
Vol.:(0123456789)

Journal of Geographical Systems
https://doi.org/10.1007/s10109-020-00336-0

1 3

ORIGINAL ARTICLE

Progress in the R ecosystem for representing and handling
spatial data

Roger S. Bivand1

Received: 9 October 2019 / Accepted: 8 September 2020
© The Author(s) 2020

Abstract
Twenty years have passed since Bivand and Gebhardt (J Geogr Syst 2(3):307–317,
2000. https ://doi.org/10.1007/PL000 11460) indicated that there was a good match
between the then nascent open-source R programming language and environment
and the needs of researchers analysing spatial data. Recalling the development of
classes for spatial data presented in book form in Bivand et al. (Applied spatial data
analysis with R. Springer, New York, 2008, Applied spatial data analysis with R,
2nd edn. Springer, New York, 2013), it is important to present the progress now
occurring in representation of spatial data, and possible consequences for spatial
data handling and the statistical analysis of spatial data. Beyond this, it is imperative
to discuss the relationships between R-spatial software and the larger open-source
geospatial software community on whose work R packages crucially depend.

Keywords Spatial data analysis · Open-source software · R programming language

JEL Classification C00 · C88 · R15

1 Introduction

While Bivand and Gebhardt (2000) did provide an introduction to R as a statistical
programming language and to why one might choose to use a scripted language like
R (or Python), this article is both retrospective and prospective. It is possible that
those approaching the choice of tools for spatial analysis and for handling spatial
data will find the following less than inviting; in that case, perusal of early chapters
of Lovelace et al. (2019) will provide useful context. Two further pointers include
the fact that R and most R add-on packages are open-source software and so with-
out licence fees or other such restrictions. The second pointer is that all scripting

 * Roger S. Bivand
 roger.bivand@nhh.no

1 Department of Economics, Norwegian School of Economics, Helleveien 30, 5045 Bergen,
Norway

http://orcid.org/0000-0003-2392-6140
https://doi.org/10.1007/PL00011460
http://crossmark.crossref.org/dialog/?doi=10.1007/s10109-020-00336-0&domain=pdf

 R. S. Bivand

1 3

languages provide the structures needed for reproducible research, and open-source
software gives the interested researcher the means to run the scripts needed to repli-
cate results without cost, given access to adequate hardware. Hence, an overview of
the development of the use of R for handling spatial data can cast light on how and
why steps fashioning today’s software were taken. Of course, an overview of the use
of R for analysing spatial data would also be tempting, but, with about 900 R pack-
ages using spatial data handling classes and objects, would far exceed the bounds of
a single article.

The R statistical programming language and environment has been used for han-
dling and analysing spatial data since its inception, partly building on its heritage
from S and S-Plus. When the conceptualization of spatial data was introduced in
the sp package (Pebesma and Bivand 2005, 2020, on the Comprehensive R Archive
Network (CRAN) since 2005), it was expected that some packages would adopt its
classes. Some years later, adoption rates had picked up strongly, as had use of the
sp-based packages rgdal (Bivand et al. 2020, on CRAN since 2003) for input/output
and rgeos (Bivand and Rundel 2020, on CRAN since 2011) for geometric manipula-
tion of vector data.

Packages depending on sp classes continue to require support as more mod-
ern data representations have been introduced in the sf (Pebesma 2018, 2020a, on
CRAN since 2016) and stars (Pebesma 2020c, on CRAN since 2018) packages.
The sf package provides the data reading and writing, and geometry manipulation
functionalities found in rgdal and rgeos, and an alternative class representation
for vector data based on the Simple Features standard (Herring 2011; ISO 2004).
The stars package adds facilities for handling spatial and spatio-temporal raster and
vector data, building in part on work with the spacetime package (Pebesma 2012,
2020b, on CRAN since 2010) and on raster handling in the raster package (Hij-
mans 2020a, on CRAN since 2010). The raster package will not be discussed in this
review, mostly because information in the Github “rspatial” organization (https ://
githu b.com/rspat ial) repositories suggests that development is in flux and that raster
is becoming a new package called terra (Hijmans 2020b). Discussion here will con-
centrate on packages developed and maintained by the Github “r-spatial” organiza-
tion (https ://githu b.com/r-spati al) of which I am a member.

Newer visualization packages, such as tmap (Tennekes 2018, 2020, on CRAN
since 2014), mapview (Appelhans et al. 2020, on CRAN since 2015) and cartog-
raphy (Giraud and Lambert 2016, 2017, 2020, on CRAN since 2015), give broader
scope for data exploration and communication. Modelling and analysis packages
demonstrate the considerable range of implementations now available and are often
supported with additional code provided as supplementary material to journal arti-
cles, for example in the Journal of Statistical Software spatial statistics special issue
(Pebesma et al. 2015). The availability of software and scripts provides a helpful
mechanism supporting reproducible research and hands-on reviewing in which
readers can read the code and scripts used in calculating the results presented in
published work (see, for example, Sawicka et al. 2018; Lovelace and Ellison 2018;
Evangelista and Beskow 2018, in one issue of the R Journal).

Some packages are used by others in turn forming dependency trees; because of
these dependencies, we can speak of an ecosystem. Class representations of data

https://github.com/rspatial
https://github.com/rspatial
https://github.com/r-spatial

1 3

Progress in the R ecosystem for representing and handling spatial…

are central, with the data frame conceptualization shaping much of the whole R
ecosystem. For the modelling infrastructure to perform correctly, the relationships
between objects containing data and the formula representations of models are cru-
cial. Because both sp and sf provide similar interfaces for the data= arguments for
model fitting functions by behaving as data.frame objects, transition from sp
to sf representations is convenient by design. The spdep package (Bivand 2020b,
on CRAN since 2002) for exploratory spatial data analysis and the new spatialreg
package (Bivand and Piras 2019, on CRAN since 2019) for spatial regression (split
out of spdep) have been adapted to accommodate geometries held in sf classes, so
both approaches are viable. Other packages, such as mapview, tmap or stplanr
(Lovelace et al. 2020) have been revised to permit use with both sp and sf objects. In
order to retain backward compatibility, other central packages may choose to handle
the coexistence of sp and sf classes in the same way.

Developers of new packages should choose to use sf and stars rather than sp,
rgdal and rgeos (and terra rather than raster), but existing packages are free to
adapt, or indeed to stay with sp, rgdal and rgeos, hoping that they may continue to
be maintained. Naturally, contributions to maintenance and development from those
using software on which one’s work depends are among the “prices” to be “paid” for
open-source software, so “hope” may involve commitment to take responsibility for
maintenance. If a maintainer is unable to continue in service, software like R add-on
packages is termed “orphaned”, but may be adopted. This occurred very recently
with an R linear programming package lpSolve, which has been adopted by Gábor
Csárdi to widespread relief and gratitude. Because there is no corporation tasked
with maintaining most R add-on packages, their future use has to depend on the user
community.

One key reason why sf is much easier to maintain is that it was written using the
Rcpp package (Eddelbuettel et al. 2011, 2020; Eddelbuettel 2013; Eddelbuettel and
Balamuta 2018, on CRAN since 2008) to interface C++ code in GDAL and now
PROJ (both C++11), and GEOS code through the C API, whereas rgdal and rgeos
have more fragile handcrafted interfaces originally written for C99 and C++98.
Maintaining Rcpp/C++11 interfaces is very much easier than older adaptations not
as well understood by younger developers. However, the choice of C++ interfaces is
not necessarily robust (Kalibera 2019).

Since there is a viable alternative to rgdal and rgeos, a fallback in the future for
sp-dependent packages will be to use sf for reading and writing data, and geometry
manipulation, and to coerce to sp classes before passing to existing modelling code
if sp classes are needed. Maintainers of actively developed packages using sp vec-
tor classes intensively and that are also impacted by changes in coordinate reference
systems (Sect. 4) are advised to consider transitioning to sf, as substantial revisions
will be needed anyway.

In this review and prospect, the progress seen over the last 20 years will be
described, together with the unexpected consequences it engendered. The emer-
gence of new technologies and standards has also led to the desirability of re-imple-
mentation of data representations and analysis functionality, some of which is now
in place and which will be described. Changes also impact the open-source librar-
ies on which core spatial functionality is built, leading to challenges in ensuring

 R. S. Bivand

1 3

backward compatibility. This will be shown using the example of coordinate refer-
ence systems. In terms of positionality, much of what follows will be presented from
the point of view of the author, documented as far as possible from email exchanges
and similar sources. It is more than likely that other participants in the development
of the R-spatial community may recall things differently, and of course, I acknowl-
edge that this description is bound to be partial.

2 Spatial data classes in the sp package

In the early and mid-1990s, those of us who were teaching courses in spatial analysis
beyond the direct application of geographical information systems (GIS) found the
paucity of software limiting. In institutions with funding for site licences for GIS, it
was possible to write or share scripts for Arc/Info (in AML), ArcView (in Avenue)
or later in Visual Basic for ArcGIS. If site licences and associated dongles1 used
in the field were a problem (including problems for students involved in fieldwork
in research projects), there were few alternatives, but opportunities were discussed
on mailing lists. One of these was the AI-Geostats listserve/mailing list started by
Gregoire Dubois in 1995; AI meant Arc/Info. Another community gathered around
GRASS GIS and its transition to open-source development; it hosted, among other
things, src.contrib and src.garden directory trees with analysis tools (see
code stored in the https ://githu b.com/OSGeo /grass -legac y repository).

From late 1996, the R programming language and environment began to be seen
as an alternative for teaching and research involving spatial analysis by a few people
including the author and Albrecht Gebhardt. R uses much of the syntax of S, then
available commercially as S-Plus, but was and remains free to install, use and extend
under the GNU General Public License (GPL). In addition, it could be installed
portably across multiple operating systems, including Windows and Apple Mac OS.
At about the same time, the S-Plus SpatialStats module was published (Kaluzny
et al. 1998), and a meeting occurred in Leicester in which many of those looking
for solutions took part. (My contribution was published in the meeting special issue
Bivand 1998.)

Much of the porting of S code to R for spatial statistics was begun by Albrecht
Gebhardt as soon as the R package mechanism matured. The library() func-
tion was upgraded in R 0.60 published in December 1997, and the Comprehensive
R Archive Network was operating in January 1998. An exchange between Albre-
cht Gebhardt and Thomas Lumley on the R-beta mailing list (https ://stat.ethz.ch/
piper mail/r-help/1997-Novem ber/00188 2.html) shows that the package mecha-
nism was not yet working predictably before 0.60 for contributed packages. Since
teachers moving courses from S to R needed access to the S libraries previously
used, porting was a crucial step. CRAN listings show tripack (Renka and Geb-
hardt 2020) and akima (Akima and Gebhardt 2020)—both with non-open-source

1 Typically plastic boxes containing static software licences attached to a computer port, often the paral-
lel port otherwise used for printers in the pre-USB era.

https://github.com/OSGeo/grass-legacy
https://stat.ethz.ch/pipermail/r-help/1997-November/001882.html
https://stat.ethz.ch/pipermail/r-help/1997-November/001882.html

1 3

Progress in the R ecosystem for representing and handling spatial…

licences—available from August 1998 ported by Albrecht Gebhardt; ash and sgeo-
stat (Majure and Gebhardt 2016) followed in April 1999. The spatial package was
available as part of MASS (the software supporting the four editions of Venables
and Ripley 2002), also ported in part by Albrecht Gebhardt. In the earliest period,
CRAN administrators helped practically with porting and publication. Albrecht and
I presented an overview of possibilities of using R for research and teaching in spa-
tial analysis and statistics in August 1998, subsequently published in this journal as
Bivand and Gebhardt (2000).

Rowlingson and Diggle (1993) describe the S-PLUS version of splancs (Rowl-
ingson and Diggle 2017) for point pattern analysis. I had contacted Barry Rowl-
ingson in 1997, but only moved forward with porting as R’s package mechanism
matured. In September 1998, I wrote to him: “It wasn’t at all difficult to get things
running, which I think is a result of your coding, thank you!” However, I added this
speculation: “An issue I have thought about a little is whether at some stage Albrecht
and I wouldn’t integrate or harmonize the points and pairs objects in splancs, spa-
tial and sgeostat—they aren’t the same, but for users maybe they ought to appear to
be so”. This concern with class representations for geographical data turned out to
be fruitful.

A further step was to link GRASS and R, described in Bivand (2000), and fol-
lowed up at several meetings and working closely with Markus Neteler. The inter-
face has evolved, and its current status is presented by Lovelace et al. (2019, chap-
ter 9). A consequence of this work was that the CRAN team suggested that I attend a
meeting in Vienna in early 2001 to talk about the GRASS GIS interface. The meet-
ing gave unique insights into the dynamics of R development, and very valuable
contacts. Later the same year Luc Anselin and Serge Rey asked me to take part in a
workshop in Santa Barbara, which again led to many fruitful new contacts; my talk
eventually appeared as Bivand (2006), but the contacts made at the workshop were
very useful. Further progress during the intervening 4 years in the use of R in spa-
tial econometrics was reported in Bivand (2002), building on Bivand and Gebhardt
(2000), but preceding the release of the spdep package.

During the second half of 2002, it seemed relevant to propose a spatial statis-
tics paper session at the next Vienna meeting to be held in March 2003 (known as
Distributed Statistical Computing (DSC) and led to useR! meetings), together with
a workshop to discuss classes for spatial data. I had reached out to Edzer Pebesma
as an author of the stand-alone open-source program gstat (Pebesma and Wes-
seling 1998); it turned out that he had just been approached to wrap the program for
S-Plus. He saw the potential of the workshop immediately, and in November 2002
wrote in an email: “I wonder whether I should start writing S classes. I’m afraid
I should”. Virgilio Gómez-Rubio had been developing two spatial packages, RAr-
cInfo (Gómez-Rubio and López-Quílez 2005; Gómez-Rubio 2011) and DCluster
(Gómez-Rubio et al. 2005, 2015), and was committed to participating. Although he
could not get to the workshop, Nicholas Lewin-Koh wrote in March 2003 that: “I
was looking over all the DSC material, especially the spatial stuff. I did notice, after
looking through peoples’ packages that there is a lot of duplication of effort. My
suggestion is that we set up a repository for spatial packages similar to the Biocon-
ductor mode, where we have a base spatial package that has S-4-based methods and

 R. S. Bivand

1 3

classes that are efficient and general.” Straight after the workshop, a collaborative
repository for the development of software using SourceForge was established, and
the R-sig-geo mailing list (still with over 3600 subscribers) was created to facilitate
interaction.

So the mandate for the development of the sp package emerged in discussions
between interested contributors before, during and especially following the 2003
Vienna workshop; most of us met at Pörtschach am Wörthersee in October 2003
at a meeting organized by Albrecht Gebhardt. Coding meetings were organized by
Barry Rowlingson in Lancaster in November 2004 and by Virgilio Gómez-Rubio
in Valencia in May 2005, at both of which the class definitions and implementa-
tions were stress-tested and often changed radically; the package was first published
on CRAN in April 2005. The underlying model adopted was for S4 (new style)
classes to be used, for "Spatial" objects, whether raster or vector, to behave like
"data.frame" objects, and for visualization methods to make it easy to show the
objects. Package developers could choose whether they would use sp classes and
methods directly, or rather use those classes for functionality that they did not pro-
vide themselves. The spatstat package (Baddeley and Turner 2005; Baddeley et al.
2015, 2020) was an early example of such object conversion (known as coercion in
S and R) to and from sp classes and classes, with the coercion methods published in
the maptools package (Bivand and Lewin-Koh 2020).

Reading and writing ESRI Shapefiles had been possible using the maptools
package (Bivand and Lewin-Koh 2020) available from CRAN since August 2003,
but rgdal, on CRAN from November 2003, interfacing the external GDAL library
(Warmerdam 2008) and first written by Tim Keitt, initially only supported accessing
and reading raster data. Further code contributions by Barry Rowlingson for han-
dling projections using the external PROJ.4 library and the vector drivers in the then
OGR part of GDAL were folded into rgdal, permitting reading vector and raster
data into sp-objects and writing from sp-objects. For vector data, it became possible
to project coordinates, and in addition to transform them where datum specifications
were available. Until 2019, the interfaces to GDAL and PROJ had been relatively
stable, and upstream changes had not led to breaking changes for users of pack-
ages using sp classes or rgdal functionalities, although they have involved signifi-
cant maintenance effort. The final part of the framework for spatial vector data han-
dling was the addition of the rgeos package interfacing the external GEOS library
in 2011, thanks to Colin Rundell’s 2010 Google Summer of Coding project. The
rgeos package provided vector topological predicates and operations typically found
in GIS such as intersection; note that by this time, both GDAL and GEOS used the
Simple Features vector representation internally.

By the publication of Bivand et al. (2008), a few packages not written or main-
tained by the book authors and their nearest collaborators had begun to use sp
classes. By the publication of the second edition (Bivand et al. 2013), we had seen
that the number of packages depending on sp, importing from and suggesting it (in
CRAN terminology for levels of dependency) had grown strongly. In late 2014, de
Vries (2014) looked at CRAN package clusters from a page rank graph and found a
clear spatial cluster that we had not expected. Figure 1 shows word clouds with char-
acter sizes proportional to pagerank scores for two clusters found in August 2020

1 3

Progress in the R ecosystem for representing and handling spatial…

among the cumulated packages held on CRAN and those published by the Biocon-
ductor project. The left panel shows cluster 6, the spatial cluster with sp having a
pagerank of 0.002196, while the right panel shows cluster 2, which is dominated by
packages developed by RStudio, a commercial company. The sf package is in cluster
2, with a pagerank score of 0.000972, most likely in that cluster because it itself uses
many of the functionalities of RStudio packages. The two word clouds are scaled by
the largest pagerank of included packages, so the scales differ by almost an order of
magnitude.

3 Spatial data classes in the sf and stars packages

The raster package complemented sp for handling raster objects and their inter-
actions with vector objects. It added to input/output using GDAL through rgdal,
and better access to NetCDF files. It may be mentioned in passing that thanks to
help from CRAN administrators and especially Brian Ripley, CRAN binary builds
of rgdal for Windows and Apple Mac OSX became available from 2006, but with
a limited set of vector and raster drivers. Support from CRAN adminstrators and
the maintainers of the Github rwinlib/gdal2 and rwinlib/gdal3 repositories2 remains
central to making packages available to users who are not able to install R source
packages themselves, particularly linking to external libraries. Initially, raster was
written in R using functionalities in sp and rgdal with rgeos coming later. It used a
feature of GDAL raster drivers permitting the successive reading of subsets of ras-
ters by row and column, allowing the processing of much larger objects than could
be held in memory. In addition, the concepts of bricks and stacks of rasters were
introduced, diverging somewhat from the sp treatment of raster bands as stacked
column vectors in a data frame.

geosphere
pedometrics

deldir

stabs

akima

spacetime

maptools
spData

FRK

spam

RStoolbox
biomod2graph4lg

RandomFieldsspatialreg

dismo
IN

LA

spatstat

SSDM

sp
geoR
ENMTools

CARBayes

GSIF
gstat

muHVT

BiodiversityR

rnaturalearth

ecospat

fields

spdep

agricolae

rgeos

sp
la
nc

s

adehabitatLT

rdwd

ra
st
er
Vi
s

tree

rgdal

trajectories
spatialEco

in
la
br
u

raster

rworldmap

gdistance

mapdata
RgoogleMaps

CSTools

plotKML
snowfall

readxl
withr

leaflet
tidyr

glue
htmlwidgets

rjson

stringi
shiny

rlangcrayon

rvest

covr
DT

tibble

dplyr
tidyverse

broom

tidyselect
maps

httr
xml2

assertthat

htmltools

knitr

rmarkdown
digest

R6 spelling

purrr

magrittr

curl

lu
br
id
at
e

RCurl

readr

sf

testthat
data.table

XML

devtools

rstudioapi

kableExtra

fo
re
ig
n

tinytest

roxygen2

stringr

yaml

jsonlite

vdiffr

shinyjs

Fig. 1 Wordclouds of CRAN and BioConductor package dependencies, August 2020, left panel: cluster
6 (pagerank range 0.002196–0.000070), right panel: cluster 2 (pagerank range 0.022419–0.000390, sf =
0.000972)

2 https ://githu b.com/rwinl ib/gdal2 , https ://githu b.com/rwinl ib/gdal3 .

https://github.com/rwinlib/gdal2
https://github.com/rwinlib/gdal3

 R. S. Bivand

1 3

As raster evolved, two other packages emerged raising issues with the ways in
which spatial objects had been conceptualized in sp. The rgeos package used the C
application programming interface (API) to the C++ GEOS library, which is itself a
translation of the Java Topology Suite (JTS). While the GDAL vector drivers did use
the standard Simple Features representation of vector geometries, it was not strongly
enforced. This laxity now seems most closely associated with the use of ESRI Shape
files as a de facto file standard for representation, in which some Simple Features
are not consistently representable.3 Both JTS and GEOS required a Simple Features
compliant representation and led to the need for curious and fragile adaptations. For
example, these affected the representation of sp "Polygons" objects, which were
originally conceptualized after the Shapefile specification: ring direction determined
whether a ring was exterior or interior (a hole), but no guidance was given to show
which exterior ring holes might belong to. As R provides a way to add a character
string comment to any object, such comments were added to each "Polygons"
object encoding the necessary information. In this way, GEOS functionality could
be used, but the fragility of vector representation in sp was made obvious.

Another package affecting thinking about representation was spacetime, stacking
columns for regular spatio-temporal objects with space varying faster than time. So
a single earth observation band observed repeatedly would be stored in a single col-
umn in a data frame, rather than in the arguably more robust form of a four-dimen-
sional array, with the band taking one position on the final dimension. The second
edition of Bivand et al. (2013) took up all of these issues in one way or another, but
after completing a spatial statistics special issue of the Journal of Statistical Soft-
ware (Pebesma et al. 2015), it was time to begin fresh implementations of classes for
spatial data.

3.1 Simple Features in R

It was clear that vector representations needed urgent attention, so the sf package
was begun, aiming to implement the most frequently used parts of the specification
(ISO 2004; Kralidis 2008; Herring 2011). Development was supported by a grant
from the then newly started R Consortium, which brings together R developers and
industry members. A key breakthrough came at the useR! 2016 conference, follow-
ing an earlier decision to re-base vector objects on data frames, rather than as in sp
to embed a data frame inside a spatial object. Although data frame objects in S and
R have always been able to take list columns as valid columns, such list columns
were not seen as “tidy” (Wickham 2014):

3 For recent examples see https ://githu b.com/OSGeo /gdal/issue s/1787 and https ://githu b.com/r-spati al/
sf/issue s/1121.

https://github.com/OSGeo/gdal/issues/1787
https://github.com/r-spatial/sf/issues/1121
https://github.com/r-spatial/sf/issues/1121

1 3

Progress in the R ecosystem for representing and handling spatial…

> df <- data.frame(a=letters[1:3], b=1:3)
> df$c <- list(d=1, e="1", f=TRUE)
> str(df)
’data.frame’: 3 obs. of 3 variables:
$ a: chr "a" "b" "c"
$ b: int 1 2 3
$ c:List of 3
..$ d: num 1
..$ e: chr "1"
..$ f: logi TRUE

At useR! in 2016, list columns were declared “tidy”, using examples including
the difficulty of encoding polygon interior rings in non-list columns. The decision
to accommodate “tidy” workflows as well as base-R workflows had already been
made, as at least some users only know how to use “tidy” workflows. Pebesma
(2018) showed the status of the sf towards the end of 2017, with a geometry list
column containing R wrappers around objects adhering to Simple Features speci-
fication definitions. Note also that from R 4.0.0, data.frame() does not con-
vert character columns to factor as it did previously (Hornik 2020); column
"a" is character in R 4 or later, and factor before R 4.

> library(sf)

The feature geometries are stored in numeric vectors, matrices or lists of
matrices and may also be subject to arithmetic operations. Features are held in
the "XY" class if two-dimensional, or "XYZ", "XYM" or "XYZM" if such coor-
dinates are available ("Z" is usually treated as height and "M" as some meas-
ure, perhaps accuracy; both need to have specified units); all single features are
"sfg" (Simple Features geometry) objects, with arithmetic and other operators:

> pt1 <- st_point(c(1,3))
> pt2 <- pt1 + 1
> pt3 <- pt2 + 1
> str(pt3)
’XY’ num [1:2] 3 5

Geometries may be represented as “Well-Known Text” (WKT):

> st_as_text(pt3)
[1] "POINT (3 5)"

 or as “Well-Known Binary” (WKB) as in database “binary large objects”
(BLOBs), resolving the problem of representation when working with GDAL vector
drivers and functions, and with GEOS predicates and topological operations:

 R. S. Bivand

1 3

> st_as_binary(pt3)
[1] 01 01 00 00 00 00 00 00 00 00 00 08 40 00 00 00 00 00 00 14 40

A column of Simple Features geometries ("sfc") is constructed as a list of "sfg"
objects, which do not have to belong to the same Simple Features category; here, we
assign the Web Mercator CRS to indicate that the points are projected to the plane, with
position measured in metres:

> pt_sfc <- st_as_sfc(list(pt1, pt2, pt3), crs=3857)
> str(pt_sfc)
sfc_POINT of length 3; first list element: ’XY’ num [1:2] 1 3

When sf was written, the units package was available (Pebesma et al. 2016, 2020)
and could utilize the metric of the coordinates given in the declared CRS, so here inter-
point distances are measured in metres:

> st_distance(pt_sfc)
Units: [m]

[,1] [,2] [,3]
[1,] 0.000000 1.414214 2.828427
[2,] 1.414214 0.000000 1.414214
[3,] 2.828427 1.414214 0.000000

If we re-specify the points as geographical coordinates in decimal degrees on the
WGS84 ellipsoid, the distances will be given as metres, but measured over the ellipsoid:

> pt_sfc1 <- st_as_sfc(list(pt1, pt2, pt3), crs=4326)
> st_distance(pt_sfc1)
Units: [m]

[,1] [,2] [,3]
[1,] 0.0 156759.1 313424.7
[2,] 156759.1 0.0 156665.6
[3,] 313424.7 156665.6 0.0

The most recent R Consortium grant covers the extension of analysis and data handling
to global data representation; Pebesma and Dunnington (2020) present a roadmap for the
use of the s2 library for operations on geographical coordinates and its integration in sf.

> mat <- matrix(0, 3, 3)
> mat[1,2] <- mat[2,1] <- s2::s2_distance(st_as_text(pt1), st_as_text(pt2))
> mat[1,3] <- mat[3,1] <- s2::s2_distance(st_as_text(pt1), st_as_text(pt3))
> mat[2,3] <- mat[3,2] <- s2::s2_distance(st_as_text(pt2), st_as_text(pt3))
> mat

[,1] [,2] [,3]
[1,] 0.0 157106.0 314116.3
[2,] 157106.0 0.0 157010.4
[3,] 314116.3 157010.4 0.0

1 3

Progress in the R ecosystem for representing and handling spatial…

Finally, an "sfc" object, a geometry column, can be added to a data.frame
object using st_geometry(), which sets a number of attributes on the object and
defines it as also being an "sf" object (the "agr" attribute if populated shows
how observations on non-geometry columns should be understood):

> st_geometry(df) <- pt_sfc
> str(df)
Classes ‘sf’ and ’data.frame’: 3 obs. of 4 variables:
$ a : chr "a" "b" "c"
$ b : int 1 2 3
$ c :List of 3
..$ d: num 1
..$ e: chr "1"
..$ f: logi TRUE

$ geometry:sfc_POINT of length 3; first list element: ’XY’ num 1 3
- attr(*, "sf_column")= chr "geometry"
- attr(*, "agr")= Factor w/ 3 levels "constant","aggregate",..: NA NA NA
..- attr(*, "names")= chr [1:3] "a" "b" "c"

The sf package implements all of the Simple Features geometry categories, but
some geometries need be converted to be used inside R, with, for example, the gdal_
utils() function to convert curve geometries in an input file to linear geometries.4
Many of the functions in the sf package begin with st_ as a reference to the same
usage in PostGIS, where the letters were intended to symbolize “spatial type”.

The vector file creation and reading functionality found in rgdal is also avail-
able in sf, with substantial improvements with regard to creating spatial database
tables and reading from databases. Writing a GeoPackage5 is as easy or easier than
in rgdal, as the layer= and driver= arguments can be inferred from the given
file name. List columns cannot be written, because R list columns are not bound to
be consistently of the same type.

> tf <- tempfile(fileext=".gpkg")
> st_write(df, dsn=tf, quiet=TRUE)
Warning message:
In clean_columns(as.data.frame(obj), factorsAsCharacter) :

Dropping column(s) c of class(es) list

The standard reading method is st_read, providing a similar functionality to
that in rgdal, with a number of differences related to character string encoding that
will cease to matter when users migrate to modern formats such as GeoPackage.

4 util="ogr2ogr", options="-nlt CONVERT_TO_LINEAR".
5 https ://www.ogc.org/stand ards/geopa ckage .

https://www.ogc.org/standards/geopackage

 R. S. Bivand

1 3

> df1 <- st_read(dsn=tf, quiet=TRUE)
> df1
Simple feature collection with 3 features and 2 fields
geometry type: POINT
dimension: XY
bbox: xmin: 1 ymin: 3 xmax: 3 ymax: 5
projected CRS: WGS 84 / Pseudo-Mercator

a b geom

1 a 1 POINT (1 3)
2 b 2 POINT (2 4)
3 c 3 POINT (3 5)

In a “tidy” workflow, read_sf() can be used, returning a "tibble-sf"
inheriting from a "tbl_df" object rather than from a data frame, and not con-
verting character string columns into "factor" categorical variables by default
(before R 4.0.0):

> read_sf(dsn=tf) %>% dplyr::filter(a == "c")
Simple feature collection with 1 feature and 2 fields
geometry type: POINT
dimension: XY
bbox: xmin: 3 ymin: 5 xmax: 3 ymax: 5
projected CRS: WGS 84 / Pseudo-Mercator
A tibble: 1 x 3

a b geom
* <chr> <int> <POINT [m]>
1 c 3 (3 5)

sf also integrates GEOS topological predicates and operations into the same
framework, replacing the rgeos package for access to GEOS functionality. The pre-
cision and scale defaults differ between sf and rgeos slightly; both remain fragile
with respect to invalid geometries, of which there are many in circulation. From
GEOS 3.8, both rgeos and sf offer functions to create valid geometries from invalid
ones; prior to GEOS 3.8, a function in lwgeom was used. Most recently, measure-
ments and operations on non-planar geometries have been moved from lwgeom to s2
(Dunnington et al. 2020; Pebesma and Dunnington 2020). Native support for units
in sf objects carries through to measurements on outputs of topological operations:

> buf_df1 <- st_buffer(df1, dist=0.3)
> st_area(buf_df1)
Units: [m^2]
[1] 0.2826142 0.2826142 0.2826142

> plot(st_geometry(buf_df1))
> plot(st_geometry(df1), add=TRUE, pch=4)

1 3

Progress in the R ecosystem for representing and handling spatial…

The sf package provides simple base graphics plotting methods. Those for just
the "sfc" column retrieved by st_geometry() do not take over the layout of
the graphics device, but for the "sf" object, they do, showing multiple non-geom-
etry columns in separate displays. Figure 2 shows a simple plot of the three buffer
polygons overplotted with the three points.

3.2 Raster representations

Like sf, the stars package for scalable, spatio-temporal tidy arrays was supported
by an R Consortium grant. Spatio-temporal arrays were seen as an alternative way
of representing multivariate spatio-temporal data from the choices made in the spa-
cetime package, where a two-dimensional data frame contained stacked observation
positions in space within stacked time points or intervals. The proposed arrays might
collapse to a raster layer if only one variable was chosen for one time point or inter-
val. More important, the development of the package was extended to accommodate
a backend for earth data processing in which the data are retrieved and re-sampled
as needed from servers, most often cloud-based servers. In most cases, these would
be raster geometries, but the array representation also handles irregular geometries
through time. The R Consortium support was chiefly used to let contributors meet to
make progress on concepts and implementation.

This example only covers a multiband raster taken from a Landsat 7 view of a small
part of the Brazilian coast. In the first part, a GeoTIFF file is read into memory, using
three array dimensions, two in planar space, the third across six bands:

Fig. 2 Three points and three buffers plotted with geometry-specific plot methods for "sfc" objects

 R. S. Bivand

1 3

> library(stars)
> fn <- system.file("tif/L7_ETMs.tif", package = "stars")
> L7 <- read_stars(fn)
> L7
stars object with 3 dimensions and 1 attribute
attribute(s):

L7_ETMs.tif
Min. : 1.00
1st Qu.: 54.00
Median : 69.00
Mean : 68.91
3rd Qu.: 86.00
Max. :255.00

dimension(s):
seulavtniopsysferatledtesffootmorf

x 1 349 288776 28.5 UTM Zone 25, Southern Hem... FALSE NULL [x]
y 1 352 9120761 -28.5 UTM Zone 25, Southern Hem... FALSE NULL [y]

LLUNANANANAN61dnab

The bands can be operated on arithmetically, for example to generate a new object
containing values of the normalized difference vegetation index through a function
applied across the x and y spatial dimensions, using the st_apply abstraction:

> ndvi <- function(x) (x[4] - x[3])/(x[4] + x[3])
> (s2.ndvi <- st_apply(L7, c("x", "y"), ndvi))
stars object with 2 dimensions and 1 attribute
attribute(s):

ndvi
Min. :-0.75342
1st Qu.:-0.20301
Median :-0.06870
Mean :-0.06432
3rd Qu.: 0.18667
Max. : 0.58667

dimension(s):
seulavtniopsysferatledtesffootmorf

x 1 349 288776 28.5 UTM Zone 25, Southern Hem... FALSE NULL [x]
y 1 352 9120761 -28.5 UTM Zone 25, Southern Hem... FALSE NULL [y]

The same file can also be accessed using the proxy mechanism, which creates a link
to the external entity, here a file:

> L7p <- read_stars(fn, proxy=TRUE)
> L7p
stars_proxy object with 1 attribute in file:
$L7_ETMs.tif
[1] "[...]/L7_ETMs.tif"

dimension(s):
seulavtniopsysferatledtesffootmorf

x 1 349 288776 28.5 UTM Zone 25, Southern Hem... FALSE NULL [x]
y 1 352 9120761 -28.5 UTM Zone 25, Southern Hem... FALSE NULL [y]

LLUNANANANAN61dnab

1 3

Progress in the R ecosystem for representing and handling spatial…

The same function can also be applied across the same two spatial dimensions
of the array, but no calculation is carried out until the data are needed and the out-
put resolution known, with the command needed to create the output stored in the
object:

> (L7p.ndvi = st_apply(L7p, c("x", "y"), ndvi))
stars_proxy object with 1 attribute in file:
$L7_ETMs.tif
[1] "[...]/L7_ETMs.tif"

dimension(s):
seulavtniopsysferatledtesffootmorf

x 1 349 288776 28.5 UTM Zone 25, Southern Hem... FALSE NULL [x]
y 1 352 9120761 -28.5 UTM Zone 25, Southern Hem... FALSE NULL [y]

LLUNANANANAN61dnab
call list:
[[1]]
st_apply(X = X, MARGIN = c("x", "y"), FUN = ndvi)

The array object can also be split, here on the band dimension, to yield a repre-
sentation as six rasters in list form:

> (x6 <- split(L7, "band"))
stars object with 2 dimensions and 6 attributes
attribute(s):

X1 X2 X3 X4
Min. : 47.00 Min. : 32.00 Min. : 21.00 Min. : 9.00
1st Qu.: 67.00 1st Qu.: 55.00 1st Qu.: 49.00 1st Qu.: 52.00
Median : 78.00 Median : 66.00 Median : 63.00 Median : 63.00
Mean : 79.15 Mean : 67.57 Mean : 64.36 Mean : 59.24
3rd Qu.: 89.00 3rd Qu.: 79.00 3rd Qu.: 77.00 3rd Qu.: 75.00
Max. :255.00 Max. :255.00 Max. :255.00 Max. :255.00

X5 X6
Min. : 1.00 Min. : 1.00
1st Qu.: 63.00 1st Qu.: 32.00
Median : 89.00 Median : 60.00
Mean : 83.18 Mean : 59.98
3rd Qu.:112.00 3rd Qu.: 88.00
Max. :255.00 Max. :255.00

dimension(s):
seulavtniopsysferatledtesffootmorf

x 1 349 288776 28.5 UTM Zone 25, Southern Hem... FALSE NULL [x]
y 1 352 9120761 -28.5 UTM Zone 25, Southern Hem... FALSE NULL [y]

These rasters may also be subjected to arithmetical operations, and as may be
seen, explicit arithmetic on the six rasters has the same outcome as applying the
same calculation to the three-dimensional array:

 R. S. Bivand

1 3

> x6$mean <- (x6[[1]] + x6[[2]] + x6[[3]] + x6[[4]] + x6[[5]] + x6[[6]])/6
> xm <- st_apply(L7, c("x", "y"), mean)
> all.equal(xm[[1]], x6$mean)
[1] TRUE

The extension to a gridded temporal dimension or to irregular spatial and tem-
poral entities is not particularly difficult, but it remains to document the possibili-
ties of the package more fully.

3.3 Visualization

The classInt package (Bivand 2020a) for finding thematic mapping class inter-
vals is used directly in plot methods in sf and stars, and in the tmap (Tennekes
2018, 2020) and cartography (Giraud and Lambert 2016, 2017, 2020) packages.
Lapa et al. (2001) (Leprosy surveillance in Olinda, Brazil, using spatial analysis
techniques) made available the underlying data set of Olinda census tracts (setor)
in the Corrego Alegre 1970-72 / UTM zone 25S projection (EPSG:22525); we
will use the data set and the deprivation variable to point to visualization alterna-
tives now available.

> olinda <- st_read("olinda.gpkg", quiet=TRUE)

The style= argument gives the choice of method used for finding the number
of classes specified, with "fisher" being a natural breaks method, and "bclust"
bagged clustering from the e1071 package (Meyer et al. 2019):

> library(classInt)
> cI_fisher <- classIntervals(olinda$"DEPRIV", n=7, style="fisher")
> set.seed(1)
> cI_bclust <- classIntervals(olinda$"DEPRIV", n=7, style="bclust")
Committee Member: 1(1) 2(1) 3(1) 4(1) 5(1) 6(1) 7(1) 8(1) 9(1) 10(1)
Computing Hierarchical Clustering

For a long time, the RColorBrewer package (Neuwirth 2014) colour palettes
were the obvious choice for thematic cartography, but more recently other packages,
such as rcartocolor (Nowosad 2019), have become available, often as supersets of
the RColorBrewer palettes:

> pal <- rcartocolor::carto_pal(7, "SunsetDark")

> plot(cI_fisher, pal, xlab="DEPRIV", ylab="")
> plot(cI_bclust, pal, xlab="DEPRIV", ylab="")

Figure 3 shows plots of the two class interval schemes, with obvious differences
between the two styles. Both styles are attempting to balance low within-class vari-
ance and high between-class variance.

1 3

Progress in the R ecosystem for representing and handling spatial…

Figure 4 shows maps of the same variable with the same class intervals chosen
internally using classInt functionality, with the same palette. The syntax is a little
different, and here, the sf plot method default key has been turned off to permit
side-by-side display. This method is really best at providing glimpses of the data,
rather than at creating complete figures, in contrast to the richer functions in cartog-
raphy; both use base graphics.

> plot(olinda[,"DEPRIV"], nbreaks=7, breaks="fisher", pal=pal, key.pos=NULL,
+ main="")
> library(cartography)
> choroLayer(olinda, var="DEPRIV", method="fisher-jenks", nclass=7, col=pal,
+ legend.values.rnd=3)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

fisher

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

bclust

Fig. 3 Deprivation by census tract in Olinda, Brazil; empirical cumulative distribution function and class
intervals for two class intervals: left panel: natural breaks; right panel: bagged clustering

Fig. 4 Deprivation by census tract in Olinda, Brazil, natural breaks class intervals; left panel: sf plot
method; right panel: cartography choropleth map

 R. S. Bivand

1 3

Figure 5 shows how tmap functions use grid graphics to permit graphics objects to
be updated and then plotted using tmap_arrange(). Once again, the same class
intervals are chosen internally using classInt, with the same palette. The left panel is
updated on the right to add thin boundaries between census tracts. tmap also offers
small multiples of facets, for example thematic maps of the same variable observed at
successive time periods using the same class intervals. An extensive discussion of the
use of tmap is provided by Lovelace et al. (2019).

> library(tmap)
> o1 <- tm_shape(olinda) + tm_fill("DEPRIV", style="fisher", n=7, palette=pal)
> o2 <- o1 + tm_borders(lwd=0.8)

The ggplot2 package (Wickham et al. 2020) provides the geom_sf() facil-
ity for mapping sf objects:

> library(ggplot2)
> g1 <- ggplot(olinda) + geom_sf(aes(fill=DEPRIV))
> g2 <- g1 + theme_void() + scale_fill_gradientn(colours=pal,
+ breaks=round(cI_fisher$brks, 3))

This approach also builds on grid graphics. It is possible to set a theme that
drops the arguably unnecessary graticule, but there is a lot of intervention
required to get a simple map. To get proper class intervals involves even more
work, because the package takes specific, not general, positions on how graphics
are observed. ColorBrewer, for example, eschews continuous colour scales based
on cognitive research, but ggplot2 enforces them by default for continuous vari-
ables. Figure 6 shows the default choice of palette, updated to remove the unnec-
essary graticule and to use the user-specified palette and class intervals:

Fig. 5 tmap output, natural breaks class intervals; left panel: object o1 without boundaries; right panel:
object o2 with boundaries

1 3

Progress in the R ecosystem for representing and handling spatial…

We can also display the bagged clustering class intervals beside the natural
breaks map, again using ggplot2; Figure 7 shows the maps, but because a con-
tinuous scale is still enforced, all that changes is the position of the breaks on
the key.

> g3 <- g1 + theme_void() + scale_fill_gradientn(colours=pal,
+ breaks=round(cI_bclust$brks, 3))

3.4 Reverse dependencies of the sp and sf packages

R packages can possess forward or reverse dependencies. Forward or upstream
dependencies are typically on R itself, a small number of packages whose func-
tionalities are used in the package in question (by loading and attaching the pack-
age (dependencies) or just loading the namespace of the package (imports)), and
possibly external software libraries. Reverse or downstream dependencies are
packages that themselves use the package in question by loading and attaching
it, only loading its namespace or using it on demand (suggests). sp and sf were
written carefully to minimize forward dependencies, with sp only depending on
and importing packages included in every R distribution by default and sf adding
CRAN contributed packages Rcpp and units required to build the package and

Fig. 6 Thematic maps with ggplot2: left panel: default map of a continuous variable; right panel: grati-
cule removed and palette modified

Fig. 7 Thematic maps with ggplot2, natural breaks class intervals: left panel: natural breaks class inter-
vals; right panel: bagged clustering class intervals

 R. S. Bivand

1 3

classInt for class intervals, DBI for interfacing spatial databases and magrittr
for piped operations, where none of these extra forward dependencies draws in
many other packages.

In sp, the compiled code (written in C) is self-contained and is made available to
other packages, chiefly rgdal and rgeos, to link to their compiled code. rgdal links
to sp and to the external libraries PROJ and GDAL. GDAL itself links to PROJ and
can link to GEOS and many other libraries needed for specific drivers. The external
software versions used may be reported using *_extSoftVersion, here using
the :: operator to avoid attaching the packages being queried:

> rgdal::rgdal_extSoftVersion()
GDAL GDAL_with_GEOS PROJ sp

"3.1.2" "TRUE" "7.1.0" "1.4-4"

The versions vary between platforms and by the installation method used; as
package maintainer, I often run with pre-release or latest versions of external soft-
ware to attempt to detect and mitigate changes before they impact users’ workflows.
For rgdal, the versions of GDAL, PROJ and sp are reported, together with a test
showing whether GDAL was built linking to GEOS, something that affects the
behaviour of some drivers. The report for rgeos is simpler, only listing the versions
of GEOS itself and sp.

> rgeos::rgeos_extSoftVersion()
GEOS sp

"3.8.1" "1.4-4"

In the case of sf, and because it brings together access to the GDAL and GEOS
external libraries through Simple Features representation for vector objects, the
external software versions supported are the union of those seen above, omitting
linkage to a separate package defining classes for objects. In addition, it reports
which API is used for PROJ, either proj.h or not (the earlier proj_api.h).

> sf_extSoftVersion()
GEOS GDAL proj.4 GDAL_with_GEOS USE_PROJ_H

"3.8.1" "3.1.2" "7.1.0" "true" "true"

Table 1 shows the structure of reverse dependency counts for sp and sf. Recursive
dependencies traverse through the whole CRAN dependency tree; the first column
of the table shows counts of “depends” and “imports” dependencies counted across
the whole tree. These split into 1285 only involving sp, 232 involving both pack-
ages and 65 only involving sf. If we additionally include “suggests” dependencies,
both packages may be used at least indirectly by all CRAN packages. The two right
columns show the same counts, but only for packages’ first-order dependencies on
sp, sf or both. We can note that of these for “depends” and “imports” dependencies,
459 only involve sp, 63 involve both packages and 121 only involve sf. In the first

1 3

Progress in the R ecosystem for representing and handling spatial…

column, the number of packages only depending on sf is less than when we ignore
recursive dependencies in the third column, which is packages using sf that also use
sp. The number of packages only using sf is encouraging, given that it first entered
CRAN in October 2016.

It is also encouraging that a fair number of these packages use both sp and sf,
showing existing packages are preserving legacy workflows, but also opening up for
more modern object representations. It takes time and effort to communicate the
desirability of migrating from sp representations to sf and probably stars. Although
keeping the R code running is feasible, including compiled code not using external
software, migration to sf is advisable.

4 Upstream software dependencies of the R‑spatial ecosystem

When changes occur in upstream external software, R packages using these libraries
often need to adapt, but package maintainers try very hard to shield users from any
negative consequences, so that legacy workflows continue to provide the same or
at least similar results from the same data. The code shown in Bivand et al. (2008,
(2013) is almost all run nightly on a platform with updated R packages and external
software. This does not necessarily trap all differences (figures are not compared),
but is helpful in detecting impacts of changes in packages or external software. It is
also very helpful that CRAN servers using the released and development versions of
R, and with different versions of external software, also run nightly checks. Again,
sometimes changes are only noticed by users, but quite often checks run by main-
tainers and by CRAN alert us to impending challenges. Tracking the development
mailing lists of the external software communities, all open source, can also show
how thinking is evolving. However, sometimes code tidying in external software
can have unexpected consequences, breaking not sf or sp with rgdal or rgeos, but a
package further downstream. Bivand (2014) discusses open-source geospatial soft-
ware stacks more generally, but here we will consider ongoing changes in PROJ and
linked changes in GDAL.

We will use the example of the location of the Broad Street pump in Soho, London,
related to the 1854 Cholera epidemic and Dr John Snow’s intervention Brody et al.

Table 1 Reverse dependency
counts for sp and sf, August
2020, for recursive and non-
recursive reverse dependencies
taken as “Depends” and
“Imports” only, and with
“Suggests”

Recursive Recursive
w/suggests

Not recursive Not recursive
w/suggests

Sum sp 1517 16,619 522 629
Sum sf 297 16,619 184 277
Only sp 1285 0 459 513
Only sf 65 0 121 161
Both 232 16,619 63 116

 R. S. Bivand

1 3

(2000), distributed with sf (from version 0.8–1). Although it was known that changes in
upstream software would impact workflows, the extent of those impacts became clear
using a standard example following upgrading to PROJ 6 and GDAL 3 in 2019:

> bp_file <- system.file("gpkg/b_pump.gpkg", package="sf")
> b_pump_sf <- st_read(bp_file, quiet=TRUE)

Before R packages upgraded the way coordinate reference systems were represented
in early 2020, our Proj4 string representation suffered degradation. Taking the Proj4
string defined in PROJ 5 for the British National Grid, we can see a +datum=OSGB36
key–value pair. But when processing this input with PROJ 6 and GDAL 3, this key is
removed. Checking, we can see that reading the input string appears to work, but the
output for the Proj4 string drops the +datum=OSGB36 key–value pair, introducing
instead the ellipse implied by that datum:

> proj5 <- paste0("+proj=tmerc +lat_0=49 +lon_0=-2 +k=0.9996012717",
+ " +x_0=400000 +y_0=-100000 +datum=OSGB36 +units=m +no_defs")
> legacy <- st_crs(proj5)
> proj6 <- legacy$proj4string
> proj5_parts <- unlist(strsplit(proj5, " "))
> proj6_parts <- unlist(strsplit(proj6, " "))
> proj5_parts[!is.element(proj5_parts, proj6_parts)]
[1] "+datum=OSGB36"
> proj6_parts[!is.element(proj6_parts, proj5_parts)]
[1] "+ellps=airy"

We can emulate the problem seen following the release in May 2019 of GDAL 3.0.0
using PROJ 6, by inserting the degraded Proj4 string into the Broad Street pump object.
The coordinate reference system representation is now ignorant of the proper datum
specification:

> b_pump_sf1 <- b_pump_sf
> st_crs(b_pump_sf1) <- st_crs(st_crs(b_pump_sf1)$proj4string)

Why does this matter? For visualization on a web map, for example using the
mapview package, the projected geometries are transformed to the same WGS84
ellipse and datum (EPSG:4326) that were used in PROJ 4 as a transformation hub.
In leaflet, these are projected to Web Mercator (EPSG:3857). In mapview(), the
sf::st_transform() function is used, so we will emulate this step before hand-
ing on the geometries for display. The projected British National Grid point location is
unchanged:

1 3

Progress in the R ecosystem for representing and handling spatial…

Fig. 8 Displays made using mapview displays of the Broad Street pump, with the green point within 2 m
of the pump location, and the red point in Ingestre Place because of the loss of the datum specification

> all.equal(st_coordinates(st_geometry(b_pump_sf)),
+ st_coordinates(st_geometry(b_pump_sf1)))
[1] TRUE

However, because the one of the objects now has a degraded Proj4 string rep-
resentation of its coordinate reference system, the output points, apparently trans-
formed identically to WGS84, are now some distance apart, as is also shown in
Figure 8:

> b_pump_sf_ll <- st_transform(b_pump_sf, 4326)
> b_pump_sf1_ll <- st_transform(b_pump_sf1, 4326)
> st_distance(b_pump_sf_ll, b_pump_sf1_ll)
Units: [m]

[,1]
[1,] 125.0578

Once PROJ 6 and GDAL 3 had stabilized in the summer of 2019, we iden-
tified the underlying threat as lying in the advertised degradation of GDAL’s
exportToProj4() function. When reading raster and vector files, the coordinate ref-
erence system representation using Proj4 strings would often be degraded, so that fur-
ther transformation within R (also using GDAL/PROJ functionality) would be at risk of
much greater inaccuracy than with PROJ 5 and GDAL 2. Since then, sf, sp with rgdal

 R. S. Bivand

1 3

and raster have adopted the 2019 version of the “Well-Known Text” coordinate refer-
ence system representation WKT2-2019 (ISO 2019) instead of Proj4 strings to contain
coordinate reference system definitions.6 Accommodations have also been provided so
that the S3 class "crs" objects used in objects defined in sf, and the formal S4 class
"CRS" objects used objects defined in sp and raster, can continue to attempt to support
Proj4 strings in addition, while other package maintainers and workflow users catch up.7

Following an extended campaign of checking about 900 reverse dependencies
(packages depending on sp, rgdal and others) and dozens of github issues, most of
the consequences of the switch to WKT2 among packages have now been addressed.
Most recently (late August 2020), 115 packages have been offered rebuilt stored
objects that had included "CRS" objects without WKT2 definitions.

This approach has ensured that spatial objects, whether created within R, read in from
external data sources or read as stored objects, all have WKT2 string representations of
their coordinate reference systems, and for backward compatibility can represent these in
addition as Proj4 strings. Operations on objects should carry forward the new represen-
tations, which should be written out to external data formats correctly. There is a minor
divergence between sf and sp (and thus rgdal): In sf, the axis order of the CRS is pre-
served as instantiated, but objects do not have their axes swapped to accord with authori-
ties unless sf::st_axis_order() is set TRUE. This can appear odd, because
although the representation records a northings–eastings axis order, data are treated as
eastings–northings in plotting, variogram construction and so on:

> st_crs("EPSG:4326")
Coordinate Reference System:

User input: EPSG:4326
wkt:

GEOGCRS["WGS 84",
DATUM["World Geodetic System 1984",

ELLIPSOID["WGS 84",6378137,298.257223563,
LENGTHUNIT["metre",1]]],

PRIMEM["Greenwich",0,
ANGLEUNIT["degree",0.0174532925199433]],

CS[ellipsoidal,2],
AXIS["geodetic latitude (Lat)",north,

ORDER[1],

ANGLEUNIT["degree",0.0174532925199433]],
AXIS["geodetic longitude (Lon)",east,

ORDER[2],
ANGLEUNIT["degree",0.0174532925199433]],

USAGE[
SCOPE["unknown"],
AREA["World"],
BBOX[-90,-180,90,180]],

ID["EPSG",4326]]

In sp/rgdal, attempts are made to ensure that axis order is in the form termed
GIS, traditional or visualization that is always eastings–northings:

6 https ://www.r-spati al.org/r/2020/03/17/wkt.html.
7 https ://cran.r-proje ct.org/web/packa ges/rgdal /vigne ttes/CRS_proje ction s_trans forma tions .html.

https://www.r-spatial.org/r/2020/03/17/wkt.html
https://cran.r-project.org/web/packages/rgdal/vignettes/CRS_projections_transformations.html

1 3

Progress in the R ecosystem for representing and handling spatial…

> library(sp)
> cat(wkt(CRS("EPSG:4326")))
GEOGCRS["WGS 84",

DATUM["World Geodetic System 1984",
ELLIPSOID["WGS 84",6378137,298.257223563,

LENGTHUNIT["metre",1]],
ID["EPSG",6326]],

PRIMEM["Greenwich",0,
ANGLEUNIT["degree",0.0174532925199433],
ID["EPSG",8901]],

CS[ellipsoidal,2],
AXIS["longitude",east,

ORDER[1],
ANGLEUNIT["degree",0.0174532925199433,

ID["EPSG",9122]]],
AXIS["latitude",north,

ORDER[2],
ANGLEUNIT["degree",0.0174532925199433,

ID["EPSG",9122]]],
USAGE[

SCOPE["unknown"],
AREA["World"],
BBOX[-90,-180,90,180]]]

The probability of confusion increases when coercing from sf to sp and vice
versa, with the representations most often remaining unchanged.8

> sf_from_sp <- st_crs(CRS("EPSG:4326"))
> o <- strsplit(sf_from_sp$wkt, nl)[[1]]
> cat(paste(o[grep("CS|AXIS|ORDER", o)], collapse=nl))

CS[ellipsoidal,2],
AXIS["longitude",east,

ORDER[1],
AXIS["latitude",north,

ORDER[2],

> sp_from_sf <- as(st_crs("EPSG:4326"), "CRS")
> o <- strsplit(wkt(sp_from_sf), nl)[[1]]
> cat(paste(o[grep("CS|AXIS|ORDER", o)], collapse=nl))

CS[ellipsoidal,2],
AXIS["geodetic latitude (Lat)",north,

ORDER[1],
AXIS["geodetic longitude (Lon)",east,

ORDER[2],

Both of these coercions are using the same underlying PROJ and GDAL versions,
and the same PROJ metadata. Once work in progress is completed, coercions should
respect the setting of sf::st_axis_order().

8 State of https ://githu b.com/rsbiv and/sp of 18 August 2020 or later.

https://github.com/rsbivand/sp

 R. S. Bivand

1 3

It may useful for users to know of other differences between sf and sp/rgdal.
Transformation in sf uses code in GDAL, which in turn uses functions in PROJ; in
sp/rgdal, PROJ is used directly for transformation. In order to demonstrate more of
what is happening, let us coerce these sf objects to sp (they are both planar with an
x–y axis order):

> b_pump_sp <- as(b_pump_sf, "Spatial")
> b_pump_sp1 <- as(b_pump_sf1, "Spatial")

We will also set up a temporary directory for use with the on-demand grid down-
load functionality in PROJ 7; this must be done before rgdal is loaded:

> td <- tempfile()
> dir.create(td)
> Sys.setenv("PROJ_USER_WRITABLE_DIRECTORY"=td)
> library(rgdal)

In sf, areas of interest need to be given by the users, while in transformation and
projection in rgdal, these are calculated from the object being projected or trans-
formed. The provision of areas of interest is intended to reduce the number of candi-
date coordinate operations found by PROJ.

> WKT <- wkt(b_pump_sp)
> o <- list_coordOps(WKT, "EPSG:4326")
> c(nrow(o), nrow(o[o$instantiable,]), sum(o$number_grids))
[1] 8 7 1
> aoi0 <- project(t(unclass(bbox(b_pump_sp))), WKT, inv=TRUE)
> aoi <- c(t(aoi0 + c(-0.1, +0.1)))
> o_aoi <- list_coordOps(WKT, "EPSG:4326", area_of_interest=aoi)
> c(nrow(o_aoi), nrow(o_aoi[o_aoi$instantiable,]), sum(o_aoi$number_grids))
[1] 5 4 1

rgdal::list_coordOps() accesses the PROJ metadata database to
search through candidate coordinate operations, ranking them by accuracy,
returning a data frame of operations. When an area of interest is provided, candi-
dates falling outside it are dropped. Coordinate operations that cannot be instanti-
ated because of missing grids are also listed. We can see here that when an area
of interest is not given, 8 candidate operations are found when the WKT string
contains datum information. Of these, 7 may be instantiated, with 1 needing a
grid (here, the operation that cannot be instantiated). Three operations cease to be
candidates if we use an area of interest.

In sp/rgdal, the coordinate operation last used is returned and can be retrieved
using rgdal::get_last_coordOp(); coordinate operations are repre-
sented as pipelines (Knudsen and Evers 2017; Evers and Knudsen 2017), intro-
duced in PROJ 5 and using the PROJ key–value pair notation:9

9 nl is used to represent the verbatim new line character in the processed article.

1 3

Progress in the R ecosystem for representing and handling spatial…

> b_pump_sp_ll <- spTransform(b_pump_sp, "EPSG:4326")
> cat(strwrap(get_last_coordOp()), sep=nl)
+proj=pipeline +step +inv +proj=tmerc +lat_0=49 +lon_0=-2 +k=0.999601
+x_0=400000 +y_0=-100000 +ellps=airy +step +proj=push +v_3 +step +proj=cart
+ellps=airy +step +proj=helmert +x=446.448 +y=-125.157 +z=542.06 +rx=0.15
+ry=0.247 +rz=0.842 +s=-20.489 +convention=position_vector +step +inv
+proj=cart +ellps=WGS84 +step +proj=pop +v_3 +step +proj=unitconvert
+xy_in=rad +xy_out=deg

Here, we can see that an inverse projection from the specified Transverse Mer-
cator projection is made to geographical coordinates, followed by a seven-param-
eter Helmert transformation to WGS84 ellipsoid and datum. The parameters are
contained in the best instantiable coordinate operation retrieved from the PROJ
database.

> o <- list_coordOps(wkt(b_pump_sp1), "EPSG:4326", area_of_interest=aoi)
> cat(nrow(o), o$ballpark, nl)
1 TRUE
> b_pump_sp1_ll <- spTransform(b_pump_sp1, "EPSG:4326")
> cat(strwrap(get_last_coordOp()), sep=nl)
+proj=pipeline +step +inv +proj=tmerc +lat_0=49 +lon_0=-2 +k=0.999601
+x_0=400000 +y_0=-100000 +ellps=airy +step +proj=unitconvert +xy_in=rad
+xy_out=deg

Going on to the case of the degraded representation, only 1 operation is found,
with only ballpark accuracy. With our emulation of the dropping of +datum= sup-
port in GDAL’s exportToProj4(), we see that the coordinate operation pipe-
line only contains the inverse projection step, accounting for the observed shift of
the Broad Street pump to Ingestre Place.

Finally, sp/rgdal may use the provision of on-demand downloading of transfor-
mation grids to provide more accuracy (CDN, from PROJ 7).10 Before finding and
choosing to use a coordinate operation using an on-demand downloaded grid, the
designated directory is empty:

> enable_proj_CDN()
[1] "Using: /tmp/Rtmp5keMtw/file1c4592b3b37c2"
> list.files(td)
character(0)

Using the CDN, all the candidate operations are instantiable, and the pipeline
now shows a horizontal grid transformation rather than a Helmert transformation.

10 https ://cdn.proj.org.

https://cdn.proj.org

 R. S. Bivand

1 3

> o <- list_coordOps(WKT, "EPSG:4326", area_of_interest=aoi)
> c(nrow(o), nrow(o[o$instantiable,]), sum(o$number_grids))
[1] 5 5 1
> b_pump_sp_llg <- spTransform(b_pump_sp, "EPSG:4326")
> cat(strwrap(get_last_coordOp()), sep=nl)
+proj=pipeline +step +inv +proj=tmerc +lat_0=49 +lon_0=-2 +k=0.999601
+x_0=400000 +y_0=-100000 +ellps=airy +step +proj=hgridshift
+grids=uk_os_OSTN15_NTv2_OSGBtoETRS.tif +step +proj=unitconvert +xy_in=rad
+xy_out=deg

Now the downloaded grid is cached in the database in the designated CDN direc-
tory and may be used for other transformations using the same operation.

> list.files(td)
[1] "cache.db"
> file.size(file.path(td, list.files(td)[1]))
[1] 319488
> disable_proj_CDN()

Once again, the distance between the point transformed from the sf object as read
from file and the point with the degraded coordinate reference system emulating the
effect of the change in behaviour of GDAL’s exportToProj4() in GDAL 6 and
later is about 125 m. Using the CDN shifts the output point by 1.7 m. For confirma-
tion, the output transformed coordinates for the sp and sf objects using the Helmert
transformation are the same.

> c(spDists(b_pump_sp1_ll, b_pump_sp_ll),
+ spDists(b_pump_sp_llg, b_pump_sp_ll))*1000
[1] 125.057683 1.751474
> all.equal(unname(coordinates(b_pump_sp_ll)),
+ unname(st_coordinates(st_geometry(b_pump_sf_ll))))
[1] TRUE

Although it appears that most of the consequences of the change in representa-
tion of coordinate reference systems from Proj4 to WKT2 strings have now been
addressed, we still see signs on the mailing list and on Twitter that users, natu-
rally directing their attention to their analytical or visualization work, may still
be confused. The extent of the spatial cluster of R packages is so great that it will
undoubtedly take time before the dust settles. However, we trust that the operation
of upgrading representations is now largely complete. Multiple warnings issued in
sp workflows, now noisily drawing attention to possible degradations in workflows,
will by default be muted when sp 1.5 and rgdal 1.6 are released.

5 Outlook

As has already been mentioned, either most sp-based workflows continue to func-
tion using sf objects or changes have been made in packages like spdep and its mod-
elling counterpart spatialreg to permit scripts and packages using these packages
to continue to function. Some workflows require more attention than others, but

1 3

Progress in the R ecosystem for representing and handling spatial…

the transition to sf from sp, rgdal and rgeos should be unproblematic. Shifting to
new visualization packages like tmap, cartography and mapview should also be
relatively easy, and use of sf and the new visualization packages should certainly
become standard for new research and teaching. It may take a little longer for stars
to find its place, but work here is continuing, and will stabilize before long. Similar
remarks apply to transition from raster to terra.

The key challenges for handling spatial data using R concern the upstream
software libraries in the open-source geospatial software stack, not just PROJ as
described above or changes in validity requirements in GEOS and other libraries,
but also the opportunities opened up by access to cloud-based earth observation data
streams. Because incoming data may take forms as yet not provided for, even where
GDAL drivers become available, changes in object representations may become
necessary. In particular, this relates to spatio-temporal data, where trajectory data
are especially demanding. These data representation challenges are actually oppor-
tunities for users and developers to continue cooperating to contribute to making the
R ecosystem for handling and analysing spatial and spatio-temporal data even more
capable and performant. Finally, please note that a CODECHECK certificate for this
paper is available at https ://doi.org/10.5281/zenod o.40038 48. CODECHECK is an
open-science initiative to facilitate sharing of computer programs and results pre-
sented in scientific publications (see https ://codec heck.org.uk/)

Funding Open Access funding provided by Norwegian School of Economics.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen
ses/by/4.0/.

References

Akima H, Gebhardt A (2020) akima: interpolation of irregularly and regularly spaced data. https ://
CRAN.R-proje ct.org/packa ge=akima , R package version 0.6-2.1

Appelhans T, Detsch F, Reudenbach C, Woellauer S (2020) mapview: interactive viewing of spatial data
in R. https ://CRAN.R-proje ct.org/packa ge=mapvi ew, R package version 2.9.0

Baddeley A, Turner R (2005) spatstat: an R package for analyzing spatial point patterns. J Stat Softw
12(6):1–42

Baddeley A, Rubak E, Turner R (2015) Spatial point patterns: methodology and applications with R.
Chapman and Hall, London

Baddeley A, Turner R, Rubak E (2020) spatstat: spatial point pattern analysis, model-fitting, simulation,
tests. https ://CRAN.R-proje ct.org/packa ge=spats tat, R package version 1.64-1

Bivand R (1998) Software and software design issues in the exploration of local dependence. The Statis-
tician 47:499–508

https://doi.org/10.5281/zenodo.4003848
https://codecheck.org.uk/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://CRAN.R-project.org/package=akima
https://CRAN.R-project.org/package=akima
https://CRAN.R-project.org/package=mapview
https://CRAN.R-project.org/package=spatstat

 R. S. Bivand

1 3

Bivand R (2000) Using the R statistical data analysis language on GRASS 5.0 GIS database files. Com-
put Geosci 26(9):1043–1052

Bivand R (2002) Spatial econometrics functions in R: classes and methods. J Geogr Syst 4:405–421
Bivand R (2006) Implementing spatial data analysis software tools in R. Geogr Anal 38:23–40
Bivand R (2014) Geocomputation and open source software: components and software stacks. In: Abra-

hart RJ, See LM (eds) Geocomputation. CRC Press, Boca Raton, pp 329–355 (chap 14)
Bivand R (2020a) classInt: choose univariate class intervals. https ://CRAN.R-proje ct.org/packa ge=class

Int, R package version 0.4-3
Bivand R (2020b) spdep: spatial dependence: weighting schemes, statistics. https ://CRAN.R-proje ct.org/

packa ge=spdep , R package version 1.1-5
Bivand R, Gebhardt A (2000) Implementing functions for spatial statistical analysis using the R language.

J Geogr Syst 2(3):307–317
Bivand R, Lewin-Koh N (2020) maptools: tools for handling spatial objects. https ://CRAN.R-proje ct.org/

packa ge=mapto ols, R package version 1.0-1
Bivand R, Piras G (2019) spatialreg: spatial regression analysis. https ://CRAN.R-proje ct.org/packa

ge=spati alreg , R package version 1.1-5
Bivand R, Rundel C (2020) rgeos: interface to geometry engine—open source (’GEOS’). https ://

CRAN.R-proje ct.org/packa ge=rgeos , R package version 0.5-3
Bivand R, Pebesma E, Gomez-Rubio V (2008) Applied spatial data analysis with R. Springer, New York
Bivand R, Pebesma E, Gomez-Rubio V (2013) Applied spatial data analysis with R, 2nd edn. Springer,

New York
Bivand R, Keitt T, Rowlingson B (2020) rgdal: bindings for the ’geospatial’ data abstraction library. https

://CRAN.R-proje ct.org/packa ge=rgdal , R package version 1.5-16
Brody H, Rip MR, Vinten-Johansen P, Paneth N, Rachman S (2000) Map-making and myth-making in

Broad Street: the London cholera epidemic, 1854. Lancet 356:64–68
de Vries A (2014) Finding clusters of CRAN packages using igraph. https ://blog.revol ution analy tics.

com/2014/12/findi ng-clust ers-of-cran-packa ges-using -igrap h.html, Revolutions blog. Accessed 25
Aug 2020

Dunnington D, Pebesma E, Rubak E (2020) s2: spherical geometry operators using the S2 geometry
library. https ://CRAN.R-proje ct.org/packa ge=s2, r package version 1.0.2

Eddelbuettel D (2013) Seamless R and C++ integration with Rcpp. Springer, New York
Eddelbuettel D, Balamuta JJ (2018) Extending R with C++: a brief introduction to Rcpp. Am Stat

72(1):28–36. https ://doi.org/10.1080/00031 305.2017.13759 90
Eddelbuettel D, François R, Allaire J, Ushey K, Kou Q, Russel N, Chambers J, Bates D (2011) Rcpp:

seamless R and C++ integration. J Stat Softw 40(8):1–18
Eddelbuettel D, Francois R, Allaire J, Ushey K, Kou Q, Russell N, Bates D, Chambers J (2020) Rcpp:

seamless R and C++ integration. https ://CRAN.R-proje ct.org/packa ge=Rcpp, R package version
1.0.5

Evangelista PF, Beskow D (2018) Geospatial point density. R J 10(2):347–356. https ://doi.
org/10.32614 /RJ-2018-061

Evers K, Knudsen T (2017) Transformation pipelines for PROJ.4. https ://www.fig.net/resou rces/proce
eding s/fig_proce eding s/fig20 17/paper s/iss6b /ISS6B _evers _knuds en_9156.pdf, fIG working
week 2017 proceedings. Accessed 25 Aug 2020

Giraud T, Lambert N (2016) cartography: create and integrate maps in your R workflow. J Open
Source Softw. https ://doi.org/10.21105 /joss.00054

Giraud T, Lambert N (2017) Reproducible cartography. In: Peterson M (ed) Advances in cartography
and GIScience. ICACI 2017. Lecture notes in geoinformation and cartography. Springer, Cham,
pp 173–183. https ://doi.org/10.1007/978-3-319-57336 -6_13

Giraud T, Lambert N (2020) cartography: thematic cartography. https ://CRAN.R-proje ct.org/packa
ge=carto graph y, R package version 2.4.1

Gómez-Rubio V (2011) RArcInfo: functions to import data from Arc/Info V7.x binary coverages.
https ://CRAN.R-proje ct.org/packa ge=RArcI nfo, R package version 0.4-12

Gómez-Rubio V, López-Quílez A (2005) RArcInfo: using GIS data with R. Comput Geosci
31(8):1000–1006

Gómez-Rubio V, Ferrándiz-Ferragud J, Lopez-Quólez A (2005) Detecting clusters of disease with R.
J Geogr Syst 7(2):189–206

https://CRAN.R-project.org/package=classInt
https://CRAN.R-project.org/package=classInt
https://CRAN.R-project.org/package=spdep
https://CRAN.R-project.org/package=spdep
https://CRAN.R-project.org/package=maptools
https://CRAN.R-project.org/package=maptools
https://CRAN.R-project.org/package=spatialreg
https://CRAN.R-project.org/package=spatialreg
https://CRAN.R-project.org/package=rgeos
https://CRAN.R-project.org/package=rgeos
https://CRAN.R-project.org/package=rgdal
https://CRAN.R-project.org/package=rgdal
https://blog.revolutionanalytics.com/2014/12/finding-clusters-of-cran-packages-using-igraph.html
https://blog.revolutionanalytics.com/2014/12/finding-clusters-of-cran-packages-using-igraph.html
https://CRAN.R-project.org/package=s2
https://doi.org/10.1080/00031305.2017.1375990
https://CRAN.R-project.org/package=Rcpp
https://doi.org/10.32614/RJ-2018-061
https://doi.org/10.32614/RJ-2018-061
https://www.fig.net/resources/proceedings/fig_proceedings/fig2017/papers/iss6b/ISS6B_evers_knudsen_9156.pdf
https://www.fig.net/resources/proceedings/fig_proceedings/fig2017/papers/iss6b/ISS6B_evers_knudsen_9156.pdf
https://doi.org/10.21105/joss.00054
https://doi.org/10.1007/978-3-319-57336-6_13
https://CRAN.R-project.org/package=cartography
https://CRAN.R-project.org/package=cartography
https://CRAN.R-project.org/package=RArcInfo

1 3

Progress in the R ecosystem for representing and handling spatial…

Gómez-Rubio V, Ferrándiz-Ferragud J, López-Quílez A (2015) DCluster: functions for the detection
of spatial clusters of diseases. https ://CRAN.R-proje ct.org/packa ge=DClus ter, R package version
0.2-7

Herring JR (2011) Opengis implementation standard for geographic information-simple feature
access-part 1: common architecture. Open Geospatial Consortium Inc, Wayland, p 111

Hijmans RJ (2020a) terra: geographic data analysis and modeling. https ://CRAN.R-proje ct.org/packa
ge=raste r, R package version 3.3-13

Hijmans RJ (2020b) terra: spatial data analysis. https ://CRAN.R-proje ct.org/packa ge=terra , R pack-
age version 0.8-6

Hornik K (2020) stringsAsFactors. https ://devel oper.r-proje ct.org/Blog/publi c/2020/02/16/strin gsasf
actor s/index .html. Accessed 25 Aug 2020

ISO (2004) ISO 19125-1:2004 geographic information—simple feature access—part 1: common
architecture. https ://www.iso.org/stand ard/40114 .html, iSO 19125-1:2004. Accessed 25 Aug
2020

ISO (2019) ISO 19111:2019 Geographic information—referencing by coordinates. https ://www.iso.
org/stand ard/74039 .html, ISO 19111:2019. Accessed 25 Aug 2020

Kalibera T (2019) Use of C++ in packages. https ://devel oper.r-proje ct.org/Blog/publi c/2019/03/28/
use-of-c-in-packa ges/index .html, R blog. Accessed 25 Aug 2020

Kaluzny S, Vega S, Cardoso T, Shelly A (1998) S+SpatialStats. Springer, New York
Knudsen T, Evers K (2017) Transformation pipelines for PROJ.4. Geophysical research abstracts, vol

19, EGU2017-8050. https ://meeti ngorg anize r.coper nicus .org/EGU20 17/EGU20 17-8050.pdf.
Accessed 25 Aug 2020

Kralidis AT (2008) Geospatial open source and open standards convergences. In: Hall GB, Leahy M
(eds) Open source approaches in spatial data handling. Springer, Berlin, pp 1–20

Lapa T, Ximenes R, Silva NN, Souza W, Albuquerque MdFM, Campozana G (2001) Vigilância da
hanseníase em Olinda, Brasil, utilizando técnicas de análise espacial. Cadernos de Saúde Pública
17:1153–1162. https ://doi.org/10.1590/S0102 -311X2 00100 05000 16

Lovelace R, Ellison R (2018) stplanr: a package for transport planning. R J 10(2):7–23. https ://doi.
org/10.32614 /RJ-2018-053

Lovelace R, Nowosad J, Muenchow J (2019) Geocomputation with R. CRC, Boca Raton
Lovelace R, Ellison R, Morgan M (2020) stplanr: sustainable transport planning. https ://CRAN.R-

proje ct.org/packa ge=stpla nr, r package version 0.6.2
Majure JJ, Gebhardt A (2016) sgeostat: an object-oriented framework for geostatistical modeling in

S+. https ://CRAN.R-proje ct.org/packa ge=sgeos tat, R package version 1.0-27
Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F (2019) e1071: misc functions of the Depart-

ment of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. https ://CRAN.R-proje
ct.org/packa ge=e1071 , r package version 1.7-3

Neuwirth E (2014) RColorBrewer: ColorBrewer palettes. https ://CRAN.R-proje ct.org/packa ge=RColo
rBrew er, R package version 1.1-2

Nowosad J (2019) ’CARTOColors’ palettes. https ://nowos ad.githu b.io/rcart ocolo r, R package version
2.0.0

Pebesma E (2012) spacetime: spatio-temporal data in R. J Stat Softw 51(7):1–30
Pebesma E (2018) Simple features for R: standardized support for spatial vector data. R J 10(1):439–446
Pebesma E (2020a) sf: simple features for R. https ://CRAN.R-proje ct.org/packa ge=sf, R package version

0.9-5
Pebesma E (2020b) spacetime: classes and methods for spatio-temporal data. https ://CRAN.R-proje

ct.org/packa ge=space time, R package version 1.2-3
Pebesma E (2020c) stars: spatiotemporal arrays, raster and vector data cubes. https ://CRAN.R-proje

ct.org/packa ge=stars , R package version 0.4-3
Pebesma E, Bivand R (2005) Classes and methods for spatial data in R. R News 5(2):9–13
Pebesma E, Bivand R (2020) sp: classes and methods for spatial data. https ://CRAN.R-proje ct.org/packa

ge=sp, R package version 1.4-2
Pebesma E, Dunnington D (2020) In r-spatial, the Earth is no longer flat. https ://www.r-spati

al.org/r/2020/06/17/s2.html. Accessed 25 Aug 2020
Pebesma EJ, Wesseling CG (1998) Gstat, a program for geostatistical modelling, prediction and simula-

tion. Comput Geosci 24:17–31
Pebesma E, Bivand R, Ribeiro P (2015) Software for spatial statistics. J Stat Softw 63(1):1–8. https ://doi.

org/10.18637 /jss.v063.i01

https://CRAN.R-project.org/package=DCluster
https://CRAN.R-project.org/package=raster
https://CRAN.R-project.org/package=raster
https://CRAN.R-project.org/package=terra
https://developer.r-project.org/Blog/public/2020/02/16/stringsasfactors/index.html
https://developer.r-project.org/Blog/public/2020/02/16/stringsasfactors/index.html
https://www.iso.org/standard/40114.html
https://www.iso.org/standard/74039.html
https://www.iso.org/standard/74039.html
https://developer.r-project.org/Blog/public/2019/03/28/use-of-c-in-packages/index.html
https://developer.r-project.org/Blog/public/2019/03/28/use-of-c-in-packages/index.html
https://meetingorganizer.copernicus.org/EGU2017/EGU2017-8050.pdf
https://doi.org/10.1590/S0102-311X2001000500016
https://doi.org/10.32614/RJ-2018-053
https://doi.org/10.32614/RJ-2018-053
https://CRAN.R-project.org/package=stplanr
https://CRAN.R-project.org/package=stplanr
https://CRAN.R-project.org/package=sgeostat
https://CRAN.R-project.org/package=e1071
https://CRAN.R-project.org/package=e1071
https://CRAN.R-project.org/package=RColorBrewer
https://CRAN.R-project.org/package=RColorBrewer
https://nowosad.github.io/rcartocolor
https://CRAN.R-project.org/package=sf
https://CRAN.R-project.org/package=spacetime
https://CRAN.R-project.org/package=spacetime
https://CRAN.R-project.org/package=stars
https://CRAN.R-project.org/package=stars
https://CRAN.R-project.org/package=sp
https://CRAN.R-project.org/package=sp
https://www.r-spatial.org/r/2020/06/17/s2.html
https://www.r-spatial.org/r/2020/06/17/s2.html
https://doi.org/10.18637/jss.v063.i01
https://doi.org/10.18637/jss.v063.i01

 R. S. Bivand

1 3

Pebesma E, Mailund T, Hiebert J (2016) Measurement Units in R. R J 8(2):486–494. https ://doi.
org/10.32614 /RJ-2016-061

Pebesma E, Mailund T, Kalinowski T (2020) units: measurement units for R vectors. https ://CRAN.R-
proje ct.org/packa ge=units , r package version 0.6-7

Renka RJ, Gebhardt A (2020) tripack: triangulation of irregularly spaced data. https ://CRAN.R-proje
ct.org/packa ge=tripa ck, R package version 1.3-9.1

Rowlingson B, Diggle PJ (1993) Splancs: spatial point pattern analysis code in S-Plus. Comput Geosci
19:627–655

Rowlingson B, Diggle P (2017) splancs: spatial and space-time point pattern analysis. https ://CRAN.R-
proje ct.org/packa ge=splan cs, R package version 2.01-40

Sawicka K, Heuvelink GB, Walvoort DJ (2018) Spatial uncertainty propagation analysis with the spup R
package. R J 10(2):180–199. https ://doi.org/10.32614 /RJ-2018-047

Tennekes M (2018) tmap: thematic maps in R. J Stat Softw 84(6):1–39
Tennekes M (2020) tmap: thematic maps. https ://CRAN.R-proje ct.org/packa ge=tmap, R package version

3.1
Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York
Warmerdam F (2008) The geospatial data abstraction library. In: Hall GB, Leahy M (eds) Open source

approaches in spatial data handling. Springer, Berlin, pp 87–104
Wickham H (2014) Tidy data. J Stat Softw 59(10):1–23. https ://doi.org/10.18637 /jss.v059.i10
Wickham H, Chang W, Henry L, Pedersen TL, Takahashi K, Wilke C, Woo K, Yutani H (2020) ggplot2:

create elegant data visualisations using the grammar of graphics. https ://CRAN.R-proje ct.org/packa
ge=ggplo t2, R package version 3.3.2

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.32614/RJ-2016-061
https://doi.org/10.32614/RJ-2016-061
https://CRAN.R-project.org/package=units
https://CRAN.R-project.org/package=units
https://CRAN.R-project.org/package=tripack
https://CRAN.R-project.org/package=tripack
https://CRAN.R-project.org/package=splancs
https://CRAN.R-project.org/package=splancs
https://doi.org/10.32614/RJ-2018-047
https://CRAN.R-project.org/package=tmap
https://doi.org/10.18637/jss.v059.i10
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggplot2

	Progress in the R ecosystem for representing and handling spatial data
	Abstract
	1 Introduction
	2 Spatial data classes in the sp package
	3 Spatial data classes in the sf and stars packages
	3.1 Simple Features in R
	3.2 Raster representations
	3.3 Visualization
	3.4 Reverse dependencies of the sp and sf packages

	4 Upstream software dependencies of the R-spatial ecosystem
	5 Outlook
	References

