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Abstract 
This thesis explores the applicability of machine learning in macroeconomic housing price 

predictions in Norway. We apply three machine learning models Elastic Net, Random Forest and 

Neural Network on historical time-time series data and predict quarterly and yearly growth rates 

between 2013 and 2019. The performance is evaluated upon predictions from Norges Bank, DNB 

and SSB. 

 

Our results indicate that machine learning can produce predictions with the same accuracy as 

professional institutions. Among the machine learning models, Elastic Net produces the most 

accurate quarterly predictions. Compared to Norges Bank, Elastic Net’s predictions are more 

accurate in 29,6% of the quarters, but less precise in the overall evaluation. Large deviations during 

2018 and 2019 are decisive for the lacking performance, after new mortgage regulations were 

introduced from Finanstilsynet. Random Forest predicts the most accurate yearly predictions but 

is outperformed by Norges Bank. Still, Random Forest surpasses both DNB and SSB throughout 

the evaluation process. 

 

The thesis contributes to the existing literature in several aspects. First, by outperforming housing 

experts, we challenge traditional macroeconomic approaches in the choice of predictive models. 

Second, our results indicate that linear models are more suited in shorter time spans, while 

nonlinear models perform better over longer horizons. Third, the machine learning models have 

identified household debt as the most influential variable to determine the housing prices in 

Norway. Overall, we believe machine learning approaches could become valuable in further 

academic and professional macroeconomic research.  
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1. Introduction 

The housing market has important economic implications for the wellbeing of a nation. 

Residential real estate provides shelter, ensures household savings and is one of the main drivers 

in the Norwegian economy through finance and construction. Therefore, providing accurate 

predictions is just as important for the central bank, property investors and house owners, as for 

political decision makers. The thesis explores the ability of machine learning models to predict 

quarterly and yearly aggregated housing growth rates in Norway. We evaluate the performance 

with professional institutions, respectively Norges Bank, DNB and SSB. More specifically, we 

employ Elastic Net, Random Forest and Neural Network to produce out-of-sample predictions 

between 2013 and 2019. Predictive accuracy and direction are computed and evaluated towards 

the professional institutions. Moreover, economic intuitions and influential events in the 

Norwegian Housing market are analyzed through the lens of machine learning. Lastly, we evaluate 

model predictability and specifications from our analysis, with national and international research.  

 

Predicting housing growth rates have several challenging aspects. First, only short lengths of 

macroeconomic time series data are currently available. Housing price indices (HPI), and 

influential indicators, are usually computed at monthly or quarterly frequencies, with limited 

historical data. This limits the size of the dataset, creating difficulties with model building and 

testing. Second, uncertain booms and busts indicate a degree of nonlinear effects in the market 

(Miles, 2007). Therefore, traditional models could be less suited in capturing underlying 

relationships. Third, due to low frequencies in sales, transaction costs and individual attributes, 

the housing market has previously proven to have a high degree of heterogeneity (Vanags et al., 

2017).  

 

Despite the challenges, a large portion of institutions, banks and housing experts are frequently 

voicing their future projections. Therefore, it is interesting to evaluate attributes between 

institutions. Furthermore, professional institutes publish their estimates for different reasons. 

DNB Markets’ projections are a part of their overall macroeconomic overview, aiming to help 

businesses and investors with their investment decisions. Norges Bank’s objective is to ensure the 

correct fiscal and monetary policies, where the housing market is considered a leading indicator 

in the macroeconomic environment. Differences in objectives could likely influence the 

methodologies and perhaps the prediction accuracy. 
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Traditional statistical models have been fundamental in existing prediction analysis. For example, 

Norges Bank rely on their SAM (System of averaging models), while DNB apply regression 

models to produce their predictions. Combined with expert perspectives, final predictions are 

produced. Machine learning has previously increased its field of application within various sectors, 

with the sole purpose of increasing efficiency (Jung et al., 2018). Ideally, machine learning is able 

to analyze data quicker, cheaper, more systematic and find unobservable correlations that the 

human eye, and traditional statistical methods, might oversee. Still, the technology has not yet 

been exploited to its full potential in the macroeconomic environment. If the machine learning 

models are suitable for the purpose of predicting housing prices, and could yield credible results, 

they could potentially serve as supportive tools in further research and discussions. 

 

Due to the macroeconomic importance and an interest in the housing market, we will analyze the 

following question: Is machine learning suitable for predicting price growth in the Norwegian housing market? 

 

Our results indicate that machine learning can produce as accurate predictions as professional 

institutions. However, abnormal events decrease the overall performance. Elastic Net produces 

the most accurate quarterly predictions. Compared to Norges Bank’s predictions, Elastic Net is 

more accurate in 29,6% of the quarters, but less precise overall. Especially large deviations after 

the introduction of new mortgage regulations, affect the Elastic Net’s performance during 2018. 

Random Forest produces the most accurate yearly predictions among the machine learning 

models. Compared to Norges Bank, Random Forest is outperformed over the whole period, but 

produces the most accurate predictions in 2013 and 2017. Additionally, Random Forest’s 

predictions have a higher accuracy than both DNB and SSB, outperforming two professional 

institutions. 

 

Our thesis contributes to the existing literature in several ways. Firstly, by including professional 

institutional predictions, we raise the benchmark for what could be considered as efficient results. 

In the thesis, efficient results indicate predicted values are closer than, or as close as, professional 

institutions projections to the actual growth. Existing literature has focused on statistical models 

for their performance evaluation. Discovering that machine learning can surpass housing experts, 

we challenge traditional macroeconomic predictions. Secondly, our results support previous 

literature stating that linear models are more suited in shorter time spans, while nonlinear models 

perform better in longer horizons (Gupta & Miller, 2015; Milunovich, 2019). The consistency 

contributes to further model building and explores interactions and combinations between 
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explanatory variables. Thirdly, our results are consistent with previous macroeconomic research 

on the predictability in the Norwegian housing market (Røed Larsen & Weum, 2008). Still, market 

complexity and uncertainties negatively affect the predictive ability. Lastly, our approach enables 

one to evaluate the importance of influential factors. Household debt stands out as the variable 

with the highest contribution towards determining the housing prices in Norway.  

 

The remainder of the thesis is organized as follows: In section 2, we present background and the 

most relevant existing literature. Section 3 describes the dataset, as well as relevant adjustments 

and assumptions. Section 4 briefly presents the relevant machine learning methodology. Section 

5 presents model implementation, and section 6 describes the quarterly and yearly results from 

the predictions. Section 7 is twofold, discussing both machine learning performance and relevant 

aspects in the housing market. Ultimately, the last section concludes our findings. 
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2. Background 

Artificial intelligence and machine learning have previously been explored in the Norwegian 

housing market. In 2017, a robot algorithm from Veidekke won Boligtempen1 with the most 

accurate housing growth forecast (Finansavisen, 2018). Their model which included publicly 

available historical data surpassed 20 housing experts. However, after gathering excessive 

publicity, the robot predicted 2% lower prices for 2019, misinterpreting the growth direction and 

magnitude. In 2019, Mari Mamre, Doctoral Research Fellow from NMBU, developed a Neural 

Network model for housing price predictions in Norway and Oslo (Stranden, 2020). The model 

consists of 50 explanatory variables, and aims to capture regulatory changes, macroeconomic 

events, and housing specific factors. We therefore recognize the topic as relevant both for 

professional and academic institutions.  

 

The thesis’ purpose is to explore modern technology and test its relevance for Norwegian 

businesses and policymakers. Thus, we imply simple machine learning models to enlighten their 

applicability. We have intentionally selected machine learning models that are easily implemented 

and understood. Therefore, the thesis is relevant both for those with limited knowledge of 

machine learning, as well as industry experts. Additionally, we shed light on strengths and 

weaknesses of the implementation, and potential improvements for further models.  

2.1 Litterature Review 

The thesis contributes towards a small, but growing, list of literature on machine learning in the 

housing market. Various literature on housing price predictions, including traditional regression 

and autoregressive models, are available. In this section, we only present corresponding machine 

learning literature. For example, housing prices are generally influenced both by macroeconomic2 

and microeconomic3 factors (Lam et al., 2009). Since the thesis’ purpose is predicting the 

aggregated growth in Norway, it belongs to the macroeconomic field.  Thus, the literature review 

focuses on conducted macroeconomic research to predict housing price indices on national or 

state levels.   

 

 
1 Finansavisen’s competition for determining the best housing price forecaster of the year  
2 Attributes that describe the social and economic situation 
3 For example, location, esthetics and neighborhood attributes 
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Rene de Borst (1991) implemented the first Neural Network in housing price predictions in New 

England. His results significantly outperformed multiple OLS-regression, arguing Neural 

Networks could become the next calibration technology in the housing market. The research 

indicated machine learning’s relevance, even in its early stages. 

 

Neural Network predicted Property Price Indices in Malaysia (Shukry et al., 2012). The indicators 

unemployment rate, population size, interest rate and household income were included in the 

model. A quarterly training set from 2000 to 2009 was extracted and tested out-of-sample in 2010 

and 2011. Neural Network produced a Mean absolute percentage error (MAPE)4 of 8%, 

consequently outperforming traditional multiple regression, generating a MAPE of 15%.  The 

researchers argued Neural Network could be a good alternative to traditional multiple regression, 

allowing for nonlinearity and multicollinearity between indicators.  

 

Elastic Net was included in the variable selection process in a fitted Support Vector Regression 

(SVR), forecasting the yearly U.S. Real Housing Price Index (Plakandaras et al., 2015). A 

substantially richer dataset from 1890 to 2012, was extracted. The explanatory variables GDP, 

interest rate, inflation, construction cost, stock price index, oil price, and budget deficit/surplus 

were included. A combined linear SVR achieved an out-of-sample MAPE of 2.5% outperforming 

a Random Walk (5.35%) and Bayesian autoregressive model (5.42%). Plakandaras et al. (2015) 

argued SVR was better suited as an early warning system for forecasting sudden housing price 

drops, compared to traditional models.  

 

Neural Network predicted the Property Price Index more accurately than an ARIMA in Hong 

Kong (Abidoye et al., 2019). A quarterly dataset from 1985 to 2016 was extracted and tested 

between 2013 and 2016. The out of sample performance from Neural Network generated a 

RMSE of 7.01, which is substantially lower that an ARIMA of 23.35. Additionally, the researchers 

claimed interest rate, unemployment rate and household size were the most influential indicators 

for predicting the Property Price Index. Lastly, they argued Neural Network could help policy 

makers and property investors predicting booms and busts in the housing market.  

 

George Milunovich (2019) applied 47 different algorithms forecasting the Australian Housing 

Price Index and growth rates. The algorithms consisted of traditional time-series models, machine 

learning procedures and deep learning neural networks. Quarterly data from 1972 to 2017 was 

 
4 !"#$ =	 !"∑ (#!$%!#!

("&'! . Generates the percentage deviation relatively to the actual growth  
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utilized to produce predictions one, two, four, and eight quarters ahead. In predictions one and 

two quarters ahead, Elastic Net ranked number five with regards to Mean Square Error (MSE). 

Also, most algorithms had significantly more precise estimates than a Random Walk benchmark. 

For predictions four and eight quarters ahead, some algorithms predicted more accurately than a 

Random Walk, but the overall performance was weakened. The study concluded that Support 

Vector Regression (SVR) generated the most precise estimates across all horizons. Additionally, 

Milunovich recognized a pattern that linear models performed better in shorter timespans, while 

nonlinear models were preferable given longer horizons.  

 

The overall impression from existing literature indicate machine learning models have predicted 

more effectively out-of-sample than statistical benchmark models. Despite promising results, the 

existing literature have not yet focused on further implications in the housing market, through the 

lens of machine learning. These implications include analyzing influential events, contributing 

variables and the market predictability.  
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3. Data 

Since the time perspective is present in our analysis, the dataset is categorized as time-series. 

Compared to cross-sectional data, time series are considered more complex for statistical 

modelling. Due to dimension and order of the observations, the assumption of independence is 

violated (Wooldridge, 2012). Through the data and implementation section, assumptions and 

model specifications are elaborated to handle these challenges. The following section provides 

assumptions and adjustments to the housing price index, included variables and benchmark data. 

3.1 The Norwegian House Price Index 

Statistics Norway (SSB) and Real Estate Norway (Eiendom Norge) publish indices for the 

aggregated development in the Norwegian housing market. Both indices are based on secondhand 

sales from the market platform Finn.no, which covers 70% of the total turnover in the housing 

market (Real Estate Norway, 2020). The deviations occur in the terms of classifications and 

weights. Real Estate Norway puts emphasis on sales weights, modelling the aggregated transactional 

values. Meanwhile, SSB prefers inventory weights and the value of the whole housing stock. A 

distinctive assumption in SSB’s index imply unsold properties follow the same price trend as sold 

ones (Lundesgaard, 2019).  

 

Figure 3.1: Housing Price Indices in Norway between 1990 and 2020 

 
 

 

The choice of index depends on the problem’s objective. If the objective is to measure the price 

development for properties traded and purchased by households, the Real Estate Norway index 

Note: Unadjusted housing price indices from Rel Estate Norway and Statistics Norway. Despite 
following each other closely, the two indices deviated up to 5% around 2016.  
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is favorable. However, ff the purpose is to measure the total development in the housing stock, 

SSB’s index is preferable. Traded and purchased properties seem to be most common in national 

and international literature. Furthermore, DNB and Norges Bank base their projections on the 

Real Estate Norway Index (DNB Markets, 2020; Norges Bank, 2020) Therefore, the Real Estate 

Norway Index is preferable. Simultaneously, by excluding the SSB Index, their predictions 

become less comparable in the evaluation section.  

 

Adjustments were necessary to fit the index to our purpose. To better analyze the short-term 

development, the seasonally adjusted index is extracted, as seasonal effects might conceal the true 

underlying development in the market (Statistics Norway, 2008). Furthermore, our dataset 

consists of quarterly observations, while Real Estate Norway publishes monthly indices. We use 

the same approach as Norges Bank, by computing a quarterly averaged index from the relevant 

months (Personal communication, 2020). Additionally, Real Estate Norway started publishing 

their index in 2003, while our dataset dates to 1996. However, Norges Bank constructed a housing 

price index in the period between 1996 and 2003. These indices are chained as a discontinued 

index, which Econ Pöyry produced5.   

3.2 Covariates 

Our dataset consists of 14 explanatory variables, deducted quarterly from 1996Q1 to 2019Q4. 

Variable selection is a source of model bias. To decrease including noninfluential indicators, the 

chosen variables are collected based on their importance in previous housing literature. Including 

explanatory variables are limited to avoid overfitting. Overfitting might arise due to the model 

being too fitted to the limited in-sample data points, thereupon the out-of-sample estimates 

become less accurate (Kenton, 2019). For example, Gupta, et al. (2011) predicted more accurate 

housing prices with a dynamic model including ten variables, rather than the 120-variable model 

in the US. Assuming similar patterns in Norway, extracting 14 variables limits seems sufficient to 

our purpose. Furthermore, international macroeconomic variables have not been included. As 

housing expert Erling Røed Larsen claimed, the market has been, and will be, local, with local 

drivers and boundaries (NRK Debatten, 2020). Moreover, The International Monetary Fund 

(IMF, 2020) proposed two extinctive categories for explaining housing prices: Business Cycle and 

Housing Specific Factors. Thus, the chosen variables must fit into one of the sections.  

 
5 In collaboration with Norges Eiendomsmeglerforbund (NEF), Eiendomsmeglerforetakenes Forening (EEF) and Finn.no   
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The dataset is grounded in the housing prediction model from Jacobsen and Naug (2004). It 

consists of Business cycle factors such as interest rate after tax, unemployment and inflation, and the 

Housing specific factors household stock and household income. Furthermore, the variables oil price 

(Plakandaras, et al., 2015), national budget surplus/deficit (Abidoye et al., 2019) and stock indices 

(Milunovich, 2019) are included. A full description of the included variables is presented in Table 

A.2.1.   

 

The extracted variables are either on index, growth or absolute form. Variables collected as indices 

are computed to quarterly year on year growth. Variables extracted on absolute or growth-form, 

are implied directly without any computations. Seasonally adjusted explanatory variables are 

extracted when available. SSB, Bloomberg, Real Estate Norway and Norges Bank have been the 

main sources and were extracted during the 3rd quarter of 2020. With monthly and daily 

publications, arithmetic averages are computed to transform the frequency to quarterly 

observations.  

 

Most traditional time series regression models rely on assumptions regarding stationarity in the 

data (Palachy, 2019). It implies constant average, variance and covariance between the 

observations (Wooldridge, 2012). Problems such as spurious correlations could occur if not 

managed correctly. This is commonly solved by transforming the variables into logarithmic or 

growth form (Hyndman, 2016). However, machine learning does not require stationary variables. 

To illustrate differentiating strengths, we have not put emphasis on adjusting the data to ensure 

stationarity. Consequently, the traditional benchmark models ARIMA and Random Walk are not 

applicable to our dataset.  

 

Certain of the included explanatory variables have been revised. When revised variables are 

available, we consistently extract the last publications. Consequently, our dataset is considered 

more accurate, compared to the available data the institutions possessed. Unfortunately, few 

actions are available to reduce the informational advantage since unrevised publications have not 

been found. Revision issues could serve as a potential weakness for the machine learning 

credibility.  

 

Our approach is only suitable with full datasets. Therefore, the historical starting point depends 

on the most recent variable’s publishing date. At first, the intentions were to extract data back to 

1980, with the purpose of increasing the total number of observations. However, it became clear 
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that influential variables were not published during the 1980’s. Therefore, a trade-off between 

prioritizing the number of observations or including variables was weighted. Generally, machine 

learning prefers to discover frequent complex correlations and interactions given large portions 

of data.  However, in macroeconomic time series forecasting, shorter training periods have been 

effective. For example, OECD predicted the GDP-growth more accurately out-of-sample, only 

including 5 years of historical data in their training sets. Due to rapidly changing economies, they 

claim recent time series are more informative to near future than remote past (Woloszko, 2017). 

After testing with starting points, the preferable models prioritized variables instead of 

observations, confirming OECD’s perceptions. Our dataset therefore spans from 1996Q1 to 

2019Q4.  

3.3 Data for Evaluation 

In Norway, 5 institutions have produced frequent yearly predictions: DNB, Norges Bank, Real 

Estate Norway, Statistics Norway (SSB) and The Confederation of Norwegian Enterprise (NHO). 

Additionally, private institutions such as Nordea, Prognosesenteret, Sparebank 1 and Swedbank 

have reported housing predictions in the media. Still, these predictions have not been published 

publicly, limiting their applicability. To include predictions from all the institutions has not been 

achievable with our format. As mentioned in section 3.1, SSB predicts their inventory weighted 

index, differentiating the prediction target. SSB`s predictions are therefore only evaluated upon 

their overall performance and are not further discussed. NHO started producing yearly 

predictions in 2018, limiting the available number of predictions. Real Estate Norway publishes 

12-months growth rates, violating the growth computation, further explained in 3.4.  Therefore, 

projections from DNB and Norges Bank are fundamental in the evaluation section.  

 

Regarding quarterly predictions, Norges Bank published year on year growth rates from 2013Q2 

to 2019Q4 in their Monetary Policy Reports (MPR). They predicted the current quarter 

(nowcasting) and the following quarter (forecasting) simultaneously. We have consistently 

extracted the predictions for the latter quarter. Additional adjustments were needed in two 

instances. In MPR 3/17 and 3/19, Norges Bank published monthly predictions. In these 

instances, we calculate the quarterly arithmetic averages. The 27 extracted predictions are shown 

in Table A.1.1.  
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Yearly predictions from DNB, Norges Bank and SSB are extracted from 2013 to 2019. To 

minimize informational advantages, we have consistently extracted publications from the 4th 

quarter. The institutions are still publishing with one month in between. SSB publishes around 

the 1st of December, Norges Bank around the 18th of December, while DNB reports on the 

17th of January the following year. DNB has therefore an additional month of informational 

advantage. However, the additional month is not further emphasized in the analysis. All extracted 

predictions are shown in Table A.1.2. 

3.4 Problems with growth rate computations 

Through the process, we discovered a misconception between journalists and experts, with 

regards to the interpretability of yearly growth rates. Specifically, distinguishing between average 

yearly growth- and the 12-month growth rates. The computations can generate opposite 

conclusions, confusing prediction estimates and historical growth rates. Therefore, we briefly 

explain the differences.  

 

The Average Yearly Growth Rate computes an arithmetic average of monthly housing price indices, 

divided by the previous year’s average. It represents the growth between average property in year 

!, and the average property the previous year. Throughout the thesis, the average yearly growth 

rate is computed.  

!"#$%&#	(#%$)*	+$,-.ℎ	0%.#! = 2 "#$!%%%%%%%
"#$!"#%%%%%%%%%%− 15 ∗ 100	               (3.1) 

The 12-month Growth Rate is computed by dividing the index value in December, by the index in 

January. It represents the development in prices during the last 12 months.   

12	9,:.ℎ	+$,-.ℎ	0%.#! = 2"#$	'()(*+(,!"#$	-./0.,1!
− 15 ∗ 100             (3.2) 

During 2017, the computations generated contrasting overall conclusions. The 12 months growth 

rate indicated a 4.1% decline in prices for 2017. Computing the average yearly growth rate 

generated a positive 5.7% compared to 2016 prices. Clearly, two unfortunate effects occur from 

the computational differences. First, different conclusions are drawn towards the growth 

direction. Second, predictions become less comparable, since most predictions do not specify 

computation rate (Senneset, 2018). After personal communication with Norges Bank (2020), and 
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DNB (2020), both institutions produce average yearly growth rates.  Therefore, we follow this 

computation during yearly predictions.  

 

Predicting the average yearly growth rate yields one advantage. Standing in December of 2017, 

the index value is 249.0, while the yearly average for 2017 is 240. In 2018 predictions, the expert 

already knows today’s value is above the yearly average. To generate negative growth rates, the 

price indices need to fall below 240 during 2018. By possessing this knowledge, the next year’s 

growth rates have a higher probability of being positive, compared to the 12th month growth.  
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4. Machine Learning Theory 

Machine learning is an application of artificial intelligence, which provides systems and models to 

automatically learn from historical experience without being explicitly programmed (Expert 

System, 2020). Within the field of statistics, machine learning belongs to the class of algorithmic 

modelling. Compared to traditional regression, less focus is put on the relationship between the 

dependent and independent variables, since the overall objective is to compute the most efficient 

predictions. 

 

The machine learning process can be split into two forms: unsupervised and supervised learning 

(Soni, 2018). Supervised learning refers to cases where there exists prior knowledge of the 

relationship between variables, and a specific output is requested. Unsupervised learning methods 

are applied to discover relationships between variables without prior knowledge. This enables the 

latter to discover hidden structures and combinations within the data. Since the thesis` output 

variable is specified, supervised learning is preferred. Furthermore, the machine learning process 

consists of two main elements: One learning process that best fits the independent variables to 

the dependent variable, and an algorithm that, based on the learning, models the relationship 

between the two categories of variables (Jung et al., 2018).  

 
Our models have previously been applied in similar studies, thus ensuring applicability and 

relevant comparisons. The chosen models also cover sub-groups of machine learning: Elastic Net 

combines two linear models. Random Forest is an ensemble nonlinear model computed from 

multiple decision trees, and Neural Network is a nonlinear Black-Box6 structure. The relative 

performance between the machine learning models could illustrate strengths and weaknesses 

towards further model specifications. In our analysis, we have not put emphasis on whether the 

chosen models provide possibilities to analyze its interpretability. 

4.1 Elastic Net 

Elastic Net was developed at Stanford University in 2005 (Zou & Hastie, 2005). The model builds 

on the Ordinary Least Squares model (OLS), while including additional penalty terms from Lasso 

 
6 Black-Box refers to models where less knowledge of the model’s internal workings is provided, and where its interpretability is 
less available. 
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and Ridge regressions. The following paragraphs explains linear models and the penalty terms, 

before the model is presented.   

 

Elastic Net represents linear models in our thesis. In a linear model, parameters are either a 

constant (b0), or a parameter (bi) multiplied by an independent variable (xj). Therefore, Elastic 

Net does not capture interactions and combinations of the parameters. However, Elastic Net 

implies simplicity and interpretability compared to nonlinear models (Frost, 2017). 

 

( = 	;<2 + ;<3>3 + ;<4>4 +⋯+ ;<5>5                      (4.1) 

4.1.1 Ridge Regression 

Ridge uses regularization by shrinking included coefficients from OLS. The regularization term is 

equal to the squared magnitude of the coefficients. By doing this, Ridge reduces coefficients of 

highly correlated variables. Ridge regression accomplishes to decrease parameter variance without 

omitting variables.  

 

As with OLS, the objective is to minimize the sum of squared residuals. Additionally, including 

the penalty term decreases the coefficients that are close to zero (Hoerl & Kennard, 1970). When 

both the sum of squared residuals and the penalty term are subject to the minimization problem, 

Ridge achieves the optimal result by shrinking the regressors that are highly correlated. Regressors 

that explain the same variance will have a lower coefficient than an OLS-estimator.  

;< = %$&9@:67$ A2∑ C( − D;<E4 + 	F ∑ C;<5E
48

593
/
:93 5G              (4.2) 

" represents the actual housing price growth, while # is the true value of the explanatory variables. 

$ is the number of observations and % is the number of explanatory variables. The first term 

represents the traditional OLS-regression, while the penalty term is represented in the second 

term. The extent of the penalty term is determined by the parameter lambda. The optimal value 

of lambda is achieved by the cross-validation process.  

4.1.2 Lasso Regression 

;< = %$&9@:67$ A2∑ C( − D;<E4 + 	F ∑ H;<5H8
593

/
:93 5G              (4.3) 
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Lasso operates with a variable selection penalty term, where highly correlated variables are 

omitted. A higher lambda indicates the threshold for omitting variables is lower. By eliminating 

highly correlated variables, multicollinearity issues are reduced. A previous critique of Lasso 

regression is not specifying which correlated variable should be omitted. Therefore, influential 

variables might be excluded from the model. For example, population can be omitted due to the 

correlation with the housing stock. Still, both explanatory variables have an individual effect on 

the housing prices, which will not be captured in a Lasso regression.  

4.1.3 Elastic Net model 

Elastic Net combines OLS-regression with the penalty terms from Ridge and Lasso. Lambda 

determines the penalty weighting, and alpha weights the relative penalty between the regressors. 

A low alpha would prefer the penalty term from Ridge regression. By combining the penalty 

terms, Elastic Net reduces model variance and eliminates strongly correlated variables.  

;< = %$&9@:67$ A	2∑ C( − D;<E4 + 	F∑ [(1 − K)8
593

/
:93 C;<5E

4 + 	KH;<5H]5G  (4.4) 

The penalty terms in Elastic Net are ideal in situations with more explanatory variables than 

observations. A Lasso model bounds to have more observations than variables, which is permitted 

in Elastic Net (Zou & Hastie, 2005). Influential variables could therefore be omitted, only due to 

limited observations available in Lasso.   

 

When lambda is zero, the estimator is equal to the OLS-estimator. When lambda is greater than 

zero, the minimizing coefficient constraints are added. A higher lambda would lower the threshold 

for minimizing coefficients. Overall, Elastic Net includes both variable selection and 

regularization in a linear model. Variables with high correlations can be included without 

increasing the parameter variance. This makes Elastic Net resistant to problems such as 

multicollinearity. 

4.2 Random Forest 

Random Forest was developed by Professor Leo Breiman (2001) at University of California 

Berkeley. The model consists of a combination between multiple decision trees, instead of an 

individual regression tree (Donges, 2019). By ensembling multiple decision trees, individual model 
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bias is reduced. The following section presents decision trees, bootstrap aggregating, and the 

combined Random Forest Model.  

4.2.1 Decision Trees 

Decision trees are series of sequential decisions to separate the data to reach pre-specified goals 

(James et al., 2013). Figure 4.1 illustrates the mechanisms in a decision tree.  

 

Figure 4.1: Illustrative decision tree with regressions 

 

 
 

Note: With background in the chosen dataset, observations are split based on whether the interest rate in the same period is higher 
than or lower than 5%. The process is replicated in each node, splitting the observations into new nodes. The final Leaf Nodes 
generate distinctive predictions and are homogeneous with regards to the housing price growth. 
 

Additional Interior Nodes could increase precision. Since the model catches more signal from the 

data, the complexity increases. However, noise would also be captured. At the very extent, 

additional interior nodes could repeat the whole dataset, which would imply an overfitted model. 

Decision trees therefore consider a trade-off between signal and noise to find the optimal nodes. 

4.2.2 Bootstrap Aggregating 

To reduce overfitting issues with decision trees, bootstrap aggregating is included in Random 

Forest. The concept generates various training subsamples, repeatedly selecting random samples 

with replacements from the full dataset. Individual decision trees are computed from randomly 

selected subsets. A final prediction is computed as a weighted average from the individual decision 

trees (James et al., 2013). 
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No precaution rules are present in the splitting variables process. Consequently, highly correlated 

trees could arise since influential variables are frequently chosen as root and interior nodes. For 

example, household debt and interest rate have significant influence on the overall housing prices. 

When debt and interest rate are included in the subsets, the trees could frequently choose these 

parameters, resulting in correlated trees. Correlated trees would to some degree be influenced by 

overfitting.  

4.2.3 Random Forest Model 

Random Forest applies a bootstrap aggregating method by repeatedly selecting random samples 

with replacements. Additionally, random selection of root and interior nodes are introduced. 

Splitting variables are not chosen from their separability, but randomly selected. Therefore, 

individual decision trees become more distinctive, minimizing the overfitting concern with 

bootstrap aggregating. This results in every variable contributes to the overall growth, regardless 

of influence degree.  

 

Random Forest represents nonlinear ensemble models in our thesis. The nonlinearity is captured 

from the bootstrap aggregating process since different subsets identify interactions and 

combinations between influential variables. The ensembling methodology is introduced by 

averaging individual trees. Overall, the model reduces variance and increases precision compared 

to individual decision trees. 

 

Despite being intuitive and applicable, Random Forest is less emphasized in existing literature. 

Moreover, Random Forest proves less implications and arguments on model performance. 

Arguments and economic intuitions are important for ensuring credibility in macroeconomic 

predictions. Still, the model is interpretable, and captures nonlinearities and highly correlated 

variables. By reducing overfitting and model variance, we believe Random Forest fits the purpose 

of this thesis.  

4.3 Neural Network 

Neural Network is among the first machine learning models developed and roots back to 

1943.  The model encompasses a large degree of network architectures. The initial intention was 

mimicking the human brain, running input through learning nodes to produce the desired output 

(Lantz, 2013).  
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To provide outputs, each input-variable is given an overall weight (Rosenblatt, 1958). Each weight 

represents the importance of input and allows for individual contribution to a greater or lesser 

amount to the sum of signals. The weights are determined through activation functions where the 

output signal is decided by the sum of input signals. Furthermore, each signal must reach a certain 

threshold value to either be included or excluded. The determination process is complex, and 
different layers of perceptions are linked to each other in a system of nodes. A typical 

representation is shown in Figure 4.2, where the x1, x2, x3 and x3 are the input variables. 

 

Figure 4.2: Illustrative Neural Network composition 

 
 
 

 

4.3.1 Network Topology 

The capacity of a neural network is rooted in its topology. The network architecture can be 

explained by two key characteristics. The first characteristic is that the number of layers defines 

how many groups of neurons are included in the model (Lantz, 2013). Each layer has a defined 

set of connection weights for each input variable. Adding layers will increase the network 

complexity.  The second characteristic is the number of nodes in each layer, which also affects 

model complexity. Currently, no universal applications on the determination on number of nodes 

exist. Existing literature suggests best practice is to use the fewest number of nodes that still results 

in adequate performance in the predictions. This can be achieved through hyperparameter tuning 

(Lantz, 2013), further explained in section 5.1.3. 

 

Note: Each input sends information to all the layers. The importance of each 
sent information is determined by weights. Information is also allowed to travel 
outside an into the same layer. The information is gathered to produce the 
desired output. 
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Another aspect of the neural network architecture is the direction of information flow. Recurrent 

Neural Networks (RNNs) are networks well suited for sequential data processing, such as time 

series (Elman, 1990). In contrast to traditional “feed-forward networks”, where information is 

passed in one direction through the neurons, RNNs are extended to include feedback connections 

allowing information to travel in multiple directions. The cycles of information enable network 

memory, where the neurons have different states. Allowing information to travel in both 

directions makes RNNs suitable for analyzing time-series data, by creating complex networks.  In 

our thesis, the Neural Network model contains the parameter delay in Caret, which incorporates 

the recurrent aspect. 

 

Neural Network models are known to be one of the more accurate algorithms within machine 

learning (Lantz, 2013), which makes it applicable to numerous problems. Also, Neural Networks 

incorporate complex patterns which are difficult to analyze in detail. Understanding mathematical 

intuitions and model operations becomes less visible for the user. This is commonly referred to 

as a Black Box problem (Maroto, 2017).   

 

Neural Network allows for non-linear relationships between the dependent and independent 

variables, but these relationships are favorable in processing large amounts of data. The model 

also incorporates mechanisms to prevent over- and underfitting, which is important in cases 

where problems with multicollinearity might occur (Lawrence, 1997). For the rest of this thesis, 

we refer to the model as the Neural Network model. 
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5. Implementation 

This section outlines the implemented model approach. The section presents the Caret-package, 

available in the statistical programming language R. In the following we will explain the 

technicalities in model training, and how the data is split into training and testing sets. Ultimately, 

our evaluation method is presented, ensuring equal comparisons with the professional 

institutions. The implementation is inspired by Bankson & Holm’s (2019) thesis, predicting the 

GDP growth in Norway utilizing machine learning. 

5.1 Caret 

For the technical part of the implementation, the R-package Caret7 is applied. The package 

contains functions that attempt to streamline the process of creating predictive models (Kuhn, 

2008). Tools for data splitting, pre-processing, model tuning, and other functionalities are 

provided for panel data, time series and cross-sectional data. In total, Caret provides 230 different 

machine learning models. Caret’s strength is due to its simplicity for less skilled programmers. 

However, due to the streamline procedures, less functionalities for parameter tuning are available. 

Therefore, a trade-off between simplicity and functionality is considered, when choosing Caret.  

5.1.1 Data-splitting 

Necessary preparations are needed to ensure credible predictions. First, a clear distinction 

between training and testing subsets is set. If models are tested on already trained data, predictions 

will be invalid. Furthermore, due to time series data, the observations’ order must be maintained. 

Common data-splitting methods are therefore not applicable since they require independent 

observations. A train-test split that respects the temporal order of observations solves this 

concern (Brownlee, 2016). 

 

The training set (in-sample) consists of data with the aim of learning and tuning the models. A 

training set normally includes 70% to 90% of the observations. An early assumption was to ensure 

sufficient quarterly evaluation with Norges Bank. Our testing set therefore follows their available 

housing price projections from Q2 2013 to Q4 2019. This returns a final data-split between 

training and test of 75% and 25% respectively. Given an already small dataset, less data is 

delegated in the training process, which is considered a weakness. The remaining dataset (out of 

 
7 Short for Classification And Regression Training 
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sample) is used for prediction purposes, to test the models on unseen data.  The training-test 

mechanisms are further presented through The Rolling Forecast Origin in section 5.1.3. 

5.1.2 Look-ahead Bias 

The thesis aims to simulate realistic prediction circumstances. Therefore, unpublished data at the 

prediction point need to be excluded. In case we did not consider this problem, our predictions 

would have been influenced by look-ahead bias. Look-ahead bias occurs when an analysis uses 

information that would not have been available during the analyzed period (Kenton, 2020). The 

problem can unintentionally sway prediction results closer to the desired outcome, creating results 

that are too optimistic. The following example further explains the concept. SSB publishes the 

housing stock and household income for Q2 on the 2nd of September. Therefore, the variables 

are published two months afterwards. If our models predict the Q3 growth with data from Q2, 

look-ahead bias would occur. In reality, these publications would not have been available at the 

historical prediction point. Hence, the models would return optimistic predictions by possessing 

unpublished information. 

 

In our approach, look-ahead bias is solved through computing quarterly growth for period Q and 

Q+1 simultaneously. The prediction for period Q is exposed to look-ahead bias, since 

information for period Q-1 is published during period Q. Using Q+1 solves this problem, by not 

using information from the previous quarter Q. Therefore, we consistently extract predicted 

values for time Q+1. The approach itself is illustrated in Figure 5.1. 

 

Figure 5.1: Approach for avoiding look-ahead bias in quarterly predictions 

 
 
 

 

A weakness with our approach is excluding information that would have been available at the 

prediction point, i.e., information that is published on monthly and daily basis. Therefore, the 

professional institutions can potentially include more information when producing their 

Note: Q-1 is the prediction point, while Q and Q+1 represent quarterly predictions produced simultaneously. Only the 
predicted values for Q+1 are extracted in further analysis. 



 22 

predictions, possessing an informational advantage. Still, we believe that few other actions are 

applicable without violating the look-ahead bias.  

Yearly predictions apply the same methodology. When predicting the quarterly values for each 

year, we exclude information from the last quarter. For example, when predicting the four 

quarterly values for 2015, we only apply information available up and until Q3 of 2014. Hence, 

we exclude information made available in the fourth quarter when predicting for 2015. This 

approach replicates real prediction processes, ensuring comparability with DNB, Norges Bank 

and SSB. The approach, and intuition, is illustrated in Figure 5.2. 

Figure 5.2: Approach for avoiding look-ahead bias on yearly predictions 

 
 

 

 

5.1.3 Cross-validation 

Machine learning uses comprehensive tuning in the training processes. The process is called cross-

validation and customizes the model to optimize accuracy (Lu et al., 2019). Throughout the 

training process, model parameters are tuned to minimize in-sample error and overfitting. 

Through tuning, the machine learning model searches for the best way to optimize the model. 

For the model training process, cross validation is crucial to discover relationships between the 

input and the output, enabling the production of accurate out-of-sample predictions.   

 

Each model tunes unique hyperparameters that help fit the input to the output. While 

hyperparameters are used to control the learning process, other model parameters are derived 

through the learning process. Furthermore, hyperparameters are available for tuning and 

customization in machine learning models and can be set by the user in advance. Examples of 

relevant hyperparameters are the numbers of hidden nodes in Neural Network, the trees’ depth 

in Random Forest, or the lambda and alpha in Elastic Net.  

 

In a cross-validation process, the training set is divided into multiple sub-groups. One group is 

set aside, and later used for validation. Through multiple iterations of training and validating, the 

Note: Q-1 is the quarter where the prediction is made, while Q, Q+1, Q+2, Q+3 and Q+4 represent the quarterly predictions 
produced simultaneously. The average of Q+1, Q+2, Q+3 and Q+4 is used as yearly growth rates in the analysis. 
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model tests different combinations of hyperparameter-values. The best combinations are chosen 

in the final model, ensuring that the model has the best prerequisites to produce accurate out-of-

sample predictions. 

Rolling Forecast Resampling 

The order of the observations highly affects the underlying data-splitting and cross-validation. 

Hyndman and Koehler (2006) presented a process for cross-validation and data-splitting in time 

series. The method is called The Rolling Forecast Origin and splits the data into multiple 

individual training and test-sets. Each training set contains information that is available until the 

corresponding prediction point. For example, when predicting the yearly growth rate of 2015, the 

model uses all available information, including 2014. When predicting in 2016, the model includes 

information from 2015, adding new observations to the training set. A general explanation is that 

both the training and the test sets shifts over time. By introducing this method, the importance 

of the time-dimension becomes visible. Macroeconomic variables are highly dependent on recent 

information from previous periods (Woloszko, 2017). Thus, the time dimension makes 

observations in period T-1, T and T+1 highly correlated. In contrast, when using cross-sectional 

data, each observation should be independent. The rolling window replicates real circumstances, 

where new information is made available from one period to the next. 

 
In Caret, the functions TrainControl and CreateTimeSlices cross-validate and split the data into 

training- and test-sets. CreateTimeSlices contains three parameters that are set in advance. First, 

initial window sets the initial length of the first training-set. This indicates how many consecutive 

observations are included in the first training-set iteration. Second, horizon defines the number of 

predictions in each iteration. The horizon is set to two quarters for quarterly predictions, and five 

for yearly predictions. Lastly, fixed window defines whether the size of the training set should be 

held constant or be expanding. Figure 5.3 illustrates all possible specifications for the 

CreateTimeSlice-method. 
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Figure 5.3: Illustrative figure showing all different combinations in the 

CreateTimeSlice-function in Caret.  

 
 
 

 

We set the fixed window parameter to FALSE, to include all training sets from previous 

observations until the prediction point. Consequently, more noise in the training set is captured, 

but the number of observations in the training process is increased. Given our small dataset, 

prioritizing additional observations could be favorable. Furthermore, we set the initial window 

parameter so that the first predicted value is 2013Q2 for the quarterly predictions, and 2013Q1 

for the yearly predictions. In Figure 5.3, the two upper boxes illustrate the parameter composition 

in our thesis. 

5.2 Evaluation 

To evaluate model performance, accuracy and direction measurements are needed. We need to 

quantify to which extent the predicted values are following the actual observed values (Sucarrat, 

2019). We apply the measurements Mean Directional Accuracy (MDA), Rooted Mean Squared 

Error (RMSE) and Mean Absolute Error (MAE). 

  

Throughout this section, the following notations are applied: "!  represents the actual growth in 

period !, and "!&  represents the predicted value. ' represents the total number of relevant 

prediction periods. The measurements represent percentages, since all predictions are computed 

as percentage growth rates. 

  

Note: Overview of settings in CreateTimeSlice. Horizon defines the number of predictions made each iteration. FixedWindow 
determines whether the training set should expand or be held constant (just moved one period forward after each iteration). 
Time points show at what period the training set starts and ends, as well as the desired predictions. Resampling number is the 
number of iterations. Blue fields = training sets, Grey fields = test sets. 
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MDA represents the percentage of predictions that matches the correct growth direction. MDA 

is directly applicable to compare the performance across models. For example, MDA of 80% 

indicates directional correctness in 80% of the predicted values. The MDA should be higher 

than 50% in large test sets, to provide predictive performance.   

NO! = 	 3;∑ 1<:=/(?!@?!"#)99<:=/(?!7@?!"#)	;!93                  (5.1) 

RMSE represent the standard deviation of the residuals. It measures the spread of all residuals 

and illustrates how concentrated the predictions are around the actual growth (Holmes et al., 

2000). We apply a rolling resampling in our implementation, so that a new residual is computed 

after each iteration. This creates a more representative RMSE when predicting time series, and 

when comparing predicted values to the benchmark (Clark & McCracken, 2001). RMSE is 

expressed as the root of the averaged squared residuals. 

0NPQ = R3
;∑ C(! − (S!E

4;
!93                       (5.2) 

Due to the squared term, large deviations are punished harder than smaller deviations. Therefore, 

a direct intuition of RMSE is more complicated, even though the punishment of larger deviations 

is crucial when evaluating predictions of macroeconomic variables.  

  

MAE represents the average absolute difference between the predictions and actual growth 

(James et al., 2013). A MAE of 1.2, represents an average error of 1.2 percentage points compared 

to the actual growth (Vandeput, 2019). Compared to the RMSE, MAE does not put emphasis on 

whether the deviations are large or small. 

N!Q = 	 3;∑ H(! − (S!H;!93                 (5.3)  

In addition to the presented error measurements, absolute individual errors are computed. The 

absolute errors are used to index the performance of models and predictors, while creating a 

favorable comparison of individual predicted values. 
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6. Results 

We use described data and implementation to evaluate the performance of the machine learning 

models. Firstly, the quarterly predictions are presented and compared to predictions from Norges 

Bank. Lastly, yearly predictions are presented and evaluated upon predictions from DNB, Norges 

Bank and SSB. 

6.1 Model Performance - Quarterly Predictions 

The first part of the analysis compares quarterly predictions from the machine learning models to 

Norges Bank’s predictions as benchmark. The projections are extracted from the Monetary Policy 

Report (MPR) in the period from 2013Q2 to 2019Q4. In the report, Norges Bank compute the 

quarterly (y/y) growth for the current and next quarter. We consistently gather the latter 

projection.  

 

Table 6.1: Overall results from quarterly predictions for 2013Q2 to 2019Q4 

Measurements Elastic Net Random Forest Neural Network Norges Bank 

RMSE1 3.08 3.27 3.30 1.32 

MDA2 62.96% 59.26% 66.67% 85.19% 

1 Absolute %-point error 
2 Mean Directional Accuracy – number of predictions (%) in the correct growth direction 

 

The overall results, shown in Table 6.1, create insights into several aspects. Neither of the 

machine learning models are able to predict more accurately than Norges Bank. Norges Bank’s 

RMSE of 1.32, is considerably lower than all machine learning models. Among the machine 

learning models, Elastic Net produces the most accurate predictions. The RMSE of 3.08 indicates 

that the model, on average, deviates 3.08 percentage points from the actual growth over the same 

period. All machine learning models predict the correct direction in more than 50% of the 

quarters. Most notably, however; Norges Bank predicts the correct direction in 85.19% of the 

quarters. This is considerably higher than all machine learning models. Overall, Norges Bank’s 

predictions have been the closest to the actual growth on average between 2013 and 2019.  
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6.1.1 Indexed Absolute Errors 

Based on the results, it is interesting to identify which periods the machine learning model have 

predicted accurately or not, i.e., when the models are least precise. Figure 6.1 visualizes a 

representation of the absolute errors across the models, where the base-quarter is 2013Q1. 

 

Figure 6.1: Indexed absolute errors from quarterly predictions in the period of 

2013Q2 to 2019Q4 

 

 

 

 

The distance between the lines and the horizontal axis are accumulated absolute errors. A flat 

curve indicates a prediction closer to the actual growth. In contrast, a steeper curve represents an 

inaccurate prediction. Analyzing the curves, all models performed similarly during the first period 

until 2015. Interestingly, both Elastic Net and Neural Network predicted more accurate than 

Norges Bank during the period. The results could indicate that the two machine learning models 

capture the underlying macroeconomic mechanisms better than Norges Bank. However, steeper 

curves during the late quarters 2017 and early 2018 indicate large deviations across all machine 

learning models. These deviations increase the overall RMSE, reducing overall performance. 

Hence, analyzing the periods of 2014 and 2017/2018 more closely are preferable, and is discussed 

in section 7.3. 

Note: Absolute errors for quarterly housing price predictions, where the first quarter of 2013 is set as base-quarter, and the 
second quarter as the first growth value. Each quarter, the absolute errors are accumulated development in absolute errors. 
Due to only accumulating absolute (positive) values, the curve cannot decline. 
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6.1.2 Head to head – Elastic Net and Norges Bank 

In further analysis, the best performing machine learning model Elastic Net is compared to 

predictions from Norges Bank. From Figure 6.2, both models seem to follow the development 

in the housing market, despite deviations in 2014 and 2018. 

 

Figure 6.2: Plotted quarterly predictions from Elastic Net and Norges Bank 

 
 

 

A descriptive analysis on the performance from Norges Bank and Elastic Nets is presented in 

Table 6.2. 

 

Table 6.2: Descriptive comparison of quarterly predictions 

 Elastic Net Norges Bank 

Quarters Won1 8 19 

Percentage Won1 29.63 % 70.37 % 

Most Precise prediction2 0.03 (2013Q3) 0.03 (2017Q4) 

Least Precise Prediction2 7.87 (2018Q1) 2.57 (2017Q2) 

MAE2 2.43 1.10 

1 Number of predictions where the predicted value is closer to the actual value 
2 Absolute %-points error 

 

A direct comparison show that Norges Bank predicts with the most precision in 70.37% of the 

quarters. Despite being generally less accurate than Norges Bank, Elastic Net seems to produce 

Note: Housing price growth in Norway. The actual housing price growth (quarterly (y/y)) is computed from Real Estate 
Norway’s seasonally adjusted HPI. 
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more accurate predictions during the quarters of 2014. From Figure 6.2 we see that Norges Bank 

overestimates the fall in housing prices during 2014. In this period, the housing market was 

affected by the decline in oil prices. Hence, Elastic Net seems to capture this decline more 

accurately than Norges Bank. One should also mention that Elastic Net’s MAE of 2.43 is highly 

affected by large deviations through 2017 and 2018, indicating the model proved a higher 

predictive accuracy during the first period.  

6.2 Model Performance - Yearly Predictions 

In market analysis and news articles, yearly growth rates are considered the most relevant. 

Additionally, from section 3.4, the included institutions report the average annual growth rate. To 

ensure equal comparisons, we consistently compute the average of our quarterly growth rates each 

year. We first evaluate the machine learning performance, before the best performing model is 

compared upon the professional institutions.  

 

 Table 6.3: Results from yearly predictions for 2013 to 2019 

 

From Table 6.3, we find Random Forest to be superior among the machine learning models. A 

RMSE of 4.35 shows that Random Forest predicts 24.95%8 more accurately compared to Elastic 

Net and Neural Network, with RMSEs of 5.86 and 5.73 respectively. In terms of MDA, only 

Random Forest fulfills the 50% requirement, predicting the correct direction in 57.1% of the 

seven years. Therefore, Random Forest represents machine learning in the further analysis. 

 

 

 

 

 

 
8 Average of the relative comparison to Elastic Net and Neural Network 

Measurements Elastic Net Random Forest Neural Network 

MDA1 42.9% 57.1% 42.9% 

RMSE2 5.86 4.35 5.73 

MAE2 4.46 3.69 4.62 

1 Mean Directional Accuracy - number of predictions (%) predicting the right direction 
2 Absolute %-point error 
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6.2.1 Random Forest Compared to Norges Bank, DNB and SSB 

To evaluate the machine learning performance, Random Forest is compared to predictions from 

Norges Bank, DNB and SSB. The results are summarized in table Table 6.4. 

 

Table 6.4: Results from yearly predictions of 2013 to 2019 

 Random Forest Norges Bank DNB SSB1 

MDA2 57.1% 85.7%   42.9% 42.9% 

RMSE3 4.35 2.23 4.49 4.53 

MAE3 3.69 2.1 4.24 4.13 

1Computed based on Statistics Norway’s Inventory weighted HPI 
2 Mean Directional Accuracy - number of predictions (%) being in the right direction 
3 Absolute %-point error 

 

The yearly results show Norges Bank is overall superior to Random Forest, DNB and SSB. 

Norges Bank predicts 48.73% more accurate than Random Forest in terms of RMSE. However, 

neither DNB nor SSB outperform Random Forest, with RMSEs of 4.49 and 4.53 respectively. A 

relative comparison shows that Random Forest on average predicts 3.6%9 more accurate 

compared to DNB and SSB. Hence, the results strengthen the arguments for applying machine 

learning, since it outperformed two of the three professional institutions. Additionally, neither 

DNB nor SSB satisfies the MDA-requirement of 50% accuracy.  

  

The overall performance is considerably weakened with regards to overall RMSE, compared to 

the quarterly results. Questions regarding the degree of predictability across horizons in the 

housing market are further discussed in section 7.4. Still, computing the MAE, all models deviate 

on average between two and four percentage points from the actual growth. The actual average 

growth rate between 2013 and 2019 is 4.4%. Therefore, all institutions deviate on average between 

50% and 100% from the actual growth.  

  

 
9 Average of relative comparisons to DNB and SSB 
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6.2.2 Periodic Absolute Errors 

Figure 6.3: Deviations from actual growth – yearly predictions from 2013 to 

2019 

 

 

 

Figure 6.3 shows individual yearly errors. The lowest annual deviation is highlighted with a black 

frame. Similar to the quarterly results, two events affect overall performance. First, the expected 

fear in the housing market in 2014. Norges Bank and DNB are pessimistic in their predictions. 

However, Random Forest is not affected by the market sentiment, leading to a somewhat 

optimistic view for 2014. Second, the effects after the implemented mortgage regulations for 2018. 

Random Forest is not able to capture the effect, while DNB and Norges Bank overestimate the 

fall. These events highly affect the overall performance and are further discussed in section 7.3.1 

and 7.3.2.  

 

 

 

 

 

 

 

 

 

Note: Deviations computed from the difference between predicted values and actual growth. The lowest deviation is 
highlighted with a black frame in each period.  
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6.2.3 Descriptive Performance  

Table 6.5: Descriptive analysis of absolute errors from yearly predictions 

between 2013 and 2019 

 Random Forest Norges Bank DNB 

Lowest Deviation1 1.03 0.96 2.06 

Highest Deviation1 8.33 3.42 6.35 

Median1 3.19 2.19 4.22 

Closest to true growth2 2 5 0 

Percentage Won3 29% 71% 0% 

MAE1 3.69 2.1 4.24 

1 Absolute %-point error 
2 Number of predictions where the predicted value is closes to the actual value 
3 Number of quarters closes to the true value, as percentage of total predicted values 

 

Descriptive results are shown in Table 6.5. Norges Bank had the lowest deviation of 0.96 

percentage points during the period. Interestingly, only one prediction was deviating less than one 

percentage point from the actual growth. Furthermore, Random Forest predicts the most accurate 

rates in 2013 and 2017. Random Forest also produced the highest deviation of 8.33 percentage 

points in 2018. However, the model was not able to capture the effect of the mortgage regulation 

introduced in 2017. Lastly, DNB produces the least accurate predictions in six out of seven years, 

indicating a 0% winning rate. Also, DNB did not predict within a 2-percentage points interval 

between 2013 and 2019. 

  

The overall results indicate a predictive performance to machine learning. However, high 

deviation through 2018 still indicate clear weaknesses with the models. The inaccurate predictions 

for 2018 also affects the overall RMSE, reducing overall performance. Still, the testing period is 

short, and conclusions are not drawn to future model selection preferences.  
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7. Discussion 

This section discusses further implications for future macroeconomic predictions, respectively 

machine learning modelling and the Norwegian housing market. We will first evaluate underlying 

aspects between the machine learning models. Our results and methodologies are compared to 

previous literature, identifying consistencies and improvements. Further, we find strengths and 

weaknesses of applying machine learning during influential events in the Norwegian housing 

market. Moreover, the predictability in the housing market is elaborated through the lens of our 

results. Additionally, variable contribution is discussed compared to existing literature. Lastly, 

model limitations and further research questions are examined.  

7.1 Machine learning Performance 

We observe relative differences in performance among the machine learning models. The linear 

model Elastic Net is superior to Random Forest and Neural Network in quarterly predictions. In 

yearly predictions, the nonlinear model Random Forest produces the most accurate predictions. 

Similar patterns have occurred in American and Australian housing literature (Gupta & Miller, 

2015; Milunovich, 2019). It implied that linear models are more suited in making one-quarter 

ahead housing predictions, while nonlinear models dominate over longer time horizons. The 

increased complexity is present in nonlinear models, where interactions and combinations 

between explanatory variables are captured. We believe further model builders could benefit 

examining these consistencies. 

 

A deeper analysis of the Elastic Net model can be found in its cross-validation, see Figure A.3.2. 

Elastic Net is an ensemble model combining OLS regression and penalty-terms from Lasso and 

Ridge. Ridge allows variable reduction, while Lasso introduces variable selection. Through cross-

validation, the model seeks to minimize in-sample deviation, by testing different values for alpha 

and lambda. Elastic Net implies an alpha of 0.10 and a lambda of 0.525 in the optimal model. The 

alpha states a model prioritization to Ridge regression, reducing coefficients of highly correlating 

variables. The lambda creates a lower weighting of coefficients compared to regular OLS 

regression. Thus, the overall model is a modified linear OLS-regression which prioritizes 

minimizing coefficients of the covariates.   

 

Despite having an intuitive approach, the Random Forest has fewer possibilities to provide 

reasoning for the underlying performance (Breiman, 2001). Still, Caret provides insights to the 
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influential hyperparameters: the number of generated trees (ntrees) and the number of random 

variables selected for each tree (mrty). As shown in Figure A.3.1, the final model consists of 500 

trees and five chosen variables in each tree. Every decision tree would have five splitting points, 

generating a total of 32 (25) root nodes. The average from 500 decision trees is computed, 

returning the predictions for Random Forest. The final model allows for individual contribution 

and interactions between variables. Capturing nonlinear relationships between variables are 

probable for the promising yearly results.   

 
Developing macroeconomic machine learning models is challenging due to limited availability of 

historical data. This reduces captured relationships in the training process. Model ensembling 

could serve as a technique to prevent this challenge. Previous studies have found that ensembled 

models are more robust in smaller datasets, since individual model errors could be minimized 

(Tiffin, 2016; Valland, 2019). Ensemble techniques are prior in both Elastic Net and Random 

Forest. However, these techniques are not present in Neural Network. Possibly, Neural Network 

could increase model performance, given larger datasets. Abidoye et al. (2019) extracted data back 

to 1985, utilizing an additional eleven years of observations. Further applications could possibly 

prioritize observations instead of variables to increase Neural Network’s performance, following 

the intuitions from Abidoye et al. (2019).  

7.2 Insights from Existing Litterature 

Applying machine learning in housing predictions are still at an early stage in academic research. 

Previous research in Australia, Hong Kong, Malaysia and USA have yielded promising results, by 

outperforming OLS-regressions, Random Walks and ARIMA-models. However, as Sucarrat 

(2019) argued, prediction models should at least outperform a Random Walk, in order to have 

any predictive accuracy. Hence, our thesis is, to the authors’ knowledge, the first to evaluate 

machine learning performance compared to professional institutions. Still, insights can be 

extracted from the previous literature results and methodologies. Therefore, we compare our 

methodologies with Abidoye et al. (2019) in Hong Kong, and Milunovich (2019) in Australia. 

7.2.1 Hong Kong Prediction Study 

Abidoye et al. (2019) predicted the Property Price Index in Hong Kong with Neural Network. 

Their objective was predicting booms and bubbles in the housing market. While we have 

predicted quarterly growth rates, Abidoye et al. predicted the quarterly property index directly. 
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Hence, to ensure comparable results, we compute the quarterly (y/y) growth from the predictions 

in the paper. An overall performance analysis could provide additional insights and is presented 

in Table 7.1. 

Table 7.1: Comparison of results in Norway and Hong Kong 

 Norway (NN) Hong Kong (ANN) 

MAE1 2.48 3.31 

Starting Quarter 2013Q2 2013Q1 

Ending Quarter 2019Q4 2016Q3 

Predicted Quarters 27 15 
1Mean absolute error computed from the quarterly (y/y) growth. Predictions from Hong Kong are available in the 
paper 

 

The studies investigate distinctive markets, time spans and training sets. Still, the included 

variables, model specifications and intuitions share similarities. If we assume direct comparisons 

between the Neural Network models, the predicted values are 33%10 more accurate in Norway. 

Market specifications probably intervene with the comparison assumption. Hong Kong is the 

number one city in the world with the most skyscrapers, leading to a high density in the population 

(Burton, 2018). In addition, property prices have previously been considered extremely volatile, 

resulting being one of the most expensive cities in the world (Abidoye et al., 2019). Therefore, the 

computed MAE would naturally be higher in Hong Kong, given higher fluctuations in prices. 

Still, Abidoye et al. (2019) argued Neural Network could be used as a decision tool for predicting 

booms and bubbles in Hong Kong, helping government policy makers and real estate investors. 

Neural Network predicted more accurate than Norges Bank during the macroeconomic events 

between 2013 and 2015, substantiating the hypothesis from Abidoye et al. (2019).   

7.2.2 Australian Forecasting Study 

The machine learning study from Milunovich (2019) found similar results in the Australian 

Housing market. Interestingly, his study deviates in three aspects in the model implementations. 

First, his approach implies a K-Fold11 cross-validation method. He also preferred a fixed window 

in the testing set, i.e., that the size of the training set is held constant throughout the training 

process. Lastly, his method required data to be adjusted to satisfy statistical assumptions. This 

includes non-correlating error terms and stationarity in the dataset.  

 
10 Relative comparison of the MAEs 
11 K-fold cross-validation randomly selects K training and testing subsets when tuning the model hyperparameters. For each 
iteration, the model is trained on K-1 subsets and tested on the remaining subsets. After all iterations are finished, the average of 
the measurements is calculated and is representing the training accuracy of the model (Brownlee, 2018) 
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Our methodology implies a rolling forecasting origin in the cross-validation. Hyndman (2016) 

considers the rolling forecasting origin to be preferable in time-series predictions, since K-fold 

has problems handling inherent serial correlation and non-stationarity. Furthermore, we imply a 

non-fixed window, by expanding the number of observations in every prediction. Consequently, 

our approach could capture more noise in the dataset. Lastly, we have not put emphasis on 

stationarity in the explanatory variables in our analysis since this is not required in the machine 

learning models. 

 

Elastic Net ranked 5th among the 47 algorithms in one quarter ahead predictions. The studies 

have examined different markets, limiting performance evaluation. Still, if we allow for an overall 

comparison, model selection strengths and weaknesses could occur. Milunovich computed 

quarterly logarithmic growth rates (q/q). We therefore change the growth rate formula to follow 

logarithmic quarter on quarter growth rates. The performance is shown in Table 7.2. 

 

Table 7.2: Comparison of results in Norway and Australia 

 Norway (Elastic Net) Australia (Elastic Net) 

RMSE1 1.97 1.412 

Starting Quarter 2013Q2 2005Q1 

Ending Quarter 2019Q4 2017Q3 

Predicted Quarters 27 47 

1Absolute %-point errors computed from quarterly (q/q) predictions 
2 In the paper, Milunovich reports the MSE. Hence the RMSE is computed by rooting the MSE 

 

If we allow for relative comparisons, Elastic Net is 34.1%12 more accurate in the Australian 

market. This could either indicate that the approaches are influential in model building, or that 

unfortunate events intervene with the comparison assumption. Assuming model influence, it is 

interesting that the K-fold cross validation still has produced accurate predictions, even though 

experts prefer a rolling forecast origin. Also, the choice of using a non-fixed window could have 

weakened our performance. Simultaneously, abnormal events probably intervene with the 

comparison assumption. Elastic Net was highly inaccurate during 2017 to 2018, decreasing overall 

performance.   

 

 
12 Relative comparison of RMSEs from the Elastic Net predictions in Norway and Australia 
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Lastly, one should mention that Milunovich’s study and our results are not absolute comparable. 

Differences in datasets and market attributes weakens the relative comparison. Hence, the RMSE 

values does not state that his results are superior. However, this comparison aims to highlight that 

variations in approach might influence the machine learning performance.  

7.3 Machine learning in abnormal events 

Expert predictions fluctuate in emphasis and arguments, possibly leading to disagreeing 

conclusions. Zarnowitz and Braun (1992) found the group mean of forecasts (consensus) 

outperformed individual macroeconomic predictions, since individual prediction bias is 

reduced. Later, Bennett et al. (1997) argued that when companies prioritize publicity instead of 

accuracy in macroeconomic predictions, the predictions deviate more from consensus. The 

studies indicate potential biases expert forecasters experience in their macroeconomic analysis.  

Machine learning could ideally reduce this bias, by solely focusing on precision. Simultaneously, 

machine learning has difficulties identifying non-numeric market consensus. We therefore explore 

strengths and weaknesses to machine learning compared the professional projections in the two 

most influential events, 2014 and 2018.  

7.3.1 2014 – Machine learning in an uncertain housing market  

In the autumn of 2013, market consensus had a pessimistic view towards growth rates for 2014. 

Still, the institutions differed in arguments and intuitions. Sudden price drops in October 2013 

were prominent, justified through psychological fear (E24, 2013). Further, Nordea Markets 

characterized the housing market as troubling, due to high degrees of debt collections and forced 

sales, predicting -7.8% growth (Juel, 2013). DNB (2014) focused on higher unemployment levels 

and interest rates during 2014, predicting a negative growth of 4%. The machine learning models, 

however, have not found underlying relationships supporting market consensus. All machine 

learning models predicted positive growth rates for 2014.  

 

The yearly growth was 2.35% positive in 2014, diverging from market consensus. Low interest 

rates and limited supply of new properties were highlighted as influential for the 2014 market 

(Halvorsen, 2014). Potentially, negative consensus could influence a large degree of predictions, 

indicating a group thinking mentality. After reading through several market reports for 2014, only 

a few highlighted positive projections for 2014. This could question the individuality in analysis 

between forecasting institutions. In this scenario, machine learning could potentially decrease the 
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degree of group thinking, by limiting expert sentiment in the analysis. We consider this a potential 

strength in further use of machine learning.  

7.3.2 2018 – New Mortgage Regulations 

Norwegian authorities implemented new mortgage regulations from January 2017, with the 

objective to create a more sustainable housing growth (Finansdepartementet, 2016). This was, 

among other factors, due to rapid growth around Oslo. The regulations created a mortgage roof 

of five times gross income. In addition, the regulations increased equity requirements to 40% on 

secondary properties in Oslo. The main objective for the regulations was decreasing the 

household debt levels. 

 

DNB and Norges Bank predicted falling housing prices for 2018, stating drops of 3.5% and 1.6% 

respectively. The mortgage regulations were prominent for the negative sentiment. First, the 

restrictions could exclude potential house buyers in bidding rounds, leading to a decrease in 

demand. Second, threat of increased future interest rates, due to the stable economic situation, 

would reduce the risk willingness for debt holders. In addition, DNB and Norges Bank argued 

large stocks of unsold new properties would flood the market supply. Therefore, consensus was 

negative towards the 2018 market.  

 

All machine learning models predicted abnormal high growth rates for 2018. The positive 

correlation between household debt and housing prices could explain optimistic sentiment for 

machine learning. This is further explained in section 7.5.1. Finanstilsynets’ objective was 

initiating action to decrease debt levels. Without prior information of the regulatory changes, the 

models could expect further growth in debt levels, increasing housing prices during 2018. 

 

The yearly growth for 2018 was 0.72%, deviating from market consensus and machine learning. 

Abnormally high turnover volumes highlighted the 2018 market, which few experts had foreseen 

(Strømnes, 2019). Still, the implications from the mortgage regulations were present, slowing 

down the housing price growth.  

 

Unfortunately, the new mortgage regulations were not successfully included in the machine 

learning models. Therefore, the models did not have prior knowledge towards the changing 

environment. Additionally, uncertain events are naturally hard for machine learning to capture, 

since these patterns have not occurred in the training sets. Such regulatory changes also affect the 
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underlying dynamics. Furthermore, since the housing market is influenced by uncertain events 

and abnormalities, this serves as a weakness for the use of machine learning. Still, Mari Mamre 

implemented regulatory changes into her Neural Network model, indicating that future models 

can capture these abnormalities to some degree (Stranden, 2019).   

7.4 Market Predictability and Uncertainty 

Although our findings indicate machine learning is suitable for housing price predictions, market 

complexity and uncertainties have decreased overall performance. In macroeconomic predictions, 

the accuracy across time horizons has two deviating arguments. On the one hand, shorter time 

horizons are influenced by frequent short abnormal situations. By averaging growth rates over 

longer horizons, these abnormal situations become less decisive in the predictions. In this case, 

longer time horizons are more predictable. On the other hand, longer horizons take more future 

uncertainty into account. The development of underlying mechanisms can deviate throughout 

these periods. The prediction accuracy decreased by 68% for Norges Bank from quarterly to 

yearly predictions, indicating higher degrees of predictability with shorter horizons. We want to 

examine our results with previous national and international research on the housing market 

efficiency. In an efficient market, predictive models should not be able to produce consistent 

results over time. If markets are inefficient, uncertainties and abnormal situations might still 

reduce predictive performance.  

 

In 1989, Case and Shiller argued the market for single-family homes were inefficient in the US. 

Through their study, they found that year-to-year prices tend to be followed by changes in the 

same direction as the subsequent years. However, individual housing prices were not forecastable 

in a micro perspective. Further, Case and Shiller (1990) investigated the predictability in a macro 

perspective across changing horizons. In their study, they suggest the housing market is 

predictable in shorter horizons, as far as one-quarter ahead predictions. Later, Kuo (1996) 

improved their methodology by introducing serial correlation, finding some predictability up to 

four quarters ahead.  

 

In the Norwegian housing market, two distinctive papers test the macro and micro efficiency. 

Røed Larsen and Weum (2008) replicated the Case & Shiller time-structure test on the price index 

to test the efficiency hypothesis in a Norwegian setting. Based on quarterly sales data in Oslo 

from 1991 to 2002, they find consistent time structures in the market, characterizing the market 
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as inefficient on a macroeconomic level. However, Anundsen and Røed Larsen (2018) indicated 

housing predictability was absent at a micro level. Their main argument was the number of bidders 

were stochastic. Hence, they rejected the hypothesis that individual properties were predictable. 

The papers indicate a degree of predictability on macro level, but not at a micro level.   

 
Our study contributes to the macroeconomic aspect. The microeconomic perspective still 

influences the overall market, by increasing the complexity. Our quarterly results indicate a degree 

of predictability from 2013 to 2019, confirming the findings from Case and Shiller (1990) and 

Røed Larsen and Weum (2008). Even though deviations occur, the models capture underlying 

movements, at least guessing the correct direction in more than 50% of the periods.  

 

Our yearly results indicate predictability to some degree, but overall performance is weakened.  

Consistently with Kuo (1996), we find the housing market is forecastable to some degree up to 

four quarters. Still, yearly predictions deviate on average between 50% and 100 % from the 

average growth, indicating that predicting housing prices is considered difficult. Hence, we believe 

future machine learning is expected to have inaccurate predictions, as with 2018.  

7.5 Variable Importance 

Figure 7.1: Variable Importance for quarterly predictions from Elastic Net 

and Random Forest 

 
 
 

 

Note: Variable importance from the VarImp-function in Caret. Each variable is given a percentage value based on its 
importance in the overall model. The importance is based on the increase in model error if the variable is omitted from the 
model. All scores are shown as a percentage of the most important variable Household Debt. 
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A further analysis of the contributing variables could highlight the economic intuitions from 

machine learning. Having intuitive and well-established arguments for the predictions strengthens 

the overall trustworthiness. In the Caret package, the function VarImp generates a ranking based 

on the variables’ contribution. Most ideally, the models would generate weightings in every 

prediction, which is not provided in the package. Still, every variable is given a score from 0 to 

100, based on the increase in error if the variable is omitted. Then, each variable is divided by the 

most important variable, returning a percentage score (Chauhan, 2017). The variable importance 

is gathered from the quarterly predictions from Elastic Net and Random Forest.  

  

Common for Elastic Net and Random Forest are the importance of household debt, being the 

main contributor to the overall housing price growth. Household debt was also identified as most 

influential in the Swedish housing market (Borg, 2019). Debt level implications are discussed in 

detail in section 7.5.1. Further, the models differ in emphasized variables. Elastic Net puts 

emphasis on the interest rate and unemployment, which is consistent with previous Norwegian 

housing research (Jacobsen & Naug, 2004). The population has intuitively contributed to the 

housing price growth. An increasing population would increase potential buyers and influence 

new construction. Hence, the importance of this variable is certain in Random Forest. However, 

population is omitted in Elastic Net. A correlation matrix of the selected variables, see Figure 

A.2.1, shows that population is positively correlated with the overall housing stock, household 

income and GDP. Thus, it is plausible that high correlations between explanatory variables 

resulted in the lasso regression omission. 

 

The oil price is ranked the 10th and 11th from 14 variables in Elastic Net and Random Forest. 

Beltratti and Morana (2010) argued oil prices have a significant effect on housing prices in the 

G7-area, being an important variable in the business cycle development. Similar patterns could 

occur in our analysis, given the oil industry's importance to the Norwegian economy. The variable 

importance indicates that oil prices influence the housing market but is among the weakest 

contributing variables nationally. A probable explanation refers to differences among regional 

markets. For example, in June 2020, Oslo experienced a 12-months growth of 6.1%, while 

Stavanger witnessed a 0.9% growth during the same period (Myrvang, 2020). Real Estate Brokers 

argued the aftermath from the oil crisis still contributed to the moderate growth. However, long 

term consequences from the oil crises were less evident in the Oslo area. We therefore believe, 

based on the variable importance, that the oil price influence is more present in local markets 

rather than nationally.  
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One should be careful drawing conclusions directly from the VarImp-function. The function 

provides a relative comparison of the individual contributions during the cross-validation process. 

As mentioned, Elastic Net performs variable reduction, which might result in reduced coefficients 

of important variables that are expected to influence housing price growth. Correlating variables 

having an impact on the housing price growth might still have their coefficients reduced. 

Additionally, causal interpretations cannot be drawn from the variable importance. Still, the 

variable importance indicates which attributes are influencing the models during the whole period. 

Newer programming packages LIME and SHAP are working on increasing the interpretability 

for machine learning models (Sharma, 2018). We believe further analysis could indicate more 

macroeconomic intuitions and arguments, increasing the predictions’ trustworthiness. 

7.5.1 Household Debt 

Analyzing the variable importance from Elastic Net and Random Forest, household debt is 

considered the most important variable in the predictions. Questions regarding whether the 

household debt is considered an indicator, or a reflection of the housing price development, have 

been raised in existing literature. If housing prices are rising while wages are constant, the price 

change can be covered through higher debt levels. In this case, housing prices are affecting the 

household debt, indicating a reverse causality problem. Reverse causality occurs when the 

direction of the causal effect relationship is inverted, since the onset of the cause is not detectable 

(Schölkopf, 2008). However, if the supply of debt is increased through lower interest rates, more 

buyers can bid on the same properties, increasing prices. In this case, debt levels contribute 

towards higher prices, and reverse causality is not present. Debt levels in Norwegian households 

has been mentioned as a threat for the Norwegian economy (Finanstilsynet, 2020). They recently 

reported all-time high debt levels with an average 338% debt to income ratios. High debt levels 

increase the vulnerability to loss in future income. Based on economic intuition and previous 

influence, we chose to include household debt in the models.  

 

Existing literature have different outlooks regarding the relationship between household debt and 

housing prices. Borio et al. (1994) indicated a positive correlation between the growth in debt and 

housing prices internationally. Debt appears to follow the housing price growth, with a time lag. 

Additionally, Hungnes (2002) found supporting results for household debt influencing the 

aggregated housing prices in his model for the Norwegian economy. However, Jacobsen et al. 

(2006) suggested the supply of debt has an individual effect on housing prices. Therefore, housing 
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prices and household debt should be predicted simultaneously, indicating a reverse causality 

problem.  

 

To illustrate the importance of household debt in our results, we exclude the variable in our 

models. The new performance is captured in Table 7.3.  

 

 Table 7.3: Results from quarterly predictions w, and w/o, household debt 

 

Elastic Net and Random Forest are considerably weakened, increasing their RMSEs with 24% 

and 14.5% respectively. These results raise two interpretations. If the reverse causality from 

Jacobsen et al. (2006) is certain, the original models suffer from this bias, weakening the overall 

credibility. If the intuitions from Hungnes (2002) are certain, including household debt increases 

the overall performance substantially.  

7.6 Limitations and Further Research 

The limitations in the thesis mainly stem from the included data and methodologic approach. Our 

analysis seeks to apply basic and easily implemented machine learning models for predicting 

housing price growth in the Norwegian housing market. Hence, the limitations of this thesis 

provide possible suggestions and interesting ideas for future research. 

 

An influential assumption in this thesis was to only include previously proven macroeconomic 

indicators. Most relevant literature included seven to ten variables, highlighting simplicity in their 

models. However, as Mullainathan (2017) argued, machine learning algorithms can manage large 

portions of data without overfitting the models. Therefore, we believe exceeding the included 

variables could capture more of the underlying aspects in the market, without creating overfitted 

models. Oddmund Berg (Personal Communication, 2020) from DNB Markets proposed to 

include additional data. However, this came at a later stage in the writing process. Further research 

could explore the inclusion of additional housing specific factors, such as property turnover 

Machine Learning Models RMSE1 RMSE w/o debt Increase in RMSE2 

Elastic Net 3.08 3.82 24% 

Random Forest 3.37 3.86 14.5% 

1 Absolute %-point error 
2 Relative comparison between the two RMSEs   



 44 

volume, length of stay and average number of bidders. Furthermore, the supply of data indicators 

has increased exponentially, and a reasonable assumption is that macroeconomic indicators follow 

this trend in frequency and detail. We therefore believe machine learning models could become 

more applicable in the future, by utilizing the increased supply of data.  

 

The Norwegian housing market consists of several regional submarkets (Anundsen & Mæhlum, 

2017). Hence, one can either focus on the aggregated macro perspective, or the micro perspective 

analysis. As mentioned in section 7.5, Oslo and Stavanger experienced different reactions in the 

aftermath of the oil crisis. This thesis is focused on an aggregated perspective on national level. 

Individual or regional differences are therefore not captured in our model. Also, Alessi et al. (2011) 

indicated that the inclusion of microeconomic factors in a predictive analysis might capture more 

of the price dynamics. For further research it would therefore be interesting to include several 

submarkets to capture individual differences in the market. 

 

Moreover, the main purpose was to investigate an area of machine learning yet unexplored, 

applying simple and intuitive models. Based on existing literature, we chose to focus on Elastic 

Net, Random Forest and Neural Network in our predictions. However, the inclusion of more 

complex models could potentially increase overall accuracy. For example, Support Vector 

Regression has been highlighted as the most accurate model both in the US (Plakandaras, 2015) 

and Australia (Milunovich, 2019). Additionally, due to unavailability of data, ensemble models 

tend to outperform individual models. For example, combinational models, such as Super 

Learner, was highlighted as effective in GDP-predictions (Jung et al., 2018; Bankson & Holm, 

2019).  

 

Lastly, this thesis implements one of many model approaches. Implementing different variations 

of cross-validation and training, such as K-fold, could yield other results and intuitions. 

Additionally, analyzing the mechanism further than model-performance to increase 

interpretability is preferable in macroeconomic research. The Caret-package helps us implement 

machine learning models in an easy and intuitive way but limits the availability of extensive model 

tuning and specifications. Thus, applying other packages could provide additional insights in 

further research. 
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8. Concluding Remarks 

Computing accurate housing price predictions are considered important for central banks, 

property investors and political decision makers. In this thesis, we therefore analyze the following 

question: Is machine learning suitable for predicting price growth in the Norwegian housing market? 

 

Overall, machine learning can capture underlying movements in the market and yield credible 

predictions. Still, our overall results have not outperformed predictions from Norges Bank on 

quarterly and yearly basis. Elastic Net predicts more accurately than Norges Bank in 29% of the 

testing quarters from 2013 to 2019. Additionally, Random Forest produced the most accurate 

yearly predictions in 2013 and 2017, as well as overall outperforming both DNB and SSB. The 

uncertain event after The New Mortgage Regulations influences the 2018 predictions, decreasing 

overall performance. Further implications are consistent with existing literature that shows how 

linear models are more suited in shorter horizons, while nonlinear models capture the increased 

complexity in longer horizons. Moreover, ensemble models tend to outperform individual 

models, mostly due to the small datasets available. The machine learning models have also 

identified to be the household debt level in Norway to be the most influential 

variable. Furthermore, our results indicate that predictability is certain on quarterly and yearly 

basis, but the overall performance is weakened with yearly predictions.  

 

We believe machine learning is suitable in housing price predictions in normal situations but 

deviates during abnormal events. Further improvements and model selections could help future 

performance and become a valuable tool for decision makers. Still, there is a large degree of 

uncertainty associated with housing prices, which decreases the overall performance. The existing 

models have yet not captured these uncertainties to a large extent. We therefore believe this 

uncertainty would be present in future predictions as well as being a limitation to the overall use 

of machine learning.  

 

Ultimately, predicting housing prices is considered difficult. Compared to traditional statistical 

models, machine learning could still extract hidden structures and combinations between 

variables, increasing the accuracy. Machine learning could therefore be a potential tool in future 

predictions. Moreover, our thesis investigated the applicability in a historical perspective. 

However, the thesis has not focused on forecasting future growth rates in Norway. However, 

after including all available data until Q4 2019, all our models have predicted yearly growth rates 



 46 

for 2020 and 2021 in Table A.1.3. Hence, it will be interesting to see whether Random Forest’s 

2.80%13 prediction for 2021 coincides with the actual housing price growth in Norway. 

 

 
 

 
13 Yearly predictions for 2020 and 2021, presented in Table A.1.3, for Elastic Net, Random Forest and Neural Network. The 
predictions are based on the underlying dataset until 2019Q4. This is solely for supplementary purposes. The aim of the thesis 
has been to back test quarterly and yearly predictions, so that the performance could be evaluated. 
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Appendices 

A.1 Data 

Table A.1.1: Quarterly predictions from Norges Bank 

Prediction Quarter Predicted Housing Growth (y/y)1 Time Source (MPR)2 

2019Q4 3.12 18/09/19 MPR 3/19 

2019Q3 1.32 20/06/19 MPR 2/19 

2019Q2 1.81 20/03/19 MPR 1/19 

2019Q1 2.32 12/12/18 MPR 4/18 

2018Q4 2.98 19/09/18 MPR 3/18 

2018Q3 3.05 20/06/18 MPR 2/18 

2018Q2 -1.4 21/03/18 MPR 1/18 

2018Q1 -3.03 13/12/17 MPR 1/18 

2017Q4 -0.06 20/09/17 MPR 3/17 

2017Q3 4.98 21/06/17 MPR 2/17 

2017Q2 10.75 15/03/17 MPR 1/17 

2017Q1 12.11 14/12/16 MPR 4/16 

2016Q4 10.51 21/09/16 MPR 3/16 

2016Q3 7.27 23/06/16 MPR 2/16 

2016Q2 4.09 17/03/16 MPR 1/16 

2016Q1 5.13 17/12/15 MPR 4/15 

2015Q4 6.27 24/09/15 MPR 3/15 

2015Q3 6.52 18/06/15 MPR 2/15 

2015Q2 8.38 19/03/15 MPR 1/15 

2015Q1 7.99 11/12/14 MPR 4/14 

2014Q4 5.19 18/09/14 MPR 3/14 

2014Q3 1.80 19/06/14 MPR 2/14 

2014Q2 -0.63 27/03/14 MPR 1/14 

2014Q1 -2.76 05/12/13 MPR 4/13 

2013Q4 2.59 19/09/13 MPR 3/13 

2013Q3 5.86 20/06/13 MPR 2/13 

2013Q2 7.91 14/03/13 MPR 1/13 
1 Percentage Growth 
2 Monetary Policy Report from Norges Bank 
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Table A.1.2: Yearly predictions from professional institutions 

Institution Year Predicted Growth1 Time Source 

Norges Bank 2019             1.60 12/12/18 MPR2 4/18 

Norges Bank 2018            -1.60 13/12/17 MPR2 4/17 

Norges Bank 2017             8.71 14/12/16 MPR2 4/16 

Norges Bank 2016             4.77 17/12/15 MPR2 4/15 

Norges Bank 2015             6.63 11/12/14 MPR2 4/14 

Norges Bank 2014            -1.57 05/12/13 MPR2 4/13 

Norges Bank 2013             7.66 31/10/12 MPR2 3/12 

DNB 2019             0.5 24/01/19 Økonomiske utsikter 2019 nr. 1 p.52 

DNB 2018            -3.5 24/01/18 Økonomiske utsikter 2018 nr. 1 p.51  

DNB 2017             9.0 17/01/17 Økonomiske utsikter 2017 nr. 1 p.89  

DNB 2016             2.0 17/02/16 Økonomiske utsikter 2016 nr. 1 p.105  

DNB 2015             2.1 15/01/15 Økonomiske utsikter 2015 nr. 1 p.104  

DNB 2014            -4.0 27/01/14 Økonomiske utsikter 2014 nr. 1 p.85  

DNB 2013             7.5 16/01/13 Økonomiske utsikter 2013 nr. 1 p.93  

SSB 2019             1.1 07/03/18 Konjunkturtendensene 1/2018 p.20  

SSB 2018            -5.0 30/11/17 Økonomiske analyser 4/2017 p.30 

SSB 2017             7.2 01/12/16 Økonomiske analyser 5/2016 p.46 

SSB 2016             1.5 03/12/15 Økonomiske analyser 4/2015 p.46 

SSB 2015             0.2 04/12/14 Økonomiske analyser 6/2014 p.46 

SSB 2014            -2.2 06/12/13 Økonomiske analyser 5/2013 p.46 

SSB 2013             6.8 01/06/12 Økonomiske analyser 6/2012 p.46 

1 Percentage average growth 
2 Monetary Policy Report 

 
 

Table A.1.3: Yearly predictions for 2020 and 20211 

Year Elastic Net Random Forest Neural Network 

2020 3.17 1.99 0.97 

2021 4.58 2.80 2.68 

1Based on the dataset used in the rest of the analysis, 1996Q2 to 2019Q4 
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A.2 Covariates 

Table A.2.1: Covariates in the dataset 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variable Group Type Source Frequency1 

HPI Norway House Specific Index Real Estate Norway Monthly 

Construction Cost Index House Specific Index SSB Monthly 

Household Debt House Specific Percentage SSB Quarterly 

Housing Stock House Specific Percentage Growth (y/y) SSB Quarterly 

New Dwellings House Specific Index SSB Quarterly 

CPI-JAE Business Cycle Index SSB Monthly 

Exchange Rate NOK/USD Business Cycle Nominal Bloomberg Daily 

GDP Mainland Norway Business Cycle Nominal SSB Monthly 

Household Income Business Cycle Absolute SSB Quarterly 

Interest rate after tax Business Cycle Percentage SSB Quarterly 

OBX Stock Index Business Cycle Index Bloomberg Daily 

Brent Oil Business Cycle Absolute Bloomberg Daily 

Budget Surplus/Deficit Business Cycle Nominal SSB Quarterly 

Population Business Cycle Absolute SSB Quarterly 

Unemployment Business Cycle Percentage NAV Monthly 

1Frequency divided into daily, monthly and quarterly. The dataset used in the analysis is, however, transformed to quarterly data 



 56 

 
 
 

Figure A.2.1: Correlation Matrix 

  
Note: Correlation matrix of the 14 variables used in the analysis. The depended variable is also included 
in the matrix. The colors range from dark blue to red, where dark blue indicates a strong positive 
correlation, in contrast to red which indicates a strong negative correlation. 
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A.3 Other Figures 

Figure A.3.1: Cross-Validation from Random Forest 

 

 

Figure A.3.2: Cross-Validation from Elastic Net  

 


