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Abstract 

The purpose of this study is to evaluate whether public weather data from MET Norway can 

be used to improve ticket sales forecasts for the travel company Go Fjords, and to 

demonstrate how such a forecasting model can be technically implemented to provide value 

over time. The problem statement is defined as follows: 

Can weather forecast data make demand forecasts more accurate for Go Fjords, and how 

can business value be derived from such a forecast? 

Throughout the study, a wide range of methods were used. This thesis outlines how to 

retrieve historical weather data from MET Norway’s ‘Frost API’, how to scrape weather 

forecast data off yr.no, and how to assemble the data for use by forecasting models.  

The following model types and frameworks were tested: A Generalized Additive Model 

(Facebook Prophet), a Dynamic Generalized Linear Model (PyBats), and a Random Forest 

Regression model created by Microsoft Azure’s automated machine learning functionality. 

Performance metrics are discussed in depth, and Root Mean Squared Error was chosen as the 

basis for evaluation and comparison. A set of univariate ‘benchmark’ models were created to 

answer the problem statement: a naïve forecasting model and a seasonal ARIMA model. 

The Facebook Prophet model was used to demonstrate deployment and was implemented to 

run daily in Microsoft Azure. The forecasts were pushed daily to Go Fjords’ database, and 

made visible in their Microsoft Power BI dashboard, along with actionable advice on the 

optimal number of buses to rent, taking future weather into account. 

The Prophet model performed worse than expected, and the PyBats model performed very 

well. Potential causes and ways to adjust the models are discussed. ARIMA and Random 

Forest Regression had similar RSME scores, strengthening the validity of their results. 

To conclude: It is possible to create better demand forecasts for Go Fjords by using weather 

data, rather than by basing forecasts on sales data alone. By optimizing the models for 

RMSE, variance is minimized, consequently minimizing the frequency at which Go Fjords 

deploys the wrong number of buses, thus capturing more revenue and achieving cost 

savings.  
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1.    Introduction  

Go Fjords is a Norwegian tour operator owned by Det Stavangerske Dampskibselskap, a 

company with more than 150 years of history. Go Fjords provides tours all over Norway to 

natural outdoor tourist attractions like Preikestolen and Kjeragbolten, many of which take 

place in the fjords of the Norwegian west coast. The tours typically include transportation by 

means of ferry or bus, as well as tour guides, meals, and more. Certain tours also involve 

activities such as hiking, kayaking, biking, or dog sledding. 

1.1 Topic question 

As most of Go Fjords’ tours are outdoor experiences, demand may be affected by weather 

conditions. For instance, if you are planning for the upcoming weekend, you might decide 

not to purchase tickets for an outdoor trip if weather forecast services predict it will rain all 

weekend.  

This leads us to the topic question of this study: 

Can weather forecast data make demand forecasts more accurate for Go Fjords, and how 

can business value be derived from such a forecast? 

As the topic question can be viewed as a forecasting problem, the main topic question will 

be supplemented with a general formulation of a forecasting problem. Forecasting is defined 

as predicting the future values of a series using current information, where current 

information consists of current and past values of the series and other exogenous series (Yau, 

2018). This thesis will construct and present forecasts of ticket sales based on past sales data, 

before attempting to improve the forecast accuracy by adding past observed weather data, as 

well as forecasted weather for the upcoming week, as predictor variables.  

1.2 Usefulness and aim of the study 

Demand for outdoor experiences depends greatly on the weather. This study aims to use 

weather data to forecast demand for up to seven days forward in time. The reason for this 

specific forecast horizon is that the forecast will be based on weather forecast data made 

available by the website yr.no, which only makes detailed predictions up to nine days 
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forward in time. A seven-day horizon makes the forecast one week long, and removes some 

cases where the forecast would not have weather data for all of its predictions, in a few cases 

where weather data for eight and nine days forward was missing. 

As of now, Go Fjords are not using any sophisticated method of forecasting future tickets 

sales, so any model with somewhat correct forecasts will be of value. Still, the mark should 

be set higher than ‘any forecast will do’. The benchmark for any model to be considered 

successful is that the addition of the weather data leads to a more accurate forecast than a 

forecasting model purely using historical sales data. Such a benchmark model could, for 

example, be a naïve model predicting that the ticket sales for all days of the upcoming week 

will equal the most recent day, or an ARIMA model forecasting solely based on trends in past 

ticket sales. 

Having a good forecast for how many tickets one will have sold for each coming business 

day, allows the company to increase their capacity to meet surges in demand, and avoid 

wastefully high capacity when demand falls. Examples of how Go Fjords can benefit from 

the increased forecast accuracy is to decide how many buses to rent and tour guides to 

deploy, based on the weather adjusted demand forecasts. The different trips vary in nature, 

some involving more outdoor activity than others. “Preikestolen tur-retur” (round-trip to 

Pulpit Rock) is Go Fjords’ most popular tour. The trip involves a bus ride from Stavanger to 

the site, a good couple of hours of hiking up a mountain, and a bus trip back to Stavanger. 

Because of the hike, the trip is more popular when the weather is good. Having a good 

forecast and thus better basis for better decision making for the best-selling trip, as opposed 

to a less popular trip, yields more business impact. For these reasons, the Preikestolen trip 

was chosen as the case study of the thesis.  

This thesis is intended as an exercise in data science, going further in demonstrating how 

insights can be derived, how to create and implement predictive models, use them for 

inference and present the forecast along with advice in a self-service Business Analytics 

solution, as opposed to a one-time data analysis report. In addition to answering the topic 

question regarding whether the use of weather variables as predictors can strengthen the 

ticket sales forecast, the thesis aims to provide value through improving the basis for 

decision making for Go Fjords, demonstrating the journey towards that goal, discussing 

considerations along the way.  
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2. Methodology 

This section presents the methods used in acquiring data, preparing- and exploring the data, 

selecting appropriate forecasting algorithms, and measurements to evaluate their 

performance by. Although this may seem like a straightforward waterfall-style process and is 

sectioned as such in this chapter, it is commonplace to move back and forth through these 

stages. For example, transforming the data can lead to the exploration yielding more insights 

on how the data should further be prepared to be more useful. Data science is an iterative 

process, so having an agile approach can pay off, especially in the early stages. To reflect 

this reality, the ‘Data’ section that often precedes the ‘Methodology’ section in dissertations, 

is here included in the Methodology chapter. Data preparation- and exploration was integral 

to the method of the study and was thereby done iteratively throughout the whole process.  

2.1 Data 

Through their website yr.no and their public ‘Frost’ Application Programme Interface (API), 

the Norwegian Meteorological Institute publishes weather data for free public use. Observed, 

historical weather data was gathered from the API, and forecasted weather for the coming 

week was gathered from the yr.no website by ‘web scraping’. Below is a generic example 

table depicting the schema of the final data set that is used for model training and inference.  

Table 1: Data schema 

Date Quantity Temperature Precipitation WindSpeedMps 

t = - 1 12 2.31 0.00 3.91 

t = 0  18 3.14 0.82 12.90 

t + 1 Y 4.74 0.03 1.34 

 

‘Date’ is the variable that making the data a time series dataset. The Date variable is stored 

as a ‘DateTime’ datatype (for example having the format ‘2019-05-21’) in the database and 

tables as it is being processed. In the example table above, t is the date of today.  

yr.no
https://frost.met.no/index.html
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‘Quantity’ is the total number of tickets sold within the start of the trip, and it is the target 

variable that the models will predict. In the example table above, future values of Quantity 

are thus unknown and simply represented by ‘Y’. The Quantity variable is stored as a 

positive ‘integer’ value, meaning it must always be a whole, non-negative number.  

‘Temperature’, ‘Precipitation’, and ‘WindSpeedMps’ are three weather-related variables 

created from data gathered from yr.no and the Frost API, telling us about the past 

observations of the weather or future forecasted weather. These variables are of the ‘float’ 

data type, meaning they can have decimals, unlike the Quantity variable.  

The exploratory analysis section will further present each of the variables and their 

characteristics. 

 

2.1.1 Acquiring internal data: Go Fjords 

For this thesis, Go Fjords shared their historical sales data. This included time of sale, which 

trip was ordered, journey start date, and many other features. The data was made available 

through granted access to their Microsoft Azure SQL database, in which they store all their 

data. The relevant data were extracted by using SQL queries, then it was written to Comma 

Separated Values (CSV) format so it could easily be read by other applications for 

processing and exploration, forecasting, and presentation of results. 

 

2.1.2 Acquiring external data: the weather 

Yr.no is the biggest Norwegian provider of weather forecast information and is managed by 

the Norwegian Broadcasting Corporation (NRK) in collaboration with the Norwegian 

Meteorological Institute (MET Norway). As these are state-sponsored entities, they provide 

most of their forecast information for free public use through public APIs, in XML and other 

data formats.  
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Retrieving historical weather data from ‘Frost API’ 

MET Norway provides actual weather data from the past in a machine-readable format 

through their open API, “Frost”. For this project, the Frost API was used to get all historical 

data from a weather station in Stavanger, the city from which the trip to Preikestolen starts.  

The API-call was later integrated into the data pipeline to gather new historical data daily, to 

tune the models and make new forecasts.  

To help third parties make use of their weather data, MET Norway provides script templates 

in both Python and R programming languages for downloading historical data through their 

API. These scripts require very little additional coding to work. As a third party, you must 

simply sign up with an email to receive a user authentication token which the service can 

recognize you by. Then the service is free to use. The need for an ID token is presumably so 

MET Norway can know if any particular user is violating their terms of service, for instance 

by spamming them with requests. You also need to specify which weather station you would 

like data from, which time interval you are interested in, and for which “element ID’s” you 

want data, meaning what type of weather data you are interested in (temperature, 

precipitation, wind speed, cloud cover, humidity, and more). The API has extensive 

documentation to help users retrieve information from it.  

 

Scraping weather forecast from yr.no 

To make forecasts, meaning predictions of future values, it is necessary to make assumptions 

about the weather at that point in time. The Frost API sadly only makes available historical 

weather data, not any of its weather forecasts, from the past or present. This is likely because 

weather forecasts change rapidly and storing past forecasts would require massive amounts 

of storage space, with questionable business value. To get an educated guess regarding 

future weather for the predictive variables, data would have to be gathered directly from 

yr.no, where MET Norway continuously publish and update their forecast for the weather 

one week ahead in time.     

To retrieve the weather forecast from yr.no, a Python script was created uses the ‘requests’ 

package to get the raw XML data from the source of the web-page displaying the weather 

forecast. In this case, the webpage containing the relevant raw data was 
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‘https://www.yr.no/place/Norway/Rogaland/Stavanger/Stavanger/forecast.xml' (MET 

Norway, 2020).  

To extract the weather data, the ‘BeautifulSoup’ package was used. BeautifulSoup is useful 

for parsing (reading and extracting information from) structured data, like XML and HTML. 

The XML was converted to a ‘soup’ object which could be queried to retrieve needed data in 

a simple manner. The script was configured to run daily along with the API-call, to get 

forecasted weather to use as input to the forecasting models. See the appendix for code used 

to retrieve and parse the weather forecast data in this project. 

 

2.1.3 Cleaning and pre-processing 

To get familiar with the data at the very start of the thesis work, a batch of historical data 

from Go Fjords was downloaded. The data was cleaned and pre-processed using R, to make 

it easier to explore and derive insights from. This Extract-Transform-Load (ETL) process 

was later refined to be re-useable and efficient, so it could run as part of the deployed model.  

Some ‘cleaning and pre-processing’ had already taken place in the extraction process, for 

example using the BeautifulSoup Python package to remove unnecessary data from the 

retrieved weather forecast data. However, the historical weather data required further 

‘wrangling’.  

The data from the Frost API was returned in a ‘long’ format (few columns, many rows) that 

had a column ‘ElementID’, with text values identifying the element (temperature, 

precipitation, wind…) that the row gives information on, with the recorded value of the 

element stated in a separate ‘Value’ column. Thus, there are several rows per ‘Date’. The 

target schema needed for the forecasting models was unique rows for each Date, with one 

column per variable. To achieve this, a ‘for-loop’ was created in Python to keep one row per 

‘Date’ and distribute the weather values in the ‘Value’ column onto three columns 

corresponding to the respective predictive variables ‘Temperature’, ‘Precipitation’, and 

‘WindSpeedMps’. The retrieved values were rounded to two decimals, for the sake of 

consistency, while simultaneously keeping as much information as possible.   

Outside of the processing that was done to derive the dataset for the forecasting models, 

certain variable transformations were done solely for the purpose of data exploration. 

https://www.yr.no/place/Norway/Rogaland/Stavanger/Stavanger/forecast.xml
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‘OrderDate’ and ‘JourneyStartDate’ are two features of every recorded ticket sale. An 

example of a variable transformation done in data exploration is subtracting ‘OrderDate’ 

from ‘JourneyStartDate’, to find a variable telling us how many days ahead of the start of the 

trip any ticket purchase was made.  

After examining the properties of the ticket sales at the most granular level, single tickets, 

ticket sales were aggregated to derive the target variable, ‘Quantity’, referring to the total 

number of tickets sold with ‘JourneyStartDate’ equal to a given date. Aggregation is a form 

of feature engineering, which can be described as a process of ‘re-framing’ variables to 

make them more relevant to the problem at hand. Aggregating ‘Quantity’ on 

‘JourneyStartDate’ resulted in a variable indicating not only when tickets are sold, but on 

which date the customers will be traveling on, specifically how many tickets in total are sold 

for each ‘JourneyStartDate’. The aggregation also drastically reduced the number of rows in 

the dataset, making it easier to handle, a positive side effect.  

 

2.1.4 Variables 

After having briefly looked at the data and performed the primary cleaning and pre-

processing, it was time to explore the data in detail. This included looking at the data from 

different angles using a range of visualizations and measuring some relevant statistical 

metrics. 

Below are displays of the variables values over time, along with the probability distributions 

for the counts of the variables, meaning the number of days where the variables were 

observed to have any given value, grouped in intervals typically described as ‘bins’. The 

figures were generated using the ‘generate profile’ functionality of Microsoft Azure. This 

section goes through the variables one by one, examining their properties and discussing 

their characteristics along with some preliminary assumptions about them. 
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Quantity variable 

 

Figure 1: Quantity variable over time, and probability distribution 

 

‘Quantity’, or the number of tickets sold with a given journey start-date, is the target variable 

to predict. By the look of the histogram above, the variable seems to have a probability 

distribution resembling the Poisson distribution, skewing strongly to the left. The Quantity 

count is distributed like this because from October to the start of April, Go Fjords do not 

operate any trips. When they do operate there are still days with few travellers, for instance 

on workdays outside of vacations, and on days with bad weather. Simultaneously, there is a 

‘long tail’ of observed days with a high number of tickets sold, like on vacation days with 

good weather. It is quite common for count data to be Poisson distributed, or at least for their 

probabilities to resemble a Poisson distribution more closely than a Gaussian (normal) 

distribution.  

A dispersion test was conducted to test the goodness of fit of the distribution of the counts of 

Quantity variable against the Poisson distribution, to determine to which degree the data 

resembles this distribution. The dispersion test judges goodness of fit to the Poisson 

distribution by evaluating whether the data has Poisson-like characteristics, such as its mean 

being equal to its variance, among other features (Cameron, 2019). The dispersion test could 

not say with any statistical significance that the variable was drawn from the Poisson 

distribution. Another potential test for evaluating goodness of fit is the ‘chi-squared test’. 

Such a test was not conducted, partly for time-constraint reason, and partly because it is not 

necessary to find a theoretical probability distribution that the data could have been drawn 
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from with statistical significance. Real-life data seldom perfectly fits a theoretical 

framework. Dispersion test results can be found in the appendix. 

The Quantity variable can only take the form of a discrete value, meaning only whole 

numbers. It must also be non-negative since negative sales do not have any intuitive 

meaning.  

 

Temperature variable 

 

Figure 2: Temperature variable over time, and probability distribution 

 

‘Temperature’ is the first of the three weather variables, which are all recorded every day at 

noon in Stavanger. The Temperature variable describes average temperature in degrees 

Celsius in a time interval of six hours, from 06am to noon. The variable has a probability 

distribution more closely resembling a normal distribution than a Poisson distribution.   

A year in Norway typically sees large, predictable swings in temperature due to seasonal 

effects. One potential statistical issue to consider regarding the Temperature variable is its 

correlation to the time component. This can be regarded as a case of multicollinearity, which 

can be described as the occurrence of high intercorrelations among two or more independent 

variables in a multiple regression model. Multicollinearity is, everything else equal, 

undesirable, as it can cause less reliable statistical inferences (Hayes, 2020). In the extreme 

case where two variables are perfect covariates, meaning it is possible to deduce the value of 

one from the other with full certainty, then using both variables add nothing in terms of 

predictive strength, but certain popular performance metrics like, R-squared, will indicate 

that the model with more variables is better. Therefore, it is important to use critical 



 

 

17 

 

judgement in deciding which variables to include, and tools like correlation plots and 

variable selection algorithms can be useful. However, this does not mean that one must 

remove a significant explanatory variable just because it correlates somewhat with another 

significant explanatory variable. If including both variables leads to better performance as 

opposed to excluding either of them, then keeping both is the best option.   

 

Precipitation variable 

 

 

Figure 3: Precipitation variable over time, and probability distribution 

 

‘Precipitation’ is a variable describing the total amount of rain- or snowfall, measured in 

millimetres, corresponding to litres per square metre. By examining the above histogram of 

counts of number of times when Precipitation-levels have fallen into different intervals, a 

probability distribution is derived resembling that of a Poisson distribution. Most days see 

little to no precipitation, while on a few days it is a lot. Like with the Quantity variable, a 

dispersion test was conducted, but the Precipitation variable could not either be classified as 

Poisson distributed with any notable certainty. Still, it is worth remembering that real-world 

data seldom conforms to an ideal statistical model, such as a theoretical probability 

distribution. 

One way of transforming this variable to potentially increasing its predictive power, is to 

convert it into a binary variable (only taking the value of either 0 or 1), taking the value 0 if 

there was no precipitation that day, and 1 if there was any precipitation at all. The intuition 
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behind this is that it is likely that many people prefer hiking when it is not raining. It might 

not matter very much how much it is raining, what matters might be whether it is raining at 

all or not. Keeping the Precipitation variable as a continuous value might just contribute 

noise to the model if it is true that differences between high values of Precipitation do not 

matter much. Still, the practice of coercing continuous data into integer format is not 

encouraged, as it may lead to information loss, often without yielding any benefit (Fedorov 

et.al., 2009).  

 

WindSpeedMps variable 

 

 

Figure 4: WindSpeedMps variable over time, and probability distribution 

 

The final variable, ‘WindSpeedMps’, describes the average wind speed measured in meters 

per second, in an interval of six hours from 6 am to noon. Its distribution of count values 

loosely resembles a normal distribution, skewing slightly the left. Intuitively, one might 

think lower values of wind speed is most attractive for hiking.  

 

2.1.5 Exploratory analysis 

The initial exploration of the data was through Microsoft Power BI, a tool designed for 

visual inspection of data. Power BI can be described as a low-code tool, allowing the user to 

ask questions about the data using natural language, getting graphical representations in 
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return. Power BI is a quick and easy way to get familiar with data so that further direction of 

the analysis can be established.  

 

Figure 5: Initial Power BI data exploration 

 

The above Power BI dashboard was created in the start of the exploration process before the 

start of the 2020 season and was used purely to get familiar with the data. It displays the 

Quantity by ‘DimDate’ (journey start-date), with colors indicating the Temperature variable. 

Notice that Quantity tends to be higher when the graph is red, where the Temperature is 

high, in line with the expected multicollinearity between Quantity and Temperature. The 

dashboard also presents a correlation matrix between a preliminary set of weather variables 

gathered from Bergen airport, and a forecast from the built-in forecasting functionality of 

Power BI, which proved to be less than perfect due to COVID-19 drastically shaping the 

possibilities for travel in the 2020 season. In hindsight, this preliminary forecast can serve as 

an example of the importance of having at least some built in learning mechanism to 

forecasting models, so they can adapt to drastic changes that will impact the target variable.  

After having studied the data in Power BI, more in-depth insight was required. The relevant 

data was again exported to CSV made available for use in other applications like R, a 

statistical programming language well suited for data analysis. Through a large open-source 

community, R has many compatible packages making it efficient for gathering, cleaning, and 
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pre-processing of data. Using the ‘dplyr’ package, the sales data was wrangled to yield new 

insights. This included aggregating by ‘journey destination’ and ‘journey start date’, 

allowing us to see how many tickets were sold for a given destination and a given journey 

start date.  

To validate the belief that many customers order tickets on short notice, the distribution of 

how many days in advance of journey start date the tickets are sold needed to be evaluated. 

To create this measure, ‘OrderDate’ was subtracted from ‘JourneyStartDate’ for every ticket 

sale and binned the counts into intervals of one day. Below is a histogram of the measure. 

 

 

Figure 6: Distribution of time between ticket purchase date and journey 
start date 

 

The histogram of this ‘days ahead’ metric seems to follow an exponentially decaying curve 

with a ‘long tail’, where most orders (ticket purchases) are done very close to the start of the 

trip, but tickets are also sold many days in advance. Ordering your ticket on the same day of 

the trip is the modal value (most occurrences) while ordering one day ahead is the median 

value. 
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Below is a more sophisticated view of the same measure, from the Power BI dashboard that 

Go Fjords have already implemented. 

 

Figure 7: Percentage of tickets sold binned by order time 

 

The displays confirm that most customers order tickets on short notice. It is not unreasonable 

to believe that many potential customers consider the weather forecast before ordering an 

outdoor trip, especially those that order close to the start of their trip, since weather forecasts 

with a short time horizon are more accurate that those with a longer time horizon. In the case 

that this is true, taking forecasted weather into account when predicting ticket sales would 

likely yield predictions of higher accuracy. This finding strengthened the belief in the 

potential predictive power of the weather variables. 

Since the Quantity target variable is observed over time, rendering the data a time series, it 

was interesting to investigate how Quantity varies over time. Below are plots of three time 

series characteristics of the Quantity variable, with the plot names written vertically on the y-

axis of the respective plots.  

 



 

 

22 

 

 

Figure 8: Trend, weekday effects, and seasonality 

 

‘Trend’ describes a rolling average of tickets sales over time. Go Fjords was experiencing 

growth in their first two years of business, until COVID-19 largely prohibited both domestic 

and international travel in 2020.  

‘Weekly’ describes weekday effects on sales, measures by the percentage difference between 

the weekday in question and the average of the other weekdays. There is a clear preference 

among Go Fjords customers for going on tours during the weekend. This might also be 

because Go Fjords are operating tours more frequently in the weekend, but the reason for 

having more tours on certain days is likely that these days are when customers want to 

travel. The customer is king.  

‘Yearly’ reflects what can be called the seasonality affecting Go Fjords. Seasonality is 

variation in business or economic activity that takes place on a recurring basis. Seasonality 

may be caused by various factors, such as weather, vacation, and holidays. (Allbusiness.com, 

2020). 
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Figure 9: Autocorrelation measures 

 

Above is a screenshot from the calculation of the Autocorrelation Function (ACF) between 

Quantity and its lags (past values) of three different intervals. The autocorrelation function 

defines how data points in a time series are related, on average, to the preceding data points 

(Box, Jenkins and Reinsel, 1994). Note how the autocorrelation is greater between Quantity 

and its 7-day lag than between Quantity and its 4-day lag, owing to the weekday effects 

where the day of the week influences peoples propensity to travel. In general, the high values 

of the ACF tests indicate that on any given day of business, number of travellers is likely to 

be quite similar to the number of travellers yesterday, and on the same day last week.  

2.2 Model selection 

Having explored the data, both sales- and weather relate, there was now a basis for finding 

appropriate models for the forecasting problem.  

To forecast ticket sales, a wide range of models were considered. Models ranging in 

complexity from simple univariate regression and time series forecasting to deep neural 

networks, could, in theory, be used to predict the Quantity variable. 

The following section presents the chosen ‘candidate’ models and ‘benchmark’ models to 

compare them to, explains the most important theory behind them, and discusses their 

benefits and drawbacks in general and for this scenario.  
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2.2.1 Candidate models 

The candidate models are a set of regression algorithms, implemented by a specific set of 

frameworks. The models were considered at different stages of the process. Finding an 

appropriate model for a prediction problem is often not straightforward and knowing where 

to start looking can be challenging. The approach in this thesis was to start simple, and 

gradually consider model of higher complexity until performance seemed to plateau.   

The natural place to start when looking to predict a continuous value, is regression. 

Regression is a statistical method used to determine the strength and character of the 

relationship between one dependent variable and a series of other variables (Investopedia, 

2020). 

Ordinary Least Squares (OLS) is the estimation method most used for regression, a true 

classic among statistical methods. Simple in its use with intuitive results, simple regression 

should therefore be the go-to model in a lot of applications. Specifically, when OLS is 

‘BLUE’ (the Best Linear Unbiased Estimator), it should be sufficient for the task, according 

to the Gauss-Markov theorem.  

In the case of this forecasting problem however, the relationship between ticket sales and 

some of the predictive variables is likely non-linear in nature. For example, the relationship 

between Quantity and Precipitation is likely not linear in form. Linear regression would in 

that case not be able to capture the intricacies in the variable relationships, leading to sub-par 

performance.  

 

Generalized Linear Models (GLM):  

Compared to simple linear regression models, Generalized Linear Models offer certain 

benefits that make them more practical for real-world problems.  

“Generalized linear models (GLM) are conventionally taught as the primary method for 

analysis of count data, key components of their specification being a statement of how the 

mean response relates to a set of predictors and how the variance is assumed to vary as the 

mean varies.” (McCullagh and Nelder, 1989). 
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Seeing as Quantity is an instance of count data, a GLM is seemingly a good choice in this 

case. Furthermore, the fact that a GLM can specify how the target variable relates to the 

predictors, allows the model to be instructed to account for the probability distribution of the 

target variable, which here is assumed to resemble the Poisson distribution. 

A GLM can generally be represented as follows: 

g(E[y|X]) = B0 + B1(x1) + B2(x2) 

 

g: generalized link function connecting target with predictors 

E[y|x]: Expected target variable (y) given a set of predictors (x here represents the set [x1, x2] 

y: target variable 

Bi: Coefficients 

xi: predictor variables 

 

The main component separating a GLM from simple linear regression is the link function g, 

which enables the model to account for non-normally distributed data. The way the link 

function models a probability distribution, is by applying a mathematical transformation to 

the outputs of the weighted sum of the predictive variables, in this case, applying the natural 

logarithmic function (log-lin).  

An additional way a GLM can be enhanced, is by using using Bayes’ theorem to make the 

model ‘learn’ as it is exposed to more data, making the forecasts more responsive to changes 

in underlying conditions affecting the response variable.  

PyBats is a Python package made for ‘Bayesian time series forecasting and decision 

analysis’ (Cron and Lavine, 2020). At its core, PyBats is an enhanced GLM. PyBats makes 

the GLM more intelligent by introducing a Dynamic component, where the otherwise 

constant coefficients Bi are re-estimated through Bayes law as the model moves forward 

chronologically. Bayes law is a statistical result that allows for updating a belief about the 

likelihood of an event (such as different levels of the variables), through new observed 

evidence. This allows the algorithm to learn from new observations without having to be 

entirely retrained. For example, if the contents of a Go Fjords trip changes, or a new tourist 
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demographic enters the market that has different preferences than the rest of the population, 

a DGLM can learn these new preferences or changes by adjusting its coefficient. 

The name PyBats is an acronym, stemming from some of the techniques used by the 

algorithm. Py from being a Python package, B from using a ‘Box-Cox’ transformation to 

normalize the predictor variables’ distributions, a from using ARMA (Autoregressive 

Moving Averages), t for accounting for trend, and s for accounting for seasonality.  

 

Generalized Additive Model (GAM) – Facebook’s ‘Prophet’: 

Generalized Additive Models (GAM) are the slightly more flexible cousins of the GLMs. A 

GAM represents another way to enhance the concept of a GLM, this time to account for non-

linear relationships between individual predictors and the target variable.  

A GAM can be represented as follows: 

g(E[y|X]) = B0 + f1(x1) + f2(x2) 

g: generalized link function connecting target with predictors 

E[y|x]: Expected target variable (y) given a set of predictors (x here represents the set [x1, x2] 

y: target variable 

Bi: Coefficients 

fi: smoothing functions 

xi: predictor variables 

 

The key difference between GAMs and GLMs lies in the smoothing functions fi on the right-

hand side of the equation, allowing for individual estimation of the functional form of the 

relationship between each respective predictor variable and the target variable. Having 

functions as opposed to simple values as coefficients allow GAMs to represent more 

complex relationships between target- and predictor variables.  

The smoothing functions make GAMs more suited than GLMs to model situations where 

non-linearity applies, which is often the case in the real world. A relevant example could be 

the relation between rain and ticket sales. It is reasonable to believe the difference between 0 
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mm and 0.1 mm of rain makes a much larger impact willingness to purchase a ticket than the 

difference between 0.3 mm and 0.4 mm. Thus, the relation between rain and ticket sales is 

likely non-linear, and better accounted for by a GAM than a GLM.  

The ability to account for non-linearity also makes GAMs highly flexible, allowing them to 

yield good predictions without any presumption about the form of the relation between a 

predictor- and the target variable. This benefit does not come for free though. The smoothing 

functions fi need to be estimated from the data. In general, this requires many data points and 

is computationally intensive (Hastie and Tibshirani, 1990). 

A contemporary, popular framework that uses Generalized Additive Models is the ‘Prophet’ 

package developed by Facebook (Taylor and Letham, 2017). Prophet fits non-linear trends 

together with yearly, weekly, and daily effects, as well as custom holiday effects. Despite 

merits like the ease of use and relative flexibility, Prophet has one drawback in this context. 

It does not allow for Poisson-distributed data terms, which you typically have in counts of 

discrete values, such as in the case of the count of ticket sales. Nevertheless, Prophet was 

tested for this task, as was deemed well-suited for demand forecasting. 

The Prophet framework will be further discussed in the ‘Deployment’ chapter of this thesis, 

as the case study for technical implementation.  

 

Wild-card: Microsoft Azure Automated Machine Learning 

Being one of the leading providers of Machine Learning as a service in the cloud, Microsoft 

has highly sophisticated tools for machine learning in its Azure platform. Among these tools 

is Automated Machine Learning (AML), which streamlines the process of finding 

appropriate predictive models, requiring little to no domain expertise. Since Azure was 

already being used to host the data and models, there was no good reason not to try the AML 

feature, to see if the hand-picked DGLM and GAM were performing in the same ballpark as 

the best model from a state-of-the-art Automated Machine Learning solution. 

Azure was simply given the data, along with the instruction of forecasting with a time-

horizon of seven days. After churning the numbers and training and testing a long list of 

algorithms, Azure returned a long list of different model types, where the top contenders 

scored very evenly in terms of most performance metrics. Among the top contenders, only 
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one model maintained explainability, that is, being able to rank the variables by predictive 

power, and allowing for intuitively answering why any given prediction was made. This 

model was a Random Forest Regression model. 

 

Figure 10: Random Forest Regression 

 

In the above example, a simple ensemble consisting of two trees makes a prediction for the 

Quantity variable. The above ensemble would make this prediction for example with 

following set of values for the weather variables: [Temperature, Precipitation, 

WindSpeedMps] = [8, 0, 9]. 

Random Forest models are a type decision tree model. A Random Forest can be described as 

an ensemble model, since it takes the average prediction from several independent tree 

models, as its final prediction. To ensure that the trees in the ensemble are distinct enough, 

Random Forests use certain techniques like randomizing which variables appear in which 

order in the trees, limiting how far the trees can ‘grow’, meaning how many variables and 

nodes they can include, and randomizing which part of the data is used for training. A key 

benefit of the Random Forest model is that its ensemble nature reduces the variance of the 

predictions, leading to more stable predictions. 
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The Random Forest model that Azure presented used an additional technique called 

MaxAbsScaler, which is short for Max Absolute Scaler. MaxAbsScaler can be described as a 

form of feature engineering where the predictive variables are normalized so that the lowest 

observed value of each variable is set to 0, and the highest is set to 1, effectively scaling all 

the data into a fixed interval. The intention is to make the model more stable and to make 

sure that variable importance is not simply linked to the size of the numbers of the variables. 

For example, if it were decided that Precipitation should be measured in a unit smaller than 

millimetres, leading to higher numbers for every observation, this could impact the relative 

variable importance of certain algorithms. MaxAbsScaler prevents this. Scaling of variables 

is in general considered good practice in machine learning.  

 

2.2.2 Benchmark models 

In forecasting and machine learning, it is standard practice to compare model performance 

against the performance of certain simple and widely known models, to set a minimum 

target-to-beat, and to set the model performance into perspective relative to something 

familiar.  

Naïve model 

In time series forecasting, one model commonly used as a benchmark is the naïve model, 

which simply selects the most recent observation as its prediction.  

Such a model might seem so simple that it is useless, but in data that is very hard to predict 

and that can resemble a random walk, such as the price of a single stock, a naïve model is 

sometimes among the best approaches. Recall that in the Quantity variable, the ACF metric 

with a one-day lag is approximately 0.88, meaning that the correlation between Quantity of 

today and Quantity of yesterday is very high. That means guessing the Quantity value of 

yesterday might not be very naïve after all. At least it can serve as a reasonable benchmark to 

beat when evaluating whether a more sophisticated approach has any merits.  

ARIMA model 

ARIMA stands for Auto-Regressive Integrated Moving Average and is a commonly used 

method in time series forecasting. Since they are adaptable to many different problems, 

while being easy to use, an ARIMA model will be included as a benchmark model to 
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compare the heavier candidate models against, to see if their added complexity is worth it. 

There is no reason to “shoot sparrows with cannons”, as the Norwegian saying goes. 

ARIMA models estimate the target variable, Y, from a constant and/or a weighted sum of 

one or more recent values of Y and/or a weighted sum of one or more recent values of the 

errors (Nau, 2020). This means that they adjust their predictions based on the error of 

previous predictions, thus ‘learning’ in a sense. ARIMA models can be made simpler or 

more complex to suit the data, for example, to account for seasonality or to include 

predictive variables.  

A good way to describe how an ARIMA model works is to explain each letter of the 

acronym: 

Auto-regressive stems from the regression coefficients being estimated based on past values 

of Y, and alternatively also, past values of the predictive variables.  

Integrated stems from the fact that ARIMA models require stationarity, meaning that the 

time series that is being predicted needs to have no trend, it needs to have a constant mean 

over time. To achieve this, ARIMA models construct a time series that depicts the difference 

in the target value Y value compared to the previous observation and creates predictions for 

this time series instead. In this case, that translates to the ARIMA model predicting ‘how 

many more tickets will be sold for tomorrow, compared to yesterday?’. Using this method, 

the time series will usually become stationary and suitable for ARIMA forecasting. In some 

rare cases, the differencing procedure needs to be done twice to produce a stationary time 

series, depending on the nature of the data. 

Moving Average stems from ARIMA models adjusting their forecast based on the error from 

previous predictions, ensuring that the model has a self-correcting, learning component.  

Our ARIMA model was created using the ‘auto.arima’ function of the ‘Forecast’ package in 

R. Auto.arima is a good place to start when considering ARIMA style models, because as the 

‘auto’ part of its name suggests, the package does a lot of the work related to finding an 

appropriate model for the user. Since the variables used in this problem have quite 

pronounced seasonality, auto.arima added a seasonal component in its suggested model, 

technically rendering it a ‘SARIMA’ model, with S for seasonal.  
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2.2.3 Benefits and drawbacks of models 

Table 2: Benefits and drawbacks of models 

Model type Benefits Drawbacks 

Naïve 

forecasting 

- Simple to implement and 

interpret 

- Stable predictions 

- Good when autocorrelation is 

high 

- Low flexibility 

- So simple that it does 

not allow for 

predictive variables or 

seasonality 

ARIMA 

(benchmark) 

- Easy to use, common ARIMA 

packages like Forecast in R 

adjust the model to account for 

inherent features of the data. 

- Can account for seasonality 

- Can include predictive 

variables but is 

particularly suited to 

forecasting based only 

on past values of the 

target variable. 

Generalized 

Linear 

Model 

(GLM) 

- Simple and interpretable. 

- Can account for data that is not 

normally distributed.  

- Easy to incorporate predictive 

variables. 

- Not suited to capture 

non-linear 

relationships between 

variables. 

Generalized 

Additive 

Model 

(GAM) 

- Can account for data that is not 

normally distributed.  

- Can handle non-linearity 

between variables, without prior 

knowledge of their relationship. 

- Easy to incorporate predictive 

variables. 

- Does not implicitly 

account for 

autocorrelation. 

- Relies on assumptions 

about the data 

generating process. If 

these underlying 

assumptions are no 
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longer true, the model 

loses its intuitiveness 

and explainability. 

(Christoph Molnar, 

2020) 

Random 

Forest 

Regression 

- Ensemble model, meaning it 

takes average prediction of 

many tree models as its final 

prediction. Thus, more robust to 

overfitting. 

- Maintains the explainability and 

ability to assign variable 

importance, despite being 

complex. 

- Not memory efficient, 

all the models that the 

ensemble consists of 

need to be stored. 

- Not necessarily the 

best at extrapolation 

and forecasting since 

the model by default 

does not consider 

trend. 

 

 

2.3 Measuring performance 

In finding an appropriate forecasting method fit for the data and goal, it is important to find 

the right metric to optimize for, and to test on representative data. This section presents and 

discusses potential performance metrics, explains which of them that were chosen to 

optimize for and reasoning behind this, as well as the chosen method for validating model 

performance.  

2.3.1 Performance metrics 

There are many ways one can measure the performance of a machine learning model. Since 

the data set consists of time series data and all the models can be described as relying on 

regression, the scope is narrowed somewhat. Hyndman & Athanasopoulos (2018) divide 
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ways of evaluating model errors into the following categories, with some examples of 

prevalent metrics to minimize: 

Table 3: Performance metrics 

 Scale-dependent 

errors 

Percentage errors Scaled errors 

Description ‘Errors are on the 

same scale as the 

data’ 

‘…unit-free, and so 

are frequently used 

to compare forecast 

performance 

between data sets.’ 

‘an alternative to 

using percentage 

errors… based on 

the training MAE’ 

Examples MAE, RMSE MAPE, sMAPE MASE 

(Hyndman & Athanasopoulos, 2018).  

The latter two categories are appropriate for panel data, when comparing performance 

between different datasets where the scale of the variables can be different, so that the errors 

will still be comparable. It is not necessary to worry about scale of the variables in this case 

since the models are being optimized for the Preikestolen trip only, rendering the dataset an 

instance of time series data, not panel data. If Go Fjords, however, were to decide that they 

want one unified model that is optimized for several locations, the percentage- and scaled 

errors would be worth considering. This is because the scale of the variables could change. A 

high number of sales and a high temperature in one location and for one trip is not 

necessarily an equally high number when looking at another location and trip.  

Thus, only the scale-dependent errors remain, where two of the most prominent metrics are 

the ‘Mean Average Error’ (MAE), and ‘Root Mean Squared Error’ (RMSE).  

The way RMSE is calculated can be generalized as such: 
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While the way MAE is calculated can be generalized as such: 

 

Legend for RMSE and MAE equations 

N: number of samples 

Y: observed value of target variable 

Ŷ: estimated value of target variable 

 

Since RMSE has a squared component, unlike MAE, it penalizes large errors between 

observation and prediction. This means that optimizing a model for minimizing RMSE, 

using RMSE as the loss function, will lead to a model leaning toward high bias, while on the 

other hand minimizing MAE leads to a model leaning toward a higher variance, 

comparatively. This decision regarding metrics to optimize for is a case of the bias-variance 

tradeoff, a common problem in machine learning, where lowered bias or variance often 

comes at the expense of an increase in the other metric. All else equal, both high variance 

and high bias are undesirable qualities, at least when their levels are higher than that of the 

actual data the model tries to predict. High variance is bad because it means predictions will 

be unstable, and large errors can occur. High bias is bad because it means the model is 

inflexible and will yield unwavering, often wrong predictions.  

 

Figure 11: Bias-variance tradeoff 
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The charts above illustrate three models scoring differently in the bias-variance tradeoff on 

the same data. In the chart to the right is a model that strikes a good balance in the tradeoff.  

It is worth noting that RMSE, as it penalizes large deviations between predicted- and 

observed values with its ‘squared’ component, discourages overfitting. Overfitting can be 

described as ‘an analysis which corresponds too closely or exactly to a particular set of data 

and may therefore fail to fit additional data or predict future observations reliably’ 

(OxfordDictionaries.com, 2020). The left-most chart in the illustration exemplifies an overfit 

model. When a model is overfit to the training data, everything might seem good on the 

surface because the chosen performance metrics indicate that the model is effective. 

Meanwhile, the model may have been overly fit to the training data to the extent that it 

adapted to patterns in the training data that might simply be caused by randomness or a small 

sample size. This can then lead to a high variance in predictions for unseen data since the 

new data may not display the same random patterns that the model overfit to in the training 

data. 

The other end of the bias-variance tradeoff would be a completely biased model, like the one 

in the middle of the illustration, which gives a constant, unwavering prediction regardless of 

input parameters.  

The primary purpose of creating a ticket sales forecast in this project is to be able to select a 

better number of buses to rent. The context has an implication for which metric is most 

appropriate to optimize for. The decision around how many buses to rent is one of discrete 

optimization. If the number of tickets sold is likely to be in the interval is between 0 and ‘n’, 

assuming ‘n’ is the passenger capacity of a bus, then the optimal number of buses to rent is 

one. This implies that it is important that the forecasts are somewhat accurate, and that large 

errors are avoided if possible, as they are more likely to result in advice that lead to renting a 

non-optimal number of buses. For example, if the model usually has an error within +/- 2 

tickets, it will usually recommend the right number of buses for rental. If the model has 

frequent spikes of large errors (high variance), it will often recommend the wrong number of 

buses.  

Due to RMSE having the benefit of discouraging overfitting when compared to MAE, it was 

decided to use RMSE as the performance metric by which to compare all the models. 
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2.3.2 Time series cross-validation 

The method of time series cross validation can be described as a series of test sets, each 

consisting of a single observation, where the corresponding training set consists only of 

observations that occurred prior to the observation that forms the test set. Thus, no future 

observations can be used in constructing the forecast (Hyndman and Athanasopoulos, 2018).  

 

Figure 12: Time series cross-validation 

 

Above is an illustration of the time series cross-validation method.  

Since no future observations are used to train the model, testing it in this manner is akin to 

testing it in practice, and one can feel more certain that good performance is not simply 

caused by overfitting. The model is trained on past data, tested on future data, and moves 

forward chronologically to include more of the data in the training set, and even newer data 

in the test set. When all available data has been used, the average of the chosen metric from 

all the iterations of train-test splits is returned as the final, cross-validated performance 

metric, less prone to overfitting. Time series cross-validation is also sometimes referred to as 

‘walk forward validation’, as it moves one time-step ahead for every new train-test split 

(Brownlee, 2016). 
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All models tested in this paper, both the candidate models and the benchmark models, were 

tested using time series cross-validation, and compared by RMSE.  
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3. Deployment 

In the first round of evaluating the candidate models, the Generalized Additive Model 

regression option of Facebook Prophet was deemed to be the most promising technique, 

seemingly hitting the sweet spot of low complexity and high accuracy. At this point in time, 

The GLM candidate that was being considered was a simpler one than the PyBats DGLM, 

and the Random Forest Regression model had not been considered yet. Thus, it was decided 

that the demonstration of deployment should be done using the Prophet GAM. The Prophet 

forecasting model was deployed and yielded decent predictions. Later, as it became apparent 

that the Prophet model was not entirely fit for purpose, other models with tolerance for non-

normally distributed variable values were explored. Nevertheless, this chapter demonstrates 

the implementation of the Prophet model, as an example of deploying an end-to-end 

Business Analytics solution on a cloud platform. 

3.1 Choice of tools and implementation 

The tools used in all parts of this project, from data exploration to conveying insights, were 

chosen primarily to fit the needs of Go Fjords, and to be compatible with the solutions that 

TietoEVRY are already using. This included the choice of Microsoft Azure as the cloud 

platform on which to run the data pipeline and forecasting models, as well as Microsoft 

Power BI as the tool through which to convey the results and insights.  

For a large part of the time this thesis was worked on, the Facebook Prophet model was 

believed to be the most suitable model. This was based on broad research which found that 

other analysts are having success in demand forecasting using Prophet in recent years. Being 

a Generalized Additive Model, Prophet is in theory highly flexible and suited for a wide 

range of use cases, so it was assumed that it would perform well in the Go Fjords case. It 

yielded better accuracy than the simple naïve benchmark model, but not by a lot. This was 

attributed largely to the most recent year, the 2020 season, being an outlier, and thus hard to 

predict. And so, it was decided quite early that the Prophet model was good, so there would 

be adequate time for the demonstration of implementation of the model in the cloud, which 

is a part of the goal of this thesis.  
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Figure 13: Data model overview 

 

Above is an illustration of the full deployed data model. The scripts fetching and preparing 

data, as well as the Prophet model, was implemented in a Databricks notebook running as a 

daily ‘job’ at a set time every day. The Databricks notebook was hosted in Azure, the 

Microsoft solution for cloud computing- and storage. The data pipeline roughly consists of 

the following sequence: 

1. Gather weather data from external sources 

a. ‘Web scrape’ weather forecast for one week ahead from yr.no. 

The way this script scraped the webpage, was by entering the source page of 

the yr.no page for the given location (Stavanger), which contains the data in 

XML format. The script then uses primarily the ‘requests’ and ‘beautifulsoup’ 

packages to retrieve the desired information. The script created for retrieving 

the weather forecast from yr.no can be found here in the appendix. 

b. Get historical observed weather data by API-call from the ‘Frost API’ of 

MET Norway. 

Done by adapting a template script provided in the documentation pages of 

the Frost API, available in both R and Python. Other than specifying which 

data one wants, the only input need is a user identification token, so that the 

API can recognize whether certain actors are using the service for unwanted 

purposes. 

2. Get historical sales data by SQL query from Go Fjords’ Azure SQL database. 

Done simply by SQL ‘select’ statement, selecting all ticket sales with ‘TripID’ equal 

to the internal ID corresponding to the ‘Preikestolen tur-retur’ trip. 

3. Perform data assembly process in Databricks notebook, cleaning, pre-

processing, and transforming the data to ensure it fits the schema required by 

the Prophet model. 
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First assembling the weather data (historical- and forecasted), as they are retrieved 

from separate sources. Included turning the historical API data from ‘long’ to ‘short’ 

format (many rows, to one row per date, one column per variable). Code for 

retrieving the data from the Frost API can be downloaded on the documentation web 

page: https://frost.met.no/examples2.html (MET Norway, 2020). Code to transform 

the output to ‘wide’ format typically preferred as input for predictive models can be 

found here in the appendix.  

4. Use forecasting model, here Facebook Prophet, to forecast ticket sales one week 

forward in time, based on the weather.  

The Prophet framework is available in several programming languages and was here 

implemented using Python. The script that was used as a starting point for the 

modelling can be found in the following article: 

https://databricks.com/blog/2020/01/27/time-series-forecasting-prophet-spark.html 

(Obeidat, Smith and Heintz, 2020). Notable inputs to the model were, for example, 

instructing it to forecast one week ahead in time, telling it to use the weather 

variables as predictors, and restricting its forecasts to be non-negative. The reason the 

forecasts needed to be ‘clipped’ to non-negative values will be discussed further in 

the ‘Results’ and ‘Discussion’ chapters.  

5. Export the output of the model to Go Fjords’ Azure SQL database. 

The final forecast is converted from a Spark ‘dataframe’ object especially suited for 

distributed computing, back to a single ‘Pandas’ dataframe, then to an SQL table, 

and exported to Go Fjords’ Azure SQL database.  

6. Display the forecast in Microsoft Power BI dashboard, putting it into context of 

how many buses to rent, to facilitate better decision making. 

The Microsoft Power BI dashboard is already connected to Go Fjords’ Azure SQL 

database, rendering the forecast available in the dashboards. Any illustration 

including the forecasts can be refreshed, updating the graphics to include the newest 

data. An example of a dashboard illustrating how many buses should be rented for 

different times of the season, can be found in the ‘Discussion’ chapter. 

 

To build and automate this value chain, a range of programming languages were used. This 

is a key benefit of Databricks notebooks, they allow for multiple programming languages to 

be used, namely R, SQL, Python, and Scala. All of these were used in the work on this 

thesis. An alternative to running one Databricks notebook could have been to use one 

programming language per notebook, but that would have required more saving, converting, 

exporting, and importing of data between more notebooks, increasing complexity and risk of 

errors. The programming languages were used for the following purposes, in roughly the 

following order: 

https://frost.met.no/examples2.html
https://databricks.com/blog/2020/01/27/time-series-forecasting-prophet-spark.html
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The R programming language was used early on for data wrangling and -exploration. R is a 

general-purpose programming language, with powerful extensions for data analytics and 

statistics, and for data manipulation. Using the ‘dplyr’ package, the data was processed at 

scale. R was then used to plot the data, and to display the correlation between the variables.  

SQL is a database-oriented programming language, used to retrieve, write, or wrangle data 

from databases. It was used to extract historical sales data from Go Fjords’ database, and to 

later store model results in the database. It was also used to make the data available for 

display in Power BI.  

Python is another general-purpose programming language, with many similarities to R. It is 

arguably even more general in its capabilities, and is suitable for building applications, as 

well as for powerful data analysis. Whether to use Python or R naturally depends on the use-

case and needs, but in many cases, including this one, Python is more lightweight, runs 

faster, and its data structures scale better memory-wise. After the exploration was done, the 

data pipeline was written in Python, including web scraping, API-calls, data pre-processing, 

and the training- and usage of the candidate forecasting models.  

Scala was used for certain technical purposes, including the configuration of the Databricks 

cluster that the data pipeline runs in. A cluster is a group of computing resources that can be 

expanded if there is a need for more processing power. The distributed computing done by 

the cluster was handled using the Apache Spark framework. Using distributed computing 

makes training of the forecasting models quicker, as this is a computationally heavy activity 

(depending on the model, the GAM and Random Forest Regression, for example, took a 

while to train, while the DGLM was quick). It also speeds up inference, meaning using the 

models daily to improve predictions. The Scala programming language is in some ways 

similar to Python. The primary difference is that Scala is statically typed, while Python is 

dynamically typed. This makes Scala less prone to bugs, and easier to refactor (changing 

code while maintaining functionality).  

A Minimum Viable Product (MVP) of the data pipeline with Facebook Prophet was ready 

for deployment early in the work on this thesis, ready to be deployed as soon as the 2020 

travel restrictions would be removed.  
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3.2 Delayed start of the season 

The intended start of Go Fjords’ 2020 season was 1st of April. However, due to the COVID-

19 pandemic, the Norwegian government announced a nationwide lockdown starting 12th of 

March. This forced Go Fjords to postpone the start of their season.  

The first Preikestolen trip of the season was carried out in July when the first social 

lockdown rules had been loosened. Only certain trips in Go Fjords’ portfolio were being 

operated, while others had to remain closed. The best-seller trip “Preikestolen tur-retur”, was 

one of the few trips being operated, though only on certain weekdays, until the end of 

September. Thus, the Preikestolen trip became the natural case study for this thesis.  

The Facebook Prophet model was able to run in production and record its predictions for the 

entirety of September 2020. This was a goal of this thesis, to learn how to deploy a 

forecasting solution in production, to learn how to apply Business Analytics in practice. 

However, the month of September 2020 proved to be a less than exiting month for 

Norwegian tourism. Ticket sales were so low that results were trivial when looking at 

September in isolation. Therefore, it was decided that even though results derived from live 

testing are ideal, it is necessary to back-test all the candidate models against historical sales 

data and evaluate or models based on that instead. Since the back-testing was done using 

time-series cross validation, the models still make predictions based only on data available 

before the point of forecast, making the results equally as valid as if testing was done live in 

production. 
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4. Results 

In this chapter, key results will be presented by visualizing the forecasts of the deployed 

Prophet GAM model against the actual observed Quantity, and the accuracy of the forecasts 

will be compared against the accuracy of the other candidate- and benchmark models, by 

Root Mean Squared Error. 

4.1.1 Performance of models 

The deployed Prophet GAM model produced the following forecast (yhat, in orange), 

compared to the actual observed Quantity (y, in blue):  

 

Figure 14: Facebook Prophet forecast 

 

Observe how the forecast (the orange line) has regular, small spikes to account for weekday 

effects, where more tickets are being sold for weekend trips.  

Notice also how the forecast line has a lower variance that the observed Quantity, meaning 

the forecast has the desired trait of low variance, in exchange for some bias.  

A third thing to notice is how the model learns from the data, staying closer to the actual 

Quantity in the second season than in the first. 
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4.1.2 Performance compared to benchmark models 

Knowing the DGLM beat the GAM is interesting, but to put its performance properly in 

perspective it is necessary to measure against standard benchmark models.  

The performance of the benchmark naïve- and ARIMA models, and the candidate models 

(DGLM, GAME, and Random Forest Regression), can be summarized by Root Mean 

Squared Error (MSE) as such: 

 

Table 4: Comparing models to benchmarks by RMSE with 7-day forecast
  

 Naïve 

model 

SARIMA 

model 

Prophet 

GAM 

PyBats 

DGLM 

Random 

Forest 

Regression 

RMSE 17.16 12.68 16.53 2.21 11.65 

 

As can be seen in the table above, the PyBats DGLM beat all the other models by a large 

margin, including the best explainable model from Azure Automated ML. This is an 

interesting result, even more so if one considers that it was quicker to train than for example 

the Prophet GAM model.  

The DGLM model performs drastically better than the Prophet GAM, having an RMSE of 

2.21 as opposed to the GAM, which has an RMSE of 9.65 for its shortest forecast horizon, 

and an RMSE of 16.53 in its seven-day forecast.   

It is worth noting that the DGLM’s RMSE of 2.21 is so low that it might be the result of 

overfitting, or some other issue. Predicting ticket sales one week ahead of time with +/- 2 

tickets of accuracy on average seems like it might be too good to be true. Still, time series 

cross validation was used in obtaining the RMSE, which reduces the risk of overfitting.  

 

 



 

 

45 

 

4.1.3 Further optimization of DGLM 

The DGLM model performed very well but could be optimized further to minimize RMSE. 

With its current configuration, it selects the median of its probability density function as its 

official prediction, which is ideal for minimizing Mean Average Error. By selecting the 

mean as the prediction RMSE would be minimized. This was not deemed necessary, 

however, as the model already scores very well. Here it was decided to follow the default 

method of the PyBats package, choosing the median of the estimated probability density 

function as the models point prediction.  

Another way to potentially improve on the usefulness of the DGLM model is to use 

regularization to lessen overfitting. Regularization is the practice of adding a term that 

penalizes complexity. When applied, the model scores worse when it has more variables and 

more complex relationships among them. This leads to the optimal model being one that is 

less overfit to the training data, and thus hopefully more data-agnostic and effective on new, 

unseen data.  

In the visualization below are three different perspectives of the full forecast made by the 

DGLM model, a blue line representing the forecast and black dots representing the later 

observed values. The largest graph spans seasons 2018-2020, the middle one 2019-2020, and 

the smallest one only displays the 2020 season.  
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Figure 15: PyBats DGLM forecast 

 

Notice how in the very beginning of 2018, the forecast had huge spikes. This is likely 

because of the Bayesian learning the algorithm deploys. At that time, the algorithm had not 

yet learned the properties of the data, and a slight uptrend in Quantity led to a parabolic 

response in the predictions. As time went by and the coefficients were adjusted, the 

predictions become more and more stable and accurate. In this way, the DGLM learns from 

the data and adapts itself to changes continuously.  

One potential way the ‘on paper’ performance of the model could have been slightly 

improved, is to by trial and error tune the hyperparameter of prior belief. Hyperparameters 

are model settings that are typically set before the model is trained on data. There are some 

algorithmic ways to tune hyperparameters (like grid-search or Bayesian optimization), but 

an intuitive approach by a human is often the best approach. PyBats, like any model using 

Bayesian statistics, depends on the model learning to have ‘beliefs’ about the data and 

updating these beliefs as it is exposed to more data. Bayesian models, in a way, care about 

your opinion, because they require a prior belief from which they can start to make 

predictions, and then update that belief as time goes by. One reason the early forecasts 

spiked so high, may be that the prior belief was too high. If it was adjusted down, this might 
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lead to better performance, especially in the first season. However, this would not matter 

much in the full three years of forecasting, as the model quickly updated itself and learned a 

more appropriate belief about the level and trend of the Quantity variable.  

 

4.1.4 Why did the Facebook Prophet GAM underperform? 

These results raise a question: Why did the Prophet GAM perform so much worse than 

expected, barely beating out the naïve model in terms of RMSE?  

It may be argued that Generalized Additive Models like Prophet are more sophisticated and 

flexible than Generalized Linear Models since they allow for non-linear effects between 

predictors and the target variable. Thus, the early hypothesis in this thesis was that the 

Prophet framework would yield better forecasts than the GLM.   

Here are two potential explanations as to why the DGLM outperformed the GAM in this 

case: 

1) Facebook Prophet is as of the writing of this thesis not adapted to work with 

probability distributions other than the Gaussian distribution, commonly known as 

the normal distribution. The distribution of the target variable, Quantity, more closely 

resembles a Poisson distribution. This may cause the model to underperform, and 

even produce negative forecasts, which needed to be ‘clipped’ to non-negative 

values. The issue is known in the community of developers working on Facebook 

Prophet, and the framework will likely soon support non-Gaussian probability 

distributions. In the meantime, it could be worthwhile testing other GAM 

frameworks, as GAMs that support Poisson-distributed variables exist.  

2) Our GLM is not a traditional variant, it is enhanced with a dynamic component, 

rendering it a DGLM. This dynamic component stems from the introduction of 

priors, which are adapted through Bayes’ law as the model ‘learns’ trends and 

relations between variables. Thus, the Prophet model is not necessarily the more 

complicated model. Either way, it is not a given that any of them should outperform 

the other. 
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4.1.5 Usefulness of predictive variables 

Some of the packages used to create forecasts yielded auxiliary information regarding the 

predictive power of the three weather variables. Among these were the aforementioned 

‘Explanations’ section of the Random Forest Regression model from Azure AML. It offers a 

range of visualizations for variable importance, the simplest and most intuitive of which is 

this one:  

 

Figure 16: Variable importance in Azure AML's Random Forest model 

 

As one can see, Date and Temperature are by far the two most important factors for 

predicting ticket sales. This is in line with initial expectations. It is interesting to note that 

Precipitation is almost twice as important as WindSpeedMps, though neither of these 

variables seem to be very important in this analysis. One thing to consider that lessens the 

belief in the variable importance metrics from Azure, is that the strong correlation between 

Date (time of the year) and Temperature might lead to a lot of the explanatory power in the 

time dimension (accounting for seasonality), might be attributed falsely to the Temperature 

variable.  

A bit of further tinkering was done with the PyBats DGLM since it was the best performing 

model. Retraining the model with Temperature as the only weather-related explanatory 

variable, not Precipitation and WindSpeedMps, yielded the following performance: 
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Figure 17: PyBats' DGLM with only Temperature as predictive variable 

 

Recall how the full model that includes all weather variables resulted in a RMSE of 2.21, 

which is quite a bit better than the model without ‘Precipitation’ and ‘WindSpeedMps’, 

which yields RMSE of 2.54. RMSE, unlike for example the popular R-squared metric, does 

not suffer from false increases in performance due to added predictive variables. Thus, since 

RMSE is considerably lower in the model including all variables, the full set of weather 

variables should be included in the forecasting model, even though the Azure AML function 

suggests ‘Date’ and ‘Temperature’ is doing most of the work.  
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5. Discussion 

This section aims at discussing the results and reflecting on how business value can be 

derived from having increased forecasting accuracy, aided by an example. Then, certain 

assumptions and limitations of the study will be presented and discussed, with some 

potential points of improvement for anyone who might want to pursue similar challenges.  

5.1 Business value of demand forecasts 

Through accurate demand forecasts, it is possible for Go Fjords to prepare for 

accommodating anticipated increases in passengers, or cut unnecessary expenditures when 

demand is anticipated to decrease. This can lead to double upsides: 

1)  The firm can seize more revenue when the demand is high and avoid the loss of 

revenue and unhappy customers that can result from not having enough capacity. 

2) Achieve cost-savings when demand is low by not having idle capacity. 

These goals are in line with the Lean methodology, which aims to increase business value by 

reducing wasteful capacity.  

In the case of Go Fjords, the most immediate action that can be taken upon having a more 

accurate forecast is to in the short term adjust the number of buses, boats, or possibly tour 

guides to deploy in the near future. For the purposes of this thesis, the number of buses to 

rent will be used as the example to show how the forecast can be used as input to aid in the 

goal of optimizing capacity.  
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Figure 18: Optimal number of buses dashboard 

 

From Power BI dashboards, Go Fjords can get decision support for adjusting their capacity, 

like illustrated in the dashboard above. The chart was made by binning the predicted number 

of tickets sold into intervals of 50, the approximate capacity of a typical tour bus. As the 

dashboard shows, the year of 2020 never required more than one tour bus to be operated for 

the Preikestolen trip. In the previous seasons, however, it would be profitable to rent a 

second, third, and even fourth bus in some periods.  

Imagine an example where the company is using forecasts based solely on past sales. The 

forecast for the coming week is 110 travellers each day. However, the weather report says 

the weather will be unpleasant in the coming week, with temperatures dropping and lots of 

rain. The company has in advance ordered three buses to accommodate the 110 passengers, 

but only around 70 tickets are sold for each day. One bus is left idle the entire week.  

If a forecasting algorithm considering the weather forecast was used instead, it could have 

predicted something closer to the true value of 70 travellers per day, say, 88 passengers a 

day. In this case, the idle bus would not have been rented, resulting in thousands of 

Norwegian kroner in cost-savings.   
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5.2 Assumptions, limitations, and possible improvements 

5.2.1 Limited amount of data 

At the start of this project- and thesis, Go Fjords had only been in business for two seasons. 

This meant that they had a limited amount of data to share. Two seasons worth of data is the 

threshold for certain popular forecasting frameworks, such as the ‘Forecast’ package 

available in the R programming language, to be able to infer seasonal effects.   

Having only three seasons worth of data, the third of which was undoubtedly non-

representative as it was impacted by the nationwide COVID-19 lockdown, yielded an 

uncertain picture. Had more years of data been available, one could feel more certain that the 

available data gave a representative view of the seasonal patterns Go Fjords are subject to. In 

addition to more certainty that patterns were representative, the sheer increase in data for 

model training would have enabled the usage of more sophisticated algorithms, for example, 

Long Short-Term Memory (LSTM) neural networks. LSTMs are powerful in part because of 

their ability to remember important events far back in time, while simultaneously placing 

most emphasis on recent events. Still, such a complex model would likely not perform 

significantly better than the simpler ones, like the DGLM, since there are quite few variables 

and little data. Due to the relative simplicity of the problem, the principle of “Occam’s 

Razor” urges us to choose the simpler solution if they seem equally effective.   

Ending the study in an outlier-season can be said to have some benefits, to look on the bright 

side. It allowed for both the opportunity to look for models that perform well in conditions of 

stable growth (2018 - 2019), as well as those who perform well in unpredictable conditions 

like in 2020. The Dynamic GLM might have gotten its edge from its dynamic component, 

being able to retune itself continuously through Bayes’ law to adapt to the unpredictability of 

the last of the three seasons.  

 

5.2.2 Limitations of Facebook Prophet 

Facebook Prophet is a relatively new and powerful framework, but it turns out it has its 

limitations, at least at the time of this paper (Motoharu, 2020).  
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1) Prophet does not allow non-Gaussian noise distribution (at the moment) 

2) Prophet does not take autocorrelation on residual into account 

3) Prophet does not assume stochastic trend 

The first of these limitations is likely the ‘Achilles heel’ of Prophet for the purposes of this 

thesis. Daily ticket sale is a count value, with a probability density function that more closely 

resembles the Poisson distribution than the Gaussian distribution.  

 

5.2.3 Forecasted weather is not always actual weather 

The models are trained on actual observed weather data, while forecasts are made based on 

forecasted weather. This means that the models take for granted that the weather forecast 

gathered from yr.no will be correct without failure, which is not the case. Weather forecasts 

are, despite people joking about them being unreliable, impressively accurate most of the 

time, especially on short notice. The weather is a chaotic system and is hard to forecast with 

high accuracy, especially far ahead in time. 

Nevertheless, potential customers do not know the weather better than yr.no does in advance 

and are likely to base their purchase decision on the forecasts. Thus, it could be an idea to 

rather train the models on past predicted weather from yr.no, as the weather forecast for the 

travel date made on the date of purchase might have a more causal effect on purchase 

decision, than actual weather on the travel date does. However, this proves difficult in 

practice, as even yr.no themselves do not store (or at least make publicly available) their past 

predictions. This is likely because this would entail storing large volumes of data 

(predictions for many places, many forecast horizons, being updated often), and the 

information also having questionable societal- and business value compared to the big data 

storage cost. To achieve this, Go Fjords would have to store historical records of the data 

retrieved from the ‘web scraper’, and use this for model training. This is feasible, as the size 

of the data would not have to be larger than the observed historical weather data that is now 

being stored.  
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For these reasons, the discrepancy between the observed weather data used for training, and 

the speculative forecasted weather used for the demand forecasting, will simply be accepted. 

No one knows tomorrows weather for certain, not even MET Norway.  

 

5.2.4 More probability distributions could have been tested 

From visual inspection of the histograms of the Quantity- and Precipitation variables, the 

data seems like it would fit a Poisson distribution more than it would fit a Gaussian 

distribution. Meanwhile, that does not rule out the possibility of other probability 

distributions fitting the data even better than the Poisson distribution did. 

Towards the end of writing this thesis, it became apparent that the presumed Poisson-

distributed variables perhaps more closely resemble a ‘Tweedie Distribution’ (cran.r-

project.org, 2020). 

 

Figure 19: Tweedie distribution 

 

Tweedie distributed data is similar to Poisson distributed data in the sense that the data 

skews to the left of the distribution. The key difference lies in that the value of 0, or at least 

the lowest value, stands out as the modal value, by a large margin. This is a characteristic 

seen in the Quantity variable, where many days have no travelers because tours are not being 

operated on that day, for example in the winter months. Using the Tweedie distribution 



 

 

55 

 

instead of the Poisson distribution in all the models might lead to better performance across 

the board, without having to ‘remove’ data from parts of the year where the training data is 

not relevant (like months where there is no business).  

 

5.2.5 Some potential variables left unexplored 

If you were to be asked ‘how many tickets will Go Fjords sell for the trip to Preikestolen on 

Friday morning’, and you were allowed to ask one question before answering, it might be 

wise to ask: ‘how many tickets for the trip have been sold already?’. ‘Number of tickets sold 

at the time of prediction’ could be a useful predictor variable in practice, but it has not been 

used in this thesis. 

Another variable that might be smart to include is ‘cloud cover’. This is another variable that 

is made available by yr.no and their API. Forecasted cloud cover percentage, how cloudy or 

sunny the day is expected to be, might impact the willingness of the customers to purchase 

tickets for outdoor experiences. 

The reason these variables were not included in the models is primarily due to time 

constraints, the need for settling at some point with a set of variables, so the focus could shift 

toward testing and implementing models and documenting the process. These variables stand 

as directions in which to explore to potentially improve performance, for Go Fjords and 

anyone else looking to use the weather to forecast demand.  
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6. Conclusion 

The goal of this thesis was to evaluate whether using weather data as predictive variables 

could increase the accuracy of a demand forecast for Go Fjords’ trip to Preikestolen, as 

compared to forecasting solely on the basis of past sales data. A bonus goal was to 

demonstrate how such a demand forecasting solution can be technically implemented to 

provide a better basis for decision making, thus having the potential to provide value over 

time. The specific formulation of the topic question was: 

Can weather forecast data make demand forecasts more accurate for Go Fjords, and how 

can business value be derived from such as forecast? 

In order to answer the first part of the question, a range of models were tested for forecasting 

“Quantity” of tickets sold within the start of the trip. All models were tested using time 

series cross-validation, meaning essentially tested once for every data point, retraining itself 

after each forecast based on data that could at that point be considered ‘observed’, then 

moving to the next day and forecasting from there. 

Two univariate benchmark models: a naïve model, and an ARIMA model that considers past 

values of “Quantity”, as well as seasonal effects on the demand. 

Three “candidate” models: A Generalized Additive Model (GAM), a Generalized Linear 

Model (GLM), and a Random Forest Regression model.  

GLMs are regression models that can be used on data that is not normally distributed, by 

linking the Quantity variable to the predictive variables through a function that can account 

for the probability distribution of the Quantity variable. The GLM was implemented using 

the PyBats package which uses Bayesian statistics to update a “belief” the model holds about 

the data. This allowed the model to learn characteristics about the data, leading it to improve 

over time. This Bayesian learning feature renders the model a Dynamic GLM, or DGLM. 

GAMs can be considered an extended form of GLMs, that like GLMs are flexible with 

respect to the probability distribution of the target variable, also uses a link function on each 

individual explanatory variable. These link functions allow GAMs to account for non-linear 

effects of the predictive variables, for example, that the difference between no rain and a 

little rain matters more than the difference between a heavy rain and very heavy rain. The 
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GAM was implemented using the “Prophet” framework, developed by Facebook. Prophet 

allows for highly scalable solutions for forecasting of many time series, with complicated 

seasonality. In the early phase of this thesis, Prophet was deemed to be the most promising 

candidate model. As such, a Prophet model was implemented in Microsoft Azure, which is 

the cloud provider Go Fjords uses and that TietoEVRY specializes in.  

Random Forest Regression models produce predictions through creating multiple decision 

trees with some randomness to them to ensure they are not too similar and then averaging 

their predictions to create the final forecast. The Random Forest Regression model was first 

considered in the later stages of this thesis. After having implemented the GAM in Microsoft 

Azure, it became apparent that the Azure platform has sophisticated built-in functionality for 

machine learning. Azure’s Automated Machine Learning functionality (AML) was used to 

evaluate a large set of models, returning the Random Forest Regression model as the most 

accurate model that still allowed for explainability and scoring of variable predictive power. 

All the models were compared by the metric Root Mean Squared Error (RMSE). RMSE was 

chosen as the basis for evaluation because, compared to other popular performance metrics 

like Mean Average Error (MAE), RMSE penalizes large errors disproportionately from 

having a ‘squared’ component. This characteristic makes RMSE a good metric to optimize 

for in cases where the forecasts are to be used as an input in discrete optimization with large 

intervals, such as in this thesis, with the number of buses to rent. Picking the model that 

minimizes out-of-sample RMSE ensures that large errors are avoided, and the wrong number 

of buses is rented as seldom as possible.  

The model that performed best was the PyBats Dynamic GLM, by a large margin. The 

Prophet GAM barely beat the naïve benchmark model, which leads us to believe that the 

GAM was not tuned optimally. Additionally, it was discovered after implementation that 

although GAMs in theory allow for non-normally distributed data, the Prophet framework is 

not able to account for data being non-normally distributed, as of 2020. This resulted in 

forecasts that were sometimes even negative and had to be “clipped” to zero, and overall 

lacklustre performance. The Random Forest Regression model and the ARIMA model 

performed well, achieved an RMSE of 11.65 and 12.68, respectively. As both these models 

were implemented using thoroughly tested frameworks that automatically finds an 

appropriate model, and both frameworks yielded models that achieved scores in 

approximately the same ballpark, this strengthens the belief in the validity of these forecasts. 
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The PyBats Dynamic GLM achieved a much higher accuracy, with an RMSE of only 2.21. 

The exact reason for this is not clear, but factors that may have caused the big difference in 

performance is that the GLM has a dynamic component to it, where it learns about the data 

by updating the coefficients for its predictive variables over time. This renders the PyBats 

model highly adaptive to changes in the characteristics of the target variable, leading its 

performance to decline less than that of the other models, in the outlier year of 2020. 

However, the large discrepancy in performance between the DGLM and the other models, 

questions the validity of the DGLM forecast. More research is necessary.  

The technical implementation was demonstrated using the Prophet model as a case study. 

The utilized stack of technologies was discussed, such as programming languages (Python, 

R, SQL, and Scala), and platforms (Microsoft Azure, Databricks), explaining their respective 

advantages and disadvantages. The fact that different programming languages have their 

unique strengths was the driving force behind using Databricks notebooks on top of the 

Microsoft Azure cloud platform. Databricks notebooks allowed code written in multiple 

programming languages to easily be deployed, allowing for them to be used for their 

respective strengths. 

The process of retrieving data and performing the necessary cleaning- and preprocessing, 

was explained in the ‘Deployment’ section, and Python code examples on how this can be 

done, can be found in the appendix.   

The usefulness of having a good forecast was demonstrated by constructing a Microsoft 

Power BI dashboard that displays the optimal number of buses to rent throughout the season, 

taking the weather into account. The Power BI dashboard updates itself automatically with 

the daily forecasts produced by the Prophet model, demonstrating how a forecasting solution 

can be deployed to create forecasts over time, thus having the potential to create continuous 

value through improved basis for decision making.  
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Appendix 

Appendix 1: Performance of models 

 

 

Appendix 1 a: Benchmark naïve model w/ forecast horizons 1 to 7 
performance metrics 

 

 

Appendix 1 b: Benchmark univariate ARIMA model performance metrics 
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Appendix 1 c: Prophet GAM performance metrics 

 

 

Appendix 1 d: PyBats DGLM performance metrics 
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Appendix 1 e: Azure Random Forest Regression performance metrics 

 

Appendix 2: Code examples 

 

Appendix 2 a: Turn historical data into 'wide' format 
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Appendix 2 b: Web scraping weather forecast from yr.no 
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Appendix 2 c: Poisson dispersion tests for Quantity and Precipitation  
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