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Abstract 
The salmon industry is becoming an intrinsic part of the Norwegian economy. It is a 

commercial activity revolving mostly around a single homogenous product. Consequently, 

salmon farmers and other participants along the value chain can gain substantial insight into 

how to conduct their business by understanding future spot price movements, primarily since 

salmon exhibits considerable price volatility. Therefore, it is of great interest to investigate the 

extent to which time series forecasting can support short- and long-term strategic planning 12 

months ahead. Previous research, such as A.G Guttormsen (1999), has shown promising results 

from applying well known univariate methods. However, most of the studies are outdated, 

given market changes. Subsequently, this study will focus on partly proven univariate 

forecasting methods and two multivariate methods regarding Atlantic salmon price forecasting 

compared to each other and simple benchmarks. The univariate methods are ARIMA and ETS, 

while the regression methods applied are GAM and LASSO. We chose GAM and LASSO to 

allow for non-parametric and parametric fit, respectively. The univariate models utilized the 

spot price of Atlantic salmon, while the multivariate models are supplemented with 20 

variables. Each method's accuracy is assessed using mean absolute error and root mean square 

error for more straightforward interpretability. Results show that univariate ARIMA and 

benchmark naïve with an STL decomposition outperform GAM and LASSO, suggesting 

simpler models are perhaps preferable. GAM is superior among the multivariate methods, 

which can possibly be attributed to it allowing for non-linear relationships. Despite the poor 

performance, the multivariate models indicate the importance of several variables. Although 

the models do not provide satisfactory results, it unfolds the possibility of further research using 

other regression approaches on Atlantic salmon spot price forecasting.  
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1 Introduction 
1.1 Motivation 
Salmon farming has a large impact on Norway and its economy as it is one of the largest 

industries in the country, generating a significant amount of export value and workplaces 

domestically. Internationally, the salmon farming industry is important to overcome global 

challenges. Overpopulation has become a real issue in the world today; the population is 

growing by 1.05% yearly, which accounts for around 82 million annual increase (Worldometer, 

2020).  As a result, demand for food is estimated to increase by 50 %, and the demand for 

animal-based food is expected to increase by 70% by 2050 (Global Salmon Initiative, 2017). 

This implies that the world's resources would become scarcer and put more pressure on the 

global food system. The pressure increases on the already overexploited wild fish reserves as 

well and farmed salmon offers a solution to this problem. To overcome the challenge of a rising 

population and limited resources, more attention needs to be given to sustainable food 

production. Aquaculture, and salmon farming especially, is one of the most sustainable food 

production systems available today, with a carbon footprint per edible kg equal to less than 10 

% of the carbon footprint from equivalent amounts of beef (International Salmon Farmers 

Association, 2018). The salmon industry is one of the most effective food production systems 

globally. It is estimated to be six times more efficient than beef, four times more efficient than 

pork, and three times more effective than poultry when measured in edible meat per 100 kg 

(Solstad, n.d.). In addition to increased pressure on global food systems, poor protein sources 

and the use of processed meat have increased, which have led to a higher risk of health 

problems (Cancer Council, 2018). Therefore, it is not enough to only increase the production 

of protein sources but increase the production of healthy protein sources. The nutritional 

benefits of salmon, such as the amount of protein, omega-3, and energy, are higher in salmon 

than the land-based protein sources such as beef or pork (Solstad, n.d.). The sustainable and 

effective production of nutritious salmon has made the industry an essential part of overcoming 

the global issues of overpopulation and malnutrition, which states the importance of developing 

this industry.  

 

Salmon prices have seen increased fluctuations in recent years, impacting the risk management 

of producers and other entities along with the entire value chain. As the aquaculture industry 

is an international business industry, many factors affect the salmon price movement, such as 
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currency fluctuations, sea temperature, and sea lice occurrence. Therefore, it is crucial to 

understand the undercurrents that impact the price and how it will move in both magnitude and 

direction. Creating a solid forecast model can provide many advantages for the different 

participants in the value chain. For instance, from late 2016 to early 2017, the salmon price 

increased by 20-25 NOK/kg over several months (see Figure 5.1). A good forecast model could 

have discovered such change in advance. If a salmon farming company knew about this price 

increase earlier, they could have kept their salmon in the cages longer. Thus, the salmon would 

have grown larger and then sold more volume at a higher price. At this time, the biomass of 

Norway was recorded to be 705 079 tonnes. Assuming a total weight increase over the delayed 

harvest time is 1 000 tonnes, the total growth of accumulated revenue for all salmon farmers in 

Norway is calculated to be NOK 14.1 billion (706 079 * 1 000 * 20) if the salmon price per kg 

increased by NOK 20. This example illustrates the theoretical potential in the market. The 

utility of a forecasting tool in a market of such magnitude is undoubtedly significant. Thus, the 

salmon market becomes very interesting to investigate. The question then begets how to predict 

the price so the different parties can make informed decisions in the long and short-term.  

 

1.2 Research Question 
Based on the discussion above and the advantages of proper forecasting tools in this industry, 

we have formulated the following research question: 

 

Can the implementation of univariate and multivariate time series forecast methods create 

solid forecasts for the price of salmon 12 months ahead? 

 

Therefore, this paper sets out to create univariate and multivariate models that can be employed 

by participants along the supply chain, whether it be producers, processors, or wholesalers. 

Such models create value in several aspects of the value chain, such as deciding when to 

harvest, understanding the profitability of a futures contract, or deciding the amount of smolt 

release for upcoming seasons. A capable model should provide an example of how to mitigate 

risk and maximize profits for salmon farmers and others along the value chain. In addition, 

multivariate models should contribute by indicating which underlying explanatory variable has 

the strongest predictive power.  
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2 Literature Review & Background  
2.1 Salmon Farming Industry 
Salmon farming is one of Norway's largest industries, accounting for NOK72.5 billion in 

export (Norwegian Seafood Council, 2020). Moreover, 8340 are employed directly through the 

aquaculture industry, while 15000 are thought to be peripherally employed through businesses 

involved with aquaculture activities (Directorate of Fisheries, 2020). Salmon farming makes 

up over 94% of total Norwegian aquaculture exports (Norwegian Seafood Council, 2020). The 

largest export market by far is the EU, with a 60% share (MOWI, 2020), followed by Asia, 

Eastern Europe, and the USA. Since almost all salmon is exported creates substantial exchange 

rate risk for the companies operating in Norway, especially against the EUR. There are many 

reasons salmon farming has grown exponentially in both volume and value since its inception 

in the 1980s. For instance, increased demand has come with a strong trend focusing on healthy 

foods and sustainability. The commodity has also seen an increase in supply because of 

improved technology. In essence, the salmon farming industry is vital for the Norwegian 

economy and thousands of jobs. Consequently, it can be highly valuable for the farming 

companies and others along the value chain to have accurate forecasts of the price of salmon.  

 

2.2 Literature Analysis 
The following study is divided into two key components. We try to create superior forecasts 

for the price of salmon and explore the features with the strongest explanatory power and how 

the industry can benefit from it. Therefore, in the following chapter, previous literature about 

forecasting price and price volatility of salmon is reviewed, followed by the corresponding 

factors and how it is believed to pertain to the price of salmon.  

2.2.1 The literature on Salmon Price Forecasting and Volatility 

The literature on salmon prices is often divided into two separate categories. Firstly, we 

examine studies that research the direct prediction of salmon prices in different markets. In this 

case, direct entails research solely predicting the price of salmon. By contrast, the other 

category explores the volatility associated with the price. The literature on direct price forecasts 

is scarce and aged, with the notable exception of one recent study (Bloznelis, 2017). 

Conversely, research papers on volatility are comparatively recent and more prevalent 
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throughout the salmon industry timeframe. Overall, research within these two aforementioned 

domains is limited to a handful of research papers. As a result, this paper seeks to shed light on 

a mostly unexplored subject. The following sections will elaborate on the existing literature 

and its relevance for this dissertation.  

2.2.1.1 Forecasting the Price of Salmon 

As far as we know, there are only a few papers directly forecasting the price of salmon. These 

studies utilize numerous econometric and forecasting models. In addition, the papers include a 

wide variety of different features providing great insight into what to focus on and what to 

disregard when structuring future research.  

 

The first paper dates back to 1989 (Lin, Herrman, Lin, & Mittelhammer, 1989), here time series 

and econometric approaches are combined to provide the optimal forecast of Atlantic salmon 

from 1989-1992.  Firstly, a simultaneous equation model is created to investigate the features 

affecting Norwegian Atlantic salmon's supply and demand. More precisely, the econometric 

model consists of three structural equations, one representing supply and two describing 

demand in the US and European market, respectively. Therefore, in a later segment, our paper 

will look closer into the supply and demand-driven forces of Atlantic salmon, such as those 

used here. Because of the novelty of the industry, a standalone time series forecast was deemed 

insufficient. However, a monthly time series analysis was performed to acquire the features' 

future value, except for features with sufficient data. These two approaches were then 

combined to forecast the price of Norwegian Atlantic salmon. The results were satisfactory in 

many ways, however, current research should have access to more data, thereby making 

forecasting multivariate variables to a large extent obsolete. In other words, the paper indicates 

essential supply and demand variables, however, the methods used are largely antiquated given 

the data accessible presently.   

 

Vukina and Anderson (1994) forecasts the price for five separate salmonids species found in 

Tokyo's wholesale market. Subsequently, the prices are predicted and compared using four 

state-space models by modelling non-stationary time series. The results found were adequate 

when measured according to MSE and MAPE. Moreover, the results were surprisingly well 

concerning predicting the correct direction. However, more research is needed to improve the 

results. Hence, this study was followed by Gu And Anderson (1995). 
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Unlike the previous paper, Gu & Anderson (1995) combine OLS used to model the seasonality 

removal with a state-space, time-series forecasting method to predict the price for the US 

salmon market. Similar to Vukina and Anderson (1994), this study uses wholesale price 

indexes for five salmonids. Four models are compared for out-of-sample 3-, 6-, and 12-months 

to examine the performance. The results exemplify how accounting for seasonal factors 

significantly improves the forecasting model. Consequently, our model will account for 

seasonality.  

 

In 1999 A.G Guttormsen (1999) published a paper that focused on short-term 4-, 6- and 8-

weeks forecasts to mitigate risk in the industry. Unlike the two previous papers, this one 

employed six relatively simple and known models. These were the Holt-Winters Exponential 

Smoothing (HW), Auto Regressive Moving Average (ARMA), Classical Additive 

Composition (CAD), Vector AutoRegression (VAR), and two naïve methods.  

 

The latest study by Bloznelis (2017) argues all the research mentioned above are obsolete from 

an empirical point of view. This study used 16 different methods to forecast 1-5 weeks Atlantic 

salmon spot prices. Only five variables are used. Among them, we find the price of futures. 

Although Bloznelis argues for their inclusion, chapter 3 elaborates on why this variable is 

contentions and the reason it is included in our analysis. Every method Bloznelis (2017) uses 

gets the directional movement right over 50% of the time for all forecasting horizons. K-nearest 

neighbour gives the best prediction one week ahead, vector error correction model using elastic 

net regulation for 2 and 3 weeks ahead, and futures prices for week 4 and 5. The gains from a 

simple naïve benchmark are marginal; therefore, future research is encouraged. Overall, many 

univariate methods and a few multivariate models are used. However, most of the univariate 

models are obsolete, while the few multivariate models are either obsolete or used to forecast 

a short timeframe, such as Bloznelis (2017). Therefore, encouraging the investigation into 

improved multivariate methods that have not been utilized for forecasting the price of salmon. 

2.2.1.2 Salmon Price Volatility  

There are several research papers written on the volatility of salmon price, the first being 

Oglend and Sikveland (2008). This study used a generalized autoregressive conditional 

heteroscedasticity (GARCH) approach in order to test for volatility. The results showed that 

higher volatility was reflected in periods with high prices, which will be accounted for in our 

thesis.  
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Equivalently, Oglend (2013) employs a GARCH model. This paper suggests that a correlation 

between volatility and price is due to strong supply and demand conditions. Firstly, there is a 

significant positive relationship between substitute food prices and volatility supported by 

rigorous empirical investigation. Additionally, max allowed biomass is also attributed to 

affecting the price given that increased demand will not be met by increased supply because of 

constraints in available biomass. As a result, supply and demand factors such as biomass and 

alternative proteins will be discussed in more detail in chapter 3.  

2.2.1.3 Key Points From the Review 

This study predicts the spot price of salmon over a 12-month horizon and tries to understand 

the relationship between the features and the dependent variable. Therefore, moving forward, 

there are certain aspects that should be taken into account:  

 

▪ Previous literature focused almost exclusively on univariate models. Therefore, this 

study will utilize two multivariate regression-based approaches for 12-steps ahead 

forecasting. 

▪ We will also forecast using previously utilized univariate methods with new data and 

compare it to the regression-based approaches. 

▪ A closer look at features said to affect the price of salmon. 

o Exchange rates (Lin, Herrman, Lin, & Mittelhammer, 1989). 

o Protein substitutes and biomass (Oglend, 2013). 

o Futures contracts (Bloznelis, 2017). 

▪ Account for seasonality (Gu & Anderson, 1995). 

▪ Account for price volatility (Oglend & Sikveland, 2008). 
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3 Variable Selection 
A machine learning model needs explanatory variables or lagged dependent variables to predict 

and understand what affects the dependent variable (Hyndman & Athanasopoulos, 2018). In 

our case, the dependent variable is the salmon spot price per kg, while the predictors are chosen 

through extensive research and personal communication with Knut Henrik Rolland from 

Kontali Analyse AS1.  

   

Standing Biomass 

The standing biomass is defined as the weight or mass of live fish (Marine Institute, 2018). 

This parameter is usually measured as individuals or tonnes and is divided into generations 

depending on its weight. Biomass provides a transparent insight into the farming volume, and 

by relating this amount to the salmon farming cycle, it becomes a good indicator of future 

short-term supply (MOWI, 2020). Because the standing biomass can be leveraged in many 

ways depending on the circumstances, it can be expected to positively and negatively impact 

the price. Optimally, the lags would reflect the generational makeup, primarily because in the 

short term, the standing biomass for the larger generations are measured close to harvesting 

time and would therefore be similar to harvesting volume (MOWI, 2020). However, accurate 

data on separate generations was unattainable. Thus, the lags are based on using vaccine sales 

as a rough approximation of the respective generations (MOWI, 2020), which equals a 4- and 

8-month lag. 

  

Alternative Animal Protein  

The price of alternative animal proteins affects the demand for salmon, given their nature as 

substitutes, thereby impacting the price of salmon. There are many possible substitutes. 

However, Oglend (2013) limits it to some of the most prevalent meats such as poultry, bovine, 

and ovine. Also, trout will also be included, given its intrinsic similarities to salmon and the 

second most-produced salmonid (MOWI, 2020). A price increase on alternative protein sources 

should enhance salmon consumption, which consequently increases the salmon price. A 

principal component analysis with price movements of alternative meats, cereals, oils, and 

fishmeal found that meats alone account for 89.54 % of the variation in salmon price volatility 

(Oglend, 2013), further supporting their inclusion in the multivariate models. It is difficult to 

 
1 For further information on sources, see appendix A.1 Data Sources 
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determine the lag structure of alternative proteins. However, this study assumes a rapid but not 

immediate effect and that certain considerations have to be accounted for. Firstly, wholesalers 

have to modify their prices according to changes in price movements for the different meats. 

As a result, end-users will need additional time to adapt their purchasing behaviour. Therefore, 

a moderate lag of 1 month is utilized.  

 

Smolt release  

A juvenile salmon is referred to as a smolt and are usually around two to three years old when 

they are at the release stage. The smolt release stage is when the smolt are transferred from 

freshwater to seawater cages or net pens. The smolt uses between one and a half to two years 

after it is released into seawater before harvesting (MOWI, 2020). By including the amount 

and time of smolt release, we can estimate an expected harvesting volume from one and a half 

to two years from the point of release. The implication being that a smolt release is a good 

long-term indicator of future supply with predictive power at lags 18 to 24 months and a 

negative impact on the price. 

 

Sea temperature 

The sea temperature is an environmental factor that impacts the duration of the salmon 

production cycle. Higher sea temperature enhances salmon growth, and the production cycle 

becomes shorter, while lower sea temperature slows down the salmon growth, which implies 

longer production cycles. Therefore, large deviations are expected to have an impact on 

harvesting volume and future supply (MOWI, 2020). One study also indicates that if sea 

temperatures rise above a specific threshold, the salmon will be stressed, slowing down the 

production cycle again (Falconer, et al., 2020). As a result, the increased temperature to a 

certain point should correspond to higher supply and, therefore, lower price. The variation in 

the sea temperature is expected to impact salmon growth regardless of generation, which means 

that any major temperature fluctuations would lead to a change in harvest volume for several 

generations. Thus, we expect variation in sea temperature to affect with a 3 to 5 months lag. 

 

Harvest 

Harvest is one of the key indicators of short-term supply, given the short-term expiration of 

salmon. However, the harvest sees a large seasonal variation given many previously mentioned 

features such as temperature and smolt release. In addition, other factors impact the harvest, 

such as demand during the high holidays, which pushes up the price, incentivizing further 
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harvest. As a result, there is a reciprocal interplay, which means that the different companies 

react to increased prices by increasing harvest, which provides the market with much supply 

having an adverse effect on price. Consequently, it is assumed that it negatively affects the 

price, and it is important to utilize it as one of the explanatory variables. Since harvest has an 

almost immediate effect on the supply, it is thought that its lag is no more than one month.  

  

Feed Consumption 

The feed consumption is the total amount of fish feed consumed in a particular time period. It 

can be used as a measure of future supply as higher feed consumption is related to a higher 

quantity of produced salmon, thereby negatively impacting the price. Adversely, it could also 

impact the price positively since feed is the highest cost in production. Additionally, an 

increasing trend in feed consumption indicates fish growth, in other words, larger salmons and 

peaks right before harvesting time. We can therefore also expect changes in supply with a 2 - 

4 months lag from consumption peaks. Data on feed consumption is scarce; therefore, we use 

the feed conversion ratio (FCR) as a proxy. It provides a rough estimate of future short-term 

supply.  

 

Sea lice & Sea Lice Treatments 

Sea lice are aqua parasites that feed on salmon blood, skin, and slime by attaching onto the 

salmon flesh, and is one of the biggest aqua parasite problems fish farming industries deal with 

(Bloodworth, Baptie, Preedy, & Best, 2019). Given its importance, it was found necessary to 

use both the amount of sea lice and the corresponding treatments as variables. If the sea lice 

are not controlled, it may cause damage and secondary infection to the salmon, which slows 

down the production cycle and increases mortality (MOWI, 2020). As a result, we expect a 

lower future supply in the long-term if a disease outbreak occurs, which is expected to affect 

the future supply with 12 months lag. However, in the short-term, we expect the supply volume 

to increase due to earlier harvesting to avoid sea lice damage on the salmon. Such premature 

harvesting would affect the future supply a lot quicker and is expected to have a 3-month lag. 

As a consequence, it is assumed that in the short-term, prices will fall because of increased 

supply, while in the long-term, prices will rise given a prolonged negative production effect on 

the price.  
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Fish Loss 

Every month about 10-20% of fish is disposed of (Norwegian Directorate of Fisheries, 2020), 

highlighting the waste associated with the farming process. This includes salmon dying for 

varied reasons, fish being discarded in processing, and escaped fish. As a result, this 

necessitates a variable that takes this into account. Norwegian farming companies have much 

to gain from understanding how much this factor plays into the overall price, considering it has 

such a large margin that can be improved. Since it reduces available short and long-term supply, 

it is expected that it positively correlates with price.  This variable is thought to have an almost 

negligible lag, given that the disposal of fish has an almost immediate impact on the available 

supply. Therefore, the lag for food waste is set at 1 month.  

 

Exchange Rates 

The salmon market is an international market where the exchange rates affect both the salmon 

farming industry's cost and revenue sides. Studies where the exchange rate has been used as a 

predictor have found an increase in USD against NOK resulted in higher supply to the US (Lin, 

Herrman, Lin, & Mittelhammer, 1989). A majority of the raw materials needed to produce fish 

feed is imported from The US and Europe, which implies the cost of fish feed is dependent on 

the exchange rates between the local currency and USD or EUR (MOWI, 2020). Underscoring 

this, a large share of all farmed salmon is exported to the European market, meaning the export 

price is therefore also dependent on exchange rates (MOWI, 2020). The variation in exchange 

rates is expected to impact the spot price in the medium term, while the cost side will be 

affected more in the long-term. Hence, it is reasonable to expect a lag of 6 and 12 months. 

 

Consumption 

Consumption in different regions is thought to be a reliable indicator of demand for salmon. 

Therefore, the assumption is that an increase in demand would have a corresponding price 

increase. The data contains information on the EU, USA, Japan, and others as the last category. 

Including only the EU and USA, one is left with 1.644 million tonnes in 2019 (K. Rolland, 

personal communication, 12 October 2020) or the equivalent of 65 % of the market, 

highlighting the importance of demand in these two markets. Most salmon are exported fresh 

head-on-gutted. As a result, the expectation is a lag of only 1 month for the consumption to 

impact the salmon price.  
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Futures contract 

Futures contracts were first introduced in 2006 by Fish Pool ASA to facilitate risk management 

in the salmon farming market. The literature on the validity of futures contracts with regard to 

spot price is somewhat contradictory. Firstly, MOWI states the importance the futures market 

might have on the spot price (MOWI, 2020). This is amplified by Ankamah-Yeboah et al. 

(2017), who argues that the futures market is fully developed, therefore having a direct effect 

on the spot price. Furthermore, Bloznelis (2017) utilized futures prices as a variable in several 

different methods, demonstrating its explanatory power. In addition, Oglend (2013) argues that 

futures contracts affect the price of salmon. However, this stands in stark contrast to a different 

paper by Asche et al. (2016), which contends that the futures market is underdeveloped, hence 

not suitable in a forecasting model for the spot price. Nevertheless, the documentation weighs 

heavily towards including futures contracts in our analysis. Futures contracts limit the future 

available supply of salmon by locking a certain amount to specific buyers over an extended 

period (Bloznelis, 2017). As a result, it is expected that futures are positively correlated with 

the spot price. The lag is hard to determine, however, a rough estimate would be 1-4 months 

since this is how long most of the futures contract extends (Fish Pool b., 2020). Based on the 

elaboration from chapter 3, we can segregate the variables into two main categories: supply 

driving variables and demand driving variables. 

 
 Table 3.1: Overview of features. 
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4 Methodology   
Forecasting is a powerful statistical tool that can be used to expand the information basis for 

decisions in short-term and strategic long-term planning. The forecast accuracy is highly 

dependent on model selection and how suitable it is to the data. The historical data used to 

create forecasts are typically affected by a pattern such as trend, seasonality, and/or cycles, as 

explained in previous literature (see section 2.2.1.1). In the following chapter, we will elaborate 

on the models we chose and many essential prerequisites of forecasting. The univariate 

methods are ARIMA and ETS, along with two benchmarks, naïve and rwdrift. The multivariate 

models are GAM and LASSO. 

 

4.1 Univariate Methods 
Univariate forecasting models, also known as extrapolative forecasting models, are forecasting 

methods where the forecast model solely relies on historical data of the forecasting variable 

itself (Glantz & Mun, 2011). The univariate forecasting methods perform accurate forecasts 

assuming that seasonal- and trend patterns from the historical data will continue into the future. 

Thus, the historical data for the forecast variable has high predictive power. These methods are 

an inexpensive and effective way to create a simple and reliable forecast. 

4.1.1 Basic Forecasting Methods 

Within forecasting, there are several simple methods. These methods are often less accurate 

than more complex forecasting models, but the purpose of these models is to serve as a 

benchmark rather than a method option. All new methods will be compared against these 

simple forecasting methods, and if they do not perform better, it is pointless to use a complex 

forecasting method (Hyndman & Athanasopoulos, 2018). We will start by looking into some 

simple forecasting methods. 

  

A simple forecasting method is the naïve method. This method sets the last observation as the 

forecasted value for h time periods and can be expressed as: 

 

ŷ𝑇+ℎ|𝑇 = 𝑦𝑇 

 

(4.1) 
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Another simple method is an extension of naïve, called rolling drift method. This method 

permits the forecast to decrease or increase with time. The change over time equals the mean 

difference over the time series (Hyndman & Athanasopoulos, 2018). This can be expressed as: 

 

ŷ𝑇+ℎ|𝑇 = 𝑦𝑇 +
ℎ

𝑇 + 1
∑(𝑦𝑡 − 𝑦𝑡−1) = 𝑦𝑇  + ℎ (

𝑦𝑇 − 𝑦1

𝑇 − 1

𝑇

𝑇=2

) 
(4.2) 

 

Decomposition 

A decomposition breaks a time series down to different components, such as trend, seasonality, 

or cycles. There are several different methods to decompose a time series. In this study, we 

chose to use seasonal and trend decomposition using Loess, also known as STL decomposition. 

This method is known for estimating non-linear relationships, copes with any type of 

seasonality, and is robust against outliers (Hyndman & Athanasopoulos, 2018). The STL 

decomposition is adjusted by two parameters: seasonal window and trend window, and controls 

the flexibility of the trend and seasonal factors. In R, we use the stlf function to forecast the 

benchmark models with an STL decomposition. This function decomposes the time series with 

an STL decomposition, thereafter, forecasts a seasonally adjusted time series before 

reseasonalizing the forecast. This implies that the models will be forecasted by the components, 

and by setting the seasonal and trend window to automatic, it chooses the most suitable 

parameter value.   

4.1.2 Exponential Smoothing 

Exponential smoothing (ETS) methods are forecasting methods with the weighted average of 

previous observations, where the weight of each observation will exponentially decrease as the 

observations get older (Hyndman & Athanasopoulos, 2018). One of the main advantages of 

exponential smoothing forecasting methods is that they allow us to create quick and reliable 

forecasts, which is important for forecasting models.  

 

There are several exponential smoothing methods. However, we choose to use the Holt-

Winters exponential smoothing. This is because it accounts for trend, seasonality, and level, all 

of which necessary for our time series. This method builds on the simple exponential smoothing 

and Holt´s linear trend method. In this section, we will look at our chosen exponential 

smoothing method. 
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Holt-Winters´ Seasonal Method 

 

                    𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖𝑛𝑔 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛:   ŷ𝑇+ℎ|𝑡 = 𝑙𝑡 + ℎ𝑏𝑡 + 𝑠𝑡+ℎ−𝑚(𝑘+1) (4.3) 

                    𝐿𝑒𝑣𝑒𝑙 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛: 𝑙𝑡 = 𝛼(𝑦𝑡 − 𝑠𝑡−𝑚) + (1 − 𝛼)(𝑙𝑡−1 + 𝑏𝑡−1) (4.4) 

                  𝑇𝑟𝑒𝑛𝑑 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛: 𝑏𝑡 = 𝛽 ∗ (𝑙𝑡 − 𝑙𝑡−1) + (1 − 𝛽∗)𝑏𝑡−1 (4.5) 

          𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛:  𝑠𝑡 = 𝛾(𝑦𝑡 − 𝑙𝑡−1 − 𝑏𝑡−1) + (1 − 𝛾)𝑠𝑡−𝑚           (4.6) 

 

Where lt represents the level of a time series at time t, bt represents the estimated trend slope. 

The seasonal component is denoted as st and where m represents the frequency of seasonality. 

The forecast equation states that the forecasted value h steps ahead are the sum of the last 

estimated level, the estimated trend times number of steps ahead forecasted, and seasonal 

component st. D is a smoothing parameter with a value between 0 and 1, which represents the 

weight distributed to an observation. The smoothing parameter, therefore, controls the 

decreasing rate of weights distributed. The estimated level at time t is the weighted average of 

yt and the sum of the previous level and trend estimation weighted by the smoothing parameter. 

Lastly, it is seasonally adjusted by subtracting the seasonal component. The trend is estimated 

at time t by the difference in level between time t and t-1 weighted by the smoothing parameter 

𝛽∗ and the weighted average of the previously estimated trend (Hyndman & Athanasopoulos, 

2018). The seasonal equation states that the seasonal component is a weighted average of the 

current seasonal index and the seasonal index from the last seasonal time period, m time periods 

ago. The seasonal component is smoothed by the seasonal smoothing parameter 𝛾 which takes 

values between 0 and 1 (Hyndman & Athanasopoulos, 2018). 

  

The exponential smoothing method components can be divided into different categories 

depending on the characteristics of the data. The seasonal component could be divided into 

none, additive or multiplicative. The trend component can be divided into none, additive or 

additive damped, and lastly, the error component could be either additive or multiplicative. For 

simplicity, we will use a built-in argument in the ets function in R, which chooses the most 

suitable model automatically.  
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4.1.3 ARIMA Models 

ARIMA models bases their judgment on the autocorrelations in the data (Hyndman & 

Athanasopoulos, 2018). The ARIMA model is often referred to as a good forecast model when 

the dataset is relatively short, and the model is used to forecast a short-term forecast (Adebiyi, 

Adewumi, & Ayo, 2014). More complex forecasting methods with higher flexibility often 

require a large training sample and should be forecasted for extended periods. ARIMA is an 

acronym for AutoRegressive Integrated Moving Average model, which is a combination of the 

following models, where integrated is the reverse of differencing. 

 

Autoregressive 

Autoregressive models forecast a variable based on previous observations of the variable itself 

rather than based on a set of predictors (Hyndman & Athanasopoulos, 2018). The model can 

be written as:  

 

𝑦𝑡 = 𝑐 + 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + ⋯ + 𝜙𝑝𝑦𝑡−𝑝 + 𝜀𝑡 (4.7) 

  

This model is referred to as the AR(p) model, where p represents the order of the autoregressive 

model and represents white noise. Changes in the parameter 𝜙 lead to different time series 

patterns, while the difference in variation of the error term only changes the time series scale. 

 

Moving Average  

Moving average models uses historical forecast errors to create what can be described as a 

regression-like model (Shumway & Stoffer, 2016). The moving average model weights the 

current value of the time series with previous forecast errors denoted by 𝜃. This model can be 

expressed as: 

 

𝑦𝑡 = 𝑐 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 + ⋯ + 𝜃𝑞𝜀𝑡−𝑞 (4.8) 

                       

This model is referred to as MA(q) model, where q is the order of the moving average model 

and is the weight distribution parameter to the previous forecast errors. Since we do not observe 

values for this is not a conventional regression. As in AR(p) model, adjustments in the 𝜃 

parameter cause different time series patterns, while adjustments in the variance of the error 

term only affect the scale of the time series (Hyndman & Athanasopoulos, 2018). 



 

16 
 

Seasonal ARIMA 

The ARIMA model is capable of handling a variety of seasonal data; in such situations, 

seasonal differencing is always applied first before eventually applying first differencing if 

needed. In order to create a seasonal ARIMA model, we need to add a seasonal term to our 

existing non-seasonal ARIMA model. This seasonal term can be expressed as: 

 

𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)𝑚 (4.9) 

                                                                          

Where p represents the order of the autoregressive part, d represents the degree of first 

differencing involved, and q represents the order of the moving average part (Hyndman & 

Athanasopoulos, 2018). The capital letters P, D, Q are the seasonal notations for the model, 

and m is the number of observations per year (Hyndman & Athanasopoulos, 2018). The 

seasonal ARIMA model can be expressed through backshift notation in the following way:  

 

(1 − 𝜙1𝐵)(1 − 𝛷1𝐵𝑚)(1 − 𝐵)(1 − 𝐵𝑚)𝑦𝑡 = (1 + 𝜃1𝐵)(1 + Ѳ1𝐵𝑚)𝜀𝑡 (4.10) 

  

The backshift operator B shifts the data back one period, which means Byt = yt-1, and Bmyt = 

yt-m. If we look at the seasonal ARIMA model from the left, we start with AR models non-

seasonal expression, then the seasonal expression, this is followed up by non-seasonal and 

seasonal difference, and lastly, the MA models non-seasonal, seasonal expression and the error 

term at the right side of the equation. Here we see the additional seasonal components are 

multiplied with the non-seasonal components. 

 

The ARIMA model is determined by a non-seasonal term (p,d,q) and a seasonal term (P,D,Q). 

The number of first differencing and seasonal differencing, elaborated later in this chapter, 

represents the values of d and D, respectively. It now remains to determine the values of p, q, 

P, and Q. There are two alternatives to determine these values: The first alternative is to use 

the auto.arima function in R, which automatically selects these values and returns a model. The 

other alternative is to determine these values manually by using the acf and pacf functions in 

R, which visualizes an autocorrelation plot and a partial autocorrelation plot. 

  

When values for p, d, and q are defined, we need to estimate the parameters c, f, q for each 

order. The maximum likelihood estimation (MLE) method finds the values for the parameters, 
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which maximizes the probability of replicating historical observations (Hyndman & 

Athanasopoulos, 2018). This method is also applied in R, where the software uses the logarithm 

of the probability of the data belongs to the estimated model, which means it maximizes the 

log-likelihood to estimate the parameters (Hyndman & Athanasopoulos, 2018).  

  

The estimated ARIMA model parameters have some conditions displayed in Table 4.1, and if 

p or q has a higher order than 2, the restrictions are much more complicated. R takes these 

restrictions into count when estimating the parameters. 

 
Table 4.1: ARIMA model parameters´ conditions. 

 
 

Stationarity  

An important part of ARIMA and regression is to have a stationary time series. This means the 

properties of the time series does not depend on the time of observation (Hyndman & 

Athanasopoulos, 2018). A non-stationary process could be random walks, trends, or cycles, 

which affect the data's properties over time. Unit root tests are used to check whether the data 

is stationary or non-stationary, or it can be checked through visual inspection. As a result, two 

unit root tests and the autocorrelation function will be used to examine the variables' properties 

in the dataset. Differencing is then used to solve for non-stationary time series. 

 

Differencing 

One method to change a time series from non-stationary to stationary is called differencing. 

Differencing can be applied by computing differences between consecutive observations. This 

calculation removes levels between observations; hence it reduces or eliminates patterns as 

seasonality and trend (Hyndman & Athanasopoulos, 2018). This differencing method can be 

written as follows:  

 

  ∆𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1 (4.11) 
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Applying differencing to a time series implies that the time series data now only consist of T – 

1 observations because the first observation does not have any previous observations. If the 

differencing is successful, we can assume the remaining of the time series is approximately 

white noise, denoted as et. In some cases, the time series will still be non-stationary after 

differencing the time series. On such occasions, it is necessary to apply a second-order 

differencing, where we apply differencing on the differenced time series ∆yt. In cases with high 

seasonality, seasonal differencing is preferable. Here we compute the difference between an 

observation and the previous observation from the same season rather than consecutive 

observations. Seasonal differencing can be written as: 

   

∆𝑦𝑡 = 𝑦𝑡 –  𝑦𝑡−𝑚 (4.12) 

 

Where m represents the number of seasons, the selection of differencing methods is subjective 

to some extent. For seasonal data, the seasonal differencing should be applied first and 

eventually first differencing in addition if the data is still non-stationary after seasonal 

differencing. But there are more objective ways to decide if differencing is required, such as 

unit root test. 

 

Kwiatkowski-Phillips-Schmidt-Shin Test 

A well-known stationarity test is named Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test. This 

test the time series to be stationary as the null hypothesis and look for evidence for the null 

hypotheses to be false (Kwiakowski, Phillips, Schmidt, & Shin, 1992). In R, we activate the 

“urca” package, which includes a function named ur.kpss. This function computes the KPSS 

test on the selected time series and returns critical values for different levels of significance 

and a test statistic. If the test statistic is greater than the critical value of the chosen significance 

level, the null hypothesis is rejected; thus, the time series is non-stationary.  

 

Augmented Dickey-Fuller Test 

The Augmented Dickey-Fuller test (ADF) is a unit root test that tests for stationarity in a 

regression. The null-hypothesis states that there is a unit root or present in the time series 

univariate or that the data is non-stationary, while the alternative hypothesis is that the variable 

in question is stationary or trend-stationary. The null hypothesis is rejected if the ADF statistic 

is less than the critical value. The test is conducted using the following expression: 
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∆𝑦𝑡 = 𝛼 + 𝛽𝑡 + 𝛾𝑦𝑡−1 + 𝛿1∆𝑦𝑡−1  +  … +  𝛿𝑝−1∆𝑦𝑡−𝑝+1 + 𝜀𝑡  (4.13) 

  

Where 𝛼 is the constant term, 𝛽 denotes the coefficient for a certain time trend, while p is the 

amount lags included, which is decided when conducting the test (Dickey & Fuller, 1995). 

 

Autocorrelation Function 

An autocorrelation function (ACF) displays how a time series correlates with x amount of 

preceding lags p. A stochastic process shows the ACF at zero. The autocorrelation increases 

with an increase in correlation between lags.  The interpretation of an ACF plot is the following: 

The correlation corresponding to each lag is considered significant if it is higher than the blue 

dashed line for positive correlation and conversely for negative correlation. In addition, there 

is a partial autocorrelation function which gives partial correlation. ACF and PACF can in 

simple terms be expressed as: 

 

𝐴𝐶𝐹 =
𝐶𝑜𝑣(𝑦𝑡, 𝑦𝑡+𝑘)

√𝑉𝑎𝑟(𝑦𝑡)𝑉𝑎𝑟(𝑦𝑡+𝑘)
    𝑃𝐴𝐶𝐹 =  

𝐶𝑜𝑣(𝑦𝑡, 𝑦𝑡−2|𝑦𝑡−1)

√𝑉𝑎𝑟(𝑦𝑡|𝑦𝑡−1)𝑉𝑎𝑟(𝑦𝑡−2|𝑦𝑡−1)
    

(4.14) 

  

Where 𝑦𝑡 is the time series at time t and 𝑦𝑡+𝑘  is the time series at lag k. Both plots ACF and 

PACF are created in R with the acf and pacf functions. 

 

4.2 Multivariate Methods 
Our study employs two multivariate models, LASSO and GAM. There are several reasons why 

these two were chosen. Chiefly, GAM har allows us to fit and analyze potentially non-linear 

relationships, while LASSO is an exclusively linear method, thereby allowing for comparing 

significantly different methods. 

4.2.1 Least Absolute Shrinkage and Selection Operator  

The Least Absolute Shrinkage and Selection Operator (LASSO) is a regression method that 

performs regularization and variable selection so as to achieve improved interpretability and 

prediction accuracy (Tibshirani, 1996). This can be expressed as:  
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∑(𝑦𝑖 −
𝑛

𝑖=1

𝛽0 − ∑ 𝛽𝑗𝑥𝑖𝑗)2  +  𝜆 ∑|𝛽𝑗| = 𝑅𝑆𝑆 + 𝜆 ∑|𝛽𝑗|
𝑝

𝑗=1

𝑝

𝑗=1

𝑝

𝑗=1

 
(4.15) 

 

The first part represents standard least-squares linear regression, while the second part is the 

penalty term performing the regularization.  

 

𝜆 ∑|𝛽𝑗|
𝑝

𝑗=1

  
(4.16) 

 

Where the lambda is a tuning parameter, while beta is the coefficient for the explanatory 

variables, the lambda determines fit and variable selection. As a consequence of the absolute 

value, LASSO returns sparse models, with a subset of the variables. When lambda equals zero, 

LASSO becomes a simple linear regression, however as lambda approaches infinity, the 

penalty for each coefficient will increase to the point where all variables equal zero. In other 

words, it is rooted in the bias-variance trade-off. This entails an increase in lambda reduces the 

flexibility of the fit, thus increasing bias and decreasing variance (James, Witten, Hastie, & 

Tibshirani, 2017). The lambda value is optimized through rolling-origin (see section 4.4.3). 

 

LASSO regression has many qualified reasons for why it could be capable of providing 

valuable forecasting for the spot price of salmon. Firstly, it is one of the most interpretable 

regression methods, also for those without comprehensive knowledge of the field. Secondly, it 

can provide an extensive decrease in variance at the expense of a slight increase in bias. 

Moreover, LASSO increases model interpretability by selecting only variables associated with 

the response.  This is especially important given that there are 20 explanatory variables and 

augmented with 32 of their lagged versions.  

4.2.2 Generalized Additive Model 

The generalized additive model (GAM) was chosen to be utilized for one of our multivariate 

forecasting methods. In general terms, GAM is a non-parametric extension of linear regression. 

This entails modeling a univariate response Y with k amount of predictors (James, Witten, 

Hastie, & Tibshirani, 2017). More precisely, the model takes the sum of the optimized smooth 

functions, which can be expressed as:  
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 𝑦𝑖 = 𝛽0 + ∑ 𝑠𝑗(𝑥𝑗𝑖) + 𝜀𝑖
𝑗

 
(4.17) 

 

Every time series variable component x is fitted using splines or smooths, which are functions 

composed of several additional functions called basis functions. When modeling each basis 

function 𝑏𝑝 has corresponding coefficients 𝛽𝑝. The resulting spline is the weighted sum of the 

basis function. This can be shown as: 

 

𝑠(𝑥) = ∑ 𝛽𝑙𝑏𝑘(𝑥)
𝐾

𝑘=1

 

(4.18) 

  

The number of basis functions is hard to determine. However, it should be large enough to 

allow for enough flexibility in the model. The “mgcv” package in R allows for extensive 

customization, including K amount of basis function for each feature. If K is too small, then 

the model would not capture complexity in the data. However, the negative side of too large K 

is it creates computational difficulties. In order to fit the data optimally without overfitting, one 

has to maximize the penalized log-likelihood, which can be expressed the following way: 

 

𝐿𝑝(𝛽) = 𝐿(𝛽) −
1
2

𝜆𝛽𝑇𝑆𝛽 
(4.19) 

  

The 𝐿𝑝(𝛽) is in the penalized log-likelihood, while 𝐿(𝛽) is the log-likelihood and  1
2

𝜆𝛽𝑇𝑆𝛽  is 

the penalization. The last part is determined by lambda. The wiggliness is denoted as the 

integral of the squared second derivative over the whole range of the covariate x. Conveniently 

this can be written as a function of the coefficients, where 𝛽𝑇 is a vector with all coefficients 

of the basis functions in the spline, S is the penalty matrix created so that when multiplied by 

the coefficients gives the original expression.  

 

 𝛽𝑇𝑆𝛽 = 𝑊 (4.20) 

  

The lambda is used to regulate the trade-off in order to discover the spline which maximizes 

the penalized log-likelihood. For instance, if the lambda is too large, then the line eventually 

becomes a simple OLS. Conversely, if the lambda is exceptionally small, then the data will 
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allow for an overly complex fit. The purpose of this is to optimize the fit or wiggliness. A more 

complex model renders larger penalization. In other words, one needs the data to be fit without 

it becoming overly complex. This is done by specifying the REML argument in the gam 

function in R. REML is an alternative to using prediction error criterion like generalized cross-

validation (GCV) and AIC. This is a Bayesian approach and preferable in our case, especially 

given that the GCV is not programmed for time series forecasting.  

 

There are multiple reasons GAM is a good choice for predicting the salmon spot price. Firstly, 

GAM allows for a non-linear fit to each predictor. This is important when the data seems to 

indicate a non-linear relationship between the response and explanatory variables. However, at 

the same time, GAM does not restrict linear relationships if this is closer to the actual 

representation of a predictor. Furthermore, this paper wished to both rely on good predictions 

so industry players can make improved decisions while at the same time providing a model 

that has a high degree of interpretability. For GAM, one can break down the contribution of 

each predictor on the response as a way to better visualize each variable. In essence, GAMs are 

the consequential middle ground between simple linear regression and a black-box model, such 

as neural networks.   

4.2.2.1 Forward Stepwise Selection 

In order to achieve the optimal results from fitting a GAM model, one has to subset the 

variables which are relevant for the time series prediction of the spot price of salmon. For this 

task, a forward stepwise selection procedure was employed tailored for GAM. In General 

terms, forward stepwise selection involves starting with only the constant term and no 

variables. For its consecutive step, the selection is tested using a specific criterion (see section 

4.4.1), then either adding or removing the variable based on whether the overall criterion 

improves. Alternatively, one could use best subset selection, backward or hybrid approach. 

Best subset would have been preferable because this method would have checked through 

every available model. In other words, an exhaustive approach. However, best subset is 

predicated on having a smaller subset of features. The reason for this is that when the feature 

space expands beyond 20, it will become computationally infeasible, given that the number of 

models to fit is 2𝑝. The data used in this thesis is larger than 20 features when including all 

their lags. As a consequence, the forward stepwise selection method was chosen because there 

is a somewhat exhaustive forward step selection method package in R, which in addition to 

traditional forward stepwise selection uses techniques for bootstrap resampling to check for if 
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significant effects of non-selected features impact the model (Sestelo, Villanueva, Meira-

Machado, & Roca, 2016). 

 

4.3 Data Transformation and Processing 
Data transformation of historical data is often needed in order to create simpler forecasting. 

These adjustments try to remove variation and increase the consistency for all the data. These 

are necessary steps because it most likely results in increased accuracy of the forecasts, 

according to Hyndman & Athanasopoulos (2018). In the following section, we evaluate the 

sample size needed and prerequisites before the data is applicable for time series forecasting, 

the corresponding transformation, and cross-correlation.  

 

Sample Size 

Sample training data is essential for fitting superior models. Especially when there are many 

parameters to consider, in general, precision is expected to increase with additional 

observations (James, Witten, Hastie, & Tibshirani, 2017). Hyndman & Athanasopoulos (2018) 

assert there is no “magical” minimum number of observations needed, in fact, they explain 

how observation required is a product of the number of predictors estimated and stochasticity 

in the sample.  

 

Firstly, most statistical modelling necessitates that there are less predictors than observations, 

with the exception of LASSO in our case. Furthermore, according to Hyndman & Kostenko 

(2007), processes with substantial variation require more data than once with less variation. 

For both ARIMA and ETS models, one needs a minimum amount of data. For instance, with 

ETS, there are seasonal, trend, and level elements that require initial values. For the seasonal 

part, one needs eleven parameters for the initial element, while two parameters are connected 

to start trend and level values. This entails a prerequisite of 17 observations for monthly data 

(Hyndman & Athanasopoulos, 2018). The rationale is similar for ARIMA, where the minimum 

number of observations is equal to P + Q + mD + d + q + p +1 according to Hyndman & 

Kostenko (2007). For multivariate regression models, more observations usually result in a 

better fit and out-of-sample outcome (James, Witten, Hastie, & Tibshirani, 2017). The extent 

of how many observations are necessary for multivariate is highly contested. However, a 
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recommended heuristic states that one should have 10-20 observations per parameter (Harrel, 

Lee, Califf, Pryor, & Rosati, 1994). 

 

Transformation 

Log transformations are used to reduce the variation across the time series. In other words, if 

the volatility of the data increases with the level (i.e., time series), it would require a 

transformation as a prerequisite before forecasting. It can simply be expressed as the log across 

the entire time series x. 

  

𝑙𝑜𝑔(𝑥𝑖) (4.21) 

  

Cross-Correlation Function 

Sample cross-correlation function (CCF) is the correlation between two time series univariates. 

The function is advantageous in discovering lags between the response and predictors, which 

might be useful in predicting the independent variable (Penn state, 2020). Lags are a central 

part of defining the time series relationship of the data. As a result, several industry 

considerations were presented in chapter 3 as reasons for suggested lags in predictors. 

However, sample cross-correlation function gives mathematical support to the lag structure.  

  

4.4 Model & Method Evaluation  
Fitting and evaluating forecasts is essential in order to achieve the finest results. Therefore, in 

the following section, several different avenues for determining metrics used in model 

(variable) selection, parameter tuning, and method comparison are proposed.  

4.4.1 Akaike’s Information Criterion  

There are numerous metrics for determining the optimal variable selection, such as R squared, 

BIC, AIC, and AICc. The aim of each of these metrics is to achieve the most parsimonious 

model.  However, this thesis will use the one best suited for our data, AICc.  

 

Akaike’s Information Criterion tries to find the best model by maximum likelihood. It gives an 

account for each model and the relative quantity of information lost. A lower value for AIC 



 

25 
 

entails a better model compared to others with regard to fitting the data and avoiding 

unnecessary complexity. AIC is defined as:  

 

𝐴𝐼𝐶 = 𝑇 ∗ 𝑙𝑜𝑔 (
𝑅𝑆𝑆

𝑇
) + 2(𝑘 + 2) 

(4.22) 

 

Where T is the number of observations, k is the number of predictors, and RSS the fit of the 

model. However, AIC has its limitations. When there is a small sample size, then there is a 

considerable probability for AIC will be overfitted by selecting an excessive amount of features 

(McQuarrie & Tsai, 1998). As a result, a slight modification has to be made given a small 

sample size. A small sample size will, in this regard, follow the heuristic proposed by (Burnham 

& Anderson, 2002), where n/k < 40, which is equivalent to the parameters exceeding 2-3% of 

the data. Consequently, this thesis uses AICc. It can be expressed as: 

 

𝐴𝐼𝐶𝑐 =  𝐴𝐼𝐶 +  
2𝑘2 + 2𝑘

𝑛 −  𝑘 −  1
 

(4.23) 

 

Where in the number of observations and k is the number of parameters. In essence, AICc is a 

penalty term for each additional parameter.  

4.4.2 Performance Metrics  

There are many ways to measure forecast performance between different models. Two of the 

most widely used are mean absolute error (MAE), and root mean squared error (RMSE). 

 

Firstly, MAE explains the average absolute error between the measured and the actual values. 

This metric is calculated in a time series by taking the absolute difference between the 

measured response ŷ𝑡  + ℎ|𝑡 with the actual observation 𝑦𝑡 + ℎ, shortened to the error e.  

 

𝑀𝐴𝐸 =  
1
𝑇

∑|𝑒𝑡+ℎ|𝑡|
𝑇

𝑡=1

 

(4.24) 

 

Next is RMSE, which is an extension of the mean square error (MSE). RMSE is a measure of 

the root of the squared errors. In other words, MSE only measures the difference between the 
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squared observed and the predicted value. To calculate the RMSE, one needs to take the square 

root. This is done in order to have output equivalent to the data.  Consequently, RMSE is 

simpler to interpret compared to the MSE. In addition, negative and positive values do not 

cancel each other. 

 

𝑅𝑀𝑆𝐸 =  √∑ 𝑒𝑡+ℎ|𝑡
2𝑇

𝑡=1

𝑇
 

(4.25) 

 

The main difference between the two methods is that RMSE weights larger errors higher, while 

MAE weights all errors equally. As a result, RMSE is more exposed to outliers than MAE. 

Both models will be utilized in chapter 6. 

4.4.3 Nested Cross-Validation 

Traditional cross-validation techniques are unreasonable when dealing with time-series 

forecasting. This is a result of the sequential nature of time series; each observation is 

associated with the preceding and succeeding month. However, to avoid this, one can 

implement nested cross-validation.  

Within nested cross-validation, there is an approach called rolling-origin. This method divides 

the data into an outer- and inner-loop. Firstly, a test set is left out. Since this set is used to 

validate the performance of the fit, it should correspond to the forecast horizon of 12 months 

(Hyndman & Athanasopoulos, 2018). This is a consequence of the need for a valid estimate of 

the performance on data not used in the fitting. The remaining data also called the inner-loop, 

is used to train the model. This training subset is then temporarily split into a training- and 

validation-set of a given size. The training set is usually 50% or more of the training subset 

observations, while the validation set is equivalent to the forecast horizon. Furthermore, to 

make the best use of the data, each fit is moved chronologically forward a single observation 

as illustrated in  Figure 4.1.  
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Figure 4.1: Illustration of rolling-origin nested cross-validation. 

The grey line represents the inner loop data, while the additional light-blue rectangle shows the 

test hold-out set. In this thesis, cross-validation will be used to fit the models and check for 

accuracy. Fitting is done by averaging the parameters or coefficients from every fit for a 12-

step ahead forecast horizon. When checking the accuracy, every fit is used to compute a 

forecast. Each forecast is measured using a metric such as MAE and RMSE, which is 

consequently averaged out for each forecast. This approach is applicable both when dealing 

with the univariate models and multivariate models.  
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5 Data Analysis and Processing 
In order to model the data, several initial steps had to be taken. Firstly, the data was cleaned 

and fitted to the same frequency. Thereafter, descriptive statistics and statistical properties tests 

were used to check for stationarity, autocorrelation, cross-correlation, and other factors that 

affect the data. The following chapter explores these steps in detail.  

5.1 Fish Pool Index 
For the independent variable, we use the Fish Pool Index (FPI) as a reference for the spot price 

of Atlantic salmon, denoted in NOK/kg. This index is based on a weekly weighted average of 

the different three weight classes of head-on-gutted (HOG) salmon. These weight classes are 

divided into 3-4kg, 4-5kg, and 5-6kg, which are weighted 30%, 40%, and 30%, respectively 

(Fish Pool a., 2020). Subsequently, monthly prices are calculated by averaging the weekly 

prices, thus what will be referenced hereafter. The index was chosen because salmon contracts 

in Norway are almost exclusively sold through this spot price reference by exporters. The index 

has throughout its existence weighted varying underlying reference prices, the most prevalent 

being NASDAQ salmon index weighted at around 85-90% and SSB export prices at 5-10%. 

All data was publicly available and acquired through Fish Pool.  

 

 
Figure 5.1: Monthly FPI from January 2005 to August 2020. 
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A closer look at Figure 5.1 reveals large fluctuations in price during the period of January 2005 

- August 2020. Firstly, there was a large spike in 2006. It is thought that the new regulation in 

2005 restricting maximum allowed biomass had a ripple effect, which caused supply shortages 

into 2006. This happened in conjunction with the introduction of the Fish Pool futures market, 

making the market more accessible to additional buyers, thereby possibly being responsible for 

the increase in price. Further on, it is interesting to note during the onset of the financial crisis 

in late 2007 the price did not change considerably. The reason for this might be attributed to 

the Chilean sea lice growth, which devastated the production, offsetting any price fall caused 

by the financial crisis. Equivalently, Norway experienced a similar occurrence of high levels 

of sea lice between 2010 and 2012 (Lusedata, 2020). This had a detrimental long-term effect 

on the produced quantity due to premature fish mortality. As a result, the price increased over 

the period. Additionally, Chile had an algae bloom crisis in 2015-2016, causing the production 

to fall by 100 000 tonnes (Intrafish, 2019), thereby pushing the price to new heights. Sea lice 

and algae bloom showcase how companies have to stay vigilant against biological constraints. 

In the Fall of 2014, the price fell sharply. One reason might be the import ban on salmon Russia 

introduced in response to sanctions (Salmon Business, 2019). Parts of this ban was 

circumvented through Belarus. However, this was also shut down in January 2020 due to 

alleged safety concerns from the Russian Government (Salmon Business, 2019), which is 

reflected in the sharp fall at the same time. Another event that affected the salmon price fall in 

2020 is the outbreak of the SARS-CoV-2 virus, often referred to as Covid-19-/Coronavirus 

(Holland, 2020). Major shares of the salmon demand come from exporting to foreign retailers 

and food-service markets, which experienced a significant fall in demand due to national 

lockdown restrictions. As a consequence, the salmon price has seen a fall. These events 

highlight how biological constraints, political decisions, and global issues can incur large 

ramifications on the Norwegian salmon farming industry.  

 

5.2 Data and Pre-processing 
The data for this thesis is collected through publicly available sources and supplemented with 

data provided by Kontali Analyse AS. A more detailed data source description can be found 

in Appendix A.1 Data Sources. The dataset consists of one response variable and 20 features 

encompassing the timeframe January 2005 to August 2020. This entails 188 observations for 

each variable. However, when augmenting the data with lagged features, the dataset 
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encompassed 55 predictors. The data was gathered from a plethora of sources in different 

formats. Therefore, several initial steps were needed to ensure that the data was applicable for 

usage in both univariate and multivariate forecasting methods. For instance, the frequency of 

the data was for some variables higher, such as in daily and hourly observations. For the futures 

prices, we weighted the average based on the volume and price of the contracts made. The 

exchange rates were given as hourly data, however, this was averaged out throughout the 

month. The remaining data was provided in a monthly format. There are only two instances of 

value zero, which was promptly increased to one for transformational and modelling 

purposes2.  

 

5.3 Descriptive Statistics 
5.3.1 The FPI 

From Figure 5.1 above, it is possible to determine that the FPI sees increased volatility with 

time. Thus, a transformation was necessary for the FPI. Firstly, a logarithmic transformation 

was used to reduce the variation. Thereafter, the time series was shown to be non-stationary 

from KPSS- and ADF-tests. As a result, the FPI had to be first differenced, hereafter denoted 

as log differenced FPI. When visually inspecting the data after differencing, it looked to be 

stationary. This is shown in Figure 5.3, which appears to exhibit stationarity. However, the 

autocorrelation function in Figure 5.2 seems to show a positive correlation at every 12 lags and 

a negative correlation at every 6 + 12 lags. In essence, a visual inspection was not adequate to 

confirm the stationarity of the FPI.  

 
2 Smolt release was modified January -2006 and -2011. The change had negligible effect on the models.  

: Figure 5.3: Log differenced FPI. 

 

Figure 5.2: Autocorrelation plot of FPI after Log 
transformation and differencing. 
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To verify the stationarity in an objective way, the time series was validated through unit root 

tests. Firstly, KPSS tests showed the test statistic with four lags to be lower than the critical 

value of 0.216, corresponding to significance at the 1% level.  Thus, ℎ0 is not rejected, and 

stationarity is validated at the 1% significance. Following an ADF-test showed the test statistic 

for five lags lower than the critical value, -7.278 < - 3.17. The H0 was rejected, and the test 

validated at 1% significance, further underscoring the stationarity of the log differenced FPI. 

In essence, two tests were used as a safeguard to ensure stationary, and the root tests imply 

strong evidence of stationarity in the FPI log differenced time series.  

5.3.2 The Features 

All the explanatory variables show non-stationarity from the original data, in addition to the 

smolt release and sea temperature, which show annual cycles (i.e., seasonal pattern). This was 

validated both visually (see Figure 5.4) and through the root tests.  

 

 
Figure 5.4: Graphs of all explanatory variables from January 2005 to August 2020. 

  

Therefore, log transformation was performed along with first differencing of all variables. 

Consequently, the unit root tests were performed on the log differenced data to ensure 

stationarity. Firstly, the KPSS test showed that every variable displayed stationarity at 1% 
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significance following the log differencing. The ADF test resulted in similar outcomes, with 

every feature showing stationarity at the 1% level, with the exception of lamb prices, which 

appear stationary at 5%. This might be the result of highly volatile lamb prices over the period. 

The tests appear to show enough evidence of stationarity before we begin forecasting.   

 
Table 5.1 Descriptive statistics and root test values for all log differenced data. 

 
 

5.4 Lag Feature Analysis  
In chapter 3, a thorough analysis of the important features and their lag structure was presented. 

However, a closer analysis is required to confidently understand the lag structure between the 

log differenced univariate and log differenced explanatory variables. This is achieved through 

a cross-correlation function (see section 4.3).  

 

The cross-correlation function permits for an improved overview of the lag relationship 

between the FPI and explanatory variables. However, we concluded that results that show 

significant discrepancies from what was advised by MOWI (2020), industry experts, and 

research from chapter 3 would be discarded. It is also important to notice that many of the 

explanatory variables display both positive and negative cross-correlation with the FPI. This is 

perhaps a consequence of the seasonality of the variables. Thus, our analysis would resolve 

this by using the assumptions presented in chapter 3 with regard to the correlational impact of 

each predictor. However, this is only to better understand the features seen as the directional 

relationship has no impact on the modelling, only the lags. There are several variables that 
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showed lag structures not in line with our assumptions. For instance, lamb price displayed a 

high positive correlation at 10 months, which is not consistent with the reasoning from chapter 

3 or the other cross-correlation returns from alternative proteins. Hence, it is not in concurrence 

with industry assumptions. The same applies to the exchange rate NOK/USD, which showed 

positive and negative correlation at lag 11, a far difference from lag six and 12 advised earlier. 

Additionally, sea lice treatment showed both positive correlations over the lags two to four and 

11-14, which also somewhat contradicts the assumption from chapter 3, which were that sea 

lice has a negatively short-term effect and a positive long-term effect on the FPI. The rest were 

mostly in line with industry assumptions, however, some showed minor alterations in the lag 

structure. In essence, chapter 3 lays the foundation for the proposed lag structure. However, 

the cross correlational analysis provides valuable insight for industry participants and as a tool 

to modify lags structures as long as it is reinforced by an underlying relationship presented in 

chapter 3.  

 
Table 5.2: Lag structure. 
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6 Forecasting and Analysis 
In this section, we will look into the forecasting analysis and results from the models elaborated 

in chapter 4. Further, we will evaluate the accuracy of each model and compare them against 

each other to find the best method. 

 

6.1 Univariate Methods 
For univariate forecasting models, we have chosen the ETS and the ARIMA model, as 

mentioned earlier. These models base their forecast on historical observations of the forecast 

variable itself. Therefore, we start with creating a time series containing all observations of this 

variable using the ts function in R. This function uses the argument frequency = 12 to specify 

it as monthly data, and the start year and month with the start argument. Further, we divide the 

time series into two separate time series; training set and testing set, where the training set is 

used to train the forecasting model with rolling-origin (see section 4.4.3), while the test set is 

used to evaluate the model accuracy.  

6.1.1 Benchmarks 

Before we start to build our ETS and ARIMA models, we want to create some simple 

forecasting models as benchmarks (see section 4.1.1). To evaluate these forecasts against each 

other, we use the accuracy function in R, which calculates a number of accuracy measurements. 

As mentioned earlier, we will use RMSE and MAE as our accuracy measurements. The 

accuracy is measured for 1 to 12 months ahead. The best forecast accuracy for each period will 

become the forecast benchmark.  

Table 6.1: RMSE and MAE accuracy measure for naïve and rwdrift. 
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From Table 6.1, we can observe all accuracy measures for both benchmark models. The 

average RMSE and MAE for all forecasts of the naïve method is 7.407 and 6.192, and the 

rwdrift method has an average RMSE and MAE of 7.157 and 6.094. In terms of directional 

accuracy, the naïve and rwdrift methods predict with 75% accuracy. We will now continue to 

build an ETS and ARIMA forecasting model and then evaluate those model accuracies against 

these benchmarks. 

6.1.2 ETS Forecast 

In R, we use the ets function to find a suitable ETS model, and by using the argument model = 

“ZZZ”, the function automatically selects the best model for the given time series. This R 

function suggests that ETS (M, Ad, M) is the most suitable model, which is an ETS model with 

a multiplicative error component, an additive damped trend component, and a multiplicative 

seasonal component.   

Now, as we have selected an appropriate ETS model, we want to forecast with this model for 

different periods. To create the forecast itself, we use the R function forecast.ets, then select 

the ETS model we have chosen and the number of months ahead we want to forecast. Just as 

the benchmarks, we forecast the ETS model for 1 to 12 months ahead. To evaluate the forecasts, 

we start with a visual inspection by using the autoplot function and supply with the autolayer 

function to place a layer of the training set and the test set. From Figure 6.1, we are able to see 

how the ETS (M,Ad,M) forecast model performs compared to the test set. We see that the 

forecast model catches the seasonal pattern but could not reproduce the test set identically. 

However, all observations from the test set are within the 80 % confidence interval.  

To measure the accuracy, we stored the forecasting result in a matrix and compared it against 

the test set we created in the beginning with the accuracy function in R.  
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From Table 6.2, we can see that the ETS model performs very well, especially on a short-term 

basis. At the lowest, the RMSE and MAE is measured to be 3.763 for a 1 month ahead forecast 

and an RMSE and MAE of 12.299 and 10.027 at the highest at 7 months ahead forecast. The 

average RMSE and MAE can be calculated to 8.832 and 7.190. Directional prediction accuracy 

is calculated to be just below 60%. Further, we will build an ARIMA forecasting model to see 

if it can outperform the ETS model and the other benchmarks. 

6.1.3 ARIMA Forecast 

As mentioned earlier, an ARIMA forecast requires the data to be stationary. In section 5.3.1, 

we concluded that we had to apply log transformation and first differencing in order to obtain 

a stationary time series. In R, we use the log and diff functions to apply log transformation and 

first differencing. 

Now that the time series is stationary, we start with the automatic alternative and use this model 

to forecast and calculate the forecast accuracy, then use the manually chosen model and use 

this model to forecast, and lastly, compare these models against each other.  For the automatic 

solution, we use the auto.arima function in R, and as arguments we set ic =AICc, which sets 

AICc as the information criteria, then d = 1 and D = 0, which sets the number of first difference 

equal one and seasonal difference equal zero. This function returns the ARIMA model ARIMA 

(0,1,0) (0,0,1). Now, as the model is defined, we continue to forecast with this model by using 

the forecast function in R and sets h=12 for a forecast over 12 months. To evaluate this forecast, 

we start by visually inspecting the plot by using the autoplot function in R and autolayer 

Table 6.2: RMSE and MAE accuracy measures from ETS. 

Figure 6.1: ETS forecast with 80% and 95% confidence 
interval compared to the test set. 
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functions to add layers of the test set and train set. Further, we use RMSE and MAE as our 

accuracy measurements by using the accuracy function in R. 

 

As Table 6.3 displays, the ARIMA model generated by the auto.arima function has a quite high 

RMSE and MAE. At the lowest, the ARIMA (0,1,1) (0,0,1) has an RMSE and MAE of 6.813 

for one month ahead forecast. However, for medium time periods such as 6 months ahead 

forecast, we see that the RMSE and MAE are as high as 11.640 and 10.186. The average RMSE 

and MAE are calculated to be 10.072 and 8.937. In addition, the directional accuracy is 

calculated to be 50%. Further, we want to look at how the manually built ARIMA model 

performs and compare it against the forecast accuracy of the automatically created model. 

 

Figure 6.3: Autocorrelation plot (left) and Partial autocorrelation plot (right). 

 

Table 6.3: RMSE and MAE for automatically 
generated ARIMA model. 

Figure 6.2: Auto ARIMA forecast with 80 % and 95% 
confidence interval. 
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As mentioned in section 4.1.3, we use the ACF plot and PACF plot to determine the parameter 

p, P, q, and Q in the manually created ARIMA model. In Figure 6.3, we see that there are three 

significant positive lags and one significant negative lags in the ACF plot, and two significant 

positive and one significant negative lags in the PACF plot. This implies that our ARIMA 

model should be ARIMA (2,1,3) (1,0,1). The information criteria AICc is used to evaluate how 

good the values are for p, P, q, and Q. By using the Arima function in R, setting the order 

argument to be (2,1,3) and the seasonal argument to be (1,0,1), we can get a summary of how 

well this model performs. This model returns an AICc of -357.14 and will be our ARIMA 

model benchmark. Further, we want to see if we can find a better model with lower AICc. We 

will try to increase/decrease the values of p, P, q, and Q. The following models were tested by 

a similar approach as our benchmark ARIMA model: 

Table 6.4: Overview of AICc tested ARIMA models. 

 

As displayed in Table 6.4, model 6, ARIMA (3,1,3) (1,0,0), has an AICc of -366.17, which is 

even lower than our ARIMA benchmark model and would therefore replace the ARIMA 

benchmark model. 

Now that we have built an appropriate ARIMA model, we want to forecast with this model. 

Similar to the benchmark- and ETS models, we forecast for 1 to 12 months. In R, we use the 

forecast function and set the argument h equal to the period we want to forecast. To evaluate 

the forecast, we start with a visual inspection of the forecast by using the autoplot function and 

add layers of the train set and test the set with the autolayer function in R. 



 

39 
 

 

 

We can from Figure 6.4 see that the ARIMA model forecast is adequate, and all observations 

from the test set are within the 95% confidence interval. To evaluate the forecast accuracy, we 

use the R function accuracy and compare it against the test set, as we did with the other models. 

From  with an RMSE accuracy measure for all periods, we can see that the manually selected 

ARIMA model has an overall lower forecast error. The lowest RMSE and MAE are calculated 

for 1 month ahead forecast at 4.050.  This ARIMA model has an average RMSE and MAE of 

7.390 and 6.424, which are both lower than the calculated average forecast error for the 

automatically picked model. The directional accuracy is calculated to be just below 60%. 

However, to determine if any of the models are better in different time period intervals, we 

divide the time periods short, medium, and long term. Here, the short term represents 1 to 3 

months, the medium-term represents 4 to 7 months, and the long term represents 8 to 12 

months.  

Table 6.6: RMSE and MAE for different horizons. 

 

From Table 6.6, we can see that the automatically created ARIMA model has a higher RMSE 

and MAE than the manually created ARIMA model for all time period intervals. Based on this, 

Figure 6.4: Graph of the ARIMA forecast.  

 

Table 6.5: MAE and RMSE for optimal ARIMA 
model. 

 



 

40 
 

we chose to discard the automatically created ARIMA model and continue our analysis with 

the manually selected model, ARIMA (3,1,3) (1,0,0). Further, we want to compare this ARIMA 

model with the ETS model we created earlier and evaluate which model performs better.  

6.1.4 Univariate Method Comparison 

As mentioned earlier, the automatically selected ARIMA model has an average RMSE and 

MAE of 7.390 and 6.424. In other words, the ARIMA model has a lower average forecast error 

than the ETS model, with an average RMSE and MAE of 8.832 and 7.190. However, if we 

look at the lowest RMSE and MAE values of the ETS models, it is lower than the forecast error 

measured for the ARIMA model for all periods. This shows that the ETS model has a high 

variation in forecast accuracy and may perform better than the ARIMA models in certain time 

periods. To further investigate how the ARIMA and ETS model performs in the different time 

periods, we merge the two tables into one and split it up by RMSE and MAE. Additionally, we 

have added conditional formatting for visual simplicity. The colour green indicates the best 

model, and red indicates the worst model. We also created a matrix divided into short-, 

medium- and long-term forecasting as earlier to evaluate the accuracy for given time intervals. 

Table 6.7: ETS and ARIMA comparison 12 steps ahead. 
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Table 6.8: ETS and ARIMA comparison for short, medium, and long horizons. 

 

From Table 6.7, we can observe that there is a clear pattern in accuracy. The ARIMA model 

performs better than the ETS overall with a lower RMSE and MAE in 8 out of 12 time periods, 

which is also reflected by lower average RMSE and MAE of the ARIMA model. And it is clear 

that the ETS model is better in the short term, but after 4 months ahead forecast and onwards, 

the ARIMA model has the lowest forecast error. This assumption can be confirmed in table 

6.8. By looking into time period intervals, it is possible to observe that the ETS models perform 

better than the ARIMA model in the short term but worse in a medium to long term forecast 

and therefore has a higher RMSE and MAE for those time period intervals. The question is 

now if any of these models perform better than the benchmark models we created in the 

beginning. To compare the models against each other, we add all four forecasting models into 

one table. For visual simplicity, we add some formatting to the matrix. The formatting is colour 

based on a colour scale from green (best) to red (worst).  

Table 6.9: Univariate model comparison. 

 

The first thing we should notice from Table 6.9 is that none of the benchmark models, naïve 

and rwdrift, are the least accurate model in one single time period. Both naïve and rwdrift has 

a low forecast error for lower time periods but still has decent forecast accuracy for longer time 

periods. The ETS model does not perform as the best forecast model in one single time period 
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and is therefore discarded. When it comes to the ARIMA model, it is a little more difficult to 

judge. The benchmark models perform well in the short term, but after 4-5 months ahead 

forecast, we see that the ARIMA model has the lowest forecast error in almost every forecast 

period. Therefore, it is reasonable to conclude that for shorter time periods, the benchmark 

models as the naïve STL decomposed model performs the best, but for longer time periods, the 

ARIMA (3,1,3) (1,0,0), which is the manually created model, is the best forecasting model. 

Further, we want to investigate if we can build a better model by introducing other explanatory 

variables.  

 

6.2 Multivariate Methods 
The structure of the multivariate modelling is composed in the same order, which was presented 

in chapter 4. Firstly, all relevant components to modelling 12-step ahead forecast are presented, 

the results, and the variable subset selection chosen for the respective models. After accounting 

for lags and first differencing, more than 25 observations are omitted, while 12 observations 

are left out in the test set.  Consequently, the modelling is based on 151 observations ranging 

from February 2007 to August 2019. Simply put, the computing entailed creating a user-

defined wrapper function for modelling followed by a user-defined prediction function.  

6.2.1 LASSO 

The following section is used to illustrate and discuss the modelling across different forecast 

horizons and to combine these into an optimal 12 step ahead forecast for the FPI using LASSO. 

Furthermore, a closer deliberation into the variable selection is conducted to better understand 

the features which perform optimally when using LASSO.  

Firstly, we trained the data for each separate horizon using nested cross-validation (see section 

4.4.3) in order to find the lambda value, which minimizes the loss function and thereby creates 

the best fit.  
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              Figure 6.5: The fit for horizons 1-, 3-, 6-, and 12-steps ahead of the log difference. 

Visually it is difficult to determine which horizon results in a superior fit, however using the 

metrics deliberated on in section 4.4.2, it is simpler to illustrate that according to both MAE 

and RMSE that horizon 1 step ahead shows the closest fit, followed by 6-, 3-, and 12-steps 

ahead.  

Table 6.10: MAE and RMSE of the log differenced data for horizons 1, 3, 6, and 12. 

 

 

 

Naturally, computing different h steps ahead forecasts showed different results for the metrics 

compared to the fit.  

 
Table 6.11: Errors of log differenced LASSO forecast 1-, 3-, 6-, and 12 steps ahead. 

 

 



 

44 
 

For instance, the error rate from the out-of-sample measured in MAE and RMSE was 

significantly higher for all h steps ahead. The order of error rate among the horizons was 

equivalent in MAE. RMSE, however, measured increasing error with the number of forecasting 

steps ahead. This was anticipated given the unpredictable nature of forecasting, and it 

inherently becoming harder to determine forecast with the advancement of time. As a result, 

the further steps ahead forecast will almost always become increasingly error-prone.  

 

The direct 12-steps ahead forecast showed unfavourable results. Therefore, a different 

approach was used to optimize the 12-step ahead forecast. This was done by combining the 

different horizons in order to create an optimized 12 step ahead forecast based on the fit and 

forecast of the different horizons. In addition, all combined results were reverted into the 

original data structure (i.e., regress the difference and log steps) in order to increase 

interpretability. Therefore, the results will be comparable to the FPI and not the log differenced 

FPI. Hereafter only reverted data will be used to illustrate forecast out-of-sample.  

 
 
   𝐹𝐶12 = 𝐹1,1 + 𝐹3,2−3 + 𝐹6,4−6 + 𝐹12,7−12   (6.1)  

 

From equation 6.1, 𝐹𝐶12  represents the combined forecast. Forecast one,  𝐹1,1, consist of the 

forecast for the first month, while 𝐹3,2−3 is the 3-steps ahead forecast, and includes the forecast 

for 2 and 3 months ahead, 𝐹6,4−6 and 𝐹12,7−12 follows a similar pattern. 

 

Table 6.12: MAE and RMSE forecast error for the combined 12-step ahead prediction. 
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Table 6.12 shows that the results were still inadequate, missing the actual forecast significantly. 

This is apparent, knowing the price varied between NOK44-NOK77 in the test set. However, 

it can be seen that combining 1-, 3-, 6-, and 12-steps ahead into a single one-year forecast 

creates slightly improved results measured both in MAE and RMSE compared to a direct 12-

steps ahead forecast on its own. This can be seen in the Table 6.13 below. 

Table 6.13: MAE and RMSE for combined and direct 12 steps ahead forecast. 

 
 

The metrics exhibit that combining forecasts can improve accuracy. For instance, the MAE 

decreased by 0.5214, which amounts to a 5.57% reduction in error rate. For RMSE, the same 

results were evident, however, more pronounced at a 9.34% decrease. Furthermore, when 

inspecting the breakdown for each period for the combined forecast, it can be seen that certain 

months are quite accurate while in other instances, there is a substantial discrepancy between 

actual and predicted. The magnitude of the errors is somewhat in line with previous 

assumptions that earlier periods saw lower error. For instance, the first two months had errors 

around 2 for both MAE and RMSE. This can be seen to increase for periods 3-8, before slightly 

falling.  

 

 
Figure 6.6: Forecast for combined 12 steps ahead forecast. 
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Additionally, the model captures the direction of the price movements inadequately. For the 

combined 12-steps ahead forecast, the model captures directional movements only 50% of the 

time, which leaves much room for improvement. Furthermore, the LASSO performed a 

variable selection, which resulted in eight variables from the 12-steps ahead direct forecast. 

Among them were smolt release at lags 20 and 24, all protein replacements, sea lice at lag zero 

and three, sea temperature at lag three, and consumption in Japan. The largest coefficient was 

the price of trout. 

6.2.2 GAM 

This section deliberates on and discusses the modelling for GAM 12 step-ahead forecasting of 

the FPI based on the methodology outlined in section 4.2.2. The first step after the cleaning 

and adding the augmented lagged dataset was the variable selection. This was done through 

the partly exhaustive forward stepwise selection explained in section 4.2.2.1.  

 

For this approach, the best subset for q number of explanatory variables where chosen. For 

computational purposes, only subsets of size q ranging 1:20 were allowed (i.e., larger subsets 

would be infeasible to run). The performance of each subset of q models was then compared 

using AICc. In the case of AICc, a lower score showed superior model performance.  

 

 
Figure 6.7: The AICc score for optimal models of size q, ranging from 1-20. 
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The selection process recognized that the optimal subset size was six explanatory variables 

with an AICc score of -10906. The aforementioned subset encompassed the following 

variables, smolt at 24 months lag, sea lice at lag three, consumption in the USA, fish loss at lag 

one, biomass at lag six, and temperature at lag three. These variables create the optimal model 

with regard to GAM forecasting. On the one hand, it is not possible to pass any inference from 

the results. On the other hand, it is interesting to point out that several variables that were 

deliberated to be of high significance in chapter 3 were also found in the subset. For instance, 

smolt release is conceivably the driving feature for future supply, seen as all future supply is 

predicated on how many smolt are released in the preceding years. Although causality is not 

possible to determine in this study, it is of high value to understand the variables, which, in 

conjunction, create an optimal model performance. Additionally, it is possible to break down 

the effect of each variable.  

 

 
 

Figure 6.8: The effect of each variable. 

 

As explained in section 4.2.2, GAM allows for non-linear terms. However, certain variables 

were shown to have a linear effect on the FPI, such as consumption, fish loss, and to an extent 

biomass. This is understandable, given that these variables are more stable throughout the year. 

The remaining features on the other hand, show nonlinearity. This is to be expected, given that 

smolt release and sea temperature has a seasonal cycle pattern, while sea lice can spread 

exponentially. That GAM allows for both nonlinear and linear fit is one of its major benefits 
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when the real relationship is, in fact, non-linear. Furthermore, it is noteworthy that the optimal 

model fit would include consumption in the US rather than the EU, seen as the European Union 

is a substantially larger market. For future research, it would be interesting to create event 

studies that could isolate and study each feature separately.  

 

The next step of the modelling was to fit data optimally. This was conducted in R with help 

from the package “mgcv”. In the same way as LASSO, the data was partitioned into the training 

set and test set. Within the training set, the nested cross-validations were performed for optimal 

results in tuning each spline. 

 

 
Figure 6.9: GAM fit. 

 

From Figure 6.9, it is possible to see there is a close fit to the data throughout the timespan. 

However, to measure how close the fit is to FPI, we will measure the accuracy through MAE 

and RMSE.  
 

Table 6.14: GAM fit. 
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As displayed in Table 6.14, both measured in MAE and RMSE exhibit a relatively close fit. 

However, the real value is found in the results returned from out of sample prediction for 12-

steps ahead. The data is all reverted back to the original format as done for the LASSO section 

6.2.1.  

 
Table 6.15: GAM forecast 12-steps ahead. 

 
 

The results demonstrate inadequate predictions for from 5 months onwards measured in both 

MAE and RMSE, deviating only slightly after that from month to month. For example, the 

lowest error was observed in horizon two for all metrics at 1.976 for MAE and 2.156 for RMSE, 

while the highest was in horizon ten measured with an error of 10.298, 11.922 respectively.  

 

 
Figure 6.10: Plot of the out of sample data and the forecast. 
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Furthermore, the plot above illustrates that the model predicted the data exceptionally in regard 

to direction. The directional movements were accurately predicted 91.6% throughout the year 

horizon.  

6.2.3 Multivariate Method Comparison  

Table 6.16: Multivariate model comparison. 

 
 

From Table 6.16, it is possible to determine that GAM performed better than LASSO across 

mid-range horizons, while LASSO is superior in the first and last 2-3 months, measured in both 

MAE and RMSE. For instance, the average percentage difference in error over a 12-step 

horizon was 31% and 28% for MAE and RMSE, respectively. This underscores the superior 

performance from GAM in comparison to LASSO with regard to the magnitude of FPI 

forecasting over the entire horizon. The reason for this is difficult to pinpoint, however, one of 

the principal plausible causes could be the nonlinear nature from which the FPI derives. This 

is especially evident from Figure 6.7, which highlights the relationship between the features 

optimally suited for GAM forecasting. It showed how half of the predictors used in the analysis 

derived non-linear relationships when applied to the FPI. Although it is only evidence, it 

emphasizes that perhaps LASSO was inadequate in capturing substantial amounts of the real 

relationship given its parametric character. For example, LASSO selected several overlapping 

features with GAM, such as smolt release and sea temperature, both of which show non-

linearity in relation to the FPI. This relationship would be forced into a linear one when 
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modelling LASSO, essentially limiting their usage. In addition, GAM also predicted the 

directional movements better with 91% correct compared to LASSO with 50 %. The results 

illuminate the value in which industry players, especially salmon farming companies, can 

utilize multivariate methods in order to reduce the risk associated with a highly homogenous 

product. To illustrate, if a salmon farming company knew with a good deal of predictability 

the magnitude and directional movement of the FPI, they could reduce the harvest and/or tie-

less up in the futures market until the price increases. Adversely, one can harvest more currently 

if the prices are predicted to drop and hedge risk by selling more through the futures market.  

 

6.3 Univariate and Multivariate Method Comparison  
We evaluate how these models perform and compare them against each other with the same 

metrics from earlier.  
Table 6.17: Forecast error for the lead univariate and multivariate methods. 

 
 

From Table 6.17, it is possible to determine that the univariate models outperformed the 

multivariate methods across the entire time horizon except for the first two months in accuracy. 

Conversely, LASSO outperformed GAM in the first month, while GAM was superior in month 

two. GAM performed best with regard to directional movement, followed by naïve, ARIMA, 

and LASSO. ARIMA showed superior results of the two univariate methods in medium to 

long-range (i.e., 5-12 months) except for month 10 if measured in MAE. However, the 

difference here is minor. Overall, ARIMA is preferable, followed by naïve, GAM, and 

LASSO.  
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7 Discussion 
This thesis has focused on exploring several previously utilized univariate models in 

comparison with two regression methods with regard to the FPI. The objective was to explore 

how the inclusion of univariate and multivariate methods could create solid forecast for the 

salmon price over a 12-month period. To begin with, we created two simple forecasting 

benchmark models, which were the naïve and rwdrift method in combination with the STL 

decomposition to seasonally adjust the benchmark models. For the additional univariate 

forecasting methods, we chose to include the ARIMA and ETS model, as both forecasting 

methods are suitable for forecasting time series with both trend and seasonality. Lastly, for the 

multivariate forecasting methods, we included LASSO and GAM. All models created a 

forecast for the time interval 1 to 12 months ahead.  

 

7.1 General Findings 
From the analysis, it is shown that none of the methods performed particularly well, with the 

exception of the first two months. However, how poorly they performed is a matter of 

discussion, with the error rate mostly varying between 7-11 for the multivariate methods and 

4-9 for the univariate methods measured in MAE. This can be seen in comparison to the FPI 

varying between NOK44 and NOK77. In other words, the univariate models performed 

substantially better across the timeframe of 3-12 months. There can be a plethora of reasons 

for why the univariate models performed better or the multivariate performed worse.  

 

Firstly, the results indicate that multivariate models in both parametric LASSO and partially 

non-parametric GAM are unable to fully capture the data adequately. In different terms, more 

complex models do not necessarily entail increased performance, as evident from the results in 

Table 6.17. However, a different explanation could be found in the sample size. Section 4.3 

discussed how a sufficient sample size was paramount to achieve accurate predictions. This 

might explain why LASSO did poorly across much of the timeframe, given that all explanatory 

variables, including the lags, were included when performing the LASSO. In other words, 

LASSO was modelled with a restriction on the parameter space, strongly suggesting that 

additional observations could improve accuracy. However, seen as most of the data could be 

found at a monthly frequency at the lowest, it would be impossible to produce more data for 
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the different time series. A different approach could be to limit the number of lags introduced. 

However, this could entail leaving out important variables. Moreover, GAM was able to 

accurately predict the directional movements 91.6% of the time compared to 50% for LASSO, 

further indicating GAM was able to fit the data better.  

 

Furthermore, if the real relationship in the data were actually represented by fewer parameters, 

it would have negative ramifications in the prediction using LASSO. However, it is impossible 

to determine the real relationship to non-simulated data. Another possible reason why the 

univariate methods outperformed LASSO and GAM is the fact that most of the data has high 

variance, making it harder for more complex multivariate models to sufficiently capture the 

data. In other words, it would seem the simplicity of ARIMA, and especially naïve is of value 

rather than a cause of detriment. As elaborated earlier, the ARIMA model is more suitable for 

smaller time series with a short forecast horizon. The ARIMA model is a combination of an 

Autoregressive model (AR) and a Moving average model (MA), which are integrated by 

differencing, which seems to suit the time series well. The autoregressive part of the model is 

remarkably flexible for different time series, and the moving average part of the model uses 

past forecast errors to optimize the forecast, which our time series benefits from. Lastly, the 

seasonal variation and trend component from the dataset is also coped with by differencing the 

time series and making it stationary. Since the ARIMA model performs just as well as or better 

than the multivariate forecasting methods, it is reasonable to assume that the historical data of 

the salmon price explains a lot of the variation in the price, and therefore has high predictive 

power.  

 

Moreover, the results also indicate that GAM outperformed LASSO given the non-linear 

character as seen from half the GAM selected predictors, while the rest exhibiting linearity in 

the relationship with the response (see Figure 6.7). In other words, LASSO would struggle to 

fit much of the data, while GAM would allow for nonlinear fit, resulting in GAM performing 

better. Unlike the univariate models, GAM and LASSO did provide valuable insight into which 

features provide stronger predictive power. For instance, both had several overlapping 

variables from the selection process. These were smolt release at lag 24 and sea temperature at 

lag three, which raises the question of why these two features were included in both LASSO 

and GAM. There could be a causal relationship here, which, if understood more closely, could 

provide insight into how salmon farming companies could, for example, structure their smolt 

release timeline and in which waters the facilitates are set. Despite the indication of strong 
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predictive power, it is not possible to infer any causality from the results. This is outside the 

scope of this paper. However, the results strongly suggest further research into especially these 

two explanatory variables.  

 

7.2 Scenario Analysis 
Arima was shown to be the most optimal method. However, how beneficial would our forecast 

be for a single salmon farming company? We will use a hypothetical company called Dagslaks 

with a Norwegian market share of 20% to illustrate. ARIMA was in the short term and medium-

term able to predict the first 5 months satisfactory. This could be of substantial value for 

Dagslaks, given knowing the directional movements and having relatively good accuracy 

would help with implementing strategic choices. For instance, in our case, the FPI increases 

from about NOK44 to NOK77 over the first 5 months. Where all of those months saw an 

increase in price, knowing this with some certainty, Dagslaks could reduce harvesting and then 

slowly increase harvest output as the price rises. Doing this would entail selling the salmon at 

a substantially higher price. However, the difficult question is how much Dagslaks should 

reduce production and how fast it should increase it. A potential option could be to reduce 

harvest by 30% (the equivalent of 3216 tonnes for Dagslaks) the first month, before increasing 

in increments of 5% of total production and lastly selling all excess salmon kept for the highest 

price point at month 5. Mirroring 20% of real actual production, we get that Dagslaks could 

have increased revenue by 235.6 million over a 5-month period (see appendix A.3 Scenario 

Analysis). On the one hand, this analysis is a rough estimate and takes several liberties in its 

calculation. On the other hand, it highlights what could be gained by salmon farming 

companies if they were to create superior forecasts. However, this isolated analysis does not 

account for negative externalities. For example, to what extent holding back harvest would 

negatively impact the price or considering the operational side of harvest all held off salmon 

the last month in our case.  

 

In the long-term, ARIMA forecast accuracy was stable, but the directional movements were 

poor. However, given that the forecast had been right in predicting a price reduction after the 

medium range, then DagsLaks could have scaled back planned investment in new facilities, 

reduce the number of smolt released, and implemented a hiring stop. On a different note, 

making long-term decisions on faulty assumptions of the scale of the movements would impact 
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the bottom line by making consequential choices when they were, in fact, unnecessary. In 

essence, these are just some of many examples of how our forecast, and good forecasts can be 

of great value to salmon farming companies. 

 

7.3 Forecast Model Error 
As elaborated above, all forecast methods have some errors compared to the test set with the 

actual observations. We want to look into the data set to determine if any of the forecast errors 

can be explained by the data. Figure 7.1 displays the actual observations of the salmon price 

from 2019, which includes our forecast horizon.  

 

 
Figure 7.1: FPI 2019-2020. 

From Figure 7.1, it is possible to observe a sharp price fall from February 2020. At this time, 

the world experienced the outbreak of the Covid-19 virus, as elaborated in section 5.1. This 

virus outbreak led to reduced demands, thus reduced export and corresponding price fall. 

Further, in section 5.1, we discussed the import ban of salmon in Russia from 2014 was 

bypassed by importing through Belarus. However, this exception had been discussed to be shut 

down from the second half of 2019 and was finally closed down in January 2020, which is 

where the salmon price had a sharp fall in the time series. It is, therefore, reasonable to assume 

that this pandemic and political noise has affected the time series and the salmon price. The 

forecasting models we built seems to struggle to pick up such political and global noise, as it 

is not reflected on any of the variables used in this paper. Given that this assumption is correct, 

it is possible that the forecast models would have performed better in another time interval.  
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7.4 Limitations 
7.4.1 Sparse Data 

Perhaps the largest limitation of the study is the amount of scarce data. In the univariate 

methods, 176 observations are used, while the multivariate methods used 151 observations. 

The sparse data becomes more evident when one takes into account that a large number of 

parameters are added to the modelling. This is especially the case for multivariate forecasting, 

where lagged features remove the number of observations equal to their lag. Furthermore, the 

nested cross-validation is restricted, given that the training set should ideally start with more 

than half of the observations before rolling it towards the end of the training data. As a 

consequence, a limited amount of k-fold along time series is possible. In essence, the extent of 

the time series data might be inadequate to capture the fit in an optimal fashion.  

7.4.2 Variation 

In section 2.2.1.2 and 5.3, it was described and shown how especially FPI but also most of the 

explanatory variables exhibited strong and unequal levels of variation throughout the time 

series (i.e., highly volatile). This was, to some extent, accounted for using log transformation. 

However, what is not possible to incorporate is the random variation in the data caused by 

being subject to external factors such as weather, air quality, etc. Therefore, it is difficult to 

discount that despite the transformation, randomness will still have a lasting impact on the 

forecasts. This is especially the case with regard to multivariate forecasting, as briefly 

mentioned in section 7.1. The reason lies in the fact that multivariate models include 55 

independent variables.  

7.4.3 Inaccessible Variables 

In chapter 3, it was discussed which variables are most important when forecasting the FPI. 

However, additional features could be introduced for future analysis, which were unattainable 

at the time of writing. For instance, many potential variables were either not accessible or 

would have required an extraneous amount of manual data gathering or estimations, which 

itself would have taken months to complete. Examples of these include predictors connected 

to production in Chile, the second-largest producer after Norway. Data pertaining to Chilean 

production was often scattered, not recorded, or often held as company secrets, therefore 

unattainable for public usage. Another example would be to break down biomass based 

generational make-up of salmon population to provide an improved picture of short-term future 
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supply. However, such data was not to be found. Therefore, futures analysis could be improved 

by encompassing features currently unattainable, such as the ones mentioned above.  

 

7.5 Possible Improvement 
7.5.1 Sample 

A possible improvement for future analysis could be to introduce additional data. In section 

7.1, it was mentioned how it was not possible to add new data to the time series. However, this 

was only the case because of the number of variables included. One could potentially reduce 

the variables to a subset from which all the selected features had higher frequency data, the one 

alternative being weekly given the FPI. Although this could increase the amount of data, it 

would be at the expense of discarding predictors, which could have strong predictive power. 

For example, if the analysis were to include weekly observations, only futures prices, exchange 

rates, and index/prices for alternative proteins would be included. Following this example, the 

number of observations would increase to 764. The same would also apply to univariate 

models. Nevertheless, it would not guarantee improved accuracy, and it would defeat part of 

the aim of the thesis to include a diverse set of features to see which has strong predictive 

power.  

7.5.2 Consequences of the Delimitations  

In chapter 4, we elaborated on the characteristics of our forecasting methods and why we 

believed these methods would suit the dataset. However, from the forecast results and accuracy 

measures from the different forecasting methods, we are able to see that all models have some 

errors and are not capable of fully learning the seasonal- and trend patterns. This indicates that 

the dataset may not suit these forecasting methods as well as first thought. As mentioned in 

section 2.2.1.3, we chose to restrict this thesis to compare proven forecasting models from 

previous literature against unexplored forecasting methods. This thesis has therefore solely 

focused on the four forecasting methods, ETS, ARIMA, GAM, and LASSO, in addition to the 

benchmark forecast models, naïve and rwdrift with STL decomposition. As a consequence of 

our delimitation, it is possible that we have overlooked some forecasting methods which could 

have produced more accurate forecasts. An example would be a neural network, which is 

known for great computational power and advanced algorithms. However, one of the 

advantages of this method is that it is great at predicting when there is a large dataset provided, 
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which is not the case in our study. Secondly, a well-known disadvantage of the neural network 

model is the “black box” phenomenon, which means that the model has poor human 

interpretability of what the prediction is based on. And since we want to interpret the model 

and the variable importance, this model was not chosen. Methods like decision trees and 

random forest were also considered, but these models suit classification problems better than 

regression problems; hence they were rejected.  

 

As we have observed in the findings of this paper, the ARIMA model has performed quite well 

as a univariate model. The ARIMA model could also be used as a multivariate model in R. 

Implementing explanatory variables in the ARIMA model could increase the forecast precision 

of an already well-performing model. However, we have chosen to include the ARIMA model 

only as a univariate model and not multivariate, since we only want to explore the forecast 

methods chosen initially. The multivariate forecast method should, however, be included in 

future research. 

 

Based on the forecasting methods we chose to explore in this study and their strengths, we have 

chosen to restrict the forecasting horizon to a short to medium forecast, from 1 to 12 months 

ahead, thus choosing to not forecast for longer time periods, such as 2 and 3 years ahead 

forecast. Hence, a possible improvement could be to forecast for longer periods with either the 

forecasting methods chosen in this study or other methods that were not covered.  

 

A large part of multivariate forecasting was to decide on variables deemed to impact the FPI 

(see chapter 3). However, several potential variables were left out during this process. Given 

that they were thought to be of less importance and/or to avoid multicollinearity. The predictive 

power of the model is not reduced by collinearity, however, it will have a detrimental impact 

on the predictor interpretability. Hence, this thesis tried to leave out strong collinear variables, 

such as biomass measured in individuals versus the one used, which is biomass measured in 

tonnes, sea temperature at different depths, etc. Consequently, future research could try to 

incorporate or replace variables included in this analysis to study for disparate effect.  
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8 Conclusion 
The growth of the salmon industry has made it an integral part of the Norwegian economy. As 

a consequence, salmon farmers and participants along the value chain can gain considerable 

insight from forecasting the price of salmon and a greater understanding of the fundamental 

features with the strongest predictive power. Therefore, we set out to answer the following 

research question: Can the implementation of univariate and multivariate time series forecast 

methods create solid forecasts for the price of salmon 12 months ahead?  

 

Firstly, previously tried univariate methods were used with updated price information. These 

included autoregressive integrated moving average (ARIMA) and exponential smoothing 

(ETS) in addition to simple benchmark methods, naïve and rwdrift with STL decomposition. 

Secondly, two multivariate methods were applied, least absolute shrinkage and selection 

operator (LASSO) and generalized additive model (GAM). In this study, the Fish Pool Index 

(FPI) was chosen to represent the spot price of Atlantic salmon. The additional features 

included in the multivariate models were incorporated based on a thorough independent 

analysis, the Salmon Farming Industry Handbook, and consultation from Kontali Analyse AS. 

 

The general findings show that overall, both univariate and multivariate methods do not 

produce accurate forecasts over a 12-step horizon. Furthermore, the naïve benchmark and 

ARIMA outperform the multivariate models, with the exception of the first 2 months. Where 

naïve does better short-term, while ARIMA is superior medium to long-term. Among the 

multivariate methods, GAM showed smaller errors when compared to LASSO. This might be 

caused by the intrinsic non-linear relationship between several of the predictors and the FPI, 

which LASSO is unable to capture. Nevertheless, the results are a strong indicator that simpler 

univariate models are preferred with regard to the FPI. However, GAM and LASSO provided 

an improved understanding of the predictors most important to forecast the FPI for the 

respective methods. For instance, both models selected smolt release and temperature at lag 24 

and three, respectively. Although it is not an inference of causal relationships, it does provide 

a foundation for which additional research can be conducted. In essence, neither univariate nor 

multivariate methods provide adequate forecasts to solely base important strategic decisions. 

Consequently, industry participants would need to supplement with additional insight and 

analysis before making important long-term decisions.   
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The reasons for why the univariate models outperformed the multivariate are difficult to 

determine. However, several hypotheses are possible. Firstly, the scarce amount of data would 

seem to have a stronger adverse effect on GAM and LASSO compared to naïve and ARIMA, 

given the high ratio of parameters to observations. Furthermore, there seems to be a substantial 

amount of random variation in many of the variables, which is thought to have an accumulated 

negative effect on the multivariate models. Lastly, it is important to emphasize that many 

avenues of salmon forecasting remain unexplored, either with regard to the methods presented 

here or completely different approaches discussed earlier. It is paramount to continue 

researching in order to contribute invaluable insight in which salmon farming companies and 

other industry participants can base decision making. 
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10 Appendix 
A.1 Data Sources 
Kontali Analyse AS  

Kontali Analyse AS is a private company with a strong focus and expertise in the aquaculture 

and seafood industry. They generously provided data not accessible publicly; these include 

harvest volume (tonnes) excluding Norway, price of trout, consumption in EU, USA, Japan, 

and one for the remaining market. Our contact person in Kontali Analyse AS was Kunt Henrik 

Rolland.  

 

Fishpool 

Fishpool is an international salmon exchange based in Norway and owned by Oslo Stock 

Exchange. The company operates as a marketplace for the selling and purchase of salmon 

contracts. Used here was the average monthly spot price for 3-6kg head-on gutted. Historically 

the FPI has consisted of a weighted average from NASDAQ prices FCA Oslo and SSB custom 

export statistics. Throughout the years, it has also incorporated farmers selling price FOB and 

Fish Pool European buyers index to a varying extent. The weight distribution continuously 

changes, however, the NASDAQ salmon price index is the main weight. The forward prices 

are also pulled from here. 

Accessible at:  (Price history, 2020) & (Forward price history, 2020)  

 

Directorate of Fisheries 

The Directorate of Fisheries' mandate is to facilitate a sustainable and profitable fish industry. 

Our data on biomass (tonnes), smolt release (number of individuals), and harvest quantity 

monthly (number of individuals) basis was collected from their database. All the data is 

reported at the end of each month. Harvest is recorded by the number of individuals and could 

be converted into tonnes if multiplied by the average harvest weight of 4.5, followed by a 

division of 1000.  

Accessible at: (Aquaculture, 2020) 

 

Quandl 

Quandl is a company which provides data for business to make improved decisions. The data 

gathered was given as a beef value index of New Zealand/Australian exports.  
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Accessible at: (Beef; Australian and New Zealand, 2020) 

 

Index Mundi 

Index Mundi is a data portal that structures raw data into useful, structured data, making it 

accessible to anyone requiring information. Price on whole chickens was given in dollars/kg.  

Accessible at: (Poultry Daily Price, 2020) 

 

Saint Louis Federal Reserve 

The Saint Louis Federal Reserve Bank research division is a high-quality provider of top 

research on macroeconomics, applied microeconomics, and finance. Obtained here was the 

global price of lamb (largest exporter) in cents/pound monthly average, which was 

subsequently altered to dollars/kg. 

Accessible at: (Global price of lamb, 2020)  

 

Norges-Bank 

The Norwegian Central Bank stabilizes the Norwegian economy through the highest level of 

economic decision making. They also provide statistics about exchange rates (NOK/EUR) and 

NOK/USD. 

Accessible at: (Exchange Rates, 2020) 

 

Lusedata 

Lusedata is a service that provides valuable information to the aquaculture industry service. 

Data on sea temperature (Celsius) averaged across all Norwegian regions, average sea lice 

occurrences per salmonid, and sea lice treatment in percent of the total amount of salmonids.  

Accesible at: (Lusedata, 2020) 
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A.2 Descriptive Statistics 

 

A.3 Scenario Analysis 

 


