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Executive Summary 

The inventory routing problem (IRP) in Liquefied Natural Gas (LNG) is one of the 

representative maritime IRP. In this problem, how to hedge the risk of uncertain voyage time 

brought by uncertain weather has long been a challenging issue for LNG suppliers. Given high 

costs in LNG delivery operations and storage, efficient inventory management and scheduling 

can yield substantial savings. This paper first introduces the LNG supply chain, describing 

how the uncertain weather conditions influence the shipment and then establishes two 

stochastic models to find the optimal solution. 

The first one focuses on reducing the uncertain influence through speed and ship schedule 

adjustments when the weather condition is realized in the second stage. In contrast, the second 

one extends the first model, adding a path choice so that ships can bypass the area with rough 

weather rather than go through it. A deterministic model is generated at the same time and 

works as a reference to compare with the two stochastic models. Finally, a real-world case 

computation is conducted to evaluate the models. 

From the computational results, we see that both stochastic models result in higher costs than 

the deterministic one. However, when adapting the deterministic solution to stochastic 

settings, the result is quite different. Although the original schedule cost of the deterministic 

solution is still the lowest, the value of the stochastic part (expected value of extra costs of 

changing the original schedule under different possible scenarios) is significantly higher than 

the two stochastic models' solutions, leading to higher total costs. It means that the schedule 

chosen by the deterministic model is not the most economical one facing the uncertain weather 

influence. 

When comparing the results of the two stochastic models, we find that when the rough weather 

days are scattered and short, there's nearly no difference between the two models. And if the 

stormy days are concentrated and continuous, the model with path choice has better 

performance because it can avoid all the negative influences brought by the bad weather. 

However, when the long detour which can bypass the rough area is too long, this choice 

becomes meaningless. At this time, the solutions of these two stochastic models become 

almost consistent.  
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1. Introduction 

Natural gas (NG) is the second-largest energy source in world power generation, "representing 

22% of generated power globally and the only fossil fuel whose share of primary energy 

consumption is projected to grow" (World Energy Council, 2016). In 2018, both global 

consumption and production increased by over 5%, one of the most substantial growth rates 

in either gas demand or output for more than three decades (BP Department, 2018). Moreover, 

the growth on the demand side is mainly concentrated in Asian countries such as China and 

Japan.  

Pipelines are the conventional way of transporting natural gas and are cost-efficient for long-

distance transportation. However, to connect suppliers and consumers in different continents 

and fulfill the trans-ocean demand, for example, from suppliers in North America to customers 

in China and Japan, shipping NG in the form of liquefied natural gas (LNG) has become a 

much more convenient and efficient method. By 2018, LNG accounted for 45.7% of the 

natural gas trade, compared to 30.8% in 2008 (BP Department, 2018). This situation leads to 

an increased complexity of the LNG supply chain. 

 

Fig. 1 The LNG Supply Chain 

(Source: Roar Grønhaug, 2008) 

Fig.1 shows the complete LNG supply chain. Once NG is produced, it is stored in a storage 

tank in the liquid form at a temperature of -160℃. The volume of NG in the liquefied state is 

around 1/600 of the volume of NG in the gaseous state. Then, LNG is transported from the 

production plant to a consumer port by the LNG tanker. During maritime transportation, a 

certain amount of LNG is vaporized. This boil-off gas (BOG) cannot be delivered to customers 

and is always considered as a loss. After that, when the LNG tanker arrives at the customer 
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port, LNG is transformed back to the gaseous state for road-based transportation (Thomas and 

Dawe, 2003). 

In light of these special requirements, shipping NG requires significant capital investments 

and operating expenses. The capital cost of a liquefaction plant can be as high as 600 dollars 

per ton per annum production while the capital cost of an LNG vessel ranges between 200 and 

400 million dollars. Operational costs are also significant; the cost of daily vessel charters 

average around 48,800 dollars (Argus, 2020). Thus, the LNG market has been traditionally 

characterized by relatively rigid and long-term contracts and operations, which always 

fulfilled with the Annual Delivery Program (ADP).  

Typically, these contracts will specify a delivery date and a grace period, as well as the amount 

of LNG needed each time. During the implementation of agreements, for suppliers, the major 

concern is whether the ship can deliver goods on time. Due to poor scheduling and 

uncertainties, such as bad weather, late deliveries can happen from time to time. It will not 

only increase port costs and operation costs but also affect the subsequent delivery plan. Thus, 

there is a need for more efficient and advanced planning tools to manage the inventory level 

and adjust the shipping schedule in time. 

In this paper, focusing on tactical planning, we study the process from liquefaction to 

regasification of the LNG supply chain (highlighted part in Fig.1). The aim is to optimize the 

LNG inventory and shipping schedule, minimizing the sum of all operating costs and penalty 

costs from uncertainties, and finding the optimal speed for each vessel in every voyage at the 

same time. This problem is traditionally classified as a stochastic LNG inventory routing 

problem (SIRP). 

To solve this problem, we first establish a basic IRP model without considering random events 

to improve the shipping schedule. After that, a stochastic model and its extended version, 

which take weather influence into account, are presented and compared to the results of the 

previous one. 

The rest of the paper is organized as follows: The literature review and contributions of this 

thesis will be presented in Section 2. In Section 3, the LNG-SIRP problem is first introduced, 

then the relevant mathematical formulations and solution methods are given in 3.2. After that, 

all models will be tested on a real case from Abu Dhabi National Oil Company (ADNOC) in 
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the computational study in Section 4. Finally, in Section 5, we present some concluding 

remarks, as well as limitations. 
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2. Literature Review 

The inventory-routing problem (IRP) integrates inventory management, vehicle routing, and 

delivery scheduling decisions. The origin of this study is rooted in the seminal paper of Bell 

et al. (1983) published around 35 years ago, which formulated the first IRP as a mixed-integer 

program to manage industrial gases at customer locations. After decades of development, it 

has become a relatively well-established research field, and there are several reviews on this 

issue.  

Andersson, Hoff, Christiansen, Hasle, and Løkketangen (2010) distinguish the IRP by road-

based or maritime-based first and then classify all literature by planning horizon, demand, 

topology, routing, inventory, vehicle fleet, and solution approach. Coelho et al. (2014) 

concentrate more on structural variants and the availability of information on customer 

demand, focusing on methodologies. Roldan et al. (2017) emphasize on stochastic problems, 

such as demand and lead times, reviewing solutions to multi-depot IRPs. In this article, 

maritime-based IRP is the focal point. 

Oil, gas, and other chemical goods are the main study objects in maritime IRP problems 

because of their maritime shipping environment. As one of the representative maritime IRPs, 

the number of studies on LNG businesses shows an increasing trend from 2009, when the 

LNG demand increased dramatically. Grønhaug and Christiansen (2009) conduct one of the 

earliest LNG-IRP studies, setting a mixed-integer programming (MIP) model and formulating 

it in both arc-flow and path-flow models. In their article, inventories at liquefaction and 

regasification plants, as well as routing, are considered. Later, Shao et al. (2015), Mutlut et al. 

(2015), Halvorsen-Weare and Fagerholt (2013), Rakke et al. (2011) and Stålhane et al. (2012) 

attempt to develop cost-efficient ADPs. Shao, Furman, Goel, and Hoda (2015) develop a 

hybrid heuristic strategy to improve LNG-IRP solutions proposed by Goel et al. (2012).  

From these papers, we can see the significant progress in LNG-IRP in the past three decades. 

However, these models still have limitations. First, they assume that the shipping speed is 

fixed, which means that each route has a given number of days to travel. In practice, an LNG 

tanker can often adjust its speed to shorten or lengthen shipping days to match production and 

inventory levels at suppliers and reduce additional costs due to untimely arrival. Siti et al. 

(2015) and Wang et al. (2019) both present deterministic IRP models that can optimize the 

speed. The former provides a shipping schedule that considers port dwelling time, while the 
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latter analyzes the fuel consumption change caused by the speed change and its impact on the 

environment, and the option of speed changing affords the ship operator more operational 

flexibility. After taking the shipping speed as a variable, LNG IRP becomes a mixed-Integer 

non-linear program, and the solution procedures become complicated and diversified. 

Second, most of these models are deterministic, not considering uncertainties. Yet, in reality, 

the LNG-IRPs are influenced by many uncertain factors. Stochastic demand, travel time, boil-

off rate and fluctuating market price, etc. can challenge the accuracy of established models, 

weakening the application of models in real industries. Using average numbers is the most 

straightforward and simple way to deal with uncertainties (Bell et al., 1983; Federgruen and 

Zipkin, 1984). In recent years, more advanced methods have been developed. A three-stage 

stochastic programming technique was proposed by Zhang et al. (2017) to design the LNG 

supply system. They mainly optimize the infrastructure development and inventory-routing 

decisions, and the proposed methodology was evaluated in a real case study in China. Cho et 

al. (2018) introduce an IRP to design the LNG supply system under uncertain weather 

conditions. They applied a stochastic mixed-integer programming (MIP) model to maximize 

the total expected revenue and concurrently minimize the total disruption cost caused by the 

uncertain effects of the dust storm. 

Finally, the clear trend changing from long-term to short-term contracts puts forward new 

requirements for planning. Reroute and reassignment have also become an increasingly 

important issue in the context of short-term and high variably contracts. 

Hence in this paper, a two-stage stochastic model will be developed considering uncertain 

weather conditions and variable shipping speed. Besides, an extended model takes into 

account additional options for ships facing unpleasant weather. Assume that there is no longer 

only one path between two ports; instead, longer paths that would not frequently be used are 

among the ship's options. When the unpleasant weather is realized, reassignment and speed 

changes are not the only ways to optimize -- ships can choose to avoid rough areas as they do 

in real life. This problem is an NP-hard problem that is not easy to solve. Thus, we use the 

simulated annealing heuristic algorithm to solve the model. Finally, the computation of a real-

world case from Abu Dhabi National Oil Company is conducted to do the evaluation.  
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3. Model 

3.1 Problem Description 

The problem considered in this paper is a tactical LNG IRP for an LNG producer who is in 

charge of a series of vessels. The trading mode used here is Delivered Ex Ship (DES), which 

means that besides LNG production and storage, the producer is also responsible for the 

transportation to customers that are located all over the world. In other words, it is the producer 

who pays for all transportation and insurance until the ship has arrived at the port of 

destination. The customer then takes over the goods and assumes all costs and risks afterward.  

The producer usually controls a heterogeneous fleet of vessels to transport the LNG. 

Generally, however, the ship sizes in the same supplier do not differ much, so in this paper, 

fleets are considered homogeneous, meaning that all the vessels are non-dedicated and have 

the same capacity. At the start (end) of the planning horizon, each LNG vessel has an initial 

(ending) position that can be an artificial port or a position at sea. When the order is confirmed, 

the producer will arrange for a vessel to depart from its initial position to the producer port to 

load LNG. In this paper, we assume that all the ships are fully loaded.  

However, the ship's departure date depends not only on the order date but also on the LNG 

inventory at the producer port. Because of the given capacity of storage tanks in the 

liquefication plant, there are upper bound and lower safety bound for inventory, which are 

usually treated as hard requirements that cannot be violated. As a result, ships can only carry 

out loading operations within stock limits. In practice, when the inventory cannot meet the 

loading demand, the ship needs to wait at the port until the shipment requirement is satisfied. 

What's more, if multiple ships arrive at the producer port at the same time, or if one ship enters 

the port while another is loading, all vessels must queue up to wait because of the berth 

constraint. 

Demands of all customers in each month are known in advance according to their contracts, 

which also specify the cargo discharging time window in each port call. Beyond that, 

customers usually allow a grace period to each order in case the ship is delayed or arrives early 

due to an unexpected incident on the way. But the producer will have to pay the extra penalties 
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for the grace period outside the discharging 

time window. Fig.2 shows the simplified 

relationship between the grace period and 

penalty costs. Ships will not receive any extra 

charges if they arrive at the destination within 

the allowable discharging time window. 

However, when they arrive earlier or later than 

the time window but still in the grace period, the 

penalty will increase with the length of time. 

Specially, many ports levy lower penalties on early arrivals than late arrivals. This may be 

because, compared with an earlier arrival, the delay has a more significant impact on terminals' 

follow-up scheduling, such as poor inventory management in customer port and delayed road-

based transportation after regasification. In our model, arriving within the grace period can be 

deemed as a hard constraint, since in reality, if a ship cannot arrive within the grace period, 

the supplier would choose to buy a spot cargo than deliver it. 

The seasonality of LNG demand is not significant in this context because the planning period 

is relatively short. Similarly, this is also the reason why the production rate is regarded as a 

constant in this paper. On the one hand, it is unlikely that a plant will adjust its productivity 

every day or every 12 hours since each operation has a time lag. On the other hand, frequent 

changes in overall factory productivity in 

the short term will increase unnecessary 

wastes of human resources. 

For ships, within this problem, they only 

have two routes: An initial delivery route 

connects the liquefaction plant to a 

regasification plant, and a return route 

follows the reverse order (see Fig.3). 

The producer needs to assign the 

optimal speed to each ship's two routes 

before its departure. 

Here, the speed selected for each ship will highly influence the transportation costs because of 

the relationship between speed and fuel consumption. In this paper, we use the empirical 

Fig. 2 Time Window and Penalty 

Fig. 3 Illustration for ship routes  

(source: Halvorsen-Weare & Fagerholt, 2010) 
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function put up by Wang et al. 

(2019), which is 𝐹𝐶 =

(𝐴𝑘2  +  𝐵𝑘 +  𝐶)  × (0.8 +

 0.2𝜌), where FC is the fuel 

consumption rate in tonnes (t) 

per traveled nautical mile, 𝑘 

is the shipping speed within 

the ship's feasible speed range, 

and 𝜌 takes its value between 

0% (ballast) and 100% (fully 

loaded). Fig.4 depicts this 

relationship. 

Uncertain weather conditions usually have two ways to influence shipping. The first one is 

influencing the speed of vessels during a given number of days. For example, when a ship is 

traveling in days with high wind waves and strong winds, its speed will partially be offset (or 

increased if the wind and ship have the same direction) by this event, leading to shipping delay. 

In other words, when the ship is traveling at 15 knots, the rough weather may reduce the actual 

speed of the ship to only 11 knots or even less. The second one is suspending the shipping to 

avoid a storm or other extreme weather. This event seldom happens, and if it does happen, the 

producer may directly choose to buy spot cargoes or negotiate with customers for other 

solutions. These are outside the scope of speed and routing optimization problem. Thus, in this 

paper, we will not consider the second case. 

The total costs in the planning period consist of transportation costs, inventory costs, reroute 

costs, and penalties that come from any other constraint violations. For the stochastic model, 

there are seven categories of decision variables involved: 1) the vessel assignment to each 

travel route, 2) the speed of each ship, 3) the changed speed due to wind and waves, 4) the 

inventory schedule per time period, 5) departure and arrival dates of an incoming and outgoing 

vessel at each port, 6) the number of unpunctual periods (include early arrive and delay), 7) 

The number of reassigned vessels. 

Fig. 4 Fuel Consumption Characteristics 

(Source: Wang et al.,2019) 
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3.2 Mathematical Model 

3.2.1 Basic model – Model I 

First, we formulate the IRP basic model without considering weather conditions. In the 

underlying network for the mathematical model, let 𝑉 be the set of available ships. An origin 

node 𝑜(𝑣) at the beginning of the planning horizon can geographically represent an artificial 

point at sea, denoting the origin position of a given vessel, and the same to the destination 

node 𝑑(𝑣) at the end of the horizon. Each ship needs to start from the starting point 𝑜(𝑣) to 

the supplier to load the cargo, and then start the delivery task for the whole planning period. 

At the end of the planning horizon, ships still need to return to their endpoints 𝑑(𝑣) because 

the supplier ports cannot accommodate so many LNG ships. 

Each port is represented by an index 𝑖, and the set of ports is given by 𝑃 (including 𝑜(𝑣) and 

𝑑(𝑣) ). Subsets 𝑃𝑠  and 𝑃𝑐 ⊆ 𝑃  consists of the supplier port and all customer ports, 

respectively. Each port can be visited several times during the planning horizon, and 𝑀𝑖 is 

the set of possible calls at port 𝑖. The port call number is represented by an index 𝑚, and |𝑀𝑖 | 

is the last possible call at port 𝑖. 

The set of nodes in the flow network represents the set of port calls, and each port call is 

specified by (𝑖, 𝑚), 𝑖 ∈ 𝑃, 𝑚 ∈ 𝑀𝑖. Finally, 𝐴𝑣 contains all feasible arcs for ship 𝑣, which is 

a subset of { 𝑖 ∈ 𝑃, 𝑚 ∈ 𝑀𝑖 }×{ 𝑖 ∈ 𝑃, 𝑚 ∈ 𝑀𝑖 }. Set 𝑇, indexed by 𝑡, contains all periods 

starting from time 1 to time T. Other parameters and variables are listed as follows. 

Parameters 

𝑄 Capacity of vessels 

𝑅 Production rate per time period 

𝐶𝑖𝑛𝑣 Inventory cost per time period 

𝐶𝑓𝑢𝑒𝑙 Price of bunker fuel per ton 

𝐼𝑚𝑖𝑛, 𝐼𝑚𝑎𝑥 Minimum and Maximum inventory level in storage tanks 

𝐷𝑖𝑗 Distance from port 𝑖 to port 𝑗 

𝐶𝑒𝑎𝑟𝑙𝑦 Penalty for early arrive per time period 

𝐶𝑑𝑒𝑙𝑎𝑦 Penalty for shipping delay per time period 
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𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥 Maximum number of days allowed in customer ports for early 

arrival/delay (grace period) 

𝑡𝑖𝑚
𝐸  Expected arrival time 

𝑇𝑠 Service time (loading/ unloading) in each port 

𝐾𝑚𝑖𝑛, 𝐾𝑚𝑎𝑥 Minimum and Maximum traveling speed for a given vessel 

𝐼𝑖𝑛𝑖𝑡𝑖𝑎𝑙 The initial inventory at the beginning of the planning period 

𝑀 A large enough positive number 

Decision Variables 

𝐾𝑖𝑚𝑗𝑛𝑣 Traveling speed from the node (𝑖, 𝑚) to (𝑗, 𝑛) by ship 𝑣 

𝐼𝑡 LNG inventory in storage tanks on a given time period 𝑡, bounded by 

minimum and maximum value 𝐼𝑚𝑖𝑛, 𝐼𝑚𝑎𝑥 

𝑥𝑖𝑚𝑗𝑛𝑣 Binary, equals 1 if ship 𝑣 sails from the node (𝑖, 𝑚) directly to the 

node (𝑗, 𝑛), and 0 otherwise 

𝑡𝑖𝑚 time variable, the time at which service (loading/unloading) begins at 

node (𝑖, 𝑚) 

𝑦𝑖𝑚, 𝑧𝑖𝑚 1 if the service start time at node (𝑖, 𝑚) is earlier/later than inner time 

window respectively 

Table. 1 Sets, Parameters, and Variables 

The fuel consumption rate of each ship can be a specific function of its speed and payload. Let 

𝐷𝑖𝑗 be the sailing distance from node 𝑖 to node 𝑗. The variable 𝐾𝑖𝑚𝑗𝑛𝑣 defines the speed of 

travel from the node (𝑖, 𝑚) to node (𝑗, 𝑛) irrespective of ship chosen. Thus, the traveling 

time between a supplier port and a customer port can be computed by 𝐷𝑖𝑗/𝐾𝑖𝑚𝑗𝑛𝑣. The non-

linear function 𝐶𝑣(𝐾𝑖𝑚𝑗𝑛𝑣, 𝑙) , defined on the speed interval [𝐾𝑚𝑖𝑛, 𝐾𝑚𝑎𝑥 ], represents the 

variable transportation costs per unit of distance for a ship sailing at speed 𝐾𝑖𝑚𝑗𝑛𝑣 with load 

𝑙 on board. Because of our full load assumption, load 𝑙 in this paper only has two choices, 

100%, and 0%, corresponding to fuel consumption 𝐶𝑣(𝐾𝑖𝑚𝑗𝑛𝑣)  and 80% ∗ 𝐶𝑣(𝐾𝑖𝑚𝑗𝑛𝑣) 

according to the function mentioned in Section 3.1.  

The mathematical problem formulation is defined as follows: 

Objective Function: 

Min   𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑐𝑜𝑠𝑡𝑠 +  𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑠 + 𝑢𝑛𝑝𝑢𝑛𝑐𝑡𝑢𝑎𝑙 𝑝𝑒𝑛𝑎𝑙𝑡𝑦     (1) 
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𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑐𝑜𝑠𝑡𝑠 = ∑ 𝐼𝑡𝑡∈𝑇 ∗ 𝐶𝑖𝑛𝑣                        (2) 

𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑠 = ∑ ∑ 𝐶𝑣(𝐾𝑖𝑚𝑗𝑛𝑣) ∗ 𝐷𝑖𝑗 ∗ 𝑥𝑖𝑚𝑗𝑛𝑣(𝑖,𝑚,𝑗,𝑛)∈𝐴𝑣𝑣∈𝑉        (3) 

According to the relationship between the shipping speed and fuel consumption mentioned 

above, laden and ballast voyages bring different fuel consumption costs due to different loads. 

For a laden voyage, ships are in full-load, so: 

𝐶 𝑣(𝐾𝑖𝑚𝑗𝑛𝑣) = 𝐶𝑓𝑢𝑒𝑙 ∗ (0.0019𝐾𝑖𝑚𝑗𝑛𝑣
2 + 0.045𝐾𝑖𝑚𝑗𝑛𝑣 − 0.3739)        (4) 

The relationship between ballast voyage, which corresponds to no-load, and bunker fuel 

consumption is shown below: 

𝐶 𝑣(𝐾𝑖𝑚𝑗𝑛𝑣) = 𝐶𝑓𝑢𝑒𝑙 ∗ (0.0019𝐾𝑖𝑚𝑗𝑛𝑣
2 + 0.045𝐾𝑖𝑚𝑗𝑛𝑣 − 0.3739) ∗ 0.8      (5) 

𝑢𝑛𝑝𝑢𝑛𝑐𝑡𝑢𝑎𝑙 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = ∑ ∑ (𝑡𝑖𝑚
𝐸 − 𝑡𝑖𝑚) ∗ (𝑦𝑖𝑚 ∗ 𝐶𝑒𝑎𝑟𝑙𝑦 + 𝐶𝑑𝑒𝑙𝑎𝑦 ∗ 𝑧𝑖𝑚)𝑚∈𝑀𝑖𝑖∈𝑃𝑐   (6) 

Constraints:  

∑ ∑ ∑ 𝑥𝑖𝑚𝑗𝑛𝑣𝑛∈𝑀𝑗𝑗∈𝑃𝑣∈𝑉 = 1, (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝐴𝑣, 𝑣 ∈ 𝑉                              (7) 

∑ ∑ 𝑥𝑜(𝑣)1𝑗𝑛𝑣𝑛∈𝑀𝑗𝑗∈𝑃𝑠 = 1, 𝑣 ∈ 𝑉                                             (8) 

∑ ∑ 𝑥𝑖𝑚𝑗𝑛𝑣𝑚∈𝑀𝑖𝑖∈𝑃𝑠 − ∑ ∑ 𝑥𝑗𝑛𝑖𝑚𝑣𝑚∈𝑀𝑖𝑖∈𝑃𝑠 = 0, 𝑗 ∈ 𝑃𝑐, 𝑛 ∈ 𝑀𝑖, 𝑣 ∈ 𝑉                 (9) 

∑ ∑ 𝑥𝑖𝑚𝑑(𝑣)1𝑣𝑚∈𝑀𝑖𝑖∈𝑃𝑠 = 1, 𝑣 ∈ 𝑉                                           (10) 

𝐼0 = 𝐼𝑖𝑛𝑖𝑡𝑖𝑎𝑙                                                             (11) 

𝐼𝑡𝑖𝑚
= 𝐼𝑡𝑖(𝑚−1)

+ 𝑅(𝑡𝑖𝑚 − 𝑡𝑖(𝑚−1)) − 𝑄, 𝑖 ∈ 𝑃𝑠 , 𝑚 ∈ 𝑀𝑖                         (12) 

𝐼𝑚𝑎𝑥 − 𝐼𝑡𝑖(𝑚−1) ≥ 𝑅(𝑡𝑖𝑚 − 𝑡𝑖(𝑚−1)), 𝑖 ∈ 𝑃𝑠, 𝑚 ∈ 𝑀𝑖                             (13) 

𝐼𝑚𝑖𝑛 ≤ 𝐼𝑡 ≤ 𝐼𝑚𝑎𝑥, 𝑡 ∈ 𝑇                                                    (14) 

𝑥𝑖𝑚𝑗𝑛𝑣 (𝑡𝑖𝑚 + 𝑇𝑠 +
𝐷𝑖𝑗

𝐾𝑖𝑚𝑗𝑛𝑣
− 𝑡𝑗𝑛) = 0, (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝐴𝑣, 𝑣 ∈ 𝑉                     (15) 

𝑡𝑖(𝑚−1) + 𝑇𝑠 ≤ 𝑡𝑖𝑚, 𝑖 ∈ 𝑃, 𝑚 ∈ 𝑀𝑖                                           (16) 
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𝑇𝑚𝑖𝑛 ≤ 𝑡𝑖𝑚 − 𝑡𝑖𝑚
𝐸 ≤ 𝑇𝑚𝑎𝑥 , 𝑖 ∈ 𝑃𝑐 , 𝑚 ∈ 𝑀𝑖                                     (17) 

𝐾𝑚𝑖𝑛 ≤ 𝐾𝑖𝑚𝑗𝑛𝑣 ≤ 𝐾𝑚𝑎𝑥, (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝐴𝑣, 𝑣 ∈ 𝑉                                (18) 

𝑥𝑖𝑚𝑗𝑛𝑣 ∈ {0,1}                                                           (19) 

𝑡𝑖𝑚 ≥ 0, 𝑖 ∈ 𝑃, 𝑚 ∈ 𝑀𝑖                                                    (20) 

𝑦𝑖𝑚 ∈ {0,1}                                                             (21) 

𝑧𝑖𝑚 ∈ {0,1}                                                             (22) 

𝑦𝑖𝑚 + 𝑧𝑖𝑚 = 1, 𝑖 ∈ 𝑃𝑐 , 𝑚 ∈ 𝑀𝑖                                              (23) 

𝑡𝑖𝑚
𝐸 − 𝑡𝑖𝑚 > 𝑀(1 − 𝑦𝑖𝑚), 𝑖 ∈ 𝑃𝑐, 𝑚 ∈ 𝑀𝑖                                      (24) 

𝑡𝑖𝑚 − 𝑡𝑖𝑚
𝐸 > 𝑀(1 − 𝑧𝑖𝑚), 𝑖 ∈ 𝑃𝑐, 𝑚 ∈ 𝑀𝑖                                      (25) 

The objective function (1)-(6) describes the total cost to be minimized, which consists of three 

parts: total inventory costs during the planning period, transportation costs, and penalty costs 

for early arrival or shipping delay. The non-linear function of fuel consumption 𝐶 𝑣(𝐾𝑖𝑚𝑗𝑛𝑣) 

in equation (4) and (5) comes from Wang et al. (2019), in which they studied a vessel with 

56800 dwt and came up with the formula. As for the penalty of early arrival and shipping 

delay, the common sense is that it is better to arrive early than late. Although in both situations, 

extra port charges should be paid, shipping delay may cause continuous delays in subsequent 

plans, leaving the demand gap at the customer port too large. In contrast, early arrival at the 

port will make the follow-up plan more flexible to some extent, and the penalty is only the 

inventory scheduling fee of the customer ports and the bunker fuel costs that may exist in 

waiting for unloading. 

Constraint (7) ensures that we can make one port call at most once. Constraints (8)-(10) set 

the shipping flow, giving the initial and end position of a vessel, letting the ship return to the 

supplier port as soon as it unloads cargoes at the customer port and wait for the next delivery 

task. Constraint (11) gives the initial stock at the start of the planning period. Constraints (12)-

(14) are inventory constraints. Inequation (12) keeps the balance of inventory between two 

continuous port call at the supplier. Here, the demand at each customer port is an integer 
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multiple of the number of ships. It is not hypothetical to assume that; It is common to order by 

the number of vessels in actual transactions. 

There is an unstable boil-off rate in the process of sailing, causing a part of the liquefied natural 

gas to volatilize, so it is unrealistic to ask for the exact quantity of the cargo in each order. 

Therefore, the port of the customer takes the number of ships as the order demand and then 

gives a minimum annual discharge quantity in the annual contract to ensure that their demands 

can be met. 

Constraint (14) bounds the inventory quantity, and constraint (13) links the upper limit of 

inventory with the service start time. The scheduling of the route is taken into account in 

constraints (15) and (17). Constraint (16) considers the berth limits, and only allow one ship 

to (un)load in one port. The variables domains are given in constraints (18)-(22). Constraints 

(23)-(25) make sure that if the vessel cannot arrive on time, it will be fined for being late or 

early. 

The basic model can improve the scheduling and give the optimal speed of each ship while 

minimizing the cost. 

3.2.2 Stochastic Models 

Basic Stochastic Model – Model II 

In this section, a two-stage stochastic model that takes into account the effects of uncertain 

weather is established. Within the model, the first stage mainly works on the original delivery 

plan, and the second stage, when the impact of weather conditions is realized, will adjust the 

shipping speed and reschedule the ships if needed. The objective function under this situation 

includes several more parts about the stochastic influence. Except for minimizing the original 

schedule costs, minimizing the stochastic effects is also an important task, and we hope to find 

a shipping schedule that can tolerate different weather as much as possible.  

The underlying assumption is that, based on the weather forecast available to the supplier, 

each ship will know the impact of the weather event on its way to port on the day of departure. 

Here, the set of weather disruption scenarios Ω indexed by 𝑤 is assumed discrete and finite. 

Besides, the time constraint is relaxed to avoid no solution situations, which means that the 

arrival time could outside the grace period, but a very large penalty Ε which equals to the 
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total value of the shipment will be proposed to motivate shipping to reschedule and 

reassignment when grace period limits are violated.  

Additional parameters and random elements which are necessary are listed as follow, and the 

formulation will be changed correspondingly: 

Parameters 

Ε Penalty when ships cannot arrive within the grace period 

Variables 

𝑡𝑖𝑚
𝑤+, 𝑡𝑖𝑚

𝑤− time variables, describe how much time the second stage rescheduled 

arrival time is earlier (later) at the node (𝑖, 𝑚) under scenario 𝑤 

𝑢𝑖𝑚𝑗𝑛𝑣
𝑤  Binary, 1 if the origin ship assignment cannot reach the destination 

within the grace period and decide to change the ship used under 

scenario 𝑤, 0 otherwise 

𝑘𝑖𝑚𝑗𝑛𝑣𝑤
+ , 𝑘𝑖𝑚𝑗𝑛𝑣𝑤

−  The speed change (increase/decrease) on route (𝑖, 𝑚, 𝑗, 𝑛)  after 

rescheduling under scenario 𝑤 by ship 𝑣 

𝐼𝑡
𝑤+, 𝐼𝑡

𝑤− Inventory change under scenario w in time t 

𝑦𝑖𝑚
𝑤 , 𝑧𝑖𝑚

𝑤  Binary, 1 if the service start time at node (𝑖, 𝑚) is earlier/later than 

inner time window under scenario 𝑤 respectively 

𝑜𝑖𝑚
𝑤  1 if the start time at node (𝑖, 𝑚) is outside the grace period under 

scenario 𝑤 

Random elements 

diff𝑖𝑚𝑗𝑛𝑣
𝑤

 The impacts of a weather event on speed on the route (𝑖, 𝑚, 𝑗, 𝑛) under 

scenario 𝑤 of ship 𝑣 

𝜉𝑖𝑚𝑗𝑛𝑣
𝑤  The length of the event time that ship 𝑣  experiences on the route 

(𝑖, 𝑚, 𝑗, 𝑛) under scenario 𝑤 

Table. 2 Parameters and Variables in Basic Stochastic Model 

Objective Function: 

Min     𝐼𝑡 ∗ 𝐶𝑖𝑛𝑣 + ∑ 𝑝𝑤𝑤∈Ω ∑ ∑ 𝐶 𝑣(𝐾𝑖𝑚𝑗𝑛𝑣 + 𝑘𝑖𝑚𝑗𝑛𝑣𝑤
+ + 𝑘𝑖𝑚𝑗𝑛𝑣𝑤

− ) ∗(𝑖,𝑚,𝑗,𝑛)∈𝐴𝑣𝑣∈𝑉

𝐷𝑖𝑗 ∗ (𝑥𝑖𝑚𝑗𝑛𝑣 + 𝑢𝑖𝑚𝑗𝑛𝑤
𝑣′ ) + ∑ 𝑝𝑤𝑤∈Ω ∑ ∑ (𝑡𝑖𝑚

𝐸 − (𝑡𝑖𝑚 + 𝑡𝑖𝑚
𝑤+ + 𝑡𝑖𝑚

𝑤−)) ∗ (𝑦𝑖𝑚
𝑤 ∗𝑚∈𝑀𝑖𝑖∈𝑃𝑐

𝐶𝑒𝑎𝑟𝑙𝑦 + 𝐶𝑑𝑒𝑙𝑎𝑦 ∗ 𝑧𝑖𝑚
𝑤 ) + ∑ 𝑝𝑤(∑ ∑ 𝑜𝑖𝑚

𝑤
𝑚∈𝑀𝑖 𝑖∈𝑃𝑐 ∗ Ε + (𝐼𝑡

𝑤+ + 𝐼𝑡
𝑤−) ∗ 𝐶𝑖𝑛𝑣)𝑤∈Ω   

(1.1) 
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Constraints:  

∑ ∑ ∑ (𝑥𝑖𝑚𝑗𝑛𝑣 + 𝑢𝑖𝑚𝑗𝑛𝑤
𝑣′ )𝑛∈𝑀𝑗𝑗∈𝑃𝑣,𝑣′∈𝑉 = 1, (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝐴𝑣, 𝑣 ∈ 𝑉                 (7.1) 

𝐼𝑡𝑖𝑚
+ 𝐼𝑡𝑖𝑚

𝑤+ + 𝐼𝑡𝑖𝑚

𝑤− = 𝐼𝑡𝑖(𝑚−1)
+ 𝐼𝑡𝑖(𝑚−1)

𝑤+ + 𝐼𝑡𝑖(𝑚−1)

𝑤− + 𝑅 ((𝑡𝑖𝑚 + 𝑡𝑖𝑚
𝑤+ + 𝑡𝑖𝑚

𝑤−) − (𝑡𝑖(𝑚−1)
𝑤 +

𝑡𝑖(𝑚−1)
𝑤+ + 𝑡𝑖(𝑚−1)

𝑤− )) − 𝑄, 𝑖 ∈ 𝑃𝑠, 𝑚 ∈ 𝑀𝑖, 𝑤 ∈ Ω                               (12.1) 

𝐼𝑚𝑎𝑥 − 𝐼𝑡𝑖(𝑚−1)
+ 𝐼𝑡𝑖(𝑚−1)

𝑤+ + 𝐼𝑡𝑖(𝑚−1)

𝑤− ≥ 𝑅 ((𝑡𝑖𝑚 + 𝑡𝑖𝑚
𝑤+ + 𝑡𝑖𝑚

𝑤−) − (𝑡𝑖(𝑚−1) + 𝑡𝑖(𝑚−1)
𝑤+ +

𝑡𝑖(𝑚−1)
𝑤− )) , 𝑖 ∈ 𝑃𝑠 , 𝑚 ∈ 𝑀𝑖 , 𝑤 ∈ Ω                                          (13.1) 

(𝑥𝑖𝑚𝑗𝑛𝑣 + 𝑢𝑖𝑚𝑗𝑛𝑤
𝑣′ ) ∗ (𝑡𝑖𝑚 + 𝑡𝑖𝑚

𝑤+ + 𝑡𝑖𝑚
𝑤− + 𝑇𝑠 +

𝐷𝑖𝑗−𝜉𝑖𝑚𝑗𝑛𝑣
𝑤 (𝐾𝑖𝑚𝑗𝑛𝑣+𝑘𝑖𝑚𝑗𝑛𝑣

𝑤+ +𝑘𝑖𝑚𝑗𝑛𝑣
𝑤− −𝑑𝑖𝑓𝑓𝑖𝑚𝑗𝑛𝑣

𝑤 )

𝐾𝑖𝑚𝑗𝑛𝑣+𝑘𝑖𝑚𝑗𝑛𝑣
𝑤+ +𝑘𝑖𝑚𝑗𝑛𝑣

𝑤− +

𝜉𝑖𝑚𝑗𝑛𝑣
𝑤 − (𝑡𝑗𝑛 + 𝑡𝑗𝑛

𝑤+ + 𝑡𝑗𝑛
𝑤−)) = 0, (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝐴𝑣 , 𝑣 ∈ 𝑉, 𝑤 ∈ Ω  

(15.1) 

𝑡𝑖𝑚
𝑤 + 𝑇𝑠 +

𝐷𝑖𝑗−𝜉𝑖𝑚𝑗𝑛𝑣
𝑤 (𝐾𝑖𝑚𝑗𝑛𝑣+𝑘𝑖𝑚𝑗𝑛𝑣

𝑤+ +𝑘𝑖𝑚𝑗𝑛𝑣
𝑤− −𝑑𝑖𝑓𝑓𝑖𝑚𝑗𝑛𝑣

𝑤 )

𝐾𝑖𝑚𝑗𝑛𝑣+𝑘𝑖𝑚𝑗𝑛𝑣
𝑤+ +𝑘𝑖𝑚𝑗𝑛𝑣

𝑤− + 𝜉𝑖𝑚𝑗𝑛𝑣
𝑤 − (𝑡𝑗𝑛

𝐸 + 𝑇𝑚𝑎𝑥) > 𝑀(1 −

𝑢𝑖𝑚𝑗𝑛𝑤
𝑣′ ), (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝐴𝑣, 𝑣 ∈ 𝑉, 𝑤 ∈ Ω  

(26) 

𝑥𝑖𝑚𝑗𝑛𝑣 + 𝑢𝑖𝑚𝑗𝑛𝑤
𝑣′ = 1, (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝐴𝑣, 𝑣, 𝑣′ ∈ 𝑉, 𝑤 ∈ Ω                          (27) 

𝑡𝑖(𝑚−1) + 𝑡𝑖(𝑚−1)
𝑤+ + 𝑡𝑖(𝑚−1)

𝑤− + 𝑇𝑠 ≤ 𝑡𝑖𝑚 + 𝑡𝑖𝑚
𝑤+ + 𝑡𝑖𝑚

𝑤−, 𝑖 ∈ 𝑃, 𝑚 ∈ 𝑀𝑖 , 𝑤 ∈ Ω        (16.1) 

𝑇𝑚𝑖𝑛 − (𝑡𝑖𝑚 + 𝑡𝑖𝑚
𝑤+ + 𝑡𝑖𝑚

𝑤−) − 𝑡𝑖𝑚
𝐸 > 𝑀(1 − 𝑜𝑖𝑚

𝑤 ), 𝑖 ∈ 𝑃𝑐, 𝑚 ∈ 𝑀𝑖 , 𝑤 ∈ Ω             (28) 

(𝑡𝑖𝑚 + 𝑡𝑖𝑚
𝑤+ + 𝑡𝑖𝑚

𝑤−) − 𝑡𝑖𝑚
𝐸 − 𝑇𝑚𝑎𝑥 > 𝑀(1 − 𝑜𝑖𝑚

𝑤 ), 𝑖 ∈ 𝑃𝑐, 𝑚 ∈ 𝑀𝑖 , 𝑤 ∈ Ω            (29) 

𝑦𝑖𝑚
𝑤 + 𝑧𝑖𝑚

𝑤 = 1, 𝑖 ∈ 𝑃𝑐 , 𝑚 ∈ 𝑀𝑖                                            (23.1) 

𝑡𝑖𝑚
𝐸 − (𝑡𝑖𝑚 + 𝑡𝑖𝑚

𝑤+ + 𝑡𝑖𝑚
𝑤−) > 𝑀(1 − 𝑦𝑖𝑚

𝑤 ), 𝑖 ∈ 𝑃𝑐 , 𝑚 ∈ 𝑀𝑖                             

       (24.1) 

(𝑡𝑖𝑚 + 𝑡𝑖𝑚
𝑤+ + 𝑡𝑖𝑚

𝑤−) − 𝑡𝑖𝑚
𝐸 > 𝑀(1 − 𝑧𝑖𝑚

𝑤 ), 𝑖 ∈ 𝑃𝑐 , 𝑚 ∈ 𝑀𝑖                             

       (25.1) 
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The objective function changes from equation (1) to (1.1), adding the outside grace period 

penalty, and changing the unpunctual costs according to different scenarios. The second term 

of this function gives the new transportation costs if rescheduling is required. Constraints 

which contain scenario-related variables are updated based on the deterministic model, such 

as constraints (12.1) and (13.1). When coming across strong wind waves, there will be a 

difference between actual speed and ship speed. The random variable diff𝑖𝑚𝑗𝑛
𝑤

 gives this 

difference. Within the event area, the actual shipping speed is then (𝐾𝑖𝑚𝑗𝑛𝑣 + 𝑘𝑖𝑚𝑗𝑛𝑣
𝑤+ +

𝑘𝑖𝑚𝑗𝑛𝑣
𝑤−  − diff𝑖𝑚𝑗𝑛𝑣

𝑤 ) and the total length of time the ship experienced in a rough weather event 

is 𝜉𝑖𝑚𝑗𝑛𝑣
𝑤 . Thus, the actual sailing time on route (𝑖, 𝑚, 𝑗, 𝑛) consists of two parts: sailing time 

in the unaffected area 
𝐷𝑖𝑗−𝜉𝑖𝑚𝑗𝑛𝑣

𝑤 (𝐾𝑖𝑚𝑗𝑛𝑣+𝑘𝑖𝑚𝑗𝑛𝑣
𝑤+ +𝑘𝑖𝑚𝑗𝑛𝑣

𝑤− −𝑑𝑖𝑓𝑓𝑖𝑚𝑗𝑛𝑣
𝑤 )

𝐾𝑖𝑚𝑗𝑛𝑣+𝑘𝑖𝑚𝑗𝑛𝑣
𝑤+ +𝑘𝑖𝑚𝑗𝑛𝑣

𝑤−  and the time length of rough 

weather event 𝜉𝑖𝑚𝑗𝑛𝑣
𝑤 . Constraint (15.1) reflect this relationship with the new speed. 

Constraints (26)-(27) illustrate that ship reassignment is triggered only if the origin scheduling 

fails to meet the time window limits. Constraints (28) and (29) define the binary 𝑜𝑖𝑚
𝑤 , giving 

the conditions when penalty Ε  should be counted. The remaining constraints in the 

deterministic model will be followed. 

Extended Stochastic Model – Model III 

In the two models above, the supplier is determined to have only one path to each port. 

Nevertheless, in practice, ships can take long detours to avoid unpleasant areas. So, we are 

going to extend model II to consider the decisions ships make in the face of the rough weather 

event when there are two different lengths of paths between the supplier and the customers, 

among which the longer one can avoid rough weather effectively. R is defined as the set of 

paths within the route (𝑖, 𝑚, 𝑗, 𝑛). 

Parameters 

Ε Penalty when ships cannot arrive within the grace period 

Variables 

𝐾𝑖𝑚𝑗𝑛𝑣𝑟 The speed on route (𝑖, 𝑚, 𝑗, 𝑛) by path 𝑟  

𝑘𝑖𝑚𝑗𝑛𝑣𝑟
𝑤+ , 𝑘𝑖𝑚𝑗𝑛𝑣𝑟

𝑤−  The speed change (increase/decrease) on route (𝑖, 𝑚, 𝑗, 𝑛) path 𝑟 after 

rescheduling under scenario 𝑤 

𝑥𝑖𝑚𝑗𝑛𝑟
𝑣  Binary, equals 1 if ship 𝑣 sails on route (𝑖, 𝑚, 𝑗, 𝑛) by path 𝑟 
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𝑢𝑖𝑚𝑗𝑛𝑟′
𝑣′𝑤  Binary, 1 if the origin ship assignment cannot reach the destination 

within the grace period and require to reschedule the path or ship under 

scenario 𝑤, 0 otherwise 

Random elements 

diff𝑖𝑚𝑗𝑛𝑣𝑟
𝑤

 The speed change on the path 𝑟 in route (𝑖, 𝑚, 𝑗, 𝑛) if there are rough 

weather days under scenario 𝑤 

𝜉𝑖𝑚𝑗𝑛𝑟
𝑣𝑤  The length of the rough event that ship 𝑣 experiences on the path 𝑟 in 

route (𝑖, 𝑚, 𝑗, 𝑛) under scenario 𝑤 

Table. 3 Parameters and Variables in the Extended Model 

Objective Function: 

Min     𝐼𝑡 ∗ 𝐶𝑖𝑛𝑣 + ∑ 𝑝𝑤𝑤∈Ω ∑ ∑ 𝐶 𝑣(𝐾𝑖𝑚𝑗𝑛𝑣𝑟 + 𝑘𝑖𝑚𝑗𝑛𝑣𝑟
𝑤+ + 𝑘𝑖𝑚𝑗𝑛𝑣𝑟

𝑤− ) ∗(𝑖,𝑚,𝑗,𝑛)∈𝐴𝑣𝑣∈𝑉

𝐷𝑖𝑗 ∗ (𝑥𝑖𝑚𝑗𝑛𝑟
𝑣 + 𝑢𝑖𝑚𝑗𝑛𝑟

𝑣′𝑤 ) + ∑ 𝑝𝑤𝑤∈Ω ∑ ∑ (𝑡𝑖𝑚
𝐸 − (𝑡𝑖𝑚 + 𝑡𝑖𝑚

𝑤+ + 𝑡𝑖𝑚
𝑤−)) ∗ (𝑦𝑖𝑚

𝑤 ∗𝑚∈𝑀𝑖𝑖∈𝑃𝑐

𝐶𝑒𝑎𝑟𝑙𝑦 + 𝐶𝑑𝑒𝑙𝑎𝑦 ∗ 𝑧𝑖𝑚
𝑤 ) + ∑ 𝑝𝑤(∑ ∑ 𝑜𝑖𝑚

𝑤
𝑚∈𝑀𝑖 𝑖∈𝑃𝑐 ∗ Ε + (𝐼𝑡

𝑤+ + 𝐼𝑡
𝑤−) ∗ 𝐶𝑖𝑛𝑣)𝑤∈Ω   

(1.2) 

All the constraints are the same as in model II, except that the path index is added to the 

variable described in the Table. 3. 

3.2.3 Solution Method 

In this section, we use the simulated annealing (SA) algorithm to solve the NP-hard non-linear 

problem. The SA algorithm starts from a given random initial state, and on each iteration, 

generates a new neighbor state. If the new state is better, then accept that state as a new 

solution. If it is worse, then the algorithm will use a probability function to decide whether to 

accept that solution or not. It is this characteristic that makes the SA algorithm occasionally 

accepts worse states, enabling the algorithm to avoid being limited to local optimality.  

The probability of choosing a worse solution is controlled by the temperature parameter, which 

starts large but decreases over time. It is analogous to temperature in an annealing system. 

When the temperature is high, uphill moves are more likely to occur. As T tends to zero, they 

become more and more unlikely (Teukolsky, Vetterling, and Flannery, 1992). The pseudo-

code for a SA algorithm is shown below: 
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Algorithm 1 SA algorithm structure 

Define a high temperature T  

Define a cooling schedule T(it), e.g. T=alpha T  

Define an energy function S  

Define current_model initial state  

While (not converged)  

new_model = random  

Delta_S = S(new_model)-S(current_model)  

If (Delta_S < 0) current_model = new_model  

Else with probability P = e^(-Delta_S/T) : current_model = new_model  

T=alpha T 

The Logic for Scheduling 

For model I, the deterministic model, the energy function is the objective function (1), and it 

searches for a better solution globally until the temperature reaches its lower bound. However, 

the solution finally obtained is not necessarily the optimal one because of the attributes of 

heuristic. After setting the temperature 

parameter, the most important part is 

defining the search scheme, considering 

the shipping flow and all the constraints. 

Fig.5 shows the logic of scheduling each 

order.  

In general, the order to serve is firstly 

selected according to the length of the 

lead time, then the feasible departure date 

and the corresponding laden speed will 

be calculated and assigned to it.  

Normally, the departure date of the laden voyage is constrained by the intersection of the 

following two date sets: the first one is the LNG inventory available days. A date is deemed 

to be available only if the LNG volume on that day is larger than the sum of the ship capacity 

and storage tank's lower limit, and does not exceed the inventory ceiling. Therefore, under this 

constraint, the set of available dates ranges from the first day when the storage at the supplier 

Fig. 5 Scheduling Logic for each order 
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port meets the loading requirements to the day when the LNG storage reaches the upper limit. 

The second set is days within the permitted time window. For a supplier, if the ship can arrive 

within the discharge time window, the unpunctual penalty can be avoided. So, we will first 

control the time limit tightly, and then calculate the departure time range if the ship wants to 

arrive at the customer port on time. The earliest (latest) departure date can be obtained by 

subtracting the longest (shortest) sailing time and loading time from the earliest (latest) date 

in the discharging time window.  

If the intersection of these two sets is not empty, it means that there are dates that meet these 

constraints, then a day is randomly selected from these dates as the departure date. When the 

intersection is empty, we should relax the time limit, recalculating the departure time range 

based on the grace period. Again, after two new date sets are obtained, a day is randomly 

selected from the date intersection. If the intersection is still empty, it is considered a planning 

failure. 

After deciding the laden attributes, we need to find a suitable ship for this trip. If the supplier 

has a ship available on the date of departure, then directly use that ship, and if there are no idle 

ships near the supplier port, then estimate the fastest return dates for all ships assigned for 

unfulfilled orders. Then, randomly choose a ship that can complete its voyage before the 

departure date of the new order.  

Each random combination choice of departure dates and ships results in different schedules 

and total costs. The SA algorithm will almost find the best one within the given iteration times. 

To note that the departure date of the ballast voyage depends on the arrival time of the laden 

voyage, so there is no need for extra estimation. The only thing to determine is the ballast 

speed, which will influence the date of return to the supplier port. During the planning period, 

a good ballast speed for a ship should make the ship possible to return to the supplier port 

before the next voyage, and minimizing the transportation costs with all previous constraints. 

The pseudo-code of this logic is given in Algorithm 2. 

Algorithm 2 Ship and Inventory Scheduling 

Input all the data needed 

Select the order to be served in the time order 

if multiple orders on the same day 



 29 

randomly select one to serve 

end if  

while True: 

Calculate maximum and minimum sailing times: (
𝐷𝑖𝑗

𝑟

𝐾𝑚𝑖𝑛
, 

𝐷𝑖𝑗
𝑟

𝐾𝑚𝑎𝑥
) 

//Calculate the date when there is plenty of inventory for shipping 

𝑡𝑖𝑚
𝐼𝑚𝑖𝑛 ← 𝑡𝑖(𝑚−1) + (𝑄 + 𝐼𝑚𝑖𝑛 − 𝐼𝑡𝑖(𝑚−1))/𝑅  

// Calculate the date when inventory in supplier reaches the upper limit. 

𝑡𝑖𝑚
𝐼𝑚𝑎𝑥 ← 𝑡𝑖(𝑚−1) + (𝐼𝑚𝑎𝑥 − 𝐼𝑡𝑖(𝑚−1))/𝑅  

set A range ← (𝑡𝑖𝑚
𝐼𝑚𝑖𝑛, 𝑡𝑖𝑚

𝐼𝑚𝑎𝑥)  

// Calculate the departure dates range when the ship can arrive at the customer's port 

on time 

𝑡𝑖𝑚
𝑚𝑖𝑛 ← 𝑡𝑗𝑛

𝐸 − 𝑇𝑠 −
𝐷𝑖𝑗

𝐾𝑚𝑖𝑛
  

𝑡𝑖𝑚
𝑚𝑎𝑥 ← 𝑡𝑗𝑛

𝐸 − 𝑇𝑠 −
𝐷𝑖𝑗

𝐾𝑚𝑎𝑥
  

set B range ← (𝑡𝑖𝑚
𝑚𝑖𝑛, 𝑡𝑖𝑚

𝑚𝑎𝑥)  

if 𝑨 ∩ 𝑩 ≠ ∅ 

Choose a departure date 𝑡𝑖𝑚 from the intersection randomly 

𝐾𝑖𝑚𝑗𝑛 ← max (𝐾𝑚𝑖𝑛, min (
𝐷𝑖𝑗

 𝑡𝑗𝑛
𝐸 −𝑡𝑖𝑚−𝑇𝑠 , 𝐾𝑚𝑎𝑥))  

else: 

// Calculate the earliest and latest departure dates based on the grace period 

𝑡𝑖𝑚
𝑚𝑖𝑛 ← 𝑡𝑗𝑛

𝐸 + 𝑇𝑚𝑖𝑛 − 𝑇𝑠 −
𝐷𝑖𝑗

𝐾𝑚𝑖𝑛
  

𝑡𝑖𝑚
𝑚𝑎𝑥 ← 𝑡𝑗𝑛

𝐸 + 𝑇𝑚𝑎𝑥 − 𝑇𝑠 −
𝐷𝑖𝑗

𝐾𝑚𝑎𝑥
  

set C range ← (𝑡𝑖𝑚
𝑚𝑖𝑛, 𝑡𝑖𝑚

𝑚𝑎𝑥)  

if 𝑨 ∩ 𝑪 ≠ ∅ 

Choose a departure date 𝑡𝑖𝑚 from the intersection randomly 

𝐾𝑖𝑚𝑗𝑛 ← max (𝐾𝑚𝑖𝑛, min (
𝐷𝑖𝑗

 𝑡𝑗𝑛
𝐸 −𝑡𝑖𝑚−𝑇𝑠

, 𝐾𝑚𝑎𝑥))  

Unpunctual time length ← (𝑡𝑖𝑚 +
𝐷𝑖𝑗

𝐾𝑖𝑚𝑗𝑛
− 𝑡𝑗𝑛

𝐸 ) 

else: 

Assign a large penalty to this schedule 
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// Select an available ship 

if there are ships available in supplier port 

randomly select one to serve 

else  

search for the ship use of all unfulfilled orders 

// Choose one of these ships which can finish its order before the departure date of the 

current order 

if 𝑡𝑖𝑚′
′ > 𝑡𝑖𝑚, where 𝑡𝑖𝑚′

′  is the finish time of one of the unfulfilled order 

continue 

// Calculate the ballast speed of this ship 

𝐾𝑗′𝑛′𝑖𝑚′ ← max (𝐾𝑚𝑖𝑛, min (
𝐷𝑖𝑗

 𝑡𝑖𝑚′
′ −𝑡𝑗′𝑛′−𝑇𝑠

, 𝐾𝑚𝑎𝑥) ) 

// Calculate the ballast speed of the rest unfulfilled orders' ships 

𝐾𝑗′𝑛′𝑖𝑚′ ← max (𝐾𝑚𝑖𝑛, min (
𝐷𝑖𝑗

 𝑡𝑖𝑚′
′ −𝑡𝑗′𝑛′−𝑇𝑠 , 𝐾𝑚𝑎𝑥) ) 

After adding the path option in the extended stochastic model, in the second step in Fig.5, in 

addition to settling the service start date and laden speed, the path to travel also needs to be 

determined. If the ship cannot reach the customer port between the grace period at a given 

speed, it can try another path, which is equivalent to use the different traveling distances as a 

time buffer. 

Here, in order to minimize both inventory and shipping costs, we rounded up the non-integer 

arrival time. This action will increase the error, resulting in poor results. In the subsequent 

computation Section 4, in order to reduce the error caused by rounding, we tried to get the 

time period as small as possible so that the final influence could be within an acceptable range. 

The Logic of The Weather Influence 

In the basic stochastic model, we consider the influence of weather conditions. The weather 

distribution predicts the total length of one event, and the effect on ship speed is calculated 

based on statistics. Each ship will have access to possible weather forecasts on the day it leaves 

port, including the start date, influenced region, event length for the ship about to sail, and 

how much ship speed will be reduced (increased) by the weather condition. 
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After the model reads the weather forecast, it first checks if the ship which is about to travel 

will be affected by the rough weather event. No event can happen in all the sea regions. Thus, 

to define an approximate influenced area, we use the distance the ship will have traveled to 

determine whether there is an interaction between the ship's voyage period and the weather 

event. For example, assume that sea area A will experience rough weather on day 5 to day 10, 

and the area A is 500 nautical miles 

away from the customer port and 1000 

nautical miles away from the supplier 

port. Then we should calculate the date 

when the ship arrives and leave this 

area. If the date set does not include 

day 5 to day 10, then it means that this 

event will not influence the ship. Beyond that, when we have the path choice just as in model 

III, we should first judge whether the current path 

will be influenced, and then repeat procedures 

mentioned before. If the ship is confirmed to be 

influenced, then the actual arrival date of the 

planned voyage is recalculated with the 

information of the predicted influenced speed. If 

the actual arrival time exceeds the grace period 

limit, then go back to the previous step and re-

select the departure date, sailing speed, and 

available ships until this order can be managed on 

time. 

Rescheduling is a trade-off among speed, 

fuel consumption, and punctuality. For 

model III, there is one more decision that needs to be made, which is whether to take a long 

detour to avoid the rough weather event or sailing through the rough area at a reduced speed. 

Fig. 6 Rough area define illustration 

Fig. 7 Logic of Weather Influence 
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4. Computational Result 

4.1 Case Background 

4.1.1 Supplier 

The supplier, in this case, is Abu Dhabi National Oil Company (ADNOC). ADNOC is one of 

the world's largest integrated energy companies, with sixteen subsidiary companies in 

upstream, midstream, and downstream stages of production ("Abu Dhabi National Oil 

Company," n.d.).  

ADNOC LNG, as an important subsidiary of ADNOC, is a "joint venture among ADNOC, 

which holds the majority 70% share, Japan's Mitsui with a 15% stake, BP, which takes 10% 

and France's Total with 5%" (Gnana, 2019). It processes and loads liquefied petroleum gas 

and liquified natural gas at Das Island, and then mainly export to Asia, especially East Asia. 

Its annual production capacity can reach eight million tons. 

Before 2019, Tokyo Electric Power Company (TEPCO) is ADNOC's sole long-term customer, 

accounting for nearly 90% of its exports and production (ADNOC LNG, 2019). In recent 

years, TEPCO and Chubu Electric in Japan have merged their LNG operations under the JERA 

banner. In March 2019, JERA's current long-term contract with ADNOC LNG expired and, 

in order to diversify its supply base and conclude more flexible terms, “the new deal finalized 

by the two parties bears no relationship to the legacy contract” (Riviera, 2019). Compared to 

the old contract, the volume of the new one is reduced by 90%, and only for a limited duration. 

At the same time, the gas industry in Abu Dhabi is in flux. Although its reserves are substantial, 

the Emirate’s current demand is more than production capabilities and growing at a rate of 

10% per annum (Riviera, 2019).  

In order to seek solutions to fill the vacuum brought by JERA and cope with flux situation, 

ADNOC LNG has modernized its commercial approach to adopt a new business model 

towards a multi-customers business that includes not only global utilities but also portfolio 

players and traders (ADNOC LNG, 2019). 
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4.1.2 Customers 

As mentioned above, before March 2019, Japan is ADNOC LNG's biggest client. After that, 

ADNOC sought to diversify its customers from Japan to supplying 90% of its output to several 

clients and receiving terminals in more than eight countries, including India, China, South 

Korea, and Bahrain. In this thesis, four major customers, Japan, China, India, South Korea, 

are mainly introduced. 

TEPCO previously signed a 25-year contract with ADNOC with a volume of 4.7 metric tons 

annually and planned the transportation through the Annual Delivery Program (ADP). The 

total amount of the new contract is only 0.5 metric tons annually, and many new flexibility 

requirements are added (ADNOC LNG, 2019). The form is more similar to Shipping Delivery 

Schedule (SDS). At present, the main Japanese ports for receiving LNG cargo from Das Island 

are Tokyo, Kawasaki, and Kisarazu. 

Australia, Qatar, and the United States are the top three sources of LNG for China, so the 

company is not a major supplier of LNG to China, and the frequency of receiving cargoes is 

relatively low. A few years ago, China used gas imported from ADNOC mainly to supply 

domestic gas in and around Shanghai. Now with the deepening of cooperation, Tianjin port is 

also open to receiving goods. 

At the end of 2019, ADNOC further opened up the South Korean market through energy 

cooperation with Samsung. However, their new contracts are more about crude oil and LPG, 

with no significant increase in demand for LNG. 

India is the third-largest importer of oil and the fourth-largest importer of gas. Starting in 2018, 

ADNOC not only secures its position in the Indian energy market but also win a larger number 

of orders (PIB Delhi, 2018). Now, it has almost become the third-largest source of LNG and 

LPG of Indian total import. 

4.2 Data Source 

In the use of the data in this paper, most of the operational data related to ships and contracts 

are from Tieto Company. The rest of the data, such as weather conditions and port charges, 

are collected and estimated online. 
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4.2.1 Operation data 

Each year, ADNOC LNG can sell around 95 cargoes, 80 of which are contractual, and the rest 

are spot. Typically, a relatively long-term contract consists of about 10 small seasonal 

contracts, each specifying the amount of goods to be delivered each month and destinations. 

Among them, 70% of transactions choose DES mode, while only 30% choose FOB mode. 

That is also a reason why this paper assumes all orders in the planning horizon are DES.  

The daily production rate is 50,000 𝑚3 on average. In the short term, frequent adjustments 

of production are not cost-efficient, so the model assumes constant production within the time 

period, but will decide the optimal production rate for the whole season before scheduling. For 

the medium to long term, due to seasonal fluctuation in demand, the production rate is a 

variable and could be an important factor for suppliers to meet customer demands on time. 

Therefore, in the model of this paper, the planning period is three months, and the requirements 

of each customer port are known in advance. Tieto provided most of the data, while the rest 

were generated based on ship voyage information between December 2019 and May 2020 

from the 'Vessel Finder' website.  

 Data Unit 

Production rate 10-70 Thousand cubic meters/day 

Upper storage bound 640 Thousand cubic meters 

Lower storage bound 10 Thousand cubic meters 

Initial Inventory 320 Thousand cubic meters 

Inventory cost 0.257K $/Thousand cubic meters/day 

Ship capacity 170 Thousand cubic meters 

Ship speed 13-18 knots 

Table. 4 Data and Units 

So far, the ADNOC's storage capacity is limited to 320,000 cubic meters, and the safety stock 

is 10,000 cubic meters. The inventory cost per day is about 0.01234 $/MMBtu/day. However, 

since China, Japan, South Korea, and India are only a part of ADNOC's customers, ADNOC's 

production volume is actually higher than demands here so that the upper inventory constraints 

can be relaxed a bit correspondingly. 
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As for ships, ADNOC Logistic and Service subsidiary is in charge of eight LNG carriers, of 

which the speed range during the voyage is 13 to 18 knots. Section 3.1 describes the 

relationship between ship speed and fuel consumption. Therefore, in order to obtain the 

specific transportation cost, the world average bunker fuel price from January to March was 

selected. The capacity of these tankers varies little, averaging 170,000 cubic meters. Usually, 

each ship loads at Das Island first, which is always fully loaded, then begins the laden leg 

according to the planned speed and route, and next directly start to return to Das Island after 

unloading at the customer port, waiting for the next sailing. 

4.2.2 Weather and Scenario Generation 

Most of the weather impact on a voyage comes from wind and waves, which are seasonal and 

regional, and affect different types of ships differently. In this case, we define the uncertain 

event in this paper as 'dates with significant wave height higher than 2.5 meters', and use the 

statistic results as a forecast for the future. This definition is based on sea state classification 

given by the World Meteorological Organization (WMO) (see Table. 5).  

But in practice, a logistics company will use professional and accurate weather forecasts which 

are available on the data market because weather is highly uncertain, and historical data alone 

cannot represent the future. Here, since accurate weather data are not available to us at the 

moment, historical data is a good substitute for showing our methods. 

Wave height Characteristics Assumed influence 

2.5 to 4 meters Rough 30% 

4 to 6 meters Very rough 50% 

6 to 9 meters High 80% 

Table. 5 Sea state classification 

The LNG tanker is among the least vulnerable ships to the rough weather (Heij and Knapp, 

2014). At present, we cannot find enough data associated with the performance of LNG 

tankers, but these two papers Heij and Knapp (2014) and Vettor, Prpic-Orsic, and Soares 

(2015) describe wind and wave influence on container ships with no apparent differences. So, 

we directly quoted their conclusions and made some appropriate simplification, such as 

ignoring the wind direction details, only setting two directions (positive/negative), and 

choosing the maximum influence range of the shipping speed (see the last column of Table.5). 

Beyond that, we reduce the eventual speed impact of tankers by 20%, based on the deadweight 
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tonnage differences between containers and LNG tankers. For example, within one event, 

which is characterized as 'rough', the shipping speed will be decreased by 30% according to 

Table. 5 if the wind and wave direction is opposite to the shipping direction.  

Along the current route, from Das island to the farthest customer Tokyo, there are four regions 

that ships have to cross: Arabian sea, South of Bay of Bengal, South China Sea, East China 

Sea. Among them, Bay of Bengal is the site of a majority of the intense tropical cyclones in 

history. It has significant seasonality high waves and strong wind. Thus, we focus on how 

rough weather in the South of Bay of Bengal influences the shipping along the route.  

So far, the significant wave height data we can obtain through the buoy statistics published by 

Pacific Islands Ocean Observing System (PacIOOS) is limited between January 2011 and June 

2020. We have also collected and analyzed wave data in the Arabian Sea, the South China Sea 

and the East China Sea, but given the coordinates of the buoys, the observation data in the Bay 

of Bengal are the closest to the shipping route.  

Fig. 8 shows probabilities and seasonality 

when an event is likely to occur in this area. 

It is clear that in the Bay of Bengal, spring 

and winter are almost not affected by high 

waves. According to our statistics, the 

number of days with wave heights above 2.5 

meters only accounts for 8% of the season. 

Moreover, the rough days are relatively 

scattered, and the duration of one event is 

mostly around one day, which has little 

impact on shipping. Summer is totally different. More than half of the season is in the rough 

state. Rough dates are concentrated and continuous, and the proportion of 'very rough' is 

significantly higher than in other seasons, leading to hard shipping. Autumn is a transitional 

season between the two extremes, and around 15% of the days are classified as rough in this 

paper.  

After understanding these characteristics, we fitted the data in Fig. 8 to find a suitable 

probability distribution with the minimum error and finally obtained the power normal 

distribution. 

Fig. 8 Rough days Statistic in Bay of Bengal 
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Fig. 9 is the trend of total rough days all year 

round in the past nine years. In this paper, due 

to the definition of events and the lack of data, 

we cannot get an effective distribution related 

to the total number of days of events. Thus, to 

simplify the prediction, we calculate the mean 

and the standard deviation and treat it as a 

normal distribution to predict the total number 

of rough days of the next year. We think that 

such a forecast is sufficient for the 

subsequent analysis, but we also understand 

that such an assumption is not accurate enough. 

As for the distribution of speed influence, we use the statistic result directly. According to the 

data we have, in the past nine years, the number of days that were classified as 'rough' state 

accounts for around 80% of the total rough days, the state' very rough' accounts for 19%, and 

the state 'high' accounts for 1%. Thus, we generate the speed influence according to this 

discrete distribution. 

With all the information above, scenarios are sampled according to the Monte Carlo sampling 

procedure. In general, the more scenarios used in the model, the accuracy of estimation will 

increase correspondingly. However, the large number of scenarios may also result in longer 

computation times. Therefore, we will test with increasing cardinality 𝑤 from 0 to 300 to 

find a trade-off between the number of scenarios and computation times in Section 4.3. 

In the following, we choose to mainly focus our analysis on the autumn months, as autumn is 

a neutralization of extremes, which is better to compare different models. Still, we will also 

mention the characteristics of other seasons but not go into detail. 

4.2.3 Ports 

There are no statistics on the exact time of unloading or loading at each port, but according to 

Tieto, such service times usually keep around one day, so it is assumed that all service times 

are one day. Furthermore, for every port, there is only one berthing at any point in time. If 

more than one ship arrives at the same port at the same time, or if one ship arrives at a port 
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where another ship has started unloading (or loading) already, then ships have to queue up to 

wait. 

The LNG demurrage fee is usually very high, around $60,000 per day or more. This penalty 

will motivate the ship to arrive within the target time window. In real life, the penalty for early 

arrival is relatively lower than those for the delay. In addition, as for the scheduling of ships, 

early arrival can also leave more flexibility in the follow-up plans. Thus, in this paper, we 

assume that the early arrival charge is only 50% of the demurrage fee.  

The different sea distances are measured in nautical miles and are collected from the 'Sea 

Route' website (see Table.6). Each voyage could be traveled via two waypoints in the extended 

stochastic model. The normal path is the shortest one, which runs directly from the south of 

Sri Lanka to north of Sabang and then via the Malacca strait, the Singapore Strait, and Taiwan 

Strait. The long path represents paths that allow ships to avoid wind and waves and is around 

10% longer than the short path. 

From To 
Distance (Nautical Mile) 

Normal Long 

Das Island 

Tokyo 6482 7224 

Kawasaki 6463 7217 

Kisarazu 6458 7212 

Shanghai 5778 6606 

Tianjin 6347 7219 

Caofeidian 6321 7187 

Busan 6076 6932 

Dahej 1245 1245 

Dabhol 1304 1304 

Table. 6 Distance from Das Island to customer ports 

This assumption is based on the distance that a ship has to travel if it wants to avoid a storm 

area whose fetch is 500 nautical miles. This is the typical length of a storm area in the state 

'rough' (Carter, 1982), so we think it is a reasonable number. In this case, Dahej and Dabhol 

will not be influenced, but we want to keep them to compare the speed difference between 

short and long voyages. Thus, the normal path length and the long path length for both India 

ports are the same. 



 39 

4.3 Result Analysis 

4.3.1 Basic Attributes 

In this section, before measuring the stochastic effect, we will first analyze the basic attributes 

of the solution of this case. 

With the increasing number of 

iterations in the SA algorithm, the 

value of the objective function (total 

costs) in the basic model (model I) 

decrease gradually and almost stable at 

around 23000 (dollars in thousands) 

when the number of iterations exceeds 

300. Therefore, in the following, we set 

500 as the benchmark number of 

iteration and get the corresponding results. 

The computational outcomes of this case are composed of two solution sets. The first set of 

the solution is an inventory schedule showed in Fig.11. According to this chart, the inventory 

is well controlled within limits even there is no new arrival order after day 80. 

 

Fig. 11 Inventory Schedule – model I 

The second set is the routing decisions, which include vessel assignments to each route, vessel 
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Overall, laden voyages always have higher speed and higher volatility than the ballast voyage. 
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ensure that the ship leaves on the date within the inventory limit, but also tries to avoid 

unpunctual penalty. Instead, the ballast voyage only needs to make the ship get back to the 

supplier port before the next delivery. However, this situation changed when we divide routes 

into two categories according to the geographical location of customer ports. 

 total short-haul long-haul 

laden speed (ave.) 16.38 13.88 17.62 

std 2.26 1.42 1.29 

ballast speed (ave.) 15.60 15.89 15.46 

std 1.48 1.18 1.66 

Table. 7 Comparison between laden and ballast speed 

Routes to Indian ports are around 1300 nautical miles, while routes to East Asia are all longer 

than 5500 nautical miles. Therefore, we call the former as short-haul and the later as long-

haul.  

In terms of saving fuel costs, both long-haul and short-haul transportation should keep a 

relatively low speed. Nevertheless, from the last two columns of Table. 7, we see that the laden 

speed of the long-haul is much higher than that of a short-haul. One reason might be that 

sailing a long distance at a higher speed can save time for the subsequent planning and ensures 

on-time arrival as much as possible. For example, the total distance from Das Island to 

Shanghai is 5778 nautical miles. When the speed is adjusted from 13 knots to 18 knots, the 

one-way trip can save approximately 5 days. For short-haul, the one-way trip in total is around 

3 days. Therefore, even if the ship adjusts its speed from 13 to 18 knots, the unpunctual cost 

will still not be much influenced. On the contrary, it will increase unnecessary fuel 

consumption instead. 

For the ballast voyage, however, the situation is different. There is little difference in ballast 

speeds between long- and short-haul shipping, and the short-haul speed is even slightly higher. 

This can be explained by the relationship between the ship's load and fuel consumption. The 

ballast voyage can be deemed as zero loads, which uses only 80% as much fuel as the laden 

voyage. Therefore, even if we assigned a higher speed to short-haul shipping, the bunker fuel 

costs will not increase a lot. 
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Fig. 12 Gantt Chart of model I  

(time is measured in hours, 'l' for laden, 'b' for ballast) 

The detailed shipping schedule is presented in a Gantt Chart in Fig. 12. Under this situation, 

the distribution of weather is unclear and is not taken into consideration, so the quality of this 

solution is also unclear. 

To some extent, it could be flexible. For example, Ship 1 will depart from the supplier port on 

the first day, and arrive at Dahej for unloading after four days, after which it returns to the 

supplier port. Assuming that from day 5, Ship 1 would encounter a rough weather event lasting 

3 days, during which the ship's speed would be reduced by 5.3 knots, the actual arrival time 

would be about 20 hours later than initially planned. Originally, Ship 1 will back to the supplier 

port on day 12, and now it will return one day later. However, it does not influence its next 

trip, since the next tour starts around 20 days later. 

However, model I cannot always absorb the delays caused by rough weather. For example, 

assuming Ship 5 comes across a severe rough weather event lasting 4 days on its ballast 

voyage, reducing its speed by 9 knots, Ship 5 is forced to sail more days than expected and 

cannot return to the supplier's port on time. According to the original plan, after Ship 5 returns 

to Busan's supplier, its next sailing task has to be started within two days, which is impossible 

under the current rough situation. The delay will then be passed on to the next voyage and 

affect the inventory schedule. It is highly likely that the inventory exceeds the ceiling. 
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What is worse, a rough event may affect not only the route from Das Island to Busan but also 

other routes to East Asia. Then, it is unwise to rely only on the buffer time in model I to deal 

with the unknown weather events. In other words, the quality of the deterministic solution 

highly depends on the weather distribution in reality. If the solution happens to avoid rough 

events, the quality of the planning is high; if the opposite is the case, the solution of the 

deterministic model then becomes useless, even it has lower costs. That calls for stochastic 

models. 

4.3.2 Uncertainty Effect Analysis 

In this part, the first problem we need to solve is to figure out the best number of scenarios for 

both stochastic models. In theory, the total costs should increase with the increase in the 

number of scenarios, and the rate of growth should gradually slow down. However, after a 

certain threshold, using more scenarios will likely result in a marginal (or no) gain in the total 

costs, but a significant increase in computation time. Therefore, we conducted a sensitivity 

analysis to investigate this trade-off between the number of scenarios and the corresponding 

objective value. 

As shown in Fig. 13, the convergency speed decreased significantly at the beginning as the 

scenario size increases from 0 to 150. After that, the line becomes stable and convergent at 

around 55000 (dollars in thousands). 

Occasionally, the total cost seems to 

decrease as the number of scenarios 

increases (see Fig.13, from 150 

scenarios to 250 scenarios). This 

inaccuracy is probably because the 

solution method used in this thesis is 

a heuristic algorithm. However, as 

far as the general trend is 

concerned, the curve of 

Fig.13 is consistent with our expectations. Under this situation, about 250 scenarios appear to 

be a reasonable number to obtain a meaningful solution. Because if we choose a higher 

scenario number, we will surely get a more accurate result, but the computation time will be 

too high. Two hundred and fifty scenarios seem to be a good trade-off. 

Fig. 13 Cardinality of Scenario Tree – model II 
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Next, we prepare to conduct the same test 

to model III. However, in the process of 

computation, we found that the objective 

value of model III tends to be stable after 

the number of scenarios is greater than 45, 

as shown in Fig. 14. Furthermore, its 

convergency value is not much different 

from that of model I. This may be because 

the loss of bypassing the rough area is 

much less than the loss by going through 

it. At the same time, when the direction of wind and wave is the same as the direction of the 

ship, the ship can even make use of them to increase its actual speed. 

In Section 4.2.3, we give the normal distance and the long distance between ports, respectively, 

in which the longer distance is about 10% more than the normal one. However, to analyze the 

trade-off between the long path choice or sailing in the rough area, we changed the length of 

the longer path several times and tried when the long path is 15%, 20%, 25%, 30% and 35% 

longer than the normal path. The results showed that the total costs of model II and model III 

gradually tended to be consistent when a ship needs to travel 25% more than its normal path. 

In other words, the long detour option becomes meaningless in this case when the cost of 

bypassing the rough area is traveling 25% more distance. 

There is another situation when models II and III tend to be consistent. In spring and winter, 

during which weather events were at extremely low frequency, the solutions are almost the 

same between two models. To be more precise, in that case, models I to III would be mostly 

the same, except that models II and III might have to pay a little more in bunker fuel in the 

second stage.  

Summer is another extreme state. Since the wind and waves cannot be avoided, the scheme 

can only be optimized by adjusting the speed and changing the schedule. The cost of model II 

is higher than 1.2 ∗ 107(dollars in thousands). A significant component of this number is the 

penalty from inventory management failure. Unable to arrive at the customer port on time and 

unable to return to the supplier port before the next scheduled sailing, the ship will surely be 

unable to load LNG in time. In model III, when the length of the long path is less than 1.25 

times of normal path, the total cost still has little difference with model I. 

Fig. 14 Cardinality of Scenario Tree 
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To sum up, the two stochastic models have similar effects when the rough weather effect is 

not significant and does not last long. As rough weather increases in its influence on ships and 

its frequencies, the model III's advantages become more obvious. Adjusting the departure time 

and sailing speed can only absorb the negative effects to a certain extent when the intervals 

between events are longer, but choosing a path can directly avoid all the disadvantages. 

However, model III also has its downside: the path choice can become invalid when the 

distance to bypass the rough area is too long. 

Next, we analyze the specific results of the two models. First of all, in terms of speed 

allocation, the average laden speed of model II and III is 16.46 and 16.21 knots, respectively. 

Moreover, the standard deviation in model II is also slightly higher. This is because in model 

II, under the circumstance of sailing through the wind and waves, if ships still want to ensure 

the punctuality of arrival, speed up is a good option. 

Fig. 15 Comparison of model II and III 
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Second, in terms of ship allocation, the 

solution of model II clearly shows signs of 

avoiding wind and waves, while model III 

does not. Compare the two figures in Fig. 15, 

we can see that in the first 500 hours of the 

season, when the probability of rough days 

are high (according to Fig.16), the schedule 

of model II has tried its best to choose a 

relatively late start time and reduce the 

sailing time of each ship during this period. 

Model III can avoid the wind and waves altogether, so there is no need to do the same as model 

II. 

(dollars in thousands) Model I Model II Model III 

Total Costs 22885.1 55174.9 25908.3 

Table. 8 The total costs of the three models 

Third, the objective values of model II and model III are nearly twice different (see results in 

Table.8). The first probable reason is that after considering different weather scenarios, under 

current constraints, model II still cannot find a way to avoid inventory management failure, 

leading to the inventory larger than the upper limit or lower than the lower bound. Another 

reason is the difference between the number of ship changes. It will cost a lot to change the 

ship abruptly just before departure. Based on the computational results, considering all 

scenarios in model II, the weighted average number of ship changes in model II in the second-

stage is 7. In model III, the number is less than one, which means that it is almost enough to 

deal with the rough weather by path changing rather than reassign ships. 

Finally, from Table.8, we can also see that both the total cost of model II and model III are 

higher than model I. That is because the model I, which can be viewed as a zero scenario 

model, does not take any external factors into account, and it only needs to find a plan with 

the most economical cost. Thus, the result of this kind of deterministic models will always 

have lower costs than a stochastic one. However, given the heuristic and the number of 

iterations, when adapting model I’s solution into stochastic settings, the solution will still be 

feasible but not necessarily the best one anymore. We will use Table. 9 to do the explanation. 

Fig. 16 Rough days 
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Model I  

(in model II 

setting) 

Model II 
Model I  

(in model III 

setting) 

Model III 

Total Costs 58318.7 55174.9 26067.9 25908.3 

Original Schedule 

Costs 
22885.1 28250.3 22885.1 25750.9 

Stochastic part 35433.6 26924.7 3182.8 157.4 

Table. 9 The deterministic solution in stochastic settings 

The total costs of stochastic models, to some extent, can be divided into two parts: the first 

part is the costs for the original schedule, and the second part is the expected value of extra 

costs of changing the original schedule into a new one when different scenarios realized. If we 

only focus on the original schedule costs, it is clear that model I’s solutions have the lowest 

costs. However, when comparing the value of the stochastic part, the disadvantages of model 

I are obvious. That means, on average, model I’s solution will cost far more than the other two 

models’ solutions to adapt to the possible rough weather. In other words, the best solution 

found by model I is not the best anymore and becomes fragile when we consider weather 

influence. If we use that schedule in practice, it will be easily affected by continuous wind and 

wave and ends up higher total costs than solutions given by the stochastic ones. 
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5. Concluding Remark 

5.1 Conclusion 

In this paper, we propose three models to solve LNG-SIRP, generating ‘optimal’ scheduling 

decisions under uncertain weather, and controlling the inventory simultaneously. We put the 

word 'optimal' in quotes because IRP is itself an optimization problem, and we establish and 

solve these models according to the logic of optimization. However, since the method we use 

(the SA algorithm) is heuristic, the final solution obtained is feasible, but not necessarily 

optimal.  

Among the three models, model I is a deterministic model that only minimizes costs for the 

current state and is used as a comparison for the two stochastic models. Thus, before studying 

the uncertain factor, we first analyze the solution provided by this model and found that 

although it can generate a good solution with low costs, it may not be flexible enough to 

manage the schedule when rough events occur. 

Models II and III are generated to deal with uncertain weather. When a rough weather event 

is realized in the second stage, model II will consider to change the shipping speed or 

reschedule to reduce the uncertain influence. In contrast, model III has another choice: taking 

a long detour and bypassing the rough area.  

In total, model III has better performance than model II, especially when the rough dates are 

continuous, and the influence level is high and unavoidable by simply adjusting speed or 

changing the shipping schedule. However, model III also faces problems when the detour's 

distance is so long that it results in a higher loss than sailing through the high wave and strong 

wind area. In this paper, the breakpoint is 1.25 times of the normal path. When the long path 

is more than 1.25 times longer than the short path, the results of the two models tend to be 

consistent. 

Compared to the deterministic model I, both models II and III result in higher total costs. It 

doesn't mean that the stochastic models are worse. On the contrary, they consider hundreds of 

possible scenarios and minimize not only the original schedule costs but also the impact 

brought by uncertain weather conditions. The quality of these solutions should be better than 

the deterministic one. To make a more apparent contrast, we put model I’s solution into 
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stochastic settings. Although its initial schedule cost is still the lowest, the rough weather will 

bring higher impacts and cause higher losses on average to it than to solutions of stochastic 

models.  

The two-stage model proposed in this paper can be extended to multi-stage in future studies, 

and the definition of the uncertain event could be more in detail, including more than one event 

area, so that it can be adapted to a long-term plan. 

5.2 Limits 

5.2.1 Limits in model 

First of all, all our analyses of weather conditions are based on historical data, and models will 

become unreliable if historical data are inaccurate. That calls for more professional and 

accurate weather forecasts. Secondly, the scheduling logic applied in this paper is myopic to 

a certain extent. This is because when assigning ships for each order, this algorithm only 

considers the solution if the current order cannot arrive at the customer's port on time, but does 

not consider whether the overall optimization can be achieved by reallocating the current order 

if the next request is not punctual. 

Third, in the computational results in Section 4, model II always has high inventory 

management failure costs. This might partially be because we set the production rate as 

constant. Actually, the production rate, in the long run, is changeable. Finally, the supplier's 

subjective risk preferences are not taken into account. For uncertain events, risk aversion and 

risk appetite make entirely different decisions. 

5.2.2 Limits in solution methods 

The limits of the SA algorithm are mainly in the following two aspects: on the one hand, it 

needs a large amount of computation, which would be time costly. On the other hand, it is 

uncertain whether the final result is the optimal one. If there is an auxiliary algorithm to prove 

the SA algorithm's correctness, then the solution will be more reliable. 
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Appendix 1 Code for SA Algorithm 

 

import pandas as pd 

import numpy as np 

import copy 

import matplotlib.pyplot as plt 

 

import abc 

import math 

import random 

import sys 

import time 

 

import warnings 

 

warnings.filterwarnings("ignore") 

 

 

def time_string(seconds): 

    """ 

    Returns the time in seconds as a string  hh:MM:SS 

    Recording time of annealing process 

    """ 

    s = int(round(seconds)) 

    h, s = divmod(s, 3600)  # Get the hours and the remaining time 

    m, s = divmod(s, 60)  # The rest of the time is divided into minutes and seconds 

    return '%4i:%02i:%02i' % (h, m, s) 

 

 

class Annealer(object): 

    """ 

    Simulated Annealing 

    """ 

    # defaults 

    # Temperature, max and min 

    Tmax = 25000.0  

    Tmin = 2.5 

    # update the model 

    updates = 200 

 

    # save the viarable 

    best_state = None 

    best_energy = None 

    start = None 

 

    def __init__(self, initial_state=None): 

        self.state = copy.deepcopy(initial_state) 

 

    @abc.abstractmethod 

    def move(self): 

        """ 

        state change 

        """ 
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        pass 

 

    @abc.abstractmethod 

    def energy(self): 

        """ 

        energy calculation 

        """ 

        pass 

 

    def update(self, *args, **kwargs): 

        """ 

        if don’t rewrite update 

        directly use default_update 

        """ 

        self.default_update(*args, **kwargs) 

 

    def default_update(self, step, T, E, acceptance, improvement): 

        """ 

        process output 

        print current temperature, energy, acceptance rate, improvement rate, used time and 

remaining time 

        Acceptance rate: Represents the percentage of moves the Metropolis algorithm has accepted 

since the last update. 

            It includes motion that reduces energy, motion that holds energy constant, and motion 

that increases energy through thermal excitation. 

        Improvement rate: Represents the percentage movement of strictly reduced energy since the 

last update. 

            At high temperatures, it includes both motion that improves the overall state, and 

motion that simply eliminates previously increased energy through thermally induced polarization. 

            At low temperatures, it tends to zero, because the motion that reduces energy is 

exhausted, and the motion that increases energy is no longer thermally accessible. 

        """ 

        elapsed = time.time() - self.start 

        if step == 0: 

            print(' Temperature        Energy    Accept   Improve     Elapsed   

Remaining', 

                  file=sys.stderr) 

            print('\r%12.5f  %12.2f                      %s            ' % 

                  (T, E, time_string(elapsed)), file=sys.stderr, end="\r") 

            sys.stderr.flush() 

        else: 

            remain = (self.steps - step) * (elapsed / step) 

            print('\r%12.5f  %12.2f  %7.2f%%  %7.2f%%  %s  %s\r' % 

                  (T, E, 100.0 * acceptance, 100.0 * improvement, 

                   time_string(elapsed), time_string(remain)), file=sys.stderr, 

end="\r") 

            sys.stderr.flush() 

 

    def anneal(self): 

        """ 

        The energy of the system is minimized by simulated annealing. 

        Return: better state and energy 

        """ 

        step = 0 
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        self.start = time.time() 

        # Cooling factor from Tmax to Tmin 

        Tfactor = -math.log(self.Tmax / self.Tmin) 

        # Initial temperature and energy  

        T = self.Tmax 

        E = self.energy() 

        # pre-state and energy 

        prevState = copy.deepcopy(self.state) 

        prevEnergy = E 

        # best state and energy  

        self.best_state = copy.deepcopy(self.state) 

        self.best_energy = E 

        # acceptance rate、improvement rate 

        trials, accepts, improves = 0, 0, 0 

        if self.updates > 0: 

            updateWavelength = self.steps / self.updates 

            self.update(step, T, E, None, None) 

        # try state transfer 

        result_per_step = [] 

        sec = time.time() 

        # iteration 

        while step < self.steps: 

            step += 1 

            # current temperature 

            T = self.Tmax * math.exp(Tfactor * step / self.steps) 

            # Energy transfer, the change in energy per iteration 

            dE = self.move() 

            if dE is None: 

                E = self.energy() 

                dE = E - prevEnergy 

            else: 

                E += dE 

            trials += 1 

            ### metropolis  

            # if Δt′<0, accept S′ as new solution 

            # else, accept S′ as new solution with the probability exp(-Δt′/T) 

            if dE > 0.0 and math.exp(-dE / T) < random.random(): 

                # Follow the previous state 

                self.state = copy.deepcopy(prevState) 

                E = prevEnergy 

            else: 

                # accept new state 

                accepts += 1 

                if dE < 0.0: 

                    improves += 1 

                # use current state as previous state for next round 

                prevState = copy.deepcopy(self.state) 

                prevEnergy = E 

                #                print(E, self.best_energy) 

                if E < self.best_energy: 

                    # If the energy drops, use it as the best energy and state 

                    self.best_state = copy.deepcopy(self.state) 

                    self.best_energy = E 

            if self.updates > 1: 

                # update console output  
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                if (step // updateWavelength) > ((step - 1) // updateWavelength): 

                    self.update( 

                        step, T, E, accepts / trials, improves / trials) 

                    trials, accepts, improves = 0, 0, 0 

            # The best state for each iteration 

            sec1 = time.time() 

            result_per_step.append([self.best_energy, self.best_state, sec1 - sec]) 

            sec = sec1 

        self.state = copy.deepcopy(self.best_state) 

        # return the best state and energy 

        return self.best_state, self.best_energy, result_per_step 

 

 

class SearchScheme(Annealer): 

    def __init__(self): 

        self.load_data() 

        self.move() 

        super(SearchScheme, self).__init__(self.state) 

 

    def load_data(self): 

        ''' 

        load data 

        ''' 

        filename = 'data_hour.xlsx' 

        # demand schedule 

        self.Requests = pd.read_excel(filename, sheet_name='demand plan', index_col=0) 

        self.dayN = len(self.Requests) * 24 

        self.Requests = self.Requests.replace(0,    

np.nan).dropna(how='all').stack().reset_index() 

        ll = [] 

        for i, line in self.Requests.iterrows(): 

            if line[0] == 1: 

                ll.append(line) 

            else: 

                for _ in range(int(line[0])): 

                    line[0] = 1 

                    ll.append(line) 

        self.Requests = pd.concat(ll, axis=1).T 

        self.Requests.index = range(len(self.Requests)) 

        self.Requests['level_0'] *= 24 

        self.day_request = self.Requests.iloc[:, 0].tolist() 

        # distance from port to supplier 

        self.distance_port = pd.read_excel(filename, sheet_name='supplier2port', 

index_col=0) 

        self.portsL = self.distance_port.index.tolist() 

        # distance from initial point to supplier 

        self.distance_producer = pd.read_excel(filename, sheet_name='init2supplier', 

index_col=0)['distance']  # .sort_values() 

        # discharge window and grace period 

        self.port_days_min, self.port_days_max = pd.read_excel(filename, 

sheet_name='window_limit').iloc[0][['earliest', 'latest']] 

        self.port_days_min *= 24 

        self.port_days_max *= 24 

        # unpunctual penalty 

        self.port_shift_cost = pd.read_excel(filename, sheet_name='window_penalty', 
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index_col=0)[['a', 'b']] 

        # ships 

        self.ships = self.distance_producer.index.tolist() 

        # data of producer 

        self.data_producer = dict(pd.read_excel(filename, sheet_name='producer', 

index_col=0)['data']) 

        self.data_producer['load_time'] *= 24 

        self.data_producer['storage_cost'] /= 24 

        self.data_producer['prod_rate'] = 2 

        self.data_producer['inv_t_unit'] = 

pd.concat([pd.Series(self.data_producer['Initial_inv'], index=range(self.dayN + 1)), 

                                                pd.Series(self.data_producer['prod_rate'], 

                                                          index=range(1, self.dayN + 

1)).cumsum()], axis=1).sum(axis=1) 

        # ship_data 

        self.data_ship = dict(pd.read_excel(filename, sheet_name='ship', 

index_col=0)['data']) 

        for k in ['ship_speed', 'relation_speed_fuel']: 

            self.data_ship[k] = np.array(list(map(float, 

self.data_ship[k].split(',')))) 

        self.data_ship['unload_time'] *= 24 

        self.data_ship['load_time'] *= 24 

        self.data_ship['days_ini2pro'] = self.distance_producer.apply( 

            lambda x: np.ceil(x / (self.data_ship['ship_speed'])).astype(int)) 

        self.data_ship['days_pro2port'] = self.distance_port.stack().apply( 

            lambda x: np.ceil(x / self.data_ship['ship_speed']).astype(int)).unstack() 

        D = {} 

        for port, paths in self.data_ship['days_pro2port'].iterrows(): 

            D[port] = paths.apply(lambda x: pd.Series(x, index=['max', 

'min']))[['min', 'max']] 

        self.data_ship['days_pro2port'] = D 

        # event data 

        self.data_storm = pd.read_excel(filename, sheet_name='event_influence') 

        self.data_probability = pd.read_excel(filename, 

sheet_name='probability',index_col=None) 

        self.data_storm['start_time'] *= 24 

        self.data_storm['end_time'] = self.data_storm['start_time'] + 23 

        self.data_storm['influenced_dates'] = self.data_storm.apply(lambda x: 

set(range(int(x['start_time']), int(x['end_time'] + 1))), axis=1) 

 

    def move(self): 

        # Loop until find the suitable solution 

        while True: 

            try: 

                self.move_() 

                break 

            except: 

                pass 

 

    def move_(self): 

        ''' 

        ship scheme generation 
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        ''' 

        spd1, spd2 = self.data_ship['ship_speed'] 

        # if orders are in the same day, randomly choose one 

        Requests = self.Requests.sample(frac=1).sort_values('level_0') 

        ## save variables 

        # available ships 

        ships_empty = copy.deepcopy(self.ships) 

        ships_empty_w = {w: copy.deepcopy(self.ships) for w in range(1,11)} 

        # product rate per hour 

        producer_fuel = copy.deepcopy(self.data_producer['inv_t_unit']) 

        producer_fuel_w = {w: copy.deepcopy(self.data_producer['inv_t_unit']) for w 

in range(1,11)} 

        # Date of last visit to supplier 

        DAY_pro_last = ship_day_pro = 0 

        DAY_pro_last_w = {w: 0 for w in range(1,11)} 

        ship_day_pro_w = {w: 0 for w in range(1,11)} 

        # shipping details 

        shipL = [] 

        shipL_w = {w: [] for w in range(1,11)} 

        # Ships to return to supplier 

        ship_backto_pro = pd.DataFrame() 

        ship_backto_pro_w = {w: pd.DataFrame() for w in range(1,11)} 

        # The latest variable for the ship to return to the supplier 

        ship_backto_port_day = {} 

        ship_backto_port_day_w = {w: {} for w in range(1,11)} 

        # Queuing days in supplier port 

        producer_queue_Days = [] 

        producer_queue_Days_w = {w: [] for w in range(1,11)} 

        # Queuing days in customer ports 

        port_queue_Days = {port: [] for port in self.portsL} 

        port_queue_Days_w = {w:{port: [] for port in self.portsL} for w in 

range(1,11)} 

        state_w = {w: [] for w in range(1,11)} 

        # the number of ship reassignment 

        ship_changeN = 0 

        delta_fc1 = 0 

        delta_fc2 = 0 

        delta_shift = 0 

        EastA = ['Busan', 'Kawasaki', 'Kisarazu', 'Tokyo', 'Tianjin', 'Shanghai', 

'Caofeidian'] 

 

        i = 0 

        for DAY0, port, need in Requests.values: 

            i += 1 

            #            if i == 1 : 

            #                break 

            DAY = DAY0 

            # judge the date of arrival at the port and the number of queuing days 1 

            day_shift_ = 0 

            while True: 

                if DAY in port_queue_Days[port]: 

                    if random.random() < 0.5: 

                        DAY += 24 

                        day_shift_ += 24 

                    else: 
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                        DAY -= 24 

                        day_shift_ -= 24 

                else: 

                    break 

            # days_pro2port 

            day_pro2port = copy.deepcopy(self.data_ship['days_pro2port'][port]) 

 

            # if there’s no idle ship available 

            if len(ships_empty) == 0: 

                # The date of the fastest return ship to the supplier 

                day_ship_nearest = int(ship_backto_pro.min().min()) 

            else: 

                day_ship_nearest = 0 

 

            # the least number of days for the current ship to return to supplier 

            if len(ships_empty) > 0: 

                day_ship2pro_nearest = 

self.data_ship['days_ini2pro'][ships_empty].apply(lambda x: min(x)).min() 

            else: 

                day_ship2pro_nearest = 0 

 

            # Find the appropriate path from the supplier to customer, and record the days of the 

arrival and queuing days 2 

            path_notok = [] 

            while True: 

                queue_day_pro = 0 

                queue_day_port = 0 

 

                port_fuel = self.data_ship['ship_cap'] 

                # the day when inventory reach the ship capacity 

                day_producer_need = \ 

                producer_fuel[(producer_fuel.index > ship_day_pro) & 

(producer_fuel >= port_fuel)].index[0] 

                # DAY_last to DAY，the day when inventory reach the upper limits 

                day_producer_full = DAY_pro_last + math.ceil( 

                    (self.data_producer['upper_limit'] - producer_fuel[DAY_pro_last]) / 

self.data_producer['prod_rate']) 

 

                # first judge if the ship can arrive on time 

                for path, (delta_min, delta_max) in 

day_pro2port.sample(frac=1).iterrows(): 

                    if path in path_notok: 

                        continue 

                    #                    break 

                    day_pro_min = DAY - delta_max - self.data_ship['load_time'] 

                    day_pro_max = DAY - delta_min - self.data_ship['load_time'] 

                    days_pro_ok = set(range(day_pro_min, day_pro_max + 1)) & set( 

                        range(day_producer_need, day_producer_full + 1)) 

                    days_pro_ok -= set(producer_queue_Days) 

                    days_pro_ok -= set(range(-1, day_ship_nearest)) 

                    days_pro_ok -= set(range(-1, day_ship2pro_nearest)) 

                    if len(days_pro_ok) == 0: 

                        continue 

                    # departure date 
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                    ship_day_pro = random.choice(list(days_pro_ok)) 

                    # laden speed 

                    ship_speed_2 = self.distance_port.loc[port, path] / (DAY - 

ship_day_pro - self.data_ship['load_time']) 

                    ship_speed_2 = self.adj_speed(ship_speed_2) 

                    day_shift = day_shift_ 

                    break 

                # If it cannot arrive on time, find a path that satisfies the grace period 

                else: 

                    for path, (delta_min, delta_max) in 

day_pro2port.sample(frac=1).iterrows(): 

                        #                    break 

                        if path in path_notok: 

                            continue 

                        day_pro_min = DAY - delta_max - self.data_ship['load_time'] + 

self.port_days_min - day_shift_ 

                        day_pro_max = DAY - delta_min - self.data_ship['load_time'] + 

self.port_days_max - day_shift_ 

                        days_pro_ok = set(range(day_pro_min, day_pro_max + 1)) & set( 

                            range(day_producer_need, day_producer_full + 1)) 

                        days_pro_ok -= set(producer_queue_Days) 

                        days_pro_ok -= set(range(-1, day_ship_nearest)) 

                        days_pro_ok -= set(range(-1, day_ship2pro_nearest)) 

                        if len(days_pro_ok) == 0: 

                            continue 

                        # departure date 

                        ship_day_pro = random.choice(list(days_pro_ok)) 

                        ship_day_delta2 = DAY - ship_day_pro - 

self.data_ship['load_time'] 

                        ship_day_delta2_real = np.clip([ship_day_delta2], delta_min, 

delta_max)[0] 

                        # laden speed 

                        ship_speed_2 = self.distance_port.loc[port, path] / 

ship_day_delta2_real 

                        ship_speed_2 = self.adj_speed(ship_speed_2) 

                        # unpunctual days 

                        day_shift = ship_day_pro + ship_day_delta2_real + 

self.data_ship['load_time'] - DAY + day_shift_ 

                        break 

                    # If it cannot arrive on time and there is no path to meet the grace period, 

the supplier will be penalized for exceeding the inventory limit and postpone sailing 

                    else: 

                        day_pro_outlier_min = DAY + self.port_days_min - 

day_pro2port.max().max() - self.data_ship[ 

                            'load_time'] 

                        # If a ship is available to return and arrive at the supplier in time 

                        if day_pro_outlier_min >= max(day_ship2pro_nearest, 

day_ship_nearest): 

                            # departure date 

                            ship_day_pro = day_pro_outlier_min 

                            # unpunctual date 

                            day_shift = self.port_days_min + day_shift_ 

                            path = 'far' 

                            # laden speed 
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                            ship_speed_2 = self.data_ship['ship_speed'][0] 

                            ship_speed_2 = self.adj_speed(ship_speed_2) 

                        else: 

                            # departure date 

                            ship_day_pro = max(day_ship2pro_nearest, day_ship_nearest) 

                            # laden speed 

                            path = 'near' 

                            ship_speed_2 = self.data_ship['ship_speed'][1] 

                            ship_speed_2 = self.adj_speed(ship_speed_2) 

                            # unpunctual dates 

                            day_shift = ship_day_pro + math.ceil( 

                                self.distance_port.loc[port, path] / ship_speed_2) - DAY 

                # arrival date 

                ship_day_port = DAY + day_shift 

                fc1 = (0.0019 * (ship_speed_2 ** 2) - 0.045 * ship_speed_2 + 0.3739) 

* (ship_day_port - ship_day_pro - 24) 

                break 

            # When there are ships at the port, then queue up 

            while True: 

                if ship_day_port + queue_day_port in port_queue_Days[port]: 

                    queue_day_port += 1 

                else: 

                    break 

            # When no ships are available, randomly return ships from the list of ships awaiting 

return 

            if len(ships_empty) == 0: 

                for tp in [('near', 'min'), ('near', 'max'),('far', 'min'), ('far', 

'max')]: 

                    for ship, day in 

ship_backto_pro[tp].sample(frac=1).astype(int).iteritems(): 

                        if day <= ship_day_pro: 

                            # break 

                            d1, d2, port_, speed_1, DAY_ = ship_backto_port_day[ship] 

                            speed_2 = self.adj_speed(self.distance_port.loc[port_, 

tp[0]] / (day - 2 * d2 - d1)) 

                            fc2 = ((0.0019 * (speed_2 ** 2) - 0.045 * speed_2 + 0.3739) 

* 0.8) * (day - 2 * d2 - d1) 

                            shipL.append(['back', port_, ship, 0, day - d2, day - 2 * 

d2, d1, speed_1, speed_2, 

                                          0, 0, tp[0], DAY_, fc2]) 

                            ships_empty.append(ship) 

                            ship_backto_pro.drop(ship, inplace=True) 

                            del ship_backto_port_day[ship] 

                            break 

                    else: 

                        continue 

                    break 

 

                # print(ships_empty) 

                # ships chosen 

            try: 

                while True: 

                    ship = random.choice(ships_empty) 

                    ship_deltas_pro = self.data_ship['days_ini2pro'][ship] 

                    if ship_deltas_pro[1] <= ship_day_pro: 
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                        break 

            except: 

                self.state = [[], 0, 0, 0, 0, 0, 0] 

                #                return 

                # print(ships_empty, ship) 

            ship_delta_1 = random.randint(ship_deltas_pro[1], min(ship_day_pro, 

ship_deltas_pro[0])) 

            ship_speed_1 = self.distance_producer[ship] / ship_delta_1 

            ship_speed_1 = self.adj_speed(ship_speed_1) 

            ship_day_spot = ship_day_pro - ship_delta_1 

 

            # record variables 

            shipL.append( 

                ['load', port, ship, day_shift, ship_day_spot, ship_day_pro, 

ship_day_port, ship_speed_1, ship_speed_2, 

                 queue_day_pro, queue_day_port, path, DAY, fc1]) 

            ships_empty.remove(ship) 

            DAY_pro_last = ship_day_pro 

            producer_fuel.loc[DAY_pro_last:] -= port_fuel 

            producer_queue_Days += list(range(ship_day_pro + queue_day_port, 

ship_day_pro + queue_day_port + 23)) 

            port_queue_Days[port] += list(range(ship_day_port + queue_day_port, 

ship_day_port + queue_day_port + 23)) 

 

            # Record the demand variables of the ship to facilitate the future planning of the 

ballast voyage of the ship 

            delta_2, delta_1 = self.data_ship['days_ini2pro'][ship] 

            delta_pro2spot = random.randint(delta_1, delta_2) 

            speed_ = self.adj_speed(self.distance_producer[ship] / delta_pro2spot) 

            back_days = (ship_day_port + self.data_ship[ 

                'unload_time'] + queue_day_port + day_pro2port + delta_pro2spot * 

2).stack() 

            back_days.name = ship 

            ship_backto_pro = ship_backto_pro.append(back_days) 

            ship_back_port = ship_day_port + self.data_ship['unload_time'] + 

queue_day_port 

            ship_backto_port_day[ship] = [ship_back_port, delta_pro2spot, port, 

speed_, DAY] 

 

 

# Take weather into consideration, repeat the code above 

            for w in range(1,11): 

                DAY_w = DAY0 

                day_shift_w_ = 0 

                while True: 

                    if DAY_w in port_queue_Days_w[w][port]: 

                        if random.random() < 0.5: 

                            DAY_w += 24 

                            day_shift_w_ += 24 

                        else: 

                            DAY_w -= 24 

                            day_shift_w_ -= 24 

                    else: 

                        break 

                # days_pro2port 

                day_pro2port = copy.deepcopy(self.data_ship['days_pro2port'][port]) 
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                if len(ships_empty_w[w]) == 0: 

                   

                    day_ship_nearest_w = int(ship_backto_pro_w[w].min().min()) 

                else: 

                    day_ship_nearest_w = 0 

 

                if len(ships_empty_w[w]) > 0: 

                    day_ship2pro_nearest_w = 

self.data_ship['days_ini2pro'][ships_empty_w[w]].apply(lambda x: min(x)).min() 

                else: 

                    day_ship2pro_nearest_w = 0 

 

                path_notok_w = [] 

                while True: 

                    queue_day_pro_w = 0 

                    queue_day_port_w = 0 

 

                    port_fuel = self.data_ship['ship_cap'] 

                    day_producer_need_w = \ 

                    producer_fuel_w[w][(producer_fuel_w[w].index > ship_day_pro_w[w]) 

& (producer_fuel_w[w] >= port_fuel)].index[0] 

                    day_producer_full_w = DAY_pro_last_w[w] + math.ceil( 

                        (self.data_producer['upper_limit'] - 

producer_fuel_w[w][DAY_pro_last_w[w]]) / self.data_producer['prod_rate']) 

 

                    for path_w, (delta_min, delta_max) in 

day_pro2port.sample(frac=1).iterrows(): 

                        if path_w in path_notok_w: 

                            continue 

                        #                    break 

                        day_pro_min_w = DAY_w - delta_max - self.data_ship['load_time'] 

                        day_pro_max_w = DAY_w - delta_min - self.data_ship['load_time'] 

                        days_pro_ok_w = set(range(day_pro_min_w, day_pro_max_w + 1)) & 

set( 

                            range(day_producer_need_w, day_producer_full_w + 1)) 

                        days_pro_ok_w -= set(producer_queue_Days_w[w]) 

                        days_pro_ok_w -= set(range(-1, day_ship_nearest_w)) 

                        days_pro_ok_w -= set(range(-1, day_ship2pro_nearest_w)) 

                        if len(days_pro_ok_w) == 0: 

                            continue 

                        ship_day_pro_w[w] = random.choice(list(days_pro_ok_w)) 

                        ship_speed_2_w = self.distance_port.loc[port, path_w] / (DAY_w 

- ship_day_pro_w[w] - self.data_ship['load_time']) 

                        ship_speed_2_w = self.adj_speed(ship_speed_2_w) 

                        day_shift_w = day_shift_w_ 

                        break 

 

                    else: 

                        for path_w, (delta_min, delta_max) in 

day_pro2port.sample(frac=1).iterrows(): 

                            #                    break 

                            if path_w in path_notok_w: 

                                continue 

                            day_pro_min_w = DAY_w - delta_max - 
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self.data_ship['load_time'] + self.port_days_min - day_shift_w_ 

                            day_pro_max_w = DAY_w - delta_min - 

self.data_ship['load_time'] + self.port_days_max - day_shift_w_ 

                            days_pro_ok_w = set(range(day_pro_min_w, day_pro_max_w + 

1)) & set( 

                                range(day_producer_need_w, day_producer_full_w + 1)) 

                            days_pro_ok_w -= set(producer_queue_Days_w[w]) 

                            days_pro_ok_w -= set(range(-1, day_ship_nearest_w)) 

                            days_pro_ok_w -= set(range(-1, day_ship2pro_nearest_w)) 

                            if len(days_pro_ok_w) == 0: 

                                continue 

 

                            ship_day_pro_w[w] = random.choice(list(days_pro_ok_w)) 

                            ship_day_delta2_w = DAY_w - ship_day_pro_w[w] - 

self.data_ship['load_time'] 

                            ship_day_delta2_real_w = np.clip([ship_day_delta2_w], 

delta_min, delta_max)[0] 

                      

                            ship_speed_2_w = self.distance_port.loc[port, path_w] / 

ship_day_delta2_real_w 

                            ship_speed_2_w = self.adj_speed(ship_speed_2_w) 

 

                            day_shift_w = ship_day_pro_w[w] + ship_day_delta2_real_w + 

self.data_ship['load_time'] - DAY_w + day_shift_w_ 

                            break 

                         

                        else: 

                            day_pro_outlier_min_w = DAY_w + self.port_days_min - 

day_pro2port.max().max() - self.data_ship[ 

                                'load_time'] 

 

                            if day_pro_outlier_min_w >= max(day_ship2pro_nearest_w, 

day_ship_nearest_w): 

                                ship_day_pro_w[w] = day_pro_outlier_min_w 

 

                                day_shift_w = self.port_days_min + day_shift_w_ 

                                path_w = 'far' 

                                ship_speed_2_w = self.data_ship['ship_speed'][0] 

                                ship_speed_2_w = self.adj_speed(ship_speed_2_w) 

                            else: 

 

                                ship_day_pro_w[w] = max(day_ship2pro_nearest_w, 

day_ship_nearest_w) 

 

                                path_w = 'near' 

                                ship_speed_2_w = self.data_ship['ship_speed'][1] 

                                ship_speed_2_w = self.adj_speed(ship_speed_2_w) 

 

                                day_shift_w = ship_day_pro_w[w] + math.ceil( 

                                    self.distance_port.loc[port, path] / ship_speed_2_w) 

- DAY_w 

 

                    ship_day_port_w = DAY_w + day_shift_w 

                    fc1_w = (0.0019 * (ship_speed_2_w ** 2) - 0.045 * ship_speed_2_w + 
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0.3739) * ( \ 

                                ship_day_port_w - ship_day_pro_w[w] - 24) 

                    if port in EastA: 

                        # judge if there is a weather event 

                        storm_port = self.data_storm[(self.data_storm['scenario'] == 

w)& ('near' == path_w)] 

                    else: 

                        break 

                    if len(storm_port) == 0: 

                        break 

                    path_days = set(range(ship_day_pro_w[w] + (math.ceil( 

                        self.distance_port.loc[port,path_w] * 0.25 / ship_speed_2_w)), 

ship_day_pro_w[w] + (math.ceil( 

                        self.distance_port.loc[port,path_w] * 0.45 / ship_speed_2_w)) 

+ 1)) 

                    storm_port['influenced_dates_ship'] = storm_port.apply(lambda x: 

path_days & x['influenced_dates'], axis=1) 

                    storm_port['influenced_days_ship'] = 

storm_port['influenced_dates_ship'].apply(lambda x: len(x)) 

                    if storm_port['influenced_days_ship'].max() == 0: 

                        break 

 

                    ship_speed_2_w_ = ship_speed_2_w * (1 - 

storm_port['influenced_speed']) 

                    distance_delta2_pro2port = (storm_port['influenced_days_ship'] * 

ship_speed_2_w_).sum() 

 

                    ship_day_port_w = ship_day_pro_w[w] + math.ceil( 

                        (self.distance_port.loc[port, path_w] - 

distance_delta2_pro2port) / ship_speed_2_w + ( 

                        storm_port['influenced_days_ship']).sum()) 

                    fc1_w = (0.0019 * (ship_speed_2_w ** 2) - 0.045 * ship_speed_2_w + 

0.3739) * ( 

                            ship_day_port_w - ship_day_pro_w[w] - 24) 

                    if day_shift_w <= self.port_days_min or day_shift_w >= 

self.port_days_max: 

 

                        day_shift_w = ship_day_port_w - DAY_w 

                        break 

                    else: 

                        day_shift_w = ship_day_port_w - DAY_w 

                        if day_shift_w < self.port_days_min or day_shift_w > 

self.port_days_max: 

                            speed_up = self.distance_port.loc[port, path_w] / 

(self.port_days_max + DAY_w - ship_day_pro_w[w] 

                                                                             - 

(storm_port['influenced_speed'] * storm_port[ 

                                        'influenced_days_ship']).sum()) 

                            speed_low = self.distance_port.loc[port, path_w] / 

(self.port_days_min + DAY_w - ship_day_pro_w[w] 

                                                                              - 

(storm_port['influenced_speed'] * storm_port[ 

                                        'influenced_days_ship']).sum()) 

                            ship_speed_2_w = random.uniform(speed_up, speed_low) 
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                            ship_speed_2_w = self.adj_speed(ship_speed_2_w) 

                            ship_speed_2_w_ = ship_speed_2_w * (1 - 

storm_port['influenced_speed']) 

                            distance_delta2_pro2port = (storm_port['influenced_days_ship'] 

* ship_speed_2_w_).sum() 

 

                            ship_day_port_w = ship_day_pro_w[w] + math.ceil( 

                                (self.distance_port.loc[port, path_w] - 

distance_delta2_pro2port) / ship_speed_2_w + ( 

                                    storm_port['influenced_days_ship']).sum()) 

                            day_shift_w = ship_day_port_w - DAY_w 

                            fc1_w = (0.0019 * (ship_speed_2_w ** 2) - 0.045 * 

ship_speed_2_w + 0.3739) * ( 

                                    ship_day_port_w - ship_day_pro_w[w] - 24) 

                            break 

                        else: 

                            break 

                # calculate fuel consumption change & day_shift change 

                delta_fc1 += self.data_probability['probability'].iloc[w-1] * (fc1_w 

- fc1) 

                if day_shift <= 0 & day_shift_w <= 0: 

                    ds = (day_shift - day_shift_w)*30/24 

                elif day_shift_w >= 0 & day_shift >= 0: 

                    ds = (day_shift_w - day_shift)*50/24 

                elif day_shift <= 0 & day_shift_w >= 0: 

                    ds = day_shift_w * 50/24 - abs(day_shift)*30/24 

                else: 

                    ds = abs(day_shift_w) * 30/24 - day_shift * 50/24 

                delta_shift += self.data_probability['probability'].iloc[w-1] * ds 

 

                # queueing up when there are ships already in the port 

                while True: 

                    if ship_day_port_w + queue_day_port_w in 

port_queue_Days_w[w][port]: 

                        queue_day_port_w += 1 

                    else: 

                        break 

                # When no ships are available, randomly return ships from the list of ships 

awaiting return 

                if len(ships_empty_w[w]) == 0: 

                    for tp_w in [('near', 'min'), ('near', 'max'), ('far', 'min'), 

('far', 'max')]: 

                        for ship_w, day_w in 

ship_backto_pro_w[w][tp_w].sample(frac=1).astype(int).iteritems(): 

                            if day_w <= ship_day_pro_w[w]: 

                                # break 

                                d1_w, d2_w, port_w_, speed_1_w, DAY_w_ = 

ship_backto_port_day_w[w][ship_w] 

                                speed_2_w = 

self.adj_speed(self.distance_port.loc[port_w_, tp_w[0]] / (day_w - 2 * d2_w - 

d1_w)) 

                                fc2_w = ((0.0019 * (speed_2_w ** 2) - 0.045 * speed_2_w 

+ 0.3739) * 0.8) * (day_w - 2 * d2_w - d1_w) 

 

                                storm_pro = self.data_storm[(self.data_storm['scenario'] 
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== w) & ('near'== tp_w[0])] 

                                if len(storm_pro) == 0: 

                                    shipL_w[w].append( 

                                        ['back', port_w_, ship_w, 0, day_w - d2_w, day_w 

- 2 * d2_w, d1_w, speed_1_w, 

                                         speed_2_w, 

                                         0, 0, tp_w[0], DAY_w_, fc2_w]) 

                                    ships_empty_w[w].append(ship_w) 

                                    ship_backto_pro_w[w].drop(ship_w, inplace=True) 

                                    del ship_backto_port_day_w[w][ship_w] 

                                    break 

                                path_back_days_w = set(range(d1_w + 

(math.ceil(self.distance_port.loc[port_w_,tp_w[0]] * 0.55 / speed_2_w)), 

                                                             d1_w + 

(math.ceil(self.distance_port.loc[port_w_, tp_w[0]] * 0.75 / speed_2_w)) + 1)) 

                                storm_pro['influenced_dates_ship'] = storm_pro.apply(lambda 

x: path_back_days_w & x['influenced_dates'], 

                                                                          axis=1) 

                                storm_pro['influenced_days_ship'] = 

storm_pro['influenced_dates_ship'].apply(lambda x: len(x)) 

                                if storm_pro['influenced_days_ship'].max() == 0: 

                                    shipL_w[w].append(['back', port_w_, ship_w, 0, day_w 

- d2_w, day_w - 2 * d2_w, d1_w, speed_1_w, 

                                         speed_2_w, 0, 0, tp_w[0], DAY_w_, fc2_w]) 

                                    ships_empty_w[w].append(ship_w) 

                                    ship_backto_pro_w[w].drop(ship_w, inplace=True) 

                                    del ship_backto_port_day_w[w][ship_w] 

                                    break 

                                speed_2_w = self.adj_speed(speed_2_w) 

                                speed_2_w_ = ship_speed_2_w * (1 + 

storm_pro['influenced_speed']) 

                                distance_delta2_back2pro = 

(storm_pro['influenced_days_ship'] * speed_2_w_).sum() 

                                day_w = d1_w + math.ceil( 

                                    (self.distance_port.loc[port_w_, tp_w[0]] - 

distance_delta2_back2pro) / speed_2_w + ( 

                                        storm_pro['influenced_days_ship']).sum()) 

                                fc2_w = ((0.0019 * (speed_2_w ** 2) - 0.045 * speed_2_w 

+ 0.3739) * 0.8) * (day_w - 2 * d2_w - d1_w) 

                                if day_w <= ship_day_pro_w[w]: 

                                    shipL_w[w].append(['back', port_w_, ship_w, 0, day_w 

- d2_w, day_w - 2 * d2_w, d1_w, speed_1_w, speed_2_w, 

                                                  0, 0, tp_w[0], DAY_w_, fc2_w]) 

                                    ships_empty_w[w].append(ship_w) 

                                    ship_backto_pro_w[w].drop(ship_w, inplace=True) 

                                    del ship_backto_port_day_w[w][ship_w] 

                                    break 

                            else: 

                                continue 

                    break 

 

                    # print(ships_empty) 

                    # ships chosen 

                try: 

                    while True: 
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                        ship_w = random.choice(ships_empty_w[w]) 

                        if ship_w != ship: 

                            ship_changeN += 

self.data_probability['probability'].iloc[w-1] 

 

                        ship_deltas_pro = self.data_ship['days_ini2pro'][ship_w] 

                        if ship_deltas_pro[1] <= ship_day_pro_w[w]: 

                            break 

                except: 

                    self.state = [[], 0, 0, 0, 0, 0] 

                    #                return 

                    # print(ships_empty, ship) 

 

 

                ship_delta_1_w = random.randint(ship_deltas_pro[1], 

min(ship_day_pro_w[w], ship_deltas_pro[0])) 

 

                ship_speed_1_w = self.distance_producer[ship_w] / ship_delta_1_w 

                ship_speed_1_w = self.adj_speed(ship_speed_1_w) 

 

 

                ship_day_spot_w = ship_day_pro_w[w] - ship_delta_1_w 

 

 

                shipL_w[w].append( 

                    ['load', port, ship_w, day_shift_w, ship_day_spot_w, 

ship_day_pro_w[w], ship_day_port_w, ship_speed_1_w, ship_speed_2_w, 

                     queue_day_pro_w, queue_day_port_w, path_w, DAY_w, fc1_w]) 

                ships_empty_w[w].remove(ship_w) 

                DAY_pro_last_w[w] = ship_day_pro_w[w] 

                producer_fuel_w[w].loc[DAY_pro_last_w[w]:] -= port_fuel 

                producer_queue_Days_w[w] += list(range(ship_day_pro_w[w] + 

queue_day_port_w, ship_day_pro_w[w] + queue_day_port_w + 23)) 

                port_queue_Days_w[w][port] += list(range(ship_day_port_w + 

queue_day_port_w, ship_day_port_w + queue_day_port_w + 23)) 

 

                delta_2_w, delta_1_w = self.data_ship['days_ini2pro'][ship_w] 

                delta_pro2spot_w = random.randint(delta_1_w, delta_2_w) 

                speed_w_ = self.adj_speed(self.distance_producer[ship_w] / 

delta_pro2spot_w) 

                back_days_w = (ship_day_port_w + self.data_ship[ 

                    'unload_time'] + queue_day_port_w + day_pro2port + delta_pro2spot_w 

* 2).stack() 

                back_days_w.name = ship_w 

                ship_backto_pro_w[w] = ship_backto_pro_w[w].append(back_days_w) 

                ship_back_port_w = ship_day_port_w + self.data_ship['unload_time'] + 

queue_day_port_w 

                ship_backto_port_day_w[w][ship_w] = [ship_back_port_w, 

delta_pro2spot_w, port, speed_w_, DAY_w] 

                state_w[w] = [ship_backto_pro_w[w], ship_back_port_w, 

ship_backto_port_day_w[w]] 

 

            # let the rest ships back to supplier 

        for ship, days in ship_backto_pro.sample(frac=1).astype(int).iterrows(): 

            #            break 
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            for tp, day in days.iteritems(): 

                #                break 

                d1, d2, port_, speed_1, DAY_ = ship_backto_port_day[ship] 

                speed_2 = self.adj_speed(self.distance_port.loc[port_, tp[0]] / (day 

- 2 * d2 - d1)) 

                fc2 = ((0.0019 * (speed_2 ** 2) - 0.045 * speed_2 + 0.3739) * 0.8) * 

(day - 2 * d2 - d1) 

                shipL.append(['back', port_, ship, 0, day - d2, day - 2 * d2, d1, 

speed_1, speed_2, 

                              0, 0, tp[0], DAY_, fc2]) 

                ships_empty.append(ship) 

                ship_backto_pro.drop(ship, inplace=True) 

                del ship_backto_port_day[ship] 

                break 

        df_ship = pd.DataFrame(shipL, columns=['direction', 'port', 'ship', 

'unpunctual_days', 'initial_date', 'date_producer', 'date_port', 'speed_initial', 

'speed_deliver', 'queue_producer', 'queue_port', 'path', 'date', 'fuel_consumption']) 

        cost_producer_stock = (producer_fuel * self.data_producer['inv_cost']).sum() 

        # cost of inventory management failure 

        cost_producer_outlier = len(producer_fuel[producer_fuel > 

self.data_producer['upper_limit']]) * self.data_producer[ 

            'penalty_uplimit'] + \ 

                                len(producer_fuel[producer_fuel < 

self.data_producer['lower_limit']]) * self.data_producer[ 

                                    'penalty_lowlimit'] 

        #======let the rest ships back to supplier under different scenarios====== 

        for w in range(1,11): 

            for ship_w, days_w in 

state_w[w][0].sample(frac=1).astype(int).iterrows(): 

                #            break 

                for tp_w, day_w in days_w.iteritems(): 

                    #                break 

                    d1_w, d2_w, port_w_, speed_1_w, DAY_w_ = state_w[w][2][ship_w] 

                    speed_2_w = self.adj_speed(self.distance_port.loc[port_w_, 

tp_w[0]] / (day_w - 2 * d2_w - d1_w)) 

                    fc2_w = ((0.0019 * (speed_2_w ** 2) - 0.045 * speed_2_w + 0.3739) 

* 0.8) * (day_w - 2 * d2_w - d1_w) 

                        # judge the weather event 

                    if port_w_ in EastA: 

                        storm_pro = self.data_storm[(self.data_storm['scenario'] ==   

w)] 

                    else: 

                        shipL_w[w].append( 

                            ['back', port_w_, ship_w, 0, day_w - d2_w, day_w - 2 * 

d2_w, d1_w, speed_1_w, 

                             speed_2_w, 0, 0, tp_w[0], DAY_w_, fc2_w]) 

                        ships_empty_w[w].append(ship_w) 

                        ship_backto_pro_w[w].drop(ship_w, inplace=True) 

                        del ship_backto_port_day_w[w][ship_w] 

                        break 

                    if len(storm_pro) == 0: 

                        shipL_w[w].append( 

                            ['back', port_w_, ship_w, 0, day_w - d2_w, day_w - 2 * 

d2_w, d1_w, speed_1_w, 

                             speed_2_w, 0, 0,tp_w[0], DAY_w_, fc2_w]) 
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                        ships_empty_w[w].append(ship_w) 

                        ship_backto_pro_w[w].drop(ship_w, inplace=True) 

                        del ship_backto_port_day_w[w][ship_w] 

                        break 

                    path_back_days_w = set(range(d1_w + 

(math.ceil(self.distance_port.loc[port_w_, tp_w[0]] * 0.55 / speed_2_w)), 

                                                 d1_w + 

(math.ceil(self.distance_port.loc[port_w_, tp_w[0]] * 0.75 / speed_2_w)) + 1)) 

                    storm_pro['influenced_dates_ship'] = storm_pro.apply(lambda x: 

path_back_days_w & x['influenced_dates'], 

                                                              axis=1) 

                    storm_pro['influenced_days_ship'] = 

storm_pro['influenced_dates_ship'].apply(lambda x: len(x)) 

                    if storm_pro['influenced_days_ship'].max() == 0: 

                        shipL_w[w].append( 

                            ['back', port_w_, ship_w, 0, day_w - d2_w, day_w - 2 * 

d2_w, d1_w, speed_1_w, 

                             speed_2_w, 0, 0, tp_w[0], DAY_w_, fc2_w]) 

                        ships_empty_w[w].append(ship_w) 

                        ship_backto_pro_w[w].drop(ship_w, inplace=True) 

                        del ship_backto_port_day_w[w][ship_w] 

                        break 

                    speed_2_w = self.adj_speed(speed_2_w) 

                    speed_2_w_ = ship_speed_2_w * (1 + storm_pro['influenced_speed']) 

                    distance_delta2_back2pro = (storm_pro['influenced_days_ship'] * 

speed_2_w_).sum() 

                    day_w = d1_w + math.ceil((self.distance_port.loc[port_w_, tp_w[0]] 

- distance_delta2_back2pro) / speed_2_w + (storm_pro['influenced_days_ship']).sum()) 

                    fc2_w = ((0.0019 * (speed_2_w ** 2) - 0.045 * speed_2_w + 0.3739) 

* 0.8) * (day_w - 2 * d2_w - d1_w) 

                    shipL_w[w].append(['back', port_w_, ship_w, 0, day_w - d2_w, day_w 

- 2 * d2_w, d1_w, speed_1_w, speed_2_w, 

                                  0, 0, tp_w[0], DAY_w_, fc2_w]) 

                    delta_fc2 += self.data_probability['probability'].iloc[w-1] * (fc2 

- fc2_w) 

                    ships_empty_w[w].append(ship_w) 

                    ship_backto_pro_w[w].drop(ship_w, inplace=True) 

                    del ship_backto_port_day_w[w][ship_w] 

                    break 

        cost_producer_stock_w = 0 

        cost_producer_outlier_w = 0 

        cost_producer_stock_w += (((producer_fuel_w[w] * 

self.data_producer['inv_cost']).sum() - cost_producer_stock) * 

                                  self.data_probability['probability'].iloc[w - 1]) 

        # cost of inventory management failure 

        cost_producer_outlier_w += (((len(producer_fuel_w[w][producer_fuel_w[w] > 

self.data_producer['upper_limit']]) * \ 

                                      self.data_producer[ 

                                          'penalty_uplimit'] + \ 

                                      len(producer_fuel_w[w][producer_fuel_w[w] < 

self.data_producer['lower_limit']]) * \ 

                                      self.data_producer[ 

                                          'penalty_lowlimit']) - cost_producer_outlier) * 

                                    self.data_probability['probability'].iloc[w - 1]) 
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        cost_2nd = cost_producer_stock_w + cost_producer_outlier_w 

        delta_fc = delta_fc1 + delta_fc2 

        self.state = [df_ship, producer_fuel, ship_changeN, delta_fc, delta_shift, 

cost_2nd] 

 

    def adj_speed(self, speed): 

        ''' 

        speed control within the limits 

        ''' 

        return min(max(speed, self.data_ship['ship_speed'][0]), 

self.data_ship['ship_speed'][1]) 

 

    def energy(self): 

        ''' 

        cost calculation 

        ''' 

        df_ship, producer_fuel, ship_changeN, delta_fc, delta_shift, cost_2nd= 

self.state 

        if len(df_ship) == 0: 

            return 10 ** 12 

        # storage costs 

        cost_producer_stock = (producer_fuel * self.data_producer['inv_cost']).sum() 

        cost_producer_outlier = len(producer_fuel[producer_fuel > 

self.data_producer['upper_limit']]) * self.data_producer[ 

            'penalty_uplimit'] + \ 

                                len(producer_fuel[producer_fuel < 

self.data_producer['lower_limit']]) * self.data_producer[ 

                                    'penalty_lowlimit'] 

        # transportation costs 

        a1, a2, a3 = self.data_ship['relation_speed_fuel'] 

        df_ship.dtypes 

        df_ship['fuel_cost'] = df_ship['fuel_consumption'] * df_ship['speed_deliver'] * 

self.data_ship['fuel_price'] 

        cost_ship_transport = df_ship['fuel_cost'].sum(axis=1).sum() 

        # port queueing cost 

        cost_port_shift = 0 

        for diff, (a, b) in self.port_shift_cost.iterrows(): 

            if diff < 0: 

                df_shift = df_ship[df_ship['unpunctual_days'] < 

diff]['unpunctual_days'].abs() 

                df_shift_day = np.ceil(df_shift / 24) 

                cost_port_shift += (a * df_shift_day + b).sum() 

            else: 

                df_shift = df_ship[df_ship['unpunctual_days'] > 

diff]['unpunctual_days'].abs() 

                df_shift_day = np.ceil(df_shift / 24) 

                cost_port_shift += (a * df_shift_day + b).sum() 

        # cost of out of the grace period 

        request_out = df_ship[((df_ship['date_port'] - df_ship['day']) < 

self.port_days_min) | ( 

                    (df_ship['date_port'] - df_ship['day']) > self.port_days_max)] 

        cost_request_out = self.data_ship['out_grace'] * len(request_out) 
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        cost_ship_changeN = self.data_producer['cost_ship_change'] * ship_changeN 

        cost = cost_port_shift + cost_ship_transport + cost_producer_stock + 

cost_producer_outlier + cost_request_out \ 

               + cost_ship_changeN + delta_fc * self.data_ship['fuel_price'] + 

delta_shift 

        return cost 

 

    def save_result(self): 

        suffix = 'storm' 

        df_ship, producer_fuel, ship_changeN, delta_fc, delta_shift,cost_2nd= state 

 

        # Iteration chart 

        pd.Series([k[0] for k in rounds]).plot(figsize=(8, 5)) 

        plt.savefig('iteration_%s.png' % suffix, dpi=200) 

        plt.show() 

        plt.close() 

 

        # Gantt Chart 

        df_ship_to = df_ship[df_ship['direction'] == 'load'][['port', 'ship', 

'date_initial', 'date_producer', 'date_port', 'day']] 

        df_ship_back = df_ship[df_ship['direction'] == 'back'][['port', 'ship', 

'date_initial', 'date_producer', 'date_port', 'day']] 

        fig, ax = plt.subplots(1, 1, figsize=(12, 8)) 

        ports = df_ship['port'].drop_duplicates().tolist() 

        colors = {'Kawasaki': 'lightcoral', 'Kisarazu': 'indianred', 'Tokyo': 

'firebrick', 'Busan': 'lightblue', 

                  'Tianjin': 'cornflowerblue', 'Caofeidian': 'deepskyblue', 

'Shanghai': 'royalblue', 'Dahej': 'wheat', 

                  'Dabhol': 'gold'} 

        port_del = copy.deepcopy(ports) 

        for port, ship, day_spot, day_pro, day_port, _ in df_ship_to.values: 

            if port in port_del: 

                plt.barh(ship, day_pro - day_spot, left=day_spot, color=colors[port], 

edgecolor='k', height=0.5, 

                         label=port) 

                port_del.remove(port) 

            else: 

                plt.barh(ship, day_pro - day_spot, left=day_spot, color=colors[port], 

edgecolor='k', height=0.5) 

            plt.barh(ship, day_port - day_pro, left=day_pro, color=colors[port], 

edgecolor='k', height=0.5) 

            plt.text(day_port / 2 + day_spot / 2, ship, 'l', ha='center', 

va='bottom', fontsize=10) 

        for port, ship, day_spot, day_pro, day_port, _ in df_ship_back.values: 

            plt.barh(ship, day_spot - day_pro, left=day_pro, color=colors[port], 

edgecolor='k', height=0.5) 

            plt.barh(ship, day_pro - day_port, left=day_port, color=colors[port], 

edgecolor='k', height=0.5) 

            plt.text(day_port / 2 + day_spot / 2, ship, 'b', ha='center', 

va='bottom', fontsize=10) 

        plt.legend() 

        plt.grid(True) 

        plt.title('scheme') 

        plt.xlabel('time') 

        plt.ylabel('ship') 

        plt.savefig('./ShipScheme_%s.png' % suffix, dpi=500) 
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        plt.show() 

        plt.close() 

 

        df_ship.columns = ['direction', 'port', 'ship', 'port_advance/delay', 

'day_spot', 'day_producer', 

                           'day_port', 'speed_producer', 'speed_port', 

'queue_producer', 'queue_port', \ 

                           'path', 'day_request', 'fuel_rate', 

'fuel_prc_spot2producer', 'fuel_prc_producer2port'] 

        # save excel 

        with pd.ExcelWriter('Result_%s.xlsx' % suffix) as writer: 

            df_ship.to_excel(writer, sheet_name='ship_scheme', index=None) 

            producer_fuel.to_excel(writer, sheet_name='producer_story') 

            pd.Series([k[0] for k in rounds]).to_excel(writer, 

sheet_name='target_func', header=None) 

        print(ship_changeN) 

        print(delta_shift) 

        print(delta_fc) 

 

if __name__ == '__main__': 

 

    self = SearchScheme() 

    # iteration 

    self.steps = 200 

    state, e, rounds = self.anneal() 

    self.save_result() 

 


