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Abstract 

This paper examines if Equinor can achieve a similar success as Ørsted did when it became 

the world’s first energy company to transform its energy output from fossil-based to 

renewables-based. This assessment is done through identifying the critical factors that enabled 

Ørsted’s success and discussing whether these same critical factors still carry the 

characteristics demonstrated throughout Ørsted’s transformation in Equinor’s impending 

transformation. The disclosing of the critical factors that enabled Ørsted’s success is conducted 

through a project-by-project analysis of the company’s offshore-wind projects relevant to its 

transformation. Here, we calculate the weighted average lifecycle IRR (LCIRR) of Ørsted’s 

entire offshore-wind portfolio to use as a foundation to seek out the drivers behind all aspects 

of IRR, i.e., revenue, costs, and investments, that contributed to the company’s success. Our 

analysis reveals that the root cause of Ørsted’s success was its first-mover advantage in 

offshore wind, as this permitted it to leverage the critical factors of strong governmental 

support to secure high and stable revenues, early-on know-how to reduce costs and an effective 

funding strategy to accelerate the growth of the company’s offshore-wind portfolio. By 

calculating the LCIRR of Equinor’s offshore-wind portfolio and analysing the characteristics 

of each critical success factor, we reveal that Equinor’s transformation will not achieve a 

similar success to Ørsted’s. A key finding is that the LCIRR of the relevant projects to 

Equinor’s transformation will be lower than that achieved by Ørsted. Consequently, in 

suggesting what Equinor may do to exploit the full potential of the company’s expansion in 

offshore wind, we look to the required returns. In this context, we find that Equinor currently 

does not benefit from the ESG investor sentiment and suggest that the company should do a 

spin-off to fully capitalise on its transformation from black to green.  
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1. Introduction 

Climate change, energy transitions and a small Danish energy company 

The global collective commitment to combat the threat of climate change was embodied in the 

Paris Agreement signed in 2016. Here, 189 nations across the world pledged, under the aegis 

of the UN, to keep the rise in global average temperatures below 1.5-2 degrees Celsius above 

pre-industrial levels. Hence, the energy transition is high on the global agenda, manifesting a 

path towards transforming the global energy sector from fossil-based to zero-emissions by 

2050. The vast extent of the policies put the EU on track to reduce emissions by 60% from 

1990 levels by the second half of this century (The Economist, 2019a). Furthermore, the 

commission estimates the need for an abundance of capital to combat climate change, in which 

an additional EUR 175-290 billion of investments will be needed every year, with significant 

contributions from private investors (European Union, 2019).  

Incidentally, the information presented above has become common knowledge. What is 

perhaps less known is the very company that has already executed a successful energy 

transition, starting its transformation almost a decade before the Paris Agreement was signed. 

The Danish energy company Ørsted (then DONG Energy) announced its major strategic shift 

in 2009 whereby the company sought to transform its energy generation from 85% fossil-fuel 

based to 85% renewables-based by 2040. To turn its business around, Ørsted invested 

aggressively in offshore wind and phased out oil and gas, and by 2019, the company had 

become the world’s largest producer of clean offshore-wind energy. The company also raised 

its renewable energy generation share to 86%, hitting its target 21 years ahead of schedule 

(Tryggestad, 2020). Since its Initial Public Offering (IPO) in 2016, Ørsted’s market 

capitalisation has more than quadrupled and outperformed its old oil and gas rivals.  

A global issue requires collective effort, which accordingly has put the oil and gas industry 

under increasing pressure from both governments and the public to participate in the energy 

transition. The response is sincere, and Rystad Energy (2020), an energy-consultancy 

company, predicts that the world’s oil majors are collectively poised to spend just over USD 

18 billion on specific renewable energy projects by 2025. Rystad Energy further predicts that 

Equinor, the Norwegian oil major, will contribute with 55% of the spending, underpinning the 

company’s commitment to its strategy to achieve carbon neutral operations by 2030, and to 
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reduce greenhouse gas emissions in Norway to near zero by 2050. As Equinor states, this will 

be achieved by increasing the company’s renewable energy capacity tenfold by 2026 from 

today’s levels and developing as a global offshore-wind major, while strengthening its 

industry-leading position on carbon-efficient production over the next 30 years (Rystad 

Energy, 2020).  

In this paper, we seek to understand the contributing factors to a company’s successful energy 

transition by assessing the transformation of Ørsted. As a natural extension to the emerging 

trends among oil majors, we then try to assess whether Equinor’s impending transformation 

can achieve a success similar to Ørsted’s. Our approach is therefore to uncover the factors that 

made Ørsted’s transformation a success and assess whether these same factors will enable a 

similarly successful transformation for Equinor. Lastly, we discuss measures Equinor can take 

to fully exploit the potential of the company’s impending energy transition. The particular 

emphasis of our thesis is the offshore-wind industry, which is the industry representing the 

replacement of traditional fossil-fuels for both Ørsted and Equinor.   

Research topic 

In this section, we briefly explain the motivation behind our choice of topic and the problem 

statement of our thesis.  

Motivation behind the choice of our topic 

Most reports from industry-players regarding the energy transition concern estimates about 

the future developments in the energy output. To mention some, BP, IEA, BNEF, Wood 

MacKenzie and DNV GL1 all provide an outlook on how the energy output will be over the 

coming years, and decades, where the consensus seems to be a shift towards more renewable 

energy sources. We, however, wish to add to this forward-looking perspective by directing the 

attention to a successful energy transition that has already happened. We argue that assessing 

an energy transition at a company-level provides insights into the aspects that allow for such 

a company transformation to be successful. 

 

1 BP Energy Outlook 2020, IEA Energy Outlook 2020, BNEF New Energy Outlook 2020, Wood MacKenzie 
Energy Transition Outlook 2020, DNV GL Energy Transition Outlook 2020. 
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Furthermore, we believe research on energy transitions is highly relevant, as evident from its 

position on the global agenda. Narrowed down to the impending transformation of oil majors, 

there seems to be no clear answer to how, and if, they will succeed. Of course, this depends 

on how one defines success, where we believe inspiration for such a definition could be found 

in previously successful transformations such as Ørsted’s. In this context, this thesis considers 

the financial success Ørsted achieved whilst transforming the company’s energy output from 

fossil-based to renewables-based.  

In addition, several political parties in Norway have suggested rapidly discontinuing all oil 

and gas operations on the Norwegian continental shelf, ascertaining a swift response to reach 

the climate goals. On the other hand, Equinor’s former CEO, Eldar Sætre, argued that such 

actions are unnatural and would be (economically) unwise as opposed to letting the reserves 

dwindle naturally (Sølhusvik et al., 2019). As implicit from this disagreement, alignment 

between financial success and success in terms of rapidly reducing emissions is not necessarily 

present in all suggestions about resolving the issue. In this context, we believe contributions 

seeking to identify potential for financial success in energy transitions assist by providing a 

more exhaustive understanding of the solutions to combat climate change. Without implying 

that we provide such an exhaustive understanding through this thesis, we believe a discussion 

of Equinor’s current tactic to reduce emissions at least contributes to the conversation.   

Problem statement 

With the motivations presented above, we have developed the following problem statement: 

Does Equinor’s commitment to renewable energy sources have the potential to achieve a 

similar success as Ørsted did when becoming the world’s first energy company to execute a 

transformation from black to green? In this context, we define Ørsted’s success as the ability 

to transform the company’s energy output from fossil-based to renewables-based, whilst 

creating shareholder value through a successful expansion in the offshore-wind market.  
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2. Ørsted’s journey from black to green 

In this section we describe the story of how Ørsted made the transformation from a fossil fuel-

based company to becoming a world leader in green energy and sustainable practices.  

Defining the period of Ørsted’s transformation  

Ørsted communicates that its transformation started in 2009, when management announced a 

major strategic shift pertaining to changing the company’s energy output from 85% fossil fuels 

to 85% renewable energy sources by 2040 (O’Sullivan, 2020). Although DONG,2 the 

predecessor of Ørsted, constructed its first offshore-wind farm in 1991, and as such pioneered 

the offshore-wind industry, 2009 ultimately marks the year of the strategic decision to 

transform the company from black to green. Furthermore, we consider 2019 to be the end of 

Ørsted’s transformation as this represents the year when Ørsted reached its goal of achieving 

85% renewable energy output. 

Pre-transformation: The company that needed to change 

In this section we provide a description of Ørsted’s business prior to its transformation, in 

order to understand the basis from which the company transformed. To illustrate the company 

prior to its transformation, we chose to assess the period spanning from the creation of DONG 

Energy in 2006 until 2008 which represents the final year before its aggressive 

transformational strategy was laid out.  

The company was originally called Danske Olie og Naturgas (DONG Energy) and was 

Denmark’s largest energy company at the time. DONG Energy was the result of a merger in 

2006 between the state-owned oil and gas company DONG and five companies within the 

energy generation and electricity sectors namely, Elsam, Energi E2, Nesa, Københavns Energi 

and Fredriksberg Forsyning. The merger was a consequence of the liberalisation of the Danish 

electricity and natural gas markets in 2004 which, as communicated by the company, “led to 

a break-up in the market with several large companies being put up for sale” (Ørsted, 2005). 

 

2 Throughout this section, we refer to Ørsted as DONG Energy when referencing the company before 2016.  
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As such, the merger created the new state-owned DONG Energy, marking a change from an 

exclusive oil and gas company to an integrated energy company.  

As a result of the merger, DONG Energy had bolted on operations within generation of power 

and heat in addition to distribution and sale of electricity and natural gas to the company’s 

existing oil and gas exploration and production (E&P) segment. As stated in the company’s 

annual report from 2006, its core segments had become: Generation, E&P, Sales and 

Distribution and Energy Markets. Exhibit 1 below highlights the revenue and profitability by 

each segment in the period extending from the creation of DONG Energy (2006) until the year 

when the transformation was initiated (2009).  

Exhibit 1: Breakdown of revenue and Earnings Before Interests Taxes Depreciation 
and Amortisation (EBITDA) by segment, DONG Energy 

 

Sources: Company reports  

As evident from the financial figures, total revenues increased steadily from 2006 to 2008, 

with EBITDA following the same development. Furthermore, Sales and Distribution 

accounted for the largest share of revenues, while Exploration and Production accounted for 

the largest share of EBITDA.  

Generation 

According to DONG Energy’s annual reports from the selected period, Generation produced 

energy from coal- and gas-fired power stations and renewable energy sources. In this 
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timeframe, DONG Energy was the largest energy producer in Denmark and the fifth largest 

producer on the Nordic power exchange, Nord Pool, in 2007 (Ørsted, 2007). Furthermore, the 

largest part of the company’s energy production came from its power stations, comprising 

between 86-89% of its total power production between 2006 and 2008. The power stations 

involved thermal power generation, which in essence entailed the burning of fossil fuels. To 

illustrate DONG Energy’s position as the leader in the Danish thermal power generation 

market, it is highlighted in the company’s annual report from 2008 that it accounted for 57% 

of the total thermal generating capacity that year. Notably, DONG Energy had increased its 

share of the total capacity from 45% in 2007. This production came from ten central power 

stations, nine small-scale combined heat and power (CHP) plants and six waste-to-energy 

plants. The company also explored opportunities for developing a major coal-fired plant near 

Greifswald in Germany, which would be able to supply 1.5 million households equivalent to 

2% of German consumption at the time. 

The remaining share of DONG Energy’s power production came from renewable sources, 

therein off- and onshore-wind turbines as well as hydropower. The renewable power 

production comprised between 11-14% of the power generation between 2006 and 2008. Of 

this, offshore wind comprised the largest portion of the renewable energy portfolio, indicating 

DONG Energy’s early presence in the market. As a merit to its increasing focus on renewables, 

DONG Energy began communicating details of its renewable assets in the annual report of 

2007. In this context, the company shares a breakdown of the capital expenditures within 

power generation for the year, showing that 71% was channelled to renewables. The following 

year (2008), this figure had decreased to 61%, but it is worth noting DONG Energy’s early 

expression of a growing focus in renewables to its shareholders.   

Exploration and production (E&P) 

DONG was a pure-play E&P company before the creation of DONG Energy in 2006, where 

no additions to this business segment were made in relation to the merger. The E&P segment 

explored for and produced oil and gas in Danish, Norwegian, UK, Faroese, and Greenland 

waters (Ørsted, 2006).  

DONG Energy conducted exploratory activities in all the aforementioned geographical areas, 

with the purpose of discovering new oil fields. Oil and gas production was solely situated on 

the Danish and Norwegian continental shelves between 2006 and 2008. The largest part of 
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DONG Energy’s production was tied to Danish waters in 2006 and 2007, before the production 

ramp-up at Ormen Lange in 2008 shifted the majority of the production to Norway. As 

revealed in the company’s annual report of 2008, Ormen Lange also represented a shift in the 

composition of DONG Energy’s oil and gas production. At the time, the field accounted for 

78% of the company’s reserves and upon reaching full production in 2010, DONG Energy’s 

gas production was expected to exceed the oil production solely due to the large gas volumes 

from this field. As such, the addition of Ormen Lange resulted in a significant uplift in DONG 

Energy’s production, in addition to representing a shift in the composition of its oil and gas 

production.  

Sales and Distribution  

As DONG Energy stated in its annual report of 2008, the business area Sales and Distribution 

was Denmark’s largest energy distributor at that time, holding a market share of 23% and 28% 

for the sale of power and gas, respectively. The energy was sold and distributed to end users 

such as private customers, companies, and public institutions. 

Gas and power sales were influenced by public regulation aimed to promote renewable energy 

sources. In this context, it was required that a share of the customers’ purchased gas or power 

came from renewable energy sources, so called “prioritised sources”. Furthermore, the system 

was designed in such a way that all electricity was sold on the free market to corresponding 

market-prices, except for the prioritised energy sources. These prices included a premium 

(Public Service Obligation) tied to the price, representing a special tariff (Danish Energy 

Agency, 2019). As such, DONG Energy’s sales within gas and power sales were divided 

between sales made at free market-prices and sales made at publicly regulated prices. Green 

energy volumes sold at the publicly regulated prices in 2008 were 15% and 52% within gas 

and power, respectively (Ørsted, 2008).   

The businesses of distributing power and gas were natural monopolies and were monitored by 

the Danish Energy Regulatory Authority (DERA). Moreover, the price per kWh for the 

distribution of energy reflected the cost of efficient operations plus a specified return on 

invested capital. As such, the earnings for this segment varied with the volume distributed but 

were independent of the developments in the power prices in the market. The same scheme 

existed for gas distribution, in addition to the operating costs being subject to mandatory 

annual reduction targets (Ørsted, 2008).  
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Energy Markets 

Energy Markets was DONG Energy’s hub for trading in the energy markets, focused on 

purchase and sale of gas and power in Northern Europe. As such, this division optimised the 

physical delivery of gas and power through combining diversified and flexible access to 

procuring energy with the opportunity to sell this energy via various sales channels.  

In terms of gas, the process for the intermediation of 108.394 GWh of gas is shown in Exhibit 

2 with figures from 2008, highlighting the sources the company used for supply and the users 

to whom it resold the gas to.  

Exhibit 2: Illustration of the sourcing and sale of gas for DONG Energy in 2008 

 

Sources: Company reports 

As seen from the illustration, DONG Energy used third parties for most of its sourcing in 2008. 

As such, DONG Energy was highly dependent on third parties to ensure delivery to end 

customers. Furthermore, the sourced gas was primarily re-allocated to Sales and Distribution 

before it was later sold to end customers. A smaller portion was used for consumption in the 

company’s own power stations.  

Power sales were a significantly smaller portion of the sales made by Energy Markets, totalling 

10.482 GWh. In turn, most of this was sold internally to Sales and Distribution, and the rest 

to regional distribution and trading companies in Germany (Ørsted, 2008). 

The transformation begins  

“Much More Green Power” read the heading of the segment related to energy generation in 

DONG Energy’s annual report of 2009. Coupled with deteriorating markets in its core 

segments due to the financial crisis, this year represented the time for vital strategic decision 

making that would set in motion the company’s journey from black to green. 
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DONG Energy envisioned that ensuring long-term value creation would depend on a transition 

to cleaner energy sources while securing adequate supply. This vision materialised in a 

strategy to focus on three key areas: More green power generation, growth in the natural gas 

portfolio, and optimisation of sales and distribution. 

More green power generation 

At the time, 15% of DONG Energy’s power and heat generation was based on renewable or 

CO2 neutral energy sources, while 85% was based on fossil fuels. Under the caption 85/15, 

the company pledged to flip the current ratio between fossil- and renewables-based generation 

around over a 30-year horizon. Achieving this would entail making major investments in its 

renewable energy capacity, and thus convert the power and heat generation from being 

predominantly coal-based to green and low-carbon based. Steps to achieving this had already 

been taken, where DONG Energy had increased its renewable energy capacity by 82% in 2009 

and decommissioned two coal-fired stations in 2008. The company also announced further 

decommissions of coal-based plants in 2010, which would result in an overall 25% reduction 

in coal-based station capacity. Furthermore, DONG Energy decided to abandon the 

exploration of building the major coal-fired plant in Greifswald and guided a strong wind farm 

pipeline with 700 MW under construction and 2,000 MW tied to projects under development 

compared to its existing portfolio of 811 MW (Ørsted, 2009; Ørsted, 2010). 

Growth of natural gas portfolio 

DONG Energy expected dwindling reserves of natural gas in the Danish sector of the North 

Sea, a region in which the company had traditionally sourced most of its natural gas supply. 

This, in addition to desiring independence from individual third-party suppliers, led the 

company to take several strategic measures related to cementing its position in the European 

natural gas markets. The company’s primary goal was expanding natural gas production from 

its own fields in Denmark, Norway and the UK. For instance, DONG Energy wanted to add 

new projects within equity production of natural gas to its existing Ormen Lange field by 

participating in more development projects in Norway. Moreover, the strategy was also based 

on securing long-term purchase contracts with international suppliers as well as taking co-

ownership in a terminal in Rotterdam for reception of liquefied natural gas (LNG). Lastly, the 

company communicated that purchases on European energy hubs would also be an important 

element in solidifying its position (Ørsted, 2009; Ørsted, 2010).   
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Optimisation of sales and distribution 

The last part of the strategy recognised the growing demand among end customers to use clean, 

cost-efficient and efficiently distributed energy. As a result, several steps were taken towards 

helping the end customers save energy and developing more efficient power grids. In 

particular, DONG Energy entered alliances with cleantech companies to provide solutions for 

more efficient energy use for homeowners as well as intelligent power grids allowing for 

monitoring power supply and consumption. In essence, the company wished to become as 

eco-friendly as possible through the entire energy value chain (Ørsted, 2009; Ørsted, 2010).  

Tackling financial meltdown and accelerating growth in renewables 

In the years following the 85/15 strategy, DONG Energy continued to expand its renewables 

portfolio underlining a capacity of 1,025 MW in 2011, compared to 811 MW in 2009. 

Moreover, the segmentation related to DONG Energy’s core areas of business had been 

divided into E&P, Wind Power, Thermal Power, Energy Markets and Sales and Distribution 

as of its annual report for 2011. As such, dividing the previous segment of Generation into 

Wind Power and Thermal Power, symbolically represented the divergence between its two 

operations within energy generation. 

In 2012, DONG Energy faced considerable financial challenges, partly due to a number of 

structural changes and losses in the gas market, a market in which the company had previously 

strategised for the growth of its business. Due to plummeting gas prices in the United States, 

DONG Energy recognised substantial losses on its long-term gas storage contracts, LNG 

capacity and gas-fired power stations. This had material adverse impacts in the E&P 

department of DONG Energy’s business. As the company had already made significant 

investments in Wind Power in addition to E&P, this led to the deterioration of the earnings-

to-debt ratio. Moreover, the low earnings-to-debt ratio made it difficult to pay for the offshore-

wind expansion, and when Standard & Poor’s downgraded DONG Energy’s debt, the 

company went into crisis mode (Reguly, 2019). Consequently, the company’s basis had to be 

restored if it was to continue the transformation. Thus, the company decided to get rid of eight 

businesses over the next years, including all the gas businesses, hydro, and the waste-fired 

power plants. DONG Energy decided to concentrate on offshore wind, oil and gas, and 

biomass conversions of CHP plants, in addition to continuing investing in the Group’s Danish 

electricity and gas distribution networks (Ørsted, 2019a).  
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Simultaneously, the so-called Danish buildout policy had created a dedicated offshore-wind 

energy industry during the past years, where developers were becoming more efficient, 

evidenced by their ability to complete projects with fewer delays and on budget. Due to the 

emerging political demand for climate action and new EU targets, DONG Energy and other 

wind developers were receiving governmental support through favourable subsidies. 

However, the whole industry came under financial pressure from the UK government in 2012 

to reduce costs for offshore-wind energy to ensure continued political support. The average 

levelised cost of electricity,3 a comprehensive measure reflecting the electricity price that 

justifies the cost of capital, of offshore wind had been EUR ~90-167 per MWh during the 

period from 2002 to 2011. Nevertheless, DONG Energy was the first to propose a cost 

reduction target of driving the levelised costs of offshore-wind energy to EUR 100 per MWh 

by 2020. Similarly, the UK government set a target of GBP 100 per MWh, which was later 

adopted as an industry-wide target in the UK. The offshore-wind developers were therefore 

receiving renewed governmental support, and the support was indeed a key to developing the 

renewable energy industry further. For offshore-wind energy alone, the cost in Europe dropped 

by 63% in the period from 2012 to 2018, thus making offshore-wind energy cheaper than coal, 

gas and nuclear-based power generation (Ørsted, 2019a).  

Furthermore, the company formulated a financial action plan, including a comprehensive 

program of divestment of non-core assets and a reduction of the ownership interest in core 

activities. The latter followed a so-called farm-down model, whereby the company entered 

partnerships by divesting ownership in existing projects to institutional investors to secure 

capital and share risk. DONG Energy’s CEO of Offshore Wind, Martin Neubert, told 

McKinsey in an interview that the multiple ongoing projects in the UK needed funding, though 

raising debt for each project was not preferable considering the company’s group-level 

funding strategy. Besides, Neubert argued that partnering with electric utilities was too 

complicated as these companies had their own asset portfolios and strategies. DONG Energy 

needed financial partners that could deliver capital and manage their investments while relying 

upon the company’s experience in constructing and operating offshore-wind projects. As such, 

the company’s experience coupled with the predictable and stable returns from tariff-based 

 

3 The formula for levelised cost of electricity is provided in Appendix C, and we will cover this concept in more 
detail in Section 3.  
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revenue streams ensured high demand from institutional investors. The funding model was 

revolutionary for the offshore wind industry, and the structure DONG Energy innovated 

became widely adopted among other participants (Tryggestad, 2020).  

Another key element of the action plan was the decision made in 2013 to inject DKK 11 billion 

in additional equity from Goldman Sachs, the Danish pension funds Arbejdsmarkedets 

Tillægspension (ATP) and PFA Pension Forsikringsaktieselskab (PFA). The equity injection 

gave the investment bank an approximately 17.9% stake in DONG Energy, while ATP and 

PFA acquired 4.8% and 1.8% respectively (Ørsted, 2013). According to the former CEO of 

DONG Energy Henrik Poulsen, the action plan was designed to restore the company’s 

financial platform, and stated “with the injection of new equity, we have almost fully delivered 

on our financial action plan and have thus secured the necessary platform for pursuing our 

ambitions for the coming years” (Ørsted, 2013). The deal was heavily criticised and caused a 

split of the ruling coalition in Denmark (Levring & Wienberg, 2014). Moreover, the equity 

injection reduced the Danish State’s ownership in DONG Energy from 81.1% to 58.8% (Bøss, 

2019). 

In 2014, 15% of Europe’s electricity generation was based on renewable energy, compared to 

only 2% of total generation in 2000. For DONG Energy, renewable energy contributed with 

46% to the Group’s total electricity and heat generation. Moreover, the year marked a 

breakthrough with respect to securing the pipeline which would lead to realising the target of 

a total installed offshore-wind capacity of 6.5 GW in 2020. As DONG Energy states in its 

annual report of 2014, the deciding factor was the award of subsidies for the three UK 

offshore-wind projects, Burbo Bank Extension, Walney Extension and Hornsea. Moreover, 

the company highlights that in previous years, exploration results had been disappointing. 

This, together with lower oil and gas prices, delayed development projects and changes to the 

national tax rules, resulted in a downward adjustment of the return on capital employed 

(ROCE) target for the E&P business from 20% to 12% on average for the period from 2015 

to 2020. Consequently, as communicated in the Ørsted’s annual report of 2014, the company 

accelerated the growth in renewables by investing a total of DKK 7.8 billion in expanding its 

wind activities in 2014 and was guiding further investments of DKK 35-40 billion over the 

next two years. 
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Continuing to transform the company 

DONG Energy’s strategic direction to transform the company from one of the most coal-

intensive oil and gas companies in Europe to a global leader in renewable energy finally 

received confirmation when the world leaders in Paris signed the first global agreement ever 

to limit the emission of greenhouse gases in 2016. Therefore, the company announced an IPO 

before the end of first quarter in 2016, and the Danish State decided to maintain a majority 

shareholding in the company of 50.1% (The Economist, 2019b). Goldman Sachs retained a 

13.4% stake in the IPO and gradually sold all its shares during 2017 (Environmental Finance, 

2017). Furthermore, DONG Energy decided to keep the oil and gas as part of the planned IPO 

and use parts of the cash flows to fund investments in renewable energy. The IPO was planned 

to provide the company with the flexibility and access to equity to fund growth, as well as 

providing institutional and retail investors the opportunity to take part in the company’s green 

transition (Ørsted, 2016a).  

In 2016, DONG Energy doubled its earnings from Wind Power to DKK 11.9 billion, which 

for the first time exceeded earnings from oil and gas production. Additionally, the company 

sought to become more international by constructing and operating offshore-wind farms in 

Denmark, the UK, Germany, and the Netherlands, while also exploring new projects in the 

US and Taiwan (Ørsted, 2016). The IPO was completed in June 2016 at a price of DKK 235 

per share, leading to a market capitalisation of DKK 98.2 billion, and consequently became 

the largest IPO in Danish history (Bøss, 2019). Following the IPO, the company decided to 

divest its oil and gas production activities, in addition to phasing out the coal business by 2023. 

Investing in the conversion of its domestic heat and power plants enabled the company to 

move away from coal toward biomass (Ørsted, 2016). To emphasise the metamorphosis, the 

company decided to change its name to Ørsted in 2016 after the world-renowned Danish 

scientist H.C. Ørsted (Ørsted, 2017). When Ørsted reached its goal of achieving above 85% 

renewable energy generation in 2019, it marked the completion, and success, of the company’s 

strategy to transform the company from black to green. Astonishingly, this achievement took 

the company 10 years, as opposed to the planned horizon of 30 years. Ørsted’s new target was 

now to increase the green share of power and heat generation to at least 95% in 2023, in 

addition to creating a carbon neutral power generation in 2025 (Ørsted, 2019a). 
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Exhibit 3: Share price development for Ørsted and selected oil majors 

 

Source: Yahoo Finance 

Since 2018, Ørsted’s stock price has more than tripled and has outperformed all the oil majors, 

and thus previous rivals, included in Exhibit 3 above, ultimately giving the company a 

valuation of EUR 58.4 billion as of 4th December 2020. That is more than Equinor, which on 

the same date had a market capitalisation of EUR 44.5 billion. Ørsted’s 10 GW of wind and 

solar make its operational renewable energy portfolio the fifth largest in the world (Storrow, 

2020).   
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3. The critical factors to Ørsted’s successful 
transformation 

In this part we will assess the critical factors in Ørsted’s success. We will first address the 

developments in Ørsted’s renewable assets to illustrate that offshore wind was the renewable 

segment that contributed to its successful transformation. Subsequently, we will address the 

critical factors in Ørsted’s success in this segment and analyse how these have developed from 

when Ørsted decided to transform (2009) until the completion of its transformation in 2019. 

The renewable energy segment that transformed the company 

A crucial part of Ørsted’s transformation was the significant expansion of its renewable 

portfolio. As emphasised in its 85/15 strategy, this would allow the company to reach its goal 

of securing energy supply, whilst reducing its CO2 emissions (Ørsted, 2009). Furthermore, 

Ørsted’s renewables portfolio as of 2020 consisted of approximately 90% offshore-wind 

assets, clearly indicating where the company chose to direct its focus in terms of renewable 

energy generation. Moreover, we note that commercial onshore instalments, either wind or 

solar, did not occur until July 2017 in the US, with Amazon Wind Farm Texas. This confirms 

that offshore wind was the renewable energy segment that contributed to the company’s 

transformation. Consequently, a brief discussion of why Ørsted chose to expand in this 

segment, and a detailed description of how this market has developed, will be provided in the 

following paragraphs.  

In broad terms, we believe that the planned interplay between governments as financial 

supporters to the industry and Ørsted, as well as the company’s position as the global leader 

in offshore wind, were the most important factors in relation to choosing the strategic direction 

of offshore wind in 2009. The importance of the interplay is confirmed by Ørsted itself in its 

report Making green energy affordable from 2019, where the company emphasises that 

political support, funding of public research and dedicated offshore-wind policies created 

long-term market outlook, enabling industrial developers to take the leap and commit to 

developing offshore-wind parks on an unprecedented scale. Furthermore, the key reasons the 

policymakers presented in relation to expanding offshore over onshore wind, can be found in 

the Danish Energy Agency’s report Danish Experiences from Offshore Wind Development 

from 2017. The agency suggested that moving offshore, despite the higher costs compared to 
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onshore, would facilitate far better wind conditions and circumvent the problem of scarcity of 

available land (Danish Energy Agency, 2017). These advantages were also identified in 

academic research by Esteban et al. (2010, pp. 447-449), where the authors present both 

factors as reasons for why offshore-wind energy could be more beneficial than onshore. In 

addition, Ørsted had the largest share of installed global offshore-wind capacity in 2009 and 

reaffirmed its position as the global market leader in the annual report of that year (Fichaux et 

al., 2009). The company stated that pioneering the offshore-wind industry with Vindeby in 

1991 had provided unique and extensive knowledge both in the construction and operation of 

wind farms, unmatched by any other company in the world (Ørsted, 2009). 

Throughout Ørsted’s transformation, Europe was at the forefront of the offshore-wind industry 

in terms of installed capacity (Wilson, 2020). As we show in Exhibit 4 below, the European 

market grew tenfold between 2009 and 2019, and was dominated by the UK in terms of 

installed capacity. As The Economist (2019c) states, the boom in the UK was due in part to 

geography, with high winds and shallow seas, and in part due to policy.  

Exhibit 4: Total installed capacity in Europe by country 

 

Source: WindEurope 

Upon breaking the European market down further, we see that Ørsted had the largest market 

share in terms of installed capacity, albeit declining as the market developed, as shown in 

Figures A.1 and A.2 in Appendix A. Furthermore, we note that the stiffer competition over 

the most recent years not only includes other pure-play renewable companies, but also energy 

giants such as BP, Equinor and Royal Dutch Shell (The Economist, 2019b). The number of 
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new entrants over the years, combined with the decreasing share of the largest five4 offshore-

wind farm owners, serves as an indication of the increased competitiveness in the industry.   

In assessing Ørsted’s portfolio, it is evident that the company had the largest share of installed 

capacity in the UK throughout its transformation, followed by Germany, representing the same 

geographical footprint as for the European market as a whole, as shown in Exhibit 5 below. 

We note that the pipeline of Ørsted, however, is globally oriented with additions planned in 

Taiwan and especially the US. In Europe, Ørsted will continue to add significant capacity in 

the UK and Germany.  

Exhibit 5: Ørsted's offshore-wind portfolio divided by country 

 

Source: Ørsted’s Asset Book 

From this part of our analysis, it is clear that Ørsted chose to focus on an expansion in the 

offshore-wind market to transform the company, broadly due to the governmental interplay 

and the unique expertise of the company. Moreover, we have provided some preliminary 

insights to the developments in the markets where Ørsted participated, where the analysis so 

far reveals tendencies to maturation during the company’s transformation.  

 

4 This is shown in Figure A.2 in Appendix A. The largest five offshore-wind farm owners in 2019 were: Ørsted, 
Vattenfall, RWE (before acquisition of E.ON’s assets), E.ON (before sale of assets to RWE) and Macquarie 
Capital.  
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Identifying the critical factors to Ørsted’s successful transformation 

To provide a comprehensive view on the historical profitability of Ørsted’s offshore-wind 

projects, we have calculated the capacity weighted Life Cycle Internal Rate of Return 

(LCIRR)5 for Ørsted’s projects, shown in Exhibit 6 below. A detailed description of the 

assumptions related to the financial model we have developed to calculate this figure is 

provided in Appendix D. As our project-by-project analysis reveals, the historical LCIRR 

(1991-2020) has been approximately 10.2%. By comparison, Ørsted guides an LCIRR of 7-

8% for future projects (Ørsted, 2019b). Split by country, we see that especially projects in the 

UK have historically seen the best offshore-wind economics, with above 14% LCIRRs on 

average. In order to uncover the critical factors that contributed to Ørsted’s success, we 

provide a thorough analysis of the developments in the drivers behind each of the key financial 

items related to IRR, i.e., revenue, costs, and investments, in the following paragraphs.  

Exhibit 6: Ørsted’s capacity weighted lifecycle IRR (LCIRR) by country (1991-2020) 

 

Sources: Own calculations, company reports and Ørsted’s Asset Book 

 

 

5 As for any portfolio, weighing the assets with respect to their lifetime would give an even more comprehensive 
indication of the aggregated returns one can expect the portfolio to generate. However, because we assume that 
every project has the expected lifetime of 25 years, it would not provide any additional insight in this particular 
case.  
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Revenue 

In the countries of Ørsted’s offshore-wind projects, governments have traditionally offered 

backing to renewable energy generation through promotion schemes that materialises as 

higher and long-lasting revenue for the projects. This is due to the fact that the support 

mechanisms have been aimed at combining high demand for renewable energy with 

favourable prices through tariffs (Held et al., 2014). As such, the revenue, and thus the 

financial performance of Ørsted’s wind farms, has been highly reliant on achieving favourable 

prices on long contracts and demand through governmental support. This fact is described 

through Ørsted repeatedly attributing much of the growth in the offshore-wind industry to the 

governmental support mechanisms, adequately expressed thus: “The development of offshore 

wind power over the past three decades was made possible by the constructive interplay 

between visionary policymakers6 and industry” (Ørsted, 2019a). To that extent, we will 

analyse whether the government support schemes represent a critical factor in Ørsted’s 

successful transformation in the following paragraphs. This is approached through 

categorically analysing the developments in the support schemes of each country in which 

Ørsted had offshore-wind projects throughout its transformation. 

Before we describe the developments in the governmental support schemes, we provide a 

summary description of the subsidy schemes in Exhibit 7. In addition, we also provide an 

overview of the average tariff-prices related to, and average duration of, Ørsted’s subsidy 

agreements separated by country in Exhibit 8. In Europe, where Ørsted predominantly 

established offshore-wind farms during its transformation, the company achieved the highest 

tariff-prices in Germany, followed by the UK. However, the duration of Ørsted's tariff-

agreements was the lowest in Germany, and the highest in the UK. Moreover, Ørsted has 

achieved higher tariffs, on average, in both Taiwan and the US compared to Europe, with the 

US marking the longest tariff-duration of 20 years.   

 

 

6 Governmental policymakers. 
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Exhibit 7: Overview of the subsidy schemes relevant to Ørsted’s transformation 

 

Notes: 1) Purchasing Power Agreement (PPA): Legal contract whereby a developer sells a 
project’s power to a buyer for a prespecified price. 2) Offshore Renewable Energy Credits 
(ORECs): Each credit represents 1 MWh of energy and other attributes generated from an 
offshore- wind energy project (Musial et al., 2019).  

 

Exhibit 8: Capacity weighted average tariff-prices and duration of Ørsted's subsidies 

 

Source: Ørsted’s Asset Book 
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United Kingdom 

Before describing the specific governmental support schemes employed in the UK throughout 

Ørsted’s transformation, we present a comparison between the UK day-ahead electricity 

prices7 and Ørsted’s achieved tariff-prices in Exhibit 9 below. In our view, the extensively 

higher tariff-prices relative to the market-prices, emphasise their importance in relation to 

Ørsted’s revenue in the UK, and indicate their importance as contributors to the high LCIRRs 

Ørsted’s UK-projects achieved.  

Exhibit 9: Market-prices for electricity (day-ahead prices) and Ørsted's achieved 
tariff-prices in the UK 

 

Sources: Own calculations, NordPool and Ørsted’s Asset Book 

The UK has historically relied on Renewable Obligations Certificates (ROCs) as the main 

support mechanism for promoting generation of renewable energy (OFGEM, n.d. a). In turn, 

offshore wind has obtained the largest support among renewable energy sources, as this was 

the most capital-intensive industry compared to solar and onshore wind (The Economist, 

2019c). Exhibit 10 illustrates the developments in the ROCs from 2002 until today. This shows 

that the required proportion of green energy supplied has increased together with the buyout 

 

7 Day-ahead electricity prices are the comparable market-prices to Ørsted’s tariffs, as they represent the 
alternative prices at which Ørsted would have sold electricity without tariffs (M. Bjørndal, personal 
communication, 27th October 2020). In this analysis, the prices used in Europe are gathered from NordPool. 
Further details about the day-ahead electricity prices are provided in Appendix B. 
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price to the buyout fund. As a consequence, projects commissioned under the ROC scheme 

continuously received higher tariff-prices for the energy generated. 

Exhibit 10: Developments in ROC buyout price and required proportion of supply 
from renewables in the UK 

 

Source: Office of Gas and Electricity Markets (OFGEM)  

Since 2013, the UK has progressively replaced the ROC scheme with the Contracts for 

Difference (CfD) scheme. This change represents a transition from government-directed 

allocation of subsidies (ROCs) to an auction-based system in which the participants with the 

lowest bid win the subsidy (CfD) (Ørsted, 2016b). In essence, the intended effect of fixed 

revenue streams provided by a fixed strike-price was to lower the cost of capital for the 

investors and minimise electricity costs for the consumers (Department for Business, Energy 

& Industrial Strategy, 2017a).  

The competitiveness related to the CfD scheme has resulted in a drastic reduction in the strike-

price that energy generators can obtain, as shown in Exhibit 11. Thus, the development of 

more competitive schemes may have marked a shift in the UK offshore-wind market, where 

renewable energy generators no longer could rely on subsidies to attain high and stable 

revenues. This notion, however, was challenged by the CEO of offshore wind in Ørsted, 

Martin Neubert, in an interview with BNEF in 2017. His response to how the absence of a 

stable revenue stream from the zero-subsidy bids won by DONG Energy in Germany’s 
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offshore-wind auction would impact the company’s farm-down model (funding strategy) was 

that investors were still willing to take on board a certain amount of merchant price risk as 

“The revenue of U.K. projects built using ROC certificates have a significant merchant price 

element already” and that a shift to zero-subsidies was “[...] not like we have a complete 

paradigm shift here” (Collins, 2017). We, on the other hand, argue that there is a substantial 

difference between zero-subsidies and the ROC scheme, due to the fact that the latter involves 

an additional revenue stream from selling ROCs to non-renewable energy suppliers. This rests 

on the fact that the buyout price for an ROC in 2017 was GBP 45.58 per ROC, which, when 

multiplied by the 8.5 million ROCs Ørsted generated that year, leaves a total ROC-value to 

Ørsted of approximately GBP 387 million.  

Exhibit 11: Market-prices for electricity (day-ahead prices), average strike-prices 
and Ørsted’s achieved strike-prices of CfD auctions in the UK 

 

Sources: NordPool, National Audit Office, Department for Business, Energy & Industrial 
Strategy  

As previously shown in Exhibit 5, the largest share of Ørsted’s offshore-wind projects was 

located in the UK. Of these, 11 projects were commissioned under the ROC scheme, while the 

remaining four were under the CfD scheme. In capacity terms, this translates to a 60% share 

subsidised through ROCs, while the remaining 40% was subsidised through CfDs. Ørsted’s 

capacity subsidised through ROCs received consistently high revenue, due to high and stable 
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tariff-prices relative to the market-price. Conversely, assessing the strike-price developments 

throughout the CfD auction rounds in Exhibit 11, indicates that the competitiveness has started 

to materialise as convergence between the strike- and market-prices. It is worth noting, 

however, that the first CfD auction round resulted in strike-prices that were relatively high 

compared to the subsequent rounds due to far less competition. As such, tariff-prices achieved 

through competitive bids in earlier CfD rounds were similar to the tariff-prices allocated 

through ROCs. This is shown in Exhibit 11, which also highlights that the sample of Ørsted’s 

projects that participated in the so-called early auctions in 2014, that is, before the official 

auction rounds were initiated, achieved far higher strike-prices than the one participating in 

auction round 2 in 2017. In fact, the tariff Ørsted achieved for Hornsea 2 in 2017 matched the 

level of the market-prices.    

Denmark 

As for the UK, Exhibit 12 below illustrates that Ørsted received tariff-prices that exceeded the 

market-prices in Denmark, highlighting the importance of government support for Ørsted’s 

revenue in Denmark as well.  

Exhibit 12: Market-prices for electricity (day-ahead prices) versus Ørsted's achieved 
tariff-prices in Denmark 

 

Sources: Own calculations, NordPool and Ørsted’s Asset Book 

In Denmark, the type and size of financial support provided to offshore-wind farms depend on 

when the permit for the construction and operation of the wind farm was granted. For offshore-

wind farms constructed both prior to, and through the government tender procedure in 2004, 

financial support was typically provided in the form of a fixed Feed-in-Tariff (FiT) (Ørsted, 

2016b). The FiT varies from project to project as it is based on the lowest price offered by the 
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winning tenderer. The size of the price supplement is calculated as the difference between the 

FiT and the market-price. Moreover, the cost of the price difference has primarily been borne 

by consumers through a PSO (Public Service Obligation) tariff on their energy bills (Ørsted, 

2016b). However, the Danish government announced in 2016 its intention to abandon the PSO 

tariff, as the tariff violated EU rules because foreign producers did not receive the same PSO-

funded support as Danish producers (The Local, 2016).  

Furthermore, Ørsted operates three wind farms under the FiT subsidy scheme, Nysted 2, Horns 

Rev 2 and Anholt, illustrated in Exhibit 12. The FiTs achieved by Ørsted are well above the 

average market-prices for electricity, where Anholt stands out with an FiT of EUR 141 per 

MWh on the 400 MW wind farm. This marks the highest fixed price received on a Danish 

wind farm and was a result of only one developer ending up bidding. The reasons behind the 

modest competition include a lack of publication of the leasing round, a high number of 

opportunities elsewhere (in the UK), tight delivery timescales and a perception that non-

Danish utilities would not be able to compete with Ørsted. As the second bidder was required 

to take over the tender with unchanged time planning, this entailed a considerable risk to 

investors (Shukla et al., 2014). When excluding the Anholt project, the remaining offshore-

wind farms awarded to Ørsted receive relatively modest tariff-prices compared with the UK. 

Part of the reason behind this was that the Danish government undertook substantial 

development work in advance of sites being leased, including geotechnical studies, wind 

resource assessment and environmental surveys. Upon completion of the substantial 

development work, the government then auctioned of the areas to the lowest bidder. In turn, 

this approach effectively de-risked the projects to the developer, which eventually led to lower 

tender prices (Shukla et al., 2014).  

Nevertheless, Ørsted has two wind farms established on the basis of the Feed-in-Premium 

(FiP) scheme, Horns Rev and Avedøre Holme. As the FiP is directly tied to the electricity 

market-price, Ørsted is rewarded when market-prices increase, and penalised when the prices 

drop. 
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Germany 

Repeating the comparison of tariff- versus market-prices in Germany illustrates the same 

importance for Ørsted’s revenue in Germany as for the UK and Denmark, shown in Exhibit 

13 below.  

Exhibit 13: Market-prices for electricity (day-ahead prices) versus Ørsted’s achieved 
tariff-prices in Germany 

 

Sources: Own calculations, NordPool, Ørsted’s Asset Book 

In 2000, Germany introduced the so-called Renewable Energy Sources Act (EEG) in order to 

facilitate the growth of renewable energy generation. However, since 2000, the EEG has 

changed substantially and has moved from a traditional FiT regime, where governments 

allocate the subsidies, to a regime where the price is set by the lowest bid in the auction 

(Ørsted, 2016b). Moreover, Ørsted entered the German offshore-wind market in 2015, and 

currently operates four offshore-wind farms awarded under the traditional FiT subsidy 

scheme. These projects receive one price for an initial eight-year period, and another price for 

a subsequent two-year period. Additionally, the government provides a “price floor” of EUR 

39 per MWh for up to 20 years after the subsequent period expires (Ørsted, 2016b). 

Furthermore, offshore-wind farms have the option of choosing between two financial support 

schemes, the “standard model” and the “acceleration model”, which is only available for 

offshore-wind farms commissioned prior to 1st January 2020 (Ørsted, 2016b). For instance, 

Ørsted’s Borkum Riffgrund 2 is using the acceleration model, where the applicable rate during 

the initial eight-year period is EUR 184 per MWh, and the subsequent two-year period EUR 

149 per MWh. To illustrate the effect of competitive auctions, Ørsted’s two latest projects 
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were awarded as competitive bids, whereby Borkum Riffgrund 3 became the first zero-subsidy 

bid in its offshore-wind portfolio (Ørsted, 2020).  

The Netherlands 

Ørsted only has one project in the Netherlands, Borselle 1&2 commissioned in April 2020, 

which, as for every other country assessed so far, achieves a beneficial tariff-price compared 

to the market-prices. This is shown in Exhibit 14 below.  

Exhibit 14: Market-prices for electricity (day-ahead prices) versus Ørsted’s achieved 
tariff-prices in the Netherlands 

 

Sources: Own calculations, NordPool and Ørsted’s Asset Book  

The main financial support instrument for renewable energy in the Netherlands is the so-called 

SDE+ premium feed-in scheme, which offers a premium for 15 years plus one year from the 

first SDE subsidised kWh production. Pursuant to this scheme, an estimate of the cost price 

(divided per technology) is made, and generators are compensated for the difference between 

this cost price and the actual market-price, representing the premium. In addition to the SDE+ 

scheme, investments in renewable energy technologies are supported via loans and certain tax 

benefits (Ørsted, 2016b).  

Moreover, Borssele 1&2 were the first two tenders that took place in 2016, which received an 

FiT of EUR ~73 per MWh for 15 years. Due to the centralised and competitive auction format, 

the Dutch government’s 40% cost reduction requirement for the entire period of 2015 to 2019 

was achieved in the first tender (Weijden, 2016). Therefore, the Dutch government decided to 
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allow submission of subsidy-free bids in the third tender. One reason for the success of 

subsidy-free offshore-wind projects in the Netherlands was the government-funded 

development of sites and transmission structure. Additionally, strong competition among 

offshore-wind developers encouraged innovation and new technology, which eventually 

facilitated further cost reductions (Brun et al., 2019). 

Taiwan 

As Exhibit 15 below highlights, Ørsted’s only Taiwanese project also receives a tariff-price 

that surpasses the market-prices. We emphasise that even though we only highlight the annual 

electricity prices8 in Taiwan, the high price-differential illustrates the impact of subsidies on 

Ørsted’s revenue in this location as well (Taiwan Power Company, 2020). 

Exhibit 15: Market-prices for electricity (day-ahead prices) versus Ørsted's achieved 
tariff-prices in Taiwan 

 

Sources: Own calculations, Taiwan Power Company, Ørsted’s Asset Book, GWEC 

Taiwan is in the early phases in terms of renewable energy developments, whereby Ørsted 

established the first commercial scale demonstration project, Formosa 1, back in 2017. Taiwan 

operates with an FiT scheme, where generators are awarded a fixed price for a 20-year period 

 

8 The electricity price used for Taiwan is provided by the Taiwan Power Company (Taipower), which only 
distributes annual figures for the lighting and power electricity prices. More details regarding this are provided 
in Appendix B.  
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(or two consecutive 10-year periods) through a PPA with the Taiwan Power Company 

(KPMG, 2018).  

Since commission of Formosa 1, the FiTs in Taiwan have continuously been reduced, as 

shown in Exhibit 15, although remaining substantially higher than the market-price. In 

addition, Taiwan also introduced a production cap for renewable energy in 2019, effectively 

reducing the load factor, i.e., how much the wind farm generates relative to its total capacity, 

at the producing offshore-wind farms. In relation to Ørsted, this created complications in terms 

of reaching a final investment decision on the giant Changua project. As Ørsted stated at the 

time: “We will now collaborate closely with the supply chain to mitigate the adverse impacts 

from the production cap and the reduced feed-in-tariff with the objective of making the 

projects investable” (Ørsted, 2019c).  

Due to the mature wind market in Europe, including zero-subsidy bids in Germany and the 

Netherlands, Ørsted entered the Taiwanese market as a response (Jacobsen, 2017). Taiwan is 

viewed as a key growth opportunity for European companies, such as Ørsted, as the country 

has a growing industrial sector that uses enormous amounts of electricity (White & Hook, 

2019). 

United States 

It is worth mentioning that onshore-wind assets constitute the significant portion of Ørsted’s 

involvements in the US, where six of seven operational wind farms are onshore. Every onshore 

project is under the so-called production tax credit (PTC) scheme, working as a tax-write-off 

for eligible wind power producers. As Ørsted does not pay tax in the US, the company enters 

“tax equity” partnerships with US-based investors to utilise the benefits (Ørsted, 2018a). 

However, this scheme does not apply for Ørsted’s offshore-wind projects, leaving a more 

thorough assessment beyond the scope of this analysis. A more detailed description of this 

scheme is, however, provided in Appendix G as it is relevant to the valuation of Ørsted’s total 

renewables portfolio. 
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In Exhibit 16 below, we show the price-differential between the tariff-price of Ørsted’s only 

project in the US, Block Island, and the average market-prices9 in the state of Rhode Island. 

Evidently, Ørsted benefits from a high price-differential in the US as well.  

Exhibit 16: Market-prices for electricity (day-ahead prices) versus Ørsted’s achieved 
tariff-prices on Rhode Island in the US 

 

Sources: Own calculations, ISO New England (ISO-NE)   

For offshore wind, the US has traditionally employed support schemes to lower the initial 

investments for offshore-wind facilities through investment tax credits (ITCs), in addition to 

securing high and stable revenue through offtake agreements. The investment tax credit allows 

offshore-wind facilities to receive a 30% of capital expenditure investments tax credit (U.S. 

Department of Energy, 2018). According to the US Department of Energy, the tax credit is 

crucial for offshore-wind projects as the investment cost of starting a project is especially 

capital-intensive compared to other renewable energy sources (U.S. Department of Energy, 

2018). Furthermore, the offtake agreements are negotiated contracts for the delivery of 

electricity to individual states in the US by an individual offshore-wind project’s electrical 

generation. These agreements are awarded to US energy generators through competitive 

bidding procedures (Beiter et al., 2020).  

 

9 The market-prices in Rhode Island are comparable to Block Island’s tariff-prices, as Ørsted’s offtake agreement 
(PPA) is with the state of Rhode Island. As for Europe, we use the day-ahead prices as the market-price for 
electricity. See Appendix B for further details. 
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The only offshore-wind asset Ørsted has in the US is the Block Island wind park, located 6.1 

km off the coast of Rhode Island, commissioned in 2016. Block Island was originally 

constructed by the US offshore-wind developer Deepwater Wind, and became part of Ørsted’s 

portfolio when the company acquired 100% of Deepwater Wind in 2018 (Ørsted, 2018b). This 

project was the first ever commercial offshore-wind farm in the US and received support 

through both a 30% ITC and a PPA-structured offtake agreement with the state of Rhode 

Island. Thus far, Block Island is the only operational wind farm in the US. However, the 

increase in awards in offtake agreements since 2010 indicates a rapid growth in installed US 

offshore-wind capacity for the coming years. This is shown in Exhibit 17 below, together with 

the price development in awarded offtake agreements. It is also evident from the exhibit that 

the awarded offtake-prices have declined since Block Island received its offtake agreement in 

2010. This indicates that the US market has become more mature since 2010, but as we will 

argue later when we discuss cost developments, not as mature as the European market.  

Exhibit 17: Developments in offtake-prices and total capacity awarded agreements 

 

Source: National Renewable Energy Laboratory (NREL) 

Sub-conclusion to revenue 

In conclusion, the analysis of Ørsted’s revenue tied to its offshore-wind projects suggests that 

governmental support through tariff-prices was a critical factor to the company’s successful 

transformation. This is evident when comparing the market-prices for electricity with the 

tariff-prices Ørsted achieved. In addition, Ørsted has repeatedly stated that its transformation 

would not have been possible without governmental support of the sort we have identified 
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throughout this analysis, substantiating the role of governmental support as a critical factor to 

the company’s success. Furthermore, we reveal that the tariff-prices wind farm operators could 

achieve have fallen, as the markets have become more mature and competitive. This holds 

especially true for the mature markets of Europe, where we highlight evidence of reduced 

tariff-prices in each country Ørsted has been involved in throughout its transformation (except 

Denmark). Moreover, this aspect is strengthened by the EU requiring subsidies to be allocated 

through competitive auctions in 2015/16, representing an important driver towards the zero-

subsidy bids seen in both Germany and the Netherlands.  

Moreover, we argue that our analysis of Ørsted’s revenues indicates that the government 

support schemes materialised both through high tariff-price levels and long duration of the 

tariff-agreements. The former relates to the price-differential between tariff - and market-

prices we illustrated for each country, which had a positive impact on Ørsted’s revenues. As 

such, a higher price-differential constitutes a larger benefit for Ørsted. The latter, however, 

relates to the assumption that Ørsted’s revenue stream from a project becomes reliant on the 

far less favourable market-prices when its subsidy expires. Consequently, a longer subsidy 

duration entails a longer period of time where Ørsted could reap the benefits of the 

aforementioned price-differential. Referring back to Exhibit 8, where we illustrated the tariff-

price levels and duration separated by location, it is therefore now more understandable that 

Ørsted achieved higher LCIRRs in the UK than in Germany, even though Germany had the 

higher average tariff-price level. We do however note that Ørsted’s project in the US (Block 

Island) has a significantly higher tariff-price and a longer duration than the average European 

project, but in turn a lower LCIRR than the UK. This is due to the fact that the returns of a 

project depend on more than merely revenue, which is an aspect we will cover thoroughly 

later in our thesis.   

We also argue that Ørsted has a repeated pattern of chasing government support in immature 

markets, thus moving away from mature markets as competition intensifies and tariff-prices 

become less favourable. Historically, this is indicated by Ørsted commissioning its last 

offshore-wind farm in Europe’s most mature market of Denmark in 2013, in favour of the UK, 

which was less mature and had more favourable tariff-prices back then. Now, we see the same 

behaviour whereby Ørsted currently expands out of Europe to Taiwan and the US, which are 

both, by comparison, less mature markets. In turn, we believe that this pattern substantiates 

the importance of governmental support to Ørsted’s financial performance, and once again its 

role as a critical factor in the company’s success.      
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Costs 

In its infancy, offshore wind received governmental support due to the fact that projects needed 

revenue support to be financially viable. In turn, policymakers envisioned that offshore wind 

would replace traditional energy sources and were motivated to support the industry due to its 

green attributes. To be a worthy replacement, however, required that offshore-wind projects 

eventually had the ability to become financially viable on their own, as governmental support 

cannot be sustained in perpetuity. As such, a central part of the success in Ørsted’s 

transformation, and the future of the industry as a whole, were the severe cost reductions 

required to make offshore-wind projects financially viable (Brun et al., 2019). This part of the 

analysis will therefore address the developments in Ørsted’s costs, to uncover which drivers 

resulted in lower costs, and thus contributed to Ørsted’s successful transformation. We assess 

this by analysing how the levelised cost of electricity has developed for offshore wind in 

general, before we consider the developments in Ørsted’s load factors, operating expenditures 

and capital expenditures tied to the company’s projects.  

Driving down the levelised cost of electricity (LCOE) throughout the transformation 

The LCOE is a summary measure of the overall competitiveness of a generating technology 

and reflects the minimum constant price electricity must be sold at in order for a project to 

break even over its lifetime. As such, the LCOE includes the total lifetime costs of a project, 

therein development, construction, operation, and decommissioning costs. As the formula in 

Appendix C shows, the LCOE depends on the annual electrical energy generated, which in 

turn is a function of a wind farm’s load factor. The load factor is the ratio of the amount of 

electricity produced by a wind farm, relative to its total potential over a given period (DNV 

GL, 2019).  

Since the wind energy industry with an established home market emerged following the oil 

crisis in the seventies, the LCOE has decreased substantially until today. The developments in 

the LCOE from 2014 to its current level are shown in Exhibit 18. Evidently, LCOE for 

offshore wind reached a competitive level in 2017 compared with other renewable sources, as 

well as coal and gas power, in the UK and Germany. LCOE is driven by the combination of 

load factors and lifetime costs of technologies, where improving load factors, rising 

competition among developers, and the prospect of expanding electrification have contributed 

to falling offshore-wind costs (DNV GL, 2019). 
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Exhibit 18: LCOE development for selected energy sources in the UK and Germany 

 

Source: Bloomberg LP  

The UK and Germany are the only locations for which Bloomberg New Energy Finance (BNEF) 
provides historical data for each energy source. The data shown in the exhibit are consistent with the 
estimates of the French Investment Bank, Lazard (2018), as well. 

Ørsted commissioned only one project, Vindeby, during the 1990s which was considered a 

pilot project, and the political focus was therefore on technical feasibility rather than on costs 

(Ørsted, 2019a). Moreover, the typical projects commissioned during this period were 

primarily onshore turbines based on concrete foundations in shallow waters and were mostly 

ordered by governments and constructed by utilities (Ørsted, 2019a). The offshore-wind 

industry was immature with no specialised production chain and small turbines (0.5 MW to 

2.3 MW), as well as limited availability of other demonstration projects. However, Vindeby 

provided Ørsted with know-how in offshore wind, which we believe was a premise behind the 

company’s strategic decision in transforming the company from black to green. 

In 2000, a transition in offshore wind was ongoing as The Crown Estate10 launched the first 

leasing round in the UK, which allowed for competition in scoping and pre-development 

among developers (Ørsted, 2019a). This resulted in the first large-scale offshore-wind farm, 

 

10 The Crown Estate is the collection of lands and holdings within the territories of the UK belonging to the 
British monarch (The Crown Estate, n.d.). 
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Horns Rev 1 belonging to Ørsted, commissioned in 2002. The wind farm consists of 80 Vestas 

2.0 MW wind turbines with a total capacity of 160 MW and was the first to have its own 

designated offshore substation (Ørsted, 2019a). During the period from 2000 to 2008, the 

cumulatively awarded offshore-wind capacity in the UK went from 1,100 MW to 32,000 MW, 

motivating several turbine manufacturers to enter the offshore-wind market. Moreover, the 

increased project scale demanded new production lines and installation methods, and 

manufacturers were pushed to construct turbines, foundations, and electrical systems to be 

specifically designed for large-scale offshore-wind farms (Ørsted, 2019a). 

Furthermore, the increased project scale made the offshore-wind industry more complex, and 

as there was no firm supply chain in place, the LCOE increased. On the other hand, wind 

turbines had grown in size from 2.3 MW to 3.6 MW during the period from 2002 to 2011, 

which resulted in an overall lower number of turbines. The lower number of turbines led to 

fewer foundations and cables, and lower numbers of sites for the Operations and Maintenance 

(O&M) crew, and in turn reduced costs. However, mass production and economies of scale 

could not offset the increase in LCOE, which indeed increased from around EUR 90 per MWh 

to EUR 167 per MWh (some projects higher) during this period (Ørsted, 2019a). According 

to the CEO of Ørsted’s offshore-wind business, Martin Neubert, the installation process was 

challenging as installation companies were small, which entailed considerable risk that they 

could go bankrupt during a project (Tryggestad, 2020). In order to mitigate the supply-chain 

risk, in 2009, Ørsted decided to acquire A2SEA, which was the market leader in transportation 

and installation of offshore-wind farms, at a cost of DKK 700 million (Ørsted, 2009a).  

In the same year as the acquisition of A2SEA, Ørsted entered into a framework agreement 

with Siemens for the purchase of up to 500 of its newly developed 3.6 MW turbines (Ørsted, 

2009a). The agreement was the first step in Ørsted’s efforts to industrialise the market for 

offshore-wind projects, and at that time, the partnership with Siemens was one of the largest 

energy agreements Siemens had ever made (Tryggestad, 2020). Moreover, the partnership 

resulted in procurement synergies and gained a competitive edge compared with smaller 

renewable energy companies and oil majors entering the offshore-wind market. Ørsted was 

now able to make procurements on a portfolio of projects instead on an asset-by-asset basis, 

which we believe was important for reducing costs and contributing to the company’s 

successful transformation. Additionally, the agreement provided Siemens with the opportunity 

to further optimise its production of wind turbines for offshore-wind projects, and to retain its 

position as market leader in the supply of wind turbines for the offshore sector (Ørsted, 2009b).  
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Load factors 

In a study from 2019 commissioned by the UK government and carried out by DNV GL, it is 

argued that higher load factors impact LCOE “immensely”. As such, we recognize higher load 

factors as a crucial contributor to reducing the LCOE. Throughout Ørsted’s transformation, 

higher load factors were essentially achieved by larger turbines and a relocation of these to 

areas further away from shore to benefit from stronger winds. According to the study, larger 

turbines are tied to a higher degree of wind capture, as this depends on the turbine capacity 

and rotor diameter, and thus leads to higher load factors. Moreover, the general technological 

advancements made in relation to developing larger offshore-wind turbines, lead to more 

advanced wind farm design and system efficiency. This, in turn, contributed to increased 

energy production and consequently higher load factors (DNV GL, 2019). As evident, the 

globally weighted average11 load factor of offshore-wind farms was 43% in 2018, compared 

to the 2010 average of 38% (Prakash & Anuta, 2019).  

Operating expenditures  

The second aspect to driving down LCOE was lower operating expenditures. Reducing these 

were in part related to offshore-wind developers being pressured by governments to increase 

the cost-efficiency of operations within offshore wind. This was for instance evident in the 

UK in 2012, where offshore-wind developers were required to reduce costs to ensure 

continued political support. In this context, the UK government’s commitment to support the 

segment had until this point created a dedicated offshore-wind industry, and the market 

volume had increased substantially over the past years. In turn, the increasing market volumes 

tied to new offshore-wind deployments had been a major contributor to reducing the costs. 

This is substantiated by the fact that each time installed capacity in offshore wind has doubled, 

the LCOE has declined by approximately 18% (Ørsted, 2019a). The increased market volume 

attracted new suppliers of turbines and other components to the market, and the increased 

competition in the original equipment manufacturers (OEM) market became an important 

driver of further cost improvement and importantly larger turbines (Ørsted, 2019a). Moreover, 

 

11 Weighted by installed capacity in MW. 
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we argue that as manufacturers became confident to invest due to higher scale, Ørsted 

improved its bargaining power when negotiating new contracts.  

Furthermore, Ørsted and other offshore-wind developers worked consistently to optimise 

energy production and reduce the costs of operations. Turbine manufacturers developed larger 

turbines with longer blades, which meant fewer installations, foundations, and units to serve, 

eventually leading to lower LCOE (Ørsted, 2019a). As highlighted in Exhibit 19, the turbine 

sizes quadrupled from when Horns Rev 1 was commissioned in 2002, compared to those 

constructed in 2016. Moreover, Ørsted provided three datapoints regarding the relationship 

between operating expenditures per MW and larger turbine sizes in the company’s capital 

markets day report of 2018. This relationship is shown in Exhibit 20, where operating 

expenditures are almost constant per turbine position on a portfolio level, highlighting the 

economies of scale related to the technological improvement of larger turbines. As such, we 

argue that increasing the average size of turbines has been the key component in reducing 

operating expenditures, as larger turbines require less maintenance and less downtime, as well 

as cheaper installation. 

Exhibit 19: Development in turbine sizes 

 

Sources: Company reports, DNV GL 
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Exhibit 20: Ørsted’s operating expenditures (opex) per farm capacity (MW) versus 
turbine size 

 

Sources: Company reports 

From this exhibit, the size of wind turbines will probably continue to represent the key 

component in reducing operational expenditures, even though the reduction may not be at the 

same pace as in the beginning.12 On the other hand, clusters of wind farms have been 

established due to the growing number of offshore-wind parks, resulting in cheaper 

installations as well as O&M. The impact of this is already evident in Europe, with several 

clusters in the North Sea, which has reduced operating expenditures, and thus LCOE for 

Ørsted significantly (Ørsted, 2019a). We argue that there is further potential for reductions in 

operating expenditures, should these developments continue.   

Capital expenditures 

The third aspect to driving down LCOE was lower capital expenditures. We provide an 

illustration of the developments in Ørsted’s capital expenditures through comparing our 

calculated capacity weighted average capital expenditures per MW (Capex/MW) between 

2009 and 2015 with the company’s subsequent own guidance for selected projects. Exhibit 21 

shows that Ørsted’s Capex/MW has decreased throughout its transformation. In turn, Ørsted 

explains that reductions in capital expenditures were a crucial contributor to reducing the 

 

12 This is reflected by the asymptotic property of the cost-curve presented in Exhibit 20. 
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LCOE (Ørsted, 2016b). Moreover, this view is supported by Rennesund et al. (2020) in a 

report carried out for Export Credit Norway, emphasizing that capital expenditures constitute 

the largest portion of the LCOE for an offshore-wind farm. In our view, the reductions in 

capital expenditures made by Ørsted can essentially be attributed to the cost improvement 

initiatives that the company has extensively employed, embodied explicitly by the 

development of standard modules adaptable to project-specific site conditions. An example is 

the standardised offshore export cable module utilised in four of the projects13 mentioned in 

Exhibit 21, where a key benefit is the increased specific export capacity (Ørsted, 2016b). In 

less abstruse terms, this entails the re-use of modules over several projects, which allows 

Ørsted to achieve procurement savings, remove supplier bottlenecks, optimise interfaces 

across the modules, and identify and reduce risks (Ørsted, 2016b). Other examples include 

utilising larger turbines and reducing weight, as well as increasing the application depth for 

the company’s monopile (fixed) foundations.    

Exhibit 21: Development in Ørsted's capital expenditures per farm capacity (MW) 

 

Sources: Own calculations, company reports 

Note: This shows unsubsidised capital expenditures, meaning no governmental support to 
initial investments. Moreover, the guidance from 2017 is an update from the guidance 
provided in 2015, therefore highlighting the same projects. 

 

13 Burbo Bank Extension, Race Bank, Walney Extension and Hornsea 1. 
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Furthermore, assessing the Capex/MW in each country in Exhibit 22, we see that the initial 

investments are higher in the immature markets Ørsted has entered over the past years 

compared to the mature markets of Europe. This could be a matter of immature supply chains 

in immature markets, which lack the necessary infrastructure, entailing a larger share of 

content requirements and thus increasing the initial investment for a developer. In relation to 

the LCIRR, we deem that the high Capex/MW in Taiwan and the US contribute substantially 

to the lower returns observed in these countries compared to Europe.  

Exhibit 22: Ørsted's initial investment per farm capacity (MW) by country 

 

Sources: Own calculations, company reports 

Note: This shows unsubsidised capital expenditures, meaning no governmental support to 
initial investments.  

Sub-conclusion to costs 

In conclusion, this analysis reveals that the critical factors that enabled Ørsted to achieve the 

cost reductions, and thus a successful transformation, have been the technological 

improvements and evolution of the offshore-wind supply chain. The technological 

improvements, such as larger turbine sizes, have raised load factors, as well as reducing the 

operating and capital expenditures. The supply chain developments increased manufacturing 

capability and improved construction practices, which in turn reduced the initial investments, 

and as such capital expenditures further. The cost improvements are evidenced by the fact that 

the globally weighted average LCOE for offshore wind in 2018 was more than 20% lower 

than in 2010. This makes offshore wind a particularly attractive proposition given its 

scalability and the fact that at these cost-levels it would compete directly with fuel-fired 

electricity without major financial support (Prakash & Anuta, 2019). To that extent, the LCOE 
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of offshore wind is already showing signs of becoming competitive in certain European 

markets such as Germany and the Netherlands, where zero-subsidy contracts have been 

awarded for future projects.  

In terms of the developments in the LCOE, we note that on an aggregate level, the industry is 

closing in on the ability to break even without governmental support. We do however consider 

the aggregate figures in Exhibit 23 to lack sufficient granularity to provide insight to those 

projects that might already be cost-efficient enough to break even. In any case, the 

developments in LCOE over the past five years indicate that offshore wind is becoming an 

adolescent industry, and should, in our view, be able to break even without the support of 

governments should the same developments continue.  

Exhibit 23: Electricity prices versus LCOE by country 

 

Sources: NordPool, Bloomberg LP 

Funding strategy to fuel investments 

When we described Ørsted’s transformation in Section 2, we highlighted that the farm-down 

model was crucial in relation to Ørsted’s ability to raise capital for its offshore-wind farms. In 

order to explain the motivations for this funding strategy, and why it became successful to 

Ørsted, we will first provide a description of how the financing activity and equity-mix among 

investors in European offshore-wind projects evolved throughout Ørsted’s transformation. 

Second, we give a comprehensive description of how the farm-down process works. Lastly, 

we will cover how Ørsted utilised farm-downs as a funding strategy to accelerate the growth 

in its offshore-wind portfolio.     
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In 2010, the majority of the investments made in offshore-wind projects came from the large 

power producers that operated the wind farms. The same year, however, WindEurope (2010) 

noted that the offshore-wind market in Europe saw the emergence of a new major trend on the 

acquisition-side of projects in which long-term financial investors had arrived in the equity-

mix of the sector. The financial investors can be broadly defined as institutional investors. 

What marked the arrival was when PensionDanmark purchased 50% of Ørsted’s offshore-

wind asset Nysted (Wilkes et al., 2011). The trend of new investors arriving continued over 

the subsequent years, on the back of the increasing project size, costs and stable income returns 

offered through the offshore-wind projects.  

Moreover, in 2017, WindEurope recognised the emergence of another pattern in which 

transactions happened at later stages of the projects. Their distinction split the phases between 

development, construction and operational, noting that over the last three years, transactions 

at the construction and operational phases had increased significantly. According to them, this 

was largely due to the increased presence of institutional investors in the equity-mix, who 

preferred to join projects at late construction or operational phases (Remy et al., 2018). Their 

rationale was that these investors were less accustomed to the risks associated with 

development and construction of wind farms, which in turn left them more comfortable with 

investments in operational projects (Selot et al., 2019). The statistics of the acquisition activity 

from 2019 underline this notion, revealing that the largest share of the equity-mix was held by 

institutional investors, and that the largest share of investments was made in the operational 

phase of the projects acquired, as shown in Figure I.1 in Appendix I.    

WindEurope (2015) states that the increasing size, and thereby investment costs and distance 

to shore, for the offshore-wind projects in Europe all contributed to the high volumes of 

divestments as part of recycling capital to fund new projects (Corbetta et al., 2015). What it 

describes is, in essence, the idea of the farm-down strategy. The farm-down approach involves 

recycling of capital in the sense that the wind farm owner uses the proceeds from divestment 

of an existing asset to fund the investment in a new asset. For Ørsted, this was usually done 

by divesting 50% of the equity stake in an offshore-wind farm at a price approximately equal 

to its cost of capital, thereby allowing for upfront value realisation, which enables the company 

to invest in new value-creating projects. To provide the reader with an understanding of the 

divestment process in a typical farm-down, we have recreated a generic depiction of how the 

process works from Ørsted’s capital markets day presentation in 2017 in Exhibit 24.  
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Exhibit 24: Generic depiction of a farm-down 

 

Sources: Company reports  

The point is that the owner farms down the investment by divesting a stake in the project to 

an outside investor. Through this, the owner is able to maintain the same NPV at 50% 

ownership post divestment, as with 100% ownership. At the final investment decision (FID), 

the project’s NPV to the owner is DKK 20 billion, because the initial investment is DKK 23 

billion and the present value of operating cash flows (OCF) from the project is DKK 43 billion. 

Upon farming down, the owner sells 50% of the project for a total value net of transaction 

costs equal to DKK 21.5 billion, corresponding to 50% of the present value of the operating 

cash flow (OCF). Moreover, the remaining 50% of the OCF value accrues to the outside 

investor, leaving an NPV post divestment of DKK 20 billion to the initial owner.  

An indication of why the farm-down model was successful for Ørsted starts to form in light 

of how the equity-mix among investors, and their characteristics, in European offshore-wind 

projects evolved. In addition to WindEurope’s suggested contributors to the increase in capital 

recycling14 (farm-downs), we argue that an equally important contributor was that this 

strategy, combined with Ørsted’s presence in the entire value chain, enabled the company to 

 

14 Larger projects, higher investment costs and distance to shore. 
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tailor the project risk to address investors’ specific risk appetite. This concept is strengthened 

by the former CEO of Ørsted’s offshore-wind business, Martin Neubert, who stated that the 

model resonated well with the Danish, Dutch and Canadian pension funds and later 

institutional investors as it enabled Ørsted to mitigate the risks associated with the phases of 

development, construction and operating of the projects to outside investors (Tryggestad, 

2020).   

In the context of flexibility, Ørsted distinguishes between three phases of the value chain of a 

project in which the project-investors can enter: Development, construction and operation. In 

short, development involves site selection and planning, construction involves building and 

commissioning and operation involves asset management, operating and finally 

decommissioning (Ørsted, 2016b). Furthermore, Ørsted explains that there have typically been 

two types of partnerships the company enters into in order to tailor the risk for potential 

project-investors when farming down an offshore-wind asset: EPC Wrap Partnerships and 

Shared Risk Partnerships. The Engineering, Procurement and Construction (EPC) partnership 

is the preferred model for Ørsted as it achieves the cheapest capital from taking on most of the 

risk for itself. This is due to investors being insulated from the complex construction phases 

of Ørsted’s offshore-wind projects. Furthermore, shared risk partnerships de-risk Ørsted’s 

share, which involves more expensive capital, but provides more upside for the project-

investor as they have a larger risk exposure (Ørsted, 2016b).   

Exhibit 25: Illustration of Ørsted's farm-down models 

 

Sources: Company reports 
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Ørsted has practised farm-downs since 2006, from what we can see in the annual reports and 

company announcements, and pioneered the employment of this strategy, as Neubert stated in 

the McKinsey interview from 2020 (Tryggestad, 2020). In the continuation, the company’s 

position as a leader within farm-downs is further evident in WindEurope’s reports from 2011 

and 2012, where it mentions that Ørsted’s predecessor, DONG Energy, was the most active 

player in terms of acquisition and sales of stakes in projects, following its policy to “recycle” 

minority stakes in existing assets to finance new investments. (Wilkes et al., 2012; Wilkes et 

al., 2013). Undoubtedly, Ørsted pioneered and led the process that WindEurope claimed to be 

the “key strategy” to free up capital to fund new investments in offshore-wind projects 

(Corbetta et al., 2015).    

Data from Ørsted’s announced farm-downs shows the vast volume transacted throughout the 

company’s transformation, representing proceeds available for reinvestment to grow its 

portfolio. Ørsted has sold stakes in 15 projects (as of November 2020), corresponding to a 

total value of DKK 112.3 billion in comparison to an IPO offering value of DKK 98.2 billion. 

Moreover, Exhibit 26 shows the implied value of Ørsted’s farmed-down projects relative to 

its total capacity (in MW). This multiple should represent a valuation metric applicable for 

comparing the value of each project. As the exhibit illustrates, the overall trend could indicate 

that the valuation of Ørsted’s projects has increased since its first farm-down in 2006. Among 

other factors, this development is widely affected by the fact that none of the projects entered 

before 2011 were EPC Wrap Partnerships,15 resulting in higher cost of capital and thus lower 

valuations. From the data we are able to gather for each farm-down, we find that the average 

EPC Wrap deal has approximately been DKKm 44 per MW compared to an average of DKKm 

19 per MW for shared risk partnerships. However, in this case, we emphasise the existence of 

other deal-specific factors impacting the valuation, and as such, we approach this aggregate 

interpretation with caution.      

 

15 The very first EPC Wrap Partnership was entered in 2011 when Ørsted divested Anholt to PensionDanmark 
and PKA. 
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Exhibit 26: Implied value per farm capacity (MW) of Ørsted's farm-downs 

 

Sources: Own calculations, company announcements, Offshore Wind, Wind Power Monthly, 
Renewables Now 

Despite approaching the above interpretation with caution, a topic of reflection arises when 

one considers that higher valuations achieved in Ørsted’s farm-downs should be tied to lower 

IRRs for the investors to whom parts of the projects are divested. Exhibit 27 shows our 

estimates for the IRRs achieved by the investors that chose to invest in Ørsted’s projects, and 

Ørsted’s LCIRRs for the same projects without the proceeds from the divestments. This 

indicates a declining trend in the IRRs for the project investors, whilst the LCIRRs to Ørsted 

remains relatively stable by comparison. We believe there could be several reasons behind 

this, and especially two worth highlighting. In particular, we argue that the lower IRRs 

accepted by project investors can be attributed to Ørsted’s ability to mitigate the risk to which 

these investors are exposed to. In turn, this should materialise as lower required returns, higher 

valuations upon divestment, and lower IRRs accepted by project investors. Furthermore, and 

perhaps more interesting, could be the reflection of investors willingness to put fiscal value 

behind renewable energy projects at lower rates of return. This could either be a result of the 

former argument, i.e., Ørsted’s ability to mitigate risk, or a broader reflection of the increased 

interest among investors to direct capital towards projects related to renewable energy. If this 

is the case, lower IRRs could reflect lower required returns due to the mere fact that investors 

have become more accustomed, and willing, to invest in offshore-wind projects. This train of 

thought will be further discussed in Section 4. 
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Exhibit 27: Returns of participating project investors and returns to Ørsted 

 

Sources: Own calculations, company announcements, Offshore Wind, Wind Power Monthly, 
Renewables Now, and Ørsted’s Asset Book 

Note: In this exhibit we have calculated the average capacity weighted IRR to project 
investors and the average capacity weighted LCIRR to Ørsted for the same projects.   

Sub-conclusion to funding strategy 

To conclude, we view farm-downs as a critical factor in Ørsted’s successful transformation as 

it contributed to accelerating the developments of new offshore-wind projects. In our view, 

the farm-down model enabled this both through freeing up capital from existing projects to 

fund new ones, and as a means to capitalise on the arrival of institutional investors. 

Emphasising the model’s importance, Neubert stated that Ørsted would not have been able to 

fund all its projects in Europe without the farm-down model (Tryggestad, 2020). Furthermore, 

we believe that the tremendous acceleration in new offshore-wind farms for Ørsted after 2011 

allowed the company to stay competitive and maintain market shares in the fast-paced growth 

of the offshore-wind market. Ultimately, we argue that this created a virtuous circle, attracting 

more and more capital as Ørsted’s business grew with the market.  

Conclusion to the critical factors to Ørsted’s successful transformation 

So far, we have presented and analysed the financial aspects of revenue, costs and investments 

that relates to the financial performance (LCIRR) of Ørsted’s offshore-wind projects. In doing 

this, we have been able to uncover the critical factors that made Ørsted’s transformation 

successful and analysed the developments in these throughout the company’s transformational 

phase. As explained thoroughly throughout the analysis, these factors were high and stable 
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revenue through governmental support, evolution of the offshore-wind supply chain and 

technological improvements, as well as farm-downs as a funding strategy. Thus far, we have 

concluded with each factor’s individual contribution to Ørsted’s success. We do, however, 

argue that there are various interplays between the factors that added an additional contribution 

to the company’s success, which we will briefly discuss in the following paragraphs. 

The first interplay we believe to be recognisable was that the farm-down strategy was an 

important way to compensate for higher cost of capital as subsidies started to converge against 

market-prices in zero-subsidy auction rounds, such as those observed in Germany and the 

Netherlands. This notion is inspired by WindEurope reporting that the transition to subsidy-

allocation through auctions led to a decrease in investment levels in 2017, breaking the 

continuous growth since 2012, shown in Exhibit 28 below. Furthermore, in the 

aforementioned interview BNEF had with Martin Neubert, he admitted that merchant prices 

involve higher risks, as these entail a less stable revenue stream than tariff-prices (Collins, 

2017). In turn, we argue that less stable revenue streams, fluctuating with the market-prices, 

should be tied to a higher cost of capital than those tied to stable tariffs, and should thus 

materialise as lower investment levels. To compensate for this, however, the farm-down model 

represents a tool for which Ørsted could reduce the risk of outside project-investors by 

insulating them from selected phases of an offshore-wind project. As such, we argue that the 

farm-down model has been a tool Ørsted has used to attain its access to cheap capital as the 

revenue streams became dependent on the market-prices, which seems to be the development 

in European markets over the past years. 

Exhibit 28: Investments in offshore wind 

 

Source: WindEurope 
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Secondly, we argue that an interplay existed between the high tariff-prices Ørsted was 

awarded, whilst the company gradually reduced the costs of its projects. More specifically, we 

believe this is visible in the UK market, where Ørsted gradually increased its EBITDA-margin 

through reducing costs and maintaining the high tariffs associated with the rich UK 

governmental support, as shown in Exhibit 29 below. As the offshore-wind industry in the UK 

came under pressure from the government to cut costs in order to receive renewed political 

support, Ørsted and its peers became more cost-conscious. We have previously argued that 

annual running costs are primarily driven by the size of the wind turbines, as larger turbines 

are associated with lower operational and maintenance costs. As an example of the 

combination of high strike-prices and low costs, Walney Extension West commissioned in 

2017, had 8.3 MW turbines and was achieved on a strike-price of EUR 165.4 per MWh. This 

resulted in an EBITDA-margin of 94%, marking the highest margin in Ørsted’s entire UK 

portfolio. However, as competition intensified in subsequent CfD auction rounds, Ørsted was 

no longer able to secure high strike-prices, resulting in lower EBITDA-margins.16 This is, for 

instance, the case with the previously discussed Hornsea 2, which achieved a far less 

favourable strike-price than Walney Extension West.        

Exhibit 29: EBITDA-margin development in the UK for Ørsted 

 

Sources: Own calculations, Ørsted’s Asset Book 

 

16 As explained in Appendix D, there is practically no annual capital expenditures for an offshore-wind farm 
once it is operational. As such, EBITDA is a particularly good proxy for free cash flow for offshore-wind projects. 
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The third interplay, in our view, relates to a virtuous circle related to the deployment of the 

farm-down strategy, reduced costs and continued governmental support for Ørsted’s projects. 

At the outset, we argue that the farm-downs enabled scalability, and thus cost reductions, 

through the accelerated development of offshore-wind farms. In turn, when Ørsted came under 

pressure from governments to reduce costs in order to receive continued governmental 

support, farm-downs enabled the cost reductions, and thus the desired continuation of support. 

Closing out, continued governmental support would again entail stable revenues as compared 

to market-prices, which attracted investors to participate in the company’s projects.      

Why did Ørsted succeed in its transformation from black to green? 

We believe that Ørsted’s first-mover advantage in the offshore-wind market was the root cause 

of the company’s successful transformation. In our view, being first entailed a streak of luck, 

as well as the possibility to acquire a unique skill set that enabled the company to become the 

industry-leader in offshore wind. In the following paragraphs, we will provide a distinction 

between what we believe was skill and what was luck in Ørsted’s transformation. The 

categorisation is done through an uncommon interpretation of Ørsted being in the right place 

at the right time. 

By being in the right place… 

In the following, being in the right place is interpreted as Ørsted being in the right state in the 

sense that the company was in a position where it possessed certain features. As such, being 

in the right “place” is something we attribute to Ørsted’s skill set as a consequence of the 

company being the first-mover in the offshore-wind industry. Ever since Ørsted pioneered the 

offshore-wind market in 1991, the company was able to build extensive know-how in the 

offshore-wind industry before its competitors. The first area in which we believe this 

materialised was Ørsted’s ability to reduce the construction costs17 through creating strong 

partnerships with suppliers of turbines, foundations, and cables at a time when there was no 

firm supply-chain in the industry. We believe that this, coupled with the company’s strategic 

pledge to vastly expand its business in offshore wind, enabled Ørsted to seek out potential 

 

17 Ørsted expressed in its annual report of 2009 that, expressed in present value, the cost of constructing an 
offshore-wind farm accounted for a substantial proportion of the wind farm’s cost during its lifecycle, and 
therefore it was vital to bring down these costs and execute construction projects as quickly as possible. 
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projects years before its generalist rivals, and thus to secure projects on favourable tariffs (The 

Economist, 2019b). As Ørsted’s portfolio of offshore-wind farms grew, the company built 

unique know-how and developed a database of wind turbines across Europe, which unarguably 

helped further optimise operations and allowed the company to design new projects more 

efficiently (The Economist, 2019b).  

The acceleration of Ørsted’s installed capacity is also attributed in part to skill, in our view, 

specifically related to pioneering the farm-down strategy. We argue that being the first to 

employ this strategy, that is, divesting existing projects to invest in new ones, enabled the 

company to rapidly grow its portfolio, and from the outset build strong relationships with 

institutional investors for investments in additional projects. Lastly, we attribute Ørsted’s 

actions related to the recovery from the gas-crisis in 2012 to skill, where the company 

demonstrated the ability to both establish and execute a clear financial action plan18 to save 

itself.  

… at the right time.  

The right time is interpreted as the timing of events during Ørsted’s transformation. As the 

occurrence of the events is exogenous to Ørsted, we interpret them as luck. Before we discuss 

what we attribute to luck, we would like to clarify that Ørsted was not lucky in the sense of 

pure serendipity, but rather in the terms of being in a particularly favourable position to reap 

the benefits of unforeseen advantageous events. The first aspect that we believe fits into this 

category is the governmental support that Ørsted received in every country of its offshore-

wind projects. This fits our definition of “lucky”, in the sense that Ørsted’s position as a 

pioneer in offshore wind coincided perfectly with the low competitiveness and unforeseen 

magnitude of governmental support towards offshore wind specifically. In turn, this seemed 

to be particularly true in the UK, where the strengthening of uncompetitive support schemes 

gradually proved to be the case right after Ørsted’s entrance into this market (Tryggestad, 

2020). Even though the company’s experience in offshore wind placed it in the right place, 

luck would have it so that former DONG CEO Anders Eldrup’s statement “DONG would 

 

18 As described in detail in Section 2, among other initiatives this entailed divestment of non-core businesses and 
expansion of core businesses. 
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clean up its act, but don’t expect an overnight miracle” was an understatement to the 

company’s successful transformation19 (Reguly, 2019).  

We extend Ørsted’s luck to the concept of “blessings in disguise”, which we believe is 

represented by the aforementioned gas crisis of 2012. Not to be confused with the endogenous 

actions we previously related to Ørsted’s skills, the mere fact that the crisis exogenously 

happened is something we relate to Ørsted’s luck. In this sense, we argue that upon facing 

financial turmoil from the crisis, Ørsted was forced to focus on areas where it had the largest 

potential to succeed. At the time, this area was clearly offshore wind, which the company had 

expanded extensively over the past three years. While the division that drilled for oil and gas 

fields operated in dwindling North Sea fields, offshore wind was, as the former CEO Henrik 

Poulsen put it, “The one business where we had some true differentiation” (The Economist, 

2019b). We agree with Poulsen and add that Ørsted had established itself as a clear leader in 

a market that had achieved a 31% CAGR in installed capacity from 2010 to 2012. As such, 

we argue that Ørsted’s transformation was in part spurred by the gas crisis, to the extent that 

the company was forced to take actions to accelerate its expansion in offshore wind in order 

to survive.  

 

19 The fact that it took 10 years, as opposed to the 30 years envisioned, could, to some extent, be argued to 
represent a miracle. 
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4. Equinor’s energy transition 

The problem statement of this thesis is to assess whether Equinor’s commitment to renewable 

energy sources has the potential to achieve a similar success as Ørsted did when the company 

became the world’s first energy company to execute a transformation from black to green. In 

our view, Ørsted’s success is manifested by its ability to transform the company from black to 

green, whilst creating shareholder value through a successful expansion in the offshore-wind 

market. In that context, we have previously conducted a thorough analysis of Ørsted’s 

transformation and identified the critical factors that enabled its success. In this part of the 

thesis, we discuss whether these critical factors carry similar characteristics in Equinor’s 

transformation, to the extent that they may enable the company to achieve a success similar to 

Ørsted’s.   

Equinor the Norwegian oil major with a major commitment to renewables  

Equinor, formerly Statoil, is the largest energy operator in Norway and one of the largest 

offshore operators in the world, developing oil, gas, wind, and solar energy in more than 30 

countries worldwide. The company was formed in 1972 as the Norwegian State Oil Company 

and was listed on the Oslo and New York stock exchanges in 2001, with a 67% majority stake 

owned by the Norwegian government. Currently, Equinor produces around 2 million barrels 

of oil equivalents on a daily basis and is responsible for about 70% of the overall Norwegian 

oil and gas production (Equinor, n.d. a). In addition to being a large producer of crude oil, 

Equinor is also the second-largest supplier of natural gas to the European market, with 

activities in processing, refining, and trading (Equinor, 2019a). The current reporting of 

Equinor lacks specific financial information about its businesses in renewable energy sources, 

whereas this segment is currently included in “other segments”.20 We argue that this 

emphasises that the company’s current cash-flow generation primarily stems from oil and gas, 

and the fact that Equinor is currently an oil and gas company.          

 

 

20 However, Equinor has previously communicated that more detailed reporting from its renewable segments 
will begin in 2021. 
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Equinor’s commitment to renewable energy sources 

The company has been investing actively in renewable energy, as a clear commitment to 

driving the company through an energy transition. According to Rystad Energy (2020), 

Equinor will account for USD 10 billion, or 55% of the capital oil and gas companies will 

spend on wind and solar by 2025. Moreover, Equinor guides capital expenditures of USD 2-3 

billion towards renewables in 2022-2023, representing 17-25% of the company’s total capital 

expenditures of USD 12 billion.21 Furthermore, the company changed its name from Statoil to 

Equinor in 2018 to support its transition towards clean energy generation. Equinor’s 

comprehensive ambition is to support and accelerate the energy transition and ensure a 

competitive and resilient business model in line with the Paris Agreement of 2016. As the 

company further emphasises, this commitment calls for growing its renewable energy capacity 

tenfold by 2026 and developing as a global offshore-wind major, while strengthening its 

industry-leading position on carbon efficient production over the next 30 years (Equinor, n.d. 

b). To a large extent, Equinor’s ambition is to transform the energy output of the company, 

bearing a resemblance to the transformational strategy Ørsted laid out a decade ago. 

Equinor’s growth in renewables is predominantly based on developing as a global leader in 

offshore wind. This is evident from the 95% offshore-wind share of the company’s renewables 

portfolio, as well as its belief that offshore wind is at the centre of the revolution of 

transitioning to low carbon and renewable energy (Equinor, n.d. b). In terms of the company’s 

entire project portfolios counting projects in operation and pipeline, Ørsted surpasses Equinor 

in terms of total MW capacity, as shown in Exhibit 30. Moreover, Ørsted has far more capacity 

in operation, whereas most of Equinor’s total capacity is yet to become operational. We 

believe that Equinor’s vast pipeline also underlines the company’s commitment to expanding 

its business in offshore wind.  

 

21 In other words, the primary portion of the company’s spending will still be directed towards growing its oil 
and gas business. 
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Exhibit 30: Offshore-wind portfolios split by project-phase for Ørsted and Equinor 

 

Sources: Ørsted’s Asset Book, Facts about our renewable assets (Equinor)  

Note: This exhibit shows capacity gross of divestments (before farm-downs). 

Split by geography, Equinor has thus far only operational projects in Europe where 66% of its 

total capacity is in the UK and 34% in Germany, powering more than 1 million households 

combined (Equinor, n.d. a). The pipeline is primarily related to the UK, US, and Poland, where 

the largest share will be located in the US. Furthermore, Equinor believes that floating offshore 

wind is the next wave in renewable energy. Hence, the company seeks to differentiate from 

the current standard of turbines being fixed to the seabed, so-called bottom-fixed turbines. The 

company’s rationale is that floating wind farms will enable positioning in areas with the best 

wind resources and open new sites to energy generation (Equinor, 2018). In this context, 

Equinor highlights its pioneer position in this segment and states that its offshore experience 

from the North Sea makes it uniquely qualified to lead the way in developing floating offshore-

wind farms (Equinor, n.d. c). Assessing Equinor’s portfolio, however, reveals that only two 

projects are categorised as floating: Hywind Scotland with 30 MW capacity already in 

operation, and Hywind Tampen with 88 MW capacity in pipeline.  
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Exhibit 31: Equinor's offshore-wind portfolio 

 

Sources: Facts about our renewable assets (Equinor) 

Equinor’s transformation assessed through the critical factors      

A discussion of whether the critical factors that contributed to Ørsted’s successful 

transformation exist to the same extent for Equinor requires that we specify what we define as 

“success”. In this context, we dismiss the idea of success being a binary concept, but rather 

consider it a spectrum of which different degrees of success can be achieved. As such, we will 

address the critical factors to success by analysing if they can contribute to Equinor achieving 

a similar degree of success as Ørsted did. Furthermore, our analysis will consider the fact that 

the characteristics of the offshore-wind market has changed since Ørsted’s transformation, and 

therefore that the criteria to success may be different for Equinor. In the same fashion as we 

did for Ørsted, each critical factor will be assessed separately starting with revenue, then costs 

and lastly investments.  

Before we assess each critical success factor, we provide a comprehensive overview of the 

profitability of the projects in Equinor’s offshore-wind portfolio. Similar to the analysis of 

Ørsted, we use the capacity weighted LCIRR to provide the overview. The assumptions related 

to this calculation are provided in Appendix E. Equinor’s transformation is in the future, as 

shown in Exhibit 30. As such, the expected LCIRRs for future projects are incorporated in the 
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total LCIRR to reflect the relevant projects to the company’s transformation. The fact that a 

majority of the projects to Equinor’s transformation are yet to exist implies that we do not 

have the necessary details to calculate the LCIRR for every expected project. In essence, the 

necessary details exist for the projects that are operational or have been awarded contracts, but 

not for those that have only secured acreage or been sanctioned. Consequently, our calculated 

LCIRR incorporates all projects except those in the last two categories. We argue that our 

calculation, however, still provides valuable insight in conjunction with the following analysis 

of each critical success factor. As our calculations show, Equinor’s projects in operation yield 

a higher LCIRR, on average, than those not yet commissioned and the upper boundary of the 

company’s guidance for future projects communicated in its capital markets update in 

November 2020 (Equinor, 2020a). Incidentally, Equinor’s guidance for the LCIRR of future 

projects is in line with Ørsted’s, which guides LCIRRs between 7-8%.  

Exhibit 32: Equinor’s capacity weighted lifecycle IRR (LCIRR) in offshore wind by 
project-phase 

 

Sources: Own calculations, facts about our renewable assets (Equinor), company 
announcements  

Note: Pipeline only includes projects that have been awarded contracts. 

Revenue 

As we have previously argued, governmental support materialising as a price difference 

between tariff- and market-prices, combined with the length of the subsidy contracts, 

constituted high and long-lasting revenues that contributed to the success of Ørsted’s 
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transformation. In terms of Equinor, we argue that in order to achieve a success akin to 

Ørsted’s, these same characteristics must exist. In turn, we will address this by first analysing 

the revenue aspect of the projects Equinor has in operation before we analyse the projects the 

company has in pipeline. 

In operation 

Analysing the composition of Equinor’s operational projects reveals that three of the four 

projects the company has in operation are located in the UK. Furthermore, Equinor 

commissioned its first offshore-wind farm in the UK in 2011, and similar to Ørsted, entered 

the UK market before the transition to competitive-based auctions under the Contracts-for-

Difference (CfD) scheme. Sheringham Shoal and Hywind Scotland were awarded support 

under the Renewable Obligation Certificate (ROC) scheme, and thus receive consistently high 

revenue compared to the market-price. It is worth noting that Hywind Scotland receives 3.5 

ROCs per MWh it produces, which is the highest support level registered in both Equinor’s 

and Ørsted’s portfolios. The highest support level achieved by Ørsted, by comparison, is 2 

ROCs per MWh. The reason behind Hywind’s favourable ROC agreement is that this project 

employs floating offshore-wind technology, which is costlier than standard bottom-fixed 

technology. Equinor’s last operational UK project, Dudgeon, was awarded support under the 

CfD scheme in the early auction round of 2014. As described in the analysis of Ørsted, this 

entailed higher strike-prices than the subsequent official auction rounds due to low 

competition. As such, and similar to Ørsted’s early CfD projects, Dudgeon is fixed on a high 

strike-price, and benefits from a high price-differential in relation to the market-price. 

Equinor’s first, and only, operational offshore-wind farm in Germany, Arkona, was 

commissioned in 2019. Similar to Ørsted’s projects in Germany, this project receives two 

particular tariffs over two distinguishable periods: Eight and two years. The support level 

Arkona receives is identical to that received by Ørsted’s Borkum Riffgrund 2, also 

commissioned in 2019. As such, this project also benefits from a high price-differential over 

the first 10 years, before converging with market-prices thereafter.  

Pipeline 

As shown in Exhibit 31, the projects that have been awarded contracts are located in the US 

and the UK. In the UK, Equinor has been awarded contracts for the commissioning of the 

Dogger Bank project, which consists of three phases. Each phase will receive support under 
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the CfD scheme and was awarded contracts in the third auction round of 2019 (Department 

for Business, Energy & Industrial Strategy, 2019). As thoroughly covered in the revenue 

analysis of Ørsted, these strike-prices constitute a modest, if any, price-differential against the 

market-price. Analysing the awarded contract for Equinor’s first planned commissioning in 

the US, Empire Wind I, reveals that the company has received a PPA-structured offtake 

agreement with an annual escalator of 2%. As reported in NYSERDA’s contracting summary 

for the project in 2019, the annual increase is applied as Empire Wind I uses a Gravity-Based 

Structure (GBS),22 a relatively more expensive substructure than traditional monopile and 

jacket solutions.  

Although we lack revenue-specific details about the projects with only secured acreage, a 

discussion on the likely support levels these projects will receive is still valuable, in our view. 

The projects seeking to be awarded contracts in the UK will most certainly be commissioned 

under the CfD regime, as the ROC scheme was discontinued for all new generating capacity 

after 2017. Following the competitive developments leading to continuously lower strike-

prices, we argue that the future projects, most likely, will not achieve any larger price-

differentials, if any, compared to those observed in the last auctioning round of 2019.  

For the future US developments, we direct the reader’s attention to our discussion about the 

falling offtake-prices highlighted in the analysis of Ørsted in Exhibit 17. As such, we argue 

that Equinor’s future developments will not achieve as high offtake-prices as the company did 

for Empire Wind I, should this development continue. In our view, this seems likely given the 

forecasted growth in the US market, coupled with lower costs and technology improvements 

(Wood Mackenzie, 2020). In fact, Wood Mackenzie, a leading industry research firm, expects 

the sector to ramp up from near-zero today and deliver as much as 25 GW by 2029, on the 

back of the entrance of experienced European renewable energy players and oil and gas 

producers, as well as domestic utilities and supply chain providers (Wood Mackenzie, 2020). 

In turn, we argue that this underlines that the US offshore-wind market will continue to mature 

over the coming years. 

 

22 The substructures for an offshore-wind turbine are essentially the foundation that lies at the seabed. The 
gravity-based structures rely on the sheer weight of the construction to hold the turbines in place (NYSERDA, 
2019). 
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Sub-conclusion to revenue 

Equinor’s operational projects have thus far achieved the benefits of high price-differentials 

between the tariff- and market-prices. This characteristic is similar to Ørsted, which achieved 

this throughout its entire transformation. From the aspect of revenue, we consequently argue 

that in order for Equinor’s transformation to achieve a success similar to Ørsted’s, the high 

price-differential needs to be sustained throughout its impending transformation. As we 

highlight in the analysis above, this seems unlikely given the developments towards more 

competitive bids for tariffs in the locations where Equinor is planning to expand, leading to a 

convergence between the market- and tariff-prices. Consequently, the gradual maturation of 

the offshore-wind market will prohibit Equinor from achieving as high a price-differential 

throughout its transformation as Ørsted did when the market was immature.  

Cost 

Analysing the aspect of costs to address the critical factors to success in Equinor’s 

transformation compared to Ørsted’s requires consideration of the journey offshore wind has 

had from an immature to a mature market. This is crucial, as a key distinguishable feature 

between each transformation is that Ørsted’s happened while the market was immature, and 

Equinor’s while the market is mature. In this sense, the factors behind costs as contributors to 

a successful transformation have a different connotation. In an immature market, the high costs 

of offshore-wind projects required high revenue, where governmental support in the form of 

tariff-prices made the projects financially viable. As such, for Ørsted, cost reductions were 

necessary to prove that offshore wind was a worthy replacement to traditional energy sources, 

such as fossil fuels. In the developments towards a mature market, in contrast, revenue in the 

form of competitive tariff- or market-prices leaves offshore-wind operators without the 

comfort of ensured profitability through governmental support. As such, cost-effectiveness 

has become the key to provide financial viability.23 In other words, instead of high revenue 

being the premise to survival in the immature offshore-wind market, low costs have captured 

this role as the market has become increasingly mature. As such, in relation to Equinor’s 

 

23 Our point is not that cost-effectiveness was not important to Ørsted, but rather that it has become increasingly 
important as subsidies have become less applicable as the tariff-prices converge towards market-prices. 
Paradoxically, we acknowledge that the lower cost is the factor that has allowed the tariff-prices to converge 
against the market-prices.  
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transformation, the critical aspect of costs entails the potential to achieve a competitive 

advantage through cost-effectiveness in order to accomplish the same success as Ørsted did. 

The potential to attain a competitive advantage will be assessed by analysing if this can be 

achieved within the aspects of load factors, as well as operating and capital expenditures.    

Load factors 

As higher load factors represents a key driver in reducing the LCOE of offshore-wind 

operations, Equinor has, as with Ørsted, benefitted through increases in turbine sizes, in 

addition to increasing the distances to shore. In this context, we believe Equinor’s 

implementation of floating offshore-wind technology is opening new possibilities for wind 

power locations, which in turn will provide higher load factors due to better wind conditions. 

Moreover, Equinor has been a pioneer in floating offshore wind, as manifested by the 

company’s nearly 20 years of involvement in developing this technology. Floating wind farms 

target deeper water sites, typically at depths of over 60 metres, where bottom-fixed designs 

are unsuitable. These deep-water sites could host some 4 TW of global offshore-wind capacity, 

according to the industry association WindEurope (Wind Systems, 2020).  

Furthermore, Equinor already operates one floating offshore-wind farm in the UK, Hywind 

Scotland, which was the world’s first commercial-scale floating wind farm. The load factor 

on Hywind Scotland is 54%, which is significantly higher than the average load factor in the 

UK of ~40% (DNV GL, 2019). Thus, when combining this with Equinor’s pioneer position, 

we argue that a successful employment of floating offshore-wind technology has the potential 

to constitute a competitive advantage for the company in terms of achieving cost-effectiveness 

through higher load factors.   

Operational expenditures 

Furthermore, as we argued in the analysis of Ørsted, the increasing average size of turbines 

has been the key driver in reducing operating expenditures for offshore-wind operators. By 

observing the development in Equinor’s operating wind farm portfolio, we see that the 

company, similar to Ørsted, has taken advantage of this development. This is evident from 

Sheringham Shoal’s 3.6 MW turbines commissioned in 2011, compared to Dudgeon’s and 

Hywind Park’s 6 MW turbines commissioned in 2017. Moreover, as Equinor has decades of 

experience building offshore oil platforms, we believe the company is positioned to manage 

the logistical and technical challenges of developing and operating offshore-wind farms. We 
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therefore argue that Equinor should benefit from increasing the size of wind turbines on the 

same level as Ørsted, and thus will achieve the same marginal benefit of larger turbine sizes. 

This notion is supported by the fact that Equinor has the potential to leverage synergies with 

its offshore oil and gas projects, in our view. This view is endorsed by the International Energy 

Agency, which estimates that approximately 40% of the full lifetime costs of a standard 

bottom-fixed offshore-wind project have significant synergies with the offshore oil and gas 

sector, particularly if wind and hydrocarbon assets are in close proximity (Shafto, 2019).  

However, Equinor is far from the only oil major making an energy transition to offshore-wind 

energy and consequently does not have an exclusive potential to leverage synergies with oil 

and gas operations with operations in fixed-bottom offshore-wind farms, in our view. Besides, 

we cannot find compelling evidence to suggest that Equinor’s synergies will lead to lower 

costs of operations than Ørsted or other wind farm developers, in terms of being better at 

exploiting larger turbine sizes. Consequently, we argue that Equinor benefits from increasing 

turbine sizes to the same degree as Ørsted, suggesting that Equinor will not achieve a 

competitive advantage in terms of lower operating expenditures. 

Capital expenditures 

Comparing the capital expenditures per MW of Equinor’s projects in operation with its 

pipeline reveals that the company expects to become more effective in terms of the initial 

investments, i.e., capital expenditures, in its projects. Furthermore, in our view, there are two 

potential aspects that combined could lead to Equinor achieving a competitive advantage 

through low capital expenditures compared to other offshore-wind farm developers. The first 

aspect entails leveraging its expertise in oil and gas investments, while the second relates to 

successfully establishing itself as the first-mover in floating offshore wind.    
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Exhibit 33: Capital expenditures per farm capacity (MW) of Equinor's projects 

 

Sources: Own calculations, company announcements, Power Technology 

Note: This shows unsubsidised capital expenditures, meaning no governmental support to 
initial investments.  

In the context of leveraging the company’s oil and gas expertise, the former CEO of Ørsted, 

Henrik Poulsen, argued that building an offshore-wind turbine is not comparable to building 

an oil platform, and stated “We have much more experience and we have stronger 

procurement” (The Economist, 2020). Evidently, this depends on the offshore-wind 

technology one considers, as Henrik Bringsværd, the head of Equinor’s floating offshore-wind 

developments, argues that “the technology that underlies floating wind is not especially new, 

and many of the competencies are an even stronger match for the existing oil and gas supply 

chain than with fixed-bottom offshore wind” (Parnell, 2020). As such, it could be argued that 

potential synergies exist during the installation and construction phases of floating offshore 

wind and oil and gas projects, which leaves potential for a competitive advantage to Equinor. 

In this sense, we argue that especially skills from the construction of foundations, subsea 

structures, cabling, floating platforms, and overall project management could be transferred 

from offshore hydrocarbon projects to floating offshore-wind projects (Shafto, 2019). 

Moreover, the growing activity in wind farm extension projects can benefit from existing 

utility connections and site infrastructure. Consequently, developing offshore-wind farms in 

the North Sea could, in our view, contribute to less capital expenditures for Equinor through 

leveraging synergies from oil and gas projects in the area. For this to constitute a competitive 
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advantage, however, we emphasize that Equinor needs to be the first to successfully exploit 

these synergies.   

Evidently, Equinor is first, as highlighted in the discussion regarding load factors and as 

demonstrated with Hywind Scotland. Moreover, the company is also developing the first 

floating offshore-wind farm in the North Sea, Hywind Tampen, to power the oil- and gas-

fields of Gullfaks and Snorre. By using floating offshore-wind technology, Equinor envisions 

alleviating the additional capital expenditures imposed when investing in the foundations and 

substructures associated with using traditional bottom-fixed solutions. As the LCOE for 

floating offshore wind is currently up to four times that of bottom-fixed, the Hywind Tampen 

wind farm will hardly turn a profit (Andersen, 2019). Nevertheless, DNV GL estimates that 

the LCOE will come down to USD 63 per MWh in 2030, and USD 35 per MWh in 2050 

(Rennesund et al., 2020). The belief in improved LCOE for floating offshore wind is also 

shared by the renewable energy consultancy company, BVG Associates, which asserts that the 

difference in capital expenditures between bottom-fixed and floating offshore wind will 

almost vanish by 2035 (Rennesund et al., 2020). These views are in line with Equinor’s 

expectations for the Hywind Tampen project. In this sense, the company aims to reduce costs 

by 40% compared with Hywind Scotland through utilising new installation techniques, 

concrete substructures, and a shared mooring design (Reuters Events, 2019). To highlight the 

practical impact of one of the cost-reducing initiatives, concrete substructures are cheaper than 

the steel substructures used on Hywind Scotland, and additionally remove some of the 

complexity regarding the inshore marine operations.  

Consequently, with respect to capital expenditures, we believe that the small-scale Hywind 

projects will provide Equinor with early and extensive know-how, exhibiting a resemblance 

to Ørsted’s first-mover advantage in bottom-fixed offshore wind. As such, by pioneering 

floating offshore wind and leveraging its synergies from oil and gas developments, Equinor 

could potentially attain a cost-related competitive advantage through lower capital 

expenditures. 

Sub-conclusion to costs 

To conclude, we argue that Equinor will not be able to attain a competitive advantage in 

bottom-fixed offshore wind. However, due to the fact that Equinor has the potential to leverage 

synergies with its offshore oil and gas projects, we believe the company will be able to achieve 
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the same marginal benefit of larger turbine sizes as Ørsted, which has been a key component 

in reducing operational expenditures. This also implies diminishing returns to larger turbine 

sizes, such that one can consequently not expect that larger turbine sizes will reduce 

operational expenditures at the same rate as in Ørsted’s transformation. Nevertheless, we 

believe Equinor has the potential to achieve a competitive advantage through a successful 

employment of floating offshore-wind technology, as this would entail lower capital 

expenditures and higher load factors compared to other offshore-wind companies. As floating 

offshore-wind technology is only employed in small-scale utility projects, with a significantly 

higher LCOE than bottom-fixed offshore-wind farms, the technology is still in its infancy and 

we believe Equinor will need to invest in much larger facilities to implement the necessary 

cost savings to make it competitive.  

Funding strategy to fuel investments  

In the analysis of Ørsted’s transformation, we concluded that the farm-down24 funding strategy 

the company employed to accelerate investments in new projects was a critical factor in its 

success. In our view, there are two aspects to consider in relation to the question of Equinor 

employing a similar funding strategy that enables the company to achieve a success akin to 

Ørsted’s. The first aspect is if Equinor in fact employs a similar funding strategy, and the 

second is if, through such a strategy, it is able to serve a comparable offering to potential 

project investors.  

In analysing Equinor’s portfolio, we find that the company has divested part of its stake to 

outside project partners in all of its four operational projects. Moreover, Equinor has recently 

shown high divestment activity, with the sale of stakes in the future Empire and Beacon Wind 

farms in the US in mid-September to British Petroleum (BP), as well as the divestment of 

Dogger Bank A and B to ENI in early December (2020). The largest transaction of these was 

with British Petroleum (BP), which joined forces with Equinor by purchasing 50% of the 

projects for USD 1.1 billion (Equinor, 2020b). All of Equinor’s recorded transactions are 

illustrated in Exhibit 34. To the extent that Ørsted’s funding strategy involved divestment of 

existing projects, we argue that Equinor has shown evidence of doing the same. The crucial 

aspect, however, in our view is if the divestments are motivated by a strategy to recycle capital 

 

24 As previously explained, this entails divesting an existing offshore-wind asset to invest in a new one.  
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by investing in new projects or merely to ensure profits while de-risking exposure to offshore 

wind. The latter would, in our view, imply a lack of commitment to offshore wind compared 

to the former. In the case of Equinor, we argue that the company’s vast pipeline should 

underpin its commitment towards offshore wind. As such, we believe that the proceeds 

generated from divestments fit into a strategy to fuel new investments, which is similar to 

Ørsted’s strategy.      

Exhibit 34: Implied value per MW in Equinor’s farm-downs 

 

Sources: Own calculations, company announcements, Yahoo Finance, Renewables Now  

One could argue that the very essence of Ørsted’s funding strategy was that the company used 

capital generated internally, to the extent that proceeds from divestments fit this description, 

to fund new projects. In this context, it is worth emphasising Equinor’s opportunities to use 

internal capital to fund the company’s transformation compared to what Ørsted had at the early 

stages of its transformation. As previously described, two years after Ørsted’s proposed 

strategy, the company experienced financial turmoil25 and needed an equity injection of DKK 

11 billion from Goldman Sachs and the Danish pension funds, ATP and PFA, to recover. By 

any measure, the company was at the time not in any condition to use internal capital generated 

by other business areas to fund its renewable energy expansion, in our view. Comparing this 

to Equinor, which as an oil major has a thriving oil and gas business combined with a strong 

 

25 The aforementioned gas crisis led to Ørsted needing a financial action plan to survive. 
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balance sheet, suggests that the company should have a greater opportunity to use cash 

generated from its other business areas to fund its renewable energy expansion. Currently, this 

seems indeed to be the practice of Equinor, which the company evidently also combines with 

a funding strategy similar to Ørsted’s. We emphasise that the latter is of interest in this context, 

that is, the funding strategy Equinor employs within offshore wind specifically. As such, the 

relevant discussion lies in the specific offerings related to the funding strategy within offshore 

wind for Equinor compared to Ørsted. 

The key aspect of Ørsted’s successful funding strategy was the flexibility to offer different 

investment proposals to different project investors according to their risk preference. In 

relation to Equinor’s farm-downs, we see that Sheringham Shoal was farmed down to the 

Green Investment Bank (GIB) at the project’s operational phase, while the previously 

mentioned BP transaction happened before development (Sheringham Shoal Offshore Wind 

Farm, 2014). Consequently, we argue that Equinor offers a flexibility akin to Ørsted’s, in terms 

of allowing project investors to invest in projects at different phases, according to their risk 

preferences.  

A crucial facet, however, that contributed to mitigating the risks of outside project investors, 

and thus making investments in Ørsted’s projects more appealing, was the company’s refined 

partnership models26 enabled by the company’s visibility to potential risks and ability to 

manage them, especially in the early phases of a project. As Equinor has provided limited 

information about the company’s explicit presence throughout the phases of its projects, a 

direct comparison where we address the individual presence of each company would not be 

very valuable. A result-oriented approach, however, would imply that Equinor’s limited track-

record of introducing institutional investors to earlier stages of its projects indicates that the 

company is not as successful in mitigating the risks to the same extent as Ørsted was. This 

comparison, however, is to some extent invalidated by the aspect of today’s different dynamics 

in the competition for capital compared to when Ørsted pioneered the strategy, whereas 

securing capital from project investors has become more challenging as a larger portion of 

companies now employ flexible investment proposals to appeal to investors. On the other 

hand, the increase in capital directed towards investments in offshore-wind projects should 

 

26 EPC Wrap Partnership and Shared Risk Partnerships as mentioned in Section 3. 
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indicate an abundance of capital available for the industry, thus offsetting the effect of 

increased competition. Still, even in this case, we argue that the capital would be properly 

channelled to the most appealing projects that offer the most favourable risk versus returns. It 

is consequently unclear if Equinor’s ability to mitigate the project-risk, and thus appeal to 

project-investors, is inferior to Ørsted’s. 

An additional point in terms of Ørsted’s and Equinor’s comparable offerings is that both 

companies are partly state-owned. This could represent a comforting attribute in terms of 

potential investors having a solid co-investor when providing capital. We argue that this 

specific offering is similar for Ørsted and Equinor.   

Sub-conclusion to funding strategy 

As this analysis reveals, Equinor employs a similar funding strategy to Ørsted’s and, as evident 

from its previous farm-downs, in the same fashion of offering flexibility by introducing project 

investors at different phases of its projects. We believe, however, that the attractiveness of 

Equinor’s offering versus that of Ørsted’s is still unclear, in terms of Equinor providing limited 

information regarding how the company mitigates the risks for the potential project investors. 

Nevertheless, in light of the analysis above, we find it reasonable to assume that Equinor’s 

funding strategy should enable the company to display the same success as Ørsted did with 

regard to this critical factor in its successful transformation.  

Can Equinor’s transformation achieve a similar success to Ørsted’s? 

Thus far, we have analysed whether Equinor’s transformation can achieve a similar success to 

Ørsted’s by assessing the financial aspects related to the LCIRR, namely revenue, costs, and 

investments in the context of Equinor’s impending transformation. This analysis had the 

purpose of uncovering similarities within each financial aspect across the two transformations, 

in the sense that such similarities would allow Equinor to achieve a success akin to Ørsted’s. 

In doing this, we find that Equinor will not be able to achieve the similar high price difference 

between tariff- and market-prices which historically has existed for Ørsted. Furthermore, we 

reveal, with consideration of the journey the offshore-wind industry has had from an immature 

to a mature market, that Equinor will not establish a competitive advantage within cost-

effectiveness unless the company exploits the potential of floating offshore wind and 

establishes itself as a market leader in this segment of the industry. Lastly, we reveal that 
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Equinor employs a similar funding strategy to Ørsted, and as evidenced by its offering to 

outside project investors, has the potential to use this strategy to accelerate the growth of new 

projects in a similar fashion to that of Ørsted.  

Compiling these findings yields two implications for the LCIRR of Equinor’s projects relevant 

to its transformation. The first is that comparatively low revenue without drastically lower 

costs will result in a margin compression for Equinor’s bottom-fixed offshore-wind projects. 

We argue that Exhibit 29 in Section 3 which illustrates the EBITDA-development for Ørsted 

substantiates this argument. The exception, however, is floating offshore wind where Equinor 

currently achieves relatively high tariff-prices due to the infancy of this technology. 

Combining this with a competitive advantage in costs, due to comparatively high load factors 

and low capital expenditures, could potentially lift Equinor’s margins throughout its 

transformation. On the other hand, floating offshore-wind developments represent a minuscule 

portion of its currently communicated pipeline, in fact less than 1%, and would consequently, 

even as a success, not be a significant contributor to a higher aggregated LCIRR.  

The second implication involves the fluctuating revenue streams that market-prices entail in 

conjunction with potential issues of continued investments in projects from institutional 

investors. In the analysis of Ørsted, we argued that its farm-down model was a tool the 

company used to attain its access to cheap capital (low cost of capital) by mitigating the risks 

to outside institutional investors during the last years of its transformation. By comparison, we 

believe that as the developments towards fluctuating revenue streams become more apparent, 

a curtailment of the overall presence of institutional investors in the equity-mix is not 

inconceivable. As such, the case could be quite different for Equinor’s transformation 

compared to Ørsted’s. This is due to the fact that a full materialisation of fluctuating revenue-

streams discards the so-called “yield compression play”27 in offshore wind, where the rationale 

suggests that returns from governmental guaranteed revenues bring about a spread against 

low-risk instruments issued by other high-quality issuers such as governments or low-risk 

investment grade companies. As such, we argue that the developments towards zero-subsidy 

bids could alter the equity-mix for offshore-wind projects. This would create a dissimilarity 

between the funding opportunities Ørsted had and Equinor has, and even though Equinor 

 

27 Industry term used by institutional investors. To mention some; Aquila Capital, Greencoat Capital, Gresham 
House etc. 
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employs a similar funding strategy to Ørsted’s, a curtailment of financing to accelerate new 

projects would leave Equinor’s transformation less successful than Ørsted’s.    

Ultimately, we argue that the findings in this analysis suggest that the critical financial factors 

that contributed to Ørsted’s successful transformation no longer carry the characteristics that 

would allow these factors to contribute to Equinor achieving a similar success to Ørsted. We 

believe this is encapsulated by the fact that Equinor’s transformation lacks the very root cause 

of Ørsted’s success, in which the company was the first-mover in offshore wind. Considering 

the composition of Ørsted’s and Equinor’s offshore-wind portfolios, respectively, carries an 

important implication: Despite the fact that both Equinor and Ørsted guide similarly low 

LCIRRs for future projects, a far greater portion of Ørsted’s offshore-wind portfolio is already 

operational and will continue to reap the benefits of the company’s first-mover advantage over 

the coming years compared to Equinor. Even though Equinor has made efforts to replicate a 

first-mover strategy in floating offshore wind, we believe the scarce pipeline and infancy of 

this segment prohibits a clear conclusion, apart from identifying a mere potential, as to whether 

this will create a similar journey as Ørsted had in bottom-fixed offshore wind. As such, we 

believe Equinor will not achieve a similar degree of success as Ørsted did in its transformation 

from black to green. In turn, we believe this conclusion is strengthened by the fact that both 

Ørsted and Equinor guide lower LCIRRs for future projects, compared to those they have in 

operation.  

This conclusion, however, attributes financial success solely to the returns generated 

throughout each respective transformation, measured comprehensively by the LCIRRs. On the 

back of the analysis above and both Ørsted’s and Equinor’s low guidance for LCIRRs for 

future projects, we argue that increasing the returns within offshore wind from current levels 

represents a difficult endeavour for Equinor. However, a crucial part of Ørsted’s success was 

creating shareholder value, in our view. In this context, we extend our analysis to consider 

economic profit; that is, the returns one achieves compared to the returns one requires, where 

the latter remains a component left to consider in our analysis. In turn, considering the required 

returns of all investors in each company would be a valuable extension to the analysis of the 

returns, and as such, an inquiry could reveal potential measures, other than increasing returns, 

that Equinor could take to elevate the progress of its expansion in offshore wind. As such, we 

will assess the required returns of both Equinor and Ørsted in the following part.           
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The required returns for Ørsted and Equinor 

In the context of analysing the required returns of Equinor and Ørsted, we first accentuate the 

measure for the required returns we choose to assess. In our view, the most comprehensive 

measure for this is the weighted average cost of capital after corporate tax (WACC) as this 

considers every category of capital provider for each company (Koller et al., 2015, p. 283).  

Furthermore, an acknowledgement of the different characteristics in the businesses of Equinor 

and Ørsted should be made before estimating the WACC for each. The fundamental idea is 

that the WACC should reflect the required returns from the operational part of a company 

(Koller et al., 2015, p. 283). For Ørsted, which predominantly generates cash-flow from 

offshore wind, the overall company WACC will to a large degree represent the returns all 

investors require from offshore wind. For Equinor, the predominant part of the overall cash-

flows stems from the company’s oil and gas operations, which means that the overall company 

WACC will reflect, to a large degree, the returns investors require the operations within oil 

and gas to generate. As such, the overall company WACC is not directly representative in 

terms of what investors expect its offshore-wind operations alone to generate. This is, 

blatantly, not what investors should expect when investing in Equinor, which constitutes part 

of the topic of discussion tied to this part of our thesis. To provide further insight into the 

differences in the WACC for each company, we provide a more detailed comparison in the 

following paragraphs.    

Estimating the WACC for each company 

In estimating the WACCs for Ørsted and Equinor, we calculate that Equinor has a higher 

average WACC than Ørsted, as shown in Exhibit 35. The WACCs we estimate for Equinor 

and Ørsted, respectively, is the average derived from three approaches based on different 

assumptions. In the following paragraphs, these approaches are discussed in detail.  
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Exhibit 35: WACC estimations for Ørsted and Equinor 

 

Sources: Own calculations, Bloomberg LP, Johnsen T., PwC, FactSet  

In approaches 1 and 2, we estimate the WACC of Ørsted and Equinor based on different 

assumptions for the risk-free rate. We argue that this provides a more nuanced estimate to both 

companies’ WACCs, considering the currently low interest rates. Moreover, an elaboration on 

the theory and methodology behind the WACC calculations related to these approaches is 

provided in Appendix F. Approach 1 has the purpose of considering the current interest rates. 

As such, the estimate for the risk-free rate in this approach is based on the yield of a 10-year 

US government bond. According to Koller et al. (2015), this yield is a good proxy for the 

currently expected risk-free returns, since default expectations are virtually zero (Koller et al., 

2015, p. 288). Approach 2 has the purpose of reflecting a more normalised risk-free rate and 

is based on a survey conducted by PwC in collaboration with the Norwegian Society of 

Financial Analysts in 2020. The normalised risk-free rate of 3% from this survey is based on 

the response of 1,000 Norwegian financial analysts, and reflects the normalised risk-free rate 

applied by Norwegian investors for investments in Norwegian companies28. Incidentally, this 

 

28 Until recently, Duff & Phelps - an industry provider of governance, risk and transparency solutions - applied 
a 3% normalised risk-free rate in the US. As of July 2020, this was revised down to 2.5% due to the effect of 
covid-19 on the global economy (Nunes et al., 2020). This, by comparison, highlights that 3% is not uniquely 
used by Norwegian investors. 
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does not consider our belief that the investor-bases in both companies are, to a large extent, 

internationally diversified, but we argue it provides a valuable nuance against the relatively 

low risk-free rate used in approach 1. In both approaches, we use the asset-beta to reflect the 

business-risk of Ørsted and Equinor, as this yields a pristine estimate of the business risk of 

each company without distortions from potential leverage-effects.29  

The distinguishing factor for each company in both approaches is the different asset-betas, 

where we estimate 0.48 for Ørsted and 0.55 for Equinor. A practical reason we perceive as a 

reason for the differences relates to the distinctive cash-flow characteristics of the offshore-

wind business versus that of oil and gas. In our analysis of both Ørsted and Equinor, we find 

that the stable revenue streams from governmental subsidies, combined with stable cost levels, 

result in minuscule fluctuations in the cash-flows generated. Oil and gas, on the other hand, 

entails revenue streams associated with volatile, and more cyclical, oil and gas prices leading 

to larger fluctuations in the cash-flows generated (Ernst & Young, 2007). Consequently, from 

this perspective it seems reasonable that offshore wind is awarded a lower cost of capital than 

oil and gas. However, as the estimates in Exhibit 35 shows, this holds true for approach 1 but 

not for approach 2.  

In approach 3, we use the market implied cost of equity based on current share prices and the 

underlying corporate performance of Ørsted and Equinor. Earnings yield is defined as the 

earnings divided by the equity value, implicitly reflecting the returns equity investors require 

from a company, formulated as the inverse of the price-to-earnings (P/E) ratio (Koller et al., 

2015, p. 290). Moreover, we use the consensus estimated P/E multiples for 2021 for Ørsted 

and Equinor to approximate the earnings yield for each company. This implies that the 

earnings yields we derive are nominal numbers, meaning that we do not adjust for inflation. 

Moreover, this approach assumes that both companies are in so-called steady states,30 which 

will be discussed further below. Despite the fact that earnings yield is not the same as required 

return of equity, we believe the ratio serves as an acceptable proxy for cost of equity across 

companies on a relative basis, but not on an absolute basis. Through this approach, we estimate 

 

29 The asset-betas of Ørsted and Equinor are derived against the monthly returns of the MSCI World Index. A 
more detailed description is provided in Appendix F. 

30 That is, no addition or detraction of value supplementing the going concern of the company. 
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a 2.0% WACC for Ørsted and a 4.9% WACC for Equinor. A detailed description of the 

calculations underlying this approach is provided in Appendix F. 

As we can observe from Exhibit 35, the WACC estimated from the implied cost of equity 

differs from that of the two previous approaches. One potential reason is that we use historical 

betas when calculating the cost of capital in approaches 1 and 2, which do not necessarily 

serve as sufficient proxies for future betas. For Ørsted, one could argue that the asset-beta of 

0.48 is too low compared to what one can expect for the future, as the company has since its 

IPO in 2016 gone through an expansionary phase. In this sense, the share price has fluctuated 

relatively more against the market-index31 than that which can arguably be expected for the 

future, as the company gradually reaches a more stable phase.  For Equinor, one could argue 

that its asset-beta of 0.55 is too high compared to what one could expect for the future, as the 

company gradually transitions into the offshore-wind business, which, as argued, has a 

comparatively lower asset-beta than the oil and gas business. Against this, we believe that the 

argument of Ørsted’s asset-beta likely being higher than 0.48 offsets this effect, leading us to 

accept 0.55 as a reasonable estimate for the future asset-beta of Equinor. Furthermore, we 

believe investors are willing to buy Ørsted at a higher P/E multiple due to a so-called “green 

premium,” which is not captured in the other two approaches. The concept of a green premium 

represents in broad terms the additional value investors are willing to assign to companies with 

growth opportunities in renewables. Note that this concept is more thoroughly elaborated upon 

throughout the rest of this section. Lastly, we acknowledge that investors may assume different 

risk-free rates than those used in our calculations, which consequently results in a WACC that 

differs between approaches 1 and 2.  

Furthermore, we argue that a practical perspective in assessing the differences between the 

WACCs calculated from approach 3 for Equinor and Ørsted is valuable. In this sense, we argue 

that the emerging Environmental, Social and Governmental (ESG) investor sentiment is an 

interesting aspect pertaining to the differences in the cost of capital of offshore wind versus 

oil and gas. The ESG investor sentiment is, among other indicators, evident from the results 

of a survey conducted by Morgan Stanley, highlighting that 80% of asset owners have already 

incorporated ESG into at least parts of their portfolio (Whyte, 2020). According to Professor 

 

31 As explained in Appendix F, we use the MSCI World Index as the market-index, where we believe that Ørsted’s 
stock-price have experienced a lower correlation with this index compared to what one can expect for the future.  
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Thore Johnsen (2020), the channels in which the investor sentiment may influence the cost of 

capital are through what he describes as positive and negative screenings of companies. 

Positive screenings entail the choice of investing in companies with business models that 

promote sustainable development, which is the case for renewable energy companies befitting 

the Environmental aspect of ESG. This effect thus drives an upward pressure in the prices of 

ESG stocks, ultimately resulting in a lower cost of capital, assuming the ESG rating is 

consistent among companies and that the expected cash-flows remain unchanged. Negative 

screenings, on the other hand, involve divesting, or avoiding investing in, companies not 

categorised as ESG. This results in a downward pressure in the prices for these types of 

companies, which in turn leads to higher expected returns for such investments, assuming 

unchanged expected cash-flows (Johnsen, 2020). 

When we use the earnings yields as inputs for calculation of cost of equity, we implicitly 

assume that Ørsted and Equinor are in steady states. In other words, this implies that no value 

is added to or detracted from future growth. This assumption, however, is challenged when 

assessing the value of each stock price as broken down to the sum of its going concern value 

and the present value of growth opportunities. In light of the discussion from the previous 

paragraph, one could argue that a significant part of Ørsted’s stock price reflects the present 

value of the company’s growth opportunities through investors’ expectations of future growth 

in renewables, i.e., an assignment of a green premium. For Equinor, in contrast, the significant 

part could be assigned to its going concern value, or rather a detraction of value if the case is 

that investors see no future at all for the oil and gas business. Thus, we acknowledge that it 

seems unlikely that both Ørsted and Equinor are in steady states. One may also argue that the 

cyclicality of Equinor’s earnings is a challenging factor to the assumption of steady state, 

especially when considering the collapse in crude oil prices this year (2020). However, as we 

base our calculations on earnings estimates for 2021, we are more likely encapsulating a more 

normalised earnings scenario than the present.  

The described effects of upward pricing pressure for ESG companies reflects, in essence, an 

abundance of capital chasing green investments. This point deserves further reflection, as one 

could argue that the relative abundance gradually diminishes as the opportunity-set for ESG 

related investments progressively expands. In such a case, the logical result is a less persistent 

upward pricing pressure, which in turn increases the required returns for the investors of ESG 

companies. Furthermore, this would imply that the pricing pressure is a temporary concept. If 

so, this ultimately suggests that the implicitly low required returns will not necessarily sustain 
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to perpetuity for companies such as Ørsted. As with most concepts in the financial markets, 

the more frequently a momentarily auspicious position is exploited, the less favourable it 

becomes.           

In conclusion, we find reason behind the results pertaining to Ørsted currently having a lower 

WACC than Equinor. In turn, this implies that the appropriate WACC of the offshore-wind 

business of Equinor is likely lower than the overall company WACC of 4.5%, and more similar 

to Ørsted’s WACC of 3.5%. Moreover, a theoretical implication of differences in cost of 

capital could be that we see a difference in the valuation of the offshore-wind business of 

Equinor versus that of Ørsted. A more detailed discussion of this is provided in the following 

part.  

Stock-prices and valuation: The power of the green premium 

This part has the purpose of assessing how the contributors to the different WACCs of Equinor 

and Ørsted affect the companies’ respective valuations, with an emphasis on the values of their 

offshore-wind businesses, as this is the predominant renewable energy segment for each 

company. We emphasise that the valuations we provide in this part are pragmatically chosen 

to fit the purpose of this analysis. 

Our valuation of Equinor’s offshore-wind business is methodically divided between the value 

of the company’s current operations and pipeline within offshore wind. We provide a detailed 

description of the calculation of Equinor’s value in Appendix H. We value Equinor’s current 

offshore-wind operations on a project-by-project basis, discounting all future free cash-flows 

at the 4.5% WACC of the company.32 Moreover, the value of Equinor’s pipeline is calculated 

on a precedent transactions basis. In this sense, we value the projects of its pipeline that have 

been divested according to the considerations paid related to the divestments. These projects 

include Empire and Beacon Wind in the US related to the BP-transaction, in addition to 

Dogger Bank in the UK related to the ENI-transaction. For the remainder of the company’s 

pipeline, which includes four projects that have not yet been awarded subsidies and only 

 

32 This assumes that Equinor’s company WACC is applicable to its offshore-wind projects. As we previously 
argued, the WACC for Equinor’s offshore-wind business is likely lower than the overall company WACC, and 
more similar to Ørsted’s. Nevertheless, for the purpose of this analysis we apply the overall company WACC to 
reflect the value of the offshore-wind business as discounted by the company’s overall cost of capital. 
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secured acreage in terms of their location, we use the transaction value per MW (TV/MW) 

associated with the BP-transaction. Using this transaction multiple assumes that the BP-

transaction is representative for the remainder of Equinor’s pipeline. 

In our view, the potential flaws related to the applicability of the TV/MW multiple to the four 

projects without subsidy contracts require a discussion of the uncertainties related to the choice 

of this multiple. The first point of discussion relates to applicability by location, as two of the 

remaining projects, Dudgeon Extension and Sheringham Shoal Extension, are located in the 

UK, whereas the BP-transaction entailed projects in the US. This could suggest that using the 

TV/MW multiple in the ENI-transaction is more applicable, as this transaction entailed 

divestments of the UK projects Dogger Bank A and B. These projects, however, have been 

awarded subsidy contracts, which is quite distinctive from projects without awarded subsidy 

contracts. In this context, we argue that distinguishing by project phase yields a more 

representative measure, as the consideration investors are willing to pay for a project depends 

on the visibility of the cash-flows the project will generate. As such, there is a significant 

difference between a project with and without awarded subsidy contracts. In this sense, as the 

BP-transaction entailed phases of the projects both with and without awarded subsidy 

contracts, one could argue that such uncertainty was to a greater extent discounted for in the 

consideration paid by BP, compared to the payment of ENI.  

The second point of discussion involves the fact that the BP-transaction entailed the 

introduction of a long-term partnership within offshore wind in the US, as well as the sale of 

more than one project, which may have resulted in a discount in the consideration paid by BP. 

Against this, however, the deal was initiated on a so-called “arm’s length” basis, indicating 

that a commercial non-associated buyer was willing to pay for future earnings under 

uncontrolled conditions (T. Sveen-Nilsen, personal communication, 8th October 2020). Lastly, 

we argue that the scarce financial information about the projects that have not yet been 

awarded subsidy contracts in the pipeline of Equinor leaves alternative forms of valuation 

entail a great deal of uncertainty in any case. As such, we currently view the TV/MW multiple 

from the BP-transaction as the most indicative metric for the value of these projects.   

Exhibit 36 illustrates the value of Equinor’s offshore-wind business, divided into operational 

and pipeline, as parts of the company’s total market capitalisation. We estimate the total value 

of Equinor’s offshore-wind business to be EUR 7.97 billion, corresponding to around NOK 

27 per share. The residual part represents the remainder of Equinor’s businesses, which should 
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primarily reflect the company’s oil and gas related businesses. As shown, Equinor’s pipeline 

value of offshore wind is larger than its current operations, which could reflect the fact that 

the size of the company’s pipeline is 10 times the size of its projects in operation. Notably, the 

difference in value is not nearly as large. In total, our estimates indicate that offshore wind 

constitutes 18% of Equinor’s total current market capitalisation as of 4th December 2020, 

suggesting that the predominant portion of the company’s market value is tied to its oil and 

gas business, as one can expect.    

Exhibit 36: Sum-of-the-parts (SOTP) valuation of Equinor 

 

Sources: Own calculations, company announcements, facts about our renewable assets 
(Equinor), Euronext 

We value Ørsted through a SOTP-approach, distinguishing between the company’s three 

current areas of operations: Offshore wind, Onshore wind (including solar energy) and 

Markets & Bioenergy. A detailed description of the valuation is provided in Appendix H. 

Offshore and onshore wind are valued on a project-by-project basis, where we discount all 

future free cash flows at the company WACC of 3.5%. We distinguish the offshore-wind 

business based on Ørsted’s defined project-phases presented in Section 3 (funding strategy). 

The difference is that we only value the projects in development with subsidy contracts, due 

to the lack of financial information about those without. As Exhibit 37 highlights, Ørsted’s 
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operational projects constitute the largest share of its offshore-wind portfolio, as well as the 

Gross Asset Value (GAV) of the company. The residual value of Ørsted’s market 

capitalisation less our calculated Net Asset Value (NAV) represents what the market values 

as future renewable energy projects, which in our view, should predominantly reflect 

unannounced offshore-wind projects. This is supported by Ørsted’s guidance as of the last 

annual report (2019), stating that the company will increase offshore-wind capacity the most 

until 2030. 

Exhibit 37: SOTP-valuation of Ørsted 

 

Sources: Own calculations, SEB Equity Research, company reports, Ørsted’s Asset Book, 
Ørsted’s share-price monitor  

As the purpose of this analysis was to uncover how the different overall company WACCs 

impact the valuation of Equinor’s and Ørsted’s offshore-wind businesses, we perform an 

exercise using the value of Ørsted’s pipeline as implied by the market, and thus WACC, to 

value the pipeline of Equinor. As such, we set the operational value of Ørsted’s pipeline as 

fixed and assume that the market determines the value of Ørsted’s projects that are not yet 

operational. The project-phases this involves are highlighted in Exhibit 37 above, representing 

Ørsted’s pipeline. As such, we depart from our valuation of the projects that are in construction 

and have been awarded subsidies and let the values of these projects be dependent on the 

market value of Ørsted. The market-implied value of Ørsted’s pipeline is divided by the size 
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of the company’s pipeline (in MW), yielding a multiple we can use to value Equinor’s pipeline 

by multiplying Ørsted’s implied pipeline-value per MW with the size of Equinor’s pipeline. 

Furthermore, we fix Equinor’s operational projects to the previously calculated EUR 2.78 

billion, such that only the pipeline is determined by the implied value from Ørsted. The result 

is shown in Exhibit 38, where the time period spans from when Ørsted’s last project, Borselle 

in the Netherlands, became operational on 28th April 2020. A detailed overview of the 

calculations, and assumptions, behind this is provided in Appendix H.  

Exhibit 38: Equinor's implied value of offshore-wind business versus the company’s 
market capitalisation 

 

Sources: Own calculations, Euronext 

Note that this timeframe entails the impact of covid-19 on both companies’ pricing, which has 
drastically impacted the pricing of oil companies. 

This exercise is merely illustrative, but we argue it underpins an insightful intuition: A 

company with a lower WACC has a higher market capitalisation and consequently a higher 

valuation of its offshore-wind business. We argue, in light of this exercise, that the opposite is 
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the case for Equinor, as its market capitalisation had been close to 55%33 higher in November, 

had its offshore-wind business received the same implicit pricing as Ørsted’s. This, of course, 

assumes that Ørsted is correctly priced in the market, which in our view is a topic of discussion 

on its own, but highlights the potential value-add from the offshore-wind business of Equinor. 

Furthermore, we believe the reason behind why this is currently not true for Equinor, to a large 

extent, can be traced back to an extension of the previously mentioned investor sentiment, in 

which investors are more willing to put fiscal value behind offshore-wind businesses 

associated with pure-play renewable energy companies, than for oil and gas companies.  

We have dedicated a significant portion of this thesis to analysing the developments in the 

offshore-wind market throughout Ørsted’s transformation. Indeed, finding that Ørsted’s root 

cause to a successful transformation was the company’s first-mover advantage underlines that 

the developments to a more mature market likely indicate the end of the high returns (LCIRRs) 

previously witnessed. In turn, this is strengthened by both Ørsted and Equinor guiding lower 

LCIRRs for future projects compared to those they have in operation. In this context, we find 

it particularly interesting that almost one-third of Ørsted’s current market-capitalisation is tied 

to future growth opportunities in renewables, where, for instance, projects without firm 

subsidy contracts are incorporated. Moreover, given the more favourable characteristics of its 

operational portfolio by comparison, we believe that the high share, and thus value, of its 

future growth opportunities of the market value may represent the very embodiment of the 

green premium that investors award to Ørsted. 

To conclude, we argue that Equinor does not fully benefit from the ESG investor sentiment, 

due to the fact that the company is by definition not an ESG company. Ørsted on the other 

hand, was, as similar to its entry to the offshore-wind market, in the right place at the right 

time to catch the immense wave of investments from ESG focused investors. 

 

33 Assuming that the value of Equinor’s offshore-wind business was not discounted for in its market value at all. 
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5. What should Equinor do? 

Thus far, we have discussed the reasons behind Equinor’s evidently higher cost of capital 

compared with Ørsted, and how this contributes to a lower valuation of the company. 

Furthermore, an implication to Equinor of a high cost of capital is that the company will not 

be able to source capital as cheaply as Ørsted in the capital markets. Hence, we argue that 

Equinor will not be able to realise the full potential of its offshore-wind expansion, and 

therefore not maximise shareholder value. In turn, we believe a suggestive option for Equinor 

is to spin off the renewable energy business from its oil and gas operations, which we believe 

will award its offshore-wind business a higher valuation multiple. A spin-off is the most 

common form of a public ownership transaction, where the parent company gives up control 

over the business unit by distributing the subsidiary shares to the parent’s shareholders (Koller 

et al., 2015, p. 642). Moreover, a spin-off coincides with the notion that the stock market 

rewards pure-play companies focused on a single line of business with higher stock prices than 

conglomerates (Birkeland et al., 2019). In the following part, we will discuss how a spin-off 

may help Equinor to unlock the full potential of its offshore-wind expansion.   

The broad belief among market analysts is that separation transactions can result in improved 

management focus and creation of a new equity currency (Birkeland et al., 2019). In terms of 

management focus, we argue that a spin-off in particular will enable Equinor to devote a 

singular focus on renewables in terms of its corporate mission of executing an energy 

transition. As a spin-off creates a pure renewables-based company, we also emphasise the 

maximisation of strategic flexibility of its renewable energy operations. In this sense, we 

especially believe that this will entail more freedom to improve its offshore-wind operations 

by more easily imitating best-practices from other competitive renewable energy companies, 

without creating conflicts of interest with the company’s oil and gas operations. However, 

with two separate entities, one may argue that Equinor’s offshore-wind business will not be 

able to fully leverage the synergies with its current oil and gas business. As we previously 

highlighted in Section 4, synergies related to transferring the skills in developing and 

managing offshore oil and gas projects to offshore-wind projects is a facet we believe to be 

important for Equinor’s progression in the latter. As a spin-off entails two independent 

companies, the transferability of these skill sets might, to some extent, be obstructed. 

Incidentally, this would depend on how the spun-off entities are interconnected, and the 

potentially “new” Equinor is organisationally structured. Such a discussion, however, is past 
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the scope of our suggestion. As such, we argue that focusing on maintaining transferability of 

skills between the spun-off entities will be important if Equinor opts for a spin-off. 

We have previously highlighted evidence of institutional investors showing willingness to 

participate in Equinor’s projects, where Equinor farmed down its share in Sheringham Shoal 

to the Green Investment Bank (GIB). We have also discussed the effect of positive and 

negative screenings of companies, where negative screenings result in investors avoiding 

investing in companies not categorised as ESG. These aspects combined suggest that the 

prohibiting factor for Equinor to gain full access to the abundance of capital towards green 

investments seems to be its negative ESG screening in the equity capital markets. We argue 

this is evident from offshore wind constituting only 18% of Equinor’s total current market 

capitalisation,34 substantiating the fact that the company cannot as of yet be categorised as an 

ESG company. Therefore, we believe a spin-off would entail positive screenings for the 

renewable energy focused subsidiary, and eventually provide institutional investors with the 

opportunity to invest in the company’s offshore-wind business through the equity capital 

markets.  

Another area where we believe a spin-off would provide for cheaper funding are the debt 

capital markets, where ESG focused companies are able to borrow at lower costs. This, as an 

example, is evident through so-called green bonds, which are fixed-income financial 

instruments designed to support ESG related projects, thus often cheaper than a straight bond 

(ICMA, 2018; Reznick, 2019). In this sense, Equinor may obtain higher borrowing rates 

compared with pure-play renewable energy companies such as Ørsted, which we believe is a 

disadvantage in the company’s offshore-wind expansion. Additionally, Equinor is currently 

funding growth in renewables with cash flow from its oil and gas operations. As a spin-off 

makes this impracticable, one could argue against carving out the renewable business as it 

would complicate the current funding practices. However, we believe that Equinor’s funding 

strategy (farm-downs) and implicit backing of the Norwegian government will enable the 

company to secure attractive financial terms to fund further growth, even without its oil and 

gas operations. 

 

34 According to our calculations, discussed in Section 4.  
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Nevertheless, observing other oil and gas companies make the decision to restructure as they 

transition to renewables gives us more confidence in our suggestion of a spin-off for Equinor. 

For example, the Italian oil and gas major ENI announced a restructuring to become an energy 

transition leader earlier in June (2020), by dividing the company into two business entities 

(ENI, 2020). In our view, the strategic move will allow the management teams of the separate 

companies to focus on each distinct core business, oil and gas, and renewables, unhindered by 

the needs of the other business. In turn, such a strategic move should lead to superior 

performance and results for both the parent company and its subsidiary (Birkeland et al., 

2019). Moreover, Aker Solutions, a Norwegian oil-service company, recently resolved to spin 

off its wind development business as well as the carbon capture technology business to the 

Aker Solutions’ shareholders in two separate companies (Aker Solutions, 2020). Regarding 

the spin-off, Øystein Eriksen, the Chairman of Aker Solutions, stated “It has become 

increasingly clear that these businesses represent value creation in a world transitioning to 

green solutions at accelerated speed and have more potential as stand-alone companies than 

as an integrated part of an oil service business” (Aker Solutions, 2020).  

From the discussion above, we argue that it seems financially reasonable for Equinor to spin 

off the renewable business to achieve a greater valuation multiple, including a more favourable 

cost of capital. However, as the Norwegian government is the major shareholder in Equinor, 

the question of carving out the only portion that could currently be considered as 

environmentally friendly, is just as much a political matter in our view. In this sense, we 

believe there are at the least one particular issue that may arise. This issue is if the Norwegian 

government will consent to once again being the major shareholder in a pure-play hydrocarbon 

company. As Equinor’s preliminary motivation for incorporating renewable energy sources in 

the company’s corporate mission undoubtedly came as a repercussion from the increased 

political pressure towards the fossil-fuels industry, we underline that consent from the 

Norwegian government seems unlikely.  



 89 

6. Limitations and further research 

Although it is tempting to say that we have an undisputed answer to what made Ørsted’s 

transformation successful, and concurrently, the issues related to Equinor’s impending 

transformation, we acknowledge that there are some limitations to our thesis. In this section, 

we present some main underlying assumptions and the implications of these before we suggest 

how similar analyses could be conducted for further research. 

We implicitly assume that the critical factors identified for Ørsted’s success must necessarily 

exist to the same degree for Equinor in order for its transformation to achieve a similar success 

to Ørsted’s. This can be discussed, as we potentially omit other, less important, critical factors 

to Ørsted’s success that are more important for Equinor in today’s renewable energy industry. 

This view is strengthened by the notion that the different characteristics of the current 

offshore-wind industry could entail critical factors to success other than those relevant for 

Ørsted. We have sought to address this to the best of our ability by considering how each 

transformation occurs at different eras of the offshore-wind market. Furthermore, we argue 

that considering all aspects of IRR provides the most collectively exhaustive analysis of the 

contributors to financial success. Furthermore, narrowing our analysis down to primarily 

offshore wind might implicitly entail that we do not devote enough attention to other 

renewables-segments such as onshore wind and solar energy. Against this, we argue that 

following each company’s, and especially Equinor’s, own expressed priority yields the most 

logical indication for which segment to prioritise in our analysis.  

Furthermore, we believe that extended research related to our topic could involve comparing 

the transformation of other oil majors to Ørsted’s. We argue that this would provide a more 

comprehensive understanding of energy transitions as a whole, enabling a more general 

interpretation of possibilities to success, rather than on a company-versus-company basis. 

Moreover, as we define the success of an energy transition based solely on Ørsted’s success, 

we conduct our analysis from a historical perspective of one single company. In this context, 

as the sample of companies executing energy transitions becomes larger, one could potentially 

discover other, or additional, criteria for success by assessing the energy transitions of these. 

Lastly, following our suggestions in Section 5, a more detailed assessment of a potential spin-

off of Equinor’s renewable business, and how this would be optimally executed, is an 

interesting topic deserving further research, in our view. 
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7. Conclusion 

In a general sense, the extensive message of this thesis is the true benefit of being first. Indeed, 

having a first-mover advantage in offshore wind was of such benefit to Ørsted that it represents 

the very root cause of the company’s successful transformation. Naturally, attempting to 

replicate the success of Ørsted is enticing to many energy companies, and especially those 

striving to execute a successful energy transition. As revealed in this thesis, the consequence 

of such attempts has been a maturation of the offshore-wind market, inherently leading to a 

diminishment, and alteration, of the critical factors that came as a result of Ørsted’s first-mover 

advantage, and thus facilitated the company’s success. Implicitly, the financial performance 

of Ørsted’s future offshore-wind projects will likely not match those related to its 

transformation.35 This argument, along with the implication that any attempts to replicate 

Ørsted’s success lack its very root cause, indicates that Equinor’s transformation by expanding 

in bottom-fixed offshore wind will not be able to achieve a similar success to Ørsted’s.  

Ørsted’s first-mover advantage embodied the root cause of the company’s successful 

transformation because it entailed a streak of luck, as well as the possibility to acquire a unique 

skill set early on, enabling the company to become the industry leader in bottom-fixed offshore 

wind. What may carry a resemblance to this for Equinor is its pioneer position in floating 

offshore wind. Certainly, whether Equinor will experience the element of luck in the sense of 

Ørsted’s is impossible to either confirm or deny, which combined with its limited share of the 

company’s communicated pipeline leaves us to view this at present as a mere potential. 

Moreover, with the inability to leverage the critical factors to a similar extent as Ørsted, it 

follows that the LCIRRs of Equinor’s offshore-wind portfolio will be lower than those of 

Ørsted’s in its transformation. As such, we look to the required returns to uncover potential 

measures Equinor can take to maximise the entire potential of its offshore-wind expansion, 

and thus transformation. Here, we find that Equinor does not benefit from the ESG investor 

sentiment in the manner that Ørsted does, resulting in a relatively lower valuation of its 

offshore-wind business compared to Ørsted. To mitigate this, we suggest that Equinor should 

spin off its renewable business to lower its cost of capital and devote a more singular focus in 

terms of its corporate mission to execute an energy transition.  

 

35 As we show in Section 3, this is strengthened by the fact that Ørsted guides a lower LCIRR for future projects compared 
to the LCIRR of the offshore-wind projects related to the company’s transformation. 
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Appendix 

The appendices offer complements to the analysis presented in the thesis, as well as a thorough 

description of the central assumptions we have made. First, we provide supporting information 

about the market for offshore wind in Europe from 2010 to 2019. Thereafter, we explain the 

assumptions related to choosing the day-ahead prices for electricity as the market-prices for 

electricity. Following this, we briefly present the formula for LCOE and present its main 

components. Next, we explain the necessary assumptions related to calculating the LCIRR of 

Ørsted’s and Equinor’s offshore-wind portfolios before we explain the same for Ørsted’s 

onshore renewable energy portfolio. Following this, we explain the assumptions related to 

calculating the WACC of both companies before we offer a detailed description of each 

company’s respective valuations. Lastly, we offer complementing information about the 

project acquisition activity in the European offshore-wind market in 2019. 
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Appendix A: Market-data for offshore-wind in Europe 

In Figure A.1 below, we present the development of installed offshore-wind capacity in 

Europe the past decade, highlighting the five largest offshore-wind developers. The data used 

for this is gathered from WindEurope’s The European offshore wind industry key trends and 

statistics from 2010 to 2019.  

Figure A.1: Cumulative installed capacity of offshore-wind operators in Europe 

 

Sources: WindEurope  

Other <1% entails the sum of capacity for the offshore-wind operators with less than 1% of 
the total installed capacity. 

Figure A.2 shows the total market share owned by the largest five farm owners in Europe, 

during the period of 2010 to 2019. The data used for this is gathered from WindEurope’s The 

European offshore wind industry key trends and statistics from 2010 to 2019. 

Figure A.1: Market share development of Ørsted and the five largest offshore-wind 
operators in Europe 

 

Source: WindEurope 
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Appendix B: Day-ahead electricity market-prices 

In this appendix, we briefly comment on the assumption related to the use of day-ahead 

electricity prices as the market-prices for electricity in our thesis. The day-ahead prices entail 

the price at which electricity generators are prepared to receive for the electricity generated 

each hour the following day. According to Professor Mette Bjørndal, these electricity prices 

are the comparable alternatives at which Ørsted would have sold electricity at, had the 

company not received support through subsidies (M. Bjørndal, personal communication, 27th 

October 2020).  

In Europe, electricity is traded on the NordPool power-exchange. As such, we have used the 

data-library of NordPool on 3rd October 2020 to retrieve the historical day-ahead prices for 

electricity in the UK, Denmark, Germany, and the Netherlands. See references for further 

details. 

For Taiwan, we use the day-ahead electricity prices provided by the Taiwan Power Company 

(Taipower). Taipower only provides annual figures for the day-ahead prices for electricity for 

lighting and power. As such, we use the annual average of these prices to reflect the annual 

day-ahead prices. This assumes that the alternative prices Ørsted would have achieved in 

Taiwan without its PPA with the Taiwan Power Company are these annual prices. We 

retrieved this data from the Taiwanese Bureau of Energy’s website on 20th November 2020. 

See references for further details.  

In the US, the relevant day-ahead prices are assumed to be those quoted in the state where 

Ørsted’s project, Block Island, delivers electricity. This state is Rhode Island, and we therefore 

use the relevant day-ahead prices for this state for comparison. The data for these electricity 

prices is retrieved from LCG Consulting Energy Online. We retrieved this data on 20th 

November 2020. See references for further details.  
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Appendix C: Levelised cost of electricity 

In broader terms, LCOE for offshore wind is the net present value of all costs over the lifetime 

of the wind turbine divided by an appropriately discounted total of the energy output from the 

wind turbine over that lifetime (U.S. Energy Information Administration, 2020). LCOE for 

offshore wind is given by the formula: 

∑ 𝐼! +𝑀!
(1 + 𝑟)!

"
!#$

∑ 𝐸!
(1 + 𝑟)!

"
!#$

 (1) 

where, 

It: Investment expenditures in the year t 

Mt: Operational expenditures in the year t 

Et: Electrical energy generated in the year t  

r: Discount rate 
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Appendix D: Assumptions to the LCIRR of Ørsted’s projects 

This appendix presents the assumptions made in relation to developing the financial model to 

calculate the LCIRR of Ørsted’s projects. The financial data used to develop our model is 

provided by Ørsted in its publicly published Asset Book, last updated in the third quarter of 

2020. Moreover, the data for the initial investments for each project are retrieved from Equity 

Analyst Magnus Solheim in Fearnley Securities (M. Solheim, personal communication, 2nd 

October 2020). The Asset Book contains information about every offshore-wind project in its 

portfolio (Ørsted, 2020). A summary of the data we have used to calculate the LCIRR of each 

project is provided in Table D.1 at the end of all the appendices.  

Tariff-rates and duration of subsidy contracts 

United Kingdom 

Ørsted’s offshore-wind projects in the UK have received support through the ROC and CfD 

schemes. As the ROCs represent an additional stream of income, we model the revenue for 

projects commissioned under this scheme as the aggregate of the market-price and the income 

generated from ROCs (Ørsted, 2016). For projects with income streams after 2020, we assume 

that the current market-prices grow stable by following the target inflation rate (CPI) in the 

UK at 2% and make annual adjustments accordingly. Moreover, the effective ROC-prices after 

2020 are assumed to grow at the average annual rate from when the scheme started in 2002. 

This growth continues to 2027, where it subsequently enters a long-term value fixed at the 

buyout price of 2027 plus 10% and linked to inflation until a final backstop date in 2037 

(Ørsted, 2016).  

Projects commissioned under the CfD scheme receive a fixed price until the subsidy expires. 

Upon expiry, the project receives the market-price, which in a given year after 2020 is assumed 

to follow the target inflation rate of 2% in the UK (Bank of England, 2019). 

Denmark 

Ørsted’s offshore-wind projects in Denmark have received support through FiTs and FiPs. 

The projects receiving FiTs receive the market-price upon subsidy expiry, which is assumed 

to be growing according to the 2% target inflation rate in Denmark after 2020 (Danmarks 

Nationalbank, 2020). For the projects receiving FiPs, the premium is added to the inflation 
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adjusted market-price after 2020. Upon expiry, only the inflation-adjusted market-price is 

received by these projects.  

Germany 

The FiTs received by Ørsted’s projects in Germany entail two distinctive tariff-prices over 

two distinctive periods, before settling to a guaranteed minimum price-floor for the remaining 

duration of the subsidy. We model the revenues based on this and assume that the projects 

receive the 2% inflation adjusted market-price after the subsidy expires (European Central 

Bank, 2020).    

Netherlands 

Ørsted’s offshore-wind project in the Netherlands receives an FiT, which we model in the 

same fashion as for Denmark. Upon expiry, we assume that the relevant projects receive the 

2% inflation adjusted market-price, according to the Dutch inflationary target (European 

Central Bank, 2020).   

Taiwan 

The projects in Taiwan receive support through the FiT scheme, which we model in the same 

fashion as for the Netherlands. Upon expiry, the project receives the market-price adjusted for 

the Taiwanese 2% inflationary target (Loh & Lee, 2020).     

United States 

We model the offtake agreements according to the fixed price received in the PPA made 

between Ørsted and the state to which it supplies electricity to, adjusting for any additional 

arrangements in the agreements. After expiry, the projects receive the inflation-adjusted 

market-price according to the 2% inflationary target of the US (U.S. Federal Reserve, 2020).  

Operating expenditures, depreciation, and tax-rate 

We model operating expenditures based on Ørsted’s guidance provided on the company’s 

capital markets day of 2018, where it relates the operating expenditures (in DKKm) per MW 

to the wind-turbine size (in MW capacity) for a given project. As such, we apply the function 

in Exhibit 20 (Section 3) to estimate the annual operating expenditures related to each project. 

Moreover, we assume a 25% annual depreciation rate for each project, which according to the 
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Equity Analyst Casper Blom36 who covers Ørsted, is the regular depreciation schedule for the 

balance-value of offshore-wind projects (C. Blom, personal communication, 7th October 

2020). Furthermore, we apply the tax-rates communicated by Ørsted on the company’s capital 

markets day of 2017. This varies by country and we model: Denmark with 22%, UK with 

18%, Germany with 30%, Netherlands with 22%, US with 22% and Taiwan with 22%. 

(Wiinholt, 2017). 

Capital expenditures 

We assume that the capital expenditures for an offshore-wind project only entails initial 

investments, which in other words implies that there are no annual capital expenditures for 

Ørsted’s projects. According to Casper Blom, the minuscule annual capital expenditures are 

captured through the function for operating expenditures presented above (C. Blom, personal 

communication, 7th October 2020).    

Load factor 

Ørsted provides quarterly summaries of the load factor for each project. As our model is on an 

annual basis, we calculate the average annual load factor and assume this to be constant over 

the lifetime for a given project. 

Expected lifetime of project 

We assume that the expected lifetime for an offshore-wind project is 25 years, which we apply 

to every project in Ørsted’s portfolio. This assumption is in line with Casper Blom’s own 

assumptions for the lifetime of offshore wind assets (C. Blom, personal communication, 7th 

October 2020). 

The LCIRR  

In sum, the assumptions above constitute our financial model which derives the unlevered 

annual free-cash flows for each of Ørsted’s projects. This, in turn, is the basis on which we 

calculate the LCIRRs of every project in Ørsted’s portfolio. To comprehensively measure the 

 

36 Casper Blom is an Equity Research analyst at ABG Sundal Collier’s office in Denmark, and during his decade-
long coverage of Ørsted, he participated as an analyst when DONG Energy became public in 2016 (C. Blom, 
personal communication, 7th October 2020). 



 111 

returns of Ørsted’s portfolio throughout its transformation, we calculate a capacity weighted 

LCIRR. This figure weighs the LCIRRs over the entire life of each project by their size in 

MW. Furthermore, as this figure is based on the unlevered free-cash flow, it disregards capital 

structure and thus gives the best indication of pure profitability for the projects, in our view.  
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Appendix E: Assumptions related to the LCIRR of Equinor’s projects 

In this appendix, we present the assumptions made in relation to calculating the LCIRRs of 

Equinor’s projects. Our calculations are based on the financial information thus far provided 

by Equinor about its projects, available in a publicly published factsheet called Facts about 

our renewable assets, which was last updated in July 2020. A summary of the financial data 

used to calculate the LCIRR of Equinor’s projects is provided in Table E.1 at the end of all 

the appendices. The financial data includes the locations of Germany, United Kingdom and 

USA. As such, Equinor has projects in the same locations as Ørsted, and incidentally receives 

support under the same subsidy schemes. As such, we model the revenues for Equinor, as we 

did for Ørsted. The remaining assumptions for calculating the financial items are identical to 

those used for Ørsted, except the ones applied with respect to load factors, and taxes. 

Load factor 

Equinor does not provide data for the load factors of the company’s offshore-wind projects. 

As such, we have retrieved the load factors for the projects in the UK: Sheringham Shoal, 

Dudgeon and Hywind Scotland, from Energy Numbers (Smith, 2020). The load factor for 

Arkona in Germany is provided in the Factbook of RWE Renewables of 2019, which is one 

of Equinor’s partners on the Arkona project. 

For the future offshore-wind farms related to Dogger Bank A, B and C and Empire Wind I, 

we lack any firm estimates, and therefore rely on our own assumptions. We base our 

assumption for the entire Dogger Bank project on DNV GL’s report Potential to improve Load 

Factor of offshore wind farms in the UK to 2035. In this report, it is asserted that the offshore-

wind industry is expecting project load factors to increase to over 50% in the period to 2035. 

For Empire Wind I, we base our assumptions on the current operational wind farms of Ørsted 

in the US, and consequently apply a 42% load factor. The load factors for each wind farm are 

provided in Table E.1.  

Tax 

We apply a tax rate of 22% for Equinor’s offshore-wind projects, to reflect the nominal 

corporate tax rate of Norwegian companies. Moreover, we argue that this reflects Equinor’s 

operations outside the Norwegian Continental Shelf, such as its offshore-wind projects. The 

exception is the tax applied to Equinor in the US, where Equinor has a tax-advantage. 
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According to Equity Analyst Teodor Sveen-Nilsen, this advantage can be used for offshore-

wind projects, leaving zero-tax in the US compared to Ørsted (T. Sveen-Nilsen, personal 

communication, 8th October 2020).   
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Appendix F: Theory and calculation of WACC for Ørsted and Equinor 

In this appendix, we will introduce the theoretical frameworks we consider most relevant to 

estimating the WACC for Equinor and Ørsted. 

Weighted Average Cost of Capital (WACC) 

The WACC represents the returns that all investors in a company, equity, and debt, expect to 

earn for investing their funds in one particular business instead of others with similar risk, also 

referred to as their opportunity cost (Koller et al., 2015, p. 283). In general, WACC is a 

function of the risk-free rate plus a premium for the risk associated with the investment. In its 

simplest form, the WACC equals the weighted average of the after-tax cost of debt and cost 

of equity, shown with the formula below. (Koller et al., 2015, p. 284). 

where,  

RF: Risk-free rate 

MP: Market risk premium  

Rd: Pre-tax cost of debt 

WACC where cost of equity is derived from CAPM (Approaches 1 and 2) 

The capital asset pricing model (CAPM) is recognised as being one of the most efficient 

methods for pricing risky assets in practice (Koller et. al., 2015). Deduced from the formula 

above, WACC consists of three parts: (i) risk-free rate RF, (ii) the market risk premium MP 

scaled with the asset beta, βA, and (iii) γ-adjustment for the company’s cost of debt (Johnsen, 

2017).   

𝑊𝐴𝐶𝐶 = .
𝐸

𝐸 + 𝐷0 ∗
(𝑅𝐹 + 𝛽% ∗ 𝑀𝑃) + .

𝐷
𝐸 + 𝐷0 ∗

(1 − 𝑡) ∗ 𝑅& (2) 

𝐸
𝐸 + 𝐷 

is the target level of equity to enterprise value using market-based (not book) 

values  

𝐷
𝐸 + 𝐷 

is the target level of debt to enterprise value using market-based (not book) 

values  
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The unlevered beta, or the asset beta, is the beta of a company without the impact of debt. This 

is also known as the volatility of returns for a company, without taking into account its 

financial leverage. The formula for the unlevered beta is shown below.  

Table F.1 shows the values we have used in our calculations to derive the WACC. Here, we 

also provide further details about the parameters used in our estimates, which we have not yet 

mentioned in our thesis. The estimate for the risk-free rate in approach 1 is Bloomberg’s 

reported current yield of the 10-year US government bond, as of 3rd December 2020. The 

market risk-premium is assumed to be 5%, which is in line with the risk-premium for stocks 

used by Johnsen (2017). The risk-premium of 5% is also coherent with the estimates of Koller 

et al. (2015). Using the asset-betas assumes that the investor-bases of both companies can be 

considered as internationally diversified investors and are based on regressing the monthly 

returns of Equinor and Ørsted against the monthly returns of the MSCI World Index over the 

past four years. According to Johnsen (2017), the best practice for estimating the asset beta 

has traditionally been five years. As Ørsted was publicly listed in 2016, we are limited to using 

only four years. The debt-betas are assigned according to the current S&P credit-ratings of 

Ørsted and Equinor, gathered from Johnsen (2017), which based the debt-beta as monthly 

regressed against the S&P 500 from 1983 to 2016. The current rating of Ørsted is BBB+ and 

Equinor is AA-, which gives the assumed debt-betas of 0.15 and 0.10, respectively. 

𝑊𝐴𝐶𝐶 = 𝑅𝐹 + 𝛽' ∗ 𝑀𝑃 + 𝛾 (3) 

𝛽' = .
𝐸

𝐸 + 𝐷0 ∗ 𝛽% + .
𝐷

𝐸 + 𝐷0 ∗ 𝛽& (2) 
 

(4) 

𝛾 = .
𝐷

𝐸 + 𝐷0 ∗ [
(1 − 𝑡) ∗ 𝑅& − (𝑅𝐹 + 𝛽& ∗ 𝑀𝑃)] (5) 
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Table F.1: WACC estimates derived from CAPM assuming different risk-free rates 

 

Notes: 1) We apply the nominal tax rate of 22% for Norwegian companies to Equinor to 
reflect the tax-rate applicable for Equinor’s investments outside the Norwegian Continental 
Shelf, such as offshore-wind projects. 

WACC using the market implied cost of equity (Approach 3) 

Approach 3 estimates cost of equity based on current share prices and the underlying corporate 

performance of each company (Koller et al., 2015, p. 290).  

where,  

Earnings: Equity earnings 

g: Expected growth in earnings 

ROE: Expected return on equity 

ke: Cost of equity 

 

𝐸𝑞𝑢𝑖𝑡𝑦	𝑉𝑎𝑙𝑢𝑒 =
𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠(1 − 𝑔

𝑅𝑂𝐸)
𝑘( − 𝑔

 (6) 
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Solving for the cost of equity gives the following equation: 

From the basis of formula 8, we calculate the WACC as shown in Table F.2. Note that in 

steady state, the real earnings growth of the company is equal to zero. Moreover, as we derive 

the nominal earnings yield of the company, we arrive at the cost of equity without adjusting 

for inflation.    

Table F.2: WACC-estimates derived from earnings yield 

 

Source: FactSet (02.12.2020) 

Notes: 1) Based on consensus P/E for 2021 of 46.9, 2) Based on consensus P/E for 2021 of 
15.5 

 

 

𝑘( =
𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠(1 − 𝑔

𝑅𝑂𝐸)
𝐸𝑞𝑢𝑖𝑡𝑦	𝑉𝑎𝑙𝑢𝑒 + 𝑔 (7) 

Earnings divided by the equity value is the inverse of the price-to-earnings (P/E) 

ratio, thus we can reduce the equation to the following:  
 

𝑘( = I
1
𝑃
𝐸
J K1 −

𝑔
𝑅𝑂𝐸L + 𝑔 (8) 
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Appendix G: Ørsted’s onshore portfolio 

This appendix includes an overview of Ørsted’s onshore portfolio, divided between onshore 

wind and solar energy. As we previously argue in Section 3, offshore wind was the 

predominant business segment related to the company’s transformation, leading us to omit a 

further discussion of onshore wind and solar energy. However, as these segments are relevant 

to the valuation of Ørsted, a brief description of how we value these is provided in the 

following paragraphs. A summary of Ørsted’s onshore portfolio is provided in Table G.1 at 

the end of all the appendices. 

Onshore Wind 

Onshore wind constitutes 7% of the total capacity (MW) in Ørsted’s renewables portfolio, 

counting projects in operation and announced future projects. The financial items related to 

onshore wind are shown in Table G.1. In that context, we provide a brief description of the 

assumptions behind the modelling of these financial items in the following paragraphs.   

Revenue 

Ørsted’s onshore-wind farms are solely based in the US, where it receives Production Tax 

Credits (PTCs) as governmental support, and fixed revenues from corporate PPAs. We model 

the revenue as the aggregate of achieved PTCs and the PPA-price. According to Ørsted’s Asset 

Book, all projects qualify for a 100% PTC, yielding USD 24 per MWh in effective add-backs 

to EBITDA. As such, we count these as revenue in our model (Ørsted 2018).  

Moreover, Ørsted stated in its CMD of 2018 that the average offtake-price through PPAs for 

Tahoka, Willow Springs and Amazon were USD 22 per MWh, while Plum Creek, Sage Draw 

and Lockett received between USD 12-15 per MWh. As such, revenues for these projects are 

modelled accordingly. We assume that the PTCs have a duration of 10 years, in line with 

Ørsted’s statements, and that the PPAs continue over the entire projects’ lifetime.  

Costs 

We model costs based on estimated operating expenditures per MW for onshore-wind farms. 

As the turbine sizes used in each project are very similar, we argue that assuming the same 

Opex/MW multiple for each project is justifiable. Our operational expenditures estimate of 

DKKm 2.1 per MW is based on the assumptions made by SEB analysts Lars Heindorff and 
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Mikael Petersens in their Initiation of coverage (IOC) report of Ørsted issued earlier this year 

(Heindorff & Petersen, 2020).  

Load factor 

We assume an average load factor over the entire lifetime of the project, following the same 

assumptions as for offshore-wind projects. The data regarding onshore-wind load factors are 

provided in Ørsted’s Asset Book as quarterly load factors for each project.  

Depreciation, capital expenditures, tax rate and expected lifetime of projects 

As for offshore wind, we apply a 25% annual depreciation rate, and zero annual capital 

expenditures after initial investment. The tax rate is assumed to be 22%, while the expected 

lifetime is 25 years.  

Solar Energy 

Solar Energy constitutes 2% of Ørsted’s renewables portfolio, counting projects in operation 

and announced future projects. We have not calculated any financial items for these projects, 

as we believe this is not relevant to our thesis. A further explanation of this is provided in the 

next appendix regarding the valuation of Ørsted and Equinor.  
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Appendix H: Valuation of Ørsted and Equinor 

In this appendix, we provide a summary of the SOTP-valuation of Ørsted and Equinor.  

Ørsted 

The summary of the SOTP-valuation of Ørsted is provided in Table H.1. The values used to 

derive the Gross Asset Value (GAV) for Ørsted’s offshore - and onshore-wind portfolios can 

be found in Table D.1 (offshore-wind portfolio) and Table G.1 (onshore-wind portfolio) both 

at the end of all appendices. Due to the lack of financial information about Ørsted’s solar 

energy projects, and their contribution to the total renewable portfolio, we value these at cost. 

Markets & Bioenergy is valued at an EV/EBITDA basis, where we apply the consensus 

estimated EBITDA of 2021 and SEB’s estimate of seven times EBITDA, which according to 

them is in line with relevant peers (Heindorff & Petersen, 2020). Lastly, we use the Net 

Interest-Bearing Debt (NIBD) provided by Ørsted in its annual report of 2019 to derive the 

Net Asset Value (NAV) of Ørsted’s current contracted portfolio. Note that currently contracted 

projects include offshore-wind projects that are in the construction phase and have been 

awarded subsidies. 

The implied value per MW of Ørsted’s pipeline is provided on the right-hand side of Table 

H.1. Here, we consider every non-operational project, including those in construction and 

awarded subsidy, as part of the company’s pipeline. The capacity in Ørsted’s pipeline is 

adjusted for the company’s net ownership in order to reflect the size, and thus value, of the 

projects belonging to the company. For the projects with 100% ownership, we assume that in 

the case of farm-downs the implied divestment value corresponds exactly to the initial 

investment of Ørsted, thus conservatively assumed to yield zero returns.    
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Table H.1: SOTP-valuation of Ørsted 

 

Notes: 1) Solar Energy valued at initial investment of Ørsted, 2) M&B EV/EBITDA 2021e 
based on SEB estimate, EBITDA 2021e based on consensus. 

Equinor 

The value of Equinor’s operational portfolio is the aggregate of the values from Table E.1 in 

Appendix E (offshore-wind portfolio). In this context, we assume that Equinor’s offshore-

wind business has zero net debt, such that the GAV is equivalent to the NAV. The pipeline of 

Equinor’s offshore-wind portfolio is based on the implied values from the BP- and ENI-

transactions as of September and December 2020, respectively. As the ENI-transaction 

entailed divestment of Dogger Bank A and B, we assign a total value on the entire Dogger 

Bank development (A, B and C) based on the EUR 229 million ENI paid for 10% of phase A 

and B. Similarly, we value the entire Empire Wind (Phase I and II) and Beacon Wind (Phase 

I and II) based on the EUR 970 million BP paid for 50% of these projects. The rest of Equinor’s 

pipeline (Baltyk Wind Phase I, II and II, Dudgeon Extension and Sheringham Shoal 

Extension) are based on the TV/MW multiple from the BP-transaction. How we ultimately 

arrive at the implied pipeline value is shown in Table H.2. Moreover, on the right-hand side 

we use the implied value of Ørsted’s pipeline to derive the value of Equinor’s. In this context, 

we adjust the capacity of Equinor’s pipeline to the company’s net ownership in each project 

and make the same assumption regarding divestments as we did for Ørsted. We emphasise 

once again that we assume Ørsted’s implied value from its market capitalisation to 
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predominantly reflect the future value of offshore-wind projects. Note that in Exhibit 38 

(Section 4), the implied value of Ørsted’s pipeline changes with its market capitalisation, 

consequently changing the implied value of Equinor’s pipeline as well. In the table below, we 

merely illustrate the calculation for one date, as of 4th December 2020.  

Table H.2: Valuation of Equinor's offshore-wind business                                                   

 

Notes: 1) Implied value as of 04.12.2020. In Exhibit 38, this value varies with Ørsted’s market-value.   
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Appendix I: Project acquisition activity in Europe, 2019 

In this appendix, we briefly present an overview of the project acquisition activity by project 

phase and type of investor. The data behind these figures is provided in WindEurope’s reports 

The European offshore-wind industry key trends and statistics from 2019. 

 

 

 

 

 

 

 

Source: WindEurope   

Figure I.1: Project acquisition activity in Europe, divided by project phase (left-
hand side) and type of investors (right-hand side) 



Commissioning 
year

Size 
(MW)

Ørsted's 
ownership 

Turbine size 
(MW)

Status Subsidy scheme Average tariff-
price (EUR/MWh)

Subsidy 
duration

Load factor Average EBITDA-
margin

Depreciation Investment 
(EURm)

LCIRR WACC Value (EUR)

Denmark Average/Total to the right 950 2.8 77.0 42% 59% 8.3% 1,928,736,278

Anholt 2013 399.6 50% 3.6 Operational FiT 141.2 10 50% 87% 25% 1,500.0 14.1% 3.5% 1,407,332,428
Horns Rev 2 2009 209.3 100% 2.4 Operational FiT 69.6 12 48% 66% 25% 448.0 8.2% 3.5% 444,099,504
Rodsand 1 2004 165.6 43% 2.3 Operational FiT 60.9 12 36% 46% 25% 248.0 3.8% 3.5% 47,184,932
Horns Rev 2002 160.0 40% 2.0 Operational FiP 47.7 20 39% 32% 25% 270.0 -1.0% 3.5% 12,008,531

Avedore Holme 2011 10.8 100% 3.6 Operational FiP 65.4 5 40% 64% 25% 25.0 4.6% 3.5% 18,110,884
Vindeby 1991 5.0 100% N/A Decommissioned Market-price N/A N/A N/A N/A N/A N/A N/A 3.5% N/A

UK Average/Total to the right 8,713 5.2 148.8 42% 88% 14.3% 21,637,577,815

London Array Phase 1 2013 630.0 25% 3.6 Operational ROC 167.1 20 43% 88% 25% 2,441.0 14.7% 3.5% 1,412,890,941
West of Duddon Sands 2014 388.8 50% 3.6 Operational ROC 164.4 20 46% 88% 25% 1,975.0 12.1% 3.5% 1,889,651,991

Walney 1 2011 183.6 50% 3.6 Operational ROC 165.7 21 45% 89% 25% 581.0 18.0% 3.5% 804,070,274
Walney 2 2012 183.6 50% 3.6 Operational ROC 169.5 20 45% 89% 25% 581.0 18.4% 3.5% 850,801,978

Lincs 2012 270.0 25% 3.6 Operational ROC 169.5 21 45% 89% 25% 843.0 18.6% 3.5% 621,730,468
Westermost Rough 2015 210.0 50% 6.0 Operational ROC 162.0 20 45% 91% 25% 988.0 13.4% 3.5% 1,042,566,532

GunfleetSands1 2010 172.8 50% 3.6 Operational ROC 133.9 20 38% 84% 25% 350.0 18.0% 3.5% 466,322,264
Barrow 2006 90.0 100% 3.0 Operational ROC 97.6 19 35% 74% 25% 147.0 14.3% 3.5% 232,680,229

Burbo Bank 2007 90.0 100% 3.6 Operational ROC 125.3 20 40% 84% 25% 132.0 25.0% 3.5% 416,198,018
Gunfleet Sands 3 2013 12.0 100% 6.0 Operational ROC 167.1 20 37% 90% 25% 40.0 15.0% 3.5% 93,993,991

Burbo Bank Extension 2017 256.0 50% 8.0 Operational CfD 165.4 15 35% 91% 25% 970.0 11.8% 3.5% 898,574,105
Race Bank 2018 573.3 50% 6.0 Operational ROC 144.8 19 39% 88% 25% 2,200.0 13.2% 3.5% 2,337,684,029

Walney Extension West 2017 320.0 50% 8.3 Operational CfD 165.4 16 50% 94% 25% 1,375.0 15.6% 3.5% 1,636,075,114
Walney Extension East 2018 329.0 50% 7.0 Operational CfD 165.4 15 50% 93% 25% 1,370.0 15.9% 3.5% 1,712,720,459

Hornsea 1 2020 1,218.0 50% 7.0 Operational CfD 154.3 16 42% 91% 25% 5,138.0 11.8% 3.5% 5,156,757,876
Hornsea 2 2022 1,386.0 100% 8.0 Construction CfD 63.4 16 42% 81% 25% 2,400.0 10.2% 3.5% 2,064,859,545
Hornsea 3 2025 2,400.0 100% 4.0 In development N/A N/A N/A N/A N/A N/A N/A N/A 3.5% N/A
Hornsea 4 N/A N/A N/A N/A In development N/A N/A N/A N/A N/A N/A N/A N/A 3.5% N/A

Isle of Man N/A N/A N/A N/A In development N/A N/A N/A N/A N/A N/A N/A N/A 3.5% N/A

Germany Average/Total to the right 2,501 8.1 77.5 42% 75% 9.1% 3,215,800,006

Borkum Riffgrund 1 2015 312.0 50% 3.6 Operational FiT 101.8 10 36% 57% 25% 1,234.0 8.2% 3.5% 409,618,607
Borkum Riffgrund 2 2019 464.8 50% 8.3 Operational FiT 92.3 10 34% 74% 25% 1,800.0 7.1% 3.5% 918,250,692

Gode Wind 1 2017 330.0 50% 6.0 Operational FiT 96.2 10 41% 72% 25% 1,247.0 12.0% 3.5% 661,989,985
Gode Wind 2 2017 252.0 50% 6.0 Operational FiT 90.2 10 40% 70% 25% 953.0 10.4% 3.5% 437,252,459

Borkum Riffgrund 3 2024 900.0 100% 11 Awarded Zero-subsidy 39.7 10 46% 81% 25% 1,629.3 5.3% 3.5% 120,719,329
Gode Wind 3 2023 110.0 100% 11 Awarded FiT 60.0 10 48% 85% 25% 199.1 10.1% 3.5% 292,858,333
Gode Wind 4 2023 132.0 100% 11 Awarded FiT 62.0 9 48% 87% 25% 239.0 18.4% 3.5% 375,110,601

Netherlands Average/Total to the right 752 8.0 72.7 30% 77% 6.0% 1,822,557,183

Borssele 1 & 2 2020 752.0 100% 8.0 Operational FiT 72.7 15 30% 77% 25% 1,500.0 6.0% 3.5% 1,822,557,183

Table D.1a: Ørsted’s offshore-wind portfolio

Sources: Ørsted’s Asset Book, M. Solheim (personal communication), C. Blom (personal communication).



Commissioning 
year
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(MW)

Ørsted's 
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Turbine size 
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Status Subsidy scheme Average tariff-
price (EUR/MWh)
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Depreciation Investment 
(EURm)

LCIRR WACC Value (EUR)

Taiwan Average/Total to the right 1,936 7.2 134.9 43% 88% 5.6% 5,344,306,709

Formosa 1 2017 8.0 35% 4.0 Operational FiT 209.3 20 37% 89% 25% 68.0 5.6% 3.5% 25,752,251
Greater Changhua 1 2022 600.0 100% 8 Construction FiT 157.6 20 49% 94% 25% 1,700.0 22.3% 3.5% 4,611,110,647
Greater Changhua 2b 2025 458.3 100% 8 Awarded FiT 75.0 20 35% 81% 25% 1,500.0 3.5% 3.5% (92,176,498)
Greater Changhua 4 2025 570.0 100% 8 Awarded FiT 75.0 20 43% 84% 25% 2,600.0 2.8% 3.5% (331,106,949)
Greater Changhua 2a 2022 300.0 50% 8 Construction FiT 157.6 20 49% 94% 25% 900.0 21.1% 3.5% 1,130,727,259

US Average/Total to the right 7,462 9.3 132.9 42% 91% 9.7% 5,279,198,927

Block Island 2016 30.0 100% 6.0 Operational PPA 273.1 20 47% 95% 25% 290.0 9.7% 3.5% 495,601,796
Revolution Wind 2023 704.0 50% 8 Construction PPA 88.0 20 45% 87% 25% 1,322.3 15.8% 3.5% 1,052,635,633

Skipjack Wind Farm 2022 120.0 100% 10 Awarded MD OREC 116.3 20 45% 93% 25% 350.0 14.2% 3.5% 490,894,965
Sunrise Wind 2024 880.0 100% 8 Awarded NY OREC 73.5 25 45% 85% 25% 2,500.0 7.5% 3.5% 1,072,821,226

South Fork Wind Farm 2023 128.0 100% 12 Awarded PPA 143.7 20 36% 94% 25% 250.0 21.9% 3.5% 631,205,617
Ocean Wind 2024 1,100.0 50% 12 Awarded NJ OREC 103.0 20 36% N/A 25% 2,200.0 14.8% 3.5% 1,536,039,691

Bay State Wind 2025 2,000.0 50% N/A In development N/A N/A N/A N/A N/A N/A N/A N/A 3.5% N/A
Garden State Offshore Energy 2025 400.0 50% N/A In development N/A N/A N/A N/A N/A N/A N/A N/A 3.5% N/A

Constitution Wind 2026 2,100.0 50% N/A In development N/A N/A N/A N/A N/A N/A N/A N/A 3.5% N/A

Table D.1b: Ørsted’s offshore-wind portfolio

Sources: Ørsted’s Asset Book, M. Solheim (personal communication), C. Blom (personal communication).
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UK Average/Total to the right 5,068 8.5 118.3 49% 89% 11.8% 2,289,722,091

Sheringham Shoal 2011 317 40% 3.6 Operational ROC 165.7 21 40% 86% 25% 1,457.3 8.8% 4.5% 781,790,699
Dudgeon 2017 402 35% 6.0 Operational CfD 158.4 15 48% 91% 25% 1,715.8 14.0% 4.5% 1,164,654,740

Hywind Scotland 2017 30 75% 6.0 Operational ROC 233.7 21 54% 93% 25% 214.4 14.8% 4.5% 343,276,652
Dogger Bank A 2024 1,200 50% 12.0 Awarded CfD 48.9 15 50% 88% 25% 3,300.0 5.3% 4.5% N/A
Dogger Bank B 2025 1,200 50% 12.0 Awarded CfD 51.4 15 50% 89% 25% 3,300.0 5.8% 4.5% N/A
Dogger Bank C N/A 1,200 50% 12.0 Awarded CfD 51.4 15 50% 89% 25% 3,300.0 5.8% 4.5% N/A

Dudgeon Extension N/A 402 100% N/A In development N/A N/A N/A N/A N/A N/A N/A N/A 4.5% N/A
Sheringham Shoal Extension N/A 317 100% N/A In development N/A N/A N/A N/A N/A N/A N/A N/A 4.5% N/A

Germany Average/Total to the right 385 6.3 93.2 45% 76% 17.6% 485,893,282

Arkona 2019 385 25% 6.3 Operational FiT 93.17 10 45% 76% 25% 1,200.0 17.6% 4.5% 485,893,282

US Average/Total to the right 4,416 12.5 79.0 42% 88% 6.4% N/A

Empire Wind Phase I 2024 816 50% 12.5 In development Index OREC 79.03 16 42% 88% 25% 2,640.0 6.4% 4.5% N/A
Empire Wind Phase II N/A 1,200 50% N/A In development N/A N/A N/A N/A N/A N/A N/A N/A 4.5% N/A
Beacon Wind Phase I N/A 1,200 50% N/A In development N/A N/A N/A N/A N/A N/A N/A N/A 4.5% N/A
Beacon Wind Phase II N/A 1,200 50% N/A In development N/A N/A N/A N/A N/A N/A N/A N/A 4.5% N/A

Poland 3,000 N/A N/A N/A N/A N/A N/A

Baltyk Srodkowy I N/A 1,440 50% N/A In development N/A N/A N/A N/A N/A N/A N/A N/A 4.5% N/A
Baltyk Wind Phase II & III N/A 1,560 50% N/A In development N/A N/A N/A N/A N/A N/A N/A N/A 4.5% N/A

Norway 88 8.0 N/A N/A N/A N/A N/A

Hywind Tampen 2022 88 41% 8.0 Sanctioned N/A N/A N/A N/A N/A 25% N/A N/A 4.5% N/A

Table E.1: Equinor’s offshore-wind portfolio

Sources: Facts about our renewable assets (Equinor), DNV GL, RWE Renewables, Energy Numbers, Power Technology, company announcements. 
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Wind Average/Total to the right 1658 2.6 35.5 42% 91% 9.4% 2,946,211,547

Willow Springs 2017 250.0 100% 2.5 Operational PTC 39.1 10 44% 92% 25% 305.0 10.8% 3.5% 521,506,103
Amazon 2017 253.0 100% 2.3 Operational PTC 39.1 10 44% 92% 25% 295.0 11.5% 3.5% 531,045,506
Tahoka 2018 300.0 100% 2.5 Operational PTC 39.1 10 46% 93% 25% 350.0 12.0% 3.5% 676,546,055
Lockett 2019 184.0 100% 2.5 Operational PTC 31.9 10 46% 91% 25% 220.0 9.0% 3.5% 343,661,554

Sage Draw 2020 338.0 100% 2.8 Operational PTC 31.9 10 38% 89% 25% 400.0 6.6% 3.5% 519,765,646
Plum Creek 2020 230.0 100% 2.8 Operational PTC 31.9 10 38% 89% 25% 270.0 6.7% 3.5% 353,686,682

Willow Creek 2021 103.0 100% 2.6 In development N/A N/A N/A N/A N/A N/A N/A N/A 3.5% N/A
Western Trail Wind N/A N/A 100% N/A In development N/A N/A N/A N/A N/A N/A N/A N/A 3.5% N/A

Solar Average/Total to the right 450 N/A N/A N/A N/A N/A 536,000,000

Oak 2012 10.0 100% N/A Operational Market-price N/A N/A 21% N/A N/A 12.0 N/A N/A 12,000,000 
Carnegie Road Storage Project 2018 20.0 100% N/A Operational Market-price N/A N/A 21% N/A N/A 24.0 N/A N/A 24,000,000 

Permian Energy Centre 2021 420 100% N/A Construction N/A 30.4 N/A 21% N/A N/A 500 N/A N/A 500,000,000 
Muscle Shoal 2021 N/A 100% N/A Construction ITC N/A N/A 21% N/A N/A N/A N/A N/A N/A

Table G.1: Ørsted’s onshore portfolio

Sources: Ørsted’s Asset Book, SEB Equity Research, company reports, company announcements. 


