

LNG Inventory Routing Problem
Under Uncertain Weather

FENG Xiaozhi

Supervisor: Stein.W.Wallace

Master of Science in Economics and Business Administration

NORWEGIAN SCHOOL OF ECONOMICS

This thesis was written as a part of the Master of Science in Economics and Business

Administration at NHH. Please note that neither the institution nor the examiners are

responsible − through the approval of this thesis − for the theories and methods used, or results

and conclusions drawn in this work.

Norwegian School of Economics

Bergen, Spring, 2020

 2

Executive Summary

The inventory routing problem (IRP) in Liquefied Natural Gas (LNG) is one of the

representative maritime IRP. In this problem, how to hedge the risk of uncertain voyage time

brought by uncertain weather has long been a challenging issue for LNG suppliers. Given high

costs in LNG delivery operations and storage, efficient inventory management and scheduling

can yield substantial savings. This paper first introduces the LNG supply chain, describing

how the uncertain weather conditions influence the shipment and then establishes two

stochastic models to find the optimal solution.

The first one focuses on reducing the uncertain influence through speed and ship schedule

adjustments when the weather condition is realized in the second stage. In contrast, the second

one extends the first model, adding a path choice so that ships can bypass the area with rough

weather rather than go through it. A deterministic model is generated at the same time and

works as a reference to compare with the two stochastic models. Finally, a real-world case

computation is conducted to evaluate the models.

From the computational results, we see that both stochastic models result in higher costs than

the deterministic one. However, when adapting the deterministic solution to stochastic

settings, the result is quite different. Although the original schedule cost of the deterministic

solution is still the lowest, the value of the stochastic part (expected value of extra costs of

changing the original schedule under different possible scenarios) is significantly higher than

the two stochastic models' solutions, leading to higher total costs. It means that the schedule

chosen by the deterministic model is not the most economical one facing the uncertain weather

influence.

When comparing the results of the two stochastic models, we find that when the rough weather

days are scattered and short, there's nearly no difference between the two models. And if the

stormy days are concentrated and continuous, the model with path choice has better

performance because it can avoid all the negative influences brought by the bad weather.

However, when the long detour which can bypass the rough area is too long, this choice

becomes meaningless. At this time, the solutions of these two stochastic models become

almost consistent.

 3

Preface

In 2019, I learned about the topic of natural gas transportation for the first time on the Land

Use course and became very interested in it. Coincidentally, after assessing many topics

related to natural gas transportation, I found a topic similar to the one I wanted to explore in

the Shipping and Logistics Research Center. After discussing with my supervisor, Prof. Stein

Wallace, and Dr. Xin Wang of Tieto Company, we finally settled the research content on the

establishment and application of the stochastic model in LNG inventory routing.

The research process was exciting and creative at the beginning. However, due to the outbreak

of the epidemic and various unexpected things that happened to me, the writing process of this

master thesis became extremely tortuous. Here, I have to thank my supervisor, Prof. Stein W.

Wallace, for helping me during every difficult time along the way. He was the one who gave

me confidence and convinced me that I was capable of doing my best to finish this paper when

I was about to give up. I would also like to thank Dr. Xin Wang for the useful information he

has provided, which has given me a better understanding of the operation mode of the industry.

Finally, I would like to thank the doctors and nurses who provided me with all conveniences

during my quarantine days to ensure that I could attend classes and finish my studies. It was

an unforgettable and unique experience for me.

Xiaozhi FENG

 4

Contents

EXECUTIVE SUMMARY .. 2

PREFACE ... 3

CONTENTS .. 4

FIGURE LIST .. 6

TABLE LIST .. 7

LIST OF ABBREVIATIONS .. 8

1. INTRODUCTION ... 10

2. LITERATURE REVIEW ... 13

3. MODEL .. 15

3.1 PROBLEM DESCRIPTION .. 15

3.2 MATHEMATICAL MODEL ... 18

3.2.1 Basic model – Model I .. 18

3.2.2 Stochastic Models ... 22

3.2.3 Solution Method ... 26

4. COMPUTATIONAL RESULT .. 32

4.1 CASE BACKGROUND.. 32

4.1.1 Supplier .. 32

4.1.2 Customers ... 33

4.2 DATA SOURCE ... 33

4.2.1 Operation data ... 34

4.2.2 Weather and Scenario Generation ... 35

4.2.3 Ports ... 37

4.3 RESULT ANALYSIS .. 39

4.3.1 Basic Attributes .. 39

4.3.2 Uncertainty Effect Analysis .. 42

 5

5. CONCLUDING REMARK ... 47

5.1 CONCLUSION .. 47

5.2 LIMITS .. 48

5.2.1 Limits in model .. 48

5.2.2 Limits in solution methods .. 48

REFERENCES ... 49

APPENDIX 1 CODE FOR SA ALGORITHM .. 52

 6

Figure List

Fig. 1 The LNG Supply Chain ... 10

Fig. 2 Time Window and Penalty ... 16

Fig. 3 Illustration for ship routes .. 16

Fig. 4 Fuel Consumption Characteristics ... 17

Fig. 5 Scheduling Logic for each order .. 27

Fig. 6 Rough area define illustration .. 31

Fig. 7 Logic of Weather Influence ... 31

Fig. 8 Rough days Statistic in Bay of Bengal .. 36

Fig. 9 Trend line of total rough days in Bay of Bengal .. 37

Fig. 10 Number of Iteration – model I ... 39

Fig. 11 Inventory Schedule – model I .. 39

Fig. 12 Gantt Chart of model I ... 41

Fig. 13 Cardinality of Scenario Tree – model II .. 42

Fig. 14 Cardinality of Scenario Tree – model III ... 43

Fig. 15 Comparison of model II and III ... 44

Fig. 16 Rough days distribution in Autumn ... 45

file:///C:/Users/fengx/Desktop/Feng_draft%20v.4.docx%23_Toc47801723
file:///C:/Users/fengx/Desktop/Feng_draft%20v.4.docx%23_Toc47801724
file:///C:/Users/fengx/Desktop/Feng_draft%20v.4.docx%23_Toc47801725
file:///C:/Users/fengx/Desktop/Feng_draft%20v.4.docx%23_Toc47801726
file:///C:/Users/fengx/Desktop/Feng_draft%20v.4.docx%23_Toc47801727
file:///C:/Users/fengx/Desktop/Feng_draft%20v.4.docx%23_Toc47801728
file:///C:/Users/fengx/Desktop/Feng_draft%20v.4.docx%23_Toc47801729
file:///C:/Users/fengx/Desktop/Feng_draft%20v.4.docx%23_Toc47801730
file:///C:/Users/fengx/Desktop/Feng_draft%20v.4.docx%23_Toc47801731
file:///C:/Users/fengx/Desktop/Feng_draft%20v.4.docx%23_Toc47801734
file:///C:/Users/fengx/Desktop/Feng_draft%20v.4.docx%23_Toc47801735
file:///C:/Users/fengx/Desktop/Feng_draft%20v.4.docx%23_Toc47801736
file:///C:/Users/fengx/Desktop/Feng_draft%20v.4.docx%23_Toc47801737

 7

Table List

Table. 1 Sets, Parameters, and Variables ... 19

Table. 2 Parameters and Variables in Basic Stochastic Model 23

Table. 3 Parameters and Variables in the Extended Model ... 26

Table. 4 Data and Units .. 34

Table. 5 Sea state classification .. 35

Table. 6 Distance from Das Island to customer ports .. 38

Table. 7 Comparison between laden and ballast speed .. 40

Table. 8 The total costs of the three models ... 45

Table. 9 The deterministic solution in stochastic settings .. 46

 8

List of Abbreviations

Abbreviations in order of appearance in the thesis:

NG Natural Gas

LNG Liquefied Natural Gas

BOG Boil-off Gas

ADP Annual Delivery Program

SIRP Stochastic LNG Inventory Routing Problem

IRP Inventory Routing Problem

ADNOC Abu Dhabi National Oil Company

MIP Mixed-Integer Programming

DES Delivered Ex Ship

SA Simulated Annealing Algorithm

TEPCO Tokyo Electric Power Company

SDS Shipping Delivery Schedule

UAE United Arab Emirates

LPG Liquefied Petroleum Gas

FOB Free on Board

 9

This page intentionally left blank

 10

1. Introduction

Natural gas (NG) is the second-largest energy source in world power generation, "representing

22% of generated power globally and the only fossil fuel whose share of primary energy

consumption is projected to grow" (World Energy Council, 2016). In 2018, both global

consumption and production increased by over 5%, one of the most substantial growth rates

in either gas demand or output for more than three decades (BP Department, 2018). Moreover,

the growth on the demand side is mainly concentrated in Asian countries such as China and

Japan.

Pipelines are the conventional way of transporting natural gas and are cost-efficient for long-

distance transportation. However, to connect suppliers and consumers in different continents

and fulfill the trans-ocean demand, for example, from suppliers in North America to customers

in China and Japan, shipping NG in the form of liquefied natural gas (LNG) has become a

much more convenient and efficient method. By 2018, LNG accounted for 45.7% of the

natural gas trade, compared to 30.8% in 2008 (BP Department, 2018). This situation leads to

an increased complexity of the LNG supply chain.

Fig. 1 The LNG Supply Chain

(Source: Roar Grønhaug, 2008)

Fig.1 shows the complete LNG supply chain. Once NG is produced, it is stored in a storage

tank in the liquid form at a temperature of -160℃. The volume of NG in the liquefied state is

around 1/600 of the volume of NG in the gaseous state. Then, LNG is transported from the

production plant to a consumer port by the LNG tanker. During maritime transportation, a

certain amount of LNG is vaporized. This boil-off gas (BOG) cannot be delivered to customers

and is always considered as a loss. After that, when the LNG tanker arrives at the customer

 11

port, LNG is transformed back to the gaseous state for road-based transportation (Thomas and

Dawe, 2003).

In light of these special requirements, shipping NG requires significant capital investments

and operating expenses. The capital cost of a liquefaction plant can be as high as 600 dollars

per ton per annum production while the capital cost of an LNG vessel ranges between 200 and

400 million dollars. Operational costs are also significant; the cost of daily vessel charters

average around 48,800 dollars (Argus, 2020). Thus, the LNG market has been traditionally

characterized by relatively rigid and long-term contracts and operations, which always

fulfilled with the Annual Delivery Program (ADP).

Typically, these contracts will specify a delivery date and a grace period, as well as the amount

of LNG needed each time. During the implementation of agreements, for suppliers, the major

concern is whether the ship can deliver goods on time. Due to poor scheduling and

uncertainties, such as bad weather, late deliveries can happen from time to time. It will not

only increase port costs and operation costs but also affect the subsequent delivery plan. Thus,

there is a need for more efficient and advanced planning tools to manage the inventory level

and adjust the shipping schedule in time.

In this paper, focusing on tactical planning, we study the process from liquefaction to

regasification of the LNG supply chain (highlighted part in Fig.1). The aim is to optimize the

LNG inventory and shipping schedule, minimizing the sum of all operating costs and penalty

costs from uncertainties, and finding the optimal speed for each vessel in every voyage at the

same time. This problem is traditionally classified as a stochastic LNG inventory routing

problem (SIRP).

To solve this problem, we first establish a basic IRP model without considering random events

to improve the shipping schedule. After that, a stochastic model and its extended version,

which take weather influence into account, are presented and compared to the results of the

previous one.

The rest of the paper is organized as follows: The literature review and contributions of this

thesis will be presented in Section 2. In Section 3, the LNG-SIRP problem is first introduced,

then the relevant mathematical formulations and solution methods are given in 3.2. After that,

all models will be tested on a real case from Abu Dhabi National Oil Company (ADNOC) in

 12

the computational study in Section 4. Finally, in Section 5, we present some concluding

remarks, as well as limitations.

 13

2. Literature Review

The inventory-routing problem (IRP) integrates inventory management, vehicle routing, and

delivery scheduling decisions. The origin of this study is rooted in the seminal paper of Bell

et al. (1983) published around 35 years ago, which formulated the first IRP as a mixed-integer

program to manage industrial gases at customer locations. After decades of development, it

has become a relatively well-established research field, and there are several reviews on this

issue.

Andersson, Hoff, Christiansen, Hasle, and Løkketangen (2010) distinguish the IRP by road-

based or maritime-based first and then classify all literature by planning horizon, demand,

topology, routing, inventory, vehicle fleet, and solution approach. Coelho et al. (2014)

concentrate more on structural variants and the availability of information on customer

demand, focusing on methodologies. Roldan et al. (2017) emphasize on stochastic problems,

such as demand and lead times, reviewing solutions to multi-depot IRPs. In this article,

maritime-based IRP is the focal point.

Oil, gas, and other chemical goods are the main study objects in maritime IRP problems

because of their maritime shipping environment. As one of the representative maritime IRPs,

the number of studies on LNG businesses shows an increasing trend from 2009, when the

LNG demand increased dramatically. Grønhaug and Christiansen (2009) conduct one of the

earliest LNG-IRP studies, setting a mixed-integer programming (MIP) model and formulating

it in both arc-flow and path-flow models. In their article, inventories at liquefaction and

regasification plants, as well as routing, are considered. Later, Shao et al. (2015), Mutlut et al.

(2015), Halvorsen-Weare and Fagerholt (2013), Rakke et al. (2011) and Stålhane et al. (2012)

attempt to develop cost-efficient ADPs. Shao, Furman, Goel, and Hoda (2015) develop a

hybrid heuristic strategy to improve LNG-IRP solutions proposed by Goel et al. (2012).

From these papers, we can see the significant progress in LNG-IRP in the past three decades.

However, these models still have limitations. First, they assume that the shipping speed is

fixed, which means that each route has a given number of days to travel. In practice, an LNG

tanker can often adjust its speed to shorten or lengthen shipping days to match production and

inventory levels at suppliers and reduce additional costs due to untimely arrival. Siti et al.

(2015) and Wang et al. (2019) both present deterministic IRP models that can optimize the

speed. The former provides a shipping schedule that considers port dwelling time, while the

 14

latter analyzes the fuel consumption change caused by the speed change and its impact on the

environment, and the option of speed changing affords the ship operator more operational

flexibility. After taking the shipping speed as a variable, LNG IRP becomes a mixed-Integer

non-linear program, and the solution procedures become complicated and diversified.

Second, most of these models are deterministic, not considering uncertainties. Yet, in reality,

the LNG-IRPs are influenced by many uncertain factors. Stochastic demand, travel time, boil-

off rate and fluctuating market price, etc. can challenge the accuracy of established models,

weakening the application of models in real industries. Using average numbers is the most

straightforward and simple way to deal with uncertainties (Bell et al., 1983; Federgruen and

Zipkin, 1984). In recent years, more advanced methods have been developed. A three-stage

stochastic programming technique was proposed by Zhang et al. (2017) to design the LNG

supply system. They mainly optimize the infrastructure development and inventory-routing

decisions, and the proposed methodology was evaluated in a real case study in China. Cho et

al. (2018) introduce an IRP to design the LNG supply system under uncertain weather

conditions. They applied a stochastic mixed-integer programming (MIP) model to maximize

the total expected revenue and concurrently minimize the total disruption cost caused by the

uncertain effects of the dust storm.

Finally, the clear trend changing from long-term to short-term contracts puts forward new

requirements for planning. Reroute and reassignment have also become an increasingly

important issue in the context of short-term and high variably contracts.

Hence in this paper, a two-stage stochastic model will be developed considering uncertain

weather conditions and variable shipping speed. Besides, an extended model takes into

account additional options for ships facing unpleasant weather. Assume that there is no longer

only one path between two ports; instead, longer paths that would not frequently be used are

among the ship's options. When the unpleasant weather is realized, reassignment and speed

changes are not the only ways to optimize -- ships can choose to avoid rough areas as they do

in real life. This problem is an NP-hard problem that is not easy to solve. Thus, we use the

simulated annealing heuristic algorithm to solve the model. Finally, the computation of a real-

world case from Abu Dhabi National Oil Company is conducted to do the evaluation.

 15

3. Model

3.1 Problem Description

The problem considered in this paper is a tactical LNG IRP for an LNG producer who is in

charge of a series of vessels. The trading mode used here is Delivered Ex Ship (DES), which

means that besides LNG production and storage, the producer is also responsible for the

transportation to customers that are located all over the world. In other words, it is the producer

who pays for all transportation and insurance until the ship has arrived at the port of

destination. The customer then takes over the goods and assumes all costs and risks afterward.

The producer usually controls a heterogeneous fleet of vessels to transport the LNG.

Generally, however, the ship sizes in the same supplier do not differ much, so in this paper,

fleets are considered homogeneous, meaning that all the vessels are non-dedicated and have

the same capacity. At the start (end) of the planning horizon, each LNG vessel has an initial

(ending) position that can be an artificial port or a position at sea. When the order is confirmed,

the producer will arrange for a vessel to depart from its initial position to the producer port to

load LNG. In this paper, we assume that all the ships are fully loaded.

However, the ship's departure date depends not only on the order date but also on the LNG

inventory at the producer port. Because of the given capacity of storage tanks in the

liquefication plant, there are upper bound and lower safety bound for inventory, which are

usually treated as hard requirements that cannot be violated. As a result, ships can only carry

out loading operations within stock limits. In practice, when the inventory cannot meet the

loading demand, the ship needs to wait at the port until the shipment requirement is satisfied.

What's more, if multiple ships arrive at the producer port at the same time, or if one ship enters

the port while another is loading, all vessels must queue up to wait because of the berth

constraint.

Demands of all customers in each month are known in advance according to their contracts,

which also specify the cargo discharging time window in each port call. Beyond that,

customers usually allow a grace period to each order in case the ship is delayed or arrives early

due to an unexpected incident on the way. But the producer will have to pay the extra penalties

 16

for the grace period outside the discharging

time window. Fig.2 shows the simplified

relationship between the grace period and

penalty costs. Ships will not receive any extra

charges if they arrive at the destination within

the allowable discharging time window.

However, when they arrive earlier or later than

the time window but still in the grace period, the

penalty will increase with the length of time.

Specially, many ports levy lower penalties on early arrivals than late arrivals. This may be

because, compared with an earlier arrival, the delay has a more significant impact on terminals'

follow-up scheduling, such as poor inventory management in customer port and delayed road-

based transportation after regasification. In our model, arriving within the grace period can be

deemed as a hard constraint, since in reality, if a ship cannot arrive within the grace period,

the supplier would choose to buy a spot cargo than deliver it.

The seasonality of LNG demand is not significant in this context because the planning period

is relatively short. Similarly, this is also the reason why the production rate is regarded as a

constant in this paper. On the one hand, it is unlikely that a plant will adjust its productivity

every day or every 12 hours since each operation has a time lag. On the other hand, frequent

changes in overall factory productivity in

the short term will increase unnecessary

wastes of human resources.

For ships, within this problem, they only

have two routes: An initial delivery route

connects the liquefaction plant to a

regasification plant, and a return route

follows the reverse order (see Fig.3).

The producer needs to assign the

optimal speed to each ship's two routes

before its departure.

Here, the speed selected for each ship will highly influence the transportation costs because of

the relationship between speed and fuel consumption. In this paper, we use the empirical

Fig. 2 Time Window and Penalty

Fig. 3 Illustration for ship routes

(source: Halvorsen-Weare & Fagerholt, 2010)

 17

function put up by Wang et al.

(2019), which is 𝐹𝐶 =

(𝐴𝑘2 + 𝐵𝑘 + 𝐶) × (0.8 +

 0.2𝜌), where FC is the fuel

consumption rate in tonnes (t)

per traveled nautical mile, 𝑘

is the shipping speed within

the ship's feasible speed range,

and 𝜌 takes its value between

0% (ballast) and 100% (fully

loaded). Fig.4 depicts this

relationship.

Uncertain weather conditions usually have two ways to influence shipping. The first one is

influencing the speed of vessels during a given number of days. For example, when a ship is

traveling in days with high wind waves and strong winds, its speed will partially be offset (or

increased if the wind and ship have the same direction) by this event, leading to shipping delay.

In other words, when the ship is traveling at 15 knots, the rough weather may reduce the actual

speed of the ship to only 11 knots or even less. The second one is suspending the shipping to

avoid a storm or other extreme weather. This event seldom happens, and if it does happen, the

producer may directly choose to buy spot cargoes or negotiate with customers for other

solutions. These are outside the scope of speed and routing optimization problem. Thus, in this

paper, we will not consider the second case.

The total costs in the planning period consist of transportation costs, inventory costs, reroute

costs, and penalties that come from any other constraint violations. For the stochastic model,

there are seven categories of decision variables involved: 1) the vessel assignment to each

travel route, 2) the speed of each ship, 3) the changed speed due to wind and waves, 4) the

inventory schedule per time period, 5) departure and arrival dates of an incoming and outgoing

vessel at each port, 6) the number of unpunctual periods (include early arrive and delay), 7)

The number of reassigned vessels.

Fig. 4 Fuel Consumption Characteristics

(Source: Wang et al.,2019)

 18

3.2 Mathematical Model

3.2.1 Basic model – Model I

First, we formulate the IRP basic model without considering weather conditions. In the

underlying network for the mathematical model, let 𝑉 be the set of available ships. An origin

node 𝑜(𝑣) at the beginning of the planning horizon can geographically represent an artificial

point at sea, denoting the origin position of a given vessel, and the same to the destination

node 𝑑(𝑣) at the end of the horizon. Each ship needs to start from the starting point 𝑜(𝑣) to

the supplier to load the cargo, and then start the delivery task for the whole planning period.

At the end of the planning horizon, ships still need to return to their endpoints 𝑑(𝑣) because

the supplier ports cannot accommodate so many LNG ships.

Each port is represented by an index 𝑖, and the set of ports is given by 𝑃 (including 𝑜(𝑣) and

𝑑(𝑣)). Subsets 𝑃𝑠 and 𝑃𝑐 ⊆ 𝑃 consists of the supplier port and all customer ports,

respectively. Each port can be visited several times during the planning horizon, and 𝑀𝑖 is

the set of possible calls at port 𝑖. The port call number is represented by an index 𝑚, and |𝑀𝑖 |

is the last possible call at port 𝑖.

The set of nodes in the flow network represents the set of port calls, and each port call is

specified by (𝑖, 𝑚), 𝑖 ∈ 𝑃, 𝑚 ∈ 𝑀𝑖. Finally, 𝐴𝑣 contains all feasible arcs for ship 𝑣, which is

a subset of { 𝑖 ∈ 𝑃, 𝑚 ∈ 𝑀𝑖 }×{ 𝑖 ∈ 𝑃, 𝑚 ∈ 𝑀𝑖 }. Set 𝑇, indexed by 𝑡, contains all periods

starting from time 1 to time T. Other parameters and variables are listed as follows.

Parameters

𝑄 Capacity of vessels

𝑅 Production rate per time period

𝐶𝑖𝑛𝑣 Inventory cost per time period

𝐶𝑓𝑢𝑒𝑙 Price of bunker fuel per ton

𝐼𝑚𝑖𝑛, 𝐼𝑚𝑎𝑥 Minimum and Maximum inventory level in storage tanks

𝐷𝑖𝑗 Distance from port 𝑖 to port 𝑗

𝐶𝑒𝑎𝑟𝑙𝑦 Penalty for early arrive per time period

𝐶𝑑𝑒𝑙𝑎𝑦 Penalty for shipping delay per time period

 19

𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥 Maximum number of days allowed in customer ports for early

arrival/delay (grace period)

𝑡𝑖𝑚
𝐸 Expected arrival time

𝑇𝑠 Service time (loading/ unloading) in each port

𝐾𝑚𝑖𝑛, 𝐾𝑚𝑎𝑥 Minimum and Maximum traveling speed for a given vessel

𝐼𝑖𝑛𝑖𝑡𝑖𝑎𝑙 The initial inventory at the beginning of the planning period

𝑀 A large enough positive number

Decision Variables

𝐾𝑖𝑚𝑗𝑛𝑣 Traveling speed from the node (𝑖, 𝑚) to (𝑗, 𝑛) by ship 𝑣

𝐼𝑡 LNG inventory in storage tanks on a given time period 𝑡, bounded by

minimum and maximum value 𝐼𝑚𝑖𝑛, 𝐼𝑚𝑎𝑥

𝑥𝑖𝑚𝑗𝑛𝑣 Binary, equals 1 if ship 𝑣 sails from the node (𝑖, 𝑚) directly to the

node (𝑗, 𝑛), and 0 otherwise

𝑡𝑖𝑚 time variable, the time at which service (loading/unloading) begins at

node (𝑖, 𝑚)

𝑦𝑖𝑚, 𝑧𝑖𝑚 1 if the service start time at node (𝑖, 𝑚) is earlier/later than inner time

window respectively

Table. 1 Sets, Parameters, and Variables

The fuel consumption rate of each ship can be a specific function of its speed and payload. Let

𝐷𝑖𝑗 be the sailing distance from node 𝑖 to node 𝑗. The variable 𝐾𝑖𝑚𝑗𝑛𝑣 defines the speed of

travel from the node (𝑖, 𝑚) to node (𝑗, 𝑛) irrespective of ship chosen. Thus, the traveling

time between a supplier port and a customer port can be computed by 𝐷𝑖𝑗/𝐾𝑖𝑚𝑗𝑛𝑣. The non-

linear function 𝐶𝑣(𝐾𝑖𝑚𝑗𝑛𝑣, 𝑙) , defined on the speed interval [𝐾𝑚𝑖𝑛, 𝐾𝑚𝑎𝑥], represents the

variable transportation costs per unit of distance for a ship sailing at speed 𝐾𝑖𝑚𝑗𝑛𝑣 with load

𝑙 on board. Because of our full load assumption, load 𝑙 in this paper only has two choices,

100%, and 0%, corresponding to fuel consumption 𝐶𝑣(𝐾𝑖𝑚𝑗𝑛𝑣) and 80% ∗ 𝐶𝑣(𝐾𝑖𝑚𝑗𝑛𝑣)

according to the function mentioned in Section 3.1.

The mathematical problem formulation is defined as follows:

Objective Function:

Min 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑐𝑜𝑠𝑡𝑠 + 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑠 + 𝑢𝑛𝑝𝑢𝑛𝑐𝑡𝑢𝑎𝑙 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (1)

 20

𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑐𝑜𝑠𝑡𝑠 = ∑ 𝐼𝑡𝑡∈𝑇 ∗ 𝐶𝑖𝑛𝑣 (2)

𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡𝑠 = ∑ ∑ 𝐶𝑣(𝐾𝑖𝑚𝑗𝑛𝑣) ∗ 𝐷𝑖𝑗 ∗ 𝑥𝑖𝑚𝑗𝑛𝑣(𝑖,𝑚,𝑗,𝑛)∈𝐴𝑣𝑣∈𝑉 (3)

According to the relationship between the shipping speed and fuel consumption mentioned

above, laden and ballast voyages bring different fuel consumption costs due to different loads.

For a laden voyage, ships are in full-load, so:

𝐶 𝑣(𝐾𝑖𝑚𝑗𝑛𝑣) = 𝐶𝑓𝑢𝑒𝑙 ∗ (0.0019𝐾𝑖𝑚𝑗𝑛𝑣
2 + 0.045𝐾𝑖𝑚𝑗𝑛𝑣 − 0.3739) (4)

The relationship between ballast voyage, which corresponds to no-load, and bunker fuel

consumption is shown below:

𝐶 𝑣(𝐾𝑖𝑚𝑗𝑛𝑣) = 𝐶𝑓𝑢𝑒𝑙 ∗ (0.0019𝐾𝑖𝑚𝑗𝑛𝑣
2 + 0.045𝐾𝑖𝑚𝑗𝑛𝑣 − 0.3739) ∗ 0.8 (5)

𝑢𝑛𝑝𝑢𝑛𝑐𝑡𝑢𝑎𝑙 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = ∑ ∑ (𝑡𝑖𝑚
𝐸 − 𝑡𝑖𝑚) ∗ (𝑦𝑖𝑚 ∗ 𝐶𝑒𝑎𝑟𝑙𝑦 + 𝐶𝑑𝑒𝑙𝑎𝑦 ∗ 𝑧𝑖𝑚)𝑚∈𝑀𝑖𝑖∈𝑃𝑐 (6)

Constraints:

∑ ∑ ∑ 𝑥𝑖𝑚𝑗𝑛𝑣𝑛∈𝑀𝑗𝑗∈𝑃𝑣∈𝑉 = 1, (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝐴𝑣, 𝑣 ∈ 𝑉 (7)

∑ ∑ 𝑥𝑜(𝑣)1𝑗𝑛𝑣𝑛∈𝑀𝑗𝑗∈𝑃𝑠 = 1, 𝑣 ∈ 𝑉 (8)

∑ ∑ 𝑥𝑖𝑚𝑗𝑛𝑣𝑚∈𝑀𝑖𝑖∈𝑃𝑠 − ∑ ∑ 𝑥𝑗𝑛𝑖𝑚𝑣𝑚∈𝑀𝑖𝑖∈𝑃𝑠 = 0, 𝑗 ∈ 𝑃𝑐, 𝑛 ∈ 𝑀𝑖, 𝑣 ∈ 𝑉 (9)

∑ ∑ 𝑥𝑖𝑚𝑑(𝑣)1𝑣𝑚∈𝑀𝑖𝑖∈𝑃𝑠 = 1, 𝑣 ∈ 𝑉 (10)

𝐼0 = 𝐼𝑖𝑛𝑖𝑡𝑖𝑎𝑙 (11)

𝐼𝑡𝑖𝑚
= 𝐼𝑡𝑖(𝑚−1)

+ 𝑅(𝑡𝑖𝑚 − 𝑡𝑖(𝑚−1)) − 𝑄, 𝑖 ∈ 𝑃𝑠 , 𝑚 ∈ 𝑀𝑖 (12)

𝐼𝑚𝑎𝑥 − 𝐼𝑡𝑖(𝑚−1) ≥ 𝑅(𝑡𝑖𝑚 − 𝑡𝑖(𝑚−1)), 𝑖 ∈ 𝑃𝑠, 𝑚 ∈ 𝑀𝑖 (13)

𝐼𝑚𝑖𝑛 ≤ 𝐼𝑡 ≤ 𝐼𝑚𝑎𝑥, 𝑡 ∈ 𝑇 (14)

𝑥𝑖𝑚𝑗𝑛𝑣 (𝑡𝑖𝑚 + 𝑇𝑠 +
𝐷𝑖𝑗

𝐾𝑖𝑚𝑗𝑛𝑣
− 𝑡𝑗𝑛) = 0, (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝐴𝑣, 𝑣 ∈ 𝑉 (15)

𝑡𝑖(𝑚−1) + 𝑇𝑠 ≤ 𝑡𝑖𝑚, 𝑖 ∈ 𝑃, 𝑚 ∈ 𝑀𝑖 (16)

 21

𝑇𝑚𝑖𝑛 ≤ 𝑡𝑖𝑚 − 𝑡𝑖𝑚
𝐸 ≤ 𝑇𝑚𝑎𝑥 , 𝑖 ∈ 𝑃𝑐 , 𝑚 ∈ 𝑀𝑖 (17)

𝐾𝑚𝑖𝑛 ≤ 𝐾𝑖𝑚𝑗𝑛𝑣 ≤ 𝐾𝑚𝑎𝑥, (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝐴𝑣, 𝑣 ∈ 𝑉 (18)

𝑥𝑖𝑚𝑗𝑛𝑣 ∈ {0,1} (19)

𝑡𝑖𝑚 ≥ 0, 𝑖 ∈ 𝑃, 𝑚 ∈ 𝑀𝑖 (20)

𝑦𝑖𝑚 ∈ {0,1} (21)

𝑧𝑖𝑚 ∈ {0,1} (22)

𝑦𝑖𝑚 + 𝑧𝑖𝑚 = 1, 𝑖 ∈ 𝑃𝑐 , 𝑚 ∈ 𝑀𝑖 (23)

𝑡𝑖𝑚
𝐸 − 𝑡𝑖𝑚 > 𝑀(1 − 𝑦𝑖𝑚), 𝑖 ∈ 𝑃𝑐, 𝑚 ∈ 𝑀𝑖 (24)

𝑡𝑖𝑚 − 𝑡𝑖𝑚
𝐸 > 𝑀(1 − 𝑧𝑖𝑚), 𝑖 ∈ 𝑃𝑐, 𝑚 ∈ 𝑀𝑖 (25)

The objective function (1)-(6) describes the total cost to be minimized, which consists of three

parts: total inventory costs during the planning period, transportation costs, and penalty costs

for early arrival or shipping delay. The non-linear function of fuel consumption 𝐶 𝑣(𝐾𝑖𝑚𝑗𝑛𝑣)

in equation (4) and (5) comes from Wang et al. (2019), in which they studied a vessel with

56800 dwt and came up with the formula. As for the penalty of early arrival and shipping

delay, the common sense is that it is better to arrive early than late. Although in both situations,

extra port charges should be paid, shipping delay may cause continuous delays in subsequent

plans, leaving the demand gap at the customer port too large. In contrast, early arrival at the

port will make the follow-up plan more flexible to some extent, and the penalty is only the

inventory scheduling fee of the customer ports and the bunker fuel costs that may exist in

waiting for unloading.

Constraint (7) ensures that we can make one port call at most once. Constraints (8)-(10) set

the shipping flow, giving the initial and end position of a vessel, letting the ship return to the

supplier port as soon as it unloads cargoes at the customer port and wait for the next delivery

task. Constraint (11) gives the initial stock at the start of the planning period. Constraints (12)-

(14) are inventory constraints. Inequation (12) keeps the balance of inventory between two

continuous port call at the supplier. Here, the demand at each customer port is an integer

 22

multiple of the number of ships. It is not hypothetical to assume that; It is common to order by

the number of vessels in actual transactions.

There is an unstable boil-off rate in the process of sailing, causing a part of the liquefied natural

gas to volatilize, so it is unrealistic to ask for the exact quantity of the cargo in each order.

Therefore, the port of the customer takes the number of ships as the order demand and then

gives a minimum annual discharge quantity in the annual contract to ensure that their demands

can be met.

Constraint (14) bounds the inventory quantity, and constraint (13) links the upper limit of

inventory with the service start time. The scheduling of the route is taken into account in

constraints (15) and (17). Constraint (16) considers the berth limits, and only allow one ship

to (un)load in one port. The variables domains are given in constraints (18)-(22). Constraints

(23)-(25) make sure that if the vessel cannot arrive on time, it will be fined for being late or

early.

The basic model can improve the scheduling and give the optimal speed of each ship while

minimizing the cost.

3.2.2 Stochastic Models

Basic Stochastic Model – Model II

In this section, a two-stage stochastic model that takes into account the effects of uncertain

weather is established. Within the model, the first stage mainly works on the original delivery

plan, and the second stage, when the impact of weather conditions is realized, will adjust the

shipping speed and reschedule the ships if needed. The objective function under this situation

includes several more parts about the stochastic influence. Except for minimizing the original

schedule costs, minimizing the stochastic effects is also an important task, and we hope to find

a shipping schedule that can tolerate different weather as much as possible.

The underlying assumption is that, based on the weather forecast available to the supplier,

each ship will know the impact of the weather event on its way to port on the day of departure.

Here, the set of weather disruption scenarios Ω indexed by 𝑤 is assumed discrete and finite.

Besides, the time constraint is relaxed to avoid no solution situations, which means that the

arrival time could outside the grace period, but a very large penalty Ε which equals to the

 23

total value of the shipment will be proposed to motivate shipping to reschedule and

reassignment when grace period limits are violated.

Additional parameters and random elements which are necessary are listed as follow, and the

formulation will be changed correspondingly:

Parameters

Ε Penalty when ships cannot arrive within the grace period

Variables

𝑡𝑖𝑚
𝑤+, 𝑡𝑖𝑚

𝑤− time variables, describe how much time the second stage rescheduled

arrival time is earlier (later) at the node (𝑖, 𝑚) under scenario 𝑤

𝑢𝑖𝑚𝑗𝑛𝑣
𝑤 Binary, 1 if the origin ship assignment cannot reach the destination

within the grace period and decide to change the ship used under

scenario 𝑤, 0 otherwise

𝑘𝑖𝑚𝑗𝑛𝑣𝑤
+ , 𝑘𝑖𝑚𝑗𝑛𝑣𝑤

− The speed change (increase/decrease) on route (𝑖, 𝑚, 𝑗, 𝑛) after

rescheduling under scenario 𝑤 by ship 𝑣

𝐼𝑡
𝑤+, 𝐼𝑡

𝑤− Inventory change under scenario w in time t

𝑦𝑖𝑚
𝑤 , 𝑧𝑖𝑚

𝑤 Binary, 1 if the service start time at node (𝑖, 𝑚) is earlier/later than

inner time window under scenario 𝑤 respectively

𝑜𝑖𝑚
𝑤 1 if the start time at node (𝑖, 𝑚) is outside the grace period under

scenario 𝑤

Random elements

diff𝑖𝑚𝑗𝑛𝑣
𝑤

 The impacts of a weather event on speed on the route (𝑖, 𝑚, 𝑗, 𝑛) under

scenario 𝑤 of ship 𝑣

𝜉𝑖𝑚𝑗𝑛𝑣
𝑤 The length of the event time that ship 𝑣 experiences on the route

(𝑖, 𝑚, 𝑗, 𝑛) under scenario 𝑤

Table. 2 Parameters and Variables in Basic Stochastic Model

Objective Function:

Min 𝐼𝑡 ∗ 𝐶𝑖𝑛𝑣 + ∑ 𝑝𝑤𝑤∈Ω ∑ ∑ 𝐶 𝑣(𝐾𝑖𝑚𝑗𝑛𝑣 + 𝑘𝑖𝑚𝑗𝑛𝑣𝑤
+ + 𝑘𝑖𝑚𝑗𝑛𝑣𝑤

−) ∗(𝑖,𝑚,𝑗,𝑛)∈𝐴𝑣𝑣∈𝑉

𝐷𝑖𝑗 ∗ (𝑥𝑖𝑚𝑗𝑛𝑣 + 𝑢𝑖𝑚𝑗𝑛𝑤
𝑣′) + ∑ 𝑝𝑤𝑤∈Ω ∑ ∑ (𝑡𝑖𝑚

𝐸 − (𝑡𝑖𝑚 + 𝑡𝑖𝑚
𝑤+ + 𝑡𝑖𝑚

𝑤−)) ∗ (𝑦𝑖𝑚
𝑤 ∗𝑚∈𝑀𝑖𝑖∈𝑃𝑐

𝐶𝑒𝑎𝑟𝑙𝑦 + 𝐶𝑑𝑒𝑙𝑎𝑦 ∗ 𝑧𝑖𝑚
𝑤) + ∑ 𝑝𝑤(∑ ∑ 𝑜𝑖𝑚

𝑤
𝑚∈𝑀𝑖 𝑖∈𝑃𝑐 ∗ Ε + (𝐼𝑡

𝑤+ + 𝐼𝑡
𝑤−) ∗ 𝐶𝑖𝑛𝑣)𝑤∈Ω

(1.1)

 24

Constraints:

∑ ∑ ∑ (𝑥𝑖𝑚𝑗𝑛𝑣 + 𝑢𝑖𝑚𝑗𝑛𝑤
𝑣′)𝑛∈𝑀𝑗𝑗∈𝑃𝑣,𝑣′∈𝑉 = 1, (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝐴𝑣, 𝑣 ∈ 𝑉 (7.1)

𝐼𝑡𝑖𝑚
+ 𝐼𝑡𝑖𝑚

𝑤+ + 𝐼𝑡𝑖𝑚

𝑤− = 𝐼𝑡𝑖(𝑚−1)
+ 𝐼𝑡𝑖(𝑚−1)

𝑤+ + 𝐼𝑡𝑖(𝑚−1)

𝑤− + 𝑅 ((𝑡𝑖𝑚 + 𝑡𝑖𝑚
𝑤+ + 𝑡𝑖𝑚

𝑤−) − (𝑡𝑖(𝑚−1)
𝑤 +

𝑡𝑖(𝑚−1)
𝑤+ + 𝑡𝑖(𝑚−1)

𝑤−)) − 𝑄, 𝑖 ∈ 𝑃𝑠, 𝑚 ∈ 𝑀𝑖, 𝑤 ∈ Ω (12.1)

𝐼𝑚𝑎𝑥 − 𝐼𝑡𝑖(𝑚−1)
+ 𝐼𝑡𝑖(𝑚−1)

𝑤+ + 𝐼𝑡𝑖(𝑚−1)

𝑤− ≥ 𝑅 ((𝑡𝑖𝑚 + 𝑡𝑖𝑚
𝑤+ + 𝑡𝑖𝑚

𝑤−) − (𝑡𝑖(𝑚−1) + 𝑡𝑖(𝑚−1)
𝑤+ +

𝑡𝑖(𝑚−1)
𝑤−)) , 𝑖 ∈ 𝑃𝑠 , 𝑚 ∈ 𝑀𝑖 , 𝑤 ∈ Ω (13.1)

(𝑥𝑖𝑚𝑗𝑛𝑣 + 𝑢𝑖𝑚𝑗𝑛𝑤
𝑣′) ∗ (𝑡𝑖𝑚 + 𝑡𝑖𝑚

𝑤+ + 𝑡𝑖𝑚
𝑤− + 𝑇𝑠 +

𝐷𝑖𝑗−𝜉𝑖𝑚𝑗𝑛𝑣
𝑤 (𝐾𝑖𝑚𝑗𝑛𝑣+𝑘𝑖𝑚𝑗𝑛𝑣

𝑤+ +𝑘𝑖𝑚𝑗𝑛𝑣
𝑤− −𝑑𝑖𝑓𝑓𝑖𝑚𝑗𝑛𝑣

𝑤)

𝐾𝑖𝑚𝑗𝑛𝑣+𝑘𝑖𝑚𝑗𝑛𝑣
𝑤+ +𝑘𝑖𝑚𝑗𝑛𝑣

𝑤− +

𝜉𝑖𝑚𝑗𝑛𝑣
𝑤 − (𝑡𝑗𝑛 + 𝑡𝑗𝑛

𝑤+ + 𝑡𝑗𝑛
𝑤−)) = 0, (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝐴𝑣 , 𝑣 ∈ 𝑉, 𝑤 ∈ Ω

(15.1)

𝑡𝑖𝑚
𝑤 + 𝑇𝑠 +

𝐷𝑖𝑗−𝜉𝑖𝑚𝑗𝑛𝑣
𝑤 (𝐾𝑖𝑚𝑗𝑛𝑣+𝑘𝑖𝑚𝑗𝑛𝑣

𝑤+ +𝑘𝑖𝑚𝑗𝑛𝑣
𝑤− −𝑑𝑖𝑓𝑓𝑖𝑚𝑗𝑛𝑣

𝑤)

𝐾𝑖𝑚𝑗𝑛𝑣+𝑘𝑖𝑚𝑗𝑛𝑣
𝑤+ +𝑘𝑖𝑚𝑗𝑛𝑣

𝑤− + 𝜉𝑖𝑚𝑗𝑛𝑣
𝑤 − (𝑡𝑗𝑛

𝐸 + 𝑇𝑚𝑎𝑥) > 𝑀(1 −

𝑢𝑖𝑚𝑗𝑛𝑤
𝑣′), (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝐴𝑣, 𝑣 ∈ 𝑉, 𝑤 ∈ Ω

(26)

𝑥𝑖𝑚𝑗𝑛𝑣 + 𝑢𝑖𝑚𝑗𝑛𝑤
𝑣′ = 1, (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝐴𝑣, 𝑣, 𝑣′ ∈ 𝑉, 𝑤 ∈ Ω (27)

𝑡𝑖(𝑚−1) + 𝑡𝑖(𝑚−1)
𝑤+ + 𝑡𝑖(𝑚−1)

𝑤− + 𝑇𝑠 ≤ 𝑡𝑖𝑚 + 𝑡𝑖𝑚
𝑤+ + 𝑡𝑖𝑚

𝑤−, 𝑖 ∈ 𝑃, 𝑚 ∈ 𝑀𝑖 , 𝑤 ∈ Ω (16.1)

𝑇𝑚𝑖𝑛 − (𝑡𝑖𝑚 + 𝑡𝑖𝑚
𝑤+ + 𝑡𝑖𝑚

𝑤−) − 𝑡𝑖𝑚
𝐸 > 𝑀(1 − 𝑜𝑖𝑚

𝑤), 𝑖 ∈ 𝑃𝑐, 𝑚 ∈ 𝑀𝑖 , 𝑤 ∈ Ω (28)

(𝑡𝑖𝑚 + 𝑡𝑖𝑚
𝑤+ + 𝑡𝑖𝑚

𝑤−) − 𝑡𝑖𝑚
𝐸 − 𝑇𝑚𝑎𝑥 > 𝑀(1 − 𝑜𝑖𝑚

𝑤), 𝑖 ∈ 𝑃𝑐, 𝑚 ∈ 𝑀𝑖 , 𝑤 ∈ Ω (29)

𝑦𝑖𝑚
𝑤 + 𝑧𝑖𝑚

𝑤 = 1, 𝑖 ∈ 𝑃𝑐 , 𝑚 ∈ 𝑀𝑖 (23.1)

𝑡𝑖𝑚
𝐸 − (𝑡𝑖𝑚 + 𝑡𝑖𝑚

𝑤+ + 𝑡𝑖𝑚
𝑤−) > 𝑀(1 − 𝑦𝑖𝑚

𝑤), 𝑖 ∈ 𝑃𝑐 , 𝑚 ∈ 𝑀𝑖

 (24.1)

(𝑡𝑖𝑚 + 𝑡𝑖𝑚
𝑤+ + 𝑡𝑖𝑚

𝑤−) − 𝑡𝑖𝑚
𝐸 > 𝑀(1 − 𝑧𝑖𝑚

𝑤), 𝑖 ∈ 𝑃𝑐 , 𝑚 ∈ 𝑀𝑖

 (25.1)

 25

The objective function changes from equation (1) to (1.1), adding the outside grace period

penalty, and changing the unpunctual costs according to different scenarios. The second term

of this function gives the new transportation costs if rescheduling is required. Constraints

which contain scenario-related variables are updated based on the deterministic model, such

as constraints (12.1) and (13.1). When coming across strong wind waves, there will be a

difference between actual speed and ship speed. The random variable diff𝑖𝑚𝑗𝑛
𝑤

 gives this

difference. Within the event area, the actual shipping speed is then (𝐾𝑖𝑚𝑗𝑛𝑣 + 𝑘𝑖𝑚𝑗𝑛𝑣
𝑤+ +

𝑘𝑖𝑚𝑗𝑛𝑣
𝑤− − diff𝑖𝑚𝑗𝑛𝑣

𝑤) and the total length of time the ship experienced in a rough weather event

is 𝜉𝑖𝑚𝑗𝑛𝑣
𝑤 . Thus, the actual sailing time on route (𝑖, 𝑚, 𝑗, 𝑛) consists of two parts: sailing time

in the unaffected area
𝐷𝑖𝑗−𝜉𝑖𝑚𝑗𝑛𝑣

𝑤 (𝐾𝑖𝑚𝑗𝑛𝑣+𝑘𝑖𝑚𝑗𝑛𝑣
𝑤+ +𝑘𝑖𝑚𝑗𝑛𝑣

𝑤− −𝑑𝑖𝑓𝑓𝑖𝑚𝑗𝑛𝑣
𝑤)

𝐾𝑖𝑚𝑗𝑛𝑣+𝑘𝑖𝑚𝑗𝑛𝑣
𝑤+ +𝑘𝑖𝑚𝑗𝑛𝑣

𝑤− and the time length of rough

weather event 𝜉𝑖𝑚𝑗𝑛𝑣
𝑤 . Constraint (15.1) reflect this relationship with the new speed.

Constraints (26)-(27) illustrate that ship reassignment is triggered only if the origin scheduling

fails to meet the time window limits. Constraints (28) and (29) define the binary 𝑜𝑖𝑚
𝑤 , giving

the conditions when penalty Ε should be counted. The remaining constraints in the

deterministic model will be followed.

Extended Stochastic Model – Model III

In the two models above, the supplier is determined to have only one path to each port.

Nevertheless, in practice, ships can take long detours to avoid unpleasant areas. So, we are

going to extend model II to consider the decisions ships make in the face of the rough weather

event when there are two different lengths of paths between the supplier and the customers,

among which the longer one can avoid rough weather effectively. R is defined as the set of

paths within the route (𝑖, 𝑚, 𝑗, 𝑛).

Parameters

Ε Penalty when ships cannot arrive within the grace period

Variables

𝐾𝑖𝑚𝑗𝑛𝑣𝑟 The speed on route (𝑖, 𝑚, 𝑗, 𝑛) by path 𝑟

𝑘𝑖𝑚𝑗𝑛𝑣𝑟
𝑤+ , 𝑘𝑖𝑚𝑗𝑛𝑣𝑟

𝑤− The speed change (increase/decrease) on route (𝑖, 𝑚, 𝑗, 𝑛) path 𝑟 after

rescheduling under scenario 𝑤

𝑥𝑖𝑚𝑗𝑛𝑟
𝑣 Binary, equals 1 if ship 𝑣 sails on route (𝑖, 𝑚, 𝑗, 𝑛) by path 𝑟

 26

𝑢𝑖𝑚𝑗𝑛𝑟′
𝑣′𝑤 Binary, 1 if the origin ship assignment cannot reach the destination

within the grace period and require to reschedule the path or ship under

scenario 𝑤, 0 otherwise

Random elements

diff𝑖𝑚𝑗𝑛𝑣𝑟
𝑤

 The speed change on the path 𝑟 in route (𝑖, 𝑚, 𝑗, 𝑛) if there are rough

weather days under scenario 𝑤

𝜉𝑖𝑚𝑗𝑛𝑟
𝑣𝑤 The length of the rough event that ship 𝑣 experiences on the path 𝑟 in

route (𝑖, 𝑚, 𝑗, 𝑛) under scenario 𝑤

Table. 3 Parameters and Variables in the Extended Model

Objective Function:

Min 𝐼𝑡 ∗ 𝐶𝑖𝑛𝑣 + ∑ 𝑝𝑤𝑤∈Ω ∑ ∑ 𝐶 𝑣(𝐾𝑖𝑚𝑗𝑛𝑣𝑟 + 𝑘𝑖𝑚𝑗𝑛𝑣𝑟
𝑤+ + 𝑘𝑖𝑚𝑗𝑛𝑣𝑟

𝑤−) ∗(𝑖,𝑚,𝑗,𝑛)∈𝐴𝑣𝑣∈𝑉

𝐷𝑖𝑗 ∗ (𝑥𝑖𝑚𝑗𝑛𝑟
𝑣 + 𝑢𝑖𝑚𝑗𝑛𝑟

𝑣′𝑤) + ∑ 𝑝𝑤𝑤∈Ω ∑ ∑ (𝑡𝑖𝑚
𝐸 − (𝑡𝑖𝑚 + 𝑡𝑖𝑚

𝑤+ + 𝑡𝑖𝑚
𝑤−)) ∗ (𝑦𝑖𝑚

𝑤 ∗𝑚∈𝑀𝑖𝑖∈𝑃𝑐

𝐶𝑒𝑎𝑟𝑙𝑦 + 𝐶𝑑𝑒𝑙𝑎𝑦 ∗ 𝑧𝑖𝑚
𝑤) + ∑ 𝑝𝑤(∑ ∑ 𝑜𝑖𝑚

𝑤
𝑚∈𝑀𝑖 𝑖∈𝑃𝑐 ∗ Ε + (𝐼𝑡

𝑤+ + 𝐼𝑡
𝑤−) ∗ 𝐶𝑖𝑛𝑣)𝑤∈Ω

(1.2)

All the constraints are the same as in model II, except that the path index is added to the

variable described in the Table. 3.

3.2.3 Solution Method

In this section, we use the simulated annealing (SA) algorithm to solve the NP-hard non-linear

problem. The SA algorithm starts from a given random initial state, and on each iteration,

generates a new neighbor state. If the new state is better, then accept that state as a new

solution. If it is worse, then the algorithm will use a probability function to decide whether to

accept that solution or not. It is this characteristic that makes the SA algorithm occasionally

accepts worse states, enabling the algorithm to avoid being limited to local optimality.

The probability of choosing a worse solution is controlled by the temperature parameter, which

starts large but decreases over time. It is analogous to temperature in an annealing system.

When the temperature is high, uphill moves are more likely to occur. As T tends to zero, they

become more and more unlikely (Teukolsky, Vetterling, and Flannery, 1992). The pseudo-

code for a SA algorithm is shown below:

 27

Algorithm 1 SA algorithm structure

Define a high temperature T

Define a cooling schedule T(it), e.g. T=alpha T

Define an energy function S

Define current_model initial state

While (not converged)

new_model = random

Delta_S = S(new_model)-S(current_model)

If (Delta_S < 0) current_model = new_model

Else with probability P = e^(-Delta_S/T) : current_model = new_model

T=alpha T

The Logic for Scheduling

For model I, the deterministic model, the energy function is the objective function (1), and it

searches for a better solution globally until the temperature reaches its lower bound. However,

the solution finally obtained is not necessarily the optimal one because of the attributes of

heuristic. After setting the temperature

parameter, the most important part is

defining the search scheme, considering

the shipping flow and all the constraints.

Fig.5 shows the logic of scheduling each

order.

In general, the order to serve is firstly

selected according to the length of the

lead time, then the feasible departure date

and the corresponding laden speed will

be calculated and assigned to it.

Normally, the departure date of the laden voyage is constrained by the intersection of the

following two date sets: the first one is the LNG inventory available days. A date is deemed

to be available only if the LNG volume on that day is larger than the sum of the ship capacity

and storage tank's lower limit, and does not exceed the inventory ceiling. Therefore, under this

constraint, the set of available dates ranges from the first day when the storage at the supplier

Fig. 5 Scheduling Logic for each order

 28

port meets the loading requirements to the day when the LNG storage reaches the upper limit.

The second set is days within the permitted time window. For a supplier, if the ship can arrive

within the discharge time window, the unpunctual penalty can be avoided. So, we will first

control the time limit tightly, and then calculate the departure time range if the ship wants to

arrive at the customer port on time. The earliest (latest) departure date can be obtained by

subtracting the longest (shortest) sailing time and loading time from the earliest (latest) date

in the discharging time window.

If the intersection of these two sets is not empty, it means that there are dates that meet these

constraints, then a day is randomly selected from these dates as the departure date. When the

intersection is empty, we should relax the time limit, recalculating the departure time range

based on the grace period. Again, after two new date sets are obtained, a day is randomly

selected from the date intersection. If the intersection is still empty, it is considered a planning

failure.

After deciding the laden attributes, we need to find a suitable ship for this trip. If the supplier

has a ship available on the date of departure, then directly use that ship, and if there are no idle

ships near the supplier port, then estimate the fastest return dates for all ships assigned for

unfulfilled orders. Then, randomly choose a ship that can complete its voyage before the

departure date of the new order.

Each random combination choice of departure dates and ships results in different schedules

and total costs. The SA algorithm will almost find the best one within the given iteration times.

To note that the departure date of the ballast voyage depends on the arrival time of the laden

voyage, so there is no need for extra estimation. The only thing to determine is the ballast

speed, which will influence the date of return to the supplier port. During the planning period,

a good ballast speed for a ship should make the ship possible to return to the supplier port

before the next voyage, and minimizing the transportation costs with all previous constraints.

The pseudo-code of this logic is given in Algorithm 2.

Algorithm 2 Ship and Inventory Scheduling

Input all the data needed

Select the order to be served in the time order

if multiple orders on the same day

 29

randomly select one to serve

end if

while True:

Calculate maximum and minimum sailing times: (
𝐷𝑖𝑗

𝑟

𝐾𝑚𝑖𝑛
,

𝐷𝑖𝑗
𝑟

𝐾𝑚𝑎𝑥
)

//Calculate the date when there is plenty of inventory for shipping

𝑡𝑖𝑚
𝐼𝑚𝑖𝑛 ← 𝑡𝑖(𝑚−1) + (𝑄 + 𝐼𝑚𝑖𝑛 − 𝐼𝑡𝑖(𝑚−1))/𝑅

// Calculate the date when inventory in supplier reaches the upper limit.

𝑡𝑖𝑚
𝐼𝑚𝑎𝑥 ← 𝑡𝑖(𝑚−1) + (𝐼𝑚𝑎𝑥 − 𝐼𝑡𝑖(𝑚−1))/𝑅

set A range ← (𝑡𝑖𝑚
𝐼𝑚𝑖𝑛, 𝑡𝑖𝑚

𝐼𝑚𝑎𝑥)

// Calculate the departure dates range when the ship can arrive at the customer's port

on time

𝑡𝑖𝑚
𝑚𝑖𝑛 ← 𝑡𝑗𝑛

𝐸 − 𝑇𝑠 −
𝐷𝑖𝑗

𝐾𝑚𝑖𝑛

𝑡𝑖𝑚
𝑚𝑎𝑥 ← 𝑡𝑗𝑛

𝐸 − 𝑇𝑠 −
𝐷𝑖𝑗

𝐾𝑚𝑎𝑥

set B range ← (𝑡𝑖𝑚
𝑚𝑖𝑛, 𝑡𝑖𝑚

𝑚𝑎𝑥)

if 𝑨 ∩ 𝑩 ≠ ∅

Choose a departure date 𝑡𝑖𝑚 from the intersection randomly

𝐾𝑖𝑚𝑗𝑛 ← max (𝐾𝑚𝑖𝑛, min (
𝐷𝑖𝑗

 𝑡𝑗𝑛
𝐸 −𝑡𝑖𝑚−𝑇𝑠 , 𝐾𝑚𝑎𝑥))

else:

// Calculate the earliest and latest departure dates based on the grace period

𝑡𝑖𝑚
𝑚𝑖𝑛 ← 𝑡𝑗𝑛

𝐸 + 𝑇𝑚𝑖𝑛 − 𝑇𝑠 −
𝐷𝑖𝑗

𝐾𝑚𝑖𝑛

𝑡𝑖𝑚
𝑚𝑎𝑥 ← 𝑡𝑗𝑛

𝐸 + 𝑇𝑚𝑎𝑥 − 𝑇𝑠 −
𝐷𝑖𝑗

𝐾𝑚𝑎𝑥

set C range ← (𝑡𝑖𝑚
𝑚𝑖𝑛, 𝑡𝑖𝑚

𝑚𝑎𝑥)

if 𝑨 ∩ 𝑪 ≠ ∅

Choose a departure date 𝑡𝑖𝑚 from the intersection randomly

𝐾𝑖𝑚𝑗𝑛 ← max (𝐾𝑚𝑖𝑛, min (
𝐷𝑖𝑗

 𝑡𝑗𝑛
𝐸 −𝑡𝑖𝑚−𝑇𝑠

, 𝐾𝑚𝑎𝑥))

Unpunctual time length ← (𝑡𝑖𝑚 +
𝐷𝑖𝑗

𝐾𝑖𝑚𝑗𝑛
− 𝑡𝑗𝑛

𝐸)

else:

Assign a large penalty to this schedule

 30

// Select an available ship

if there are ships available in supplier port

randomly select one to serve

else

search for the ship use of all unfulfilled orders

// Choose one of these ships which can finish its order before the departure date of the

current order

if 𝑡𝑖𝑚′
′ > 𝑡𝑖𝑚, where 𝑡𝑖𝑚′

′ is the finish time of one of the unfulfilled order

continue

// Calculate the ballast speed of this ship

𝐾𝑗′𝑛′𝑖𝑚′ ← max (𝐾𝑚𝑖𝑛, min (
𝐷𝑖𝑗

 𝑡𝑖𝑚′
′ −𝑡𝑗′𝑛′−𝑇𝑠

, 𝐾𝑚𝑎𝑥))

// Calculate the ballast speed of the rest unfulfilled orders' ships

𝐾𝑗′𝑛′𝑖𝑚′ ← max (𝐾𝑚𝑖𝑛, min (
𝐷𝑖𝑗

 𝑡𝑖𝑚′
′ −𝑡𝑗′𝑛′−𝑇𝑠 , 𝐾𝑚𝑎𝑥))

After adding the path option in the extended stochastic model, in the second step in Fig.5, in

addition to settling the service start date and laden speed, the path to travel also needs to be

determined. If the ship cannot reach the customer port between the grace period at a given

speed, it can try another path, which is equivalent to use the different traveling distances as a

time buffer.

Here, in order to minimize both inventory and shipping costs, we rounded up the non-integer

arrival time. This action will increase the error, resulting in poor results. In the subsequent

computation Section 4, in order to reduce the error caused by rounding, we tried to get the

time period as small as possible so that the final influence could be within an acceptable range.

The Logic of The Weather Influence

In the basic stochastic model, we consider the influence of weather conditions. The weather

distribution predicts the total length of one event, and the effect on ship speed is calculated

based on statistics. Each ship will have access to possible weather forecasts on the day it leaves

port, including the start date, influenced region, event length for the ship about to sail, and

how much ship speed will be reduced (increased) by the weather condition.

 31

After the model reads the weather forecast, it first checks if the ship which is about to travel

will be affected by the rough weather event. No event can happen in all the sea regions. Thus,

to define an approximate influenced area, we use the distance the ship will have traveled to

determine whether there is an interaction between the ship's voyage period and the weather

event. For example, assume that sea area A will experience rough weather on day 5 to day 10,

and the area A is 500 nautical miles

away from the customer port and 1000

nautical miles away from the supplier

port. Then we should calculate the date

when the ship arrives and leave this

area. If the date set does not include

day 5 to day 10, then it means that this

event will not influence the ship. Beyond that, when we have the path choice just as in model

III, we should first judge whether the current path

will be influenced, and then repeat procedures

mentioned before. If the ship is confirmed to be

influenced, then the actual arrival date of the

planned voyage is recalculated with the

information of the predicted influenced speed. If

the actual arrival time exceeds the grace period

limit, then go back to the previous step and re-

select the departure date, sailing speed, and

available ships until this order can be managed on

time.

Rescheduling is a trade-off among speed,

fuel consumption, and punctuality. For

model III, there is one more decision that needs to be made, which is whether to take a long

detour to avoid the rough weather event or sailing through the rough area at a reduced speed.

Fig. 6 Rough area define illustration

Fig. 7 Logic of Weather Influence

 32

4. Computational Result

4.1 Case Background

4.1.1 Supplier

The supplier, in this case, is Abu Dhabi National Oil Company (ADNOC). ADNOC is one of

the world's largest integrated energy companies, with sixteen subsidiary companies in

upstream, midstream, and downstream stages of production ("Abu Dhabi National Oil

Company," n.d.).

ADNOC LNG, as an important subsidiary of ADNOC, is a "joint venture among ADNOC,

which holds the majority 70% share, Japan's Mitsui with a 15% stake, BP, which takes 10%

and France's Total with 5%" (Gnana, 2019). It processes and loads liquefied petroleum gas

and liquified natural gas at Das Island, and then mainly export to Asia, especially East Asia.

Its annual production capacity can reach eight million tons.

Before 2019, Tokyo Electric Power Company (TEPCO) is ADNOC's sole long-term customer,

accounting for nearly 90% of its exports and production (ADNOC LNG, 2019). In recent

years, TEPCO and Chubu Electric in Japan have merged their LNG operations under the JERA

banner. In March 2019, JERA's current long-term contract with ADNOC LNG expired and,

in order to diversify its supply base and conclude more flexible terms, “the new deal finalized

by the two parties bears no relationship to the legacy contract” (Riviera, 2019). Compared to

the old contract, the volume of the new one is reduced by 90%, and only for a limited duration.

At the same time, the gas industry in Abu Dhabi is in flux. Although its reserves are substantial,

the Emirate’s current demand is more than production capabilities and growing at a rate of

10% per annum (Riviera, 2019).

In order to seek solutions to fill the vacuum brought by JERA and cope with flux situation,

ADNOC LNG has modernized its commercial approach to adopt a new business model

towards a multi-customers business that includes not only global utilities but also portfolio

players and traders (ADNOC LNG, 2019).

 33

4.1.2 Customers

As mentioned above, before March 2019, Japan is ADNOC LNG's biggest client. After that,

ADNOC sought to diversify its customers from Japan to supplying 90% of its output to several

clients and receiving terminals in more than eight countries, including India, China, South

Korea, and Bahrain. In this thesis, four major customers, Japan, China, India, South Korea,

are mainly introduced.

TEPCO previously signed a 25-year contract with ADNOC with a volume of 4.7 metric tons

annually and planned the transportation through the Annual Delivery Program (ADP). The

total amount of the new contract is only 0.5 metric tons annually, and many new flexibility

requirements are added (ADNOC LNG, 2019). The form is more similar to Shipping Delivery

Schedule (SDS). At present, the main Japanese ports for receiving LNG cargo from Das Island

are Tokyo, Kawasaki, and Kisarazu.

Australia, Qatar, and the United States are the top three sources of LNG for China, so the

company is not a major supplier of LNG to China, and the frequency of receiving cargoes is

relatively low. A few years ago, China used gas imported from ADNOC mainly to supply

domestic gas in and around Shanghai. Now with the deepening of cooperation, Tianjin port is

also open to receiving goods.

At the end of 2019, ADNOC further opened up the South Korean market through energy

cooperation with Samsung. However, their new contracts are more about crude oil and LPG,

with no significant increase in demand for LNG.

India is the third-largest importer of oil and the fourth-largest importer of gas. Starting in 2018,

ADNOC not only secures its position in the Indian energy market but also win a larger number

of orders (PIB Delhi, 2018). Now, it has almost become the third-largest source of LNG and

LPG of Indian total import.

4.2 Data Source

In the use of the data in this paper, most of the operational data related to ships and contracts

are from Tieto Company. The rest of the data, such as weather conditions and port charges,

are collected and estimated online.

 34

4.2.1 Operation data

Each year, ADNOC LNG can sell around 95 cargoes, 80 of which are contractual, and the rest

are spot. Typically, a relatively long-term contract consists of about 10 small seasonal

contracts, each specifying the amount of goods to be delivered each month and destinations.

Among them, 70% of transactions choose DES mode, while only 30% choose FOB mode.

That is also a reason why this paper assumes all orders in the planning horizon are DES.

The daily production rate is 50,000 𝑚3 on average. In the short term, frequent adjustments

of production are not cost-efficient, so the model assumes constant production within the time

period, but will decide the optimal production rate for the whole season before scheduling. For

the medium to long term, due to seasonal fluctuation in demand, the production rate is a

variable and could be an important factor for suppliers to meet customer demands on time.

Therefore, in the model of this paper, the planning period is three months, and the requirements

of each customer port are known in advance. Tieto provided most of the data, while the rest

were generated based on ship voyage information between December 2019 and May 2020

from the 'Vessel Finder' website.

 Data Unit

Production rate 10-70 Thousand cubic meters/day

Upper storage bound 640 Thousand cubic meters

Lower storage bound 10 Thousand cubic meters

Initial Inventory 320 Thousand cubic meters

Inventory cost 0.257K $/Thousand cubic meters/day

Ship capacity 170 Thousand cubic meters

Ship speed 13-18 knots

Table. 4 Data and Units

So far, the ADNOC's storage capacity is limited to 320,000 cubic meters, and the safety stock

is 10,000 cubic meters. The inventory cost per day is about 0.01234 $/MMBtu/day. However,

since China, Japan, South Korea, and India are only a part of ADNOC's customers, ADNOC's

production volume is actually higher than demands here so that the upper inventory constraints

can be relaxed a bit correspondingly.

 35

As for ships, ADNOC Logistic and Service subsidiary is in charge of eight LNG carriers, of

which the speed range during the voyage is 13 to 18 knots. Section 3.1 describes the

relationship between ship speed and fuel consumption. Therefore, in order to obtain the

specific transportation cost, the world average bunker fuel price from January to March was

selected. The capacity of these tankers varies little, averaging 170,000 cubic meters. Usually,

each ship loads at Das Island first, which is always fully loaded, then begins the laden leg

according to the planned speed and route, and next directly start to return to Das Island after

unloading at the customer port, waiting for the next sailing.

4.2.2 Weather and Scenario Generation

Most of the weather impact on a voyage comes from wind and waves, which are seasonal and

regional, and affect different types of ships differently. In this case, we define the uncertain

event in this paper as 'dates with significant wave height higher than 2.5 meters', and use the

statistic results as a forecast for the future. This definition is based on sea state classification

given by the World Meteorological Organization (WMO) (see Table. 5).

But in practice, a logistics company will use professional and accurate weather forecasts which

are available on the data market because weather is highly uncertain, and historical data alone

cannot represent the future. Here, since accurate weather data are not available to us at the

moment, historical data is a good substitute for showing our methods.

Wave height Characteristics Assumed influence

2.5 to 4 meters Rough 30%

4 to 6 meters Very rough 50%

6 to 9 meters High 80%

Table. 5 Sea state classification

The LNG tanker is among the least vulnerable ships to the rough weather (Heij and Knapp,

2014). At present, we cannot find enough data associated with the performance of LNG

tankers, but these two papers Heij and Knapp (2014) and Vettor, Prpic-Orsic, and Soares

(2015) describe wind and wave influence on container ships with no apparent differences. So,

we directly quoted their conclusions and made some appropriate simplification, such as

ignoring the wind direction details, only setting two directions (positive/negative), and

choosing the maximum influence range of the shipping speed (see the last column of Table.5).

Beyond that, we reduce the eventual speed impact of tankers by 20%, based on the deadweight

 36

tonnage differences between containers and LNG tankers. For example, within one event,

which is characterized as 'rough', the shipping speed will be decreased by 30% according to

Table. 5 if the wind and wave direction is opposite to the shipping direction.

Along the current route, from Das island to the farthest customer Tokyo, there are four regions

that ships have to cross: Arabian sea, South of Bay of Bengal, South China Sea, East China

Sea. Among them, Bay of Bengal is the site of a majority of the intense tropical cyclones in

history. It has significant seasonality high waves and strong wind. Thus, we focus on how

rough weather in the South of Bay of Bengal influences the shipping along the route.

So far, the significant wave height data we can obtain through the buoy statistics published by

Pacific Islands Ocean Observing System (PacIOOS) is limited between January 2011 and June

2020. We have also collected and analyzed wave data in the Arabian Sea, the South China Sea

and the East China Sea, but given the coordinates of the buoys, the observation data in the Bay

of Bengal are the closest to the shipping route.

Fig. 8 shows probabilities and seasonality

when an event is likely to occur in this area.

It is clear that in the Bay of Bengal, spring

and winter are almost not affected by high

waves. According to our statistics, the

number of days with wave heights above 2.5

meters only accounts for 8% of the season.

Moreover, the rough days are relatively

scattered, and the duration of one event is

mostly around one day, which has little

impact on shipping. Summer is totally different. More than half of the season is in the rough

state. Rough dates are concentrated and continuous, and the proportion of 'very rough' is

significantly higher than in other seasons, leading to hard shipping. Autumn is a transitional

season between the two extremes, and around 15% of the days are classified as rough in this

paper.

After understanding these characteristics, we fitted the data in Fig. 8 to find a suitable

probability distribution with the minimum error and finally obtained the power normal

distribution.

Fig. 8 Rough days Statistic in Bay of Bengal

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 32 60 91 121152182213244274305

P
ro

b
ab

ili
ti
es

time in days

Bay of Bengal

 37

Fig. 9 is the trend of total rough days all year

round in the past nine years. In this paper, due

to the definition of events and the lack of data,

we cannot get an effective distribution related

to the total number of days of events. Thus, to

simplify the prediction, we calculate the mean

and the standard deviation and treat it as a

normal distribution to predict the total number

of rough days of the next year. We think that

such a forecast is sufficient for the

subsequent analysis, but we also understand

that such an assumption is not accurate enough.

As for the distribution of speed influence, we use the statistic result directly. According to the

data we have, in the past nine years, the number of days that were classified as 'rough' state

accounts for around 80% of the total rough days, the state' very rough' accounts for 19%, and

the state 'high' accounts for 1%. Thus, we generate the speed influence according to this

discrete distribution.

With all the information above, scenarios are sampled according to the Monte Carlo sampling

procedure. In general, the more scenarios used in the model, the accuracy of estimation will

increase correspondingly. However, the large number of scenarios may also result in longer

computation times. Therefore, we will test with increasing cardinality 𝑤 from 0 to 300 to

find a trade-off between the number of scenarios and computation times in Section 4.3.

In the following, we choose to mainly focus our analysis on the autumn months, as autumn is

a neutralization of extremes, which is better to compare different models. Still, we will also

mention the characteristics of other seasons but not go into detail.

4.2.3 Ports

There are no statistics on the exact time of unloading or loading at each port, but according to

Tieto, such service times usually keep around one day, so it is assumed that all service times

are one day. Furthermore, for every port, there is only one berthing at any point in time. If

more than one ship arrives at the same port at the same time, or if one ship arrives at a port

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9

To
ta

l r
o

u
g

h
 d

ay
s

Year

Bay of Bengal

Fig. 9 Trend line of total rough

days in Bay of Bengal

 38

where another ship has started unloading (or loading) already, then ships have to queue up to

wait.

The LNG demurrage fee is usually very high, around $60,000 per day or more. This penalty

will motivate the ship to arrive within the target time window. In real life, the penalty for early

arrival is relatively lower than those for the delay. In addition, as for the scheduling of ships,

early arrival can also leave more flexibility in the follow-up plans. Thus, in this paper, we

assume that the early arrival charge is only 50% of the demurrage fee.

The different sea distances are measured in nautical miles and are collected from the 'Sea

Route' website (see Table.6). Each voyage could be traveled via two waypoints in the extended

stochastic model. The normal path is the shortest one, which runs directly from the south of

Sri Lanka to north of Sabang and then via the Malacca strait, the Singapore Strait, and Taiwan

Strait. The long path represents paths that allow ships to avoid wind and waves and is around

10% longer than the short path.

From To
Distance (Nautical Mile)

Normal Long

Das Island

Tokyo 6482 7224

Kawasaki 6463 7217

Kisarazu 6458 7212

Shanghai 5778 6606

Tianjin 6347 7219

Caofeidian 6321 7187

Busan 6076 6932

Dahej 1245 1245

Dabhol 1304 1304

Table. 6 Distance from Das Island to customer ports

This assumption is based on the distance that a ship has to travel if it wants to avoid a storm

area whose fetch is 500 nautical miles. This is the typical length of a storm area in the state

'rough' (Carter, 1982), so we think it is a reasonable number. In this case, Dahej and Dabhol

will not be influenced, but we want to keep them to compare the speed difference between

short and long voyages. Thus, the normal path length and the long path length for both India

ports are the same.

 39

4.3 Result Analysis

4.3.1 Basic Attributes

In this section, before measuring the stochastic effect, we will first analyze the basic attributes

of the solution of this case.

With the increasing number of

iterations in the SA algorithm, the

value of the objective function (total

costs) in the basic model (model I)

decrease gradually and almost stable at

around 23000 (dollars in thousands)

when the number of iterations exceeds

300. Therefore, in the following, we set

500 as the benchmark number of

iteration and get the corresponding results.

The computational outcomes of this case are composed of two solution sets. The first set of

the solution is an inventory schedule showed in Fig.11. According to this chart, the inventory

is well controlled within limits even there is no new arrival order after day 80.

Fig. 11 Inventory Schedule – model I

The second set is the routing decisions, which include vessel assignments to each route, vessel

speed, and expected arrival and departure dates.

Overall, laden voyages always have higher speed and higher volatility than the ballast voyage.

We think the reason may be that the laden voyage is more time-critical. It should not only

0
100
200
300
400
500
600
700

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

In
ve

n
to

ry

time in days

Inventory schedule

0

10000

20000

30000

40000

50000

60000

100 300 500 700 900

C
o

st

Number of Iteration

Fig. 10 Number of Iteration – model I

 40

ensure that the ship leaves on the date within the inventory limit, but also tries to avoid

unpunctual penalty. Instead, the ballast voyage only needs to make the ship get back to the

supplier port before the next delivery. However, this situation changed when we divide routes

into two categories according to the geographical location of customer ports.

 total short-haul long-haul

laden speed (ave.) 16.38 13.88 17.62

std 2.26 1.42 1.29

ballast speed (ave.) 15.60 15.89 15.46

std 1.48 1.18 1.66

Table. 7 Comparison between laden and ballast speed

Routes to Indian ports are around 1300 nautical miles, while routes to East Asia are all longer

than 5500 nautical miles. Therefore, we call the former as short-haul and the later as long-

haul.

In terms of saving fuel costs, both long-haul and short-haul transportation should keep a

relatively low speed. Nevertheless, from the last two columns of Table. 7, we see that the laden

speed of the long-haul is much higher than that of a short-haul. One reason might be that

sailing a long distance at a higher speed can save time for the subsequent planning and ensures

on-time arrival as much as possible. For example, the total distance from Das Island to

Shanghai is 5778 nautical miles. When the speed is adjusted from 13 knots to 18 knots, the

one-way trip can save approximately 5 days. For short-haul, the one-way trip in total is around

3 days. Therefore, even if the ship adjusts its speed from 13 to 18 knots, the unpunctual cost

will still not be much influenced. On the contrary, it will increase unnecessary fuel

consumption instead.

For the ballast voyage, however, the situation is different. There is little difference in ballast

speeds between long- and short-haul shipping, and the short-haul speed is even slightly higher.

This can be explained by the relationship between the ship's load and fuel consumption. The

ballast voyage can be deemed as zero loads, which uses only 80% as much fuel as the laden

voyage. Therefore, even if we assigned a higher speed to short-haul shipping, the bunker fuel

costs will not increase a lot.

 41

Fig. 12 Gantt Chart of model I

(time is measured in hours, 'l' for laden, 'b' for ballast)

The detailed shipping schedule is presented in a Gantt Chart in Fig. 12. Under this situation,

the distribution of weather is unclear and is not taken into consideration, so the quality of this

solution is also unclear.

To some extent, it could be flexible. For example, Ship 1 will depart from the supplier port on

the first day, and arrive at Dahej for unloading after four days, after which it returns to the

supplier port. Assuming that from day 5, Ship 1 would encounter a rough weather event lasting

3 days, during which the ship's speed would be reduced by 5.3 knots, the actual arrival time

would be about 20 hours later than initially planned. Originally, Ship 1 will back to the supplier

port on day 12, and now it will return one day later. However, it does not influence its next

trip, since the next tour starts around 20 days later.

However, model I cannot always absorb the delays caused by rough weather. For example,

assuming Ship 5 comes across a severe rough weather event lasting 4 days on its ballast

voyage, reducing its speed by 9 knots, Ship 5 is forced to sail more days than expected and

cannot return to the supplier's port on time. According to the original plan, after Ship 5 returns

to Busan's supplier, its next sailing task has to be started within two days, which is impossible

under the current rough situation. The delay will then be passed on to the next voyage and

affect the inventory schedule. It is highly likely that the inventory exceeds the ceiling.

 42

What is worse, a rough event may affect not only the route from Das Island to Busan but also

other routes to East Asia. Then, it is unwise to rely only on the buffer time in model I to deal

with the unknown weather events. In other words, the quality of the deterministic solution

highly depends on the weather distribution in reality. If the solution happens to avoid rough

events, the quality of the planning is high; if the opposite is the case, the solution of the

deterministic model then becomes useless, even it has lower costs. That calls for stochastic

models.

4.3.2 Uncertainty Effect Analysis

In this part, the first problem we need to solve is to figure out the best number of scenarios for

both stochastic models. In theory, the total costs should increase with the increase in the

number of scenarios, and the rate of growth should gradually slow down. However, after a

certain threshold, using more scenarios will likely result in a marginal (or no) gain in the total

costs, but a significant increase in computation time. Therefore, we conducted a sensitivity

analysis to investigate this trade-off between the number of scenarios and the corresponding

objective value.

As shown in Fig. 13, the convergency speed decreased significantly at the beginning as the

scenario size increases from 0 to 150. After that, the line becomes stable and convergent at

around 55000 (dollars in thousands).

Occasionally, the total cost seems to

decrease as the number of scenarios

increases (see Fig.13, from 150

scenarios to 250 scenarios). This

inaccuracy is probably because the

solution method used in this thesis is

a heuristic algorithm. However, as

far as the general trend is

concerned, the curve of

Fig.13 is consistent with our expectations. Under this situation, about 250 scenarios appear to

be a reasonable number to obtain a meaningful solution. Because if we choose a higher

scenario number, we will surely get a more accurate result, but the computation time will be

too high. Two hundred and fifty scenarios seem to be a good trade-off.

Fig. 13 Cardinality of Scenario Tree – model II

0

10000

20000

30000

40000

50000

60000

70000

0 50 100 150 200 250 300

co
st

s

number of scenarios

Cardinality of Scenario Tree

 43

Next, we prepare to conduct the same test

to model III. However, in the process of

computation, we found that the objective

value of model III tends to be stable after

the number of scenarios is greater than 45,

as shown in Fig. 14. Furthermore, its

convergency value is not much different

from that of model I. This may be because

the loss of bypassing the rough area is

much less than the loss by going through

it. At the same time, when the direction of wind and wave is the same as the direction of the

ship, the ship can even make use of them to increase its actual speed.

In Section 4.2.3, we give the normal distance and the long distance between ports, respectively,

in which the longer distance is about 10% more than the normal one. However, to analyze the

trade-off between the long path choice or sailing in the rough area, we changed the length of

the longer path several times and tried when the long path is 15%, 20%, 25%, 30% and 35%

longer than the normal path. The results showed that the total costs of model II and model III

gradually tended to be consistent when a ship needs to travel 25% more than its normal path.

In other words, the long detour option becomes meaningless in this case when the cost of

bypassing the rough area is traveling 25% more distance.

There is another situation when models II and III tend to be consistent. In spring and winter,

during which weather events were at extremely low frequency, the solutions are almost the

same between two models. To be more precise, in that case, models I to III would be mostly

the same, except that models II and III might have to pay a little more in bunker fuel in the

second stage.

Summer is another extreme state. Since the wind and waves cannot be avoided, the scheme

can only be optimized by adjusting the speed and changing the schedule. The cost of model II

is higher than 1.2 ∗ 107(dollars in thousands). A significant component of this number is the

penalty from inventory management failure. Unable to arrive at the customer port on time and

unable to return to the supplier port before the next scheduled sailing, the ship will surely be

unable to load LNG in time. In model III, when the length of the long path is less than 1.25

times of normal path, the total cost still has little difference with model I.

Fig. 14 Cardinality of Scenario Tree

– model III

21000

22000

23000

24000

25000

26000

27000

0 15 30 45 60 75 90 115

costs

number of scenarios

Cardinality of Scenario Tree

 44

To sum up, the two stochastic models have similar effects when the rough weather effect is

not significant and does not last long. As rough weather increases in its influence on ships and

its frequencies, the model III's advantages become more obvious. Adjusting the departure time

and sailing speed can only absorb the negative effects to a certain extent when the intervals

between events are longer, but choosing a path can directly avoid all the disadvantages.

However, model III also has its downside: the path choice can become invalid when the

distance to bypass the rough area is too long.

Next, we analyze the specific results of the two models. First of all, in terms of speed

allocation, the average laden speed of model II and III is 16.46 and 16.21 knots, respectively.

Moreover, the standard deviation in model II is also slightly higher. This is because in model

II, under the circumstance of sailing through the wind and waves, if ships still want to ensure

the punctuality of arrival, speed up is a good option.

Fig. 15 Comparison of model II and III

 45

Second, in terms of ship allocation, the

solution of model II clearly shows signs of

avoiding wind and waves, while model III

does not. Compare the two figures in Fig. 15,

we can see that in the first 500 hours of the

season, when the probability of rough days

are high (according to Fig.16), the schedule

of model II has tried its best to choose a

relatively late start time and reduce the

sailing time of each ship during this period.

Model III can avoid the wind and waves altogether, so there is no need to do the same as model

II.

(dollars in thousands) Model I Model II Model III

Total Costs 22885.1 55174.9 25908.3

Table. 8 The total costs of the three models

Third, the objective values of model II and model III are nearly twice different (see results in

Table.8). The first probable reason is that after considering different weather scenarios, under

current constraints, model II still cannot find a way to avoid inventory management failure,

leading to the inventory larger than the upper limit or lower than the lower bound. Another

reason is the difference between the number of ship changes. It will cost a lot to change the

ship abruptly just before departure. Based on the computational results, considering all

scenarios in model II, the weighted average number of ship changes in model II in the second-

stage is 7. In model III, the number is less than one, which means that it is almost enough to

deal with the rough weather by path changing rather than reassign ships.

Finally, from Table.8, we can also see that both the total cost of model II and model III are

higher than model I. That is because the model I, which can be viewed as a zero scenario

model, does not take any external factors into account, and it only needs to find a plan with

the most economical cost. Thus, the result of this kind of deterministic models will always

have lower costs than a stochastic one. However, given the heuristic and the number of

iterations, when adapting model I’s solution into stochastic settings, the solution will still be

feasible but not necessarily the best one anymore. We will use Table. 9 to do the explanation.

Fig. 16 Rough days

distribution in Autumn

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

2
4

1
68

3
12

4
56

6
00

7
44

8
88

1
03

2
1
17

6
1
32

0
1
46

4
1
60

8
1
75

2
1
89

6
2
04

0
2
18

4

P
ro

b
ab

ili
ti
es

time in hours

Autumn Distribution

 46

Model I

(in model II

setting)

Model II
Model I

(in model III

setting)

Model III

Total Costs 58318.7 55174.9 26067.9 25908.3

Original Schedule

Costs
22885.1 28250.3 22885.1 25750.9

Stochastic part 35433.6 26924.7 3182.8 157.4

Table. 9 The deterministic solution in stochastic settings

The total costs of stochastic models, to some extent, can be divided into two parts: the first

part is the costs for the original schedule, and the second part is the expected value of extra

costs of changing the original schedule into a new one when different scenarios realized. If we

only focus on the original schedule costs, it is clear that model I’s solutions have the lowest

costs. However, when comparing the value of the stochastic part, the disadvantages of model

I are obvious. That means, on average, model I’s solution will cost far more than the other two

models’ solutions to adapt to the possible rough weather. In other words, the best solution

found by model I is not the best anymore and becomes fragile when we consider weather

influence. If we use that schedule in practice, it will be easily affected by continuous wind and

wave and ends up higher total costs than solutions given by the stochastic ones.

 47

5. Concluding Remark

5.1 Conclusion

In this paper, we propose three models to solve LNG-SIRP, generating ‘optimal’ scheduling

decisions under uncertain weather, and controlling the inventory simultaneously. We put the

word 'optimal' in quotes because IRP is itself an optimization problem, and we establish and

solve these models according to the logic of optimization. However, since the method we use

(the SA algorithm) is heuristic, the final solution obtained is feasible, but not necessarily

optimal.

Among the three models, model I is a deterministic model that only minimizes costs for the

current state and is used as a comparison for the two stochastic models. Thus, before studying

the uncertain factor, we first analyze the solution provided by this model and found that

although it can generate a good solution with low costs, it may not be flexible enough to

manage the schedule when rough events occur.

Models II and III are generated to deal with uncertain weather. When a rough weather event

is realized in the second stage, model II will consider to change the shipping speed or

reschedule to reduce the uncertain influence. In contrast, model III has another choice: taking

a long detour and bypassing the rough area.

In total, model III has better performance than model II, especially when the rough dates are

continuous, and the influence level is high and unavoidable by simply adjusting speed or

changing the shipping schedule. However, model III also faces problems when the detour's

distance is so long that it results in a higher loss than sailing through the high wave and strong

wind area. In this paper, the breakpoint is 1.25 times of the normal path. When the long path

is more than 1.25 times longer than the short path, the results of the two models tend to be

consistent.

Compared to the deterministic model I, both models II and III result in higher total costs. It

doesn't mean that the stochastic models are worse. On the contrary, they consider hundreds of

possible scenarios and minimize not only the original schedule costs but also the impact

brought by uncertain weather conditions. The quality of these solutions should be better than

the deterministic one. To make a more apparent contrast, we put model I’s solution into

 48

stochastic settings. Although its initial schedule cost is still the lowest, the rough weather will

bring higher impacts and cause higher losses on average to it than to solutions of stochastic

models.

The two-stage model proposed in this paper can be extended to multi-stage in future studies,

and the definition of the uncertain event could be more in detail, including more than one event

area, so that it can be adapted to a long-term plan.

5.2 Limits

5.2.1 Limits in model

First of all, all our analyses of weather conditions are based on historical data, and models will

become unreliable if historical data are inaccurate. That calls for more professional and

accurate weather forecasts. Secondly, the scheduling logic applied in this paper is myopic to

a certain extent. This is because when assigning ships for each order, this algorithm only

considers the solution if the current order cannot arrive at the customer's port on time, but does

not consider whether the overall optimization can be achieved by reallocating the current order

if the next request is not punctual.

Third, in the computational results in Section 4, model II always has high inventory

management failure costs. This might partially be because we set the production rate as

constant. Actually, the production rate, in the long run, is changeable. Finally, the supplier's

subjective risk preferences are not taken into account. For uncertain events, risk aversion and

risk appetite make entirely different decisions.

5.2.2 Limits in solution methods

The limits of the SA algorithm are mainly in the following two aspects: on the one hand, it

needs a large amount of computation, which would be time costly. On the other hand, it is

uncertain whether the final result is the optimal one. If there is an auxiliary algorithm to prove

the SA algorithm's correctness, then the solution will be more reliable.

 49

References

Abu Dhabi National Oil Company, n.d., Wikipedia. Available at:

 https://en.wikipedia.org/wiki/Abu_Dhabi_National_Oil_Company

ADNOC LNG. (2019) About ADNOC LNG. Available at: https://www.adnoc.ae/en/adnoc-

lng/who-we-are/about-adnoc-lng

Anderson, H., Christiansen, M., & Fagerholt, K. (2010). Transportation planning and

inventory management in the LNG supply chain. In E. Bjørndal, P. M. Pardolos, & M.

Ronnqvist (Eds.), Energy, natural resources and environmental economics (pp. 427–439).

Berlin: Springer.

Argus. (2020) LNG Shipping Market: Shipping Cost Slightly Declining. Available at:

https://www.hellenicshippingnews.com/lng-shipping-market-shipping-cost-slightly-

declining/

Bell, W.J., Dalberto, L.M., Fisher, M.L., Greenfield, A.J., Jaikumar, R., Kedia, P., Mack, R.G.,

Prutzman, P.J. (1983). Improving the distribution of industrial gases with an online

computerized routing and scheduling optimizer. Interfaces 13(6), 4-23.

BP Statistics Department (2018). BP Energy Outlook. Technical report. British Petroleum

Cho, J., Lim, G. J., Kim, S. J., & Biobaku, T. (2018). Liquefied natural gas inventory routing

problem under uncertain weather conditions. International Journal of Production Economics,

204, 18–29.

Coelho, L. C., Cordeau, J.-F., & Laporte, G. (2014). Thirty years of inventory routing.

Transportation Science, 48(1), 1–19.

D.J.T. Carter. (1982) Prediction of wave height and period for a constant wind velocity using

the JONSWAP results. Ocean Engineering, Volume 9, Issue 1, 17-33.

Federgruen, A., & Zipkin, P. (1984). A combined vehicle-routing and inventory allocation

problem. Operations Research, 32(5), 1019–1037.

https://en.wikipedia.org/wiki/Abu_Dhabi_National_Oil_Company

 50

Gnana J. (2019) Adnoc signs LNG agreements with oil majors BP and Total. Available at:

https://www.thenational.ae/business/energy/adnoc-signs-lng-agreements-with-oil-majors-bp-

and-total-1.936433

Goel, V., Furman, K. C., Song, J.-H., & El-Bakry, A. S. (2012). Large neighborhood search

for LNG inventory routing. Journal of Heuristics, 18(6), 821–848.

Grønhaug, R. (2008). Optimization Models and Methods for Industrial Supply Chains.

Doctoral Thesis, NTNU, Norway.

Grønhaug, R., & Christiansen, M. (2009). Supply chain optimization for the liquefied natural

gas business. In M. G. Speranza, & J. A. E. E. van Nunen (Eds.), Innovation in distribution

logistics: vol. 619 (pp. 195–218). Berlin, Germany: Springer.

Halvorsen-Weare, E. E., & Fagerholt, K. (2013). Routing and scheduling in a liquefied natural

gas shipping problem with inventory and berth constraints. Annals of Operations Research,

203(1), 167–186.

Heij C and Knapp S (2014), Effects of wind strength and wave height on ship incident risk:

regional trends and seasonality, Econometric Institute Report 2014-15, Erasmus University

Mutlu, F., Msakni, M. K., Yildiz, H., Soenmez, E., & Pokharel, S. (2016). A comprehensive

annual delivery program for upstream liquefied natural gas supply chain. European Journal

of Operational Research, 250(1), 120–130

PIB Delhi. (2018) India – UAE bilateral investments. Available at:

https://pib.gov.in/PressReleaseIframePage.aspx?PRID=1520423

Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1992). Numerical Recipes

in C. Cambridge University Press, Cambridge.

Rakke J, Stålhane M, Moe C, Andersson H, Christiansen M, Fagerholt K, Norstad I (2011) A

rolling horizon heuristic for creating a liquefied natural gas annual delivery program. Transp

Res C 19(5):896–911

Riviera. (2019) Gulf prepares for major increase in LNG exports. Available at:

 51

https://www.rivieramm.com/opinion/opinion/gulf-prepares-for-major-increase-in-lng-

exports-22163

Roldan, R. F., Basagoiti, R., & Coelho, L. C. (2017). A survey on the inventory-routing

problem with stochastic lead times and demands. Journal of Applied Logic, 24(A, SI), 15–24.

Shao, Y., Furman, K. C., Goel, V., & Hoda, S. (2015). A hybrid heuristic strategy for liquefied

natural gas inventory routing. Transportation Research Part C-Emerging Technologies, 53,

151–171.

S. Nurminarsih, A. Rusdiansyah, N. Siswanto, and A. Z. Gani. (2015). Dynamic-Inventory

Ship Routing Problem (DIsrp) Model Considering Port Dwelling Time Information, Industrial

Engineering and Service Science, Vol. 4, No. 4, pp. 344-351.

Stålhane, M., Rakke, J. G., Moe, C. R., Andersson, H., Christiansen, M., Fagerholt, K., et al.

(2012). A construction and improvement heuristic for a liquefied natural gas inventory routing

problem. Computers & Industrial Engineering, 62(1), 245–255.

Thomas, S., Dawe, R.A., (2003) Review of ways to transport natural gas energy from countries

which do not need the gas for domestic use. Energy, 28(14), 1461-1477.

Vettor R., Prpić-Oršić J., and Guedes Soares C.. (2015) The effect of wind loads on the

attainable ship speed on seaways,” in Towards Green Marine Technology and Transport, C.

Soares, Guedes, R. Dejhalla, and D. Pavletić, Eds. Taylor & Francis Group, London, pp. 867–

873.

Wang X., Norstad I., Fagerholt K., Christiansen M. (2019) Green Tramp Shipping Routing

and Scheduling: Effects of Market-Based Measures on CO2 Reduction. In: Psaraftis H. (eds)

Sustainable Shipping. Springer, Cham. https://doi.org/10.1007/978-3-030-04330-8_8

World Energy Council (2016). World Energy Resource | 2016. Technical Report.

Zhang, H., Liang, Y., Liao, Q., Yan, X., Shen, Y., & Zhao, Y. (2017) A three-stage stochastic

programming method for LNG supply system infrastructure development and inventory

routing in demanding countries. Energy, 133, 424–442.

 52

Appendix 1 Code for SA Algorithm

import pandas as pd

import numpy as np

import copy

import matplotlib.pyplot as plt

import abc

import math

import random

import sys

import time

import warnings

warnings.filterwarnings("ignore")

def time_string(seconds):

 """

 Returns the time in seconds as a string hh:MM:SS

 Recording time of annealing process

 """

 s = int(round(seconds))

 h, s = divmod(s, 3600) # Get the hours and the remaining time

 m, s = divmod(s, 60) # The rest of the time is divided into minutes and seconds

 return '%4i:%02i:%02i' % (h, m, s)

class Annealer(object):

 """

 Simulated Annealing

 """

 # defaults

 # Temperature, max and min

 Tmax = 25000.0

 Tmin = 2.5

 # update the model

 updates = 200

 # save the viarable

 best_state = None

 best_energy = None

 start = None

 def __init__(self, initial_state=None):

 self.state = copy.deepcopy(initial_state)

 @abc.abstractmethod

 def move(self):

 """

 state change

 """

 53

 pass

 @abc.abstractmethod

 def energy(self):

 """

 energy calculation

 """

 pass

 def update(self, *args, **kwargs):

 """

 if don’t rewrite update

 directly use default_update

 """

 self.default_update(*args, **kwargs)

 def default_update(self, step, T, E, acceptance, improvement):

 """

 process output

 print current temperature, energy, acceptance rate, improvement rate, used time and

remaining time

 Acceptance rate: Represents the percentage of moves the Metropolis algorithm has accepted

since the last update.

 It includes motion that reduces energy, motion that holds energy constant, and motion

that increases energy through thermal excitation.

 Improvement rate: Represents the percentage movement of strictly reduced energy since the

last update.

 At high temperatures, it includes both motion that improves the overall state, and

motion that simply eliminates previously increased energy through thermally induced polarization.

 At low temperatures, it tends to zero, because the motion that reduces energy is

exhausted, and the motion that increases energy is no longer thermally accessible.

 """

 elapsed = time.time() - self.start

 if step == 0:

 print(' Temperature Energy Accept Improve Elapsed

Remaining',

 file=sys.stderr)

 print('\r%12.5f %12.2f %s ' %

 (T, E, time_string(elapsed)), file=sys.stderr, end="\r")

 sys.stderr.flush()

 else:

 remain = (self.steps - step) * (elapsed / step)

 print('\r%12.5f %12.2f %7.2f%% %7.2f%% %s %s\r' %

 (T, E, 100.0 * acceptance, 100.0 * improvement,

 time_string(elapsed), time_string(remain)), file=sys.stderr,

end="\r")

 sys.stderr.flush()

 def anneal(self):

 """

 The energy of the system is minimized by simulated annealing.

 Return: better state and energy

 """

 step = 0

 54

 self.start = time.time()

 # Cooling factor from Tmax to Tmin

 Tfactor = -math.log(self.Tmax / self.Tmin)

 # Initial temperature and energy

 T = self.Tmax

 E = self.energy()

 # pre-state and energy

 prevState = copy.deepcopy(self.state)

 prevEnergy = E

 # best state and energy

 self.best_state = copy.deepcopy(self.state)

 self.best_energy = E

 # acceptance rate、improvement rate

 trials, accepts, improves = 0, 0, 0

 if self.updates > 0:

 updateWavelength = self.steps / self.updates

 self.update(step, T, E, None, None)

 # try state transfer

 result_per_step = []

 sec = time.time()

 # iteration

 while step < self.steps:

 step += 1

 # current temperature

 T = self.Tmax * math.exp(Tfactor * step / self.steps)

 # Energy transfer, the change in energy per iteration

 dE = self.move()

 if dE is None:

 E = self.energy()

 dE = E - prevEnergy

 else:

 E += dE

 trials += 1

 ### metropolis

 # if Δt′<0, accept S′ as new solution

 # else, accept S′ as new solution with the probability exp(-Δt′/T)

 if dE > 0.0 and math.exp(-dE / T) < random.random():

 # Follow the previous state

 self.state = copy.deepcopy(prevState)

 E = prevEnergy

 else:

 # accept new state

 accepts += 1

 if dE < 0.0:

 improves += 1

 # use current state as previous state for next round

 prevState = copy.deepcopy(self.state)

 prevEnergy = E

 # print(E, self.best_energy)

 if E < self.best_energy:

 # If the energy drops, use it as the best energy and state

 self.best_state = copy.deepcopy(self.state)

 self.best_energy = E

 if self.updates > 1:

 # update console output

 55

 if (step // updateWavelength) > ((step - 1) // updateWavelength):

 self.update(

 step, T, E, accepts / trials, improves / trials)

 trials, accepts, improves = 0, 0, 0

 # The best state for each iteration

 sec1 = time.time()

 result_per_step.append([self.best_energy, self.best_state, sec1 - sec])

 sec = sec1

 self.state = copy.deepcopy(self.best_state)

 # return the best state and energy

 return self.best_state, self.best_energy, result_per_step

class SearchScheme(Annealer):

 def __init__(self):

 self.load_data()

 self.move()

 super(SearchScheme, self).__init__(self.state)

 def load_data(self):

 '''

 load data

 '''

 filename = 'data_hour.xlsx'

 # demand schedule

 self.Requests = pd.read_excel(filename, sheet_name='demand plan', index_col=0)

 self.dayN = len(self.Requests) * 24

 self.Requests = self.Requests.replace(0,

np.nan).dropna(how='all').stack().reset_index()

 ll = []

 for i, line in self.Requests.iterrows():

 if line[0] == 1:

 ll.append(line)

 else:

 for _ in range(int(line[0])):

 line[0] = 1

 ll.append(line)

 self.Requests = pd.concat(ll, axis=1).T

 self.Requests.index = range(len(self.Requests))

 self.Requests['level_0'] *= 24

 self.day_request = self.Requests.iloc[:, 0].tolist()

 # distance from port to supplier

 self.distance_port = pd.read_excel(filename, sheet_name='supplier2port',

index_col=0)

 self.portsL = self.distance_port.index.tolist()

 # distance from initial point to supplier

 self.distance_producer = pd.read_excel(filename, sheet_name='init2supplier',

index_col=0)['distance'] # .sort_values()

 # discharge window and grace period

 self.port_days_min, self.port_days_max = pd.read_excel(filename,

sheet_name='window_limit').iloc[0][['earliest', 'latest']]

 self.port_days_min *= 24

 self.port_days_max *= 24

 # unpunctual penalty

 self.port_shift_cost = pd.read_excel(filename, sheet_name='window_penalty',

 56

index_col=0)[['a', 'b']]

 # ships

 self.ships = self.distance_producer.index.tolist()

 # data of producer

 self.data_producer = dict(pd.read_excel(filename, sheet_name='producer',

index_col=0)['data'])

 self.data_producer['load_time'] *= 24

 self.data_producer['storage_cost'] /= 24

 self.data_producer['prod_rate'] = 2

 self.data_producer['inv_t_unit'] =

pd.concat([pd.Series(self.data_producer['Initial_inv'], index=range(self.dayN + 1)),

 pd.Series(self.data_producer['prod_rate'],

 index=range(1, self.dayN +

1)).cumsum()], axis=1).sum(axis=1)

 # ship_data

 self.data_ship = dict(pd.read_excel(filename, sheet_name='ship',

index_col=0)['data'])

 for k in ['ship_speed', 'relation_speed_fuel']:

 self.data_ship[k] = np.array(list(map(float,

self.data_ship[k].split(','))))

 self.data_ship['unload_time'] *= 24

 self.data_ship['load_time'] *= 24

 self.data_ship['days_ini2pro'] = self.distance_producer.apply(

 lambda x: np.ceil(x / (self.data_ship['ship_speed'])).astype(int))

 self.data_ship['days_pro2port'] = self.distance_port.stack().apply(

 lambda x: np.ceil(x / self.data_ship['ship_speed']).astype(int)).unstack()

 D = {}

 for port, paths in self.data_ship['days_pro2port'].iterrows():

 D[port] = paths.apply(lambda x: pd.Series(x, index=['max',

'min']))[['min', 'max']]

 self.data_ship['days_pro2port'] = D

 # event data

 self.data_storm = pd.read_excel(filename, sheet_name='event_influence')

 self.data_probability = pd.read_excel(filename,

sheet_name='probability',index_col=None)

 self.data_storm['start_time'] *= 24

 self.data_storm['end_time'] = self.data_storm['start_time'] + 23

 self.data_storm['influenced_dates'] = self.data_storm.apply(lambda x:

set(range(int(x['start_time']), int(x['end_time'] + 1))), axis=1)

 def move(self):

 # Loop until find the suitable solution

 while True:

 try:

 self.move_()

 break

 except:

 pass

 def move_(self):

 '''

 ship scheme generation

 57

 '''

 spd1, spd2 = self.data_ship['ship_speed']

 # if orders are in the same day, randomly choose one

 Requests = self.Requests.sample(frac=1).sort_values('level_0')

 ## save variables

 # available ships

 ships_empty = copy.deepcopy(self.ships)

 ships_empty_w = {w: copy.deepcopy(self.ships) for w in range(1,11)}

 # product rate per hour

 producer_fuel = copy.deepcopy(self.data_producer['inv_t_unit'])

 producer_fuel_w = {w: copy.deepcopy(self.data_producer['inv_t_unit']) for w

in range(1,11)}

 # Date of last visit to supplier

 DAY_pro_last = ship_day_pro = 0

 DAY_pro_last_w = {w: 0 for w in range(1,11)}

 ship_day_pro_w = {w: 0 for w in range(1,11)}

 # shipping details

 shipL = []

 shipL_w = {w: [] for w in range(1,11)}

 # Ships to return to supplier

 ship_backto_pro = pd.DataFrame()

 ship_backto_pro_w = {w: pd.DataFrame() for w in range(1,11)}

 # The latest variable for the ship to return to the supplier

 ship_backto_port_day = {}

 ship_backto_port_day_w = {w: {} for w in range(1,11)}

 # Queuing days in supplier port

 producer_queue_Days = []

 producer_queue_Days_w = {w: [] for w in range(1,11)}

 # Queuing days in customer ports

 port_queue_Days = {port: [] for port in self.portsL}

 port_queue_Days_w = {w:{port: [] for port in self.portsL} for w in

range(1,11)}

 state_w = {w: [] for w in range(1,11)}

 # the number of ship reassignment

 ship_changeN = 0

 delta_fc1 = 0

 delta_fc2 = 0

 delta_shift = 0

 EastA = ['Busan', 'Kawasaki', 'Kisarazu', 'Tokyo', 'Tianjin', 'Shanghai',

'Caofeidian']

 i = 0

 for DAY0, port, need in Requests.values:

 i += 1

 # if i == 1 :

 # break

 DAY = DAY0

 # judge the date of arrival at the port and the number of queuing days 1

 day_shift_ = 0

 while True:

 if DAY in port_queue_Days[port]:

 if random.random() < 0.5:

 DAY += 24

 day_shift_ += 24

 else:

 58

 DAY -= 24

 day_shift_ -= 24

 else:

 break

 # days_pro2port

 day_pro2port = copy.deepcopy(self.data_ship['days_pro2port'][port])

 # if there’s no idle ship available

 if len(ships_empty) == 0:

 # The date of the fastest return ship to the supplier

 day_ship_nearest = int(ship_backto_pro.min().min())

 else:

 day_ship_nearest = 0

 # the least number of days for the current ship to return to supplier

 if len(ships_empty) > 0:

 day_ship2pro_nearest =

self.data_ship['days_ini2pro'][ships_empty].apply(lambda x: min(x)).min()

 else:

 day_ship2pro_nearest = 0

 # Find the appropriate path from the supplier to customer, and record the days of the

arrival and queuing days 2

 path_notok = []

 while True:

 queue_day_pro = 0

 queue_day_port = 0

 port_fuel = self.data_ship['ship_cap']

 # the day when inventory reach the ship capacity

 day_producer_need = \

 producer_fuel[(producer_fuel.index > ship_day_pro) &

(producer_fuel >= port_fuel)].index[0]

 # DAY_last to DAY，the day when inventory reach the upper limits

 day_producer_full = DAY_pro_last + math.ceil(

 (self.data_producer['upper_limit'] - producer_fuel[DAY_pro_last]) /

self.data_producer['prod_rate'])

 # first judge if the ship can arrive on time

 for path, (delta_min, delta_max) in

day_pro2port.sample(frac=1).iterrows():

 if path in path_notok:

 continue

 # break

 day_pro_min = DAY - delta_max - self.data_ship['load_time']

 day_pro_max = DAY - delta_min - self.data_ship['load_time']

 days_pro_ok = set(range(day_pro_min, day_pro_max + 1)) & set(

 range(day_producer_need, day_producer_full + 1))

 days_pro_ok -= set(producer_queue_Days)

 days_pro_ok -= set(range(-1, day_ship_nearest))

 days_pro_ok -= set(range(-1, day_ship2pro_nearest))

 if len(days_pro_ok) == 0:

 continue

 # departure date

 59

 ship_day_pro = random.choice(list(days_pro_ok))

 # laden speed

 ship_speed_2 = self.distance_port.loc[port, path] / (DAY -

ship_day_pro - self.data_ship['load_time'])

 ship_speed_2 = self.adj_speed(ship_speed_2)

 day_shift = day_shift_

 break

 # If it cannot arrive on time, find a path that satisfies the grace period

 else:

 for path, (delta_min, delta_max) in

day_pro2port.sample(frac=1).iterrows():

 # break

 if path in path_notok:

 continue

 day_pro_min = DAY - delta_max - self.data_ship['load_time'] +

self.port_days_min - day_shift_

 day_pro_max = DAY - delta_min - self.data_ship['load_time'] +

self.port_days_max - day_shift_

 days_pro_ok = set(range(day_pro_min, day_pro_max + 1)) & set(

 range(day_producer_need, day_producer_full + 1))

 days_pro_ok -= set(producer_queue_Days)

 days_pro_ok -= set(range(-1, day_ship_nearest))

 days_pro_ok -= set(range(-1, day_ship2pro_nearest))

 if len(days_pro_ok) == 0:

 continue

 # departure date

 ship_day_pro = random.choice(list(days_pro_ok))

 ship_day_delta2 = DAY - ship_day_pro -

self.data_ship['load_time']

 ship_day_delta2_real = np.clip([ship_day_delta2], delta_min,

delta_max)[0]

 # laden speed

 ship_speed_2 = self.distance_port.loc[port, path] /

ship_day_delta2_real

 ship_speed_2 = self.adj_speed(ship_speed_2)

 # unpunctual days

 day_shift = ship_day_pro + ship_day_delta2_real +

self.data_ship['load_time'] - DAY + day_shift_

 break

 # If it cannot arrive on time and there is no path to meet the grace period,

the supplier will be penalized for exceeding the inventory limit and postpone sailing

 else:

 day_pro_outlier_min = DAY + self.port_days_min -

day_pro2port.max().max() - self.data_ship[

 'load_time']

 # If a ship is available to return and arrive at the supplier in time

 if day_pro_outlier_min >= max(day_ship2pro_nearest,

day_ship_nearest):

 # departure date

 ship_day_pro = day_pro_outlier_min

 # unpunctual date

 day_shift = self.port_days_min + day_shift_

 path = 'far'

 # laden speed

 60

 ship_speed_2 = self.data_ship['ship_speed'][0]

 ship_speed_2 = self.adj_speed(ship_speed_2)

 else:

 # departure date

 ship_day_pro = max(day_ship2pro_nearest, day_ship_nearest)

 # laden speed

 path = 'near'

 ship_speed_2 = self.data_ship['ship_speed'][1]

 ship_speed_2 = self.adj_speed(ship_speed_2)

 # unpunctual dates

 day_shift = ship_day_pro + math.ceil(

 self.distance_port.loc[port, path] / ship_speed_2) - DAY

 # arrival date

 ship_day_port = DAY + day_shift

 fc1 = (0.0019 * (ship_speed_2 ** 2) - 0.045 * ship_speed_2 + 0.3739)

* (ship_day_port - ship_day_pro - 24)

 break

 # When there are ships at the port, then queue up

 while True:

 if ship_day_port + queue_day_port in port_queue_Days[port]:

 queue_day_port += 1

 else:

 break

 # When no ships are available, randomly return ships from the list of ships awaiting

return

 if len(ships_empty) == 0:

 for tp in [('near', 'min'), ('near', 'max'),('far', 'min'), ('far',

'max')]:

 for ship, day in

ship_backto_pro[tp].sample(frac=1).astype(int).iteritems():

 if day <= ship_day_pro:

 # break

 d1, d2, port_, speed_1, DAY_ = ship_backto_port_day[ship]

 speed_2 = self.adj_speed(self.distance_port.loc[port_,

tp[0]] / (day - 2 * d2 - d1))

 fc2 = ((0.0019 * (speed_2 ** 2) - 0.045 * speed_2 + 0.3739)

* 0.8) * (day - 2 * d2 - d1)

 shipL.append(['back', port_, ship, 0, day - d2, day - 2 *

d2, d1, speed_1, speed_2,

 0, 0, tp[0], DAY_, fc2])

 ships_empty.append(ship)

 ship_backto_pro.drop(ship, inplace=True)

 del ship_backto_port_day[ship]

 break

 else:

 continue

 break

 # print(ships_empty)

 # ships chosen

 try:

 while True:

 ship = random.choice(ships_empty)

 ship_deltas_pro = self.data_ship['days_ini2pro'][ship]

 if ship_deltas_pro[1] <= ship_day_pro:

 61

 break

 except:

 self.state = [[], 0, 0, 0, 0, 0, 0]

 # return

 # print(ships_empty, ship)

 ship_delta_1 = random.randint(ship_deltas_pro[1], min(ship_day_pro,

ship_deltas_pro[0]))

 ship_speed_1 = self.distance_producer[ship] / ship_delta_1

 ship_speed_1 = self.adj_speed(ship_speed_1)

 ship_day_spot = ship_day_pro - ship_delta_1

 # record variables

 shipL.append(

 ['load', port, ship, day_shift, ship_day_spot, ship_day_pro,

ship_day_port, ship_speed_1, ship_speed_2,

 queue_day_pro, queue_day_port, path, DAY, fc1])

 ships_empty.remove(ship)

 DAY_pro_last = ship_day_pro

 producer_fuel.loc[DAY_pro_last:] -= port_fuel

 producer_queue_Days += list(range(ship_day_pro + queue_day_port,

ship_day_pro + queue_day_port + 23))

 port_queue_Days[port] += list(range(ship_day_port + queue_day_port,

ship_day_port + queue_day_port + 23))

 # Record the demand variables of the ship to facilitate the future planning of the

ballast voyage of the ship

 delta_2, delta_1 = self.data_ship['days_ini2pro'][ship]

 delta_pro2spot = random.randint(delta_1, delta_2)

 speed_ = self.adj_speed(self.distance_producer[ship] / delta_pro2spot)

 back_days = (ship_day_port + self.data_ship[

 'unload_time'] + queue_day_port + day_pro2port + delta_pro2spot *

2).stack()

 back_days.name = ship

 ship_backto_pro = ship_backto_pro.append(back_days)

 ship_back_port = ship_day_port + self.data_ship['unload_time'] +

queue_day_port

 ship_backto_port_day[ship] = [ship_back_port, delta_pro2spot, port,

speed_, DAY]

Take weather into consideration, repeat the code above

 for w in range(1,11):

 DAY_w = DAY0

 day_shift_w_ = 0

 while True:

 if DAY_w in port_queue_Days_w[w][port]:

 if random.random() < 0.5:

 DAY_w += 24

 day_shift_w_ += 24

 else:

 DAY_w -= 24

 day_shift_w_ -= 24

 else:

 break

 # days_pro2port

 day_pro2port = copy.deepcopy(self.data_ship['days_pro2port'][port])

 62

 if len(ships_empty_w[w]) == 0:

 day_ship_nearest_w = int(ship_backto_pro_w[w].min().min())

 else:

 day_ship_nearest_w = 0

 if len(ships_empty_w[w]) > 0:

 day_ship2pro_nearest_w =

self.data_ship['days_ini2pro'][ships_empty_w[w]].apply(lambda x: min(x)).min()

 else:

 day_ship2pro_nearest_w = 0

 path_notok_w = []

 while True:

 queue_day_pro_w = 0

 queue_day_port_w = 0

 port_fuel = self.data_ship['ship_cap']

 day_producer_need_w = \

 producer_fuel_w[w][(producer_fuel_w[w].index > ship_day_pro_w[w])

& (producer_fuel_w[w] >= port_fuel)].index[0]

 day_producer_full_w = DAY_pro_last_w[w] + math.ceil(

 (self.data_producer['upper_limit'] -

producer_fuel_w[w][DAY_pro_last_w[w]]) / self.data_producer['prod_rate'])

 for path_w, (delta_min, delta_max) in

day_pro2port.sample(frac=1).iterrows():

 if path_w in path_notok_w:

 continue

 # break

 day_pro_min_w = DAY_w - delta_max - self.data_ship['load_time']

 day_pro_max_w = DAY_w - delta_min - self.data_ship['load_time']

 days_pro_ok_w = set(range(day_pro_min_w, day_pro_max_w + 1)) &

set(

 range(day_producer_need_w, day_producer_full_w + 1))

 days_pro_ok_w -= set(producer_queue_Days_w[w])

 days_pro_ok_w -= set(range(-1, day_ship_nearest_w))

 days_pro_ok_w -= set(range(-1, day_ship2pro_nearest_w))

 if len(days_pro_ok_w) == 0:

 continue

 ship_day_pro_w[w] = random.choice(list(days_pro_ok_w))

 ship_speed_2_w = self.distance_port.loc[port, path_w] / (DAY_w

- ship_day_pro_w[w] - self.data_ship['load_time'])

 ship_speed_2_w = self.adj_speed(ship_speed_2_w)

 day_shift_w = day_shift_w_

 break

 else:

 for path_w, (delta_min, delta_max) in

day_pro2port.sample(frac=1).iterrows():

 # break

 if path_w in path_notok_w:

 continue

 day_pro_min_w = DAY_w - delta_max -

 63

self.data_ship['load_time'] + self.port_days_min - day_shift_w_

 day_pro_max_w = DAY_w - delta_min -

self.data_ship['load_time'] + self.port_days_max - day_shift_w_

 days_pro_ok_w = set(range(day_pro_min_w, day_pro_max_w +

1)) & set(

 range(day_producer_need_w, day_producer_full_w + 1))

 days_pro_ok_w -= set(producer_queue_Days_w[w])

 days_pro_ok_w -= set(range(-1, day_ship_nearest_w))

 days_pro_ok_w -= set(range(-1, day_ship2pro_nearest_w))

 if len(days_pro_ok_w) == 0:

 continue

 ship_day_pro_w[w] = random.choice(list(days_pro_ok_w))

 ship_day_delta2_w = DAY_w - ship_day_pro_w[w] -

self.data_ship['load_time']

 ship_day_delta2_real_w = np.clip([ship_day_delta2_w],

delta_min, delta_max)[0]

 ship_speed_2_w = self.distance_port.loc[port, path_w] /

ship_day_delta2_real_w

 ship_speed_2_w = self.adj_speed(ship_speed_2_w)

 day_shift_w = ship_day_pro_w[w] + ship_day_delta2_real_w +

self.data_ship['load_time'] - DAY_w + day_shift_w_

 break

 else:

 day_pro_outlier_min_w = DAY_w + self.port_days_min -

day_pro2port.max().max() - self.data_ship[

 'load_time']

 if day_pro_outlier_min_w >= max(day_ship2pro_nearest_w,

day_ship_nearest_w):

 ship_day_pro_w[w] = day_pro_outlier_min_w

 day_shift_w = self.port_days_min + day_shift_w_

 path_w = 'far'

 ship_speed_2_w = self.data_ship['ship_speed'][0]

 ship_speed_2_w = self.adj_speed(ship_speed_2_w)

 else:

 ship_day_pro_w[w] = max(day_ship2pro_nearest_w,

day_ship_nearest_w)

 path_w = 'near'

 ship_speed_2_w = self.data_ship['ship_speed'][1]

 ship_speed_2_w = self.adj_speed(ship_speed_2_w)

 day_shift_w = ship_day_pro_w[w] + math.ceil(

 self.distance_port.loc[port, path] / ship_speed_2_w)

- DAY_w

 ship_day_port_w = DAY_w + day_shift_w

 fc1_w = (0.0019 * (ship_speed_2_w ** 2) - 0.045 * ship_speed_2_w +

 64

0.3739) * (\

 ship_day_port_w - ship_day_pro_w[w] - 24)

 if port in EastA:

 # judge if there is a weather event

 storm_port = self.data_storm[(self.data_storm['scenario'] ==

w)& ('near' == path_w)]

 else:

 break

 if len(storm_port) == 0:

 break

 path_days = set(range(ship_day_pro_w[w] + (math.ceil(

 self.distance_port.loc[port,path_w] * 0.25 / ship_speed_2_w)),

ship_day_pro_w[w] + (math.ceil(

 self.distance_port.loc[port,path_w] * 0.45 / ship_speed_2_w))

+ 1))

 storm_port['influenced_dates_ship'] = storm_port.apply(lambda x:

path_days & x['influenced_dates'], axis=1)

 storm_port['influenced_days_ship'] =

storm_port['influenced_dates_ship'].apply(lambda x: len(x))

 if storm_port['influenced_days_ship'].max() == 0:

 break

 ship_speed_2_w_ = ship_speed_2_w * (1 -

storm_port['influenced_speed'])

 distance_delta2_pro2port = (storm_port['influenced_days_ship'] *

ship_speed_2_w_).sum()

 ship_day_port_w = ship_day_pro_w[w] + math.ceil(

 (self.distance_port.loc[port, path_w] -

distance_delta2_pro2port) / ship_speed_2_w + (

 storm_port['influenced_days_ship']).sum())

 fc1_w = (0.0019 * (ship_speed_2_w ** 2) - 0.045 * ship_speed_2_w +

0.3739) * (

 ship_day_port_w - ship_day_pro_w[w] - 24)

 if day_shift_w <= self.port_days_min or day_shift_w >=

self.port_days_max:

 day_shift_w = ship_day_port_w - DAY_w

 break

 else:

 day_shift_w = ship_day_port_w - DAY_w

 if day_shift_w < self.port_days_min or day_shift_w >

self.port_days_max:

 speed_up = self.distance_port.loc[port, path_w] /

(self.port_days_max + DAY_w - ship_day_pro_w[w]

 -

(storm_port['influenced_speed'] * storm_port[

 'influenced_days_ship']).sum())

 speed_low = self.distance_port.loc[port, path_w] /

(self.port_days_min + DAY_w - ship_day_pro_w[w]

 -

(storm_port['influenced_speed'] * storm_port[

 'influenced_days_ship']).sum())

 ship_speed_2_w = random.uniform(speed_up, speed_low)

 65

 ship_speed_2_w = self.adj_speed(ship_speed_2_w)

 ship_speed_2_w_ = ship_speed_2_w * (1 -

storm_port['influenced_speed'])

 distance_delta2_pro2port = (storm_port['influenced_days_ship']

* ship_speed_2_w_).sum()

 ship_day_port_w = ship_day_pro_w[w] + math.ceil(

 (self.distance_port.loc[port, path_w] -

distance_delta2_pro2port) / ship_speed_2_w + (

 storm_port['influenced_days_ship']).sum())

 day_shift_w = ship_day_port_w - DAY_w

 fc1_w = (0.0019 * (ship_speed_2_w ** 2) - 0.045 *

ship_speed_2_w + 0.3739) * (

 ship_day_port_w - ship_day_pro_w[w] - 24)

 break

 else:

 break

 # calculate fuel consumption change & day_shift change

 delta_fc1 += self.data_probability['probability'].iloc[w-1] * (fc1_w

- fc1)

 if day_shift <= 0 & day_shift_w <= 0:

 ds = (day_shift - day_shift_w)*30/24

 elif day_shift_w >= 0 & day_shift >= 0:

 ds = (day_shift_w - day_shift)*50/24

 elif day_shift <= 0 & day_shift_w >= 0:

 ds = day_shift_w * 50/24 - abs(day_shift)*30/24

 else:

 ds = abs(day_shift_w) * 30/24 - day_shift * 50/24

 delta_shift += self.data_probability['probability'].iloc[w-1] * ds

 # queueing up when there are ships already in the port

 while True:

 if ship_day_port_w + queue_day_port_w in

port_queue_Days_w[w][port]:

 queue_day_port_w += 1

 else:

 break

 # When no ships are available, randomly return ships from the list of ships

awaiting return

 if len(ships_empty_w[w]) == 0:

 for tp_w in [('near', 'min'), ('near', 'max'), ('far', 'min'),

('far', 'max')]:

 for ship_w, day_w in

ship_backto_pro_w[w][tp_w].sample(frac=1).astype(int).iteritems():

 if day_w <= ship_day_pro_w[w]:

 # break

 d1_w, d2_w, port_w_, speed_1_w, DAY_w_ =

ship_backto_port_day_w[w][ship_w]

 speed_2_w =

self.adj_speed(self.distance_port.loc[port_w_, tp_w[0]] / (day_w - 2 * d2_w -

d1_w))

 fc2_w = ((0.0019 * (speed_2_w ** 2) - 0.045 * speed_2_w

+ 0.3739) * 0.8) * (day_w - 2 * d2_w - d1_w)

 storm_pro = self.data_storm[(self.data_storm['scenario']

 66

== w) & ('near'== tp_w[0])]

 if len(storm_pro) == 0:

 shipL_w[w].append(

 ['back', port_w_, ship_w, 0, day_w - d2_w, day_w

- 2 * d2_w, d1_w, speed_1_w,

 speed_2_w,

 0, 0, tp_w[0], DAY_w_, fc2_w])

 ships_empty_w[w].append(ship_w)

 ship_backto_pro_w[w].drop(ship_w, inplace=True)

 del ship_backto_port_day_w[w][ship_w]

 break

 path_back_days_w = set(range(d1_w +

(math.ceil(self.distance_port.loc[port_w_,tp_w[0]] * 0.55 / speed_2_w)),

 d1_w +

(math.ceil(self.distance_port.loc[port_w_, tp_w[0]] * 0.75 / speed_2_w)) + 1))

 storm_pro['influenced_dates_ship'] = storm_pro.apply(lambda

x: path_back_days_w & x['influenced_dates'],

 axis=1)

 storm_pro['influenced_days_ship'] =

storm_pro['influenced_dates_ship'].apply(lambda x: len(x))

 if storm_pro['influenced_days_ship'].max() == 0:

 shipL_w[w].append(['back', port_w_, ship_w, 0, day_w

- d2_w, day_w - 2 * d2_w, d1_w, speed_1_w,

 speed_2_w, 0, 0, tp_w[0], DAY_w_, fc2_w])

 ships_empty_w[w].append(ship_w)

 ship_backto_pro_w[w].drop(ship_w, inplace=True)

 del ship_backto_port_day_w[w][ship_w]

 break

 speed_2_w = self.adj_speed(speed_2_w)

 speed_2_w_ = ship_speed_2_w * (1 +

storm_pro['influenced_speed'])

 distance_delta2_back2pro =

(storm_pro['influenced_days_ship'] * speed_2_w_).sum()

 day_w = d1_w + math.ceil(

 (self.distance_port.loc[port_w_, tp_w[0]] -

distance_delta2_back2pro) / speed_2_w + (

 storm_pro['influenced_days_ship']).sum())

 fc2_w = ((0.0019 * (speed_2_w ** 2) - 0.045 * speed_2_w

+ 0.3739) * 0.8) * (day_w - 2 * d2_w - d1_w)

 if day_w <= ship_day_pro_w[w]:

 shipL_w[w].append(['back', port_w_, ship_w, 0, day_w

- d2_w, day_w - 2 * d2_w, d1_w, speed_1_w, speed_2_w,

 0, 0, tp_w[0], DAY_w_, fc2_w])

 ships_empty_w[w].append(ship_w)

 ship_backto_pro_w[w].drop(ship_w, inplace=True)

 del ship_backto_port_day_w[w][ship_w]

 break

 else:

 continue

 break

 # print(ships_empty)

 # ships chosen

 try:

 while True:

 67

 ship_w = random.choice(ships_empty_w[w])

 if ship_w != ship:

 ship_changeN +=

self.data_probability['probability'].iloc[w-1]

 ship_deltas_pro = self.data_ship['days_ini2pro'][ship_w]

 if ship_deltas_pro[1] <= ship_day_pro_w[w]:

 break

 except:

 self.state = [[], 0, 0, 0, 0, 0]

 # return

 # print(ships_empty, ship)

 ship_delta_1_w = random.randint(ship_deltas_pro[1],

min(ship_day_pro_w[w], ship_deltas_pro[0]))

 ship_speed_1_w = self.distance_producer[ship_w] / ship_delta_1_w

 ship_speed_1_w = self.adj_speed(ship_speed_1_w)

 ship_day_spot_w = ship_day_pro_w[w] - ship_delta_1_w

 shipL_w[w].append(

 ['load', port, ship_w, day_shift_w, ship_day_spot_w,

ship_day_pro_w[w], ship_day_port_w, ship_speed_1_w, ship_speed_2_w,

 queue_day_pro_w, queue_day_port_w, path_w, DAY_w, fc1_w])

 ships_empty_w[w].remove(ship_w)

 DAY_pro_last_w[w] = ship_day_pro_w[w]

 producer_fuel_w[w].loc[DAY_pro_last_w[w]:] -= port_fuel

 producer_queue_Days_w[w] += list(range(ship_day_pro_w[w] +

queue_day_port_w, ship_day_pro_w[w] + queue_day_port_w + 23))

 port_queue_Days_w[w][port] += list(range(ship_day_port_w +

queue_day_port_w, ship_day_port_w + queue_day_port_w + 23))

 delta_2_w, delta_1_w = self.data_ship['days_ini2pro'][ship_w]

 delta_pro2spot_w = random.randint(delta_1_w, delta_2_w)

 speed_w_ = self.adj_speed(self.distance_producer[ship_w] /

delta_pro2spot_w)

 back_days_w = (ship_day_port_w + self.data_ship[

 'unload_time'] + queue_day_port_w + day_pro2port + delta_pro2spot_w

* 2).stack()

 back_days_w.name = ship_w

 ship_backto_pro_w[w] = ship_backto_pro_w[w].append(back_days_w)

 ship_back_port_w = ship_day_port_w + self.data_ship['unload_time'] +

queue_day_port_w

 ship_backto_port_day_w[w][ship_w] = [ship_back_port_w,

delta_pro2spot_w, port, speed_w_, DAY_w]

 state_w[w] = [ship_backto_pro_w[w], ship_back_port_w,

ship_backto_port_day_w[w]]

 # let the rest ships back to supplier

 for ship, days in ship_backto_pro.sample(frac=1).astype(int).iterrows():

 # break

 68

 for tp, day in days.iteritems():

 # break

 d1, d2, port_, speed_1, DAY_ = ship_backto_port_day[ship]

 speed_2 = self.adj_speed(self.distance_port.loc[port_, tp[0]] / (day

- 2 * d2 - d1))

 fc2 = ((0.0019 * (speed_2 ** 2) - 0.045 * speed_2 + 0.3739) * 0.8) *

(day - 2 * d2 - d1)

 shipL.append(['back', port_, ship, 0, day - d2, day - 2 * d2, d1,

speed_1, speed_2,

 0, 0, tp[0], DAY_, fc2])

 ships_empty.append(ship)

 ship_backto_pro.drop(ship, inplace=True)

 del ship_backto_port_day[ship]

 break

 df_ship = pd.DataFrame(shipL, columns=['direction', 'port', 'ship',

'unpunctual_days', 'initial_date', 'date_producer', 'date_port', 'speed_initial',

'speed_deliver', 'queue_producer', 'queue_port', 'path', 'date', 'fuel_consumption'])

 cost_producer_stock = (producer_fuel * self.data_producer['inv_cost']).sum()

 # cost of inventory management failure

 cost_producer_outlier = len(producer_fuel[producer_fuel >

self.data_producer['upper_limit']]) * self.data_producer[

 'penalty_uplimit'] + \

 len(producer_fuel[producer_fuel <

self.data_producer['lower_limit']]) * self.data_producer[

 'penalty_lowlimit']

 #======let the rest ships back to supplier under different scenarios======

 for w in range(1,11):

 for ship_w, days_w in

state_w[w][0].sample(frac=1).astype(int).iterrows():

 # break

 for tp_w, day_w in days_w.iteritems():

 # break

 d1_w, d2_w, port_w_, speed_1_w, DAY_w_ = state_w[w][2][ship_w]

 speed_2_w = self.adj_speed(self.distance_port.loc[port_w_,

tp_w[0]] / (day_w - 2 * d2_w - d1_w))

 fc2_w = ((0.0019 * (speed_2_w ** 2) - 0.045 * speed_2_w + 0.3739)

* 0.8) * (day_w - 2 * d2_w - d1_w)

 # judge the weather event

 if port_w_ in EastA:

 storm_pro = self.data_storm[(self.data_storm['scenario'] ==

w)]

 else:

 shipL_w[w].append(

 ['back', port_w_, ship_w, 0, day_w - d2_w, day_w - 2 *

d2_w, d1_w, speed_1_w,

 speed_2_w, 0, 0, tp_w[0], DAY_w_, fc2_w])

 ships_empty_w[w].append(ship_w)

 ship_backto_pro_w[w].drop(ship_w, inplace=True)

 del ship_backto_port_day_w[w][ship_w]

 break

 if len(storm_pro) == 0:

 shipL_w[w].append(

 ['back', port_w_, ship_w, 0, day_w - d2_w, day_w - 2 *

d2_w, d1_w, speed_1_w,

 speed_2_w, 0, 0,tp_w[0], DAY_w_, fc2_w])

 69

 ships_empty_w[w].append(ship_w)

 ship_backto_pro_w[w].drop(ship_w, inplace=True)

 del ship_backto_port_day_w[w][ship_w]

 break

 path_back_days_w = set(range(d1_w +

(math.ceil(self.distance_port.loc[port_w_, tp_w[0]] * 0.55 / speed_2_w)),

 d1_w +

(math.ceil(self.distance_port.loc[port_w_, tp_w[0]] * 0.75 / speed_2_w)) + 1))

 storm_pro['influenced_dates_ship'] = storm_pro.apply(lambda x:

path_back_days_w & x['influenced_dates'],

 axis=1)

 storm_pro['influenced_days_ship'] =

storm_pro['influenced_dates_ship'].apply(lambda x: len(x))

 if storm_pro['influenced_days_ship'].max() == 0:

 shipL_w[w].append(

 ['back', port_w_, ship_w, 0, day_w - d2_w, day_w - 2 *

d2_w, d1_w, speed_1_w,

 speed_2_w, 0, 0, tp_w[0], DAY_w_, fc2_w])

 ships_empty_w[w].append(ship_w)

 ship_backto_pro_w[w].drop(ship_w, inplace=True)

 del ship_backto_port_day_w[w][ship_w]

 break

 speed_2_w = self.adj_speed(speed_2_w)

 speed_2_w_ = ship_speed_2_w * (1 + storm_pro['influenced_speed'])

 distance_delta2_back2pro = (storm_pro['influenced_days_ship'] *

speed_2_w_).sum()

 day_w = d1_w + math.ceil((self.distance_port.loc[port_w_, tp_w[0]]

- distance_delta2_back2pro) / speed_2_w + (storm_pro['influenced_days_ship']).sum())

 fc2_w = ((0.0019 * (speed_2_w ** 2) - 0.045 * speed_2_w + 0.3739)

* 0.8) * (day_w - 2 * d2_w - d1_w)

 shipL_w[w].append(['back', port_w_, ship_w, 0, day_w - d2_w, day_w

- 2 * d2_w, d1_w, speed_1_w, speed_2_w,

 0, 0, tp_w[0], DAY_w_, fc2_w])

 delta_fc2 += self.data_probability['probability'].iloc[w-1] * (fc2

- fc2_w)

 ships_empty_w[w].append(ship_w)

 ship_backto_pro_w[w].drop(ship_w, inplace=True)

 del ship_backto_port_day_w[w][ship_w]

 break

 cost_producer_stock_w = 0

 cost_producer_outlier_w = 0

 cost_producer_stock_w += (((producer_fuel_w[w] *

self.data_producer['inv_cost']).sum() - cost_producer_stock) *

 self.data_probability['probability'].iloc[w - 1])

 # cost of inventory management failure

 cost_producer_outlier_w += (((len(producer_fuel_w[w][producer_fuel_w[w] >

self.data_producer['upper_limit']]) * \

 self.data_producer[

 'penalty_uplimit'] + \

 len(producer_fuel_w[w][producer_fuel_w[w] <

self.data_producer['lower_limit']]) * \

 self.data_producer[

 'penalty_lowlimit']) - cost_producer_outlier) *

 self.data_probability['probability'].iloc[w - 1])

 70

 cost_2nd = cost_producer_stock_w + cost_producer_outlier_w

 delta_fc = delta_fc1 + delta_fc2

 self.state = [df_ship, producer_fuel, ship_changeN, delta_fc, delta_shift,

cost_2nd]

 def adj_speed(self, speed):

 '''

 speed control within the limits

 '''

 return min(max(speed, self.data_ship['ship_speed'][0]),

self.data_ship['ship_speed'][1])

 def energy(self):

 '''

 cost calculation

 '''

 df_ship, producer_fuel, ship_changeN, delta_fc, delta_shift, cost_2nd=

self.state

 if len(df_ship) == 0:

 return 10 ** 12

 # storage costs

 cost_producer_stock = (producer_fuel * self.data_producer['inv_cost']).sum()

 cost_producer_outlier = len(producer_fuel[producer_fuel >

self.data_producer['upper_limit']]) * self.data_producer[

 'penalty_uplimit'] + \

 len(producer_fuel[producer_fuel <

self.data_producer['lower_limit']]) * self.data_producer[

 'penalty_lowlimit']

 # transportation costs

 a1, a2, a3 = self.data_ship['relation_speed_fuel']

 df_ship.dtypes

 df_ship['fuel_cost'] = df_ship['fuel_consumption'] * df_ship['speed_deliver'] *

self.data_ship['fuel_price']

 cost_ship_transport = df_ship['fuel_cost'].sum(axis=1).sum()

 # port queueing cost

 cost_port_shift = 0

 for diff, (a, b) in self.port_shift_cost.iterrows():

 if diff < 0:

 df_shift = df_ship[df_ship['unpunctual_days'] <

diff]['unpunctual_days'].abs()

 df_shift_day = np.ceil(df_shift / 24)

 cost_port_shift += (a * df_shift_day + b).sum()

 else:

 df_shift = df_ship[df_ship['unpunctual_days'] >

diff]['unpunctual_days'].abs()

 df_shift_day = np.ceil(df_shift / 24)

 cost_port_shift += (a * df_shift_day + b).sum()

 # cost of out of the grace period

 request_out = df_ship[((df_ship['date_port'] - df_ship['day']) <

self.port_days_min) | (

 (df_ship['date_port'] - df_ship['day']) > self.port_days_max)]

 cost_request_out = self.data_ship['out_grace'] * len(request_out)

 71

 cost_ship_changeN = self.data_producer['cost_ship_change'] * ship_changeN

 cost = cost_port_shift + cost_ship_transport + cost_producer_stock +

cost_producer_outlier + cost_request_out \

 + cost_ship_changeN + delta_fc * self.data_ship['fuel_price'] +

delta_shift

 return cost

 def save_result(self):

 suffix = 'storm'

 df_ship, producer_fuel, ship_changeN, delta_fc, delta_shift,cost_2nd= state

 # Iteration chart

 pd.Series([k[0] for k in rounds]).plot(figsize=(8, 5))

 plt.savefig('iteration_%s.png' % suffix, dpi=200)

 plt.show()

 plt.close()

 # Gantt Chart

 df_ship_to = df_ship[df_ship['direction'] == 'load'][['port', 'ship',

'date_initial', 'date_producer', 'date_port', 'day']]

 df_ship_back = df_ship[df_ship['direction'] == 'back'][['port', 'ship',

'date_initial', 'date_producer', 'date_port', 'day']]

 fig, ax = plt.subplots(1, 1, figsize=(12, 8))

 ports = df_ship['port'].drop_duplicates().tolist()

 colors = {'Kawasaki': 'lightcoral', 'Kisarazu': 'indianred', 'Tokyo':

'firebrick', 'Busan': 'lightblue',

 'Tianjin': 'cornflowerblue', 'Caofeidian': 'deepskyblue',

'Shanghai': 'royalblue', 'Dahej': 'wheat',

 'Dabhol': 'gold'}

 port_del = copy.deepcopy(ports)

 for port, ship, day_spot, day_pro, day_port, _ in df_ship_to.values:

 if port in port_del:

 plt.barh(ship, day_pro - day_spot, left=day_spot, color=colors[port],

edgecolor='k', height=0.5,

 label=port)

 port_del.remove(port)

 else:

 plt.barh(ship, day_pro - day_spot, left=day_spot, color=colors[port],

edgecolor='k', height=0.5)

 plt.barh(ship, day_port - day_pro, left=day_pro, color=colors[port],

edgecolor='k', height=0.5)

 plt.text(day_port / 2 + day_spot / 2, ship, 'l', ha='center',

va='bottom', fontsize=10)

 for port, ship, day_spot, day_pro, day_port, _ in df_ship_back.values:

 plt.barh(ship, day_spot - day_pro, left=day_pro, color=colors[port],

edgecolor='k', height=0.5)

 plt.barh(ship, day_pro - day_port, left=day_port, color=colors[port],

edgecolor='k', height=0.5)

 plt.text(day_port / 2 + day_spot / 2, ship, 'b', ha='center',

va='bottom', fontsize=10)

 plt.legend()

 plt.grid(True)

 plt.title('scheme')

 plt.xlabel('time')

 plt.ylabel('ship')

 plt.savefig('./ShipScheme_%s.png' % suffix, dpi=500)

 72

 plt.show()

 plt.close()

 df_ship.columns = ['direction', 'port', 'ship', 'port_advance/delay',

'day_spot', 'day_producer',

 'day_port', 'speed_producer', 'speed_port',

'queue_producer', 'queue_port', \

 'path', 'day_request', 'fuel_rate',

'fuel_prc_spot2producer', 'fuel_prc_producer2port']

 # save excel

 with pd.ExcelWriter('Result_%s.xlsx' % suffix) as writer:

 df_ship.to_excel(writer, sheet_name='ship_scheme', index=None)

 producer_fuel.to_excel(writer, sheet_name='producer_story')

 pd.Series([k[0] for k in rounds]).to_excel(writer,

sheet_name='target_func', header=None)

 print(ship_changeN)

 print(delta_shift)

 print(delta_fc)

if __name__ == '__main__':

 self = SearchScheme()

 # iteration

 self.steps = 200

 state, e, rounds = self.anneal()

 self.save_result()

