

where 𝛽 are the parameters which minimize the linear regression problem, and wi are the 

weights updated after each iteration for 𝛽(t) by minimizing error term 𝑦! − 𝑓!(β).  

 

There are several reasons why GLMs are suitable for actuarial modelling. The methodology 

allows the user to choose the distribution and link function based upon knowledge of the 

response distribution, and there are numerous software packages that can be used for 

estimation purposes. In practice, it is also easy to interpret how different explanatory variables 

impact the response variables, especially compared to more sophisticated machine learning 

methods.  
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3.3.2 Decision tree 

A decision tree is a well-known model used in many different applications. It is highly 

interpretable, and it is easy to visualize the reasoning behind its response. In machine 

learning, it can be used to solve both classification and regression problems. To make 

decision trees efficient to solve statistical problems, there are two important considerations: 

how decision trees determine its splits, and the shape of the overall decision trees. Decision 

tree algorithms use nodes to represent explanatory variables, branches to represent decisions, 

and leaf nodes to represent responses. 

 

Decision trees are usually constructed top-down by choosing the variable at each step that 

splits the best set of items (Rokach & Maimon, 2005). Different algorithms use different 

metrics for measuring what the best item is. To determine the optimal split in decision trees, it 

needs to evaluate the impurity of the sample it evaluates. The impurity is decided by how 

homogenous the sample is. A homogenous sample will be considered pure, while 

heterogeneous samples are impure as there is more variation across the population. A 

common way to find the impurity is by using the Gini index. It is a measure of inequality in 

the sample, represented by a value between 0 and 1. A Gini index value of 0 means the 

sample is perfectly homogeneous, while a Gini index value of 1 indicates inequality or 

heterogeneity among its observations. The Gini impurity for a set of items with J classes and 

pi fraction of items labelled with class i in the set can be formulated as 

 

𝐺𝑖𝑛𝑖	𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦 = 	1 −	#𝑝!'	

?

!%)

. 

 

Classification and regression trees (CART) is an umbrella term used to refer to classification 

and regression decision trees introduced by Breiman et al. (1984). It uses the Gini impurity for 

classification splits and the relevant improvement in the sum of squared errors between the 

node and its child nodes after the split in regression. 

 

3.3.3 Neural network 

Neural networks are computing systems vaguely inspired by biological neural networks. They 

are based on a collection of connected units or nodes, called artificial neurons, which 

resemble neurons in a biological brain (Chen et al., 2019). For a single node, there is a set of 
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observed explanatory variables Xi, and a response variable Y. A network with multiple hidden 

layers is called a deep neural network (Schmidhuber, 2015). A deep learning network consists 

of an input layer, hidden layers, and an output layer. The hidden layer can be formulated as 

𝑁@) = 𝑓(𝑏@& +	#𝑤@!&
A

!%)

𝑁@))	 

and the output layer as 

𝑌 = 𝑔(𝑏) +#𝑤@)
?

@%)

𝑁@)) 

 

where the hidden layer consists of intermediate nodes 𝑁@). The node takes several inputs, x1, 

…, xn, and each individual node has an internal set of weights b, w1, …, wn, and an activation 

function f. The inputs connect to the intermediate nodes, and the intermediate nodes connect 

to the outputs. Each layer consists of neurons that take inputs and transform them into 

representations useful for solving the given problem (Borovykh, Bohte, & Oosterlee, 2017). 

These representations are non-linear and use an activation function to pass on to the next layer 

until the output layer is reached (Mueller & Massaron, 2016). By minimizing a given loss 

function, the neural network learns its optimal parameters (Goodfellow et al., 2016). These 

features allow neural networks to model complex non-linear relationships.   

 

Deep neural networks are inherently exposed to vanishing gradients. This is a problem in 

which multiple layers lead to products of gradients, and the gradient becomes very small so 

that the product vanishes. The opposite problem of exploding gradients, where the gradients 

become too large, could also cause the algorithm to return unsatisfactory results. This problem 

is alleviated by using normalization to stop gradients from exploding or vanishing (Pascanu, 

Mikolov, & Bengio, 2013).  

 

Using deep neural networks have some advantageous features. The hidden layer acts as 

higher-level features of the data, and output layer weighs the features to make the final 

prediction, which makes deep neural networks an automated feature engineering algorithm. 

This reduces the need for manual feature engineering, which is time-consuming and often 

dependent on domain knowledge. It has also been discovered how multiple hidden layers 

create an informational bottleneck leading the deep neural network to zero in on the correct 

classification (Tishby & Zaslavsky, 2015). 
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3.4 Ensemble techniques 

Several methods can be used to improve the model accuracy of the fundamental models 

described in section 3.3. An effective method is to use ensembles of more than one model. We 

will describe the advantages associated with ensembles and what methods we have applied in 

our thesis in this section. 

 

3.4.1 Simple ensemble methods 

There are several reasons to use ensemble-based systems when predicting an outcome. A set 

of models with similar training performances may have significantly different generalization 

performance. Even when generalization performance is similar, different models often 

perform differently when the generalization performance is not sufficiently representative of 

the future data samples. If we had a model with perfect generalization performance, there 

would be no need to resort to ensemble techniques. In reality, noise, outliers, and overlapping 

data distributions make such a model an impossibility. We can assume that individual models 

make errors in slightly different instances. If each model makes different errors, then a 

strategic combination of these models can reduce the total error (Polikar, 2006). 

 

The intuition of ensembles is similar to that of doctors consulting each other to arrive at the 

correct diagnosis. It is especially useful when using sophisticated modelling tools such as 

neural networks, which are prone to overfitting. Such models may perform well in most cases 

but make large mistakes in others. Combining several models makes sure that the predictions 

are not heavily dependent on any singular model. It can also be useful to handle particularly 

large volumes of data in instances model performance is a bottleneck, and complex problems 

where several models are needed as the problem is too advanced for any single model to solve 

(Polikar, 2006). In this section, we will look at a few simple techniques: majority voting, 

averaging, and weighted averaging. 

 

3.4.1.1 Majority voting 

Majority voting is a method used for ensemble classification problems. There are three 

versions of majority voting. Unanimous voting in which all three models, or classifiers, agree 

on the outcome, simple majority where at least half of classifiers agree on the outcome, or 

plurality voting in which the outcome which has most the most votes are selected. Unanimous 

voting and simple majority can be especially useful in instances where incorrect predictions 



 

18 
 

are considered more costly than correct predictions, where unanimous voting is the most 

extreme measure to avoid incorrect predictions. We can define the decision of plurality, from 

this point on referenced to as majority voting, from the 𝑡<B model with the following formula  

 

#𝑑<,@ =	
𝐶

𝑚𝑎𝑥
𝑗 = 1

;

<%)

	#𝑑<,@

;

<%)

 

 

where 𝑑<,@ ∈ {0, 1}, t = 1... ,T and j = 1, ...C , where T is the number of classifiers and C is the 

number of classes. If the 𝑡<B classifier chooses class ω@, then 𝑑<,@  = 1, and 0 otherwise. 

According to the Condorcet Jury Theorem (Boland, 1989) regarding audience polling, if each 

audience member has a higher probability than ½ of giving the correct answer, a large enough 

audience should approach a probability of success of 1. These principles have also been found 

to be transferrable to majority voting (Kuncheva, 2005).  

 

3.4.1.2 Averaging 

Averaging is a simple algebraic non-trainable combiner of continuous outputs. It can be used 

to make predictions in regression problems or calculating probabilities in classification 

problems. It can be expressed with the following formula 

 

µ@ 	(𝑥) 	= 	
1
𝑇#𝑑<,@(𝑥)

;

<%)

 

 

where µ@ is the average of jth model outputs within a normalization factor 1/T, and T is the 

number of models used.  

 

3.4.1.3 Weighted averaging 

Weighted averaging is an extension of the averaging method. In this method pre-determined 

weights are used to define the importance of each model in the final prediction. It can qualify 

as both a trainable and non-trainable combination rule, depending on how the weights are 

obtained (Polikar, 2006). We can express weighted averaging using T weights, w1,..., wT as 
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µ@ 	(𝑥) 	= 	#𝑤<𝑑<,@(𝑥)
;

<%)

 

 

An example of how a trainable weighted average can be applied, is by using cross-validation 

to determine the performance of several models on training data. The model weights can be 

determined by minimizing the loss function based on the predicted responses. These weights 

are then carried to the out-of-sample predictions. It can also be non-trainable, based on 

intuition and experience on how well different models tend to perform on similar data. 

 

3.4.2 Bagging  

In addition to simpler ensemble methods like majority voting and weighted averaging, there 

are more complex approaches to create an ensemble of models. In our thesis, we will divide 

these into four categories: stacking, blending, bagging, and boosting. The purpose of these 

ensembles is the same as the simpler ensemble methods shown in the previous section, but the 

approaches are different. We will use stacking, bagging, and boosting to enhance our model 

performance.  

 

Bagging predictors is a method for generating multiple predictors and using these to get an 

aggregated predictor. When predicting continuous outcomes, the aggregation averages over 

the versions, and in classification problems, it does a plurality vote. It uses multiple training 

subsets formed by bootstrapping the data set and uses these as new learning sets to create the 

individual predictors. This method can give substantial gains in accuracy in both classification 

and linear regression problems. The instability of the prediction method employed is vital in 

its usefulness. If small changes made to the training data easily results in changes of the 

predictor constructed, then bagging can improve accuracy. The principles of bagging can be 

illustrated using the following pseudocode. 
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When the model is trained, we can see how predictions on out-of-sample observations x’ is 

made by averaging predictions from all the individual regression trees 

 

𝑓(𝑥) 	= 	
1
𝐵	#𝑓C(𝑥D)

E

C%)

 

 

3.4.2.1 Random Forest  

Random Forest is a model that uses the bagging technique combined with decision trees 

(Hyndman & Athanasopoulos, 2018), and it was first introduced by Breiman (2001). It uses a 

multitude of decision trees trained on random samples from subsets of the data and performs 

regressions on these individually. The mode of predictions from all trees is used to estimate 

the dependent variables on new observations (Efron & Tibshirani, 1993). If the correlation 

between trees is relatively low, this technique will increase performance by reducing variance.    

 

In conventional decision trees, the number of trees is limited to prevent excessive complexity. 

In random forests, bagging is used to randomly select resamples of training data to split each 

node. This makes the model more robust with respect to noise, as it does not overfit because 

of the law of large numbers (Breiman, 2001). In addition to bagged decision trees, it also 

utilizes the Random Subspace Method (Ho, 1998), which introduces randomness by randomly 

sampling which predictors are used in the trees. By using random sampling, both column-wise 

and row-wise, it decorrelates the fitted tree models such that the variance is reduced and 

makes the model less prone to overfitting on training data. There are various implementations 

of random forest, and in our thesis, we have used the “ranger” package in R.  

 

Given a training set X = x1, ..., xn with responses Y = y1, ..., yn, bagging B times selects a 

random sample with replacement of the training set and fits trees to these samples: 

 

For b = 1, ..., B: 

1. Sample, with replacement, n training examples from X, Y; Xb, Yb. 

2. Train a classification or regression tree fb on Xb, Yb. 
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3.4.3 Gradient boosting 

Gradient boosting is a supervised machine learning technique used in regression and 

classification problems. It uses an ensemble of weak prediction models, typically employing 

decision trees. It builds the decision trees sequentially and generalizes by allowing 

optimization of an arbitrary differentiable loss function. Breiman (1996) discovered that 

adaptively reweighing the training set, growing classifiers using new weights, and combining 

the classifiers constructed to date could significantly decrease generalization error. 

 

Gradient boosting allows the use of any class of weak learners hm (Xi) to improve predictive 

accuracy. The weak learner hm (Xi) can take any functional form such as a GLM, a neural 

network, or a decision tree. Although there is no requirement for hM (Xi) to be a specific 

function, it is usually a tree-based learner in practice (Zhang et al., 2019). Gradient boosting 

combines the weak learners into strong learners in an iterative approach. In a regression 

problem, this is accomplished teaching model f to predict values y = f(x) by minimizing the 

mean squared error )
5
∑ (! f(xi) – yi)2. To combine several weak learners, we need to introduce a 

gradient algorithm with M stages. We can illustrate the principles of gradient boosting 

machines using the following pseudocode (Hastie, Tibshirani & Friedman, 2009): 
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In our thesis, we have used three different implementations of gradient boosting for 

classification and continuous outcomes, GBM, XGBoost and LightGBM.  

 

Input to model: training set {(𝑥! , 𝑦!)}!%)5  , differentiable loss function L(y, F(x)), such as 

RMSE or MSE, with iterations M 

 

 

1. Initialize model with a constant value:  

𝐹&(𝑥) = 	
arg𝑚𝑖𝑛

γ � L(𝑦! ,
5
!%)  γ) 

 

 

2. For m = 1 to M: 

 

1. Compute pseudo-residuals 

 

 𝑟!F =	− �GH(+!,I(J!))
GI(J!)

�
I(J)%I#$%(J)

  for i = 1, ..., n. 

 

2. Fitting a weak learner hm(x) to pseudo-residuals and train on training set  

{(𝑥! , 𝑟!)}!%)5  

 

3. Compute multiplier γF by solving the following one-dimensional 

optimization problem: 

γF =	arg𝑚𝑖𝑛γ #L(𝑦! , 𝐹F()(𝑥!) + γhF(𝑥!))	
5

!%)

 

 

4. Update the model 

𝐹F(𝑥) = 	𝐹F()(𝑥) + γFℎF(𝑥) 

 

 

 

3. Output prediction 𝐹K(𝑥) 
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3.5.3.1 GBM 

The GBM R-package is an implementation of extensions to Friedman's gradient boosting 

machine and Freund & Schapire's AdaBoost algorithm. In our thesis, we use it for regression, 

logistic regression, and count data. The R-package was developed by Greg Ridgeway 

(Boehmke, Cunningham & Greenwell, 2019).  

 

3.5.3.2 XGBoost 

R’s GBM algorithm supports the exact greedy leaf split algorithm. The exact greedy 

algorithm is computationally demanding as it enumerates all the possible splits for continuous 

explanatory variables. In order to do so efficiently, the algorithm must first sort the data 

according to explanatory variable values and visit the data in sorted order to accumulate the 

gradient statistics for the structure score (Chen & Guestrin, 2016). 

 

In real-world problems, it is quite common for data input to be sparse. Sparse data is when 

many elements in a dataset have the value zero, or the value is missing. There are three main 

causes of sparsity: the presence of missing values in the data, frequent zero entries in the 

statistics, and artefacts of feature engineering such as one-hot encoding, which we will 

explain later in our method section. XGBoost implements an algorithm aware of the sparsity 

pattern in the data, which makes computation complexity linear to the number of non-missing 

entries in the input, thus reducing the resources required to run the algorithm compared to 

GBM (Chen & Guestrin, 2016). 

 

Another technique introduced to improve upon the GBM algorithm is column subsampling. It 

is a technique used in the random forest model, but it had not been implemented in open-

sourced boosting algorithms previously. Like the more traditional row sub-sampling, it aims 

to prevent overfitting, but also decreases computation time (Chen & Guestrin, 2016). In 

addition to the aforementioned modifications, XGBoost also makes changes to the system 

design of the algorithm. The most computationally expensive part of tree learning is to get 

data into sorted order. XGBoost uses column blocks, which are subsets of rows in the dataset, 

to enable a parallel approach to split findings. It also makes changes to how the algorithm 

uses cache-storing in the CPU and employ compression and partitioning techniques to 

increase speed (Chen & Guestrin, 2016).  
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3.5.3.3 LightGBM 

LightGBM is an implementation of gradient boosting similar to XGBoost, but it introduces a 

few novel techniques to address efficiency and scalability. The main difference between the 

two algorithms is how they grow their trees. While XGBoost needs to scan all the data 

instances to estimate the information gain of all possible split points, making it very time 

consuming, LightGBM introduces two novel techniques (Ke et al., 2017): Gradient-based 

One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB). The GOSS technique 

excludes data instances with small gradients, as data instances with larger gradients are more 

important in the computation of information gain. This means GOSS can obtain quite accurate 

estimations while reducing data size. EFB bundles mutually exclusive explanatory variables 

to reduce the overall number of explanatory variables, thus reducing computational 

complexity. 

 

XGBoost has later implemented a histogram binning option to use a leaf-wise growth similar 

to LightGBM (Mitchell et al., 2018). This has lessened the computational time gap between 

the two gradient boosting implementations. LightGBM is still, however, considered the faster 

gradient boosting model of the two. 

 

3.5.3.4 Hyperparameter optimization process 

There are multiple ways to find the optimal hyperparameters for our models. Often it is done 

manually by adjusting after each run and identifying what parameters yield increased 

performance. It can also be automated by creating grids of different hyperparameters, which 

can either run through all combinations or choose a randomized approach. It essentially tests 

different combinations specified in a pre-determined table. In our gradient boosting models, 

we have used Bayesian hyperparameter optimization through the “mlrMBO”-package in R.  

 

Bayesian hyperparameter optimization is different from other methods such as grid search and 

a random grid search, as it applies a probability model of the objective function and uses it to 

test the most promising hyperparameters. It uses past evaluation results to form a probabilistic 

model, mapping hyperparameters to the probability of a score of the objective function. By 

using a surrogate probability model of the objective function, it can run the hyperparameters 

that perform best on the surrogate. It then applies these hyperparameters to the objective 

function and updates the surrogate model with the new results. It iterates through this process 

until the pre-determined iteration limit is reached (Koehrsen, 2018). Using Bayesian 
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optimization helps reduce the number of iterations and computer usage necessary to find the 

near-optimal parameters, which is an important consideration in a large dataset.  

 

3.4.4 Stacked ensemble 

Stacked ensembles, also known as stacking or stacked generalization, is an ensemble 

technique that feeds predictions from multiple models to a new meta-model before forming 

the final prediction. Instead of choosing weights of different models in an ensemble, it uses 

their predictions as input to make predictions on the test set. This is done so that the second 

level model, or meta-model, can learn how the base level models may consistently correctly 

or incorrectly predict certain instances. It is a means of estimating and correcting for the 

biases of the models with respect to the provided training data (Wolpert, 1992).  

 
Figure 1 – Stacked ensemble overview (Polikar, 2006) 

The stacked model scheme is illustrated by figure 1. Models C1, ..., CT are trained using 

training parameters θ1 through θT to output predictions h1 through hT. The outputs of these 

models and response variables are then respectively used as input and output training pairs for 

the second level model CT+1. The outputs of each model for the data subset in which it was 

not trained on, along with the correct labels of those instances, constitute the training data for 

the second level meta-model CT+1. Once CT+1 is trained, individual models C1, ... CT are 

retrained on the training set. The same concepts of stacked ensembles are also applied to 

blending, which uses the same meta-model framework, but uses pre-determined training, 
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validation, and test sets to train the base model and meta-models instead of k-fold cross-

validation.  

 

3.4.5 Super learner implementation 

SuperLearner is a framework for weighted average ensembles introduced by Van der Laan et 

al. (2007). It is an integrated algorithm to determine suitable candidate models in an 

ensemble. The candidate models are weighted by minimizing the problem loss function by 

using cross-validation. SuperLearner is an easy-to-use way to create ensembles in R and 

supports multiple well-known individual models and several methods for variable selection.    

 

 
Figure 2 – SuperLearner sequence overview (Van der Laan, Polley & Hubbard, 2007) 

The SuperLearner algorithm consists of six steps as illustrated in figure 2. It first splits data 

using v-fold cross-validation. Then it trains each pre-specified candidate model before it 

predicts the corresponding training block created in the first step. It then selects which models 

to include in the final steps based upon the performance of each individual model. The 

selected models are then trained on the entire dataset before using the weighted average 

determined by cross-validation to predict the response. In our thesis, we have primarily used 

the SuperLearner framework as a meta-model in a stacked ensemble.  
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3.4.6 Three-step ensemble 

To solve the specific task of predicting the total claim of each customer, we have come up 

with a novel framework, that, as far as we can tell, has not been researched before. It can best 

be described as a combination of the principles behind neural networks and a stacked 

ensemble. The main target of this framework is to include information about claim propensity 

and claim frequency estimates to increase the performance of the total claim model. It uses 

model predicted responses as inputs to the next layer of training data. 

 

We have decided to call this approach a three-step ensemble. It can be described as a way to 

use models to feature engineer in layers. It includes claim propensity in the first layer, before 

using a new training set with the added claim propensity prediction from the model trained on 

the first layer, to model the claim frequency. In the final layer, we train a new model 

including all features available in the training data, as well as the new predicted responses 

modelled on the first two layers for claim propensity and claim frequency, to predict the total 

claim. This approach makes it possible to include models specifically developed to predict 

claim propensity and frequency to aid the model predictions of the customer total claim size. 

In insurance claim modelling it is common to model claim frequency and severity separately 

and then combine them for the total claim estimate. In our model, we have modified this 

approach by including predictions of claim propensity and claim frequency as direct inputs to 

the total claim model.  

 

3.5 Evaluating model performance 

There are several metrics that can be used to evaluate our model performance. Earlier, we 

have touched upon mean squared error which is often used as a loss function for machine 

learning models. There is no single metric that is optimal for all situations. Different metrics 

have their individual strengths and weaknesses, and research indicates that using a 

combination of different performance metrics gives the most reliable results (Chai, 2014). We 

have chosen three main metrics to evaluate the performance of our models, which we will 

elaborate in more detail. 

 

3.5.1 Confusion Matrix 

A confusion matrix is a visual representation of the prediction performance of a classifier 

through a two times two contingency table. A visual representation of a confusion matrix is 
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illustrated in figure 3. It summarizes the correct and false predictions of the predicted class 

{N,Y} on the observed class {n,p}.  

 
Figure 3 - Confusion Matrix  

The objective of a classifier is to maximize true negative (TN) and true positive (TP), while 

minimizing false negative (FN) and false positive (FP). True negative is the correct 

classification of negative observations, while true positive is the correct classification of 

positive observations. False positive is the misclassification of negative observations, also 

known as a type 1 error. False negative is misclassification of positive observations, also 

known as a type 2 error. The confusion matrix is an intuitive and easily interpretable way of 

visualizing the ability of a model to separate between classes. A common metric derived from 

the confusion metric is accuracy. Classification accuracy can be calculated using the 

following formula. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁 
 
Classification accuracy can be defined as the ratio between the number of correctly classified 

cases and the total number of cases (Chicco, 2020). There are, however, a few weaknesses 

associated with using accuracy as a metric to evaluate classification performance by itself. 

Accuracy does not consider that the cost of misclassification can be uneven between classes, 

and in situations where the dependent variable has one outcome distinctly outnumbering the 

other class, models are often biased towards picking the majority class (Garcia, 2010). To 

create a confusion matrix, the predicted class probabilities need to be converted to class 

responses. The appropriate threshold depends on the purpose and cost associated with 
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misclassifications, and the probability distributions are often different between models. Direct 

comparisons between models using confusion matrix-based metrics are therefore not ideal. 

 

3.5.2 ROC and AUC 

Receiver operating characteristics (ROC) graphs are a way of visualizing the ability of a 

model to discriminate between binary classes by varying the probability threshold between 0 

and 1. The ROC graph depicts the performance of a classifier by plotting the true positive rate 

(TPR) against the false positive rate (FPR). The TPR, also known and sensitivity, is the 

proportion of people that are correctly classified as positive (TP). This is the proportion of 

insurance customers that have been predicted to make a claim, divided by the observed 

claims.  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 

 

The false positive is equal to 1 – specificity and is the proportion of people that were 

misclassified as positive (FP), divided by all observed negative cases. The false positive rate 

is the same as a type 1 error.  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 
 

 
Figure 4 - ROC Curves where A dominates B and C. 
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The area under the ROC curve indicates how well the probabilities from the positive classes 

are separated from the negative classes. This area is referred to as area under the curve (ROC 

AUC) or area under the receiver operating characteristic curve (AUROC). An advantage of 

using the ROC curve is that it includes all possible classification thresholds and visualizes the 

prediction performance in a way that is easy to interpret. This makes the ROC AUC ideal to 

compare different models. The ability to compare models across different thresholds means 

that the ROC curve can be considered a relative operating characteristic curve because it 

compares TPR and FPR as the threshold is changed (Swets, 1996). When we change the 

classification threshold, the classifications also change. Figure 4 illustrates how ROC curve A 

dominates ROC curve B and C, because the AUC of A is larger than B and C for all possible 

thresholds (Schumann, 2002), which implies that classifier A is better than the classifier B 

and C, as ROC curve A has a higher AUC across all possible threshold-values. The area under 

A represents its AUC score, just like the area under the B and C curve represents their 

respective AUC scores. 

 

AUC provides us with a score between 0 and 1, where a score close to 1 indicates a model 

that can perfectly discriminate between classes. The higher the AUC score is, the better the 

classifier is (James et al., 2017). In addition to being a great measure of performance between 

different models, AUC has other characteristics that make it great for our purpose. Using 

AUC as a performance metric avoids the need to specify the cost of misclassification (Hand, 

2001), and can also be a useful tool to deal with challenges related to unbalanced data 

(Fawcett, 2005). 

 

There are a few caveats associated with using AUC, which is important to keep in mind when 

measuring model performance. It ignores predicted probability values and the goodness-of-fit 

of the model, and summarises test performances over regions of the ROC space which, 

sometimes might not be relevant to our given problem. It also weighs omission, the fraction of 

values that belong to a class but were predicted to be in a different class, and commission 

errors, the fraction of values that were predicted to be in a class but do not belong to that 

class, equally. The AUC does not give information about the spatial distribution of model 

errors, which might be of importance in the application of the models. It is also important to 

keep in mind that in real-life problems binary predictions are often more important than 

probabilities (Lobo, Jiménez‐Valverde & Real, 2008). 
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3.5.3 RMSE 

Root Mean Squared Error (RMSE) can be used to evaluate continuous variables and 

represents the standard deviation of residuals. Note that the squared value of RMSE 

corresponds to a sample version of the mean squared error (MSE) described in section 3.1.2. 

and thus, measures both the bias and variance of the model. RMSE is the average squared 

value of the residuals of the predicted response in comparison to the observed response, and 

can be formulated as 

 

𝑅𝑀𝑆𝐸 = ��#(𝑦�! − 𝑦!)'
5

!%)

� ∕ 𝑛			 

 

where 𝑦! denotes the observed values and 𝑦�! denotes the predicted values, respectively. 

RMSE will, by definition, punish large deviations harder than small deviations. This can 

make interpretability difficult, but it can also be useful if it is especially important to 

discourage large deviations in predicted response and observed response. 

 

3.5.4 MAE 

An alternative approach to measuring the predictive power of a continuous response is the 

mean absolute error (MAE). MAE represents the average absolute size of the residuals. It can 

be formulated as 

𝑀𝐴𝐸 = �#|𝑦�! − 𝑦!|
5

!%)

� ∕ 𝑛	 

 

where 𝑦! denotes the observed values and 𝑦�! denotes the predicted values, respectively. The 

main difference from RMSE is that the residuals are not squared. This means that MAE does 

not differentiate between major and minor deviations to the same extent as the RMSE. This 

increases interpretability and makes it particularly useful coupled to the use of RMSE when 

evaluating models. An example of how using both error measures might increase insight, is 

when models have relatively similar MAE but distinctly different RMSE values or the other 

way around (Willmott, 2005). A common weakness shared by both MAE and RMSE is that 

they do not say anything about which direction the prediction error occurs. This makes it 

important to make sure models are not consistently over- or underestimating predictions.  
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One distinct advantage of RMSEs over MAEs is that RMSEs avoid the use of absolute value, 

which is undesirable in many mathematical calculations. For example, it might be difficult to 

calculate the gradient or sensitivity of the MAEs with respect to certain model parameters. 

Another issue is that many models use the sum of squared errors as the cost function to be 

minimized by adjusting model parameters, which means we cannot directly optimize the 

model for MAE. RMSE is therefore preferred over MAE when calculating model error 

sensitivities (Chai & Draxler, 2014).  
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4 Data 
Our dataset contains 809 350 observations and 68 variables per observation. We can 

distinguish the variables provided as explanatory variables and response variables. The 

explanatory variables are data available to Frende at the time of determining the policy 

premiums of their customers, while the response variables are data available after the 

customer year has ended. There are 63 explanatory variables and five response variables.  
 

  Name Explanation  Name Explanation 
1 Year Year of customer policy (2010 - 2018) 30 Discount percentage   

2 Age Age of customer   Vehicle safety measures 

Different classes of safety 
measures decided by parking 
(garage), GPS installation and 
similar 

3 Gender The gender of the customer 31 Maximum   
4 County  Home county of customer 32 Minimum   

5 Noted customer 
Customer temporarily noted by Frende. 
Often due to debt collection notices, 
delayed payments, financial history. 

 Number of policies   

6 Months as customer Months as customer in Frende  33  Life insurance   

7 Previous departures 
as customer 

How many times the customer have 
cancelled all policies within Frende 

34 Car   

8 Customer channel 
Describes whether customer comes from a 
franchise, a direct customer channel or 
through a business partner 

35 Motorhome   

8 Franchise   36 Vintage car   

9 Direct Tends to have higher claim size and 
frequency 

37 Motorcycle   

10 Business partner   38 Moped   
11 Self-serviced Fully self-serviced customer relationship 39 Snowmobile   

12 
Yearly insurance 
premium 

Total premium yearly premium of all 
insurance policies held by customer in 
Frende 

40 Leisure tractor   

  Insurance group 
Insurance group. Expensive cars generally 
have higher insurance group numbers 

41 Detachable caravan   

13  Maximum   42 Trailer   
14  Minimum   43 Unregistered vehicle   

  
Third-party liability 
insurance 

The minimum coverage car insurance 44 Cabin   

15  Maximum   45 Value object   
16  Minimum   46 Animal/pet   

  
Partial comprehensive 
insurance 

Medium coverage car insurance 47 Fire   

17  Maximum   48 House   
18  Minimum   49 Household goods   

  
Comprehensive 
insurance 

Maximum coverage car insurance 50 Boat   

19  Maximum   51 Family travel insurance   
20  Minimum   52 Travel insurance   

  Vehicle mileage     Housing standard   
21  Maximum   53 Extra high housing standard   

22  Minimum   54 Good housing standard   

  Vehicle age   55 Low housing standard   
23  Maximum   56 Property value fully covered   

24  Minimum   57 Property insurance amount Value of insured house 
  No-claims bonus Bonus acquired by avoiding claims 58 Flat roof Describes roof on house 

25  Maximum   59 Number of dorms registered on policy   
26  Minimum   60 Expanded house insurance  Extra house insurance coverage 

  
Vehicle insurance 
deductible 

  61 Claims registered at Frende  Claims as customer of Frende 

27  Maximum   62 Claims registered last three years   Prior to be being customer 

28 Minimum  63 
Claims registered last three years at 
Frende 

Claims as customer of Frende 

29  Driver above 24  All drivers above 24    
 

Table 1 – Overview and explanation of explanatory variables 
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A full overview of the explanatory variables found in our dataset is shown in table 1. We will 

illustrate further properties of the explanatory variables in section 4.1. The response variables 

found in our dataset are shown in table 2. We will illustrate further properties of the 

explanatory variables in section 4.2. 
 

 Name Explanation 

1 Claim frequency Number of claims made by customer  

2 Claim/no claim Did customer make any claims 

3 
Number of products 
accrued How many policies did customer have 

4 Total claim amount Total amount paid to customer claims 

5 Claim percentage Percentage of claims to policy premiums 
 

Table 2 – Overview and explanation of response variables 

 
4.1 Explanatory variables 
 
4.1.1 Customer relationship year 

Frende has experienced rapid customer base growth throughout the period of our 

observations, as illustrated by figure 5. This means our dataset have fewer observations in 

2010 and gradually more each year leading up to 2018.  
 

 
Figure 5 – Development of the yearly proportion of customers with claims, yearly average number of claims, and the number 

customers in Frende (2010 – 2018). 
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We can observe that there are several reasons why the policy year should be included as an 

explanatory variable. Certain years seem to have increased rates of claims, which could be in 

part caused by extraordinary events, such as weather conditions, pandemic outbreaks, or 

natural disasters. We can also expect claims to increase annually due to inflation.  

 

4.1.2 Age distribution 

Age distribution affects risk differently dependent on which insurance policies they have, and 

we might expect to see an increased risk from lower age groups if they have a car insurance 

policy but lower risk in a life insurance policy. We can observe some spikes by claim severity 

in different age groups in figure 6, which could be caused by a limited population of 

customers in that age group, or that the low and high age groups generally can be considered 

riskier. 

 
Figure 6 – Visualization of claims by age 

 



 

36 
 

4.1.3 Gender 

While the European Economic Area (EEA) rules state that discrimination between men and 

women in access to goods and services is forbidden, Norway among other countries applied 

an exception to this rule for the insurance industry. In 2011 an EU court found that this 

practice is not valid, and the Norwegian government adopted a new legislative framework in 

2014 mandating gender-neutral private policy premiums in Prop. 87L (Det kongelige 

finansdepartementet, 2014).  

 
Figure 7 – Visualization of claims by gender 

Differences between the genders are shown in figure 7. Males are overrepresented among 

customers making claims, generally have higher claim frequencies, and have more severe 

claims. We do, however, see that when adjusted to their overall policy premiums, men have a 

slightly lower average claim percentage. 

 

4.1.4 Counties 

Frende has significantly more customers along the west coast of Norway. In the duration of 

our observations, they have seen growth in other geographic areas, but still have their 

majority of customers centered around the west coast. Different areas tend to have different 

exposure to extreme weather, landslides, and floods. Socioeconomic conditions might also 

vary across customers according to the county registered in their insurance policy. The claim 

propensity distribution of all counties is shown in figure 8. 
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Figure 8 – Customer claim propensity by county 

4.1.5 Noted customers 

Frende has a system to mark customers which for various reasons are considered riskier. This 

could be a previously high claim frequency, failing to pay for policies on time or that they 

have received collection notes. The financial and non-financial conditions that cause 

customers to be noted can also, when improved, lead to the removal of such customer marks. 

From figure 9 we can see that 4.06 % of all yearly customer relationships have been noted.  

 
Figure 9 – Number of noted customers 
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The customers who are noted displayed an overall lower claim propensity than non-noted 

customers on average, which could be considered surprising. However, we do see that noted 

customers on average have a higher claim frequency than non-noted customers, with 0.262 

claims per customer per year compared to 0.255 claims per customer per year for non-noted 

customers. This means that the noted customers are more likely to have multiple claims than 

non-noted customers. The average claim amount is also higher, with 7 464 NOK per noted 

customer compared to 6 057 NOK per non-noted customer.  

 

4.1.6 Customer relationship length and previous departures 

Figure 10 shows the number of departures of customer relationships in earlier years, i.e. the 

number of times a customer previously has left Frende, either by cancelling their customer 

relationship or by moving to another insurance provider. We can see that the vast majority of 

yearly customer relationships have not had previous departures, while a small minority have 

frequent departures. 

 
Figure 10 – Previous departures among customers 

The overall customer relationship length is illustrated by figure 11. Most customers at Frende 

are relatively new, and only a few long-standing customer relationships have accrued since 

the insurance company was started.  
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Figure 11 – Customer relationship length 

4.1.7 Policy overview 

While each customer can only have one life insurance, travel insurance, and family travel 

insurance product, customers can have multiple policies in other product categories such as 

car insurance and fire insurance. Figure 12 shows how many policies each customer holds in 

each category. It also shows that inventory, housing, car, life, travel and, family travel 

insurance are the most common products held by its customers.  

 
Figure 12 – Insurance policies held by customers 
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The policies all have different characteristics, where some have more frequent claims, and 

some have more severe claims. House insurance claims tend to be more severe than animal 

insurance claims, for example.  

 

4.1.8 Policy premiums 

The aggregated policy premiums consist of the combined yearly premiums of all policies held 

by customers throughout the year. It is determined by well-proven models employed on the 

individual policy level. Figure 13 provides insight into the distribution of yearly premiums 

across years and customers.  

 
Figure 13 – Premium distribution 

The mean total customer policy premium is 10 300 NOK, while the maximum total customer 

policy premium was 198 324 NOK. The policy premium is determined by risk factors 

weighted by the individual policy models of Frende, but also by the number of policies the 

customer held in the withstanding year. We can see that most customers pay low yearly 

premiums, while fewer pay large yearly premiums. 
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4.1.9 Customer channel 

Frende operates different channels in which insurance products are sold. While many policies 

are sold directly from Frende, they have a franchise channel in which third-parties sell on 

their behalf. One might expect different customer characteristics based on what channels 

customers are obtained from. We can see how each customer relationship year is distributed 

between channels in figure 14. 

 
Figure 14 –Customer channel 

Most observations are not registered with either customer channels, which is caused by the 

dataset not having an explicit variable indicating customers gained through the co-operating 

banks selling insurance policies on behalf of Frende. Customers obtained through these banks 

make up the vast majority of their customer base throughout the period from 2010-2018.  

 

4.1.10 Former claims 

In addition to current customer data, we have access to historical data showing how many 

claims the customer has made the last three years as a customer at Frende. From figure 15, we 

can see the number of customers that have had previous claims before their current policy 

year. 
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Figure 15 – Claims last three years at Frende  

In addition to historical claims data on their existing customers, Frende has access to claims 

made by the customer for the last three years in other insurance companies. We can see the 

number of customers who have and have not made claims three years prior to signing an 

insurance policy at Frende in figure 16. 

 
Figure 16 – Claims last three years before customer relationship 
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4.1.11 Housing insurance 

We have access to several explanatory variables associated with housing insurance. Figure 17 

shows the housing standard, which is divided into low, better, and extra high. 

 
Figure 17 – Housing standard 

In addition to the overall housing standard, we have explanatory variables shown in figure 18 

indicating if the house has extra coverage, a flat roof, whether it is insured at its full value, 

and the number of dorms included in the housing policy.  

 
Figure 18 – House insurance policy variables 

Finally, figure 19 shows the distribution of insurance values for the houses. It is close to 

normally distributed with a mean of 2 123 101 NOK, but with a heavier right tail. The lowest 

housing insurance sum is 10 000 NOK, and there are houses insured for up to 26 653 550 

NOK making the insurance value a long-tailed distribution.  
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Figure 19 – House insurance value 

4.1.12 Car insurance 

Just like the housing insurance data, we have access to additional explanatory variables for car 

insurance. As each customer can have multiple car insurance policies, we have two different 

numbers for each variable, giving the minimum and maximum value. As most customers have 

only one car insurance policy, these numbers tend to be quite similar. The only exceptions to 

this structure are the insurance discount and minimum age variables, which only has one 

singular value each. Figure 20 illustrates the car insurance data available.  

 
Figure 20 – Car insurance policy variables 
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4.1.13 Covariance between predictors 

Figure 21 shows the covariance between most of our explanatory variables, with some 

exceptions. The factor variables of county and customer year are highly correlated and 

therefore omitted. The variables "aSkPolVeterankjoretoy", "aSkPolBrann", 

"aSkPolCampingbil", "aSkPolDyr" and "aFrMann”, have very low correlation with the 

remaining 56 explanatory variables and were omitted to make the plot easier to read. The 

covariance matrix shows a high positive correlation between the car insurance predictors. This 

is to be expected as customers without car insurance will have no attributes available and will 

be set to zero, while customers with one or multiple car insurance policies will automatically 

have a high correlation between this group of explanatory variables. This also seems to be the 

case with the additional house insurance predictors. 

 
Figure 21 – Explanatory variable covariance matrix 
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The figure also shows that yearly insurance premium (aSkAarspremie) positively correlates 

with most predictors with the exception of discount code (aSkRWrabattkode) and individual 

travel insurance (aSkPolEnkelReise). The car insurance discount is positively correlated with 

customer insurance premium, which is caused by the discount being a negative number, and 

individual travel insurance is mildly negatively correlated with car insurance policy 

(aSkPolBil) and, therefore, also the other car insurance predictors. As these are among the 

most popular policies offered by Frende and customers tend to have either car insurance or 

individual travel insurance, but it is rarer to have both. This also holds true with house 

insurance and individual travel insurance. There are some highly negatively correlated 

predictors. Usually, this indicates that the insurances are mutually discriminatory. This is 

often caused by policies or customer attributes to be either unlikely or impossible to combine. 

Two examples of this are that the different customer channels are mutually exclusive, while 

family travel insurance policy is unnecessary to combine with an additional individual travel 

policy.  

 
4.2 Response variables  

Our dataset contains five response variables. In our thesis, we have modelled the binary claim 

variable, the claim frequency variable, and the total claim amount variable. Figure 22 shows a 

visual representation of these response variables. 

   
Figure 22 – Customer claim overview by claim propensity, frequency and total claim size 
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4.2.1 Claim or no claim 

The majority of Frende customers do not make any claims on a yearly basis, as shown by 

figure 22. On average, 19.72 % of Frende insurance customers make at least one claim per 

year. This makes the response variable somewhat unbalanced. We did not, however, find it so 

severely unbalanced that we need to use sampling techniques to improve predictions.  

 

4.2.2 Claim frequency 

Figure 22 also shows that among customers with claims, most have relatively few claims. 

There are some customers with high claim frequencies, but they make up a very small part of 

the customer base. There is a steep reduction in yearly customer relationships that have many 

claims. To give a representative picture of the claim frequency, we decided to adjust the claim 

frequency by dividing it by products accrued. This means we have a claim frequency adjusted 

by the accrued products throughout the year. The new adjusted claim frequency variable is 

visualized in figure 23. From this point on in the thesis, claim frequency will refer to the new 

adjusted variable. 

 
Figure 23 – Adjusted claim frequency response variable 
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4.2.3 Total claim amount  

The total claim amount response variable is the aggregated claim amount per customer per 

year over all insurance policies held by that individual customer, and its distribution is shown 

in figure 22 and 24. The mean of all claims is 6 111 NOK, while the median is 0. If we look at 

the actual claims, meaning all observations above 0, we get a median of 9 400 NOK and a 

mean of 30 986 NOK. This indicates that most claims are smaller than the mean average and 

that there are some quite large claims that greatly affects the mean average. This is underlined 

by the smallest registered claim in the dataset being 501 NOK and the largest registered claim 

being 17 136 218 NOK. To see which distribution best fits the total claim variable, we can 

look at figure 24, showing the observed distribution along with the continuous distributions 

described in section 3.2 fitted to the data.  

 
Figure 24 – Observed claim size compared to probability distributions 

Figure 24 indicates that the distributions for gamma, log-normal, and inverse-gaussian all 

share similar properties to the observed distribution. The distributions closest to the observed 

distribution are the inverse-gaussian and log-normal distributions.  
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4.3 Feature engineering 

Some of the machine learning algorithms used in our thesis only accept numerical variables, 

which means factors need to be represented as numeric values. It is also important to ensure 

that our models do not misinterpret the mathematical relationships between an explanatory 

variable and the response variable by asserting meaning to different factor levels when they 

do not (Aggiwal, 2017). Examples of such factors in our dataset are the year and county 

variables, in which the numeric representations do not have any mathematical relationship. To 

avoid such an inaccurate interpretation of the data, we have hot encoded these variables. It is a 

method to represent categorical variables as binary vectors. This means that the hot encoded 

variable is split into dummy variables for each level of the variable. The original variables are 

then removed to avoid multicollinearity with the new dummy variables (Mahto, 2019).  
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5 Modelling customer claim risk 
We refer to customer claim risk as the risk of a customer making one or more claims, 

regardless of its severity and frequency. This can be useful to discover certain customer traits 

that increase the claim propensity. We will present the results achieved by our models, but 

also which customer traits the models deem most important to predict if they will make a 

claim or not.  

 
5.1 Model predictions 

We will use AUC to compare the performance of our models, using the results of all available 

customer data, but also using the yearly premium as the only explanatory variable. This is 

done to see if the additional individual customer data results in improved predictions. 

 

5.1.1 AUC comparison 

We can see significant differences between the models using all the variables, compared to 

those who only use the yearly premium. Even the best model using the yearly premium, the 

stacked ensemble, only manages an AUC of 0.6879, which is worse than the worst-

performing model using all data, the random forest, with an AUC of 0.7008. This shows the 

usefulness of additional individual customer data. The overall results of all models can be 

seen in table 3. 

   
Model AUC (All variables) AUC (Yearly premium) 
Neural Network 0.7247 0.6856 
GLM 0.7265 0.6856 
LightGBM 0.7288 0.6853 
XGBoost 0.7299 0.6856 
Random Forest 0.7008 0.6768 
Averaging 0.7274 0.6870 
Stacked Ensemble 0.7301 0.6879 

 
Table 3 – Model AUC results comparison  

Table 3 shows that the best performing model is the stacked ensemble with an AUC of 

0.7301. The stacked ensemble uses the other models shown in the table as its inputs. We can 

see it outperforms the XGBoost model, which is the best-performing singular model, with an 

AUC of 0.7299. It is closely followed by the similar LightGBM model with an AUC of 

0.7288 and a GLM with a ridge penalty term achieving 0.7265. The neural network achieves a 
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score of 0.7247, outperforming only the Random Forest model at 0.7008. Figure 25 provides 

a detailed view of the ROC curves of the models.  

 

 
Figure 25 – ROC AUC model comparison using all individual explanatory variables 

The big difference between predictions using the full set of explanatory variables and the 

yearly premium was rather unsurprising. The individual data contains, as described in the data 

section, a lot of information about the policies each customer hold. We would expect yearly 

premiums to not only be determined by the claim propensity of a customer, or the expected 
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claim frequency, but also the theoretical claim severity if a claim occurs. While travel 

insurances typically result in high frequency claim patterns, the typical claim is relatively 

small. Housing insurance is expected to have opposite properties, with claims being rare but 

often quite severe if they occur. By including additional data about the different policies held 

and customer characteristics, the model should be able to better distinguish insurance policies 

which significantly increases claim propensity and policies that are less likely to do so.  

 

We can also observe that the averaging and stacked ensembles still perform particularly well 

when using only yearly premium as an explanatory variable. This indicates that these 

techniques are not only helpful for performance but also show stability by performing well 

when removing explanatory variables. The stability reveals how the model detection accuracy 

is affected by using different variables in testing and training data, and the variation of the 

size of training data (Lin et al., 2017). 

 
5.2 Effects of explanatory variables on customer claim risk 

The random forest and gradient boosting models XGBoost and LightGBM can provide 

variable importance. The variable importance is a measure of how important each explanatory 

variable is to determine the outcome of the response variable. The stacked ensemble uses the 

other model’s predicted response variables as explanatory variables, and will therefore not 

have any meaningful relation to the variable importance of each underlying model. The neural 

network is theoretically possible to visualize, but the complexity and built-in feature 

engineering mean the variable importance output is often not very useful to compare how 

each variable affects model performance. We have decided to use the variable importance 

from the random forest and gradient boosting models for our variable importance plots.  

 

Figure 26 shows that the random forest model assigns the greatest importance to family travel 

insurance, various car insurance variables, housing insurance variables, and customer history. 

The random forest model uses the Gini impurity to determine variable importance. While it is 

important to note that Random Forest was our worst performing model, it is often useful for 

visualization purposes as its underlying decision tree algorithm means it is among the more 

interpretable models used in our thesis.  
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Figure 26 – Claim propensity variable importance using random forest 

Figure 27 shows the variable importance of our best-performing model, XGBoost. It measures 

the gains made in each leaf split by variable. While the XGBoost shares previous customer 

history, car insurance variables, and family travel insurance as some of its more important 

variables, it puts greater emphasis on yearly customer insurance premium relative to the 

random forest model. 
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Figure 27 – Claim propensity variable importance using XGBoost 

We would expect the largely similar LightGBM model to assign similar variable importance 

compared to the XGBoost model. Figure 28 illustrates the similarity but also shows some 

minor differences in the ranking order. LightGBM for example puts more relative emphasis 

on customer relationship length than XGBoost.  
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Figure 28 – Claim propensity variable importance using LightGBM 
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6 Modelling claim frequency 
Modelling the claim frequency of customers can be useful to discover certain customer traits 

that distinguish customers with high claim frequencies from those with low claim frequencies. 

We will look further into the results achieved by our models, but also the customer traits 

which are most important to predict if a customer has a high claim frequency or not.  

 

6.1 Model predictions 

We have focused on two main methods to assess model performance, RMSE and MAE. We 

will measure the performance of the models using all explanatory variables, but also using 

only the yearly premium to see what additional value the individual customer data provides 

when modelling claim frequency. To understand the differences between models and discover 

the weak points of each model, we will provide some detailed statistics about the model 

responses. 

 

6.1.1 RMSE comparison 

In addition to the models used to determine the customer claim risk, we use simple averaging 

of the models to see how it compares to the more sophisticated stacked ensemble model. The 

overall results from the models using the yearly premium to those that use all variables 

indicate that there is value in using the individual customer data provided. The difference in 

performance, however, is smaller than it was when modelling claim propensity.  

   
Model RMSE (All variables) RMSE (Yearly premium) 
Neural Network 0.2650 0.2689 
GLM 0.2657 0.2691 
LightGBM 0.2640 0.2688 
XGBoost 0.2642 0.2688 
Random Forest 0.2658 0.2702 
Stacked Ensemble 0.2626 0.2687 
Averaging 0.2644 0.2688 

 

Table 4 – Claim frequency RMSE comparison   

Table 4 shows that the best performing model is the stacked ensemble with an RMSE of 

0.2626. We can see it outperforms the best-performing singular model, LightGBM, with an 

RMSE of 0.2640. It is closely followed by the other gradient boosting model XGBoost, with 

an RMSE of 0.2642. Averaging of all algorithms gives us the fourth-best performing model 

with an RMSE of 0.2644, followed by the neural network achieving an RMSE of 0.2650. Our 
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benchmark GLM model achieves an RMSE of 0.2657, just beating out the Random Forest 

model, which again is the worst performer with an RMSE of 0.2658. We discovered that the 

GLM without penalty terms outperformed versions using ridge and lasso regularization when 

modelling claim frequency. 

 
6.1.2 MAE comparison 

Table 5 shows that there is a different order of the best-performing models when measuring 

performance with MAE. 

 
Model MAE (All variables) MAE (Yearly premium) 
Neural Network 0.1160 0.1253 
GLM 0.1207 0.1236 
LightGBM 0.1198 0.1230 
XGBoost 0.1200 0.1253 
Random Forest 0.1221 0.1235 
Stacked Ensemble 0.1193 0.1241 
Averaging 0.1218 0.1255 

 

Table 5 – Claim frequency MAE comparison   

The best performing model is the neural network with an MAE of 0.1160. The stacked 

ensemble is now the second-best performing model with an MAE of 0.1193, closely followed 

by the LightGBM model with an MAE of 0.1198. The XGBoost is now the fourth-best model 

with an MAE of 0.1200, followed by the benchmark model GLM with an MAE of 0.1207. 

Averaging achieves an MAE of 0.1218, and Random Forest again is the worst-performing 

model with an MAE of 0.1221. We see a significant gap between the models MAE using all 

variables to those using only yearly premium, similarly to when measuring with RMSE. 

 

6.1.3 Differences in RMSE and MAE performance 

As we can observe in the RMSE and MAE results for each model, there is a discrepancy in 

the order of the best-performing models between the two measures. While the neural network 

comfortably outperforms the other algorithms using the MAE measure, it is among the worst 

performers using RMSE. As described in section 3.5, RMSE penalizes large prediction errors 

harder than MAE, while MAE favors the average overall prediction errors to be low. By 

looking closer at the predictions made by our models in table 6, we can see why the 

discrepancy in performance exists.  
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  Min. 1st Qu. Median Mean 3rd Qu. Max. 
Observed 0.0000 0.0000 0.0000 0.0784 0.0000 19.2678 
XGBoost -0.0217 0.0507 0.0704 0.0776 0.0940 3.5767 
Neural Network -0.1057 0.0545 0.0703 0.0784 0.0859 1.2846 
LightGBM -0.0277 0.0492 0.0701 0.0775 0.0954 0.9295 
Random Forest 0.0239 0.0606 0.0734 0.0775 0.0892 0.7999 
GLM -0.1664 0.0504 0.0728 0.0774 0.0998 0.6125 
Averaging 0.0157 0.0782 0.0824 0.0805 0.0849 1.3659 
Stacked ensemble 0.0138 0.0774 0.0802 0.0784 0.0826 0.7101 

 

Table 6 –Distribution of predicted claim frequency of all singular models   

We see that the observed response is usually zero. This means that the customer does not 

make any claims. As the vast majority of customers do not have any claims in any given year, 

this means the model that predicts values closer to zero tends to have a lower MAE. The most 

conservative models are therefore rewarded with a low MAE, despite having more substantial 

prediction errors when measured by RMSE. We can illustrate how the RMSE and MAE 

behave by using a model predicting only one single value across the claim frequency range 

from 0 to 0.25 in figure 29. The red line indicates the performance of our respective best-

performers using RMSE and MAE. 

 
Figure 29 –RMSE and MAE plots showing error when predicting the same claim frequency on all observations   

We can see that predicting zero on all observations will outperform all the other models using 

the MAE measure, with a score of 0.0783 compared to our best performing model, the neural 
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network, which achieved an MAE of 0.1160. Doing the same with RMSE will give us worse 

performance than all the other models. MAE, in other words, value models that predict closer 

to the most common outcome, rather than RMSE, which puts greater emphasis on outliers. As 

our main objective is to find out what customers present the most significant risk of high 

claim frequency, we consider the results of RMSE to be the more suitable estimate of model 

performance. The figure also illustrates that our stacked ensemble is able to distinguish 

between customers with different claim frequencies, as the optimal single claim frequency 

value of 0.0784 still performs considerably worse, with an RMSE of 0.2691 than all our other 

models with all explanatory variables available. Of our models using only the yearly premium 

to predict claim frequency, we can observe that the random forest model performs worse than 

consistently predicting 0.0784, and the GLM performs equally. All the other models are still 

able to outperform the optimized single value prediction. This illustrates that these models are 

not particularly useful using only the yearly premium as an explanatory variable, but also that 

the other models are able to distinguish between the claim frequency of customers based upon 

the individual customer data at our disposal.  

 

An approach which is not part of the scope of this thesis, but could possibly improve the 

prediction in view of the above result, is to perform a two-step conditional prediction routine; 

First, one uses the customer claim risk model as in Section 5 to predict whether the customer 

will have one or more claims. Secondly, one could repeat the above model fitting but using 

data where all individuals have one or more claims. This model can then be used to predict 

the actual number of claims for an individual where the customer claim risk model has 

predicted one or more claims. Conversely, if the customer claim risk model predicts zero 

claims, then one simply let the predicted number of claims to be equal to zero. 
                                                                                        

6.2 Effects of explanatory variables on customer claim frequency 

Figure 30 shows that the random forest model assigns the greatest importance to the yearly 

premium, age, previous customer history, and car insurance policy related variables.  
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Figure 30 – Claim frequency variable importance using random forest 

Figure 31 shows the variable importance of our best-performing model. It shares certain 

variables with the Random Forest importance, such as yearly premium amount, previous 

customer history, car insurance variables, and car insurance policy. Unlike the random forest 

model, it puts more emphasis, relatively, on the house insurance policy and variables.  
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Figure 31 – Claim frequency variable importance using XGBoost 

Just like when modelling claim propensity, the LightGBM model still assigns similar variable 

importance to the XGBoost model. Figure 32 does however, show that there are various 

differences in the importance order. LightGBM puts more emphasis on customer relationship 

length, car insurance discount, and pet insurance. 
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Figure 32 – Claim frequency variable importance using LightGBM 
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7 Modelling total claims  
In addition to determining the customer claim risk and customer claim frequency, we want to 

model the customer’s total claim. It consists of the total claims made a given year by each 

customer. It is a stochastic variable, which is especially hard to model as it consists of two 

different stochastic variables, claim frequency and claim severity. In our dataset, we do not 

have access to the severity of individual claims, but we can find the average claim size using 

the claim frequency and the total claim size. 
 

7.1 Model predictions comparison 
Similar to when modelling claim frequency, we have focused on RMSE and MAE to assess 

model performance. We will also distinguish between the different models with all available 

data, and those using only the yearly premium, to see if the individual customer data provides 

any additional value when predicting total claim size. To understand the differences between 

models and discover their weak points, we will provide some detailed statistics about the 

model responses. 
 

7.1.1 RMSE comparison 

Table 7 shows that using the yearly premium to predict total claims is almost as effective as 

using all available data. While this shows that the individual customer data is less important to 

determine total claims size than claim propensity and frequency, it underlines the importance 

of choosing the correct model to achieve good results, as some models are able to outperform 

the others using only yearly premium as an explanatory variable. There are multiple reasons 

why this might be the case. The well-proven individual policy models used by Frende have 

access to more data and have been developed specifically to leverage that data and the 

company insights. The high degree of randomness in total claim size also seems to put more 

emphasis on correctly distributed models than our other responses. 
 
 

Model RMSE (All variables) RMSE (Yearly premium) 
Neural Network 76 775.35 76 806.90 
GLM 76 773.84 76 806.72 
LightGBM 76 787.61 76 812.96 
XGBoost 76 849.83 76 956.98 
Random Forest 76 791.00 77 819.30 
Stacked Ensemble 76 802.38 76 830.53 
Averaging 76 781.37 76 865.87 

 

Table 7 – RMSE comparison of total claim predictions   
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Table 7 also shows that the best performing model is the GLM, with an RMSE of 76 773.84. 

The best performing GLM was regularized with a combination of lasso and ridge, but the 

gains from a regular GLM was modest. The differences between the models, when measured 

by RMSE, are quite small because of a handful of massive claims which the models are not 

able to predict. The neural network achieves an RMSE of 76 775.35, while the LightGBM 

model is the third-best performer with an RMSE of 76 787.61. Averaging the models gives us 

an RMSE of 76 781.37, while the random forest performs well compared to its performance 

on the previous response variables, and is fifth-best with an RMSE of 76 791.00. The stacked 

ensemble and XGBoost perform quite poorly compared to what they achieved at claim risk 

and frequency with an RMSE of 76 802.38 and 76 849.83, respectively.  

 

7.1.2 MAE comparison 
 

Model MAE (All variables) MAE (Yearly premium) 
Neural Network 9 545.81 9 697.52 
GLM 9 733.84 9 719.53 
LightGBM 9 602.85 9 523.99 
XGBoost 8 836.22 9 517.81 
Random Forest 9 740.47 9 944.35 
Stacked Ensemble 8 866.14 10 799.14 
Averaging 9 454.43 9 349.66 

 
Table 8 – MAE comparison of total claim predictions   

Table 8 shows that similarly to when modelling claim frequency, there is a different order in 

the best-performing models when measuring performance with MAE. The ranking order, 

however, is quite different. The best performing model is the now the XGBoost model with an 

MAE of 8 836.22. The stacked ensemble is now the second-best performing model with an 

MAE of 8 866.14. There is a large gap to the third-best performing model measured, 

averaging, having an MAE of 9 454.43. The neural network achieves an MAE of 9 545.81, 

and LightGBM follows with an MAE of 9 602.85. The large difference between the relatively 

similar LightGBM and XGBoost models can be considered slightly surprising, being closely 

matched predicting the other response variables. Our GLM, with a combination of lasso and 

ridge regularization, achieves an MAE of 9 733.84, just beating out the random forest model 

MAE of 9 740.47. An interesting observation is that several models perform better using only 

the yearly premium as an explanatory variable, which was not the case when measuring by 

RMSE.  
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7.1.3 Differences in RMSE and MAE performance 

When comparing the RMSE and MAE of the models, we can see that the models that perform 

well using RMSE, often performs among the worst using MAE, and the other way around. 

There seems to be a tradeoff between achieving a good RMSE and MAE. The results from 

claim frequency seemed to have a similar tradeoff, but not to the degree seen in the total claim 

size modelling. This results in the worst-performing model measured by RMSE, the 

XGBoost, achieving the best results measured by MAE. 

 

We described a possible cause of discrepancies between RMSE and MAE performance while 

presenting the claim frequency results. We can see the same patterns when modelling the total 

claim size, albeit slightly enhanced. Table 9 provides a detailed overview of the model 

predictions and gives us an indication of why the discrepancy in performance exists. We can 

see that the XGBoost consistently predicts low values but have some extreme predictions 

when compared to the others. Given the characteristics of RMSE and MAE, this means it will 

have a low average error but will be punished hard for its highest predictions if the customer 

has zero claims according to the RMSE measure.  

 

  Min. 1st Qu. Median Mean 3rd Qu. Max. 
Observed 0.00 0.00 0.00 6 117.00 0.00 17 136 218.00 
XGBoost 392.10 1 769.60 4 114.50 4 868.40 6 807.60 338 102.20 
Neural Network 15.62 1 665.30 4 890.22 5 916.24 8 677.04 60 086.64 
LightGBM 1 076.00 2 404.00 4 898.00 5 968.00 8 252.00 96 391.00 
Random Forest 795.00 2 586.00 5 328.00 6 134.00 8 670.00 85 475.00 
GLM -7 205.00 1 954.00 5 089.00 6 123.00 9 030.00 73 764.00 
Averaging -126.20 2 152.70 4 883.20 5 801.00 8 254.80 257 083.70 

 

Table 9 – Distribution of predicted and observed total claim size of all singular models   

Similarly to the claim frequency models, we can outperform the MAE measures of the models 

by predicting zero total claim across all observations, resulting in a score of 6 117.18. When 

predicting zero on all responses while measuring with RMSE, we achieve a score of 

77 193.93, significantly worse than our worst-performing model. We can also observe that the 

GLM has negative predictions, and as negative claims are not to be expected, this means there 

are further gains to be made by left-truncating the predictions. In tables 10 and 11, we can 

observe the changes in RMSE and MAE, respectively, caused by truncating the predictions.  
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 Truncating XGBoost Neural Network LightGBM Random Forest GLM Averaging 
<0    76 847.15     76 777.99     76 787.61          76 791.00     76 772.99     76 781.57  
< 1 000    76 847.56     76 778.48     76 787.61          76 790.94     76 773.06     76 781.57  
< 5 000    76 885.00     76 800.71     76 810.09          76 811.00     76 794.44     76 804.30  

 

Table 10 – RMSE of left-truncated total claim size predictions   

 Truncating XGBoost Neural Network LightGBM Random Forest GLM Averaging 
<0      8 852.19       9 517.55       9 602.85            9 740.47       9 669.91       9 447.24  
< 1 000      8 752.11       9 462.82       9 602.85            9 685.45       9 640.56       9 382.44  
< 5 000      7 816.32       8 690.04       8 600.92            8 818.15       8 912.01       8 520.46  

 

Table 11 – MAE of left-truncated total claim size predictions   

We can also illustrate how the RMSE and MAE behave when using a model predicting only 

one value across the range from 0 to 25 000 in figure 33. The red line indicates the 

performance of our best singular model on RMSE and MAE, respectively. 

 
Figure 33 – RMSE and MAE plots showing error when predicting the same total claim on all observations   

It shows how it is possible to beat our MAE scores by simply predicting anything from zero to 

4 157 for every observation. It also shows that predicting any single value on all observations 

will result in worse RMSE performance, which underlines why it has been our preferred 

model performance metric. By out-performing the single value that optimizes RMSE in our 

test set, it also shows that despite the significant occurrence of randomness in which 

customers have high total claims, our models are still able to distinguish customers likely to 
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have high total claims. While the difference might not seem large, this is mainly caused by 

some very high claims severely increasing the RMSE. The large discrepancy between the 

RMSE and MAE illustrates this point as the squared residuals of RMSE makes it around eight 

times larger than the MAE on average across our models.  

 

Similarly to our suggestions in the claim frequency result section, we could possibly model 

total claim size by using a three-step conditional prediction routine, by adding the customer 

claim risk model as described in section 5 to predict whether the customer will have one or 

more claims, then model the claim frequency of the customer and finally the total claim size. 

With this approach, we let the total claim size be a function of our existing models used in 

sections 5, 6, and 7. This model could be used to predict the total claim size given the claim 

frequency and claim risk of the individual customer. 

 

7.2 Effects of explanatory variables on customer claim 

We can observe in figure 34 that house insurance sum is now the second-most important 

explanatory variable in our dataset, and that previous customer history is less important to 

determine total customer claim when compared to claim frequency. This is likely related to 

the biggest customer claims often being in relation to housing policies. Housing insurance, 

inventory and other housing-related claims tend to be rare occurrences but result in more 

severe claims than the other policies offered by Frende. Similar to claim propensity and 

frequency, the car insurance explanatory variables are important to the model.   
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Figure 34 – Total claim variable importance using random forest 

From the XGBoost variance importance shown in figure 35, we can see some of the same 

patterns observed in the random forest plot. We can see that the house insurance sum is the 

second-most important explanatory variable after the yearly insurance premium. Otherwise, 

the most important explanatory variables are similarly ranked, with some notable counties and 

years carrying more significance for the results obtained by the XGBoost model.  
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Figure 35 – Total claim variable importance using XGBoost 

We can observe in figure 36 that LightGBM has some differences to the XGBoost model. It 

puts greater emphasis on customer history than the XGBoost and third-party liability 

insurance. Unlike the XGBoost, the LightGBM ranks the categorical variables such as 

counties and year as less important. The common theme among the model’s variable 
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importance is car insurance variables, house insurance policy variables, age, yearly customer 

insurance premium, and customer history variables.  

 
Figure 36 – Total claim variable importance using LightGBM 
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8 Discussion and conclusion 

8.1 Discussion 

When modelling claim propensity, we found that we were able to leverage the individual data 

provided to increase the model performance significantly when compared to using the yearly 

insurance premium. Claim propensity is the response variable that seems to make the most 

use of the individual data, which was consistent with what we expected. In our claim 

frequency modelling, we observed many of the same models performing well, with the 

stacked ensemble seemingly even more useful than when modelling claim propensity. When 

it came to the total claim size, we found that the choice of model was more important than 

added explanatory variables. Using the full set of explanatory variables yielded solid 

improvements across claim propensity, claim frequency, and to a lesser degree, total claim 

size. While we expected both claim propensity and claim frequency to have considerable 

improvements by including all variables, the slight improvements gained in total claim size 

predictions could also be of value. Overall, we found these results to be encouraging when it 

comes to modelling individual customer risk across multiple policies.  

 

There are some interesting findings in the model performance across claim propensity, claim 

frequency, and total claim size. Our findings show that the gradient boosting models 

LightGBM and XGBoost perform particularly well when modelling claim propensity and 

frequency. These models are quite popular in data science competitions and are often included 

in the winning solutions, which is understandable given our findings. We do see that the most 

sophisticated models might not result in better predictions across all responses. We found that 

predicting total claim was particularly tricky when trying to optimize singular gradient 

boosting and neural network models. This could be caused by the high degree of randomness 

associated with total claim size, and that the models struggle to distinguish customers with 

large claim sizes, in contrast to their claim propensity and frequency. When compared to the 

GLM models, which not only are easy to implement, adaptable, and perform consistently 

while modelling all three responses, we saw that our most flexible models were not able to 

beat our benchmark GLM, when measured by RMSE. 

 

This underlines an important aspect when applying flexible machine learning models such as 

LightGBM, XGBoost, and the neural network to predict customer risk. They are very 

sensitive to hyperparameter optimization, and although we have spent considerable time 
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optimizing these hyperparameters, we are confident that there are further gains to be made. 

Without time and computational constraints, we would expect these models to have extra 

room for improvement across all response variables. This underlines the most important 

strength, but also the greatest weakness of these models. They are highly flexible and do a 

great job fitting the data, and while the flexibility means these models have the potential to 

outperform traditional statistical learning models, it also makes them prone to overfitting. 

They all have built-in features to avoid overfitting, and many of these features depend on 

hyperparameter optimization. If these hyperparameters are not correctly set, their performance 

significantly decreases. Working with our thesis, we have seen large differences in 

performance using the default hyperparameters and the optimized hyperparameters found 

through grid search and bayesian optimization. Finding the correct hyperparameters are often 

highly dependent on the dataset, the response variable, and varies between different purposes 

and applications. This makes hyperparameter optimizing time-consuming, computationally 

intensive, and difficult for users without domain knowledge.   

 

It is also important to note the strengths and overall impressive performance of the GLM 

model. While there have been introduced many new and sophisticated approaches to take 

advantage of the increased computing power and data richness available, the GLM model still 

performs relatively well across all response variables. It has served as an excellent 

benchmark, and was the strongest performer predicting total claim size. The lack of flexibility 

makes it lack the peak performance of the other machine learning models, but the stability and 

robustness of the model are important features in many applications. We also discovered that 

due to the high-dimensional nature of our dataset, there were gains to be made by using lasso 

and ridge regularization to the GLM. While the claim frequency did not see any 

improvements using regularization terms in the GLM, we saw a slight improvement for total 

claim size and a considerable improvement when modelling the claim propensity.  

 

Perhaps the most interesting discovery from our results is that ensemble methods were able to 

improve the performance of our best models. While gradient boosting and bagging have 

become more widespread through popular models such as XGBoost and Random Forest, we 

have shown how using stacked ensembles can further improve predictions consisting of 

already well-performing models. The stacked ensemble can leverage the law of large numbers 

to enhance the performance of our singular models, and it performed better than all the 

individual models used to assess claim propensity and frequency. The improvements in results 
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compared to the individual models could be observed using all variables, but also when we 

only used the yearly premium, which reveals its stability and robustness as another strength. 

Combining multiple flexible models and less flexible models such as GLMs in a stacked 

ensemble makes it possible to achieve increased performance without sacrificing stability.  

 

It is important to point out that there is “no such thing as a free lunch”, and stacked ensembles 

come with some downsides. They are computationally intensive to train, and by combining 

multiple models, they will spend more time predicting results. The added complexity also 

adds to a problem found across all our complex models, the black-box issue. XGBoost, 

LightGBM, and neural networks are significantly less transparent about how it arrives at its 

predictions than decision trees and GLMs. Creating large ensembles of multiple complex 

models only adds to the problem. While it is possible to uncover the variable importance of 

the meta-model and then all its underlying models, it will be hard to explain the decision-

making process in understandable terms for an end-user. Depending on the specific use case, 

this could either result in a regulatory issue or just a negligible inconvenience.  

 
8.2 Conclusion 

In our thesis, we have investigated the value of using individual customer data to model 

customer claims, claim frequency, and total claims. Traditionally, the insurance industry has 

focused on modelling individual policies using conservative statistical modelling techniques. 

By using individual customer data across multiple policies, we could observe prediction 

improvements across all three responses. Our thesis has also shown promise in using modern 

machine learning model to leverage this individual data in the best possible way. 

 

In addition to highlighting the potential of analysing customers as a whole, rather than its 

individual insurance policies, our thesis also highlights the importance of choosing the correct 

model and the benefits associated with ensemble techniques. We were able to beat our 

benchmark GLM models in two out of our three responses, using various individual models 

and ensembles. We found differences in overall performance between these individual 

models, but also methods to combine these models to enhance overall performance and 

stability. Among our singular models, we found the gradient boosting models LightGBM and 

XGBoost to be particularly strong performers. The most impressive performer was a stacked 

ensemble leveraging multiple gradient boosting models, random forests, neural networks, and 

generalized linear models. It was our best-performing model modelling claim propensity and 
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frequency. It did not only provide performance benefits but also proved more robust on 

subsamples and across different features than our other models. We did, however, find that 

GLMs are widespread in the insurance industry for good reason, as it was our best performer 

modelling the total claim size. While it is difficult to evaluate the benefits of risk assessing 

customers across multiple policies in monetary terms, there are reasons to believe that added 

insights in this area could be valuable for Frende. It could make it easier to avoid particularly 

risky customers, but also make it easier to retain attractive customers by offering discounts 

based on a customer’s entire policy portfolio. While multiple product discounts are already 

common in the insurance industry, better estimates on customer risk could help to distinguish 

which customers should be offered these discounts, and how large each discount should be. 

 
8.3 Suggestions for further studies 

Within insurance claim modelling, there are two different presumptions about claim size and 

claim frequency, one of which assumes that they are independent - and the other assumes that 

they are dependent variables. If we presume dependence, we hypothesized that models 

including predictions about both claim size and frequency could potentially deliver good 

results. As we found models predicting claim propensity to perform well, we also decided to 

try out a three-stage model, including claim propensity, claim frequency, and total claim size. 

By basing the predictions on several models, it might also increase the stability of predictions. 

However, as we pursued this task, we quickly found this approach to be very time-consuming. 

The high dimensionality of the data and multiple models used both sequentially and in 

parallel makes hyperparameter optimization time-consuming and adds complexity overall. 

We ran trials using smaller subsets of our provided dataset and found that any increase in 

performance seemed to be modest when compared to the time spent adjusting parameters and 

selecting features. Despite these added complexities, we find it to be an interesting concept 

that possibly could provide value when modelling claims. 

 

An alternative that might be less computationally expensive but still able to make use of the 

same characteristics, is a stacked ensemble using predictions of claim propensity, claim 

frequency, and claim size as inputs to a meta-model predicting total claim size. Such a model 

would massively decrease data dimensionality, without losing too much information in the 

process. It would also allow leveraging the entire training set for model training purposes.  
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8.4 Disclaimers, sources of error and limitations 

In an empirical study, it is important to disclose possible sources of error and any limitations 

the results and conclusions might have. We have written a step-by-step overview:  

 

- As our data is provided by a third party, we cannot exclude the possibility of data errors. 

There might be some errors from manual registering or transfers between internal systems. 

 

- Programming errors in R cannot be ruled out, given the vast amounts of code required to run 

our models. We have repeatedly checked for errors, made sure results seem reasonable, and in 

some cases, we ran simple small-scale experiments on our models to ensure they behave as 

expected. We have also gone through our code to make sure that there are no data leakages. 

By data leakages, we mean data not supposed to be seen by the model at the training stage, so 

that it has information that could affect results when predicting on the unseen test data.  

 

-  Our dataset is recent, so our findings should be relevant for modelling current insurance 

customer risk. There is, however, an unbalanced number of observations for each year. As 

described in our data section, Frende has experienced substantial growth in their customer 

base, and therefore have relatively few customers in 2010 compared to 2018. The customer 

growth might make it more difficult for our models to account for any important changes 

which could have occurred in customer behaviour during the period. One example of this is 

the increasing entrance of electric cars, which have introduced changes to the car insurance 

policies in the later period of our dataset. These changes could potentially skew model results 

when applied to new data. 

 

- Even though the dataset contains many observations, it is important to keep in mind that 

Frende makes up 3.5 % of the Norwegian insurance market in 2019 (Slettemoen, 2020). Their 

customer base is also quite skewed geographically with their market share in west-coast and 

southern counties making up anywhere between 10-15 %, compared to their national average 

of 3.5 %. We still believe that insurance companies and their customers are homogenous 

enough to make our results universally applicable. It is still important to consider that the 

Norwegian insurance customers will likely have specific characteristics, potentially making 

the source of error larger in an international context. 
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