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Abstract

In this paper we investigate the EM-estimator of the model by Caudill
et al. (2005). The purpose of the model is to identify items, e.g. individu-
als or companies, that are wrongly classified as honest; an example of this
is the detection of tax evasion. Normally, we observe two groups of items,
labeled fradulent and honest, but suspect that many of the observation-
ally honest items are, in fact, fraudulent. The items observed as honest
are therefore divided into two unobserved groups, honestH, representing
the truly honest, and honestF, representing the items that are observed
as honest, but that are actually fraudulent. By using a multinomial logit
model and assuming commonality between the observed fradulent and
the unobserved honestF, Caudill et al. (2005) present a method that uses
the EM-algorithm to separate them. By means of a Monte Carlo study,
we investigate how well the method performs, and under what circum-
stances. We also study how well boostrapped standard errors estimates
the standard deviation of the parameter estimators.

1 Introduction

Fraud is a fact of social behaviour having increasingly important consequences
including loss of revenues to businesses, government, and society. Fraud is also
expensive, driving up cost for detection and fraud risk reduction. As a result, ac-
tive fraud control has gradually become an integrated part of business decision-
making processes. Insurance companies must deal with fraud perpetrated by
consumers on the firm and spend money on fraud detection and monitoring.
A lot of research has focused on the fraud detection efforts and the frequency
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of fraud, that is, assessing and ranking the fraud suspiciousness of individual
claims (Ai et al., 2009, 2013; Art́ıs et al., 1999; Brockett et al., 2002; Derrig and
Ostaszewski, 1995; Viaene et al., 2002).

Fraud is often detected by some sort of audit process. Audits will normally
reveal some information about the fraudsters, the type of situations where fraud
occurs, or the products where fraud is common. This information is then used to
predict which claims are more likely to be fraudulent in the future. However, for
most audits, the detection probability is not one hundred percent, which skews
the estimated probabilities. This occurs because there are people in the group
assumed not to be fraudulent who are actually fraudulent, making the observed
fraudulent and the observed honest too similar. We expect that much data has
this structure, in particular insurance claims data, tax data, and medical or
diagnostic data. Moreover, the larger the fraction of misclassified observations,
the worse the problem becomes.

Numerous studies develop techniques to identify or classify fraudulent claims.
Predictive techniques are used to predict values for a certain target variable, such
as credit scoring to predict repayment behaviour of loan applicants, and logistic
regression models, both binary and multinomial logit models, are used for de-
tecting manipulation such as dishonest insurance claims (Major and Riedinger,
2002; Olinsky et al., 1996). Art́ıs et al. (2002) find a significant portion of the
claims that were previously classified as legitimate contain omission errors, and
thus are likely to be fraudulent. Further, Hausman et al. (1998) show that ignor-
ing potential misclassification of a dependent variable can result in biased and
inconsistent coefficient estimates when using standard parametric specifications.

Art́ıs et al. (2002) present a logistic regression model accounting for misclas-
sified claims and estimates it by the method of Hausman et al. (1998). Caudill
et al. (2005) estimate this model by means of a multinomial logit model (MNL)
and the EM-algortihm. They argue that identifying fraudulent claims is similar
in nature to several other problems in real life including medical and epidemio-
logical problems. They describe the methodology that can be used to produce
parameter estimates with a dataset containing potentially misclassified depen-
dent variables. Further, they estimate the proportion of fraudulent claims for
car damage that are potentially erroneously classified as honest by an insurance
company. The procedure is based on a transformation of the standard MNL
likelihood function into a missing data formulation to which the expectation
maximization (EM) algorithm can be applied (Dempster et al., 1977).

By assuming that the fraudsters that are caught have similar characteristics
with the ones that are not, a latent variable model can be specified, where
the group of those that were not caught in the initial audits is divided into
two groups, the uncaught fraudsters and the truly honest claims. The model
can then be estimated by the Expectation Maximization (EM) algorithm for
missing data and be used to identify claims that probably are fraudulent, even
if the audit did not catch them. This idea was introduced by Caudill et al.
(2005), who fit the model to a dataset of Spanish car insurance fraud. Since
this is real data, we do not know whether the EM-algorithm actually provides an
improvement over other fraud detection methods, only that it is implementable.
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Therefore, this paper investigates the methodology by means of a Monte Carlo
study in order to evaluate its performance. We simulate data and vary the key
relationships to evaluate the improvements that the EM-algorithm provides. We
compare the parameter estimates obtained after running the EM-algorithm with
the estimates obtained under a perfect information scenario. Additionally we
compare the EM-parameters to a naive binomial logit model that does not take
the misclassification into account. By doing so, we can see how much estimation
accuracy we lose due to not having full information, and the improvement in
performance over the naive approach.

The particular models we perform our simulation study on are guided by
the empirical results of Caudill et al. (2005). The insurance claims categorized
as honest, even though they are actually fraudulent, constitute the misclassified
(missing) data. The data used by Caudill et al. (2005) is taken from Art́ıs et al.
(2002) and we use the standard deviations and coefficients from the paper by
Art́ıs et al. (2002) to simulate our data. In our simulated data we, of course,
have full knowledge of whether a claim that is observed as being honest is really
honest, or whether it is actually fraudulent.

The EM algorithm consists of two steps. In the Expectation (E) step, un-
observed indicator variables associated with truly honest and honest-fraudulent
claims are replaced with their conditional expectations, given the data and val-
ues of the unknown parameters. These conditional expectations or probabilities
can be readily computed, given the structure of the logit model. In the Max-
imization (M) step, the log-likelihood function is maximized, new parameter
values are obtained and then the E and M steps are repeated until the likeli-
hood function is maximized. When the parameters are estimated, we can obtain
the final estimates of the probabilities of whether a claim is fraudulent or not.

The EM-algorithm avoids the problem that the binomial logit model incurs,
where all claims are assumed to be correctly classified; hence, the EM-algorithm
avoids using misclassified observations for calculating probabilities, which is
the cause of incorrect probabilities. Our results are aimed at revising claims
initially classified as honest by reopening investigations and examining claims
more closely, but might also improve prediction models. Further, this allows us
to identify weaknesses in the initial classification system.

The paper is structured in the following way. Section 2 gives a literature
review on theoretical and empirical studies of the detection of fraudulent claims.
Section 3 presents the model by Caudill et al. (2005) and how to estimate it by
means of the EM-algorithm. In Section 4 the performance of the EM-estimator
is evaluated against two benchmark estimators by means of a Monte Carlo
Study. A conclusion closes the paper.
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2 The model

2.1 The multinomial model with missing information

The model by Caudill et al. (2005) is based on a multinomial distribution1

with three categories. The first category, the honest honest (HH), are claims
not caught in the audit process that are indeed not fraudulent. The second
category, the honest fraudulent (HF), are fraudulent claims not caught in the
audit process. The last category consists of fraudulent claims (F) caught in the
audit process.

If all three categories were observed, it would simply be a trinomial logit
model. Of course, this is not the case and the model was developed in order to
allow for, and estimate the probability of undetected fraudulent claims. In order
to do so, a similarity between the detected and undetected fraudulent claims
will be assumed and reflected in a parameter restriction that will be imposed in
the model. By denoting the number of HH as Y1, the number of HF as Y2 and
the number of F as Y3, we assume that

(Y1, Y2, Y3) ∼ MN(1, (p1, p2, p3)), (1)

implying that

P (Y1 = y1, Y2 = y2, Y3 = y3) = py11 · p
y2
2 · p

y3
3 . (2)

The probability for an individual to belong to group 1, 2 or 3, respectively,
is assumed to be given by the following equations

p1 = P (Y1 = 1, Y2 = 0, Y3 = 0) =
1

1 + eα2+β2x + eα3+β3x
, (3)

p2 = P (Y1 = 0, Y2 = 1, Y3 = 0) =
eα2+β2x

1 + eα2+β2x + eα3+β3x
, (4)

p3 = P (Y1 = 0, Y2 = 0, Y3 = 1) =
eα3+β3x

1 + eα2+β2x + eα3+β3x
. (5)

In order to identify the parameters Caudill et al. (2005), assume that β2 =
β3, i.e. that the probability of an individual to be fraudulent is affected by the
explanatory variables in the same way, independent on whether the fraud has
been detected or not. A difference in the probability for an individual to be in
classes 2 or 3 is still allowed since α2 and α3 are free parameters.

1We denote this distribution MN(n,p), where n is the number of trials and p is a K−vector
containing the probabilities for each of K categories.
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2.2 Estimation of the model using EM algorithm

The α’s and the β’s are parameters to be estimated, and x is a vector of exoge-
nous variables. We can now write the log-likelihood function

lnL(α2, α3, β2) =

n∑
i=1

(Y1i ln p1 + Y2i ln p2 + Y3i ln p3), (6)

where i (i = 1, ..., n) represents an individual i, and n is the sample size. The
ML-estimator is obtained by maximizing the log-likelihood with respect to the
parameters α2, α3 and β2.

We have only observed a binomial variable (Z2, Z3) = (Y1 + Y2, Y3), but
model it as a trinomial (Y1, Y2, Y3).

Since we do not observe all three categories we cannot compute lnL(α2, α3, β2).
We therefore use the suggested by Caudill et al. (2005), which is based on Ex-
pectation Maximization (EM) algorithm. Briefly described,

1. Expectation (E) step
we compute the expectation of lnL(α2, α3, β2) conditional on the observed
data.

Q(α2, α3, β2) = E(lnL(α2, α3, β2)|Y), (7)

where Y is an n×3-matrix where element (i, j) is equal to 1 if observation
nr i belongs to category j and zero otherwise. Conditioning on the x-
observations are also done but is not expressed explicitly in the formulas
here. The conditional expectation of each term in (6) is computed by
observing that only one of Z2 and Z1 is equal to one; the other is zero.
We need

Y ∗2i := E(Y2i|Z2i = 1) = P (Y2i = 1|Z2i = 1) =
p2

p2 + p3

=
eα2+β2x

1 + eα2+β2x

(8)

and similarly

Y ∗1i =
1

1 + eα2+β2x
(9)

2. Maximization (M) step
The log-likelihood function lnL(α1, α2, β2) is maximized, where Y1i and
Y2i are substituted by Y ∗1i and Y ∗2i. New α and β estimates are found, these
are plugged in the step 1 and new Y ∗i estimates are found. Log-likelihood
function is maximized again, based on these new values, and the whole
process is iterated until the log-likelihood function is at its maximum.

In R, this can be implemented by the following algorithm:

1. Select starting values for α
(1)
2 , α

(1)
3 , β

(1)
2 .
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2. Compute Y
∗(1)
1i , Y

∗(1)
2i , based on these parameter values.

3. Maximize log-likelihood function where Y1i and Y2i are substituted with

Y
∗(1)
1i and Y

∗(1)
2i . After maximization, new parameter values α

(2)
2 , α

(2)
3 , β

(2)
2

are obtained.

4. Steps 2 to 3 are repeated until there is a convergence to the maximum
likelihood estimator.

As starting values, we use the values obtained from estimating a binomial
logit model, assuming no misclassification has been done.

3 Monte Carlo Study

In order to investigate how well the method manages to estimate the parameters
of the model when some observations are incorrectly classified as honest, we
perform a simulation study. The results can be seen as a best case scenario
since we assume that we know the data generating process (DGP) except for
the parameter values, which have to be estimated. In reality, the explanatory
variables, and the functional form for the probabilities, will of course, not be
specified exactly in accordance with the DGP.

Though simplified, in order to study realistic situations we have chosen the
parameter values of the models guided by the study of Caudill et al. (2005). For
the sake of a clear exhibition, we here recapitulate the model. Each individual
claim is represented by a trinomial variable (Y1, Y2, Y3) with zeros in two of the
three entries and 1 in the class where the claim belongs. The probabilities are
given by

p1 = P (Y1 = 1, Y2 = 0, Y3 = 0) =
1

1 + eα2+β2x + eα3+β2x
, (10)

p2 = P (Y1 = 0, Y2 = 1, Y3 = 0) =
eα2+β2x

1 + eα2+β2x + eα3+β2x
, (11)

p3 = P (Y1 = 0, Y2 = 0, Y3 = 1) =
eα3+β2x

1 + eα2+β2x + eα3+β2x
.2 (12)

In the simulation study, performed in R (R Core Team, 2020)3, we compare
the results of the EM-estimators with two benchmarks. The first is to simply
ignore that there is misclassification, i.e. to use a binomial logit model to esti-
mate β2; this estimator is denoted β̂B2 . This would be possible to do in practice.
The second benchmark is to pretend that we actually observed all three cate-
gories and estimate β2 by means of a trinomial logit model; this estimator is
denoted β̂T2 . This is, obviously, not possible to do when the observations are

2Note that the restriction β2 = β3 is explicitly imposed in the model.
3The code can be found at https://github.com/andreasolden/em_algorithm_missing_

data
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only marked as ”caught” or ”not caught”. It is, however, a good comparison
since we, with the EM-estimator, are trying to fit exactly the same model, but
with a reduced form of the data. For all models and parameter combinations,
1000 replications have been performed to compute the Monte Carlo means and
standard deviations. The sample size for each replication was 1000.

To compute the standard error, the estimated standard deviation, of the
EM-estimator, the non-parametric bootstrap with 200 replications is used. 200
replications were chosen according to Tibshirani and Efron (1993), who show
that running more than 200 replications provides very limited improvements in
bootstrapped standard errors. An experiment with 1000 bootstrap replications
for the standard errors was also conducted and did not indicate a noticeable
improvement. For the trinomial and binomial logit model the standard errors
are computed using the asymptotic distribution of the ML-estimators. Since
there are no known closed form expressions for the standard deviations of the
estimators, the performance of the standard errors is investigated by comparing
their Monte Carlo mean with the Monte Carlo standard deviation of the esti-
mator. In the tables, we call the latter the ”True SD”. Strictly speaking, this is
of course only correct if the number of replications is infinitely large. For some
replicates, the EM-algorithm did not converge after 100 iterations. However,
we found no evidence that these estimates were systematically different from
the ones that did. The tables presented below looked very similar when those
replications were removed.

3.1 One explanatory variable

In this section we study the case with only one explanatory variable, x1. The
parameters of interest to estimate are therefore (α2, α3, β2). Guided by the
empirical study in Caudill et al. (2005) we start by setting (α2, α3, β2) =
(−1.8,−1.5,−0.02). The variable x1 is thought of as the variable AGE in
Caudill et al. (2005). The standard deviation of AGE is 12.3 and that is what
we use as our starting case after which we also vary this quantity.
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Parameter MC mean True SD Estimated SD

α2 = −1.8
α̂EM2 -1.670 0.095 0.084
α̂T2 -1.800 0.100 0.099
α̂B2 -1.664 0.087 0.087

α3 = -1.5
α̂EM3 -1.486 0.101 0.090
α̂T3 -1.505 0.087 0.088

β2 = -0.02

β̂EM2 -0.021 0.009 0.009

β̂T2 -0.020 0.006 0.006

β̂B2 -0.017 0.007 0.007

Table 1: Different estimators of α2, α3 and β2 when the true values are α2 =
−1.8, α3 = −1.5 and β2 = −0.02 and sd(x1) = 12.3. Monte Carlo means and
standard deviations of the estimators and the means of the standard errors.

From Table 1, we see that, with the exception of α2, the EM-estimator
performs almost as well as if all three categories would have been observed when
sd(x1) = 12.3. On the other hand, the mistake of ignoring misclassification,

which is done by β̂B2 is not that consequential. The bootstrapped standard
errors are, on average, slightly underestimating the standard deviation of α̂EM2

and α̂EM3 .
The benefit of the EM-estimator can, however, be seen in Table 2, where the

standard deviation of the explanatory variable is increased with a factor of 10.
The Monte Carlo mean of β̂B2 is then −0.011 compared to the true value −0.020.

The EM-estimator, β̂EM2 , has a Monte Carlo mean of −0.021. The estimation
uncertainty is also, as expected, much smaller for the case with a large standard
deviation in the explanatory variable. The estimation uncertainty, manifested
in the Monte Carlo standard deviations (True SD), is of course larger than if
we had observed all three categories.

As can be seen by comparing Table 1 in Table 2, and in all the remaining
simulation experiments in the paper, α̂EM2 is less biased when the variance of
the explanatory variable(s) is larger.
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Parameter MC mean True SD Estimated SD

α2 = −1.8
α̂EM2 -1.824 0.360 0.353
α̂T2 -1.804 0.122 0.116
α̂B2 -1.700 0.095 0.104

α3 = -1.5
α̂EM3 -1.500 0.173 0.168
α̂T3 -1.503 0.108 0.108

β2 = -0.02

β̂EM2 -0.021 0.003 0.003

β̂T2 -0.020 0.001 0.001

β̂B2 -0.011 0.001 0.001

Table 2: Different estimators of α2, α3 and β2 when the true values are α2 =
−1.8, α3 = −1.5 and β2 = −0.02 and sd(x1) = 123. Monte Carlo means and
standard deviations of the estimators and the means of the standard errors.

3.2 Two explanatory variables

In order to investigate how the addition of more explanatory variables affects
the results we now let x = (x1, x2)′ and β2 = (β21, β22)′ be 2-dimensional
vectors and the terms β2x in equations (10)-(12) replaced by x′β2. The choice
of parameter values studied is, again, guided by Caudill et al. (2005). x1 is again
thought of as representing the variable AGE and the x2 variable RECORDS.
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Parameter MC mean True SD Estimated SD

α2 = −1.8
α̂EM2 -1.680 0.214 0.256
α̂T2 -1.806 0.105 0.100
α̂B2 -1.671 0.088 0.089

α3 = -1.5
α̂EM3 -1.483 0.107 0.110
α̂T3 -1.504 0.088 0.089

β2 = -0.02

β̂EM2 -0.022 0.009 0.010

β̂T2 -0.021 0.006 0.006

β̂B2 -0.017 0.007 0.007

β3 = 0.2

β̂EM3 0.207 0.065 0.071

β̂B3 0.202 0.041 0.041

β̂B3 0.168 0.050 0.049

Table 3: Different estimators of α2, α3, β2 and β3 when the true values are α2 =
−1.8, α3 = −1.5, β2 = −0.02 and β3 = 0.2, sd(x1) = 12.3, sd(x2) = 1.8 and
Corr(x1, x2) = 0. Monte Carlo means and standard deviations of the estimators
and the means of the standard errors.

As Table 3 shows, both the estimators and the standard errors are close to
their respective true values. In the binomial model, the β-coefficients are biased
towards zero due to the misspecification. Also for this case we investigate a
situation with more variation in the explanatory variables. In Table 4, the
standard deviations of x1 and x2 are both multiplied by 10.
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Parameter MC mean True SD Estimated SD

α2 = −1.8
α̂EM2 -1.843 0.276 0.288
α̂B2 -1.808 0.140 0.136
α̂B2 -1.630 0.091 0.105

α3 = -1.5
α̂EM3 -1.524 0.193 0.205
α̂T3 -1.507 0.130 0.131

β2 = -0.02

β̂EM2 -0.020 0.003 0.004

β̂B2 -0.020 0.002 0.002

β̂B2 -0.007 0.001 0.001

β3 = 0.2

β̂EM3 0.205 0.031 0.035

β̂B3 0.202 0.014 0.014

β̂B3 0.072 0.006 0.006

Table 4: Different estimators of α2, α3, β2 and β3 when the true values are
α2 = −1.8, α3 = −1.5, β2 = −0.02 and β3 = 0.2, sd(x1) = 123, sd(x2) = 18 and
Corr(x1, x2) = 0. Monte Carlo means and standard deviations of the estimators
and the means of the standard errors.

We now go back to the case with the original standard deviations of x1 and
x2, 12.3 and 1.8, respectively, but impose a correlation of 0.5 between them. The
result is presented in Table 5. The difference with Table 3 is surprisingly small
an we therefore investigated this by increasing the correlation to 0.9. This is
presented in Table 6, which shows that the standard deviation of the estimators
for β2 and β3 is larger.
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Parameter MC mean True SD Estimated SD

α2 = −1.8
α̂EM2 -1.670 0.115 0.112
α̂T2 -1.804 0.104 0.100
α̂B2 -1.664 0.087 0.088

α3 = -1.5
α̂EM3 -1.483 0.101 0.096
α̂T3 -1.503 0.087 0.088

β2 = -0.02

β̂EM2 1 -0.021 0.009 0.011

β̂T2 -0.020 0.006 0.007

β̂B2 -0.017 0.008 0.008

β3 = 0.2

β̂EM3 0.207 0.071 0.075

β̂T3 0.203 0.046 0.047

β̂B3 0.170 0.056 0.056

Table 5: Different estimators of α2, α3, β2 and β3 when the true values are
α2 = −1.8, α3 = −1.5, β2 = −0.02 and β3 = 0.2, sd(x1) = 12.3, sd(x2) = 1.8
and Corr(x1, x2) = 0.5. Monte Carlo means and standard deviations of the
estimators and the means of the standard errors.
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Parameter MC mean True SD Estimated SD

α2 = −1.8
α̂EM2 -1.667 0.085 0.064
α̂T2 -1.803 0.102 0.099
α̂B2 -1.662 0.084 0.087

α3 = -1.5
α̂EM3 -1.485 0.097 0.089
α̂T3 -1.504 0.084 0.088

β2 = -0.02

β̂EM2 -0.021 0.020 0.020

β̂T2 -0.021 0.014 0.013

β̂B2 -0.018 0.016 0.016

β3 = 0.2

β̂EM3 0.206 0.134 0.135

β̂T3 0.203 0.094 0.091

β̂B3 0.173 0.113 0.111

Table 6: Different estimators of α2, α3, β2 and β3 when the true values are
α2 = −1.8, α3 = −1.5, β2 = −0.02 and β3 = 0.2, sd(x1) = 12.3, sd(x2) = 1.8
and Corr(x1, x2) = 0.9. Monte Carlo means and standard deviations of the
estimators and the means of the standard errors.

To summarize the simulation study, for the most part, the EM-estimator
estimates the parameters of the investigated data generating processes (DGP)
well even though some observations are misclassified; with the exception of the
EM-estimator of α2, there are no indications that the parameter estimators are
biased. In one experiment, identical to Table 1 but for the value of α2 which was
−3.0 instead of −1.8, the EM-estimator seem to systematically converge to value
close to α3 (−1.5) with the consequence that α̂EM2 was severely biased towards
zero. This might be due to convergence to a local optimum, an hypothesis
strengthened by a convergence close to the true value (−3.0), when the true
values were used as starting values.

Bootstrapped standard errors also work well for the β-values in the investi-
gated DPGs. However, the standard errors for the α-estimators underestimate
the true standard deviations of the estimators when the variances of the explana-
tory variables are small. When the variances are large, the standard errors seem
to overestimate the standard deviations of the estimators.

4 Conclusions

In this paper we investigate, by means of a Monte Carlo study, how well the EM-
estimator of the model by Caudill et al. (2005) performs. We study different
levels of variation in the explanatory variables in order to evaluate what is
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required to estimate the parameters well. In order to investigate realistic cases,
we have chosen parameter values of the models guided by the study of Caudill
et al. (2005) but simplified so that we study models with one or two explanatory
variables only. In addition to investigating the point estimators of the parameter
values we also study bootstrapped standard errors.

For the investigated models and parameter values, most point estimators
work well, on average. The exception to this is the EM-estimator of α2, which
determines the difference between the correctly and incorrectly classified fraud-
ulent observations. The estimator worked well when the variance of the ex-
planatory variables was large. Overall, the bootstrapped standard errors also
perform adequately as estimators of the standard deviations of the estimators.
There is one exception also to this, though. When the variation in the explana-
tory variables is small, the standard deviation for α̂EM2 is underestimated and
when the variance is large, it is overestimated.

We compare the estimators with two benchmarks. The first requires more
data, namely that all three categories are observed. This trinomial model serves
as an upper limit for how well the EM-estimator, which uses less information,
could perform. The second benchmark is a binomial logit model where the
fact that some observations are misclassified is ignored. The trinomial model,
combined with observations of all three categories, as expected, captures the
parameter values more precisely than the EM-estimator. The only interest in the
results for the estimator of the binomial model is to show the effect of ignoring
a part of the model (analogous to omitted variable bias in a linear regression).
With small variance in the explanatory variables the bias is surprisingly small
for the binomial estimator (for the cases when they can be seen as estimators of
parameters in the trinomial model). This bias is exacerbated when the variance
is increased.
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