Optimization and Cost Allocation in Collaborative Transportation

Potential Savings and Decreased CO² Emissions from

Optimized Collaboration in Fuel Distribution in Norway

Morten Lid

Supervisor: Roman Kozlov

Master Thesis, Master of Science in Economics and Business
Administration, Business Analytics (BAN)

NORWEGIAN SCHOOL OF ECONOMICS

[^0]
Preface

This thesis was written as a part of the Master of Science in Economics and Business Administration, Business Analytics, at Norwegian School of Economics (NHH), autumn 2020.

I took many very interesting courses at NHH and one of my absolutely favorites was Professor Mario Guajardo's course Decision Modelling in Business (BAN402) at autumn 2019. Here we learned the data tool A Mathematical Programming Language (AMPL) and mathematical methods for cost allocation, which are the two main tools I uses in this paper.

The work in this thesis has been very interesting and also challenging particularly regarding data collection.

I would like to thank supervisor Professor Roman Kozlov for enthusiastic and fruitful discussions, and for adapted accessibility in the challenging coronavirus situation.

I would like to thank Eirik Aronsen for highly needed information regarding fuel depots in the analyses.

Bergen, December 20, 2020

Morten Lid

Abstract

The purpose of this study is to find potential savings and potential reduction in CO^{2} emission from an optimized collaboration in distributing fuel in Norway, from fuel depots to gas stations, compared to a non-collaborative fuel distribution. In addition to this the purpose is to make an optimization program in A Mathematical Programming Language (AMPL) for collaborating in distributing fuel in Norway, which can be easily adjusted and expanded regarding input data.

The answers to these questions I aim to find in this thesis are in my opinion very interesting these days of increased focus on effectiveness and the problems regarding global warming from CO^{2} emission.

The possible collaborations in this thesis includes the 4 fuel companies Circle K, Shell (ST1), Esso and YX/Uno-X, with their supply points from in total 20 fuel depots to their demand points at gas stations at all cities and places in Norway which is inhabited by 10000 citizens or more.

To get answers to these questions I will do several analyses and calculations. I will process data, create and run several analysis programs in AMPL. From the cost results of full collaboration (grand coalition) I will allocate costs to each company in the mathematic cost allocation method Shapley Values. Then I will from methods in cooperative game theory and results from Shapley Values and other results in AMPL find out if the grand coalition is the most beneficial coalition for each company, or if there are smaller coalitions which can be more beneficial. I will then also find the potential reduction in CO^{2} emission from a optimized collaboration.

My findings from the analyses and calculations, given the input data, show that a optimized collaboration in the grand coalition is most beneficial for all the 4 companies and that there is a lot to save for each company from such full collaborative fuel distribution in Norway, compared to non-collaborative distribution. Further my findings, given the input data, show that the potential total decreased CO^{2} emission from the trucks from full collaboration is considerable.

Contents

1. INTRODUCTION8
2. THEORY 11
2.1 Gas stations 11
2.1.1 Locations 11
2.1.2 Demand 14
2.2 DEPOTS 14
2.2.1 Locations 14
2.2.2 Capacities 17
2.3 DISTANCES 17
2.4 Coaltitions 17
2.5 AMPL 17
2.6 GAME THEORY 18
2.6.1 Shapley Values 18
2.6.2 Conditions 22
3. CREATING AND RUN THE AMPL PROGRAM 23
3.1.1 Coalitions 23
3.2 AMPL PROGRAM 24
3.3 Model file 25
3.3.1 Mathematical formulation 25
3.3.2 Model file 26
3.4 Data FILE 27
3.4.1 Gas stations locations 27
3.4.2 Depot locations 28
3.4.3 Distances 28
3.4.4 Depot capacities 29
3.4.5 Gas station demand 30
3.4.6 Cost for transportation. 37
3.4.7 Sets and parameters 38
3.4.8 Data file 38
3.5 RUN FILE 43
3.5.1 Comandoes 43
3.5.2 Run file 44
3.6 TeXt FILE 44
3.6.1 Explanation 44
3.6.2 Text file 45
4. CHANGES IN THE AMPL FILES 48
4.1 STAND-ALONE ANALYSIS 48
4.1.1 Data file 48
4.1.2 Run file 54
4.1.3 Text file results 55
4.2 TWO COMPANIES COLLABORATION ANALYSIS 64
4.3 THREE COMPANIES COLLABORATION ANALYSIS 66
4.4 FOUR COMPANIES(GRAND COALITION) COLLABORATION ANALYSIS 67
5. AMPL ANALYSES AND CALCULATIONS WITH RESULTS 68
5.1 FUEL DISTRIBUTION WITH EQUAL DEPOT CAPACITIES 68
5.1.1 Coalition transportation cost results from AMPL listed 69
5.1.2 Savings for each coalition. 70
5.1.3 Game theory 73
5.1.4 Shapley Values 74
5.1.5 Individual rational 75
5.1.6 Coalition rational. 75
5.1.7 Efficiency condition 76
5.1.8 Conclusion from the individual rational-, coalition rational- and efficiency condition tests 76
5.1.9 Savings for each company 76
5.1.10 Reduction in CO^{2} emission at full collaboration 78
5.1.11 Creating CO^{2} emission program in AMPL 79
5.2 FUEL DISTRIBUTION WITH LIMITLESS DEPOT CAPACITIES 83
5.2.1 Coalition transportation cost results from AMPL listed 83
5.2.2 Savings for each coalition 84
5.2.3 Shapley values 87
5.2.4 Individual rational 88
5.2.5 Coalition rational. 88
5.2.6 Efficiency condition 89
5.2.7 Conclusion from the individual rational-, coalition rational- and efficiency condition tests 89
5.2.8 Savings for each company 89
5.2.9 Reduction in CO^{2} emission at full collaboration 90
5.3 FUEL DISTRIBUTION WITH ADJUSTED DEPOT CAPACITIES 91
5.3.1 Coalition transportation cost results from AMPL listed 91
5.3.2 Savings for each coalition 92
5.3.3 Shapley values 96
5.3.4 Individual rational 96
5.3.5 Coalition rational 96
5.3.6 Efficiency condition 97
5.3.7 Conclusion from the individual rational-, coalition rational-, and efficiency condition tests97
5.3.8 Savings for each company. 97
5.3.9 Reduction in CO^{2} emission at full collaboration. 99
6. DISCUSSION 100
7. CONCLUSION 104
8. REFERENCES 105
APPENDIX: AMPL FILE NAMES 107

1. Introduction

I wanted to analyze and optimize a real-world problem in the data tool A Mathematical Programming Language (AMPL) where the results touch a topic that matters at a considerable level. After considering different topics I decided to analyze and optimize a collaborative distribution of fuel from depots to gas stations in Norway, to find potential savings and decreased CO^{2} emissions compared to a non-collaborative distribution. This includes to find out if all the gas companies have highest benefits from joining full collaboration, where all four companies collaborate together in one coalition (grand coalition), or if there are smaller coalitions which can be more beneficial.

By creating a optimizing program in the data tool AMPL and using the cost allocation method Shapley Values including condition tests I can find potential savings in total and for each gas company, and find the potential amount of decreased CO^{2} emission from the trucks from a optimized collaborative fuel distribution, compared to a non-collaborative distribution. I think this is an important subject to look into, these days with increased demands on efficiency and the problems regarding global warming due to CO^{2} emission.

The thesis with all its analyses and calculations are limited to involve the four main gas companies in Norway; Circle K, Shell (ST1), Esso and YX/UNO-X. Further it is limited to include the gas stations cities and places in Norway which is inhabited by 10000 citizens or more, which in total are 59 cities/places. The thesis will include all the 21 fuel depots in Norway. The analyses is based on distribution of fuel with conventional tank trucks with diesel engines. The possibility of using electric tank trucks is not considered here, as I believe that this, if happens, at least will be several years from now, due to the need of driving long distances with extremely heavy loads, which electric vehicles is not able to do today. This is also what others, which has look into it, believes (Spilde \& Skotland, 2016). I will therefore analyze the situation like it is today and in my believe is likely to be in a long period of time.

The return routes of the trucks are not included in the analyses as it is not clear if the trucks always are returned to the supply point in every cases or if they can be hired and therefore not returned to the supply points. The results from the analyses is therefore values for one way transportation, which I see as the core operations in distributing fuel. From this one can understand that the savings and decreased CO^{2} emissions is likely to be even larger than the
results show. However, the percentage savings and percentage reduced CO^{2} emissions will probably be not much affected from this.

According to Norwegian Competition Authority the four fuel companies Circle K, Shell, Esso and YX can pic up fuel from each other's depots through agreements (Johansen, 2010). This means that these fuel companies can share all depots with each other if they want, without breaking the law. However, the degree of collaboration is not clear, due to difficulties finding clear information on this topic. However, I see it as there is a high probability that distribution of fuel in Norway today is not optimized toward 100% optimization. From this we can not find the potential savings and potential decreased CO^{2} emissions from a optimized collaboration in fuel distribution, compared to the collaboration as it is today. However, we can try estimate the potential savings and potential decreased CO^{2} emission from a optimized collaboration in fuel distribution, compared to a noncollaborative fuel distribution in Norway to get pointers of the amounts of savings and reduced CO^{2} emissions optimization can give, and try find out if a coalition which consists all the four companies are most beneficial or if smaller coalitions can be more beneficial. Maybe finding these results also can shred light on potentials and further encourage to optimization. A optimization program in AMPL could may also be a help in further optimization in fuel distribution in Norway.

The distances between depot and gas stations are possible to find, using updated data tools, I will here use Google Maps for this (Google, 2005).

When it comes to demand from gas stations cities/places we can estimate these data. The same goes for depot capacities, but the latter are more uncertain. I will therefore run three series of analyses in AMPL, three series of corresponding cost allocations and three series of corresponding condition tests. That is, three different approaches regarding depot capacities to get more reliable conclusions from the results.

The distribution of fuel, which includes both gas and diesel, is in this study merged to one, as to analyze these two fuels separately would only give minimal changes to the results. As mentioned already depot capacities are uncertain, then it would be meaningless to analyze gas and diesel separately as the results already will probably have way more inaccuracy from uncertain depot capacities compared to the inaccuracy from analysing gas and diesel as one.

The cost for transporting fuel is also possible to estimate, I have calculated this from own knowledge and statements from workers in the industry.

I will in this thesis aim to find reliable results and pointers for what potential savings and decreased CO^{2} emissions are possible from a optimized collaboration in fuel distribution in Norway, which also includes to find out if a optimized collaboration involves all the 4 main gas companies or if smaller coalitions are more beneficial.

I will in this thesis also aim to make a AMPL program which is suitable and easy to use regarding adjustments, changed and added data for use in collaborative fuel distribution in Norway.

Below the introduction chapter there will be a theoretical chapter, where I introduce the building blocks needed for the analyses and calculations.

In the methods chapter I will explain how I collected, calculated and used the data, explain how I created and run the AMPL program and show how I calculated and allocated the costs in Shapley Values. Further I will show how I checked these allocated costs for several conditions. This chapter is followed by a second methods chapter where I will show how I created new modified files in AMPL to run several different analyses. There will also come explanations regarding further changes in the AMPL files and calculations in the results chapter, to make the thesis easier to follow for the reader.

I will then in the results chapter run all the analyses and do all the corresponding calculations, including cost allocations and corresponding condition tests and show results at each section. As mentioned I will in this chapter explain some of the changes I will be doing along the different analyses and calculations to make the thesis easier to follow for the reader.

Then I will discuss the findings in the discussion chapter.

I will finally write conclusions in the conclusion chapter.

2. Theory

In this thesis I want to find potential savings and decreased CO^{2} emissions from a optimized collaborative distribution of fuel from depots to gas stations in Norway, compared to a noncollaborative fuel distribution, which includes to find out if all the gas companies have most benefits from joining a full collaboration (grand coalition).

To accomplish the analyses and calculations for finding answers to these questions I needed information, analysis tools and methods. I will here give a introduction of these building blocks which I needed in my analyses and calculations, as a understanding of what they are. This will involve information blocks and concepts, analysis program and calculation methods. However, the technical parts of how I collected, processes and uses these blocks, concepts and tools will come in the methodical chapters.

2.1 Gas stations

2.1.1 Locations

The four companies Circle K, Shell (ST1), Esso and YX/UNO-X has gas stations which are located in very many cities and places in Norway. Most cities and larger places have all four companies' gas stations represented. However, the locations of the gas stations is mostly located at cities and places which has citizens of a certain size, there are not so many gas stations in the middle of nowhere. This thesis is limited to the cities/places in Norway which have citizens of 10000 or more, which are 59 cities/places (Thorsnæs, 2019).

All the 59 cities/places are listed below:
Oslo

Bergen

Stavanger

Trondheim

Fredrikstad

Drammen

Porsgrunn

Kristiansand

Ålesund

Moss

Haugesund

Tønsberg

Sandefjord

Arendal

Bodø

Troms \varnothing

Hamar

Halden

Larvik

Kongsberg

Askøy

Molde

Harstad

Gjøvik

Lillehammer

Horten

Jessheim

Ski

Mo I Rana

Kristiansund

Korsvik

Tromsdale

Hønefoss

Alta

Elverum

Stjørdalshalsen

Askim

Narvik

Leirvik

Osøyro

Råholt

Drøbak

Grimstad

Vennesla

Nesoddtangen

Steinkjer

Bryne

Kongsvinger

Kopervik

Knarrvika

Egersund
Ålgård

Lommedalen

Mandal
As

Brummunddal

Førde

Levanger

Konnerud

2.1.2 Demand

Every gas station's city/place has a annual- and statistical demand of fuel. These is mostly corresponding to the size of the population in the city/place.

2.2 Depots

2.2.1 Locations

The gas stations are located throughout Norway at smaller and larger places and cities.

The 4 companies Circle K, Shell (ST1), Esso and YX/UNO-X owns in total 20 fuel depots in Norway and drives fuel from depots to their gas stations in Norway. In addition Equinor has
a depot at Mongstad, but this company do not own or operate any gas stations, which the other four companies does (E. Aronsen, personal communication, 2020). Fuel depots are often located near the sea, but not all.

In the following I have noted Shell (ST1) as Shell and YX/Uno-X as YX, due to that I think most people are most familiar to just Shell and just YX. I think the paper now will be easier to follow for the reader.

The 21 depot's locations in Norway are listed below (E. Aronsen, personal communication, 2020):

Cicle K

Cities/places for Circle K's depots in Norway:

Alta

Harstad

Trondheim

Førde

Kristiansand

Oslo

Shell

Cities/places for Shell's depots in Norway:

Tananger

Vestervika

Skjelnan

Kirkenes

Balsfjord

Larsgården

Lillesund

Sjursøya

Esso
Cities/places for Esso's depots in Norway:

Trondheim

Bergen

Slagen

Fredrikstad

$Y X$

Cities/places for YX's depots in Norway:

Mo I Rana

Stavanger

In addition Equinor has a depot at Mongstad at their oil refinery, however Equinor do not own or operate any gas stations, so this depot is only included in three extra analyses in the cases where all four companies collaborate. This is because all the other 45 analyses have to be done without Equinor, thus all analyses for the calculation in Shapley Value formula has to be done without Equinor's depot, to get a correct calculation.

2.2.2 Capacities

The depots have different capacities in the tank at their depots, every depot is not equal regarding volume in the depot's tank. However, the depots get refilled, so in practice the volume of the tank at each depot is not the true capacity.

2.3 Distances

Distances is the distances in km the fuel trucks which distributes the fuel from the depots to the gas stations has to drive. These are one distance per delivering operation, which in these analyses is 1180 distances(routes). The return routes are not included in the analyses.

2.4 Coalitions

The companies can choose to stand alone or to collaborate in smaller or larger coalitions. The larger the coalition the more the companies can expect to save, if all the companies do contribute to the collaboration. A company that do not contribute to the collaboration and therefore should not be in the collaborative coalition is e.g. a company that operates only at regions where none of the other companies operates, hence there can not be created savings from this company.

In game theory, a coalition where all the players (companies) are represented is called the grand coalition (Coalition Theory Network, 2020).

2.5 AMPL

A Mathematical Programming Language (AMPL) is a computational mathematical programming tool. AMPL is a tool which is typically used for optimization problems in for example transportation, shipping, oil refinery or electricity markets, where one wants to
optimize the routes in transporting and shipping, optimize the flows in a oil refinery or optimize the power management in electricity markets.

A major advantage of the program is that it can handle a high amount of input data (Robert Fourer, 2003). This comes to use in tasks were one have large scale problems (Havås, Alfred, Jim, \& Mirjam, 2013), like for example very many routes to chose from or very many constrains to fulfill.

For each analysis one want to run in AMPL, the program need four files, which are the model file, the data file, the run file and the text file.

The model file is usually created without numbers, but contains the minimizing or maximization function and conditions, where these are linked to the numbers in the data file. Plus different coding for the program.

The data file is created with sets and parameters, with often very many parameters and large tables of numbers.

The run file is coded for deciding which model file one wants to use in the analysis, which data file and what(results) to display in which text file.

2.6 Game theory

2.6.1 Shapley Values

Shapley Values is a well-known mathematical method for allocating cost or payoff from a coalition to the participants (players), were all these players collaborating. Shapley Values has a formula for calculating the players allocated cost or payoff. One can either put all possible coalition costs (including stand-alone costs) into the formula and get the result for the current player's allocated cost. Or one can put coalition payoffs (including stand-alone costs) into the formula and get the result for the current player's allocated payoff. The formula and mechanism is the same in the two cases.

The purpose in cost allocation is to allocate the coalition's (grand coalition) cost to each player in a fair way, so each player gets their cost reduced (from collaborating) according to
how much they contribute to the collaboration. The sum of the allocated costs is equal to the coalition (grand coalition) cost.

The purpose in payoff allocation is to give each player payoff according to how much they contribute to the collaboration.

Technically the cost in cost allocation is allocated to a player according to the average marginal cost the coalition gets at the moment this player enters the coalition, were the coalition is formed one by one player (Centon, 2019). To find the average marginal cost the grand coalition gets of a specific player one must calculate the marginal cost the coalition gets the moment this player enter the coalition, and calculate this in all possible order(sequences) the grand coalition can be formed. Then one need to sum all these costs and divide the sum by the number of cases. The marginal cost of this player in each of these cases is the cost of the coalition as it is when this player has entered the coalition minus the cost of the coalition right before this player entered the coalition. There can also be none or one player in the "coalition" at the moment right before this player enter this "coalition".

For payoff allocation it will be the same mechanism, were Shapley Values finds the average increased savings (payoff) the coalition gets of this player.

To get a better understanding of Shapley Values calculation I will show the mechanism in a simple example of three players. Here I will also prove that Shapley Values can be used both for payoff allocation and for cost allocation.

Imagine we have the three players A, B and C , collaborating in a coalition, were all three players collaborating, and that they have reduced the total cost due to the collaborating.

I will show the calculations for player A:

We have in this example the optimized costs and optimized payoff for all possible coalitions these three players can form, inclusive stand-alone costs:

Coalition	Optimized cost	Payoff
A:	11	0
B:	12	0
C:	13	0
AB:	18	5
AC:	10	14
BC:	22	3
ABC:	19	17

All possible sequences (order) the coalition (grand coalition) can be formed and calculation of the marginal cost of player A:

Order Marginal costs
ABC
(A - 0)
$11-0=11$
ACB
(A - 0)
$11-0=11$
BAC
$(\mathrm{AB}-\mathrm{B})$
$18-12=6$
BCA
($\mathrm{ABC}-\mathrm{BC}$)

$$
19-22=-3
$$

CAB
($\mathrm{AC}-\mathrm{C}$)
$10-13=-3$
CBA

$$
(\mathrm{ABC}-\mathrm{BC}) \quad 19-22=-3
$$

$$
=19
$$

$19 / 6=3.167$

This means that the allocated cost from Shapley Values to player A is 3.167 , which is the average marginal cost of player A.

All possible sequences (order) the coalition (grand coalition) can be formed and calculation of the increased savings (payoff) of player A:

Order Increased payoff
ABC

$$
(0-\mathrm{A})
$$

$$
0-0=0
$$

ACB

$$
(0-\mathrm{A})
$$

$$
0-0=0
$$

BAC
($\mathrm{AB}-\mathrm{B}$)
$5-0=5$
BCA
($\mathrm{ABC}-\mathrm{BC}$)
$17-3=14$
CAB
($\mathrm{AC}-\mathrm{C}$)
$14-0=14$
CBA
$(\mathrm{ABC}-\mathrm{BC})$
$17-3=14$

$$
=47
$$

$47 / 6=7.833$

This means that the allocated payoff from Shapley Values to player A is 7.833

Payoff for player A should also be the same as; stand alone cost for A minus player A's allocated cost from Shapley Values. Lets check:
$11-3.167=7.833$ (yes)

This proves that the Shapley Value can be used for both cost allocation and for payoff allocation.

Shapley Values also have a formula which can be used to calculate Shapley Values (allocated cost or payoff). However, there exist different versions, which of course gives the same results. The most common version seems to be the following version (Cotra, 2019):

$$
\varphi_{i}(v)=\sum_{S \subseteq N \backslash\{i\}} \frac{|S|!(n-|S|-1)!}{n!}(v(S \cup\{i\})-v(S))
$$

Where n is the total number of players and S is the subsets of N not containing player i .

Shapley Value (allocated cost) for player A:

$$
\begin{aligned}
& ((2 / 6) \times(\mathrm{A}))+((1 / 6) \times(\mathrm{AB}-\mathrm{B}+\mathrm{AC}-\mathrm{C}))+((2 / 6) \times(\mathrm{ABC}-\mathrm{BC})) \\
& =((2 / 6) \times(11))+((1 / 6) \times 18-12+10-13))+((2 / 6) \times(19-22)) \\
& =3.667+0.5+(-1) \\
& =3.167(\mathrm{yes})
\end{aligned}
$$

2.6.2 Conditions

According to cooperative game theory a coalition's cost allocation belongs to the core if the cost allocation is based on a coalition where there are no other smaller coalitions that can be more beneficial in the game. Also according to game theory a cost allocation is stable if none of the players are more beneficial to break out to form smaller coalitions or stand alone. A cost allocation can belong to the core and still not be stable, this is usually happening when the cost allocation is not fair regarding to how much saving each player gets compared to the company's contribution to the collaboration.

To find out if a cost allocation is stable and belongs to the core the cost allocation will first be checked regarding the two conditions, the individual rational- and the coalition rational condition. Finally the summed allocated costs will be checked regarding the efficiency condition.

The individual rational condition is to check whether each player's allocated cost is lower than the corresponding stand-alone cost. If this is the case for all the players the individual rational condition is fulfilled.

The coalition rational condition is to check if each possible coalition's (not stand alone and grand coalition) summed allocated costs is lower than that coalition's optimized cost. If this is the case for each possible coalition, the coalition rational condition is fulfilled.

The efficiency condition is to check if the summed allocated costs is equal to the grand coalition cost. This is simply to check if all costs are allocated and to check that no further costs is added.

3. Creating and run the AMPL program

3.1.1 Coalitions

The companies can distribute fuel alone as stand alone companies or they can form coalitions of two-, three- or four players(companies) to collaborate in distributing fuel. To do all the analyses I need to do in this thesis to find the answers I seek to find I need to investigate all the coalitions the 4 companies can form, plus the 4 players coalition including Equinor's depot. To allocate the costs from the 4 players coalition (grand coalition) I need the optimized cost results from AMPL for each possible coalition the 4 companies Circle K, Shell, Esso and YX can form. All these analyses will be done in three series, due to three different approaches regarding depot capacities.

All possible coalitions the companies can form

I have listed all the possible coalitions the 4 companies can form below, these are both stand alone and collaborative oriented. For the last and fully collaborated(grand coalition) case I have run 2 different analyses, where the last will include Equinors depot at Mongstad. But as mentioned the latter is not included in the cost allocation formula I uses. However I have used the collaboration situation when Equinor is included when I calculates the second analysis for potential savings and what amount of decreased CO^{2} emission is possible, from a perfect collaboration compared to the cases when the companies stand alone and do not collaborate at all.

Circle K

Shell

Esso

YX

Circle K / Shell

Circle K / Esso

Circle K / YX

Shell / Esso

Shell / YX

Esso / YX

Circle K / Shell / Esso

Circle K / Shell / YX

Circle K / Esso / YX

Shell / Esso / YX

Circle K / Shell / Esso / YX

We can see that this is in total 15 different coalitions, including stand alone configurations for the 4 companies. As I wish to find and analyze what collaborations are interesting from the companies point of view regarding cost and to find possible savings which also leads to finding potential emission reductions I have done 45 different analysis in AMPL, plus the 3 analyses which includes Equinors depot at Mongstad at the full collaborative cases, plus 5 analyses for CO^{2} emission. However the 45 analyses are 15×3 analyses where the only differences in the 3 series is the depot capacities, due to uncertain numbers. By analyszing using these 3 different approaches I will shred more light on the final results and get more reliable conclusions.

3.2 AMPL program

To make the AMPL program I first made one model file that is used unchanged for all the 53 analyses, and for each of the 53 analyses I made one unique data file, one unique run file and one unique text file. So in total 160 files in AMPL. Since I made the model file with no numbers, it allows me to not change anything in the model file when I want to change any numbers for the data. This makes it a lot easier to adjust the program regarding changed data for doing more analysis later on.

Note that all the green text in the program is not parts of the coding, only explanations for the coding.

An overview of the naming of all the 160 AMPL files is given in the appendix.

3.3 Model file

Here I explain and show the model file I have created, which when made with no numbers can be used unchanged through all the 53 different analyses. As you will see I have used no numbers in the model file, because all numbers which may change to different analyses, I want to keep in the data files. The program will then be user friendly and easier to change for further analyses.

3.3.1 Mathematical formulation

Mathematical formulation of objective function and constrains:

$$
\min z=\sum_{i \in I} \sum_{j \in J} k_{i j} c_{i j} f_{i j}
$$

s.t (1)

$$
\sum_{j \in J} f_{i j} \leq s_{i}, \quad i \in I
$$

$$
\begin{equation*}
\sum_{i \in I} f_{i j}=d_{j}, \quad j \in J \tag{2}
\end{equation*}
$$

$$
f_{i j} \geq 0, \quad i \in I, j \in J
$$

3.3.2 Model file

The model file have several components, which will be connected to the values and names in the data file trough the run file.
"set I" to include all the names for all "I", which is the depots.
"set J " to include all the names for all " J ", which is the cities/places.
"param k " to tell the program that " k " is the table of all values for all " I " to all " J ", which is all the 1180 distances from depots to cities/places.
"param s " to tell the program that "s" is all values for all "I", which will be the corresponding restrictions for max supply for each depot.
"param d" to tell the program that "d" is all values for all " J ", which will be the corresponding restrictions for required demand for each city/place.
"param c" to tell the program that "c" is a constant, which will be the cost constant used in the formula.
"var f" tells the program that the quantity (litres of fuel in 1000 litre) can not be negative.
"minimize z" tells the program to make a minimized solution for "z" from the formula below it, given restrictions.
"Sum" followed by the formula below "minimize z" tells the program what to minimize, which is to multiply the values for the routes " I " to " J " it chooses to use with the cost constant " c " multiplied with the corresponding quantity it chooses to use for the corresponding route "I" to " J ". It will tell the program that " z " is the sum of all this series of sums it uses.
"subject to" tells the program that what is coded below "subject to" is restrictions which the solution has to fulfill when the program minimizes " z ".

The first restriction tells the program that each "I" can be equal to or less than the corresponding "s", which is the corresponding max supply for each depot.

The second restriction tells the program that each " J " must be equal to the corresponding " d ", which is the corresponding required demand for each city/place.

Figure 3.3.2.1. Model file

```
[(4) Model.mod 绿
    set I; # set of supply points (depots places)
    set J; # set of demand points (gas station places)
    param k{I,J}; # distances in km between depots and gas stations
    param s{I}; # supply quantity in 1000 litres fuel
    param d{J}; # demand quantity in 1000 litres fuel
    param c; # cost per 1000 litre km
    var f{I,J} >=0; # 1000 litres fuel transported from I to J
    minimize z:
        sum{i in I, j in J} (k[i,j]*c*f[i,j]); /* minimizes the total cost, given the restrictions below */
    subject to
    maxsupply {i in I}:
        sum{j in J} f[i,j] <= s[i]; # max supply of fuel in 1000 litre
    requireddemand {j in J}:
        sum{i in I} f[i,j] = d[j]; /* litres of fuel in 1000 litre required from
        gas station places */
```


3.4 Data file

3.4.1 Gas stations locations

I have in the analyses included places/cities for gas stations which holds 10000 citizens or more only, specifically 59 places/cities. All these places/cities I found at Store norske leksikon (Thorsnæs, 2019). When considering this I assume all the 4 companies have gas stations at all these places/cities. This assumption is based on own observations and research, where I found that this assumption seems to hold. If I had included considerable smaller places in Norway this would not be the case, as a small population of course will not give a large enough market for several gas stations, there will some places in Norway only be three, two, one or no gas stations.

The reason why I set the limit at 10000 is that I think this will give strong indications of the information I seek to find. There are values of another parameter in the model that are
estimated, since the true values are missing due to difficulties to procure them. Regarding this parameter I thinking of the missing of true capacities for the depots. This parameter will probably create much higher levels of inaccuracy than the missing of smaller places in the model, especially places in the south part of Norway, due to larger and closer populations. Therefore I think it would be meaningless to create the model more accurate regarding the population limit mentioned above at this level of investigation. Another aspect of the depot capacities is that the gas companies probably can easily adjust these capacities to some extent, because they constantly is filled and are therefore probably in practice nearly impossible to give accurate values in the data files.

I will in this study and all its analyses therefore try to find patterns and results which is only accurate to a certain level. Then it would be meaningless to include all places with all gas stations in Norway in these analyses. I still believe to find patterns and results which will give answers at an reasonable level of realistic accuracy.

However, if the program in the future should be changed with more accurate input data, as accurate capasities of the depots and accurate demands for each place/city of each company, it would give more meaning to include more places with a smaller number of citizens.

3.4.2 Depot locations

The locations(cities/places) for the 4 companies 20 depots in Norway depot I have collected from communication with a person (E. Aronsen, personal communication, 2020). This communication was done after difficulty to find updated and reliable information regarding depot locations from research, as I wanted to have reliable depot locations as they are today, to make analyses of good quality.

3.4.3 Distances

All the distances from depots to gas stations cities/places I collected using the tool Google Maps (Google, 2005). This is 1180 distances which I plotted directly into the AMPL program (data files).

From my experience and perception from people in the society Google Maps is a wellknown and trusted tool to find the best route to drive when one planning to drive from one destination to a another given destination. I have used this tool myself a lot in my leisure time for years and I trust it a lot. My experience is also that this tool is updated very rapidly to new roads and changes in the roads in Norway. I also find this tool very user friendly and effective to use. These distances I believe is very accurate to reality, as they are based on roads for cars and are based on the routes from one location to another location which are best suitable regarding time used for the ride, which often are the absolutely shortest route or at least one of the shortest routes depending on the quality of the road.

Based on this evaluation I therefore chose Google Maps to find all the 1180 distances I used in the AMPL program.

3.4.4 Depot capacities

I tried to find information on depot capacities, but this seemed difficult and maybe impossible to find information from research. The information regarding depot capacities may also be confidential (E. Aronsen, personal communication, 2020).

Therefore the depot capacities at each depot in the analyses is not accurate to reality, only estimated. I have therefore run three series analyses with three different approaches regarding depot capacities, as I do not have access to accurate data.

However, it would probably be difficult to determine an actual capacity due to the fact that depots are being refilled. The depots are being refilled either from the company that picked up fuel from the depot or from the company that owns the depot (E. Aronsen, personal communication, 2020). As I see it the actual capacity depends mostly on the capacity of the delivery system to the depots. Because of uncertain depot capacities the results in this analyses are not absolutely correct, but I still believe the analysis results will be not far from the truth and give pointers which probably are correct to reality.

Here in the first serie of analyses I have given all depots the equal capacity which is the total annual consumption of fuel in Norway divided by the total number of depots multiplied with approximately 1.5 to give overcapacities at a middle extent.

Total annual fuel consumption in Norway in 1000 litre: 4874893

Total number of fuel depots in Norway including Mongstad: 21
$4874893 / 21 \times 1.5=348206.6$

Depot annual capacities in 1000 litre for each depot I have then rounded to: 350000

3.4.5 Gas station demand

The required demands of fuel for each city/place I have set up I expect is a good estimate as I have calculated these data from collecting data for the amount of citizens at each city/place from the updated Store Norske Leksikon (Thorsnæs, 2019) and statistic total annual fuel consumption in Norway from the well-known Statistisk Sentralbyrå (Statistisk Sentralbyrå, 2020). Calculating each cities/places demand includes a lot of numbers and calculations as the numbers change from what coalition I going to analyze. All this calculations I have done in the excel file Thesis Data, and further copied and pasted several different number series into the data files of the corresponding analyses in AMPL.

Figure 3.4.5.1. Excel file

Figure 3.4.5.2. Excel file

Figure 3.4.5.3. Excel file

Figure 3.4.5.4. Excel file

Figure 3.4.5.5. Excel file

Figure 3.4.5.6. Excel file

3.4.6 Cost for transportation

I have calculated the cost parameter "c" manually, from a source from internet, own knowledge and statements from people in the industry. This is hence an estimated parameter, but I believe the parameters value is not far from the true:

Cost for 1 litre diesel on average in Norway October $2020=13.24$ NOK (GlobalPetrolPrices, 2020)

From own knowledge and statements from people in the driver industry a gas truck's tank contains when full tank typical 40000 litre and a truck driving with full tank of that amount consumes at average approximately 0.4 litre diesel per km driving.

Tank volum at truck: 40000 litre

To get the value for per 1000 litre: $40000 / 1000=40$
$0.4 / 40=0.01$

This gives that a truck's consumption of diesel is estimated to 0.01 litre diesel per 1000 litre km , given that the truck is driven with full tank of 40000 litre on the truck.
$0.01 \times 13.24=0.1324$

This gives that cost for consume of diesel is 0.1324 NOK per 1000 litre km

Based on rest time for the driver and estimated salary; salary: 200 NOK/hour

Based on own observation on average speed: $65 \mathrm{~km} /$ hour
$200 / 65=3.077$

This gives salary 3.077 NOK per km, given the truck are driven with full tank of 40000 litre
$3.077 / 40=0.077$

This gives salary 0.077 NOK per 1000 litre km
Estimated maintenance cost for truck: 0.1 per 1000 litre km
$0.1324+0.077+0.1=0.3094$

This gives transportation cost: 0.31 NOK per 1000 litre km

3.4.7 Sets and parameters

In the data files I will keep all the data for the analyses. The data files are organized in sets and parameters, and gives names to the sets and values to the parameters.
"set I" gives names (initials) to all the 20 depots.
"set J" gives names to all the 59 cities/places.

Param " k " gives values to all " I " to " J ", which is all the 1180 distances between depots and the gas stations cities/places.

Param "s" gives values to all " l ", which is max supply fuel in 1000 litres for each depot, which is a restriction.

Param "d" gives values to all " J ", which is required demand fuel in 1000 litre for each city/place, which is a restriction.

Param " c " gives a value to the cost constant " c " for the cost of transporting fuel per 1000 litre KM in NOK, which is a part of the minimizing formula.

3.4.8 Data file

The data files are containing a lot of data, particularly regarding distances, each of the data files contains 1180 distances. I will here show several screen shots were all these screen shots are parts of the same data file (the data file from the analysis where we have full collaboration included Equinor's depot at Mongstad, with "equal" depot capacities).

Figure 3.4.8.1. Data file

```
@ *Data.dat }\mathbb{M}\mathrm{ [^ Model.mod (i) Run.run 左 Text.txt
    # I are set of depots
    # J are set of cities/places
    set I:= CIALT, CIHAR, CITRH, CIFOR, CIKRI, CIOSL, SHTAN, SHVES, SHSKJ, SHKIR, SHBAL, SHLAR, SHLIL, SHSJU, ESTRH, ESBER, ESSLA, ESFRE, YXMOI, YXSTA, EQMON; # dep
    set J:= OSL, BER, STA, TRH, FRE, DRA, POR, KRI, ALE, TON, MOS, HAU, SAN, ARE, BOD, TRO, HAM, HAL, LAR, KON, ASO MOL, HAR GJO, LIL, HOR, JES, SKI, MOI, KRU, KOR
    param k
            The following initials indicate depots owned by Circle K at respective places:
            CIALT: Alta
            CIHAR: Harstad
    CITRH:Trondheim
    CIFOR: Førde
    IOSL: Oslo
    CIOSL: Oslo
    The following initials indicate depots owned by Shell/ST1 at respective places
    SHTAN: Tananger
    SHVES: Vestervik
    SHSKJ: Skjelnan
    SHKIR: Kirkenes
    SHBAL: Balsfjord
    SHLIL: Lillesund
    SH57U: Sjursøya
    The following initials indicate depots owned by Esso at respective places:
    ESTRH: Trondheim
    ESBER: Bergen
    SSLA: Slagen
    ESFRE: Fredrikstad
    The following initials indicate depots owned by UnoX/YX at respective places:
    XMOI: Mo i Rana
    YXSTA: Stavanger
    The following initial indicate depot owned by Equinor at respective place
    EQMON: Mongstad (Equinor do not own/operate gas stations)
    The following initials indicate all cities/places for gas stations(for all 4 companies) of minimum 10000 citizen in Norway:
    OSL: Oslo
    BER: Berge
    STA: Stavanger
```

Figure 3.4.8.2. Data file
(18) Data.dat 23

1ON; \# depots
KRU, KOR, TRD HON, ALT, ELV, STJ, ASK, NAR, LEI, OSO, RAH, DRO, GRI, VEN, NES, STE, BRY, ;KOV, KOP, KNA, EGE, ALG LOM, MAN, AAS, BRU, FOR, LEV, KOU; \# gas stations

Figure 3.4.8.3. Data file

The following initials indicate depots owned by UnoX/YX at respective places:
YXMOI: Mo i Rana
YXSTA: Stavanger
The following initial indicate depot owned by Equinor at respective place:
EQMON: Mongstad (Equinor do not own/operate gas stations)
The following initials indicate all cities/places for gas stations(for all 4 companies) of minimum 10000 citizen in Norway
OSL: Oslo
BER: Bergen
STA: Stavanger
TRH: Trondheim
FRE: Fredrikstad
FRE: Fredrikst
DRA: Drammen
POR: Porsgrunn
KRI: Kristiansand
ALE: Alesund
TON: Tønsberg
mos: Moss
HAU: Haugesund
SAN: Sandefjor
ARE: Arenda
BOD: Bod ϕ
TRO: Troms \varnothing
HAM: Hamar
HAL: Halden
LAR: Larvik
KON: Kongsberg
ASO: Askøy
MOL: Molde
HAR: Harstad
GIL: GjøVik
HOR: Horten
JES: Jessheim
SKI: Ski
MOI: Mo i Rana
KRU: Kristiansund
KOR: Korsvik
TRD: Tromsdale

Figure 3.4.8.4. Data file

Figure 3.4.8.5. Data file

[日 * Datadat	(1) M	l.mod	(i) Run	n	Text.txt															
	The d */	in	follo	ing tab	are d	tances	km b	ween d	ots an	cities	laces	gas 5	tions:							
	OSL	BER	STA	TRH	FRE	DRA	POR	KRI	ALE	TON	mos	hau	SAN	ARE	BOD	TRO	ham	HAL	LAR	
CIALT	1733	2094	2286	1390	1821	1777	1891	2053	1685	1837	1789	2177	1856	1993	770	380	1623	1838	1869	
CIHAR	1397	1602	1950	910	1485	1441	1555	1716	1205	1501	1453	1724	1520	1657	313	300	1287	1511	1532	
CITRH	491	627	933	1	579	535	650	810	299	595	547	745	614	751	701	1128	381	605	627	
CIFOR	419	174	380	529	508	417	534	696	247	480	476	309	499	636	1226	1653	417	534	512	
CIKRI	324	469	235	822	293	285	176	1	870	230	255	314	209	71	1520	2064	452	319	193	
CIOSL	7	467	447	497	88	47	162	323	550	107	56	447	126	264	1195	1747	132	114	139	
SHTAN	445	212	13	1048	524	402	406	237	630	461	486	85	440	445	1745	2297	683	550	424	
SHVES	1192	1397	1744	704	1279	1235	1350	1511	999	1295	1247	1518	1314	1452	5	534	1081	1305	1327	
SHSKJ	1746	1826	2299	1133	1834	1790	1905	2065	1429	1850	1802	1947	1869	2006	537	10	1636	1860	1882	
SHKIR	1884	2191	2275	1519	1918	1874	1989	2150	1815	1934	1886	2275	1953	2090	1214	787	1720	1880	1965	
SHBAL	1543	1748	2095	1055	1783	1738	1852	2015	1351	1798	1751	1870	1816	1954	459	99	1432	1809	1831	
SHLAR	525	417	623	295	628	585	699	860	6	611	596	562	630	801	993	1420	419	654	676	
SHLIL	445	148	81	822	510	402	367	312	565	430	478	11	410	377	1519	1946	573	536	393	
SHSJU	7	467	447	497	88	47	162	323	550	107	56	447	126	264	1195	1747	132	114	139	
ESTRH	491	627	933	1	579	535	650	810	299	595	547	745	614	751	701	1128	381	605	627	
ESber	464	1	210	698	553	443	402	468	422	484	521	139	492	462	1395	1822	477	579	428	
ESSLA	103	483	468	595	61	63	74	234	648	12	26	436	38	175	1293	1844	230	87	50	
ESFRE	92	555	521	579	1	108	127	288	632	69	39	508	91	229	1277	1828	214	37	104	
YXMOI	954	1159	1507	467	1042	998	1112	1273	762	1058	1010	1281	1077	1214	235	662	844	1068	1089	
YXSTA	445	212	13	1048	524	402	406	237	630	461	486	85	440	445	1745	2297	683	550	424	
EQMON	498	64	270	657	586	477	436	502	375	518	554	199	479	496	1354	1781	510	612	462	
;																				
param s	:=																			
\# max	nnual	pply o	fuel f	depo	in 10	litre														
CIALT	35000																			
CIHAR	35000																			
CITRH	35000																			
CIFOR	35000																			
CIKRI	35000																			
CIOSL	35000																			
SHTAN	35000																			
SHVES	35000																			
SHSKJ	35000																			
SHKIR	35000																			
SHBAL	35000																			
SHLAR	35000																			
SHLIL	35000																			\checkmark
<'																				

Figure 3.4.8.6. Data file

Figure 3.4.8.7. Data file
(A) Data.dat \mathcal{S}_{3}

oso	RAH	DRO	GRI	VEN	NES	STE	BRY	kov	KOP	KNA	EGE	ALG	LOM	MAN	AAS	BRU	FOR	LEV	<CU
2094	1676	1767	2010	2065	1776	1270	2271	1655	2191	2105	2232	2258	1753	2096	1762	1636	1909	1311	1784
1677	1340	1430	1673	1729	1440	790	1935	1355	1737	1613	1895	1922	1417	1760	1425	1299	1429	831	1448
627	434	524	767	823	534	120	922	449	759	638	990	905	511	854	520	394	523	81	542
201	434	453	653	603	463	645	408	493	326	185	452	406	405	568	448	403	1	606	419
414	383	326	52	18	342	938	221	418	308	480	181	208	319	46	286	464	700	899	285
467	64	33	280	335	43	614	436	99	461	478	502	419	29	367	28	145	423	574	55
185	614	445	283	245	461	1164	31	649	78	223	77	31	440	194	453	695	383	1125	402
1423	1134	1225	1468	1523	1234	585	1730	1150	1532	1408	1690	1717	1211	1555	1220	1094	1223	625	1243
1852	1689	1779	2022	2078	1789	1014	2284	1694	1961	1848	2245	2271	1766	2109	1775	1649	1652	1054	1797
2191	1773	1863	2107	2163	1873	1402	2264	1751	2288	1932	2329	2247	1856	2194	1859	1732	2039	1443	1882
1774	1485	1729	1970	2026	1738	936	2081	1646	1883	1759	2041	2068	1563	2058	1724	1445	1575	977	1594
443	483	574	817	872	583	411	651	515	569	428	694	649	536	904	569	405	243	372	558
120	505	445	359	321	461	938	109	539	15	161	152	107	440	269	453	512	319	899	402
467	64	33	280	335	43	614	436	99	461	478	502	419	29	367	28	145	423	574	55
627	434	524	767	823	534	120	922	449	759	638	990	905	511	854	520	394	523	81	542
30	479	486	466	452	508	814	238	546	156	13	281	236	450	398	493	462	175	775	443
437	162	104	191	247	120	711	453	196	450	494	413	440	97	278	57	243	479	672	64
555	146	69	245	300	87	695	507	180	522	566	467	494	117	332	63	227	511	656	114
1186	897	987	1230	1286	997	347	1492	912	1294	1170	1452	1479	974	1317	982	856	986	388	1005
185	614	445	283	245	461	1164	31	649	78	223	77	31	440	194	453	695	383	1125	402
	512	532		486		773	298		216	75	341	296	484	458	527	496	129	734	477

Figure 3.4.8.8. Data file

Figure 3.4.8.9. Data file

```
@ *Data.dat &% [B Model.mod [A Run.run (B Text.txt
    GJO }3220
    HOR 32075
    JES }3131
    SKI }3057
    MOI }2956
    KRU }2858
    KOR 28128
    TRD 27183
    HON 26680
    ALT 24000
    STJ 23032
    ASK }2266
    NAR }2213
    LEI 22098
    OSO 21761
    RAH }2112
    DRO 20951
    GRI 20812
    VEN 20521
    NES 20455
    BRY }1908
    KOV 18825
    KOP 18085
    KNA 17993
    EGE 17885
    ALG }1773
    LOM 17520
    MAS 17001
    BRU 16676
    FOR 16174
    FOR 16174
    KOU 16134
    param c :=
    cost for transport of fuel per 1000 k km in NOK
    0.31
```


3.5 Run file

3.5.1 Comandoes

The run file here content several commands for the program.

It first tells the program to reset, so that no stored codes will disturb from previous analyses.

Then it tells the program what model file to use, which here is "Model.mod".

Then it tells the program what data file to use, which here is "Data.dat".

Then it tells the program which solver to use, which here is cplex.

Then it tells the program what to display in which text file, which here is from the optimized solution to both display the minimized cost " z ", and " f " which is a table of all the quantities for all the corresponding routes " I " to " J ", to the text file "Text.txt".

3.5.2 Run file

Figure 3.5.2.1. Run file


```
reset;
model Model.mod;
data Data.dat;
option solver cplex;
solve;
display z, f > Text.txt;|
```


3.6 Text file

3.6.1 Explanation

The text file now from a optimized solution first shows the minimized annual cost " z " in NOK.

Further it shows " f ", which is all the amounts in 1000 litres for all corresponding routes " I " to " J " the optimized solution have chosen. This is the amount of fuel each depot should transport to what city/place in an annual basis which will give the lowest possible total cost, given the restrictions. This analyse apply to the analysis variant where all 4 companies collaborating including that they can transport fuel from Equinor's depot at Mongstad.

3.6.2 Text file

Figure 3.6.2.1. Text file

Figure 3.6.2.2. Text file

Figure 3.6.2.3. Text file

Figure 3.6.2.4. Text file

Figure 3.6.2.5. Text file

4. Changes in the AMPL files

4.1 Stand-alone analysis

In stand-alone all companies work for them self and no collaboration is done in the distribution of fuel. To analyze this in AMPL it require in total 4 unique data files, 4 unique run files, 4 unique text files, which all are different from the files at full collaboration analysis, and the model file which I keep unchanged as mentioned earlier.

4.1.1 Data file

Circle K

Changes here is in parameter s and in parameter d. Changes in d for changed capasities, do to the fact that this analysis apply only to the cost of Circle K's stand alone cost for their own needs for fuel distributed from their depots to their gas stations. This gives zero to the other companies s.

Parameter d is changed as well as Circle K only have 0.325 of the fuel market.
Below I show changes in the data file for the Circle K stand alone analysis.

I only give Circle K capacities, the other companies have now capacities zero.

Figure 4.1.1.1. Circle K stand-alone data file


```
param \(s:=\)
\# max annual supply of fuel from depots in 1000 litres
\(\begin{array}{ll}\text { \# max } \\ \text { CIALT } & 350000\end{array}\)
\(\begin{array}{ll}\text { CIHAR } & 350000 \\ \text { CITTH } & 350000\end{array}\)
CITRH 350000
CIFOR 350000
CIKRI 350000
CIOSL 350000
SHTAN
SHTAN
SHVES
SHSKJ
SHKIR
SHBAL
SHLIL
SHSTU
ESTRH
ESTRH
ESBER
ESFRE
ESFRE
YXMOI
YXSTA
EQMON
```

I have now adjusted the demands for the places/cities to match the demands of Circle K's gas stations only, which is 0.325 of the market. This numbers I have calculated in the excel file Thesis Data.

Figure 4.1.1.2. Circle K stand-alone data file

```
[4 DataCi.dat &%
    param d :=
    # required annual total demand of fuel at the gas stations cities/places in 1000 litres
    OSL }51832
    BER 130702
    STA 114401
    TRH 94748
    FRE }5776
    DRA }5487
    POR 47411
    KRI }3256
    ALE 27075
    ALE 27075
    MOS 23964
    MOS 23964
    HAU 22899
    SAN 22557
    ARE 22123
    BOD 21211
    TRO 20576
    HAM 14208
    HAL 13070
    LAR 12531
    KON 11296
    ASO 11230
    MOL 10729
    HAR 10712
    GJO }1046
    LIL }1046
    HOR 10424
    JES }1017
    SKI }993
    MOI 9608
    KRU 9290
    KOR 9142
    KOR 9142
    TRD 8835
    HON 7800
    ALT 7800
    ELV 7686
    STJ 7485
    ASK }736
    NAR 7193
    LEI }718
    OSO }707
    RAH }686
    DRO }680
    GRI }676
    VEN }666
    NES }664
    STE }660
    BRY }620
    KOV }611
    KOV }611
    KOP }587
    KNA }584
    EGE }581
    ALG }576
    LOM 5694
    MAN 5546
    AAS 5525
    BRU }542
    FOR }525
    LEV }525
    KOU 5244
;
param c :=
    # cost for transport of fuel per 1000L km in NOK
    0.31
```

 ;
 Further I have done equivalently prosedures in the analyzes of the other companies.

Shell

Figure 4.1.1.3. Shell stand-alone data file

```
[i] DataSh.dat }\mathbb{Z
    # max annual supply of fuel from depots in 1000 litres
    CIALT 0
    CIHAR
    CITRH
    CIFOR
    CIKRI
    CIKRI 0
    SHTAN 350000
    SHVES 350000
    SHSKJ 350000
    SHKIR 350000
    SHBAL 3550000
    SHBAL 350000
    SHLIL 350000
    SHSJU 350000
    ESTRH
    ESBER
    ESSRE
    YXMOI
    YXMOI
    YXSTA 0
    EQMON
```

Figure 4.1.1.4. Shell stand-alone data file

[^1]Figure 4.1.1.5. Shell stand-alone data file

```
OSO }707
RAH }686
DRO 6809
GRI 6764
MRI 6764
VEN }666
NES 6648
STE 6602
BRY 6204
KOV 6118
KOP }587
KNA }584
EGE }581
ALG }576
LOM 5694
MAN 5546
AAS }552
BRU 5420
FOR }525
FOR 5256
KOU }524
;
param c :=
# cost for transport of fuel per 1000L km in NOK
0.31
0.31
```


Esso

Figure 4.1.1.6. Esso stand-alone data file

```
[i|) DataEs.dat 涊
    # max annual supply of fuel from depots in 1000 litres
    # max ann
    CIHAR
    CITRH
    CIFOR
    CIKRI
    CIOSL
    SHTAN
    SHSKJ
    SHKIR
    SHBAL
    SHBAL
    SHLIL
    SHSJU
    ESTRH 350000
    ESBER 350000
    ESSLA 35000
    ESFRE 35000
    YXMOI 0
    YXSTA 0
;
```

Figure 4.1.1.7. Esso stand-alone data file
[日 DataEs.dat \mathbb{S}]
param d:=
*required annual total demand of fuel at the gas stations cities/places in 1000 litres
OSL 358841
BER 90486
STA 79201
TRH 65595
FRE 39992
DRA 37988
KRI 22546
KRI 22546
TON 18450
MOS 16590
MOS 16590
HAU 15853
SAN 15616
ARE 15316
BOD 14684
1RO
TRO 14245
HAM 9837
HAL 9049
LAR 8675
KON 7820
ASO 7774
MOL 7428
HAR 7416
HAR 7416
GJO 7247
GJO 7247
LIL 7244
LIL 7244
HOR 7217
HES 7045
SKI 6880
MOI 6652
KRU 6432
KOR 6329
TRD 6116
HON 6003
HON 6003
ALT 5400
ELV 5321
STJ 5182
ASK 5099
NAR 4980
LEI 4972

Figure 4.1.1.8. Esso stand-alone data file

```
OSO 4896
RAH 4753
DRO 4714
GRI }468
VEN }461
NES 4602
STE 4570
BRY 4295
KOV 4236
KOP 4069
KNA 4048
EGE 4024
ALG }399
LOM 3942
MAN }384
AAS 3825
BRU 3752
FOR 3639
LEV 3637
KOU 3630
param c :=
# cost for transport of fuel per 1000L km in NOK
0.31
```


YX

Figure 4.1.1.9. YX stand-alone data file

(B) DataYXdat $\mathbb{K}_{\mathcal{S}}$

Figure 4.1.1.10. YX stand-alone data file

[^2]Figure 4.1.1.11. YX stand-alone data file

```
OSO 2720
RAH }264
DRO 2619
DRO 2619
VEN 2565
NES 2557
STE 2539
BRY 2386
KOV 2353
KOP 2261
KNP 22619
EGE 2236
ALG }221
ALG 2216
MAN 2133
MAN 2133
AAS 2125
BRU 2084
LEV 2021
KOU 2017
;
param c :=
0.31
```


4.1.2 Run file

Circle K

Figure 4.1.2.1. Circle K stand-alone run file

```
(A) RunCi.run %3
    reset;
    reset;
    data DataCi.dat
    option solver cplex;
    solve;
    display z, f > TextCi.txt;
```


Shell

Figure 4.1.2.2. Shell stand-alone run file

```
[日) RunSh.run {3)
    reset;
    model Model.mod;
    data DataSh.dat;
    option solver cplex;
    solve;
    display z, f > TextSh.txt;
```


Esso

Figure 4.1.2.3. Esso stand-alone run file

```
[i RunEs.run &S
```

 reset
 model Model.mod
 data DataEs.dat;
 option solver cplex;
 solve;
 display z, f > TextEs.txt;

YX

Figure 4.1.2.4. YX stand-alone run file

```
(A) RunYX.run
```

reset
model Model.mod
data DataYX.dat;
option solver cplex;
solve;
display z, f TextYX.txt;

4.1.3 Text file results

Circle K

Here we can see that only Circle K is distributing fuel to their gas stations at their demands from their depots within their capacities.

Figure 4.1.3.1. Circle K stand-alone text file

Figure 4.1.3.2. Circle K stand-alone text file

Figure 4.1.3.3. Circle K stand-alone text file

Figure 4.1.3.4. Circle K stand-alone text file

TRD	0	0	0	0	0	0	0	0	0
TRH	0	0	0	0	0	0	0	0	0
TRO	0	0	0	0	0	0	0	0	0
VEN	0	0	0	0	0	0	0	0	0

Shell

Here we can see that only Shell is distributing fuel to their gas stations at their demands from their depots within their capacities.

Figure 4.1.3.5. Shell stand-alone text file

目 TextSh.txt \mathbb{K}															
$z=126062000$															
f [***] (tr)															
\# \$2 = CIFOR															
\# \$3 = CIHAR															
\# \$4 = CIKRI															
\# \$5 C CIOSL															
\# \$6 = CITRH															
\# \$7 = EQMON															
\# \$8 = ESBER															
\# \$9 = ESFRE															
\# \$10 = ESSLA															
\# \$11 = ESTRH															
\# \$13 = SHKIR															
:	CIALT	\$2	\$3	\$4	\$5	\$6	\$7	\$8	\$9	\$10	\$11	SHBAL	\$13	SHLAR	SHLIL :=
AAS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ALE	0	0	0	0	0	0	0	0	0	0	0	0	0	27075	0
ALG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ALT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ARE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	22123
ASK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ASO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	11230
BER	0	0	0	0	0	0	0	0	0	0	0	0	0	0	130702
BOD	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BRU	0	0	0	0	0	0	0	0	0	0	0	0	0	5420	0
BRY	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DRA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DRO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EGE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ELV	0	0	0	0	0	0	0	0	0	0	0	0	0	7686	0
FOR	0	0	0	0	0	0	0	0	0	0	0	0	0	5256	0
FRE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4423
GJo	0	0	0	0	0	0	0	0	0	0	0	0	0	10468	0
GRI	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0
HAL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	13070
HAM	0	0	0	0	0	0	0	0	0	0	0	0	0	14208	0
HAR	0	0	0	0	0	0	0	0	0	0	0	10712	0	0	0
HAU	0	0	0	0	0	0	0	0	0	0	0	0	0	0	22899
HON	0	0	0	0	0	0	0	0	0	0	0	0	0	8671	0
HOR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10424
JES	0	0	0	0	0	0	0	0	0	0	0	0	0	10176	0
KNA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5848

Figure 4.1.3.6. Shell stand-alone text file

Figure 4.1.3.7. Shell stand-alone text file

目 TextSh.txt is						
вод	0	0	0	21211	0	0
BRU	0	0	0	0	0	0
BRY	-	0	6204	0	0	0
DRA	0	0	54872	0	0	0
DRO	0	0	6809		0	0
EGE	0	0	5813	0	0	0
ELV	${ }^{0}$	${ }^{0}$	${ }^{0}$	0	0	0
FOR	0	0	0	0	0	-
FRE	16264	0	37079	0	0	
gjo	0	0	0	0	0	0
GRI	${ }^{\circ}$	0	6764	0	0	0
HAL	0	0	0	0	0	0
HAM	0	0	0	0	0	0
HAR	0	0	0		0	0
HAU	0	0	0	0	0	0
HoN	0	0	0		0	0
HOR	0	0	0	-	0	-
JES	-	0	0	0	0	0
KNA	0	0	0	0	0	-
KoN	0	0	11296	0	0	0
Kор	0	0	0	0	0	0
Kor	${ }^{0}$	${ }^{0}$	9142	0	${ }^{0}$	${ }^{0}$
кои	-	0	5244	0	0	0
Kov	0	0	0	${ }^{0}$	0	0
KRI	${ }^{\circ}$	${ }_{0}^{0}$	32567	${ }_{0}$	${ }_{0}^{0}$	${ }_{0}$
LAR	-	0	0	0	0	
LEI	0	-	0	0	0	-
LEV	0	0	0	5253	0	0
LIL	0	0	0	0	0	0
LOM	0	0	5694	0	0	0
MAN	0	-	5546	0	0	
Moi	-	0	0	9608	0	0
MoL	${ }_{0}^{0}$	${ }_{0}^{0}$	- $\begin{array}{r}\text { 23964 }\end{array}$	${ }_{0}^{0}$	0 0	0 0
NAR	0	0	0	0	0	0
NES	0	0	6648	0	0	0
OSL	316433	0	0	0	0	0
Oso	${ }^{0}$	${ }^{0}$	-	${ }^{0}$	0	${ }^{0}$
POR	${ }^{\circ}$	${ }_{0}$	${ }_{0}$	-	0	${ }^{0}$
SAN	0	0	0	0	0	0

Figure 4.1.3.8. Shell stand-alone text file

SKI	9937	0	0	0	0	0
STA	0	0	114401	0	0	0
STE	0	0	0	6602	0	0
STJ	0	0	0	7485	0	0
TON	0	0	0	0	0	0
TRD	0	8835	0	0	0	0
TRH	0	0	0	79067	0	0
TRO	0	20576	0	0	0	0
VEN	0	0	6669	0	0	0

Esso

Here we can see that only Esso is distributing fuel to their gas stations at their demands from their depots within their capacities.

Figure 4.1.3.9. Esso stand-alone text file

Figure 4.1.3.10. Esso stand-alone text file

Figure 4.1.3.11. Esso stand-alone text file

TextEs.txt	IS						
BRY	0	0	0	0	0	0	0
DRA	0	0	0	0	0	0	0
DRO	0	0	0	0	0	0	0
EGE	0	0	0	0	0	0	0
ELV	0	0	0	0	0	0	0
FOR	0	0	0	0	0	0	0
FRE	0	0	0	0	0	0	0
GJO	0	0	0	0	0	0	0
GRI	0	0	0	0	0	0	0
HAL	0	0	0	0	0	0	0
HAM	0	0	0	0	0	0	0
HAR	0	0	0	0	0	0	0
HAU	0	0	0	0	0	0	0
HON	0	0	0	0	0	0	0
HOR	0	0	0	0	0	0	0
JES	0	0	0	0	0	0	0
KNA	0	0	0	0	0	0	0
KON	0	0	0	0	0	0	0
KOP	0	0	0	0	0	0	0
KOR	0	0	0	0	0	0	0
KOU	0	0	0	0	0	0	0
KOV	0	0	0	0	0	0	0
KRI	0	0	0	0	0	0	0
KRU	0	0	0	0	0	0	0
LAR	0	0	0	0	0	0	0
LEI	0	0	0	0	0	0	0
LEV	0	0	0	0	0	0	0
LIL	0	0	0	0	0	0	0
LOM	0	0	0	0	0	0	0
MAN	0	0	0	0	0	0	0
MOI	0	0	0	0	0	0	0
MOL	0	0	0	0	0	0	0
MOS	0	0	0	0	0	0	0
NAR	0	0	0	0	0	0	0
NES	0	0	0	0	0	0	0
OSL	0	0	0	0	0	0	0
OSO	0	0	0	0	0	0	0
POR	0	0	0	0	0	0	0
RAH	0	0	0	0	0	0	0
SAN	0	0	0	0	0	0	0
SKI	0	0	0	0	0	0	0
STA	0	0	0	0	0	0	0

Figure 4.1.3.12. Esso stand-alone text file

				0	0	0	0
STA	0	0	0	0	0	0	0
STE	0	0	0	0	0		
STJ	0	0	0	0	0	0	0
TON	0	0	0	0	0	0	0
TRD	0	0	0	0	0	0	0
TRH	0	0	0	0	0	0	0
TRO	0	0	0	0	0	0	0
VEN	0	0	0	0	0	0	0
$;$							

YX

Here we can see that only YX is distributing fuel to their gas stations at their demands from their depots within their capacities.

Figure 4.1.3.13. YX stand-alone text file

```
目 TextYXtxt 江
    z=97234400
    f [*,*] (tr)
    # $1 = CIALT
    # $2 = CIFOR
    # $3 = CIHAR
    # $4 = CIKRI
    # $5 = CIOSL
    # $6 = CITRH
    # $7 = EQMON
    # $8 = ESBER
    # $9 = ESFRE
    # $10 = ESSLA
    # $11 = ESTRH
    # $12 = SHBAL
    # $13 = SHKIR
    # $14 = SHLAR
    # $15 = SHLIL
    # $16 = SHSJU
    # $17 = SHSKJ
    # $18 = SHTAN
    # $19 = SHVES
        $1 $2 $3 $4 $5 $6 $7 $8 $9 $10 $11 $12 $13 $14 $15 $16 $17 $18 $19:=
    AAS 
    ALE 
    ALLT 0
    ARE 0}00
    ASK 0
```



```
    ABER 
    BBD 0
    BRY 0}00
    DRA 0
    DRO 0
    EGE 0
    ELV 0}0
    FOR 0
    GJO 0
    GRI 0
```

Figure 4.1.3.14. YX stand-alone text file

目 TextrXtxt \mathcal{S}^{S}																			
HAL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HAM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HAR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HAU	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HON	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HOR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
JES	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
KNA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
KON	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
KOP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
KOR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
KOU	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
KOV	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
KRI	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
KRU	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LAR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LEI	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LEV	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LIL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LOM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MAN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MOI	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MOL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MOS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NAR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NES	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OSL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
oso	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
POR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RAH	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SAN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SKI	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
STA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
STE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
STJ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TON	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TRD	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TRH	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TRO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
VEN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 4.1.3.15. YX stand-alone text file

Figure 4.1.3.16. YX stand-alone text file

Cost results

Circle K

Circle K’s stand-alone cost

Figure 4.1.3.17. Circle K stand-alone text file

```
TextCi.txt }
    z = 131161000
```


Shell

Shell's stand-alone cost

Figure 4.1.3.18. Shell stand-alone text file

TextSh.txt \mathbb{Z}
$z=126062000$

Esso

Esso's stand-alone cost

Figure 4.1.3.19. Esso stand-alone text file

TextEs.txt \mathbb{Z}
$z=48454000$

YX

YX's stand-alone cost

Figure 4.1.3.20. YX stand-alone text file

```
目 TextYX.txt 污
```

 \(z=97234400\)

4.2 Two companies collaboration analysis

In two companies collaboration I investigate the costs for two and two companies collaborates in a best possible way regarding achieve lowest possible total cost for two companies distributing their fuel from these two companies depots to their gas stations with their corresponding demands. In the previous chapters I have shown what sort of changes I have done in the data files and the run files at the different analyses. I will in the following therefor only show the results regarding cost from the text files from the different analyses I have done, as the changes will be equivalently here as already described above.

Cost results

Circle K / Shell

Figure 4.2.1. Circle K / Shell coalition text file

TextCiSh.txt

$z=217075000$

Circle K / Esso

Figure 4.2.2. Circle K / Esso coalition text file

TextCiEs.txt
$z=114500000$

Circle K / YX

Figure 4.2.3. Circle K / YX coalition text file

TextCiYX.txt $£=3$
$z=188942000$

Shell / Esso

Figure 4.2.4. Shell / Esso coalition text file

TextShEs.txt
$z=101847000$

Shell / YX

Figure 4.2.5. Shell / YX coalition text file

TextShYX.txt
$z=207354000$

Esso / YX

Figure 4.2.6. Esso / YX coalition text file

TextEsYX.txt $2 \cdot 3$
$z=82818100$

4.3 Three companies collaboration analysis

Cost results

Circle K / Shell / Esso

Figure 4.3.1. Circle K / Shell / Esso coalition text file

```
TextCiShEs.txt 23
\(z=159858000\)
```


Circle K / Shell / YX

Figure 4.3.2. Circle K / Shell / YX coalition text file

TextCiShYX.txt 23
$z=297113000$

Circle K / Esso / YX

Figure 4.3.3. Circle K / Esso / YX coalition text file

TextCiEsYX.txt $2 \sim$
$z=139426000$

Shell / Esso / YX

Figure 4.3.4. Shell / Esso / YX coalition text file

```
TextShEsYX.txt © \
```

 \(z=154963000\)

4.4 Four companies(grand coalition) collaboration analysis

Cost results

Circle K / Shell / Esso / YX

Figure 4.4.1. Circle K / Shell / Esso / YX coalition text file

```
TextCiShEsYX.txt © 
    z = 219031000
```


Circle K / Shell / Esso / YX / Equinor depot

Figure 4.4.2. Circle K / Shell / Esso / YX coalition plus Equinor depot text file

Text.txt 53
$z=206766000$

5. AMPL analyses and calculations with results

I will in this chapter run three series of 16 analyses in AMPL, which is 3 different approaches regarding depot capacities, to investigate if there is a pattern in what the results will show. The differences in the three series will be in the depots capacities, due to uncertain data for this parameter. In this way I hope to find a pattern which is similar in all the three approaches and then be able to make more reliable conclusions from the results. A serie of 15 analyses will give costs for each possible coalition including stand alone. These 15 analyses is all needed for allocating the grand coalition's cost to each company in Shapley Values. The $16^{\text {th }}$ analysis will give the cost for the grand coalition were Equinor's depot is included.

I will also do the calculations regarding the grand coalition's cost allocation in Shapley Values.

Further I will check the three condition tests for each of the three series to find out if the grand coalition is the most beneficial for all the four companies.

In addition I will run 5 analyses in AMPL regarding CO^{2} emission for one serie and calculate the CO^{2} emission for all three series.

This will in total include 53 analyses in AMPL plus corresponding calculations.

From these results I will calculate the savings and decreased CO^{2} emission in each of the three series from optimized collaboration.

5.1 Fuel distribution with equal depot capacities

Here I have given all depots an equal capacity which is the total annual consumption of fuel in Norway divided by the total number of depots multiplied with approximately 1.5 to give overcapacities at a middle extent.

Total annual fuel consumption in Norway in 1000 litre: 4874893

Total number of fuel depots in Norway including Mongstad: 21
$4874893 / 21 \times 1.5=348206.6$

Depot capacities in 1000 litre for each depot: 350000

5.1.1 Coalition transportation cost results from AMPL listed

The costs showed below is the transportation costs from AMPL for all possible coalitions in this game for the four companies. This do not mean the cost for each company (except for stand alone), but the cost for the entire coalition.

Circle K	131161000
Shell	126062000
Esso	48454000
YX	97234400

Circle K / Shell	217075000
Circle K / Esso	114500000

Circle K / YX	188942000
Shell / Esso	101847000

Shell / YX 207354000

Esso / YX 82818100

Circle K / Shell / Esso 159858000

Circle K / Shell / YX 297113000

Circle K / Esso / YX 139426000

Shell / Esso / YX 154963000

Circle K / Shell / Esso / YX 219031000

Circle K / Shell / Esso / YX / Equinor depot 206766000

5.1.2 Savings for each coalition

Here I will find the savings in percentage for each coalition. To find this I compare the cost for the coalition to the companies summed stand-alone costs of the corresponding coalition.

Circle K / Shell

Summed stand-alone costs $=131161000+126062000=257223000$

Coalition cost $=217075000$

Savings $=(257223000-217075000) / 257223000=15.6 \%$

Circle K / Esso

Summed stand-alone costs $=131161000+82818100=213979100$

Coalition cost $=114500000$

Savings $=(213979100-114500000) / 213979100=46.5 \%$

Circle K/YX

Summed stand-alone costs $=131161000+97234400=228395400$

Coalition cost $=188942000$

Savings $=(228395400-188942000) / 228395400=17.3 \%$

Shell / Esso

Summed stand-alone costs $=126062000+48454000=174516000$

Coalition cost $=101847000$

Savings $=(174516000-101847000) / 174516000=41.6 \%$

Shell / YX

Summed stand-alone costs $=126062000+97234400=223296400$

Coalition cost $=207354000$

Savings $=(223296400-207354000) / 223296400=7.1 \%$

Esso / YX

Summed stand-alone costs $=48454000+97234400=145688400$

Coalition cost $=82818100$

Savings $=(145688400-82818100) / 145688400=43.2 \%$

Circle K / Shell / Esso

Summed stand-alone costs $=131161000+126062000+48454000=305677000$

Coalition cost $=159858000$

Savings $=(305677000-159858000) / 305677000=47.7 \%$

Circle K / Shell / YX

Summed stand-alone costs $=131161000+126062000+97234400=354457400$

Coalition cost $=297113000$

Savings $=(354457400-297113000) / 354457400=16.2 \%$

Circle K / Esso / YX

Summed stand-alone costs $=131161000+48454000+97234400=276849400$

Coalition cost $=139426000$

Savings $=(276849400-139426000) / 276849400=49.6 \%$

Shell / Esso / YX

Summed stand-alone costs $=126062000+48454000+97234400=271750400$

Coalition cost $=154963000$

Savings $=(271750400-154963000) / 271750400=43.0 \%$

Circle K / Shell / Esso / YX

Summed stand-alone costs $=131161000+126062000+48454000+97234400=$ 402911400

Coalition cost $=219031000$

Savings $=402911400$ NOK -219031000 NOK $=\underline{183880400 \text { NOK }}$

Savings $=(402911400-219031000) / 402911400=\underline{45.6 \%}$

Circle K / Shell / Esso / YX / Equinor depot

This case must be seen as a special case as Equinor depot do not have a stand-alone cost, due to they do not own or operate any gas stations. However, I want to include this analysis to get a picture of what savings can be done in NOK and CO^{2} emission when the companies can choose also to distribute fuel from this depot to their gas stations.

Summed stand-alone costs $=131161000+126062000+48454000+97234400=$ 402911400

Coalition cost $=206766000$

Savings $=402911400$ NOK -206766000 NOK $=\underline{196145400 \text { NOK }}$

Savings $=(402911400-206766000) / 402911400=\underline{48.7 \%}$

5.1.3 Game theory

First I will use the cost allocation tool Shapley Values to allocate the coalition cost to each player (company) in this 4-player game. This formula belongs to cooperative game theory, which I described in the Theory chapter, regarding calculation and the mechanism behind the formula.

The reason I choose Shapley Values method for this cost allocation is that it weight each players contribution to the collaboration in a good and accurate way, which is likely to give a fair cost allocation. Shapley Values is also in my opinion a well-known and trusted method for cost allocation.

After I have calculated the cost allocation from Shapley Values I will further check the three conditions, to find out if each player is most beneficial to join the full collaboration (grand coalition) or if any of the players are more beneficial to form smaller coalitions or stand alone, given the cost allocation. This is calculated in the chapters below the chapter "Shapley Values".

This cost allocation belongs to the core if there are no other(smaller) coalitions that can be more beneficial than this 4 player coalition (grand coalition) in this game. This cost allocation is stable if none of the 4 players will have benefit from braking out to form smaller coalitions or stand alone.

To find out if the cost allocation is stable and belongs to the core I will check the three conditions individual rational, coalition rational and efficiency condition.

5.1.4 Shapley Values

To set up the calculations in the Shapley Values formula I here uses all the 15 coalition costs (included the stand alone costs) from the analyses in AMPL with equal depot capacities.

Regarding the grand coalition cost I will here use the result from the analysis where Equinor depot is not included, as Equinor was not included in the other analyses. If I here had used the grand coalition result where Equinor's depot is included, the Shapley values calculation had been fault, as Equinor's depot is not included in the smaller coalition analyses and the stand-alone analyses. Therefore I need to be consistence when calculating Shapley values to get correct values from the formula.

These cost results are calculated according to the cost allocation method Shapley Value, which I already have described in detail in the Theory chapter at page 18-22, both for calculation and logic behind Shapley Values. I will therefore not show calculations for Shapley Values here.

$$
\varphi_{i}(v)=\sum_{S \subseteq N \backslash\{i\}} \frac{|S|!(n-|S|-1)!}{n!}(v(S \cup\{i\})-v(S))
$$

The results(allocated costs) from the Shapley Values formula in the game with equal depot capacities are listed below.

Circle K: $\quad 86569291.67$

Shell: $\quad 91008458.33$

Esso: -25275025.00

YX: $\quad 66728275.00$

5.1.5 Individual rational

Here I will check if these Shapley values are individual rational, by checking if the calculated Shapley value for each player (company) is lower than their stand-alone value from AMPL. This is the first step to find out if the cost allocation is stable and belongs to the core.

Circle K: $\quad 86569291.67$ < 131161000 (yes)
Shell: $\quad 91008458.33$ < 126062000 (yes)
Esso: $\quad-25275025.00<48454000$ (yes)
YX: $\quad 66728275.00<97234400$ (yes)

5.1.6 Coalition rational

Here I will check if the calculated Shapley values for every coalition summed are lower than their respective coalition cost from AMPL. The coalition for all 4 companies will of course not be calculated here, only the 2 and 3 player coalitions. The 4 companies coalition will be tested in another test in the next section.

Circle K / Shell: $\quad(86569291.67+91008458,33)<217075000$ (yes)

Circle K / Esso: $\quad(86569291.67+(-25275025,00))<114500000$ (yes)

Circle K / YX: $\quad(86569291.67+66728275,00)<188942000$ (yes)

Shell / Esso: $\quad(91008458.33+(-25275025,00))<101847000$ (yes)

Shell / YX: $\quad(91008458.33+66728275,00<207354000$ (yes)

Esso / YX: $\quad(-25275025.00+66728275,00)<82818100$ (yes)

Circle K / Shell / Esso: (86569291.67 + 91008458,33 + (-25275025.00)) < 159858000 (yes)

Circle K / Shell / YX: $(86569291.67+91008458,33+66728275.00)<297113000$ (yes)

Circle K / Esso / YX: $(86569291.67+(-25275025,00)+66728275.00)<139426000$ (yes)

Shell / Esso / YX: $\quad(91008458.33+(-25275025,00)+66728275.00)<154963000$ (yes)

Since I only have yeses, the rational condition for coalitions are fulfilled.

5.1.7 Efficiency condition

A final test is the efficiency condition test, where I going to check if all 4 Shapley values summed are equal to the full coalition cost from AMPL.

Circle K / Shell / Esso / YX: $(86569291.67+91008458.33+(-25275025.00)+$ $66728275.00)=219031000($ yes $)$

5.1.8 Conclusion from the individual rational-, coalition rationaland efficiency condition tests

This cost allocation from the Shapley values formula passed all three tests, which means according to game theory, that this cost allocation is stable and belongs to the core. Then we also know that non of the 4 companies have an economical benefit to break out of the 4 player coalition to form a smaller coalition. They all will benefit most when they stay in this grand coalition.

5.1.9 Savings for each company

Here I will calculate each company's savings when comparing their Shapley values to their stand-alone costs. This will tell how much in annually NOK and in percentage each of the four companies saves to join this collaboration where all four companies collaborate together. As these calculations use the cost allocation from Shapley Values this will show results for the grand coalition when Equinor's depot is not included.

Circle K: $\quad 131161000.00-86569291.67=44591708.33$

Annually savings $=44591708.33$ NOK
$44591708.33 / 131161000,00=0.34$

Percentage savings $=34.0 \%$

Shell: $\quad 126062000-91008458.33=35053541.67$

Annually savings $=35053541.67$ NOK
$35053541.67 / 126062000=0.278$

Percentage savings $=27.8 \%$

Esso:
$48454000-(-25275025.00)=73729025$

Annually savings $=73729025$ NOK
$73729025 / 48454000=1.522$

Percentage savings $=152.2$ \%

YX: $\quad 97234400-66728275.00=30506125$

Annually savings $=30506125$ NOK
$30506125 / 97234400=0.314$

Percentage savings $=31.4 \%$

5.1.10 Reduction in CO^{2} emission at full collaboration

Here I will find the annual reduction in CO^{2} emissions from the trucks when the 4 companies collaborates together in the grand coalition compared to if they distribute fuel as stand-alone companies. I will first do some manual calculations.

From own knowledge and statements from people in the driver industry I suggest that a gas trucks tank contains when full tank typical 40000 litre and that a truck driving with full tank of that amount consumes at average approximately 0,4 litre diesel per km driving.
$40000 / 1000=40$
$0.4 / 40=0.01$

This gives that the trucks consumption of diesel is estimated to 0.01 litre diesel per 1000 litre km , given that they drive with full tanks of 40000 litre on the trucks.

The CO^{2} emission from a diesel engine is 2660 gram per consumed litre of diesel (Helleborg, 2018).

2660 gram $\times 0,01=26,6$ gram

This gives us that the trucks emission of CO^{2} is 26.6 gram per 1000 litre km of distributed fuel.

$$
26.6 \text { gram }=0.0000266 \text { ton }
$$

To find the annual reduction in CO^{2} emission in ton there is a short cut that can be done. It is simply to divide 0.0000266 with the cost parameter c 0.31 in AMPL and then multiply this by the savings from the full collaboration, which here will be the version that includes Equinor's depot at Mongstad. The reason why I do include Equinor here is that this will not give any disturbance in the calculation as it would in Shapley values earlier. In this way I will get the results where the 4 companies also uses Equinor's depot, as I expect them to do, when seeking for the best possible way to collaborate and distribute fuel in Norway. Let's try to calculate.
$0.00008581 \times 196145400=16830.54$

Annual reduction in CO^{2} emission from full collaboration $=\underline{\underline{16830.54 ~ t o n ~}}$

However, I still going to do this in some new analyses in AMPL to also make a functional program for CO^{2} emission for this case.

I will now run 5 new analyses in AMPL to find the potential reduction in CO^{2} at full collaboration. First I will run 4 new stand-alone analyses. Then I will run a last analysis with full collaboration including Equinor's depot.

To manage to run these new analyses I will now make 5 new data files, 5 new run files and 5 new text files in AMPL. I will also in this case use the same model file I already have created, which will be unchanged.

The only change I need to do in the data files compared to the previous relevant files are that I change the parameter c cost value 0.31 to 0.0000266 for CO^{2} emission. The output will now show total annual CO^{2} output from the corresponding company or companies in the analysis.

5.1.11 Creating CO^{2} emission program in AMPL

Changes for CO^{2} emission stand alone data files

Figure 5.1.11.1. Changes for the CO^{2} emission stand-alone data files compared to the standalone data files for costs.

```
param c :=
# CO2 emission for transport of fuel per 1000L km in ton
0.0000266
;
<
```

Figure 5．1．11．2． CO^{2} emission Circle K stand alone run file

```
A) DataCOCi.dat
[日) RunCOCi.run 認 寿 TextCOCi.tx
    reset;
    model Model.mod;
    data DataCOCi.dat;
    option solver cplex;
    solve;
    display z, f > TextCOCi.txt;
```

Figure 5．1．11．3． CO^{2} emission Circle K stand alone text file


```
    z = 11254.5
```

The other CO^{2} emission stand alone run files will have equivalently changes，I will therefore not show them here．Text files will give each new analysis individual results regarding CO^{2} ．

Changes for CO^{2} emission Circle K／Shell／Esso／YX／Equinor depot data file

Figure 5．1．11．4．Changes for CO^{2} emission Circle K／Shell／Esso／YX coalition plus Equinor depot data file compared to Circle K／Shell／Esso／YX coalition plus Equinor depot data file for cost．

```
param c :=
# CO2 emission for transport of fuel per 1000L km in ton
0.0000266
```

:

Figure 5．1．11．5． CO 2 emission Circle K／Shell／Esso／YX coalition plus Equinor depot run file

```
（A）DataCO．dat
（H）RunCO．run \({ }^{2}\) 目 TextCO．txt
```


reset；

model Model．mod；
data DataCO．dat；
option solver cplex；
solve；
display z，f＞TextCO．txt；

Figure 5．1．11．6． CO^{2} emission Circle K／Shell／Esso／YX coalition plus Equinor depot text file

```
（⿴囗）DataCO dat
（H）RunCO．run
TextCO．txt \({ }^{2}\)
```

$z=17741.8$

CO^{2} emission results

The results shows annual CO^{2} emission from distributing fuel．

Figure 5．1．11．7． CO^{2} emission Circle K stand alone text file

$z=11254.5$

Figure 5．1．11．8． CO^{2} emission Shell stand alone text file
（A）DataCOSh．dat
（f）RunCOSh．run TextCOSh．txt 3

```
z = 10816.9
```

Figure 5．1．11．9． CO^{2} emission Esso stand alone text file
（H）DataCOEs．dat
（H）RunCOEs．run
TextCOEs．txt ${ }^{2}$
$z=4157.66$

Figure 5．1．11．10． CO^{2} emission YX stand alone text file
（⿴囗）DataCOYX．dat
（H）RunCOYX．run
TextCOYX．txt ${ }_{2} 3$

$$
z=8343.34
$$

Figure 5．1．11．11． CO 2 emission Circle K／Shell／Esso／YX coalition plus Equinor depot text file

```
    [(1) DataCO.dat [i) RunCO.run 冒 TextCO.txt 纪
    z = 17741.8
```

Circle K：
11254.5 ton CO^{2}

Shell：
10816.9 ton CO^{2}

Esso：

YX：
8343.34 ton CO^{2}

Sum：
34572.4 ton CO^{2}

Circle K／Shell／Esso／YX／Equinor depot： 17741.8 ton CO^{2}
$34572.4-17741.8=16830.6$

This means that a optimized collaborating in fuel distributing gives an annual reduction in CO^{2} emission of 16830.6 ton CO^{2} compared to if there is no collaboration. This is the same answer as in the short cut method above.

5.2 Fuel distribution with limitless depot capacities

Here I have set all depot capacities to 5000000 which is more than the total annual fuel consumption in Norway. This can then be seen as limitless depot capacities as every depot could in theory supply whole Norway with fuel on its own.

Total annual fuel consumption in Norway in 1000 litre: 4874893

Depots capacities: 5000000

The changes in AMPL files will be in the data files regarding depot capacities. Other than that the procedure for coding the AMPL program is all the same as I described for the serie with "equal depot capacities". Therefore I will here display the results I got from AMPL directly without screenshots.

5.2.1 Coalition transportation cost results from AMPL listed

Circle K	43511300
Shell	42164400
Esso	48063600
YX	73247100
Circle K / Shell	48416500
Circle K / Esso	48798900
Circle K / YX	44937700
Shell / Esso	31220400

Shell / YX	57276400
Esso / YX	51858900
Circle K / Shell / Esso	31895200
Circle K / Shell / YX	56136300
Circle K / Esso / YX	38757700
Shell / Esso / YX	36930300
Circle K / Shell / Esso / YX	34398700
Circle K / Shell / Esso / YX / Equinor depot	34398700

5.2.2 Savings for each coalition

Circle K / Shell

Summed stand-alone costs $=43511300+42164400=85675700$

Coalition cost $=48416500$

Savings $=(85675700-48416500) / 85675700=43.5 \%$

Circle K / Esso

Summed stand-alone costs $=43511300+48063600=91574900$
Coalition cost $=48798900$

Savings $=(91574900-48798900) / 91574900=46.7 \%$

Circle K / YX

Summed stand-alone costs $=43511300+73247100=116758400$

Coalition cost $=44937700$

Savings $=(116758400-44937700) / 116758400=61.5 \%$

Shell / Esso

Summed stand-alone costs $=42164400+48063600=90228000$

Coalition cost $=31220400$

Savings $=(90228000-31220400) / 90228000=65.4 \%$

Shell / YX

Summed stand-alone costs $=42164400+73247100=115411500$

Coalition cost $=57276400$

Savings $=(115411500-57276400) / 115411500=50.4 \%$

Esso / YX

Summed stand-alone costs $=48063600+73247100=121310700$

Coalition cost $=51858900$

Savings $=(121310700-51858900) / 121310700=57.3 \%$

Circle K / Shell / Esso

Summed stand-alone costs $=43511300+42164400+48063600=133739300$

Coalition cost $=31895200$

Savings $=(133739300-31895200) / 133739300=76.2 \%$

Circle K / Shell / YX

Summed stand-alone costs $=43511300+42164400+73247100=158922800$

Coalition cost $=56136300$

Savings $=(158922800-56136300) / 158922800=64.7 \%$

Circle K / Esso / YX

Summed stand-alone costs $=43511300+48063600+73247100=164822000$

Coalition cost $=36930300$

Savings $=(164822000-36930300) / 164822000=77.6 \%$

Shell / Esso / YX

Summed stand-alone costs $=42164400+48063600+73247100=163475100$

Coalition cost $=36930300$

Savings $=(163475100-36930300) / 163475100=77.4 \%$

Circle K / Shell / Esso / YX
Summed stand-alone costs $=43511300+42164400+48063600+73247100=206986400$

Coalition cost $=34398700$

Savings $=206986400$ NOK -34398700 NOK $=\underline{172587700 \text { NOK }}$

Savings $=(206986400-34398700) / 206986400=\underline{\underline{83.4 \%}}$

Circle K / Shell / Esso / YX / Equinor depot

Summed stand-alone costs $=43511300+42164400+48063600+73247100=206986400$

Coalition cost $=34398700$

Savings $=206986400$ NOK -34398700 NOK $=\underline{172587700 \text { NOK }}$
Savings $=(206986400-34398700) / 206986400=\underline{\underline{83.4 \%}}$

We see that the result here is exactly the same as when Equinor Mongstad depot is not included. This make sense as there is always another depot that are closer to any gas station than Mongstad and now all depots have limitless capacity. So Mongstad will now never deliver fuel to any gas station and we got therefore equal results as in the previous collaboration.

5.2.3 Shapley values

Circle K: $\quad 7337550$

Shell: 5406150

Esso: 740500

YX: 20914500

5.2.4 Individual rational

| Circle K: | $7337550<43511300$ (yes) |
| :--- | ---: | :--- |
| Shell: | $5406150<42164400$ (yes) |
| Esso: | $740500<48063600$ (yes) |
| YX: | $20914500<73247100$ (yes) |

5.2.5 Coalition rational

Circle K / Shell:	$(7337550+5406150)<48416500$ (yes)
Circle K / Esso:	$(7337550+740500)<48798900$ (yes)
Circle K / YX:	$(7337550+20914500)<44937700$ (yes)
Shell / Esso:	$(5406150+740500)<31220400($ yes $)$
Shell / YX:	$(5406150+20914500)<57276400$ (yes)
Esso / YX:	$(740500+20914500)<51858900$ (yes)
Circle K / Shell / Esso: $(7337550+5406150+740500)<31895200$ (yes)	
Circle K / Shell / YX: $(7337550+5406150+20914500)<56136300$ (yes)	
Circle K / Esso / YX: $(7337550+740500+20914500)<38757700$ (yes)	
Shell / Esso / YX:	$(5406150+740500+20914500)<36930300$ (yes)

Since I only have yeses, the rational condition for this cost allocation are fulfilled.

5.2.6 Efficiency condition

Circle K / Shell / Esso / YX: $(7337550+5406150+740500+20914500)=34398700$ (yes)

5.2.7 Conclusion from the individual rational-, coalition rationaland efficiency condition tests

This cost allocation from the Shapley values formula passed all three tests, which means according to game theory, that this cost allocation is stable and belongs to the core.

5.2.8 Savings for each company

Circle K:

$$
43511300-7337550=36173750
$$

Annually savings $=\underline{\underline{36173750 ~ N O K}}$
$36173750 / 43511300=0.831$

Percentage savings $=\underline{\underline{83.1 \%}}$

Shell:

$$
\begin{aligned}
& 42164400-5406150=36758250 \\
& \text { Annually savings }=36758250 \text { NOK }
\end{aligned}
$$

$36758250 / 42164400=0.872$

Percentage savings $=\underline{\underline{87.2} \%}$

Esso:

$$
\begin{aligned}
& 48063600-740500=47323100 \\
& \text { Annually savings }=\underline{47323100 \mathrm{NOK}} \\
& 47323100 / 48063600=0.985 \\
& \text { Percentage savings }=\underline{98.5 \%}
\end{aligned}
$$

$Y X$:

$$
\begin{aligned}
& 73247100-20914500=52332600 \\
& \text { Annually savings }=\underline{\underline{52332600 ~ N O K}} \\
& 52332600 / 73247100=0.714 \\
& \text { Percentage savings }=\underline{\underline{71.4 \%}}
\end{aligned}
$$

5.2.9 Reduction in CO^{2} emission at full collaboration

2660 gram $\times 0.01=26.6$ gram

From this gives us that the trucks emission of CO^{2} is 26.6 gram per 1000 litre km of distributed fuel.
26.6 gram $=0.0000266$ ton
$0.0000266 / 0.31=0.00008581$
$0.00008581 \times 172587700=14809.8$

Annual reduction in CO^{2} emission from full collaboration with limitless depots $=\underline{14809.8}$ ton

5.3 Fuel distribution with adjusted depot capacities

Here I have run a new series of 16 analyses with total depot capacities adjusted to relate to each company's share of annual fuel sale at all their gas stations in Norway. All values are then multiplied with 20% to make some overcapacity. The total overcapacity will in addition to this also include the depot at Mongstad. For Equinor which do not own or operate any gas stations I have calculated an average capacity from the 4 companies for their depot capacity at Mongstad.

Annual capacities in 1000 litre:
Circle K: $\quad 4874893 \times 1.2 \times 0,325 / 6=316868.0$

Shell: $\quad 4874893 \times 1.2 \times 0,325 / 8=237651.0$
Esso: $\quad 4874893 \times 1.2 \times 0,225 / 4=329055.3$

YX: $\quad 4874893 \times 1.2 \times 0,125 / 2=365617.0$

Equinor: $\quad(316868.0+237651.0+329055.3+365617.0) / 4=312297.8$

5.3.1 Coalition transportation cost results from AMPL listed

Circle K	177207000
Shell	285499000
Esso	50214100
YX	94770200
Circle K / Shell	431180000
Circle K / Esso	129120000
Circle K / YX	226464000
Shell / Esso	196868000

Shell / YX	341711000
Esso / YX	87572400
Circle K / Shell / Esso	332446000
Circle K / Shell / YX	485696000
Circle K / Esso / YX	173934000
Shell / Esso / YX	256191000
Circle K / Shell / Esso / YX	387685000
Circle K / Shell / Esso / YX / Equinor depot	299921000

5.3.2 Savings for each coalition

Circle K / Shell

Summed stand-alone costs $=177207000+285499000=462706000$

Coalition cost $=431180000$

Savings $=(462706000-431180000) / 462706000=6.8 \%$

Circle K / Esso

Summed stand-alone costs $=177207000+50214100=227421100$

Coalition cost $=129120000$

Savings $=(227421100-129120000) / 227421100=43.2 \%$

Circle K / YX

Summed stand-alone costs $=177207000+94770200=271977200$

Coalition cost $=226464000$

Savings $=(271977200-226464000) / 271977200=16.7 \%$

Shell / Esso

Summed stand-alone costs $=285499000+50214100=335713100$

Coalition cost $=196868000$

Savings $=(335713100-196868000) / 335713100=42.4 \%$

Shell / YX

Summed stand-alone costs $=285499000+94770200=380269200$

Coalition cost $=341711000$

Savings $=(380269200-341711000) / 380269200=10.1 \%$

Esso / YX

Summed stand-alone costs $=50214100+94770200=144984300$

Coalition cost $=87572400$

Savings $=(144984300-87572400) / 144984300=39.6 \%$

Circle K / Shell / Esso

Summed stand-alone costs $=177207000+285499000+50214100=512920100$

Coalition cost $=332446000$

Savings $=(512920100-332446000) / 512920100=35.2 \%$

Circle K / Shell / YX

Summed stand-alone costs $=177207000+285499000+94770200=557476200$

Coalition cost $=485696000$

Savings $=(557476200-485696000) / 557476200=12.9 \%$

Circle K / Esso / YX

Summed stand-alone costs $=177207000+50214100+94770200=322191300$

Coalition cost $=173934000$
Savings $=(322191300-173934000) / 322191300=46.0 \%$

Shell / Esso / YX

Summed stand-alone costs $=285499000+50214100+94770200=430483300$

Coalition cost $=256191000$

Savings $=(430483300-256191000) / 430483300=40.5 \%$

Circle K / Shell / Esso / YX
Summed stand-alone costs $=177207000+285499000+50214100+94770200=$ 607690300

Coalition cost $=387685000$

Savings $=607690300$ NOK -387685000 NOK $=\underline{220005300 \text { NOK }}$
Savings $=(607690300-387685000) / 607690300=\underline{\underline{36.2 \%}}$

Circle K / Shell / Esso / YX / Equinor depot

Summed stand-alone costs $=177207000+285499000+50214100+94770200=$ 607690300

Coalition cost $=299921000$

Savings $=607690300$ NOK -299921000 NOK $=\underline{\underline{307769300 ~ N O K ~}}$

Savings $=(607690300-299921000) / 607690300=\underline{50.6 \%}$

We see that the result for Circle K / Shell / Esso / YX / Equinor depot collaboration now is different than when Equinor Mongstad depot was not included. In the case where we had unlimited supply, Equinor's depot had no effect on optimal solution. Now Equinor's depot has an effect on optimal solution due to the fact that maximum supply from the fuel depots has changed, in this case where we have "adjusted depot capacities.

5.3.3 Shapley values

Circle K:	137359025.0
Shell:	231374525.0
Esso:	-43674208.3
YX:	62625658.3

5.3.4 Individual rational

| | Circle K: | $137359025.0<177207000$ (yes) |
| :--- | ---: | :--- | ---: | :--- |
| Shell: | | $231374525.0<285499000$ (yes) |
| Esso: | $-43674208.3<50214100$ (yes) | |
| YX: | | $62625658.3<94770200$ (yes) |

5.3.5 Coalition rational

Circle K / Shell:	$(137359025+231374525)<431180000$ (yes)
Circle K / Esso:	$(137359025+(-43674208.3))<129120000$ (yes)
Circle K / YX:	$(137359025+62625658.3)<226464000$ (yes)
Shell / Esso:	$(231374525+(-43674208.3))<196868000$ (yes)
Shell / YX:	$(231374525+62625658.3)<341711000$ (yes)
Esso / YX:	$((-43674208,3)+62625658.3)<87572400$ (yes)

Circle K / Shell / Esso: $(137359025+231374525+(-43674208.3))<332446000$ (yes)
Circle K / Shell / YX: $(137359025+231374525+62625658.3)<485696000$ (yes)

Circle K / Esso / YX: $(137359025+(-43674208.3)+62625658.3)<173934000$ (yes)

Shell / Esso / YX: $\quad(231374525+(-43674208.3)+62625658.3)<256191000$ (yes)

Since I only have yeses, the rational condition for this cost allocation is fulfilled.

5.3.6 Efficiency condition

Circle K / Shell / Esso / YX: $(137359025+231374525+(-43674208.3))+62625658.3=$ 387685000 (yes)

The sum for all allocated costs are equal to the full collaboration coalition cost from AMPL, I then conclude that the efficient condition is fulfilled.

5.3.7 Conclusion from the individual rational-, coalition rational-, and efficiency condition tests

This cost allocation from the Shapley values formula passed all three tests, which means according to game theory, that this cost allocation is stable and belongs to the core.

5.3.8 Savings for each company

Circle K:

$$
177207000-137359025=40047975
$$

Annually savings $=\underline{40047975 \text { NOK }}$
$40047975 / 177207000=0.226$

Percentage savings $=\underline{\underline{22.6 \%}}$

Shell:

$$
285499000-231374525=54124475
$$

Annually savings $=\underline{\underline{54124475} \text { NOK }}$
$54124475 / 285499000=0.190$

Percentage savings $=\underline{19.0 \%}$

Esso:

$50214100.0-(-43674208.3)=93888308.3$
Annually savings $=\underline{\underline{93888308.3 ~ N O K}}$
$93888308.3 / 50214100=1.870$

Percentage savings $=\underline{\underline{187.0 \%}}$
$Y X:$
$94770200-62625658.3=32144541.7$

Annually savings $=\underline{\underline{32144541.7 ~ N O K}}$
$32144541.7 / 94770200=0.339$

Percentage savings $=\underline{\underline{33.9 \%}}$

5.3.9 Reduction in CO^{2} emission at full collaboration

2660 gram x $0.01=26.6$ gram

From this gives us that the trucks emission of CO^{2} is 26.6 gram per 1000 litre km of distributed fuel.
26.6 gram $=0.0000266$ ton
$0,0000266 / 0.31=0.00008581$
$0.00008581 \times 307769300=26409.7$

Annual reduction in CO^{2} emission from full collaboration with adjusted depot capacities $=$ $\underline{\underline{26409.7} \text { ton }}$

6. Discussion

I have run 3 series of 15 analyses and from the results used Shapley Values to allocate the grand coalition cost to the 4 companies Circle K, Shell, Esso and YX/UNO-X. I then checked each company's allocated cost from Shapley Values regarding the 2 conditions individual- and rational condition, to find out if the cost allocation is stable and belongs to the core. I also checked the sum regarding efficiency condition. All this is done 3 times(3 series) due to 3 different games.

The allocated costs passed all these test in every 3 series. So we then know that the cost allocations in every 3 cases are stable and belongs to the core. This means that all the 4 companies Circle K, Shell, Esso and YX/UNO-X have most benefit from stay in the grand coalition, given the input data and restrictions in these 3 series of AMPL analyses. As all three series of analyses and calculations show that the grand coalition is best for all the four companies, I suggest that this probably is the case in reality as well. The reason I believe that this likely can be true is that I believe the true depot capacities probably lay within the area of these 3 series of capacities I have used in the analyses, I know capacity may differ within each depot in reality, but at least I still think this indicates that these results can be true, in a way that all 4 companies will have most benefit regarding cost from collaborating in the 4 company coalition where they are open to share depots in a optimized fuel distribution, and that this also of course gives the greatest reduction in CO^{2} emission as this will have the same percentage reduction as the percentage savings.

The results show in all three series that every of the 4 companies have considerable savings from the optimized collaborated fuel distributing in this grand coalition of all 4 companies collaborating. The results regarding decreased CO^{2} emission also shows considerable amounts decreased CO^{2} emissions in all 3 series.

However, I believe that the results for percentage- savings and decreased CO^{2} emission are more likely to be closer to the reality then the savings and decreased CO^{2} emission in NOK. This is due to some uncertainty regarding cost from driving and salary, as changes in this cost will affect the savings in NOK, but not in percentage.

As I explained earlier the return routes are not included in the program, so the savings will in practice probably be higher than the results here, not in percent, but in NOK. The amount of decreased CO^{2} emission will of course also probably be higher in practice, due to this.

The results for total savings from full collaborated (included Equinor's depot) fuel distributing in Norway compared to non-collaborative distribution, from the 3 series analyses, given the input data show:

Annual total savings in NOK $($ serie 1$)=196145400$ NOK

Annual total savings in percent $($ serie 1$)=48.7 \%$
Annual total decreased CO^{2} emission in ton $($ serie 1$)=16830.54$ ton

Annual total savings in NOK (serie 2) $=172587700$ NOK

Annual total savings in percent $($ serie 2$)=83.4 \%$

Annual total decreased CO^{2} emission in ton $($ serie 2$)=14809.8$ ton

Annual total savings in NOK $($ serie 3$)=307769300$ NOK

Annual total savings in percent $($ serie 3$)=50.6 \%$

Annual total decreased CO^{2} emission in ton $($ serie 3$)=26409.7$ ton

From the main results we can see that the greatest savings in percent is for the analyses with "limitless depot capacities"(serie 2), but still have less savings in NOK then the results for "equal depot capacities"(serie 1). This make sense as the companies now can distribute all the fuel from the nearest depot no matter how much fuel they want, this makes low costs. At the same time they will have high savings when they can pic up as much fuel as they want from all any of the 21 depots in Norway.

If we takes a look at the results in the results chapter there also seems to be a pattern that Esso have the greatest contribution to the savings among the companies and that this contribution is very high compared to the contribution from the other companies. We can see that the coalitions where Esso is included tend to have high percentage savings. Though all companies still contributes significantly to the savings. The reason for Essos high contribution to the savings can be that Esso have depots which are more suitable spread in the country regarding locations and demands, compared to the other companies.

We see that Esso do have negative allocated cost value from Shapley Values. This means that when Circle K, Shell and YX have paid their allocated costs into the money pot for the grand coalition cost Esso do not pay anything to the money pot but rather gain a sum from that money pot. This is due to Esso's very high contribution to the savings in the collaboration. Esso's contribution is as high that the cost for the grand coalition is way lower than the cost would be for a 3 companies coalition where Esso would not be included. The average marginal cost of Esso is negative. The grand coalition cost is actual lower than the sum for what Circle K, Shell and YX pays into the grand coalition pot, due to that Esso get some of this money. This cost allocation is still stable and belongs to the core, all companies are most beneficial to stay in the grand coalition, they has no reason to break out to form smaller coalitions. However, the companies do not necessarily need to split the grand coalition cost exactly this way, they can agree to split it different, but the cost allocation from Shapley Values here is probably a good suggestion to how the companies should split the grand coalition cost in a fair way, even though Esso get paid from the money pot.

The results for the savings from 2- and 3 company coalitions are actual not very important here as we already know that the grand coalition gives most benefits for all the companies. But these percentage saving results can sure shred more light on the results and show some patterns which gives a better understanding of the results, I will therefore discuss some of these findings.

We can see that there tend to be more savings as larger the coalitions are, that make sense as collaboration here is most beneficial in the grand coalition, where all four companies collaborates.

Shell seems to have the lowest contribution to the savings, but do not differ very much from Circle K and YX. One reason for this can be that they have

We see that a 3 company coalition with Circle K, Esso and YX have the highest percentage saving in 2 series, but all these 3 companies are still more beneficial when they including Shell, because Shells allocated cost in the grand coalition will be high enough to lower the other companies cost, which gives the other companies higher benefits in the grand coalition then in a 3 company coalition, and Shell still contributes enough to the savings to get an allocated cost which is lower than its own stand alone cost. Every company will still be most beneficial to stay in the grand coalition where all 4 companies collaborating, but that did we already know according to the 3 condition tests. Each company contributes to savings in the grand coalition, but with different amounts and at different grades. The companies will get allocated their costs based on how much they contributes to the savings.

The analyses and calculations for decreased CO^{2} emissions show that the amount of annual decreased CO^{2} emission from a full collaboration is considerable.

Although the results in this thesis of course is not perfectly accurate to reality, due particularly to uncertain depot capacities, and changes in depot capacities can sure lead to changed numbers in the results, but I still believe that the results gives true pointers of each companies savings of being in the collaboration and how they want to collaborate. And maybe more important, I think that the model gives true pointers of the magnitude of the amount of decreased CO^{2} emission collaboration potential can give in distributing fuel in Norway.

A aspect to think of when creating a program in AMPL for collaboration regarding the results for which depot one should pic up fuel from and how much, is when two depots are located very close to each other. The program then chooses only the nearest depot as long as it has capacity to deliver, no matter how minimal the difference in distances is. The coalition cost will almost not be changed if one pic up fuel also from the depot laying minimal far away from the gas station, but this changes which depot (company) should deliver the fuel to a specific city/place (gas station). So this should be pay attention to when creating the program in AMPL. Though this aspect is not important in the AMPL analyses here when the purpose is to find savings for the entire coalitions.

7. Conclusion

The results show that all the four companies are most beneficial to collaborate together in a 4 company coalition (grand coalition), given the input data and restrictions in the analyses. The results also show that the savings from a optimized fuel distribution in the grand coalition compared to a none collaborative fuel distribution are not even among the companies, but still are considerable for all the four companies.

From this I recommend all the four companies Circle K, Shell (ST1), Esso and YX/UNO-X to collaborate together in the 4 companies coalition (grand coalition), being open to share depots, in distributing fuel in Norway, to get the lowest possible transportation costs for their own company. They than need to arrange the routes and amounts as the text file in AMPL displays. Further I recommend the companies to share the costs according to the results from Shapley Values. This is given that there will be done new analyses with accurate input data to get as accurate results as possible and to verify my conclusions.

The results also show that the amount of potential decreased CO^{2} emission from the trucks used to distribute the fuel in Norway is considerable when all four companies collaborate together in a 4 company coalition compared to a none collaborative fuel distribution.

From this I also recommend all the four companies Circle K, Shell (ST1), Esso and YX/UNO-X to collaborate together in the 4 companies coalition (grand coalition), being open to share depots, in distributing fuel in Norway, to reduce the CO^{2} emissions to the world as much as possible. In this aspect also the government can play an important role in facilitating and encourage to collaboration in distributing fuel in Norway. They than need to arrange the routes and amounts as the text file in AMPL says. This is given that there will be done new analyses with accurate input data to get as accurate results as possible and to verify my conclusions.

Further I experiences that the AMPL program I have created in this thesis is working smooth and is easy to change and expand regarding changed or added data. The program could therefore be used as a tool or a help in decision makings in collaborative fuel distribution in Norway.

8. References

Centon, W. (2019, November 13). Economics. Retrieved from Behavior Economics: http://www.investopedia.com/terms/s/shapley-value.asp

Coalition Theory Network. (2020). Retrieved from Cooperative Game Theory.

Cotra, M. (2019, October 28). Towards Datascience. Retrieved from Making Sense of Shapley Values: https://towardsdatasciensce.com/making-sense-of-shapley-valuesdc67a8e4c5e8

GlobalPetrolPrices. (2020, October 27). Dieselpriser, Liter, 27-oktober-2020. Retrieved from GlobalPetrolPrices.com: https://no.globalpetrolprices.comdiesel.prices/\#h1214

Google. (2005, February 8). Google. Retrieved from Google Maps: https://www.google.no/maps/dir//@60.5821454,5.7955337,14z?hl=en

Havås, J., Alfred, O., Jim, P., \& Mirjam, S. S. (2013). Modeling and Optimization of University Timetabling. Gøteborg: Gøteborgs Universitet.

Helleborg, B. (2018, May 29). Om verden og oss som bor her. Retrieved from Hvor mye drivhusgass slippes ut nå vi kjører bil: https://www.om-verden.com/hvor-mye-drivhusgass-slippes-ut-na-vi-kjorer-bil/

Johansen, K. E. (2010). Det norske drivstoffmarkedet. Bergen: Norwegian Competition Authority.

Robert Fourer, D. M. (2003). AMPL Streamlined Modeling for Real Optimization. Retrieved from AMPL: A Modeling Language for Mathematical Programming: https://ampl.com/resources/the-ampl-book/chapter-downloads/

Spilde, D., \& Skotland, C. (2016). Hvordan vil en omfattende elektrifisering av transportsektoren påvirke kraftsystemet? NVE.

Statistisk Sentralbyrå. (2020, April 20). Statistisk Sentralbyrå. Retrieved from Sales of Petroleumproducts: https://www.ssb.no/en/energi-ogindustri/statistikker/petroleumsalg/aar

Thorsnæs, G. (2019, September 29). Store norske leksikon. Retrieved from De største byene i Norge: https://snl.no/de_største_byene_i_Norge

Appendix: AMPL file names

Equal depot capacities

Model file

Model.mod: The model file used for all analyses

Data files

DataCi.dat: \quad Circle K

DataSh.dat: Shell

DataEs.dat: Esso

DataYX.dat: YX

DataCiSh.dat: Circle K / Shell

DataCiEs.dat: Circle K / Esso

DataCiYX.dat: \quad Circle K / YX

DataShEs.dat: Shell / Esso

DataShYX.dat: Shell / YX

DataEsYX.dat: Esso / YX

DataCiShEs.dat: Circle K / Shell / Esso

DataCiShYX.dat: Circle K / Shell / YX

DataCiEsYX.dat: Circle K / Esso / YX

DataShEsYX.dat: Shell / Esso / YX

DataCiShEsYX.dat: \quad Circle K / Shell / Esso / YX

Data.dat:
Circle K / Shell / Esso / YX / Equinor depot

Run files

RunCi.run:	Circle K
RunSh.run:	Shell
RunEs.run:	Esso
RunYX.run:	YX
RunCiSh.run:	Circle K / Shell
RunCiEs.run:	Circle K / Esso
RunCiYX.run:	Circle K / YX
RunShEs.run:	Shell / Esso
RunShYX.run:	Shell / YX
RunEsYX.run:	Esso / YX
RunCiShEs.run:	Circle K / Shell / Esso
RunCiShYX.run:	Circle K / Shell / YX
RunCiEsYX.run:	Circle K / Esso / YX
RunShEsYX.run:	Shell / Esso / YX
RunCiShEsYX.run:	Circle K / Shell / Esso / YX
Run.run:	Circle K / Shell / Esso / YX / Equinor depot

Text files

TextCi.txt:	Circle K
TextSh.txt:	Shell
TextEs.txt:	Esso
TextYX.txt:	YX
TextCiSh.txt:	Circle K / Shell
TextCiEs.txt:	Circle K / Esso
TextCiYX.txt:	Circle K / YX
TextShEs.txt:	Shell / Esso
TextShYX.txt:	Shell / YX
TextEsYX.txt:	Circle K / Shell / Esso
TextCiShEs.txt:	Circle K / Shell / YX
TextCiShYX.txt:	Circle K / Esso / YX
TextCiEsYX.txt:	Chell / Esso / YX
TextShEsYX.txt:	Circle K / Shell / Esso / YX K / Shell / Esso / YX / Equinor depot
TextCiShEsYX.txt:	

Limitless depot capacities

Model file

Model.mod: The model file used for all analyses

Data files

DataLICi.dat:	Circle K
DataLISh.dat:	Shell
DataLIEs.dat:	Esso
DataLIYX.dat:	YX
DataLICiSh.dat:	Circle K / Shell
DataLICiEs.dat:	Circle K / Esso
DataLICiYX.dat:	Circle K / YX
DataLIShEs.dat:	Shell / Esso
DataLIShYX.dat:	Shell / YX
DataLIEsYX.dat:	Esso / YX
DataLICiShEs.dat:	Circle K / Shell / Esso
DataLICiShYX.dat:	Circle K / Shell / YX
DataLICiEsYX.dat:	Circle K / Esso / YX
DataLIShEsYX.dat:	Shell / Esso / YX
DataLICiShEsYX.dat:	Circle K / Shell / Esso / YX
DataLI.dat:	Circle K / Shell / Esso / YX / Equinor depot

Run files

RunLICi.run:	Circle K
RunLISh.run:	Shell
RunLIEs.run:	Esso
RunLIYX.run:	YX
RunLICiSh.run:	Circle K / Shell
RunLICiEs.run:	Circle K / Esso
RunLICiYX.run:	Circle K / YX
RunLIShEs.run:	Shell / Esso
RunLIShYX.run:	Shell / YX
RunLIEsYX.run:	Esso / YX
RunLICiShEs.run:	Circle K / Shell / Esso
RunLICiShYX.run:	Circle K / Shell / YX
RunLICiEsYX.run:	Circle K / Esso / YX
RunLIShEsYX.run:	Shell / Esso / YX
RunLICiShEsYX.run:	Circle K / Shell / Esso / YX
RunLI.run:	Circle K / Shell / Esso / YX / Equinor depot

Text files

TextLICi.txt:	Circle K
TextLISh.txt:	Shell
TextLIEs.txt:	Esso
TextLIYX.txt:	YX
TextLICiSh.txt:	Circle K / Shell
TextLICiEs.txt:	Circle K / Esso
TextLICiYX.txt:	Circle K / YX
TextLIShEs.txt:	Shell / Esso
TextLIShYX.txt:	Shell / YX
TextLIEsYX.txt:	Esso / YX
TextLICiShEs.txt:	Circle K / Shell / Esso
TextLICiShYX.txt:	Circle K / Shell / YX
TextLICiEsYX.txt:	Circle K / Esso / YX
TextLIShEsYX.txt:	Shell / Esso / YX
TextLICiShEsYX.txt:	Circle K / Shell / Esso / YX
TextLI.txt:	Circle K / Shell / Esso / YX / Equinor depot

Adjusted depot Capacities

Model file

$$
\text { Model.mod: } \quad \text { The model file used for all analyses }
$$

Data files

DataADCi.dat: Circle K

DataADSh.dat: Shell

DataADEs.dat: Esso

DataADYX.dat: YX

DataADCiSh.dat: Circle K / Shell

DataADCiEs.dat: Circle K / Esso

DataADCiYX.dat: Circle K / YX

DataADShEs.dat: Shell / Esso

DataASDShYX.dat: Shell / YX

DataADEsYX.dat: Esso / YX

DataADCiShEs.dat: Circle K / Shell / Esso

DataADCiShYX.dat: Circle K / Shell / YX

DataADCiEsYX.dat: Circle K / Esso / YX

DataADShEsYX.dat: Shell / Esso / YX

DataADCiShEsYX.dat: Circle K / Shell / Esso / YX

DataAD.dat:
Circle K / Shell / Esso / YX / Equinor depot

Run files

RunADCi.run:	Circle K
RunADSh.run:	Shell
RunADEs.run:	Esso
RunADYX.run:	YX
RunADCiSh.run:	Circle K / Shell
RunADCiEs.run:	Circle K / Esso
RunADCiYX.run:	Circle K / YX
RunADShEs.run:	Shell / Esso
RunADShYX.run:	Shell / YX
RunADEsYX.run:	Esso / YX
RunADCiShEs.run:	Circle K / Shell / Esso
RunADCiShYX.run:	Circle K / Shell / YX
RunADCiEsYX.run:	Circle K / Esso / YX
RunADShEsYX.run:	Shell / Esso / YX
RunADCiShEsYX.run:	Circle K / Shell / Esso / YX
RunAD.run:	Circle K / Shell / Esso / YX / Equinor depot

Text files

TextADCi.txt:	Circle K
TextADSh.txt:	Shell
TextADEs.txt:	Esso
TextADYX.txt:	YX
TextADCiSh.txt:	Circle K / Shell
TextADCiEs.txt:	Circle K / Esso
TextADCiYX.txt:	Circle K / YX
TextADShEs.txt:	Shell / Esso
TextADShYX.txt:	Shell / YX
TextADEsYX.txt:	Esso / YX
TextADCiShEs.txt:	Circle K / Shell / Esso
TextADCiShYX.txt:	Circle K / Shell / YX
TextADCiEsYX.txt:	Circle K / Esso / YX
TextADShEsYX.txt:	Shell / Esso / YX
TextADCiShEsYX.txt:	Circle K / Shell / Esso / YX
TextAD.txt:	Circle K / Shell / Esso / YX / Equinor depot

Equal depot capacities CO 2 emission

Model file

Model.mod: The model file used for all analyses

Data files

DataCOCi.dat:	Circle K
DataCOSh.dat:	Shell
DataCOEs.dat:	Esso
DataCOYX.dat:	YX
DataCO.dat:	Circle K / Shell / Esso / YX / Equinor depot

Run files

RunCOCi.run: Circle K
RunCOSh.run: Shell
RunCOEs.run: Esso
RunCOYX.run: YX
RunCO.run:Circle K / Shell / Esso / YX / Equinor depot

Text files

TextCOCi.txt:

TextCOSh.txt:

TextCOEs.txt:
Esso

TextCOYX.txt: YX

TextCO.txt:
Shell

Circle K

Circle K / Shell / Esso / YX / Equinor depot

[^0]: This thesis was written as a part of the Master of Science in Economics and Business Administration at NHH. Please note that neither the institution nor the examiners are responsible - through the approval of this thesis - for the theories and methods used, or results and conclusions drawn in this work.

[^1]: (G) DataSh.dat \mathbb{Z}
 param d:=
 \# required annual total demand of fuel at the gas stations cities/places in 1000 litres
 OSL 518326
 BER 130702
 BER 130702
 STA 114401
 STA 114401
 TRH 94748
 TRH 94748
 FRE 57766
 DRA 54872
 POR 47411
 $\begin{array}{ll}\text { KRI } & 32567 \\ \text { ALE } \\ 27075\end{array}$
 ALE 27075
 TON 26650
 TON 26650
 MOS 23964
 HAU 22899
 HAU 22899
 SAN 22557
 SAN 22557
 ARE 22123
 ARE 22123
 BOD 21211
 TRO 20576
 HAM 14208
 HAL 13070
 LAR 12531
 KON 11296
 ASO 11230
 MOL 10729
 HAR 10712
 HAR 10712
 GJO 10468
 GJO 10468
 LIL 10463
 HOR 10424
 JES 10176
 SKI 9937
 MOI 9608
 KRU 9290
 KOR 9142
 TRD 8835
 HON 8671
 HON 8671
 ALT 7800
 ALT 7800
 ELV 7686
 STJ 7485
 STJ 7485
 ASK 7366
 NAR 7193
 NAR 7193
 LEI 7182

[^2]: (田 DataYXdat \mathbb{K}
 \# required annual total demand of fuel at the gas stations cities/places in 1000 litres
 OSL 199356
 BER 50270
 STA 44001
 TRH 36442
 TRH 36442
 FRE 22218
 DRA 21105
 DRA 21105
 POR 18235
 KRI 12526
 KRI 12526
 ALE 10413
 TON 10250
 HAU 8807
 SAN 8676
 ARE 8509
 ARE 8509
 BOD 8158
 BOD 8158
 TRO 7914
 TRO 7914
 HAM 5465
 HAL 5027
 HAL 5027
 LAR 4819
 LAR 4819
 KON 4345
 KON 4345
 ASO 4319
 ASO 4319
 MOL 4126
 HAR 4120
 HAR 4120
 GJO 4026
 GJO 4026
 LIL 4024
 HOR 4009
 HOR 3009
 SKI 3822
 MOI 3696
 KOR 3516
 TRD 3398
 HON 3335
 ALT 3000
 ELV 2956
 STJ 2879
 ASK 2833
 ASK 2833
 NAR 2767
 LEI 2762
 CO 2720
 人

