
BY

ISSN:

DISCUSSION PAPER

The optimal spending rate versus 
the expected real return of a 
sovereign wealth fund

Knut K. Aase and Petter Bjerksund

Institutt for foretaksøkonomi
Department of Business and Management Science

FOR 1/2021

1500-4066

February 2021



The optimal spending rate versus the expected
real return of a sovereign wealth fund

Knut K. Aase and Petter Bjerksund ∗

February 4, 2021

Abstract

We consider a sovereign wealth fund that invests broadly in the in-
ternational financial markets. The influx to the fund has stopped. We
adopt the life cycle model and demonstrate that the optimal spending
rate from the fund is significantly less than the fund’s expected real
rate of return. The optimal spending rate secures that the fund will
last ”forever”.

Spending the expected return will deplete the fund with probability
one. Moreover, this strategy is inconsistent with optimal portfolio
choice. Our results are contrary to the idea that it is sustainable to
spend the expected return of a sovereign wealth fund.
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1 Introduction

We consider optimal investment strategies and and the associated optimal
extraction from an endowment fund consistent with the live-cycle model.
We demonstrate that the optimal spending rate is strictly smaller than the
expected rate of return. The difference is far from negligible, and amounts
to several percentage points in most real situations.

The basic explanation is: If the fund is managed by diversification, this
means that risk aversion, consumption substitution and impatience are es-
sential in the optimal portfolio choice problem. Then, to be consistent, the
spending rate must also reflect this. Accordingly, the expected real rate of
return is typically not an optimal spending rate, since this criterion would
normally be associated with risk neutrality.

We take the security market as given, assumed to be in equilibrium, and
introduce a price taking agent in this market. In this setting we reconsider
the problem of optimal consumption and portfolio selection. In the context
of an endowment fund, the results from analyzing this more general problem
can immediately be utilized in order to determine an optimal spending rate.
We have considered both expected utility, in which case risk aversion plays
a prominent role, and recursive utility where consumption substitution is
separated from risk aversion, and is also important.

When the investment opportunity set is deterministic, there exist explicit
and closed form solutions for optimal extraction. Rather than depending
upon the expected rate of return, the optimal extraction race is demon-
strated to be a convex combination of the impatience rate and the certainty
equivalent rate of return. The latter quantity is significantly smaller than
the expected rate of return. This is normally true also for the impatience
rate, and thus for the convex combination.

When the investment opportunity set is stochastic, we develop such for-
mulas in the paper, which we claim to be original. First and foremost, these
solutions are demonstrated to be smaller than the expected real rate of return
on the endowment fund, for plausible values of the preference parameters and
the other parameters of the problem. The difference is significant in most
cases.

If the extraction rate is the one of expected return, this normally means
that the agent is risk neutral at the level of spending, and must then, to be
consistent, be risk neutral at the level of optimal portfolio selection as well.
But the consequence of such an investment strategy is rarely advocated by
anyone responsible for an endowment fund, whatever its purpose.

We demonstrate that a popular and much advertised extraction policy,
the expected real rate, is not consistent with a sustainable spending rate,
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and will with probability one eventually deplete any fund that is managed
by diversification.

Most endowments have the perspective that they should last ”forever”.
Consequently, there is a trade-off between current spending and future spend-
ing opportunities. Tobin (1974) develop sustainable spending rules in a de-
terministic world. It can be argued that it is sustainable to spend the real
interest rate within this setting.

Uncertainty complicates this picture. Some would argue that it is sustain-
able for an endowment to spend the expected fund return, see e.g. Campbell
(2012) who considers university endowments. Moreover, this idea motivates
the current 3 % fiscal rule that applies to the 1 trillion USD Norwegian
sovereign wealth fund.

Dybvig and Qin (2019) consider a fund with normal iid log-returns. The
authors find that for the fund to last ”forever”, spending must not exceed ex-
pected fund return subtracted by half the variance. The discrepancy between
expected fund return and sustainable spending is far from negligible.

The two key decisions of an endowment fund that invests in the financial
market is how much risk to take and how much to spend. From a theoretical
point of view, the two decisions are closely related and must be determined
jointly. To examine the questions one must, we claim, address the issue
of the objective function by which optimality is to be measured. Merton
(1972) presents optimal portfolio and consumption rules for an investor who
maximizes expected, additive and separable utility with constant relative
risk aversion in a continuous-time world, where risky asset returns are iid.
Recursive utility is a more generalized framework where the investor’s risk
aversion and consumption substitution are disentangeld , see e.g., Epstein
and Zin (1991).

Campbell and Sigalov (2020) adopt the Merton model as well as Epstein-
Zin preferences, and assume that there is a constraint on the spending rule.
The authors examine two alternative constraints: (i) spending the expected
return; and (ii) the maximum sustainable spending follows the assumption
of Dybvig and Qin (2019). The authors find that the constraint induces
increased risk taking (referred to as ”reaching out for yield”).

In Merton (1990), ch 21, optimal investment strategies for university en-
dowment funds are analyzed, where the objective is maximization of expected
utility, related to several activities consistent with the purposes of the uni-
versity. We limit the scope to how much to optimally spend in the numeraire
unit of account, which is a purely financial question. How much to spend on
each of several activities we consider as a political issue.

The purpose of this paper is to compare the optimal spending with the
conventional wisdom of spending the expected return, or any other ad hoc
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rule. For this purpose, we adopt the life cycle model used by Merton (1972),
where we also consider the recursive utility framework, in the setting of con-
tinuous time. We find that for realistic parameter values, the endogenously
determined optimal spending is less than the expected fund return. For most
cases, the discrepancy is far from negligible. We also consider a more gen-
eral situation where the investment opportunity set is stochastic and derive
analytical results that to our knowledge are new. We find that the insights
from a deterministic investment opportunity set carry over to a more general
setting where the investment opportunity set is stochastic.

The paper is organized as follows: The basic continuous-time model is
presented in Section 2. Section 3 analyzes the problem when the agent has
standard additive and separable expected utility, where we present examples
in sections 3.3-4. In sections 3.5-6 we look at the asymptotic behavior of the
wealth as time goes to infinity under the two extraction rules. Section 3.7
deals with a stochastic investment opportunity set. In Section 4 we introduce
recursive utility and analyze the problem, first with a stochastic investment
opportunity set, and then in Section 4.5, with a deterministic one. In section
4.6 we analyze the asymptotics of the wealth for the two types of spending
rates with recursive utility. Section 4.7 deals with a particular example, the
Norwegian SWF Government Fund Global. In Section 5 we discuss the role
of a state owned sovereign wealth fund where there is additional consumption
in Society, and Section 6 concludes.

2 The basic model

We consider the optimal consumption and portfolio selection problem using
the life cycle model. We have an agent represented by the pair (U, e), where
U(c) is the agent’s utility function over consumption processes c, and e is
the agent’s endowment process. The problem consists in maximizing utility
subject to the agent’s budget constraint

supc,ϕU(c) subject to E
(∫ T

0

πtctdt
)
≤ E

(∫ T

0

πtetdt
)

:= w, (1)

where ϕ are the optimal fractions of wealth in the various risky investment
possibilities facing the agent, and w is the current value of the agent’s wealth.
The quantity πt is the state price deflator at each time t, i.e., the Arrow-
Debreu state prices in units of probability. The horizon is T ≤ ∞.

The consumer takes as given a dynamic financial market, consisting of
N risky securities and one riskless asset, the latter with rate of return rt,
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a stochastic process. The agent’s actions do not affect market prices of the
risky assets, nor the risk-free rate of return rt.

3 Optimal consumption and portfolio choice

In the paper we consider two different specifications of utility, (i) the standard
model with separable and additive expected utility, and (ii) recursive utility of
the Duffie-Epstein type with a Kreps-Porteus specification of the associated
certainty equivalent, the latter derived from expected utility.

We consider a continuous-time framework. In case (i) the agent’s prefer-
ences are represented by standard expected additive and separable utility of
the form

U(c) = E
(∫ T

0

u(ct, t)dt
)
. (2)

Here u(c, t) is the agent’s felicity index, which we assume to be of the CRRA-
type, meaning that the real function u(x, t) = 1

1−γx
1−γe−δt, where γ is the

agent’s relative risk aversion and δ is the agent’s impatience rate (the utility
discount rate).

It follows from optimal consumption and portfolio choice theory that the
optimal consumption per time unit, c∗t , and the optimal wealth at time t,
W ∗
t , are connected. The starting point for this derivation is the following

formula for the market value of current wealth Wt

W ∗
t =

1

πt
Et

{∫ T

t

πsc
∗
sds
}
. (3)

Here Et(X) = E(X|Ft) is the conditional expectation of any random variable
X given the information by time t, where Ft, is the information filtration,
0 ≤ t ≤ T , and πt is the state price deflator. Under the assumption of no
arbitrage possibilities, it is given by

πt = e−
∫ t
0 (ru+ 1

2
η′uηu)du−

∫ t
0 ηudBu (4)

where rt is the risk free rate of return at time t, ηt is the market-price-of-risk
and Bt is a standard d-dimensional Brownian motion, which generates the
information set Ft for all t ∈ [0, T ].

The financial market consists of N risky assets, where η′tηt = λ′t(σtσ
′
t)
−1λt,

and the vector λt = (µ1(t)−rt, µ2(t)−rt, · · · , µN(t)−rt)′ is the risk premiums
of the risky assets, i.e., the excess expected returns of the risky assets over the
riskless one at any time t ∈ [0, T ]. The quantity µn(t) is the rate of return on
asset n at time t, n = 1, 2, · · · , N , and prime signifies transpose of a vector
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(or matrix). The matrix σtσ
′
t is the instantaneous variance/covariance matrix

of the risky assets in units of prices. All these quantities may be stochastic
processes. For simplicity of exposition we assume that d = N .

3.1 Optimal consumption and extraction with expected
utility: A deterministic investment opportunity
set.

The agent’s optimal consumption and portfolio choice is determined next.
First we give a representation of the optimal consumption c∗t at any time
t ∈ [0, T ]. By employing Kuhn-Tucker and the Saddle Point Theorem, we
find that the optimal consumption is given by

c∗t = π
− 1
γ

t (αeδt)−
1
γ , (5)

where α is the Lagrange multiplier, ultimately determined by equality in
the budget constraint. This gives the following dynamics for the optimal
consumption

dc∗t
c∗t

= µc(t) dt+ σc(t) dBt, (6)

where,

µc(t) =
1

γ
(rt − δ) +

1

2

1

γ
(1 +

1

γ
) η′tηt

and

σc(t) =
1

γ
ηt.

Let It = (rt, ηt, λt) signify the investment opportunity set. We can write
the optimal wealth in equation (3) of the agent in terms of the optimal
consumption as follows

W ∗
t = c∗tEt

{∫ T

t

e
1−γ
γ

[
∫ s
t ((ru+ 1

2
η′uηu)− δ

1−γ )du+
∫ s
t ηudBu]ds

}
, (7)

where we have used the dynamics for the state price deflator in (4) and for
the optimal consumption in (6).

In this expression the conditional expectation is in general a random
variable (process), in which case the volatility of W ∗

t is not the same as the
volatility of c∗, and the instantaneous correlation coefficient between these
two processes is not unity. We want to compute the conditional expecta-
tion, and consider two cases, (i) where the investment opportunity set is
deterministic, and (ii) the set It is is stochastic.
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We start with (i). Clearly this assumption involves some loss of generality.
We treat the situation (ii) later. In that part, in Section 3.7 for expected
utility, and in the section about general recursive utility we claim that, aside
from the obvious main result of the paper which is of an applied nature, the
theoretical contributions of the paper can be found.

Now, by the Fubini Theorem and the moment generating function of the
normal distribution, we can write the above equation as follows

W ∗
t = c∗t

∫ T

t

e[ 1−γ
γ

(r+ 1
2
η′η)− δ

γ
+ 1

2
( 1−γ
γ

)2η′η](s−t) ds. (8)

The optimal consumption to wealth ratio is then

c∗t
W ∗
t

= kT (t) a.s. (9)

where kT (t) is an estimate of the optimal extraction rate at the present time
t, where 0 ≤ t < T . The expression for kT (·) can be written

kT (t) =
k

1− e−k(T−t) , (10)

where the k is a constant for all t by our above assumption (ii), and is given
by

k = r − r

γ
+
δ

γ
− 1− γ

2γ2
λ′(σσ′)−1λ. (11)

Provided that k > 0, the function kT (t) → k as T → ∞ for any fixed value
of t.1

The result that k is non-random and time invariant follows from our
assumption about a deterministic investment opportunity set. For example,
it has as a consequence that the volatility of W is the same as the volatility
of c. If the investment opportunity set is stochastic, naturally this is no
longer true. However, in order to focus on the essential questions raised in
this paper, we make this simplification here. We analyze the situation with
a stochastic investment opportunity set in Section 3.7 below.

With a very long horizon T , it is optimal for the agent to consume a
fraction of the remaining wealth at any time t. In reality this fraction is a
stochastic process. Here it is a deterministic function slowly increasing in
t, and when the horizon approaches, it increases sharply (see e.g., Figure 1
below). If the horizon is unbounded at the outset, the fraction k is consumed
forever.

1The result in (11) can alternatively be derived by dynamic programming, assuming
that the horizon is infinite at the outset. A transversality condition must then be satisfied,
which holds if k > 0 (see Merton (1971) for this approach).
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3.2 The real rate of return versus the optimal extrac-
tion rate

Recall the dynamics of the wealth portfolio Wt. It is given by the following
stochastic differential equation

dWt = [Wt(ϕ
′
tλt + rt)− ct]dt+Wtϕ

′
tσtdBt, W0 = w. (12)

The problem (1) of maximizing utility subject to the agent’s budget con-
straint results in both the optimal fractions in the various securities, and the
associated optimal consumption (see Mossin (1968), Samuelson (1969), and
Merton (1969-71) for the earliest treatments of this joint problem). With
a deterministic investment opportunity set, the optimal portfolio weights at
any time t are given by

ϕt =
1

γ
(σσ′)−1λ for all t. (13)

We want to compare the optimal extraction rate k given equation (11) with
the (conditional) expected real rate of return on the optimal wealth portfolio
W ∗
t , which is the solution to the stochastic differential equation (12) with

ct = c∗t , the optimal consumption, and with the portfolio fractions given in
equation (13). The (simple) return in the time interval dt is dRt, where

dRt =
dW ∗

t + c∗tdt

W ∗
t

. (14)

With this interpretation equation (14) is a standard expression for the real
return with dividends.

Accordingly, from (14), equation (12) and the optimal portfolio rule in
equation (13), the t-conditional expected real rate of return of the wealth
portfolio is given by the following expression

Et
(
dRt

)
/dt = r +

1

γ
λ′(σσ′)−1λ. (15)

The optimal extraction rate k may be rewritten as follows

k =
δ

γ
+
(
1− 1

γ

)(
r +

λ′(σσ′)−1λ

2γ

)
. (16)

We then have the following result

Proposition 1 Assuming a deterministic investment opportunity set, the
optimal extraction rate k is a constant and depends on the return from the
fund only via the certainty equivalent rate of return, and can be written

k =
δ

γ
+
(
1− 1

γ

)(
r +

1

2
γϕ′(σσ′)ϕ

)
. (17)
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Proof. Starting with the risk premium

1

γ
λ′(σσ′)−1λ =

1

γ
λ′(σσ′)−1(σσ′)(σσ′)−1λ =

γ
1

γ
λ′(σσ′)−1(σσ′)

1

γ
(σσ′)−1λ =

γ(
1

γ
(σσ′)−1λ)′(σσ′)

1

γ
(σσ′)−1λ) = γϕ′(σσ′)ϕ,

where we have used (13). From this result it follows that the quantity

1

2
γϕ′(σσ′)ϕ

can be recognized as relative certainty equivalent for ’proportional risks’,
since ϕ′σ is the volatility of the wealth portfolio (see equation (12)). 2 �

One basic comparison is between the expected real rate of return on the
wealth portfolio given in (15) and the optimal extraction rate k. Assuming
an infinite horizon for now, the inequality

k ≤ r +
1

γ
λ′(σσ′)−1λ (18)

holds if and only if

r ≥ δ − λ′ϕ
(1 + γ

2γ

)
. (19)

Since the second term on the right-hand side is negative, this inequality is
true for reasonable values of the parameters of this problem.3

Alternatively, using the certainty equivalent and the representation for k
given in equation (16), the inequality (19) is equivalent to

1

2
γϕ′(σσ′)ϕ ≥ (δ − r)

1 + γ
. (20)

That is, when half the expected excess return on the fund over the risk-free
rate is larger than the right-hand side of (20), then the extraction rate is
lower than the expected rate of return on the wealth portfolio.

Again, for reasonable values of the parameters of the problem, this can
be seen to hold true. A very simple case occurs when δ ≤ r, in which case

2 It is really the Arrow-Pratt approximation to this quantity. In continuous-time models
with Brownian-driven uncertainty, this approximation is in fact exact.

3Based on about 100 years of US-data, an estimate of the real short rate r is around 1
per cent, which is also the usual suggestion for the impatience rate δ.
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the inequality is obviously true, a fact which can be recognized from the
inequality (19) as well.

Typically, the real risk-free rate close to 1% is consistent with US-data
(see Table 1 below). Also, a reasonable value for the impatience rate is around
1%.4 In this case the risk premium of the fund is certainly positive, about
6% for the data of Table 1, so the inequality (20) holds with a significant
margin.

We conclude that for plausible values of the parameters, the optimal
extraction rate is strictly smaller than the expected real rate of return on the
wealth portfolio.

It can be seen that when the extraction rate k equals the expected rate of
return on the fund W , then the expected value E(Wt) = W0 for any horizon
t, and Wt can be shown to be a martingale. Seen from time 0, the end wealth
of the agent corresponds to the random variable Wt, not the sure amount
W0. Considered from the beginning of the period, a risk averse agent would
prefer the W0 to the random wealth Wt. A claim that the agent considers
the random future value Wt as equivalent to the plain expected value as of
time zero thus rests on an implicit assumption that the agent is risk-neutral.

To use the expected return on the endowment fund as the extraction rate,
is on the other hand consistent with investing ’everything’ in the single risky
asset, or group of assets, with the largest expected return(s) one can find,
and completely ignore risk.5 Few responsible agents would recommend this
’optimum portfolio selection strategy’ for an endowment fund.

This is, however, what Campbell (2012) seems to claim, where the author
recommends that k is set equal to the real expected rate of return. In the
author’s own words.
”The sustainable spending rate of an endowment, which is the amount spent
as a fraction of the market value of the endowment, must equal the expected
return in order to achieve immortality.”
This is called ”vigorous immortality” by the author. As we have just demon-
strated, this policy is a little bit too vigorous to be rational and consistent,
and implies the above mentioned contradiction. This policy will eventually
deplete the fund with probability 1, to be shown in the Section 3.5.

Can the policy advocated by Dybvig and Quin (2019), also considered in
Campbell and Sigalov (2020), be consistent with the optimal spending rule
outlined in the above? A little analysis shows that this requires r = δ and
γ = 0, but the latter is not allowed in our model. Accordingly is the criterion

4Tobin (1974) suggests, in the situation of university endowments, that δ is set equal
to 0.

5’Everything’ here includes borrowing risk-free as much as possible. This problem has,
of course, no mathematical solution unless there is a borrowing constraint.
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of expected fund return subtracted by half the variance not optimal for valid
values of the preference parameters.

3.3 An example of a typical fund

We now illustrate the above theory by the use of real data. We assume that
the agent takes the US-market as given, where we let the risky part of our
fund be represented by the S&P -500 index. This corresponds to one of the
best functioning securities market in the World, and should be representative
in construction of the underlying market quantities. The relevant data are
given as follows.

Table 1 represents the summary statistics of the data used by Mehra
and Prescott (1985)6. By σcM(t) we mean the instantaneous covariance rate
between the return on the index S&P-500 and the consumption growth rate.
Similarly, σMb(t) and σcb(t) are the corresponding covariance rates between
the index M and government bills b and between aggregate consumption c
and Government bills, respectively 7.

Expectation Standard dev. Covariances

Return S&P-500 6.78% 15.84% σ̂Mb = .001477
Government bills 0.80% 5.74% σ̂cb = −.000149
Equity premium 5.98% 15.95%
Consumption growth 1.81% 3.55% σ̂Mc = 0.002268

Table 1: Key US-data for the time period 1889-1978. Continuous-time com-
pounding.

3.4 Examples based on expected additive and separa-
ble utility

As an example, consider a wealth fund described by the three upper rows of
Table 1. The consumption data in Table 1, the fourth row, has to do with
society at large, which is not under consideration here.

Let us assume a relative risk aversion of γ = 2.5, and an impatience rate
δ = 0.01. For the market structure of Table 1, we obtain that the expected
rate of return on the wealth portfolio is 0.065 and the certainty equivalent

6The data is adjusted from discrete-time to continuous-time compounding.
7These quantities are ”estimated” directly from the original data obtained from R.

Mehra, where we use an underlying assumption about ergodicity, and estimates are de-
noted by σ̂M,c, etc.
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rate of return is 0.037, corresponding to the optimal portfolio selection rule
ϕ = 0.95. The optimal extraction rate under our assumptions is k = 0.026,
corresponding to T =∞. The drawdown rate is seen to be significantly lower
than the expected rate of return on the portfolio for these rather reasonable
parameters of the preferences of the agent.

In Figure 1 we present graphs with a finite time horizon of T = 300 years
using the expected utility model explained above, with the parameters of
this example. The optimal long run extraction rate k is the lower horizontal
(blue) line in Figure 1. The expected return on the wealth portfolio is the
upper horizontal (green) line in the figure. As the horizon approaches, there
is a sharp increase in the rate of consumption. After about 200 years, the
rate kT (200) = 0.028, a modest increase from the steady state value of 0.026.

Fig. 1: The optimal drawdown rate vs expected return. T = 300.

The optimal consumption in this case has the expected growth rate given
by the formula

µc =
1

γ
(r − δ) +

1

2

1

γ
(1 +

1

γ
)λ′(σσ′)−1λ.

As in the proof of Proposition 1, we can alternatively write this as

µc =
1

γ
(r − δ) +

1

2
(1 +

1

γ
)γϕ′(σσ′)ϕ. (21)

This term is estimated to 0.039 and the estimate of the volatility σc is 0.1510,
which equals the estimate of σW = ϕσ. According to our assumption about a
deterministic investment opportunity set, this implies that these two volatil-
ities must be equal, i.e., ϕσ = 0.1510.

As noticed, the optimal extraction rate k can be written as an arithmetic
mean of the impatience rate and the certainty equivalent return rate, with
weight 1/γ. We may calculate how large the impatience rate must be in
order to have an extraction rate equal to the expected return. The answer is
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δ = 0.108. This level is rather unrealistic as an impatience rate.

Fig. 2: The drawdown rate k(δ, γ) as a function of δ when γ = 2.5.

In Figure 2 these aspects are illustrated. The increasing curve is the
drawdown rate k(δ, 2.5), the lower horizontal line is the certainty equivalent,
ce(γ), at γ = 2.5, and the upper horizontal line is the expected return,
er(γ), at γ = 2.5, all as functions of δ. As we see, the drawdown rate may
exceed the expected return, but at a rather unrealistically high value of the
impatience rate. For this data set, when the impatience rate is 0.0367, then
k(0.0367) = 0.0367 = ce(2.5). An impatience rate above this level is hardly
sustainable. At this level of spending, the optimal spending rate 0.0367
should be compared to the expected rate of return 0.065.

From the inequality (19) we notice that when the impatience rate δ is
large enough, the extraction rate may become larger than the expected rate
of return. A high enough degree of impatience may then deplete the fund at
a finite time in the future. This is usually not what politicians, or owners of
colleges and universities have in mind when deciding on an optimal drawdown
rate from a fund or an endowment.

Failure to realize this may have negative consequences for the beneficiaries
of the fund. If k is set too large, equal to the expected rate of return from the
fund for example,8 then the fund will not last ’forever’ (see Section 3.5 below).

8This is the value that is recommended by an expert panel for the Norwegian Govern-
ment Pension Fund Global.
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Fig. 3: ϕ as a function of γ.

In Figure 3 we show a graph of the fraction ϕ in the risky asset as a
function of γ (the falling curve) for the data in Table 1. In this situation the
S&P-500 is a proxy for the risky asset, so here is N = 1 with one risk-free
asset, so ϕ is one-dimensional. When γ is larger than about 2.4 in this ex-
ample, the agent does not borrow risk-free, since ϕ is then smaller than 1.

Fig. 4: k(γ) and ce(γ) as functions of γ; δ = 0.01.

Figure 4 shows a graph of of the optimal extraction rate k(γ) as a function
of γ (the lowest curve) for the data of Table 1. The upper curve is a graph
of the certainty equivalent return ce(γ) = r + 1

2
γϕ′(σσ′)ϕ. We notice that

k(γ) < ce(γ) < r + γϕ′(σσ′)ϕ, where the latter quantity is the expected
return, not shown in the figure.

The function k(γ) is falling in γ when the risk aversion is larger than
about 1.4 in the figure. It may be surprising that it does not decrease over
the whole range of γ-values, but this can be attributed to the two, some-
times conflicting, roles that this parameter plays. In this model the elasticity
of intertemporal substitution (EIS) in consumption ψ = 1/γ. Later we
will separate these to properties of an individual using recursive utility, in
which case we shall denote ρ = 1/ψ. The parameter ρ, called the marginal
utility flexibility parameter by R. Frisch, is a measure of the individual’s
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resistance against substituting consumption across time (in a deterministic
world). When this parameter increases, the agent will be inclined to extract
more from the fund. Since ρ = γ here, this explains the shape of the left part
of the graph of k. We demonstrate later that with recursive utility, where
the parameters ρ and γ are separated, the function k(ρ) is strictly increasing
in the parameter ρ, under plausible conditions.

A few other scenarios will be discussed next. When γ = 2.0, and δ =
0.01, then the optimal extraction rate is k = 0.027, the expected rate of
return on the wealth portfolio is 0.079 and the certainty equivalent rate of
return is 0.044, corresponding to an optimal portfolio strategy of ϕ = 1.19.
Furthermore σc = 0.19, µc = 0.05. Now the agent takes on more portfolio
risk, since the risk aversion has decreased.

When γ = 2.0, and δ = 0.03, then the optimal extraction rate is k =
0.037. Now the agent takes on about the same portfolio risk, but the extrac-
tion rate has increased because of increased impatience.

From the expression (16) we notice that when γ = 1, then the optimal
extraction rate equals δ, the impatience rate of the agent.

As a numerical example, when γ = 1, and δ = 0.02, then k = 0.02, the
expected rate of return on the wealth portfolio is 0.15 and the certainty equiv-
alent rate of return is 0.079, corresponding to an optimal portfolio strategy
of ϕ = 2.38. Furthermore σc = 0.38 and µc = 0.13.

In theory reported in textbooks, we often see examples where gamma
is both 1/2 (square root utility), and 1 (the Kelly Criterion), but it seems
like such values are a bit too low in the present context, since this leads to
positions that appear to be both risky, and sometimes rather odd.

We formulate our main findings related to the theme of the paper. Under
our assumptions about the investment opportunity set Y , the following holds

Proposition 2 When (i) the objective is to maximize utility and, (ii) we
consider a particular fund in isolation, the optimal spending rate will be sig-
nificantly lower than the expected real rate of return on the fund, for any
reasonable levels of the impatience rate and the relative risk aversion.

For an endowment fund with a well-defined owner, this analysis may be
general enough to answer the question of optimal extraction from an endow-
ment. The situation where consumption in society at large is considered as
well, is treated in the last section of the paper.

14



3.5 The asymptotic behavior of a sovereign wealth fund

When the optimal spending rate k is a constant, as in the above model, the
wealth Wt is a geometric Brownian motion with dynamics

Wt = W0e
∫ t
0 [µW− 1

2
ϕ′(σσ′)ϕ]ds+

∫ t
0 ϕ
′σdBs , (22)

where

µW =

{
0, if k = r + γϕ′(σσ′)ϕ;
1
2
(1 + γ)ϕ′(σσ′)ϕ+ 1

γ
(r − δ), if k is optimal.

(23)

In other words, when the spending rate k is equal to the expected rate of
return, then µW = 0 and Wt is a martingale. When k is optimal, given in
(17), then either Wt is a submartingale or a supermartingale depending on
the size of the impatience rate δ. In general, when W0 > 0 then Wt ∈ (0,∞)
for all t.

Note that the optimal portfolio rule ϕ is the same in both lines in (23).
It can be shown that if k is set equal to the expected real return, ex ante,
and optimization is only in the variable ϕ, the optimal portfolio rule remains
the same as in the standard approach. This is most easily demonstrated by
use of dynamic programming.

If µW > 0 the process Wt is a submartingale, in which case Et(Ws) ≥ Wt

for all s ≥ t; if µW < 0 the process Wt is a supermartingale, in which
case Et(Ws) ≤ Wt for all s ≥ t. We have the former, µW > 0, if δ <
1
2
(1 + γ)γϕ′(σσ′)ϕ+ r, and the latter, µW < 0, if δ > 1

2
(1 + γ)γϕ′(σσ′)ϕ+ r.

Of some interest here, we can also conclude about the asymptotic behavior
of the wealth process from the sign of µW − 1

2
σ′WσW . Since here σ′WσW =

ϕ′(σσ′)ϕ, by the law of the iterated logarithm for Brownian motion and
Feller’s test for explosions the following results hold (see e.g., Karatzas and
Schreve (1987), Feller (1952)):

(i) If µW <
1

2
ϕ′(σσ′)ϕ, then limt→∞Wt = 0, and sup0≤t<∞Wt <∞ a.s. (24)

(ii) If µW >
1

2
ϕ′(σσ′)ϕ, then limt→∞Wt =∞, and inf0≤t<∞Wt > 0 a.s. (25)

Thus, when µW = 0, i.e., when spending equals the expected return as
advocated by e.g., Campbell (2012), the martingale property gives that
E(Wt) = W0 for all t ≥ 0, but despite of this the wealth eventually con-
verges to zero with probability 1, by the above result.

Moreover, using (23) when k is optimal and given in (17), we see that
(24) is satisfied when δ > r + 1

2
γ2ϕ′(σσ′)ϕ, and (25) materializes when δ <
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r+ 1
2
γ2ϕ′(σσ′)ϕ. The right-hand side of this inequality is larger than or equal

to the certainty equivalent rate of return when γ ≥ 1. So, for example, when
δ is smaller than or equal to the certainty equivalent rate of return, then Wt

converges to infinity as time t → ∞, provided γ ≥ 1, and the wealth never
hits zero with probability 1.

These results are is not so surprising as they may seem at first sight, since
it is well known that neither convergence in L1, nor almost sure convergence
implies the other. When Wt is not uniformly integrable, as here, this may
typically be the case.

As we have argued above, it is reasonable that δ is smaller than, or at
the most equal to, the certainty equivalent rate of return. It follows that
the impatience rate will satisfy this requirement provided γ ≥ 1. Hence, the
prospects for a long term sustainable management of a sovereign wealth fund
are really promising using the optimal spending rate k as outlined above.

Finally, if δ = r + 1
2
γ2ϕ′(σσ′)ϕ when k is optimal, then

Wt = W0e
∫ t
0 ϕ
′σdBs ,

in which case

E(Wt) = W0e
1
2

∫ t
0 ϕ
′(σσ′)ϕds →∞ as t→∞. (26)

In this situation inf0≤t<∞Wt = 0, and sup0≤t<∞Wt =∞, a.s.
We summarize the most essential findings as follows

Theorem 1 (i) With the optimal spending rate k, the fund value Wt goes to
infinity as t → ∞ as long as the impatience rate δ is smaller than or equal
to the certainty equivalent rate of return on the fund, assuming γ ≥ 1.

(ii) If the spending rate is set equal to the expected rate of the return on
the fund, then the fund value goes to 0 with probability 1 as time goes to
infinity.

We also have the following corollary:

Corollary 1 With the optimal spending rate k we have the following:
(i) Wt → ∞ almost surely as t → ∞ provided δ < r + 1

2
γ2ϕ′(σσ′)ϕ, in

which case Wt is also a submartingale.
(ii) Wt → 0 almost surely as t→∞ provided δ > r+ 1

2
(1 + γ)γϕ′(σσ′)ϕ,

in which case Wt is also a supermartingale.

We can also say something about the expected time to the wealth process
Wt reaches a certain value, or more precisely, if the wealth process today
satisfies a < W0 < b, we can calculate the conditional expected time to the
process W reaches a for the first time, say, given that a is reached before
b. This is of course a topic of interest in the present model, and is what we
consider next.
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3.6 A conditional first exit expectation result

Consider a Feller process X(t) on an interval F in the real line, and let
τ ∗(J) = inf{t : X(t) /∈ J}, J = (a, b), [a, b] ∈ F . Suppose Px[τ

∗(J) < ∞] =
1, x ∈ J and let p+(x, J) = Px[X(τ ∗(J)) = b], and p−(x, J) = 1 − p+(x, J).
Then the following result holds (Aase (1977)):

Ex{τ ∗(J)|X(τ ∗(J)) = b} =
1

p+(x, J)
Ex

{∫ τ∗(J)

0

p+(X(t), J)dt
}
.

In the same paper we find the following application of this result to a geomet-
ric Brownian motion: For a diffusion where F = (0,∞), µ(x) = µ·x, σ2(x) =
σ2 · x2, where µ, σ2 are two constants, and J = (a, b), 0 < a < b < ∞. Let
c = 1− (2µ/σ2), it follows that

Ex{τ ∗(J)|X(τ ∗(J)) = b} =


2
σ2c

{(
ln b
a

)
bc+ac

bc−ac −
(

lnx
a

)
xc+ac

xc−ac

}
, c 6= 0;

1
3σ2

{(
ln b
a

)2

−
(

lnx
a

)2}
, c = 0.

A similar result holds for the boundary a by use of p−(x, J) = 1− p+(x, J).
Notice that here p+(x, J) = xc−ac

bc−ac .
Since we have a geometric Brownian motion process, where X(t) = Wt,

these results are immediately applicable to our situation, which we explore
below.

In the example related to Figure 1 above, we calculate the conditional
expected time to the fund leaves a given interval. Consider the interval (a, b)
where a = (1/10)W0 and b = 1.5W0. In this scenario and with the optimal
spending rate, the parameters are µW = 0.03881, σW = 0.1584 and the
constant c = −2.09. The first exit probabilities are p+(W0, J) = 0.995 and
p−(W0, J) = 0.005, so it is much more likely that the first exit takes place
at upper level b than at the lower a. We obtain that EW0{τ ∗(J)|X(τ ∗(J)) =
b} = 14 years while EW0{τ ∗(J)|X(τ ∗(J)) = a} = 65 years.

In the situation where the spending rate is the expected rate of return,
µW = 0 and c = 1 while σW = 0.1584 remains the same. The first exit
probabilities have changed to p+(W0, J) = 0.64 and p−(W0, J) = 0.36, so it is
still more likely that the first exit takes place at upper level b than at the lower
a, but much less likely than above. Here EW0{τ ∗(J)|X(τ ∗(J)) = b} = 22
years while EW0{τ ∗(J)|X(τ ∗(J)) = a} = 85 years. Yet we know that in this
situation Wt will eventually end up in zero, although it may take a long time,
while in the former case with optimal extraction in place this does not ever
happen with probability 1.
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3.7 The investment opportunity set is allowed to be
stochastic.

We now turn to the more general case with a stochastic investment oppor-
tunity set. As we now demonstrate, this can be made surprisingly simple.
Starting with the optimal wealth given in equation (7), we condition on the
vector stochastic process It = (rt, ηt, λt) and use the following iterated ex-
pectation result

E
{
e
∫ t
0 θsdBs

}
= E

{
E
(
e
∫ t
0 θsdBs|θ

)}
= E

{
e

1
2

∫ t
0 θ
′
sθs ds

}
,

valid for θ an adapted (vector) process satisfying standard conditions. This
result follows since the stochastic integral

∫ t
0
θsdBs has expectation zero and

variance E
( ∫ t

0
θ′sθsds

)
, and conditional on the process θ the stochastic inte-

gral is normally distributed, so we can use the moment generating function
for the normal distribution, which gives the last equality in the above.

Using this and the Fubini theorem, from equation (7) we obtain the fol-
lowing

W ∗
t = c∗tEt

{∫ T

t

e
1−γ
γ

[
∫ s
t ((ru+ 1

2
η′uηu)− δ

1−γ )du+
∫ s
t ηudBu]ds

}
(27)

= c∗t

∫ T

t

Et

(
e
∫ s
t ( 1−γ

γ
(ru+ 1

2
η′uηu)− δ

γ
+ 1

2
( 1−γ
γ

)2η′uηu)du
)
ds.

Let us define the integrand in exponent by −ku, that is

ku :=
δ

γ
+ ru(1−

1

γ
)− 1− γ

2γ2
λ′u(σuσ

′
u)
−1λu, (28)

where η′tηt = λ′t(σtσ
′
t)
−1λt as before. By Jensen’s inequality we then have

W ∗
t = c∗t

∫ T

t

Et

(
e−

∫ s
t kudu

)
ds ≥ c∗t

∫ T

t

e−Et(
∫ s
t ku du) ds. (29)

We now assume first order stationarity of the investment opportunity set.
By Fubini’s theorem we then get

W ∗
t

c∗t
≥
∫ T

t

e−
∫ s
t Et(ku)duds =

∫ T

t

e−
∫ s
t k̄tduds =

∫ T

t

e−k̄t(s−t) ds,

where k̄t = Et(ku) does not depend on u ≥ t by our stationarity assumption.
This gives that

c∗t
W ∗
t

≤ k̄T (t), (30)
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where

k̄T (t) =
k̄t

1− e−k̄t(T−t)
.

It is still the case that the following convex representation holds

kt =
δ

γ
+ (1− 1

γ
)(rt +

λ′t(σtσ
′
t)
−1λt

2γ
),

but we can no longer claim that the last term represents the certainty equiv-
alent rate of return in the meaning of Proposition 1. The optimal portfolio
weights ϕt are not given by the simple formula (13) with a stochastic in-
vestment opportunity set. It will contain an additional term that adjusts for
the randomness in the market-price-of-risk process ηt, rt as well as the other
quantities in It.

The comparison of interest is then between the optimal expected spending
rate and the expected real rate of return on the wealth portfolio given by
rt + ϕ′tλt.

First we must find the relevant portfolio weights ϕt when the investment
opportunity set is stochastic. This problem has been discussed in great detail
by e.g., Karatzas and Shreve (1998), but no explicit formula seems to exist.
Here we choose another path and go back to equation (27) and write it as

W ∗
t = c∗t F

T
t ,

where

F T
t = Et

[ ∫ T

t

(
e
∫ s
t ( 1−γ

γ
rv+ 1

2
1−γ
γ2

η′vηv)− δ
γ

)dv
)
ds
]
. (31)

When γ = 1 we notice that F T
t is deterministic, so no additional term arises.

This corresponds to logarithmic utility, in which case the solution is known,
and quite generally given by the first term in (32) below, where both σt and
λt are allowed to be stochastic processes.

The function F T
t is seen to be Ft-measurable by definition, and by Itô’s

representation theorem there exists a process fT (t, u) with u ≤ t such that9

F T
t = E(F T

t ) +

∫ t

0

fT (t, u)dBu.

By the Clark-Ocone formula we know that

fT (t, u) = Eu[Du(F
T
t )],

9This is analogous to the result that the price of a zero-cupon bond is a process of
bounded variation in T , but an Itô-process in t.
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where Du(F
T
t ) is the Malliavin derivative of F T

t at u ≤ t.
From the stochastic differential equation for the optimal wealth given in

(12) we then obtain by the product rule and diffusion invariance that

ϕt =
1

γ
(σtσ

′
t)
−1λt + (σtσ

′
t)
−1σtEt[Dt(F

T
t )]/F T

t . (32)

The expression for the optimal portfolio has two terms, where the first is
identical to the optimal portfolio for a constant investment opportunity set,
except that here σt and λt are allowed to be stochastic. The second term
adjusts for the time and state variations of the investment opportunities,
referred to as the intertemporal hedging term, and is seen from (32) and
(31) to be forward-looking, while the first term ignores these variations, is
certainly not forward-looking and is called myopic for that reason (see Mossin
(1968)).

The random term Et[Dt(F
T
t )]/F T

t can be connected to the parameters of
the problem via the Malliavin derivative of F T

t . We have the following

fT (t, u) = Eu[Du(F
T
t )] = Et

[ ∫ T

t

(
e
∫ s
t ( 1−γ

γ
rv+ 1

2
1−γ
γ2

η′vηv)− δ
γ

)dv∫ s

t

{1− γ
γ

Du(rv) +
1

2

1− γ
γ2

(η′vDu(ηv) +Du(η
′
v)ηv)

}
dv
)
ds
]
, (33)

where we have used the ”chain rule” and other rules of this calculus (see e.g.,
Di Nunno et.al (2008)). The Malliavin derivatives Du(rv) and Du(ηv) can
be further broken down by specifying the types of model for r and η. For
example, if the spot interest rate follows a diffusion process of the Ornstein-
Uhlenbeck, or Vasicek type of the form

rv = r0 +

∫ v

0

µr(w)dw +

∫ v

0

σr(w)dBw

where µr(w) and σr(w) are deterministic, and σr(w) = αew−v, then Du(rv) =
αe−veu > 0, for α a d-vector of positive constants.

When the relative risk aversion γ > 1, we notice from (33) and the subse-
quent discussion that the second term in (32) typically is a vector of negative
portfolio weights. This seems intuitive, since a risk averse agent will invest
less in the risky assets when confronted with a stochastic investment oppor-
tunity set. This term can be seen to hedge against the unanticipated changes
in the variables in the investment opportunity set. The opposite conclusion
follows if γ < 1, but as we have indicated before, this case is not very intu-
itive with expected utility because of the two different interpretations of the
parameter.
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With an infinite horizon the extraction rate is smaller that the real rate
of return when the inequality kt ≤ rt + ϕ′tλt holds, which is equivalent to

kt ≤ rt +
1

γ
λ′t(σtσ

′
t)
−1λt +

1

F∞t
f∞(t, t)′ηt, (34)

assuming that σt invertible. This inequality holds for all t if and only if

rt
γ
≥ δ

γ
− 1

γ
λ′t(σtσ

′
t)
−1λt

(1 + γ

2γ

)
− 1

F∞t
f∞(t, t)′ηt. (35)

We then have the following result:

Proposition 3 With a stochastic investment opportunity set, provided the

inequality | 1
F∞t

f∞(t, t)′ηt| < 1
γ
λ′t(σtσ

′
t)
−1λt

(
1+γ
2γ

)
holds, the optimal extraction

rate is strictly smaller than the real rate of return on the fund, unless the
impatience rate δ is unreasonably large.

Proof: From the inequality (35) we notice that the second and third term
on the right-hand side add to something negative under the condition of the
proposition. Thus, if rt ≥ δ the inequality then holds, and the conclusion
follows. �

How reasonable is the assumption of the proposition in practice? Unless
the inequality holds, the investment policy more or less prescribes short sale
of most of the risky assets in the portfolio, which is unheard of in real life
portfolio choice of the type that we are studying here.

Further insights from the analysis involving a stochastic investment op-
portunity set can be gained from inspection of the expression in equation
(33). For example, the optimal portfolios are seen to depend on the impa-
tience rate δ, as well as of the horizon T , neither present in the standard
expression with a deterministic investment opportunity set.

In other words, impatience has a direct impact on the optimal portfolio,
and the dependence on T has a potential to address the horizon problem.
There is, however, nothing in the model that indicates that the investments
in the risky assets should decrease when t approaches the horizon T (see e.g.,
Aase (2017) for a treatment of this problem).

The application of the results of this section to the data in Table 1 is by
and large similar to the illustrations given in Section 3.4, since data, like the
ones in in Table 1, are based on estimates, assuming stationarity (or some
kind of ergodicity), and are therefore estimates of the expected value k̄t.
However, the margin between the optimal extraction rate and the expected
rate of return may have diminished, depending upon the stochastic structure
of rt and ηt.
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4 Recursive utility

This preference structure is known to give much more reasonable results than
the expected utility model when it comes to calibrating to real data, see e.g.,
Aase (2016a,b), where the celebrated Equity Premium Puzzle is solved using
recursive utility, among other things.

We use the framework established by Duffie and Epstein (1992a, b) and
Duffie and Skiadas (1994) which elaborate the foundational work by Kreps
and Porteus (1978) of recursive utility in dynamic models. Recursive utility
leads to the separation of risk aversion from the elasticity of intertemporal
substitution in consumption, within a time-consistent model framework.

The recursive utility U : L → R is defined by two primitive functions:
f : R × R → R and A : R → R. The function f(ct, Vt) corresponds to a
felicity index, and A corresponds to a measure of absolute risk aversion of
the Arrow-Pratt type for the agent. In addition to current consumption ct,
the function f also depends on future utility Vt at time t, a stochastic process
with volatility σ̃V (t) := Zt at each time t.

The utility process V for a given consumption process c, satisfying VT = 0,
is given by the representation

Vt = Et

{∫ T

t

(
f(cs, Vs)−

1

2
A(Vs) σ̃V (s)′σ̃V (s)

)
ds
}
, t ∈ [0, T ]. (36)

If, for each consumption process ct, there is a well-defined utility process V ,
the stochastic differential utility U is defined by U(c) = V0, the initial utility.
The pair (f, A) generating V is called an aggregator.

The utility function U is monotonic and risk averse if A(·) ≥ 0 and f is
jointly concave and increasing in consumption.

As for the last term in (36), recall the Arrow-Pratt approximation to the
certainty equivalent of a mean zero risk X. It is −1

2
A(·)σ2, where σ2 is the

variance of X, and A(·) is the absolute risk aversion function.
In the discrete time world the starting point for recursive utility is that

future utility at time t is given by Vt = g(ct,m(Vt+1)) for some function
g : R × R → R, where m is a certainty equivalent at time t (see e.g,
Epstein and Zin (1989)). If h is a von Neumann-Morgenstern index, then
m(V ) = h−1(E[h(V )]). The passage to the continuous-time version in (36)
is explained in Duffie and Epstein (1992b), and in a direct form from the
discrete time analog, by Svensson (1989).

Unlike expected utility theory in a timeless situation, i.e., when con-
sumption only takes place at the end, in a temporal setting where the agent
consumes in every period, derived preferences do not satisfy the substitution
axiom (e.g., Mossin (1969), Kreps (1988)). Thus additive Eu-theory in a
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dynamic context, i.e., in situations where a financial market is utilized by
the agents to smooth consumption across time and states of the world, has
a weak axiomatic underpinning, unlike recursive utility (Kreps and Porteus
(1978)).

4.1 The specification

We work with the Kreps-Porteus utility, where the aggregator has the fol-
lowing CES specification

f(c, v) =
δ

1− ρ
c(1−ρ) − v(1−ρ)

v−ρ
and A(v) =

γ

v
. (37)

The parameter δ ≥ 0 is the agent’s impatience rate, ρ ≥ 0, ρ 6= 1 is what we
referred to earlier as the marginal utility flexibility parameter, and γ ≥ 0,
γ 6= 1, is the relative risk aversion. The parameter ψ = 1/ρ is the elas-
ticity of intertemporal substitution in consumption, referred to as the EIS-
parameter. The higher the value of the parameter ρ is, the more aversion the
agent has towards consumption fluctuations across time in a deterministic
world. The higher the value of γ, the more aversion the agent has to con-
sumption fluctuations, due to the different states of the world that can occur.
Clearly these two properties of an individual’s preferences are different. In
the conventional Eu-model, however, ρ = γ.

It can be shown that this specification is the continuous-time analogue of
the one used by Epstein and Zin (1989, 91) in discrete time.

Using the notation Z(t) = VtσV (t), the dynamics of the utility process is

dVt =
(
− δ

1− ρ
(c∗t )

1−ρ − V 1−ρ
t

V −ρt

+
1

2
γVtσ

′
V (t)σV (t)

)
dt+ VtσV (t) dBt, (38)

for 0 ≤ t ≤ T , where VT = 0. This is the backward stochastic differential
equation, where a solution consists of the pair (V, Z). For the particular
Kreps-Porteus version that we consider, the standard Lipschitz condition in
Duffie and Epstein (1992b) is not satisfied, but existence and uniqueness is
shown for this version in Duffie and Lions (1990), under certain conditions.
See also Schroder and Skiadas (1999) for uniqueness and existence of solutions
of such equations, in particular their Theorem A2.

4.2 The optimal consumption and portfolio rule

As with the standard EU-model we will need the optimal consumption of an
agent, here one with recursive utility (U, e), who takes the market as given,
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and shifts her endowment e in each period from the given et to the optimal
one c∗t using the financial markets. In each period the agent decides how
much to consume, and how much to invest in the given opportunity set for
future consumption. Thus these two problems are intimately connected.

4.2.1 The first order conditions

Using Pontryagin’s maximum principle, properly extended to a stochastic
environment, we can solve for the basic version of recursive utility as follows.10

The first order conditions can be written

απt = Y (t)
∂f

∂c
(c∗t , Vt) a.s. for all t ∈ [0, T ]. (39)

Here Y (t) is an adjoint variable. Notice that the first order condition depends
on the future utility Vt. This means, among other things, that the agent is
in general not myopic (in the sense of Mossin (1968)).

4.2.2 The optimal consumption

It has been shown in Aase (2016b) that the answers to these two problems are
given as follows: The stochastic representation for the optimal consumption
growth rate is given by

dc∗t
c∗t

= µc(t) dt+ σc(t) dBt, (40)

where,

µc(t) =
1

ρ
(rt − δ) +

1

2

1

ρ
(1 +

1

ρ
) η′tηt −

(γ − ρ)

ρ2
η′t σV (t)

+
1

2

(γ − ρ)γ(1− ρ)

ρ2
σ′V (t)σV (t), (41)

and

σc(t) =
1

ρ

(
ηt + (ρ− γ)σV (t)

)
. (42)

Here VtσV (t) = σ̃V (t), the latter appearing in the definition (36) of recursive
utility. Both σV and Vt exist as a solution to a backward stochastic differential
equation for V . The quantity ηt is the market-price-of-risk vector, and η′tηt
corresponds to our previous λ′t(σtσ

′
t)
−1λt.

10With this method we do not need to go via the ordinally equivalent version with
corresponding A = 0.
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For recursive utility in discrete time it is known that the consumption to
wealth ratio is equal to

ct
Wt

=
1− β

(Vt
ct

)1−ρ ,

where β = e−δ. It is seen that this ratio is a constant only when ρ = 1, in
which case our model is not valid. Thus the consumption to wealth ratio
is in general a stochastic process. However, in the continuous-time model
this is a bit different, as a constant consumption to wealth ratio is possible
without requiring that ρ = 1. We treat this special case below. With a
stochastic investment opportunity set as we have assumed here, this ratio is
not constant. This means that the volatility of consumption σc is not equal
to the volatility of wealth σW = ϕσ.

It is shown in Aase (2016a) in the context of equilibrium that the wealth
of the agent may be internalized as follows:

σW (t) = (1− ρ)σV (t) + ρσc(t). (43)

This is really an equilibrium result. We may ’invert’ this relationship when
ρ 6= 1 to obtain

σV (t) =
1

1− ρ
(
σW (t)− ρσc(t)

)
. (44)

where the volatility of utility, one of the primitives of the model, is connected
to ’observable’ quantities. Combining this with (42) we find that

σc(t) =
1− ρ

ρ(1− γ)
ηt −

γ − ρ
ρ(1− γ)

σW (t). (45)

With expected utility γ = ρ, and σc(t) = 1
γ
ηt. This formula is, however,

not possible to reconcile with aggregated data in society, unless γ is dispro-
portionately large. The result (45) on the other hand, can be used to explain
market and consumption data with reasonable values for the two preference
parameters ρ and γ (see Aase (2016b)).

Taking account of the expression (45) for σc(t), the formula for σV (t) in
(44) can alternatively be written

σV (t) =
1

1− γ
(
ϕ′tσt − ηt

)
. (46)

4.2.3 The conditional optimal portfolio selection strategy

Turning to optimal portfolio choice in the life cycle model, where the agent
is not necessarily the ’representative agent’, this problem has been treated
in detail by Schroder and Skiadas (1999).
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Here we pursue a slightly different route. Given that the covariance rate
between of the optimal consumption and the market is known, the optimal
portfolio fractions in the risky assets associated with this are given by the
following formula

ϕ(t) =
1− ρ
γ − ρ

(σtσ
′
t)
−1λt −

ρ(1− γ)

γ − ρ
(σtσ

′
t)
−1(σtσ

′
c∗(t)), (47)

assuming γ 6= ρ. 11 This formula follows from (42) and (44) by noticing that
σW (t) = ϕ′tσt, and must be interpreted as a consistency result, given the
covariance rate (σtσ

′
c∗(t)). Formula (47) can not be directly compared to the

result for expected utility in equation (32), but is nevertheless found useful
in what follows.12 In the next sections we establish an optimal spending rate
based on (47), and also a formula for ϕ(t), which can indeed be compared to
(32).

4.3 The optimal spending rate versus the real rate of
return with recursive utility

With these preparations, we now turn to the spending rate with general re-
cursive utility in a model with a stochastic investment opportunity set. The
analysis is analogous to the one in Section 3.7 for the standard EU-model,
with the exception that we utilize the expression in (47) for the optimal port-
folio weights, which calls for some care in interpreting the results. We have
found the optimal consumption path c∗t given an optimal portfolio strategy,
and consequently the optimal wealth is given by the formula

W ∗
t =

1

πt
Et

{∫ T

t

πs c
∗
s ds
}
.

First observe that the optimal consumption can be represented as

c∗s = c∗t exp
{∫ s

t

(µc(u)− 1

2
σ′c(u)σc(u))du+

∫ s

t

σc(u)dBu

}
,

where µc is given in (41) and σc in (42). With the expression for the state price
deflator π given in (4) we can write πsc

∗
s in terms of πtc

∗
t for any t ≤ s ≤ T

11In this formula, and otherwise throughout, a term like (σtσ
′
c∗(t)) is to be interpreted

as the covariance rate between the market for risky securities and the optimal consump-
tion, and not as a mere multiplication of volatilities, which would imply an instantaneous
correlation coefficient of 1.

12The relationship (47) can not be developed into an equation in ϕt by the use of (42)
and (44), since these have already been used once.
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since we can write the state price deflator as follows:

πs = πt exp
{
−
( ∫ s

t

(ru +
1

2
η′uηu)du+

∫ s

t

ηudBu

)}
.

With these preparations, the expression for the optimal wealth can be written

W ∗
t = c∗tEt

{∫ T

t

exp
[ ∫ s

t

(µc(u)− 1

2
σc(u)′σc(u))du−

∫ s

t

(r(u) +
1

2
η′uηu)du

(48)

+

∫ s

t

(σc(u)− ηu)dBu

]}
.

Next we condition on σc and η, and obtain the following wealth to consump-
tion ratio (see section 3.7 for details):

W ∗
t

c∗t
=

∫ T

t

Et

{
exp
[ ∫ s

t

(µc(u)− 1

2
σc(u)′σc(u))du−

∫ s

t

(r(u) +
1

2
η′uηu)du

+
1

2

∫ t

s

(σc(u)− ηu)′(σc(u)− ηu)du
]}
. (49)

Denoting the integrand in the exponent by −k(u), we have that

k(u) = r(u)− µc(u) + η′uσc(u). (50)

Using (41) and (42), this can be written as a convex combination with weight
1
ρ

k(u) =
δ

ρ
+
(
1− 1

ρ

)(
ru +

ρ− γ
ρ

η′uσV (u)+

1

2

γ(γ − ρ)

ρ
σV (u)′σV (u) +

1

2ρ
η′uηu

)
. (51)

By Jensen’s inequality we then have

W ∗
t

c∗t
=

∫ T

t

Et
(
e−

∫ s
t k(u)du

)
ds ≥

∫ T

t

e−Et(
∫ s
t k(u) du) ds. (52)

We now assume first order stationarity of the investment opportunity set.
By Fubini’s theorem we then get

W ∗
t

c∗t
≥
∫ T

t

e−
∫ s
t Et(k(u))duds =

∫ T

t

e−
∫ s
t k̄tduds =

∫ T

t

e−k̄t(s−t) ds,
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where k̄t = Et(k(u)) does not depend on u ≥ t by our stationarity assump-
tion. This gives that

c∗t
W ∗
t

≤ k̄T (t) (53)

where

k̄T (t) =
k̄t

1− e−k̄t(T−t)
.

This result we illustrate below for the data given in Table 1.
The comparison of interest is still between the optimal expected spending

rate and the expected real rate of return on the wealth portfolio. With an
infinite horizon the former is the smaller of the two whenever

k(u) ≤ r(u) + ϕ′uλu for all u ≥ 0, (54)

where the optimal portfolio weights ϕt are given in (47), consistent with the
above optimal consumption.

With a little algebra we can see that this inequality can be written

− µc(u) ≤ 1− ρ
γ − ρ

η(u)′η(u)− γ(1− ρ)

γ − ρ
σc(u)′η(u). (55)

We argue that for reasonable values of the quantities µc, σc and η, and for
reasonable values of the preference parameters δ, γ and ρ, this inequality
holds.

Concerning the latter, we restrict attention to the following two situa-
tions: (i) γ > ρ and ρ < 1, (ii) γ < ρ and ρ > 1. The former corresponds
to preference for early resolution of uncertainty (γ > ρ) and EIS > 1, the
latter corresponds to preference for late resolution of uncertainty (γ < ρ) and
EIS < 1. Both these sets correspond to plausible values of the parameters,
and are also found to explain empirical puzzles well (e.g., Aase (2016a)).

Consider (i): Then the first term on the right-hand side of (55) is positive,
and the second is negative, provided σc(t)

′η(t) > 0. Since the consumption
growth rate µc can safely be thought of as strictly positive, the inequality
will certainly hold provided η(u)′η(u) ≥ γσc(u)′η(u) for all u. Just to illus-
trate numerically, using the data in Table 1 the left hand side of this latter
inequality is about 0.14 while the right hand side is γκc,η · 0.01125. Here κc,η
is the correlation coefficient between the consumption growth rate and the
market-price-of-risk, and thus −1 ≤ κc,η ≤ 1. Suppose γ = 2. Then the
inequality is 0.14 ≥ κc,η · 0.0225, so the inequality holds with a very good
margin.

Similarly with case (ii). Then the signs of the coefficients on the right-
hand side of (55) is again the same as just considered, and the comparison will
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be similar, except that the difference between the optimal expected spending
rate and the expected rate of return is now larger, since γ has decreased.

The application of the results of this section to the data in Table 1 is by
and large similar to the illustrations given in Section 3.4, since data, like the
ones in in Table 1, are based on estimates, assuming stationarity (or some
kind of ergodicity), and are therefore estimates of the expected value k̄t.
However, the margin between the optimal extraction rate and the expected
rate of return may have changed, depending upon the stochastic structure of
rt and ηt.

Unit EIS: From (51) it follows that when ρ = 1 , then k(t) = δ for all t,
a constant. Here the inequality (55) is reduced to µc(t) ≥ 0, or

rt + ηtσW (t) ≥ δ, for all t.

Since σtηt = λt and σW (t) = ϕ′tσt, this can be written

rt ≥ δ − λ′tϕt, for all t (56)

Since λ′tϕt ≥ 0 for all t, this requirement constrains the impatience rate δ
from being too large.13

4.3.1 The optimal portfolio selection rule ϕ(t)

We can find the an expression for the portfolio weights ϕt when the invest-
ment opportunity set is stochastic. Although it may not be a simple task to
interpret this formula, it will give some additional insights, and its deriva-
tion also addresses a problem of independent interest. Towards this end write
equation (49) as

W ∗
t = c∗t G

T
t ,

where

GT
t = Et

[ ∫ T

t

(
e
∫ s
t (µc(v)−r(v)−η′vσc(v))dv

)
ds
]
. (57)

When ρ = 1 we notice that GT
t is deterministic, in accordance with the

discrete time model, but recall, this is strictly speaking not an allowed value
for ρ in our treatment.

The function GT
t is seen to be Ft-measurable by definition, and by Itô’s

representation theorem there exists a process gT (t, u) with u ≤ t such that

GT
t = E(GT

t ) +

∫ t

0

gT (t, u)dBu.

13Notice that the criterion (56) is identical to the two corresponding criteria (19) and
(35) for expected utility when γ = 1.
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By the Clark-Ocone formula we know that

gT (t, u) = Eu[Du(G
T
t )],

where Du(G
T
t ) is the Malliavin derivative of GT

t at u ≤ t.
From the stochastic differential equation for the optimal wealth given in

(12) we then obtain by the product rule and diffusion invariance that

ϕt =
1− ρ

ρ(1− γ)
(σtσ

′
t)
−1λt −

γ − ρ
ρ(1− γ)

(σtσ
′
t)
−1σtσW

+ (σtσ
′
t)
−1σtEt[Dt(G

T
t )]/GT

t . (58)

Using that ϕ′tσt = σW , this equation can be written more compactly as

ϕt =
1

γ
(σtσ

′
t)
−1λt +

ρ(1− γ)

γ(1− ρ)
(σtσ

′
t)
−1σtEt[Dt(G

T
t )]/GT

t . (59)

The expression for the optimal portfolio has again two terms, where the first
is equal to the optimal portfolio for a constant investment opportunity set,
except that now σt and λt are allowed to be stochastic. The second term is
forward-looking, and depends upon both the horizon T and the impatience
rate δ. This term is can be interpreted as a hedge against the unanticipated
changes in the variables in the investment opportunity set.

The premise for interpreting (59) as a formula for ϕt rests on the concept
of a solution to the basic backwards stochastic differential equation (38). This
gives the pair (Vt, Zt), and consequently the volatility of utility σV (t) = Zt/Vt
(see Section 4.5 below).

Alternatively, since σV (t) = (ϕ′tσt−η)/(1−γ), (59) may also be considered
as an equation in ϕ.

The random term Et[Dt(G
T
t )]/GT

t can again be connected to the parame-
ters and the primitives of the model via the Malliavin derivative of GT

t . Using
the rules of Malliavin calculus, involving the chain rule and the product rule,
we have the following

gT (t, u) = Eu[Du(G
T
t )] = Et

[ ∫ T

t

(
e
∫ s
t (µc(v)−r(v)−η′vσc(v))dv∫ s

t

1− ρ
ρ

[
Du(rv) +

ρ− γ
ρ

(Du(η
′
v)σV (v)) + η′vDu(σV (v))+

1

2

γ(γ − ρ)

ρ
(Du(σ

′
V (v))σV (v) + σ′V (v)Du(σV (v))+

1

2ρ
(Du(η

′
v)ηv + η′vDu(ηv))

]
dv
)
ds
]
. (60)
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The Malliavin derivatives Du(rv), Du(ηv) and Du(σV (v)) for u ≤ t can, as
explained, be further broken down by specifying the types of stochastics for
r η, σc(t) and σW (t).

When γ = ρ we do get the analogous formula for expected utility given
in Section 3.7, so unlike the formula (47), the expression (59) reduces to the
standard formula when γ = ρ.

With an infinite horizon the extraction rate is smaller than the real rate
of return when the inequality kt ≤ rt + ϕ′tλt holds, which is equivalent to

kt ≤ rt +
1

γ
λ′t(σtσ

′
t)
−1λt +

ρ(1− γ)

γ(1− ρ)

1

G∞t
g∞(t, t)′ηt, (61)

assuming that σt invertible. This inequality holds for all t if and only if

rt
γ
≥ δ

γ
− 1

γ
λ′t(σtσ

′
t)
−1λt

(1 + ρ

2ρ

)
− ρ(1− γ)

γ(1− ρ)

1

G∞t
g∞(t, t)′ηt. (62)

We then have the following result:

Proposition 4 With a stochastic investment opportunity set and recursive

utility, provided the inequality |ρ(1−γ)
γ(1−ρ)

1
G∞t

g∞(t, t)′ηt| < 1
γ
λ′t(σtσ

′
t)
−1λt

(
1+ρ
2ρ

)
holds, the optimal extraction rate is strictly smaller than the real rate of
return on the fund, unless the impatience rate δ is unreasonably large.

Proof: From the inequality (20) we notice that the second and third term
on the right-hand side add to something negative under the condition of the
proposition. Thus, if rt ≥ δ the inequality then holds, and the conclusion
follows. �

How reasonable is the assumption of the proposition in practice? Unless
the inequality holds, the investment policy more or less prescribes short sale
of most of the risky assets in the portfolio, which is not what fund managers
do with a long term perspective for the types of funds that we discuss here.

We round off the treatment of this model with recursive utility by some
numerical illustrations from the data in Table 1.

4.4 Numerical illustrations

We now illustrate the above with numerical examples based on the data in
Table 1. First we consider the situation where the agent has preference for
early resolution of uncertainty γ > ρ, and the EIS = 1/ρ > 1. First we
assume that the agent holds the market portfolio, and find the preference
parameters consistent with the formula (47) and the other expressions for
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the consumption growth rate and consumption volatility given above, con-
sistent with this. Here this means that ϕt = 1, and this is consistent with
γ = 1.07, ρ = 0.95. Also we set δ = 0.04. The optimal expected extraction
rate is then k̄0 = 0.01. The expected rate of return on the wealth portfolio
is 0.07. Furthermore, σc is smaller than σW , where σW = 0.16. The time
horizon T = 300 years.

Fig. 5: Optimal spending rate vs expected return; γ > ρ.

This is illustrated in Figure 5. We notice that the difference between the
optimal spending rate and the real rate of return is large. If the impatience
rate is lowered, so is the spending rate. For example, the value of k̄0 becomes
negative when δ = 0.01, but with a finite horizon the actual spending rate is
of course strictly positive for all values of t ≤ T .

By increasing the relative risk aversion, ceteris paribus, the expected real
rate of return decreases and the optimal expected spending rate increases. By
increasing the parameter ρ, ceteris paribus, the optimal expected spending
rate increases and the expected real rate of return decreases (when γ > 1).
By increasing the impatience rate δ, ceteris paribus, the optimal expected
spending rate increases, while the expected return is unaffected.

Next we consider the situation where the agent has preference for late
resolution of uncertainty γ < ρ, and the EIS = 1/ρ < 1. Suppose γ = 0.95,
ρ = 1.02 and δ = 0.03.
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Fig. 6: Optimal spending rate vs expected return; γ < ρ.

The upper horizontal line in the figure is the expected real rate of return
er(γ, ρ), the lower horizontal line is the optimal expected spending rate k̄0

corresponding to the perpetual case, and the curve corresponds to optimal
spending with a finite horizon of 300 years.

Here k̄0 = 0.01, the expected rate of return on the wealth portfolio is
0.049, following from an optimal portfolio strategy of ϕ = 0.108. Also σW =
0.11, strictly larger than σc.

By increasing the relative risk aversion (when ρ > 1), ceteris paribus, the
expected real rate of return increases, and the optimal expected spending
rate decreases. By increasing the parameter ρ, ceteris paribus, the optimal
expected spending rate increases and the expected real return also increases.
By increasing the impatience rate δ, ceteris paribus, the optimal expected
spending rate increases, while the expected return is again unaffected (see
equation (51) and the inequality in (54)).

For reasonable market quantities and plausible sets of preference param-
eters, the main conclusion of the paper holds with general recursive utility:
The optimal spending rate is significantly smaller than the expected rate of
return.

When the investment opportunity set It is deterministic, and preferences
are recursive utility, this conclusion can be given the same kind of precision
as for expected utility. This is treated in the next section.

4.5 The basic backward stochastic differential equa-
tion (BSDE)

Returning to the BSDE given in equation (38), suppose we have a method to
solve this equation for the optimal consumption c∗t .

14 Then we can find closed
form solutions for both the optimal consumption to wealth ratio, as well as

14There is a fairly large literature on this topic, staring in the early 1990-ties.
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the optimal portfolio rule in the general case with a stochastic investment
opportunity set.

This problem is addressed in Schroder and Skiadas (1999). They consider
a parameterization of an ordinary equivalent version of recursive utility. This
parameterization is different from the one we use, so it can not be directly
compared to our version, except, perhaps, for the most general case. The
problem of solving the BSDE is addressed, which determines jointly Vt and
Zt. By doing so, an auxiliary process Jt is introduced for Vt such that Vt =
g(Jt, c

∗
t ) for some given function g. As in our approach, the consumption

growth rate µc(t) and σc(t) are expressed by the parameters of the problem
and by the two processes Zt and Vt, in our case by σV (t), or equivalently, by
Zt and Jt. In particular they find that

σc(t) =
1

γ

(
ηt +

ρ− γ
1− ρ

Zt
Jt

)
expressed in our parameter version. In order to demonstrate consistency
between this method and our approach, let us equate this volatility to our
corresponding expression for σc(t) given in (42), which is

σc(t) =
1

ρ

(
ηt + (ρ− γ)σV (t)

)
,

where σV is given in (46) as

σV (t) =
1

1− γ
(
ϕ′tσt − ηt

)
.

This gives an equation from which we can find the optimal portfolio weights
ϕt, and the solution is

ϕt =
1

γ
(σtσ

′
t)
−1λt + (1 +

1

γ

ρ− γ
1− ρ

)σ−1
t

Zt
Jt
. (63)

This is the same expression for ϕt that appears in Theorem 4 of Schroder
and Skiadas (1999).

There is now a BSDE in (J, Z) that can be addressed by standard meth-
ods. In the paper the authors use a method that requires a Markovian
structure, which leads to the introduction of a state variable Y that takes
care of the stochastics of the investment opportunity set. With this structure
in place, the authors go on to develop a partial differential equation which,
when solved, determines the pair (Zt, Jt), where JT = 0.

Furthermore the optimal consumption-to-wealth ratio is shown to be

c∗t
Wt

=
1

1− ρ

(1− γ
1− ρ

) 1−ρ
ρ 1

Jt
,
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which is smaller than the expected rate of return whenever

1

1− ρ

(1− γ
1− ρ

) 1−ρ
ρ 1

Jt
≤ ϕ′tλt + rt 0 ≤ t ≤ τ,

for some τ < T . In order to demonstrate when this inequality holds, we need
closed form expressions for Jt and Zt, which are not available so far (to our
knowledge).

With our expression for the volatility of utility σV (t), once we have the
pair (Vt, Zt), the equation Zt/Vt = 1

1−γ

(
ϕ′tσt − ηt

)
gives an equation from

which the optimal portfolio rule ϕt can be found.

4.6 Recursive utility: A deterministic investment op-
portunity set

In this section we make the same assumptions as in Section 3 except that
we now consider recursive utility. In this situation we assume a determin-
istic investment opportunity set, in which case σc(t) = σW (t) for all t, and
moreover, these are assumed constant in t.

Based on the above results we first find the optimal extraction rate cor-
responding to the constant k in Section 3. It turns out that in optimum, this
rate will be a constant also here. It is a routine matter to verify that when
σc = σW , it follows that the volatility of utility σV = σc as well. Furthermore,
the optimal fractions in the risky assets are then the same as in the expected
utility model and given by

ϕ(t) =
1

γ
(σσ′)−1λ, (64)

and the optimal consumption satisfies the usual dynamics with optimal ex-
pected growth rate

µc =
1

ρ
(r − δ) +

1

2
(1 +

1

ρ
)
1

γ
η′η, (65)

and volatility

σc =
1

γ
η. (66)

Paralleling the analysis for expected utility in Section 3.1, or from the
treatment of recursive utility in the last section, we can deduce directly from
(48) and the above special results that the optimal extraction rate k reduces
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to the following constant15

k =
δ

ρ
− 1− ρ

ρ

(
r +

λ′(σσ′)−1λ

2γ

)
, (67)

when T =∞. This is also consistent with the more general theory outlined
above, under the special assumptions of this section, where the instantaneous
correlation rate κc,W is set equal to 1. From this expression it follows that
the expected rate of return is larger than or equal to the extraction rate
whenever

r

ρ
≥ δ

ρ
− 1 + ρ

2ργ
λ′(σσ′)−1λ. (68)

Since the second term on the right-hand side is negative, this inequality holds
true for all reasonable values of the parameters, just as in the case of expected
utility. Under the assumptions of this section, we have the following result:

Proposition 5 With recursive utility, assuming a deterministic investment
opportunity set, the optimal extraction rate k is a constant and depends on
the return from the fund only via the certainty equivalent rate of return. It
is given by

k =
δ

ρ
+
(
1− 1

ρ

)(
r +

1

2
γϕ′(σσ′)ϕ

)
. (69)

The expected real rate of return on the fund is larger than or equal to the
optimal extraction rate if and only if the inequality (68) holds. For any
reasonable set of parameters of this problem, this inequality is true.

Proof: The fact that the term λ′(σσ′)−1λ/γ equals γϕ′(σσ′)ϕ follows as in
the proof of Proposition 1, since the optimal portfolio rule ϕ is given by
expression in (64) in this model as well. Again 1

2
γϕ′(σσ′)ϕ is the certainty

equivalent to the stochastic part of the rate of return of the fund. The rest of
the argument follows as in the proof of Proposition 1. The second assessment
of the proposition was explained above. �

Again, the logic of extracting the expected real rate of return rests on an
implicit assumption that the agent is risk neutral. In the above derivation,
on the other hand, the agent is strictly risk averse with relative risk aversion
γ > 0, so this would again lead to the same problems as explained in Section
3.4 for EU.

We notice from the representation of k given in (69) that the difference
from the corresponding result with expected utility is that the ’weight’ factor

15This formula was first derived by Svensson (1989) in his special model of recursive
utility in continuous time; he restricted attention to a deterministic investment opportunity
set only.
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1/γ is replaced by 1/ρ, where ρ is the marginal utility flexibility parameter,
the reciprocal of the EIS parameter. This has several consequences, to be
discussed below.

Unit EIS: When ρ = 1 the optimal spending rate is seen to be k = δ, and
the inequality (68) is reduced to r ≥ δ − λ′ϕ. This is the same requirement
as for general recursive utility, see (56), except that here all the parameters
are constants. This criterion is identical to (19) for expected utility when
γ = ρ = 1. Since λ′ϕ ≥ 0 in this model, for reasonable values of the param-
eter δ this inequality holds true.

Fig. 7: k as a function of ρ.

In Figure 7 we illustrate how k vary with ρ. The increasing curve is
k(ρ; γ, δ) as a function of ρ when γ = 2.5 and δ = 0.02, the lowest horizontal
line is the certainty equivalent ce(γ) and the upper line is the expected return
er(γ) for these values of the relative risk aversion (both these are constant
as functions of ρ). When ρ increases, the extraction rate is seen to increase
to the ce(γ) as long as δ ≤ ce(γ), and decrease to ce(γ) when δ > ce(γ).

The extraction rate is a decreasing function of γ for given ρ and δ provided
ρ > 1 for this model, the same as we found for general recursive utility of the
last section. While the expected rate of return is here constant as a function
of ρ, for general recursive utility we found that this is an increasing function
of ρ in this setting, for reasonable values of ρ.

As a function of δ the extraction rate is again a straight line that crosses
the certainty equivalent at δ = ce(γ).

Let us illustrate by a numerical example. Let γ = 2.0, ρ = 0.95 and
δ = 0.02. The optimal extraction rate is then k = 0.019. The expected rate
of return on the wealth portfolio is 0.078 and the certainty equivalent rate of
return is 0.043, following from an optimal portfolio strategy of ϕ = 1.13. Fur-
thermore, σc = σW = 0.19. This example is illustrated in the Figure 8 below.
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Fig. 8: Recursive utility. Drawdown rate vs return; γ > ρ.

The optimal spending rate k(γ, ρ, δ) increases as γ increases, for given
values of ρ < 1 and δ ≥ 0, consistent with general recursive utility of the
last section. However, the expected rate of return here decreases with γ
regardless of the value of ρ, whereas this depends on whether ρ < 1, or ρ > 1
for general recursive utility.

We now relate this model to the examples in Section 3.4. First we notice
that our earlier results for γ = 1, are translated to ρ = 1 in the present
model. Thus, in the bigger picture, it is really the condition that EIS = 1
that yields the optimal extraction rate k = δ. Accordingly, this result is not a
’risk aversion type result’, but rather a result where consumption substitution
plays the main role.

Consider the following example. Suppose ρ = 1/EIS = 1, γ = 2.5 and
δ = 0.02. This gives the optimal extraction rate k = 0.02. The expected rate
of return on the wealth portfolio is now 0.065 and the certainty equivalent rate
of return is 0.037. Furthermore σc = 0.15, µc = 0.02 and ϕ = 0.95. These
results indicate a less risky strategy than in the corresponding example of
Section 3.4 where γ = 1. Part of the explanation is that the agent is now
more risk averse. Still the optimal extraction rates are the same and equal
to δ.

The literature does not give clear answers regarding the EIS-parameter.
In calibrations to market data, it has been observed that EIS is typically
larger than one, and ρ < γ and ρ < 1 (see e.g., Aase (2016a, b) or Bansal and
Yaron (2004)), which indicates preference for early resolution of uncertainty
(ρ < γ), or ρ > 1 and γ < ρ. When γ < ρ the the agent has preference
for late resolution of uncertainty, which is not irrational, but it typically
calibrates to data when also γ < 1, which seems a bit too low for the relative
risk aversion. Guvenen (2009) seems to think that EIS < 1 is the most
natural choice, although this is not a result, rather an assumption.16

16When discussing whether EIS is larger or smaller than 1, many economists implicitly
seem to be taking the standard expected utility model as the ’thruth’, in which case
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To take an example when ρ > 1 and γ < ρ, assume that γ = 0.9, ρ = 1.03
and δ = 0.02. Then the optimal extraction rate is k = 0.022. The expected
rate of return on the wealth portfolio is 0.17 and the certainty equivalent
rate of return is 0.088 with an optimal portfolio strategy of ϕ = 2.65. Here
σc = 0.42, µc = 0.13. Now the agent takes on a much more risky portfolio
strategy due to the rather low relative risk aversion. This gives a rather large
discrepancy between the expected real rate of return from the fund and the
optimal extraction rate (see Figure 9).

Fig. 9: Recursive utility. Drawdown rate vs return; γ < ρ.

The numerical results in this example show a bigger discrepancy between
the optimal spending rate and the expected rate of return than for the cor-
responding example with general recursive utility in Section 4.4, see Figure
6.

When γ decreases in this example (ρ > 1), ceteris paribus, the extraction
rate increases, which is also consistent with the result for general recursive
utility. This seems natural, since then the agent becomes less risk averse.
For expected utility, however, this does not hold, see Figure 4.

As we noticed for the model with expected utility, the spending policy
advocated by Dybvig and Quin (2019) was not consistent with the optimal
EU-spending rule. Is that still the case here? As we have one more parameter
in the preferences, our present model is more flexible. With γ > ρ we do not
find a match, but for parameters consistent with preference for late resolution
of uncertainty, we can find consistency between the two methods for certain
choices of the parameters. An example is γ = 1/2, ρ = 1 and δ = r. But
this is, of course, rather special.

EIS < 1, since γ > 1 is considered most reasonable (γ = 1/EIS for expected utility).
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4.7 The asymptotic behavior of a sovereign wealth fund:
Recursive utility

When the optimal spending rate k is a constant, as in the model of the last
section, the wealth Wt is a geometric Brownian motion as in Section 3.5
where we considered expected utility. The wealth dynamics is

Wt = W0e
∫ t
0 [µW− 1

2
ϕ′(σσ′)ϕ]ds+

∫ t
0 ϕ
′σdBs , (70)

where

µW =

{
0, if k = r + γϕ′(σσ′)ϕ;
1
2
(1 + 1

ρ
)γϕ′(σσ′)ϕ+ 1

ρ
(r − δ), if k is optimal.

(71)

In other words, when the spending rate k is equal to the expected rate of
return, then µW = 0 and Wt is a martingale. When k is optimal, here given
in equation (69), then either Wt is a submartingale or a supermartingale
depending on the size of the impatience rate δ:

If µW > 0 the process Wt is a submartingale if δ < r+ 1
2
(1 +ρ)γϕ′(σσ′)ϕ,

and if µW < 0, the wealth process is a supermartingale provided δ > r +
1
2
(1 + ρ)γϕ′(σσ′)ϕ.

Next consider the quantity

µW−
σ′WσW

2
=

{
−1

2
ϕ′(σσ′)ϕ, if k = r + γϕ′(σσ′)ϕ;

1
2
((1 + 1

ρ
)γ − 1)ϕ′(σσ′)ϕ+ 1

ρ
(r − δ), if k is optimal.

(72)
Again we can conclude about the asymptotic behavior for a geometric

Brownian motion from the sign of µW − 1
2
σ′WσW . Since here σ′WσW =

ϕ′(σσ′)ϕ, by the law of the iterated logarithm for Brownian motion, the
following results hold:

If µW − (1/2)ϕ′(σσ′)ϕ < 0, then Wt → 0 with prob. 1 as t→∞; (73)

If µW − (1/2)ϕ′(σσ′)ϕ > 0, then Wt →∞ with prob. 1 as t→∞. (74)

Thus, when µW = 0, where the spending rate is the expected rate of return
on the fund, the martingale property gives that E(Wt) = W0 for all t ≥ 0,
but despite of this, by the above result eventually the wealth converges to
zero with probability 1, and with good margin.

Moreover, using (71) when k is optimal and given in (69), we see that the
situation in (73) happens when δ > r + 1

2
((ρ + 1)γ − ρ)ϕ′(σσ′)ϕ. The other

case in (74) materializes when δ < r + 1
2
((ρ+ 1)γ − ρ)ϕ′(σσ′)ϕ.
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As we have argued above, it is reasonable that δ is smaller than or equal
to the certainty equivalent (ce) rate of return, which holds for γ = 1. For
(74) to be true, δ can be larger than the ce if γ > 1, but must be smaller
than the ce when γ < 1.

Hence, the prospects for a long term sustainable management of a sovereign
wealth fund are really promising using the optimal spending rate k as out-
lined above.

Finally, if δ = r + 1
2
((ρ+ 1)γ − ρ)ϕ′(σσ′)ϕ when k is optimal, then

Wt = W0e
∫ t
0 ϕ
′σdBs ,

in which case

E(Wt) = W0e
1
2

∫ t
0 ϕ
′(σσ′)ϕds →∞ as t→∞. (75)

We summarize as follows for recursive utility:

Theorem 2 (i) With the optimal spending rate k, the fund value Wt goes to
infinity as t→∞ as long as the impatience rate δ satisfies

δ ≤ r +
1

2
((ρ+ 1)γ − ρ)ϕ′(σσ′)ϕ.

(ii) If the spending rate is set equal to the expected rate of the return on
the fund, then the fund value goes to 0 with probability 1 as time goes to
infinity.

We also have the following corollary with recursive utility:

Corollary 2 With the optimal spending rate k we have the following:
(i) Wt →∞ almost surely as t→∞ provided

δ < r +
1

2
((ρ+ 1)γ − ρ)ϕ′(σσ′)ϕ,

in which case Wt is also a submartingale.
(ii) Wt → 0 almost surely as t→∞ provided

δ > r +
1

2
((ρ+ 1)γ − ρ)ϕ′(σσ′)ϕ,

in which case Wt is also a supermartingale.

As with expected utility, we can also say something about the expected
time to the wealth process Wt reaches a certain value. This is of course a
topic of interest in the present model as well, and is what we consider in the
next section.

First we take closer look at a special sovereign fund, the Norwegian SWF
Government Pension Fund Global, in daily language referred to as the ”Oil
Fund”.
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4.8 The Norwegian SWF Government Fund Global

For this sovereign fund the Norwegian Ministry of Finance set down a com-
mission in 2016 to consider the asset allocation problem. Table 2 below
reflects the commission’s market view on equity and risky bonds.17

Expectation Standard dev. Covariance

Equity 4.72% 16.00% 0.00384
Bonds 0.68% 6.00%
Equity premium 4.04% 14.67%

Table 2: The commission’s market view, Norwegian Ministry of Finance
(2016).

The commission recommends an equity share of ϕ = 70%. Given a riskless
rate of 0.68% and an equity premium with expectation 4.04% and standard
deviation 14.67%, this translates into an implicit risk aversion of γ = 2.68.
The expected return and standard deviation of the fund are then 3.75% and
11.56%, respectively.

The certainty equivalent fund return is ce = 1.87%, which less than half
the expected rate of return on the fund. Observe that the certainty equivalent
fund return is substantially less than the current fiscal rule, which is 3%.

Suppose for the moment that the utility impatience rate δ = 1.87%. In
this case, where the impatience rate and the certainty equivalent fund return
are equal, the optimal spending rate k = 1.87% regardless of the elasticity
of intertemporal substitution (EIS = 1/ρ).

Now, suppose instead that the utility impatience rate is δ = 1.5%. In
fact, if the EIS is sufficiently large, the optimal consumption rate k might
become zero or even negative, which clearly must be ruled out in the infinite
horizon case but which still makes sense with a finite horizon. Say for in-
stance that the fixed horizon is T = 100 years from now, and that EIS = 5.
It then follows that the optimal spending rate k ≈ 0% to three decimal places
(k = 0.00027). Does this mean no spending at all? Clearly not. The optimal
spending the first year is 0.0102 of the fund value, the optimal spending in
year 2 is 0.0103, the optimal spending in year 50 is 0.0201, and in year 90 it
is 0.1001 of the fund value, and so forth (recall equation (10)).

17The report uses geometric returns. We translate this into expected continuously com-
pounded arithmetic returns: Equity: 0.0472 = ln(1 + 0.035) + 0.5 · (0.16)2; and Bonds:
0.0068 = ln(1 + 0.005) + 0.5 · (0.06)2. The covariance reported in the table stems from
the following calculation 0.16 · 0.06 · 0.4 = 0.00384, where the intertemporal correlation
coefficient is 0.4.
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Fig. 10: Spending rate when k is zero; γ > ρ, 1/ρ = 5.

In Figure 10 this situation is illustrated, where the upper horizontal line
is the real expected rate of return, the next line is the certainty equivalent
rate of return, the curve is the optimal spending rate with T = 100 as the
horizon, and the horizontal line close to the origin is the value k = 0.00027.

If we increase the EIS further, the value of k becomes negative. Still the
optimal spending with a finite horizon is strictly positive, and increasing as
the horizon comes closer, as in Figure 10.

In this situation we can calculate the conditional expected time to the
fund leaves a given interval at a specified level for the first time, treated in
Section 3.6. Consider the interval (a, b) where a = (1/10)W0 and b = 2W0. In
this scenario and with the optimal spending rate, the parameters are µW =
0.02315, σW = 0.1156 and the constant c = −2.46. The first exit probabilities
are p+(W0, J) = 0.9972 and p−(W0, J) = 0.0028, so it is much more likely
that the first exit takes place at upper level b than at the lower a. From the
results of Section 3.4 we obtain that EW0{τ ∗(J)|X(τ ∗(J)) = b} = 41.35 years
while EW0{τ ∗(J)|X(τ ∗(J)) = a} = 121.42 years. Here EW0{τ ∗(J)} = 41.58
years.

In the situation where the spending rate is the expected rate of return,
µW = 0 and c = 1 while σW = 0.1156 remains the same. The first exit
probabilities have changed to p+(W0, J) = 0.86 and p−(W0, J) = 0.14,
so it is still more likely that the first exit takes place at upper level b
than at the lower a, but less so than in the optimal case. Now we get
EW0{τ ∗(J)|X(τ ∗(J)) = b} = 74 years while EW0{τ ∗(J)|X(τ ∗(J)) = a} = 184
years. Here EW0{τ ∗(J)} = 132 years. Yet we know that in this situation Wt

will eventually end up in zero, although it may take a long time, while in the
former case with optimal extraction in place this does not ever happen with
probability 1.

There are several important lessons we can draw from this example. First,
for reasonable parameter values, it is optimal to consume considerably less
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than the expected rate of return of the fund. Second, if the utility impa-
tience rate and the certainty equivalent fund return are equal, the optimal
consumption rate equals the two regardless of EIS. Third, if the utility im-
patience rate is less than the certainty equivalent fund return, the latter is
an upper bound for the optimal consumption rate.

5 Additional Consumption in Society

The analysis in the preceding sections is under the assumption that the fund
can be considered in isolation from consumption in the rest of society.

For a fund established by society for the benefits of its inhabitants, it may
be of interest to investigate if the above analysis is general enough, since the
ownership and purpose of the fund may be more complex. If the fund is
owned by a state, the rest of the wealth in society may matter. Typically, for
a sovereign wealth fund owned by the state, the government could, perhaps,
be inclined to compare the extraction from the fund with consumption in
society that originates from other, and more common sources. This we now
address.

Let us assume that there is a consumption stream in society that does not
originate from the fund, denoted cSt , while the consumption that originates
from the fund is denoted cFt , so that total consumption ct = cFt + cSt at any
time t. The objective is to maximize utility U(c) subject to the relevant

budget constraint. Here we assume U(c) = E(
∫ T

0
u(ct, t)dt) where u(x, t) is

power utility of the kind used in sections 2 and 3 of the paper.
In order to discuss this problem, let us return to equation (3) for the

market value of the optimal wealth. This equation can be expressed as follows
under our present model assumptions

Wt =
1

πt
Et

{∫ T

t

πsc
F
s ds
}

+
1

pt
Et

{∫ T

t

psc
S
s ds
}
. (76)

Here Wt is the total wealth in society at time t and pt is the state price
deflator related to the consumption cS that stems from other sources than
the fund, so we can write Wt = W F

t +W S
t for all t, where W F

t is the optimal
wealth from the fund, and where W S

t is the wealth stemming from other
sources than the fund, at any time t ∈ [0, T ].

The central planner’s problem is then to solve the following

supcU(c) subject to E
{∫ T

0

(πtc
F
t + ptc

S
t )dt

}
≤ w,

where w is the present value of wealth in the society.
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The Lagrangian of this problem is

L(cF , cS;µ) = E
{∫ T

0

u(cFt + cSt , t)dt− µ
( ∫ T

0

(πtc
F
t + ptc

S
t )dt− w

)
dt
}

where µ is the Lagrange multiplier. Using directional derivatives, the first
order conditions are

(cFt + cSt )−γe−δt = µπt, and (cFt + cSt )−γe−δt = µpt, ∀t ∈ [0, T ]

where γ is the relative risk aversion and δ is the impatience rate. As a direct
consequence of this, πt = pt for all t, so the two state price deflators must be
identical (a.s.).

In the same vein we consider the two wealths. Here we make the some-
what heroic assumption that all assets in society are marketed, so that, for
example, we can consider labor as a shadow asset contained in W S. We then
get

dWt = dW F
t + dW S

t =
(
W F
t (ϕFt λ

F
t + rt)− cFt

)
dt+W F

t ϕ
F
t σ

FdBt

+
(
W S
t (ϕSt λ

S
t + rt)− cSt

)
dt+W S

t ϕ
S
t σ

SdBt.

The first order conditions of optimal portfolio selection, using either dynamic
programming or otherwise, leads in the same manner to the following

ϕFt =
1

γ
(σFσ′F )−1λF for all t,

and

ϕSt =
1

γ
(σSσ′S)−1λS for all t.

The conclusion of this is that an endowment fund, whether owned by the
state, by a university or otherwise, should be managed optimally as a fund,
separated from the rest of the consumption problem in society. This separa-
tion principle is also rather intuitive.

5.1 A real case

Let us discuss a concrete case, and consider again the Norwegian Government
Pension Fund Global, formerly simply the Norwegian Oil Fund, from the
perspective of the last section. The idea of the origins of this fund is that
also future generations are supposed to benefit from the oil exploration of
the present generation, not only those who live in Norway at the present.
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Consider, for example, a situation where the pension liabilities increase in
the future for some limited and transitory amount of time, and then returns
to a more normal state after this period. If the fund is supposed to take care
of this particular problem, one can simply use actuarial methods to calculate
the relevant extraction rates in the future. This problem is not connected, or
at the best, just vaguely related to the problem analyzed above. In principal,
no utility function is needed for the actuarial calculations involved. Thus we
must make assumptions about both ownership of the fund, as well as the
intended purpose of the fund.

Despite of the change of the name of the former Norwegian Oil Fund, the
actual daily use of this fund seems to be more in line with the description
considered in this paper. The conclusion from the last section is then to use
the separation principle and treat this fund in isolation, where an optimal
extraction policy must be consistent with the portfolio selection strategy
used. Since this is one of broadly diversifying over assets in international
security markets, including various government bonds, and also real estate,
it is clear that this implies risk aversion on the investment side. Consistent
with this, the extraction rate should also take into account both risk aversion,
consumption substitution and impatience, as explained in this paper.

This is contrary to the current state of affairs of the Norwegian Govern-
ment Pension Fund Global, where the extraction from this fund is deter-
mined by a mandate from the Parliament (Stortinget) to be set equal to the
expected real return on the fund. As we have shown, this is not the sustain-
able spending rate of this fund, and will deplete the fund in the future with
probability one.

6 Conclusions

We have derived concrete formulas for optimal extraction from an endowment
fund consistent with risk aversion, and demonstrated that it can be written
as a convex combination of the impatience rate and the certainty equivalent
rate of return on the fund, in the most basic for of the models considered.

As a consequence the optimal extraction rate is strictly smaller than the
expected rate of return, provided that the impatience rate is reasonable. The
difference is far from negligible, and amounts to several percentage points in
most real situations.

The explanation has to do with the strategy at the portfolio selection
stage: If the fund is managed by diversification, this means that risk aversion,
consumption substitution and impatience are all essential in the optimal
portfolio choice problem. Then, to be consistent, the spending rate must

46



also reflect all these three properties, which is what we have shown.
We have taken a security market as given, assumed to be in equilibrium,

and introduced a price taking agent in this market. In this setting we have
reconsidered the problem of optimal consumption and portfolio selection. In
the context of an endowment fund, the results from analyzing this more gen-
eral problem can immediately be utilized in order to determine an optimal
spending rate. We have considered both expected, additive and separable
utility, in which case risk aversion plays a prominent role together with im-
patience, and recursive utility where consumption substitution is separated
from risk aversion.

When the investment opportunity set is deterministic, there exist explicit
and closed form solutions for optimal extraction, which we have rewritten in
a form where it it is easy to interpret. When the investment opportunity set
is stochastic, we have developed formulas in the paper, which we claim to be
original. First and foremost, these solutions are demonstrated to be smaller
than the expected real rate of return on the endowment fund, for plausible
values of the preference parameters and the other parameters of the problem.
The difference is significant in most cases.

If the extraction rate is the one of expected return, this usually goes along
with agent risk neutrality at the level of extraction, and should then, to be
consistent, go along with risk neutrality at the level of optimal portfolio
selection as well. But the consequence of such an investment strategy is
rarely advocated by anyone responsible for an endowment fund, whatever its
purpose.

We demonstrate that a popular and much advertised extraction policy,
the expected real rate, is not consistent with a sustainable spending rate,
and will with probability one eventually deplete any fund that is managed
by diversification.
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