
Norwegian School of Economics
Bergen, Fall 2020

Machine Learning as a Tool for

Improved Housing Price Prediction
The applicability of machine learning in housing price prediction and the

economic implications of improvement to prediction accuracy

Henrik I W. Wolstad and Didrik Dewan

Supervisor: Jonas Andersson

Master thesis, Economics and Business Administration

Major: Business Analytics and Financial Economics

NORWEGIAN SCHOOL OF ECONOMICS

This thesis was written as a part of the Master of Science in Economics and Business

Administration at NHH. Please note that neither the institution nor the examiners are

responsible – through the approval of this thesis – for the theories and methods used, or

results and conclusions drawn in this work.





i

Acknowledgements

This thesis is written as a part of the Master of Science in Economics and Business

Administration with specialization in Business Analytics and Financial Economics at the

Norwegian School of Economics.

We would like to express our sincere gratitude to our supervisor Jonas Andersson for

providing us with invaluable guidance throughout the process of writing this thesis.

His extensive knowledge within the field of statistical modeling has been integral for

our research. We would also like to thank Anders Francke Lund at Eiendomsverdi for

providing the data used in this thesis and for valuable insights about the Norwegian real

estate market. Finally, we thank each other for a productive, challenging and rewarding

semester.

Norwegian School of Economics

Bergen, December 2020

Henrik I W. Wolstad Didrik Dewan



ii

Abstract

This thesis investigates whether non-linear machine learning algorithms can produce more

accurate predictions of Norwegian housing prices compared to linear regression models. We

find that the non-linear XGBoost algorithm increases out-of-sample prediction accuracy

by 8.5% in terms of Root Mean Squared Error compared to the linear model used by

Statistics Norway. Using additional property-specific and macroeconomic variables such as

coordinates, common debt, story, inflation rate and interest rate, we find that a non-linear

Stacked Regression model improves out-of-sample prediction accuracy by 39.52% in terms

of Root Mean Squared Error compared to a linear model.

Keywords – Housing price prediction, AVM, Machine Learning, Deep Learning, XGBoost,

Deep Neural Network, Stacked Regression, Random Forest
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1 Introduction

In this thesis we investigate how well non-linear machine learning models are suited for

predicting housing prices in the Norwegian residential property market. We do so by

training four non-linear machine learning models on property transaction data for five

Oslo boroughs and comparing their performance to a linear regression benchmark.

Estimating the market value of housing has several practical economic applications,

including taxation, mortgage refinancing, and risk management in banks. It is therefore

important for organizations and individuals to obtain accurate market values for housing.

However, estimating the market value of a property without a sale taking place is a

considerable challenge due to the multitude of factors unique to each property. Physical

appraisals of market values based on a broker’s or appraiser’s expertise is one of the most

basic ways of estimating housing values in lieu of a transaction. However, such appraisals

are time consuming and expensive, and often underestimate true market value (Benedictow

and Walbækken, 2020). For this reason, different Automatic Valuation Models (AVM)

have been developed to quickly and cheaply estimate property values.

AVMs must often follow strict requirements for interpretability and transparency. Because

of this, such models are often developed using a few intuitive variables and simple

estimating procedures. Consequently, much data about the individual properties and the

macroeconomic conditions are excluded. Even in applications where interpretability is

not a major concern, limitations in computing power and data availability have until

recently inhibited adoption of more sophisticated and complex prediction models. Recent

technological advancements in computing power, software development and big data

(Chollet and Allaire, 2017) are making machine learning algorithms much more pragmatic

both in terms of implementation and interpretation. This makes them an increasingly

viable alternative to more conventional AVM approaches such as linear regression models

and repeat sales methods.

Previous research on the topic of housing price prediction has applied machine learning

algorithms to predict housing prices for the US and Asian residential housing market

(Park and Bae, 2015; Chen et al., 2017; Lu et al., 2017; Truong et al., 2020). Comparisons

between non-linear machine learning models and linear regression models have also been
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conducted on real estate markets outside Norway (Tay and Ho, 1992; Do and Grudnitski,

1992; Lenk et al., 1997). In the Norwegian setting, Birkeland and D’Silva (2018) used a

Stacked Regression approach to develop an AVM for the residential real-estate market in

Oslo, and compared its performance against estimates by real estate agents.

In this thesis we expand on existing literature by investigating the prediction accuracy

of a diverse selection of non-linear machine learning models against a linear regression

AVM in a Norwegian setting, and by discussing the results in an economic context with

consideration to model interpretability computational costs.

Our research question is:

Can non-linear machine learning models improve housing price predictions compared to

linear regression models in the Norwegian residential housing market?

To investigate this, we predict residential housing prices by training four non-linear

machine learning models on second-hand property transactions for five Oslo boroughs

in the period 2005-2020. The algorithms employed are Random Forest, XGBoost, Deep

Feedforward Neural Network and Stacked Regression. We compare the performance of

said models to a benchmark linear regression model developed by Statistics Norway (SSB)

for applications in taxation.

Our analysis is split into two phases. In Phase 1, we replicate the data filtering process

employed by SSB and compare our models’ performance against the benchmark SSB

model. This is done to ensure a reliable comparison with the model currently employed

by SSB. In Phase 2, we train the same models on an expanded data set that follows a

different pre-processing and feature engineering regime. The expanded data set includes

additional property-specific and macroeconomic variables such as inflation, coordinates,

common debt, story and interest rates. In this manner, Phase 1 investigates the isolated

effect of adopting non-linear machine learning models, while Phase 2 investigates the

possible prediction accuracy gains that can be obtained from combining use of non-linear

machine learning models with inclusion of additional property-specific and macroeconomic

data.

Our findings indicate that significant improvements in prediction accuracy can be gained

by switching from linear to non-linear models. In Phase 1, all machine learning models
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outperform the linear benchmark model. XGBoost demonstrates the largest improvement,

increasing out-of-sample prediction accuracy in terms of Root Mean Squared Error (RMSE)

by 8.5% over the SSB benchmark. The performance difference between the machine

learning models and the benchmark model is amplified in Phase 2. In this phase, the

Stacked Regression model has the best out-of-sample performance with 39.52% increased

accuracy in terms of RMSE compared to the linear benchmark model. This suggests

that there exist non-linear relationships between housing prices and property-specific and

macroeconomic variables, which the linear model naturally fails to capture.

The increased accuracy of the non-linear machine learning models comes at a cost. Training

the machine learning models is several orders of magnitude slower than training the linear

model in both phases due to increased computational complexity. Fitting the linear model

is done in less than a second, while tuning and training the machine learning models takes

between 2-35 hours depending on the model. The black-box nature of these algorithms

also leads to a loss of interpretability compared with our benchmark model and other

existing valuation methods. This poses perhaps the greatest challenge to adoption of

non-linear models since many practical applications are subject to customer requirements

for transparency in the models employed.

Nonetheless, we find that increased prediction accuracy may yield economic gains

in applications such as taxation, property transactions, mortgage refinancing, risk

management and monitoring of property-backed financial instruments. Preliminary

estimates of property tax effects for Oslo using our best performing model show a

reduction in the proportion of properties unduly charged with property taxes due to

overestimation, as well as less underestimation of taxes for the most expensive properties

compared to the benchmark SSB model1.

1Which today is applied by tax authorities
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2 Background and Theory

This chapter covers relevant literature and theory for our analysis. We begin by reviewing

existing literature on housing price prediction and presenting the benchmark model used

in our analysis. This is followed by a theoretical section in which we elaborate upon what

machine learning is and the most important theoretical concepts in this regard. Lastly,

we present the theoretical framework behind the models used in this thesis.

2.1 Literature Review

The theoretical foundation of housing- and real estate valuations are based on hedonic

price theory, which states that a commodity can be viewed as a bundle of attributes or

characteristics (Griliches, 1971). Rosen (1974) and Lancaster (1966) were the first to

develop hedonic price models, an approach by which the price of a good is estimated based

on the implicit prices of its attributes, which in turn can be estimated from observed

prices of differentiated goods (Rosen, 1974). For housing, typical attributes include size,

age, location and the number of bedrooms. Since the inception of hedonic price models a

considerable amount of research has been devoted to investigate the efficacy of hedonic

models for residential property valuation by means of standard regression methods (Kang

and Reichert, 1991; Birch et al., 1991; de Haan and Diewert, 2011).

In Norway hedonic models have been used to develop AVMs for the residential real estate

market as a cost-effective alternative to physical appraisals. SSB has developed their

own valuation model for residential properties (Takle and Melby, 2020). SSB estimates

the average price per square meter of a property based on property size, location, age,

year and urbanization. The average market value can then be found by multiplying the

estimated value by the size of the property. This model is currently used by Norwegian

tax authorities to estimate property values for tax purposes (Takle and Melby, 2020).

Since the model is used as a basis for estimating wealth and property taxes for households

and individuals, its accuracy and reliability is important. In this thesis we use the exact

model developed by SSB as a benchmark when evaluating the prediction accuracy of

non-linear machine learning algorithms.

Due to the significant increase in computing power and availability of data in the last
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couple of decades, more sophisticated machine learning algorithms have been employed in

an attempt to achieve more accurate predictions for housing prices. Tay and Ho (1992)

were among the first to train an Artificial Neural Network (ANN) to predict residential

apartment prices in Singapore. They found that the ANN outperformed a standard

multiple regression model in terms of mean percentage error. Others have argued against

the application of neural networks in housing price prediction. Worzala et al. (1995)

investigated the extent to which ANNs could be used as a tool for automatic real estate

appraisals. Due to inconsistent predictions between software packages and model runs,

the authors deemed ANNs to be unsuitable as an automatic appraisal tool. Lenk et al.

(1997) concluded that there were significant estimation error costs associated with ANNs,

and that such models did not consistently outperform standard multiple regression models

across different data sets and accuracy metrics.

Despite this, there seems to be growing consensus within the literature that non-linear

machine learning techniques and neural networks are able to consistently outperform

standard linear regression models. Limsombunchai (2004) compared an ANN to a hedonic

price model and found that even with a small sample size of 200 dwellings, the ANN

was able to outperform a standard hedonic regression model. Park and Bae (2015)

utilized several machine learning algorithms such as Repeated Incremental Pruning to

Produce Error Reduction (RIPPER), Adaptive Boosting (AdaBoost) and Naïve Bayesian

to predict housing prices in Virginia, and found that the RIPPER algorithm consistently

outperformed the other models. Using time series data for the period 2004-2016 for major

Chinese cities, Chen et al. (2017) found that a Long Short-Term Memory (LSTM) Neural

Network outperformed an Autoregressive Integrated Moving Average (ARIMA) model.

In more recent years, Stacked Regression models2 have become increasingly popular in

the literature as well as in machine learning competitions (Kaggle, 2020a). Through

extensive feature engineering and hyperparameter tuning, Lu et al. (2017) were able to

predict housing prices with remarkable accuracy by stacking Lasso and XGBoost regression

models. Truong et al. (2020) compared the performance of a Stacked Generalization

regression model against popular machine learning techniques such as Random Forests

(RF), XGBoost and LightGBM, and found that the Stacked model outperformed any

individual model at the expense of a higher time complexity. Birkeland and D’Silva (2018)
2Models that combine several base learners (i.e. individual models).
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used a Stacked Generalization approach consisting of four ensemble methods and a repeat

sales index method to develop an AVM for the residential real estate market in Oslo.

They found that the performance of the Stacked model was comparable to price estimates

by local real estate agents, with a median absolute percentage error of 5.4%.

2.2 Machine Learning Fundamentals

Machine learning refers to the process of using statistical tools to learn from and understand

data (James et al., 2013). These tools are usually divided into two main categories, namely

supervised and unsupervised (James et al., 2013). The former refers to the process of

building a statistical model to predict or estimate a predefined output variable based on

one or more input variables (predictors). By feeding these statistical models data they are

able to recognize and learn from complex patterns and relationships in the data, which

are then used to make predictions (James et al., 2013).

In unsupervised learning there is no predefined output (James et al., 2013). Consequently,

the goal is not to predict a predefined output based on the available variables, but rather

to explore the data in order to identify relationships and structures in the data (James

et al., 2013). The models employed in this thesis fall into the category of supervised

learning, as we are predicting a predefined output (i.e. housing prices) based on a set of

predictors.

2.2.1 Prediction Versus Inference

In general, the goal of any supervised learning process is to predict a quantitative or

qualitative variable y based on a set of p predictors x1, x2, ..., xp. Moreover, we assume

that there exists a relationship between y and xp. In the most simple case, this relationship

can be expressed as

y = f(xp) + ε (2.1)

Where f is an unknown but fixed function of x1, ..., xp, and ε is an error term that captures

all variables that are associated with y but are not included in the model. In statistics, we

assume that the error term is independent of xp and has a mean of zero. In other words,



2.2 Machine Learning Fundamentals 7

f is an (unknown) function that maps the relationship between the response variable3

and the predictors. Since the function is unknown, we must estimate this function based

on the observed data points. In statistical analysis, there are two main areas of interest

when it comes to estimating the function f , namely inference and prediction.

Machine learning is mainly interested in prediction. More specifically, it is interested in

identifying the set of predictors that yield the most accurate predictions for the output y,

and less concerned about the nature of the relationship. In other words, it is irrelevant

whether there is a causal relationship between a predictor xp and the response variable y,

as long as the the predictive power of the predictor is high and consistent. Consequently,

it is not necessary to make assumptions about the data and the exact form of f . Since the

error term is zero on average, we can predict y based on the set of predictors such that

ŷ = f̂(x) (2.2)

Where f̂ is the estimated function f and ŷ is the predicted values for y. In machine

learning, the goal is typically to estimate a function f̂ that minimizes the prediction

error.4

2.2.2 Data Partitioning

When implementing machine learning models for prediction purposes, proper data

partitioning is crucial in order to be able to objectively evaluate the models’ performance

and to avoid data leakage. In data rich situations Hastie et al. (2009) recommends splitting

the data randomly into three groups: a training set, a validation set and a test set. The

training set, as the name suggests, is used to train and fit the models. The validation set

is used to obtain the optimal hyperparameter values and assist in model selection, and

the test set is used to evaluate the out-of-sample performance of the final model.

There are no clear rules regarding the respective size of the different groups, as this largely

depends on the availability and the signal-to-noise ratio5 of the data (Hastie et al., 2009).

However, the training set typically constitutes the largest fraction of the data, as machine

3Also referred to as independent variable or output variable.
4The difference between the actual and predicted values.
5The amount of relevant data relative to the amount of random irrelevant data.
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learning models need to be trained on large amounts of data in order to be effective

(James et al., 2013). The actual split between training and test data will be subject to

the bias-variance trade-off, which we discuss in detail in Section 2.2.4. A larger training

set will lead to lower bias and higher variance, and vice versa. A large training set will

also increase computation time during training relative to a smaller one. Hence, the split

chosen is a trade-off between bias, variance and computation time. In this thesis, we use a

random sample of 70% of the data as the training set, whereas the test set constitutes the

remaining 30%. We find that this split provides a good balance between bias, variance

and computing time.

2.2.3 Overfitting

Overfitting refers to a situation in which a statistical model follows the noise6 or errors

too closely, instead of following the signal7 in the data (James et al., 2013; Mullainathan

and Spiess, 2017). If a machine learning model demonstrates very good performance on

the training data (low training error) but performs poorly when tested on new data (high

test error), this is usually an indication that the model is overfitting. This is unfortunate

because it means that the model conforms too much to the training data and is unable to

generalize feature relationships to new data.

2.2.4 Bias-Variance Trade-Off

In machine learning, the relationship between model complexity, training and test error is

the result of the two competing properties bias and variance (James et al., 2013). Bias

refers to the error that is introduced when trying to use a simple model to solve a complex

real-world problem (James et al., 2013). In other words, it is the inability of a machine

learning model to capture the true relationship in the data. For instance, if we are trying

to use linear regression to estimate a non-linear relationship, the model will have high

bias. This is because a straight line can never be flexible enough to capture a non-linear

relationship. Variance refers to the amount by which the function f̂ would change if it

was estimated using a different set of observations (James et al., 2013). As such, variance

is the difference in fit between data sets. When a model is overfitting, for example, it has

6Random, irrelevant information in the data.
7Relevant, meaningful information that the model is trying to detect.
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high variance, as the prediction error is vastly different for the training and test set.

The idea of the bias-variance trade-off is that we can reduce the training error of any

machine learning model by increasing the complexity of the model, but we cannot reduce

the test error (James et al., 2013). The training error is reduced because a higher

complexity enables the model to follow the data more closely. The test error, on the other

hand, is the sum of the variance and squared bias of the estimated function f̂(x), plus the

variance of the error term ε (James et al., 2013). Thus, to minimize the test error, we

need to select the model with lowest possible bias and variance. In general, more complex

models have higher variance (James et al., 2013). This is because a complex model is able

to follow the specific data it was fit on more closely. However, because a complex model

follows the data more closely, it is also more likely to represent the true relationship in

the training data, resulting in lower bias. Hence, selecting a model with relatively lower

bias can only be achieved at the expense of higher variance.

This trade-off is illustrated in Figure 2.2.4, which shows the relationship between model

complexity, bias and variance. The plot shows that after a certain point we cannot achieve

a lower test error by increasing model complexity. Instead, the test error will follow a

U-shape because of the bias-variance trade-off.
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Figure 2.1: Visual illustration of the bias-variance trade-off

This figure shows the behaviour of the training and test error as the model complexity
increases. The blue curves illustrate the training error and the red curves illustrate the
test error. As complexity increases, both the training error and test error initially decrease.
The test error initially decreases because the bias decreases at a higher rate than the
variance increases to begin with. After a certain point, increasing complexity has little
impact on the bias, but a large effect on the variance. Consequently, the test error starts
to increase beyond this point. The figure is reprinted from Hastie et al. (2009) with
permission from the authors.

2.2.5 Resampling Methods

Often there is not enough data to follow the recommendation by Hastie et al. (2009)

to split the data three ways. In such cases, we can utilize clever resampling methods

that replicate the validation set by efficient re-use of the training data. The most widely

used resampling methods are Validation Set, K-Fold Cross-Validation and Leave-One-Out

Cross-Validation.

The validation set approach is the most basic approach of the three, and involves splitting

the data randomly into a training set and a test set. The training set typically accounts

for 50-80 % of the data, whereas the remaining observations make up the test set (James

et al., 2013). As before, the training set is used to fit the models and the test set is used

to validate the predictions of the final model.
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The rationale behind k-Fold Cross-Validation (k-fold CV) is to split the training data

into k groups, or folds, of roughly the same size. The first k fold is held out and used

as a validation set for the predictions, whereas the remaining k − 1 folds are used to fit

the model (James et al., 2013). The prediction error8 is computed using the observations

in the hold-out fold. The procedure is then repeated k times; each time, a new fold is

treated as the hold-out fold and a corresponding prediction error is computed.

Instead of arbitrarily splitting the data into k parts, Leave-One-Out Cross-Validation

(LOOCV) only uses a single data point (xi, yi) for the validation set, and the remaining

N − 1 observations constitute the training set and are used to fit the model (James et al.,

2013). LOOCV is a special case of k-fold CV in which k = n. The single data point

i is then used to predict the response. This procedure is repeated N times, until all

observations have been excluded exactly once (James et al., 2013).

In this thesis we opt for k-fold CV in the model selection stage where this is possible to

implement. For models where this is not feasible9, we use the validation set approach.

These methods are preferred because they have a major computational advantage over

LOOCV as long as k < n and the training split used for the validation set accounts for

less than N−1
N

of the data (James et al., 2013). Additionally, given the appropriate value

for k and training split, both methods are found to provide a good balance between bias

and variance.

Regarding k-fold CV, there is no optimal value for the number of folds k. A higher

value will be more computationally expensive than a lower value (James et al., 2013).

Apart from the computational aspect, the number of folds to use is also subject to the

bias-variance trade-off. In general, a large value for k will on average yield a less biased

estimate of the validation error, but the estimates will in turn have higher variance (James

et al., 2013), and vice versa. We set k = 5 for our analyses as we find this to provide a

good balance between computing time, bias and variance.

8Error metric, for example RMSE.
9The Deep Feedforward Neural Network. In our case due to R package limitations.
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2.3 Models

Machine learning encompasses a wide range of algorithms with different characteristics.

In this thesis we implement a selection of four models in addition to the benchmark linear

regression model: Random Forest, XGBoost, Deep Feedforward Neural Network, and

Stacked Regression. They are among the best-performing and most widely used machine

learning algorithms employed in industry, research and competitions.

2.3.1 Linear Regression

In this thesis we use Linear Regression as the benchmark model for both phases. For

Phase 1, this corresponds to replicating SSB’s AVM model. In the most simple case

linear regression involves predicting a quantitative response variable Y based on a single

predictor X. However, this can easily be extended to cases with multiple predictors, where

it is referred to as multiple regression. The fundamental idea of multiple regression is to

fit a hyperplane through the data points by assuming a linear relationship between the

response variable and the predictors (James et al., 2013). If we have a set of p predictors,

the relationship between the response and the predictors can be expressed as:

Y = β0 + β1X1 + β2X2 + ...+ βpXp + ε (2.3)

Where Y is the response variable that we want to predict, Xj is the jth predictor, βj

is the regression coefficient for a given predictor and ε is the error term that captures

all factors that are associated with the response but not included in the model. The

regression coefficients are not known in advance and therefore have to be estimated. The

procedure used to estimate the coefficients is known as Ordinary Least Squares (OLS).

In short, OLS chooses the coefficients such that the sum of squared residuals10 (RSS) is

minimized, as shown in Equation 2.4.

RSS =
n∑

i=1

(yi − β0 −
p∑

j=1

βjxij)
2 (2.4)

10Sum of the squared difference between the observed value of the response and the predicted values.
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2.3.2 Random Forest

The Random Forest algorithm is a machine learning method that can be used for both

regression and classification problems. The model is versatile and widely recognized for

its robustness and performance, and is a popular choice in Kaggle competitions (Chollet

and Allaire, 2017; Kaggle, 2012).

Random Forest regression models are based on regression trees. Essentially, a regression

tree is an algorithm that splits the predictor space into a number of non-overlapping

regions R1, R2, ..., RJ according to a set of splitting rules, and makes predictions based on

which region a particular observation belongs to (James et al., 2013). Each rule takes the

form of a logical query that checks whether the value of the splitting predictor variable is

higher or lower than the chosen split point, and subsequently assigns the observation to

one of two predictor space regions.

A Recursive Binary Splitting approach is used to select the predictor variable and split

point at each node. This approach starts with all observations belonging to the same

region and successively splits the predictor space at each step using the predictor and

split point that maximises the reduction in the loss function at that step (James et al.,

2013). We can visualize these splitting rules as trees, where each split point is associated

with a node that branches off into two non-overlapping predictor spaces. The depth of the

tree decides how many sequential splitting rules a decision tree has before an observation

reaches a leaf node representing one of the final RJ regions. The final predicted values for

each observation assigned to a region Rj corresponds to the mean of the response variable

of the training observations in that region. Figure 2.2 shows a simple illustration of a

hypothetical regression tree for our problem.
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Figure 2.2: Visual illustration of a Regression Tree

A problem with independent regression trees is that they often exhibit high variance

(James et al., 2013). The Random Forest algorithm is therefore based on the bootstrap

aggregated (bagged) decision tree approach, which involves building a large number of

parallel decision trees on bootstrapped training samples and then averaging their outputs

(James et al., 2013). This bagging procedure reduces the variance in the overall model.

Although each tree will have high variance, the bootstrap method allows us to build many

trees that, taken together, have low variance. In contrast to regular bagged trees, Random

Forest only considers a limited number of predictors at each split. Each time a split is

considered a random sample of m predictors is chosen as candidates. As in a regular

regression tree, the predictor that contributes the most to reducing the loss function is

chosen as the split predictor at that node. The rationale behind the random selection

of predictors is to prevent the trees from choosing the same strong predictor in the top

split, which would lead to very similar trees with highly correlated predictions and thus a

model with high variance.

Using notation from the randomForest R package (Breiman et al., 2018), the algorithm’s

two hyperparameters are the number of trees to grow (ntrees) and the number of predictors

to consider at each split (mtry). mtry is the only hyperparameter that needs tuning,

since the Strong Law of Large Numbers prevents the model from overfitting due to too

many trees (Breiman, 2001). It is therefore sufficient to set a large enough number of

trees to ensure convergence, and only tune for mtry (Breiman, 2001; James et al., 2013).
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The mtry parameter has a minimum value of one and a maximum value equal to the

number of predictor variables, p. To ensure that the model is aligned with the principles

of the algorithm, it should never equal p, as a Random Forest with mtry = p constitutes

standard bagging. According to Breiman et al. (2018), the suggested value for mtry in

regression problems is p/3. However, tuning the parameter model can yield performance

gains.

2.3.3 Extreme Gradient Boosting

Extreme Gradient Boosting (XGBoost) is another approach that has gained much

recognition and success in research and competitions (Kaggle, 2020b). XGBoost was

developed by Chen and Guestrin (2016), and is largely based on the Gradient Tree

Boosting algorithm by Friedman (2001, 1999). Like Random Forest, Gradient Boosting is

based on ensembling the outputs of many weak base learners to collectively construct a

strong prediction model. In our case these base learners are regression trees. However,

in contrast to the parallel development of regression trees in Random Forests, Gradient

Boosting applies an additive approach where trees are sequentially fitted, using information

from the previously fitted models to "boost" the current model’s performance. More

specifically, each successive tree is fitted to the residuals of the previous iteration of the

current model, these residuals being the gradient of the loss function being minimized

at each particular step (Hastie et al., 2009; Friedman et al., 2000). In this manner, each

iteration, or additional tree, picks up variance that has not yet been captured by previous

trees. This incrementally improves the overall model in areas where it does not perform

well (James et al., 2013).

The XGBoost algorithm is an advanced implementation of the Gradient Boosting

algorithm. While based on the same algorithm, XGBoost introduces several enhancements

and improvements, including advanced tree construction algorithms and the ability to

perform column subsampling (Chen and Guestrin, 2016). Inspired by the traditional row

subsampling employed in Gradient Boosting, column subsampling introduces randomness

to the learning procedure in an attempt to combat overfitting and reduce computational

requirements. Another key difference between XGBoost and traditional Gradient Boosting

is that the former uses a more regularized model formulation to prevent overfitting, which

has been shown to yield significant performance gains (Chen and Guestrin, 2016). In
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terms of speed, it is also substantially faster than regular Gradient Boosting, as it allows

for parallel processing.

Mathematically, the model tries to minimize the regularized objective shown in Equation

2.5 using gradient boosting (Chen and Guestrin, 2016).

L(φ) =
∑
i

l(ŷi, yi) +
∑
k

Ω(fk)

where Ω(f) = γT +
1

2
λ ‖ w ‖2

(2.5)

In this setting, l(ŷi, yi) is the loss function measuring the difference between predicted

values and the actual values, while Ω(fk) is a term to penalize complexity. Each fk

represents a tree with structure q, T leaves (end nodes), and w leaf weights. γ and λ are

regularization terms to reduce complexity. This setup reflects the bias-variance tradeoff

and aims to ensure that the final model balances a solution that has both low variance

and low bias (Chen, 2014).

We use notation from the R library XGBoost (Chen et al., 2020) to describe the algorithm’s

hyperparameters. A summary of the hyperparameters used in this thesis can be seen in

Table 2.1.

Table 2.1: Main Hyperparameters in XGBoost

Parameter Range Description

eta [0, 1] Learning rate
gamma [0, ∞] Minimum loss reduction required at leaf nodes
max_depth [0, ∞] Maximum depth of a tree
min_child_weight [0, ∞] Minimum sum of instance weight in child
num_round [0, ∞] Number of trees
early_stopping_rounds [0, ∞] Early stopping parameter
subsample [0, 1] Ratio of training set sampled for each tree
colsample_bytree [0, 1] Ratio of columns sampled for each tree

eta is the model’s learning rate, which functions as a factor that scales each additional

tree’s weights as it is added to the current model. In effect, it reduces each individual

tree’s influence, leaving room for improvement by growing additional trees. It thereby

acts to reduce overfitting (Chen and Guestrin, 2016). Typical values are 0.01 or 0.001

(Hastie et al., 2009), reflecting the findings by Friedman (2001) that smaller values in the
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learning rate improve the overall results. A smaller learning rate will on the other hand

require a larger number of trees to be grown, since each individual tree will have less of

an impact on the overall model.

num_round sets the total number of trees to grow, which must be large enough to ensure

strong predictions but low enough to avoid overfitting. An appropriate value can be found

through cross-validation.

max_depth, gamma, and min_child_weight relate to the structure of each tree. gamma

sets the minimum loss reduction required to make a split at any given node on a tree.

Larger values make the model more conservative and reduce complexity. Similarly,

min_child_weight sets a criteria for the minimum sum of instance weight needed in a child

node for splitting to continue. Larger values increase conservatism and reduce complexity

(DML, 2020). max_depth sets the maximum depth of each tree, meaning the maximum

number of splits possible. This also serves as a control for the interaction order of the

model, since it sets how many variables can be involved in splits in each tree.

The final two parameters are regularization parameters intended to prevent overfitting.

subsample sets the ratio of the training set to be sampled for each tree, while

colsample_bytree sets the ratio of columns to be sampled for each tree (DML, 2020).

2.3.4 Deep Feedforward Neural Network

Deep Feedforward Neural Networks (DFNN) are a type of ANN, which constitutes a class

of supervised learning techniques that have proved themselves excellent at prediction

in classification and regression problems. These techniques currently dominate Kaggle

competitions alongside boosted models and ensemble methods such as XGBoost and

Stacked Regressions (Chollet and Allaire, 2017; Kaggle, 2020c).

DFNNs are organized in a layer-based manner, consisting of an input layer, two or more

hidden layers, and an output layer (Goodfellow et al., 2016). These layers are arranged

in a chain structure, so that each layer is a function of the preceding layer. Data is fed

forward from the input layer to the hidden layers where it is transformed, and finally to

the output layer to produce the final predictions. Figure 2.3 shows a diagram of a classic

Feedforward Neural Network11 (FNN) with one hidden layer.
11A DFNN is a FNN with more than one hidden layer.
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Figure 2.3: Visual Illustration of a Single-layer FNN

This figure shows a diagram of a classic FNN with one hidden layer.
X1, X2, X3, ..., XP−1, XP are the input features corresponding to the input layer.
Z1, Z2, Z3, ..., ZM are the hidden units corresponding to the hidden layer. Y1, Y2, ..., YK
are the output units corresponding to the output layer. For regression problems such as
ours there is only one output unit, corresponding to the predicted value. Reprinted from
Hastie et al. (2009) with permission from the authors.

Each layer consists of multiple units, also known as neurons. The units in the input

layer correspond to the features (variables) in the data set. Each unit in the hidden

layers, known as hidden units, represent linear combinations of its inputs. The connections

between units are known as weights and represent the parameters that can be adjusted in

order to increase or reduce the importance of a particular unit’s output. In this thesis we

use dense layers, meaning that each hidden unit in a layer is connected to all the units in

the preceding and ensuing layers. A mathematical representation of the model can be

seen in Equation 2.6 (Hastie et al., 2009).

Zm = σ(α0m + αT
mX), m = 1, ....,M,

Tk = β0k + βT
k Z, k = 1, ..., K,

fk(X) = gk(T ), k = 1, ..., K

where Z = (Z1, Z2, ..., ZM) and T = (T1, T2, ..., TK)

(2.6)
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Each hidden unit corresponds to a derived feature Zm that is created as a linear combination

of the inputs. The target, Ŷk, is subsequently modeled as a function fk(X) of linear

combinations of Zm. It is common to add an additional bias unit that feeds in to each

unit in the hidden and output layers. This bias corresponds to α0m and β0k in Equation

2.6. K is the number of units in the output layer, which corresponds to the number of

prediction classes. For regression problems such as ours, we use K = 1, and the output

function gk(T ) = Tk (Hastie et al., 2009).

Each hidden unit Zm’s function parameters are learned from the data without any user

input (Hastie et al., 2009). However, the activation function σ(v) must be set by the

user. In our case we will use the Rectified Linear Unit function (ReLU), which is in line

with recommendations from leading publications (Goodfellow et al., 2016). The ReLU

function takes the form of g(z) = max{0, z} (Goodfellow et al., 2016), such that the

derived feature Zm from Equation 2.6 can be written as ZM = max{0, α0m + αT
mX}.

The learning process in a DFNN consists of adjusting the values of the weights between all

the Zm units of the network so that the model fits the training data well. The complete

set of weights is given by Equation 2.7 (Hastie et al., 2009).

{α0m, αm;m = 1, 2, ...,M}M(p+ 1) weights,

{β0k, βk; k = 1, 2, ..., K} K(M + 1) weights.
(2.7)

Adjusting the weight values is done in a manner that minimizes the loss function defined.

In our case we use Mean Squared Error (MSE), as shown in Equation 2.8.

MSE =
1

n

n∑
i=1

(yi − f̂(xi))
2 (2.8)

The exact method in which the weight values are adjusted is done through backpropagation

in combination with a defined optimizing algorithm. Backpropagation is the process

of feeding the information from the loss function backwards through the network. It

does so by computing the gradient of the loss function with respect to the weights at

each unit by utilizing the chain rule for differentiation (Goodfellow et al., 2016; Hastie

et al., 2009). Through this process, the model identifies the contribution that each

parameter in the model has on the loss function. Using the gradients found through
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backpropagation, the optimizing algorithm employed in the model can subsequently adjust

the value of each weight in the direction that reduces the loss function. This constitutes

the learning procedure of the model. Repeating this process several times enables the

model to incrementally "learn" the relationships between features in the data so that the

loss function is minimized and the prediction accuracy increased.

This thesis will implement the Minibatch Stochastic Gradient Descent (SDG)12, RMSProp

(with momentum) and Adadelta optimizing algorithms, which are among the most common

and successful optimizers employed today (Goodfellow et al., 2016). The SGD algorithm

draws batches of random samples from the training set and uses gradient descent to

incrementally improve the model by adjusting the weights by a step factor (learning rate)

in the opposite direction of the gradient (Chollet and Allaire, 2017). RMSProp is an

extension of SGD which divides the computed gradient with a running average of its recent

magnitude and employs an adaptive learning rate in order to allow it to converge faster

to an optimal solution (Tieleman and Hinton, 2012; Goodfellow et al., 2016). Adadelta is

an extension of SGD which employs an adaptive learning rate and reduces the need for

manual tuning (Zeiler, 2012; Keras, 2020a).

Finally, in addition to the common data processing described in Chapter 3, the DFNN

requires further pre-processing in the form of scaling the inputs in order to function

optimally (Hastie et al., 2009). Before tuning and fitting the DFNN model we therefore

center and scale the inputs by subtracting the mean from the predictor values and then

dividing them by their standard deviation.

2.3.4.1 Hyperparameters and Tuning

The DFNN is perhaps the most complex model implemented in this paper solely due to

the sheer number of hyperparameters that must be chosen. In the following section we

will briefly describe the hyperparameters set in this thesis, some of whose final values will

be tuned for and others whose final values will be preset based on existing literature. A

full overview of the hyperparameters can be seen in Table 2.2.

12With and without momentum.
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Table 2.2: DFNN Hyperparameters

Hyperparameter Description

Architecture

Number of layers Number of hidden layers in model
Number of hidden units Number of hidden units in each hidden layer
Activation function Activation function in hidden units
Bias Whether to include bias units or not
Weight initializer Process employed to set the initial values of the model’s weights
Bias initializer Process employed to set the initial values of the model’s bias weights

Learning

Batch size Number of samples to draw from training data at each iteration
Epochs Number of times the model is exposed to the whole training data set
Optimizer Optimizing algorithm employed to adjust weights and improve loss
LR* Step size controlling the size of weight updates at each iteration
LR annealing patience** Number of epochs with no loss improvement before learning rate is reduced
LR annealing factor** Factor by which learning rate is reduced once annealing patience has been reached
Momentum** Velocity parameter that changes step size (learning)

Regularization

Dropout Rate of weigths to be dropped at each layer in each epoch
L2 regularization Weight decay regularization
Early stopping patience Number of epochs with no loss improvement before model training stops

*Learning Rate. **Only applicable for SGD optimizer. RMSProp and Adadelta use adaptive learning
rates and built-in adaptive momentum.

The number of layers sets how many hidden layers the model should include. According

to the universal approximation theorem, any Feedforward Network with a single layer

is in theory sufficient to represent any function (Goodfellow et al., 2016). However, the

single layer required to do so may be indefensibly large and may fail to learn or generalize

properly. A deeper network usually requires fewer units per layer and can generalize

quite well, but is harder to optimize. In this thesis we will implement a DFNN with two

hidden layers, while the number of hidden units for each layer will be found through

tuning. The activation function in these hidden units is the ReLU activation function

discussed earlier. We also retain bias units in the model. It is common to initialize biases

heuristically. We try two different values: 0 and 0.1. The first is compatible with most

weight initialization schemes. The second helps us avoid causing too much saturation in

the ReLU units, because it increases the likelihood that the initial input to the ReLU

units will be positive, thus making it active (having non-zero derivatives) at initialization

for most inputs (Goodfellow et al., 2016). We will tune for the final value of the two.

Since the model learns by updating weights according to their gradient loss, a set of initial

weights must be set. Due to the structure of the model, setting initial weight values
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to zero inhibits the algorithm. This is because the initial weights will then have zero

derivatives and the algorithm will not be able to update the weights according to their

gradient - thus failing at start (Hastie et al., 2009). Setting larger values often gives

poor results. Preferably, the weights should be initialized randomly so that they avoid

symmetry between units. We implement the widely adopted Glorot Uniform initialization

of the weights, which draws values for the weights from a uniform distribution with limits

[−
√

6/(m+ n),
√

6/(m+ n)], where m is the number of inputs to the layer and n is the

number of outputs (Glorot and Bengio, 2010; Goodfellow et al., 2016).

The number of epochs signify the number of times the model iterates over the whole

training set. Too many epochs causes the model to overfit; too few and it underfits.

To select the optimal number we set the number of epochs to a high value, but avoid

overfitting by implementing early stopping after 20 epochs of no improvement in the loss

function. Batch size regulates the number of samples drawn during each training iteration

within an epoch. Small batches lead to a better fit, larger batches to better generalization.

This hyperparameter will be set through tuning.

The optimizing algorithm will be set through hyperparameter tuning as described earlier,

but the three algorithms are treated differently with regards to learning rates and

momentum. In the DFNN, the learning rate controls the increment at which the model

learns at each iteration and should usually be set to a low initial value. SGD implements

a fixed learning rate by default which must be manually reduced. For models using SGD

we therefore tune for the initial learning rate and for the factor by which it should be

reduced (annealed). We set a fixed learning rate annealing patience of five epochs. We

also tune for momentum in the SGD algorithm manually. RMSProp and Adedelta both

have adaptive learning rates that vary over time. We tune for the initial learning rate

in RMSProp, but otherwise we leave the optimizer hyperparameters at default values in

accordance with recommendations (Keras, 2020a,b).

As mentioned before, a major problem in fitting neural networks is the risk of overfitting

during training. To avoid this, we implement two main regularization parameters: dropout

(in each layer) and L2 regularization13. Dropout approaches regularization by simply

setting a fraction of the input units in a layer to zero, effectively removing them from the

13In addition to early stopping.
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network (Goodfellow et al., 2016). The fraction of units to be randomly set to zero depends

on the dropout rate, which we will tune to find the optimal value. L2 regularization, or

weight decay, is analogous to the regularization performed by Ridge regression14, in which

a penalty term λ is introduced to the error function (Hastie et al., 2009). Larger values

for λ penalizes the weights by shrinking them towards zero.

2.3.5 Stacked Regression

The last model we consider is a Stacked Regression approach based on the SuperLearner

algorithm by Van der Laan et al. (2007). Stacking was first introduced by Wolpert (1992),

who coined the term Stacked Generalization. The concept was later later formalized by

Breiman (1996). The fundamental idea of Stacking is to leverage the strengths of several

base learners to achieve more accurate predictions (Hastie et al., 2009; Boehmke and

Greenwell, 2019). Unlike ensemble methods that combine several weak learners, Stacked

methods are designed to combine several strong learners to form optimal predictions

(Boehmke and Greenwell, 2019). Stacked models have become increasingly popular in

recent years, as they have shown strong performance in machine learning competitions

(Kaggle, 2020a).

The SuperLearner algorithm consists of three main steps (Boehmke and Greenwell, 2019).

First the ensemble is constructed by specifying a list of L base learners and selecting a

metalearning algorithm15 (Boehmke and Greenwell, 2019). To avoid selecting and tuning

additional models, we use the models previously described in this chapter as our base

learners. The metalearner can be any machine learning algorithm, but a regularized

regression model is most commonly used (Boehmke and Greenwell, 2019). In this thesis,

we use a regularized linear regression model as the metalearner. A regularized model is

chosen to mitigate problems related to overfitting and highly correlated base learners.

The linear metalearner has two regularization parameters: α and λ. The regularization

parameters are closely related to the penalty terms from the Lasso and Ridge regression

models, often referred to as L1 and L2, respectively. Although an in-depth description of

these models are outside the scope of this section, a discussion about the regularization

parameters in the context of Stacking is warranted. In short, α dictates the distribution

14See Section 2.3.5 on Stacked Regression for in-depth explanation of Ridge regularization.
15The algorithm that is used to train the base learners. Hereafter referred to as metalearner.
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between the penalty terms of the Lasso and Ridge regression models. Both models are

very similar to OLS regression in the sense that the coefficients are estimated such that

RSS is minimized. In addition to minimizing RSS, they also include a penalty term λ

that performs regularization (James et al., 2013).

Ridge performs regularization by shrinking the coefficients of highly correlated predictors

towards zero when λ increases (James et al., 2013), but never sets any of them to zero.

Lasso works in a similar fashion, except that it has the power to set coefficients to zero for

highly correlated predictors if the penalty term is sufficiently large (James et al., 2013).

In the metalearner a high α means that regularization will be performed by means of

Lasso, and a low α means that Ridge regularization will be performed. In the context

of Stacking, this means that a value for α close to 0 will shrink the weights of highly

correlated base learners towards zero, whereas a value closer to 1 means that highly

correlated base learners can be excluded from the final ensemble if λ is sufficiently large.

As such, λ controls the degree to which regularization should be performed.

In the second step the ensemble is trained. This involves using k-fold CV to train each of

the base learners and collect their respective cross-validated predictions (Boehmke and

Greenwell, 2019). The N cross-validated predictions from each model is then combined

in a N × L feature matrix, as represented by matrix Z in Equation 2.9 (Boehmke and

Greenwell, 2019). The feature matrix along with the original response vector y make up

the level-one data

n

{[
p1

]
...

[
pL

][
y

]
→ n

{ L︷ ︸︸ ︷[
Z

][
y

]
(2.9)

where p1, ..., pL is the cross-validated predictions obtained from each of the algorithms and

n is the number of rows in the training set. The metalearning algorithm is then trained

on the level-one data, as shown in Equation 2.9, which contains the individual predictions

(Boehmke and Greenwell, 2019). The optimal weights for the base learners in the final

model is obtained through cross-validation. In the third and final step the ensemble

generates out-of-sample predictions. This is achieved by first generating predictions from

the base learners, which are subsequently fed into the metalearner to generate the final
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ensemble predictions (Boehmke and Greenwell, 2019).
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3 Data

In this Chapter we describe the data cleaning process and present descriptive statistics of

the final data used in the two phases of our analysis. In Phase 1 we replicate the data

cleaning process implemented by SSB and construct a data set using the same variables

as SSB. This is done to ensure a reliable comparison in the first part of the analysis.

In Phase 2 we leverage additional property-specific and macroeconomic variables in an

attempt to optimize the data for predictive modeling. This includes extensive feature

engineering and advanced outlier detection.

The housing data used in this thesis is obtained from Eiendomsverdi and contains second-

hand residential property transactions from the period January 2005 to September 2020

for five Oslo boroughs. The data covers approximately 121,000 unique transactions

across 43 variables, including sales price, sales date and whether the transaction was

a market sale. Moreover, the data contains variables that indicate the specific type of

housing, such as estate type, estate sub-type and ownership type. The data also includes

technical specifications and amenities. Technical specifications include variables such as

square meters of primary area, gross total area, site area and build year. Examples of

amenities include the number of bedrooms and whether the specific property has a balcony

or an elevator. As for geographical variables, we have information about city district,

coordinates, distance to coast, altitude and sunlight conditions.

3.1 Phase 1: SSB Replication

3.1.1 Data Replication and Descriptive Statistics

The data used by SSB is obtained from Finn.no, and contains second-hand residential

property transactions for the period 2010-2019 for all regions in Norway16 (Takle and

Melby, 2020). Based on this data, SSB develops an AVM for each housing type in each

region (such as Oslo). Each regional AVM estimates the market value17 of properties in

that region. This means that even though we only have data for Oslo, we can still ensure

a reliable comparison. Moreover, since Finn.no get their data from Eiendom Norge, which

16Cities, municipalities and counties.
17Price per square meter of primary area.
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in turn get their data from Eiendomsverdi, we have access to the exact same data as SSB.

However, our data only covers transactions for 5 of the 15 boroughs in Oslo, whereas SSB

uses data for all boroughs. This prevents us from perfectly replicating SSB’s model for all

of Oslo and represents a limitation of the analysis. Regardless, since the SSB benchmark

model used in this thesis is trained on the same data as our machine learning models we

can still compare their relative performances.

To ensure a fair comparison, we start by replicating the filtering process proposed by

SSB (Takle and Melby, 2020). First, all missing values are removed from the data18.

This is done to ensure that we only use data for which all features are known for all

transactions. Furthermore, we restrict our sample to transactions in the period 2010-2019.

Thereafter, we remove all transactions where the sales price is below 350,000 NOK. We

also remove transactions where the price per square meter is below 10,000 NOK, which is

the lower limit for dwellings located in cities (Takle and Melby, 2020). Moreover, SSB has

established certain criteria for each housing type in terms of area and price per square

meter. Table 3.1 shows a summary of these criteria.

Table 3.1: SSB’s housing criteria

Retrived from Takle and Melby (2020).

Area (m2) Price per square meter (NOK)

Detached houses 50-550 5,000-150,000
Semi-detached houses 40-350 5,000-150,000
Apartments 12-350 8,000*-200,000

*The lower limit is 10,000 NOK for apartments located in cities.

Since 97.12% of the properties in our data are apartments, and our coverage of the

remaining types of housing from the SSB data is minimal19, we restrict our sample to only

consider apartments. It is important to note that this does not prevent a fair comparison

between the models, as SSB estimates individual models for each housing type and region

(Takle and Melby, 2020). Hence, we can still use the model developed for apartments as a

benchmark. Finally, we filter out observations that do not satisfy the apartment criteria

in Table 3.1. The final sample consists of 79,899 unique transactions, whereas SSB uses

18495 missing data points are removed.
19The three remaining estate types constitutes 3,396 observations.
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162,225 observations. The difference in sample size can be attributed to the difference in

data coverage for the different boroughs in Oslo. We excluded a total of 135 transactions

from the sample of apartments as a result of the filters, which corresponds to 0.2% of the

data.

SSB uses three main variables to estimate the price per square meter of an apartment:

the natural logarithm of primary area, price zone20 and age of the property at the time

of sale, which is divided into four age intervals (Takle and Melby, 2020). Additionally,

the two dummy variables urbanization and year are included to control for population

effects21 and inflation (Takle and Melby, 2020), respectively. The population dummy is

divided into six intervals depending on the population of a region. Since we only use

data for Oslo, which is an urban area with a total population above the highest interval

of the dummy variable22, we do not need to include this variable in our models, as all

transactions would assume a value of 1.

Table 3.2 shows descriptive statistics for the variables used in the first phase of our analysis.

Note that we report all variables on their original scale in the interest of interpretability.

Log-transformations for the variables specified by SSB23 will be carried out before fitting

the models in Chapter 5. The table shows that the average apartment has a primary area

of 63 square meters and is valued at approximately 62,000 NOK per square meter. The

minimum and maximum values reveal that there are large variations inherent in both price

and primary area of apartments. The price per square meter, for instance, varies between

10,000 NOK and 194,940 NOK, suggesting that it is highly skewed. Primary area exhibits

similar properties. Furthermore, the table illustrates that the vast majority of apartments

(77.9%) are older than 34 years at the time of sale. As for location, Grünerløkka appears

to be the area with the most sales (27.6%), closely followed by Sagene and Frogner.

20Borough or city district
21Whether a region is considered an urban area.
22100,000 is the upper limit of this variable.
23Price per square meter and primary area.



3.2 Phase 2: Additional Variables 29

Table 3.2: Descriptive statistics for Phase 1

This table shows descriptive statistics for all variables used in Phase 1 of the analysis.
Mean, Min and Max are the average, minimum and maximum value for each variable,
respectively. Price per square meter is reported on its original scale, but will be log-
transformed before fitting the models, as described in Chapter 5. The data contains
transactions for the period 2010-2019 and covers properties from Grünerløkka, Sagene,
St. Hanshaugen, Ullern and Frogner. The sample is restricted to apartments only. All
missing values have been removed. N = 79,899. The following table is constructed by
combining the final training and test data after pre-processing. The training and test
data remains separated for all other purposes.

Variable Mean Min Max

Price per square meter (NOK) 62,075.710 10,000.000 194,940.500
Primary area (m2) 63.229 12 297
Year 2015 2010 2019
Age < 10 0.105 0 1
Age 10-19 0.060 0 1
Age 20-34 0.056 0 1
Age > 34 0.779 0 1
Grünerløkka 0.276 0 1
Sagene 0.254 0 1
St. Hanshaugen 0.168 0 1
Ullern 0.067 0 1
Frogner 0.235 0 1

3.2 Phase 2: Additional Variables

3.2.1 Data Cleaning and Feature Engineering

In Phase 2 we utilize all available variables from Eiendomsverdi. Additionally, we include

mortgage rates (Bloomberg, 2020), oil price (Eikon, 2020) and inflation rate (Bloomberg,

2020) as complementary macroeconomic variables. Since we have the date for each sales

transaction, the external variables can be matched to either the year or specific date of

a transaction. We use the 3-month Norwegian Interbank Offered Rate (NIBOR) as a

proxy for mortgage rates, as NIBOR is typically used as a reference for mortgage rates in

Norway. The rationale for including NIBOR is that it affects demand for housing. Lower

NIBOR rates translate to lower mortgage rates which in turn should increase demand for

housing as loans would become cheaper. Conversely, a high NIBOR rate results in higher

mortgage rates, which should decrease demand for housing.
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For the oil price, we obtain daily spot prices in USD for Norwegian Brent Spot. The idea

behind including oil prices is that the petroleum industry is Norway’s largest industry as a

percentage of GDP. Because of this, oil prices are often used as a proxy for the condition of

the Norwegian economy. While the effect of the oil price may not be consistent throughout

the data period, we still consider it to be a relevant macroeconomic variable. Lastly,

inflation rates from the period 2005-2020 are included to control for the general increase

in prices during the period. We have obtained the Norwegian Consumer Price Index (CPI)

for the period 2005-2020 as our measure for inflation.

Missing values, encoding and transformation of variables must be addressed in order to

optimize the data for predictive modeling. In machine learning literature, this process is

usually referred to as feature engineering, which involves extracting features24 from raw

data and transforming them into formats that are suitable for machine learning models

(Zheng and Casari, 2018).

Initial analysis of the data reveals that there are over 1 million missing data points25.

As most machine learning algorithms are unable to deal with missing values, this must

be addressed before predictions can be made (Kaiser, 2014). A simple and accepted

solution when dealing with missing data is to remove all missing values (Kantardzic, 2003).

However, doing so would reduce our original data from 121,000 observations (rows) to

a mere 1,800 observations. Simply omitting all missing values would consequently be

unfortunate, as this would drastically reduce the amount of data we can use to train the

models. It would also reduce the quality of the data, as we might end up removing data

that actually contains important patterns and relationships, which may lead to increased

bias (Kaiser, 2014).

To avoid wasting important data and significantly reducing our data set, we instead try to

use the existing set of features to impute missing values. Imputation of missing values is

an accepted and popular technique to deal with missing values (Kantardzic, 2003; Kaiser,

2014; Troyanskaya et al., 2001; Zainuri et al., 2015). As a general rule, we omit features in

which more than 40 percent of the data is missing, while making exceptions for features

that are deemed important (or unimportant). Highly suspect and unreliable transactions

24Numeric representation of an aspect of raw data, i.e variable (Zheng and Casari, 2018).
25A missing data point is defined as any row where the value of one feature (variable) is missing.



3.2 Phase 2: Additional Variables 31

are also removed. This includes transactions below 350,00026 NOK and transactions where

all square meter metrics are zero or missing.

We utilize two main imputation techniques to handle missing values, namely imputation

by default value and imputation by grouped median. Variable descriptions and imputation

methods for all variables can be found in Appendix A1.1. Detailed explanations for the

reasoning behind different imputation methods can also be seen in Appendix A1. For

features that only take one of two values, such as whether a particular housing type has

balcony (yes or no), we simply assume that missing values indicate that the particular

housing type does not have a balcony. Hence, we set a default value of zero27 for such

variables.

For numerical features, we adopt a grouped median approach, as proposed by

Maniruzzaman et al. (2018). The rationale for using grouped median as opposed to

the median value is that the median value of a subgroup is often a more accurate proxy

than the median of all values for a given feature. Median is preferred over mean as

the median is more robust to outliers (Kantardzic, 2003). When using grouped median

(or similar aggregated imputation techniques) to impute missing values, it is extremely

important to split the data into a training and a test set before imputing the values in

order to avoid data leakage. Imputation is therefore done separately for the training and

test set.

Imputation by grouped median is applied to all numeric features with the exceptions of

the different metrics for area28. Since at least one square meter metric is available for all

transactions, we use the different metrics as a proxy for each other, as it is reasonable to

assume that this is a better proxy than the median value of all apartments. In cases where

the value of a feature likely depends on the geographical location of a property, such as for

altitude, distance to coast and coast direction, we use city district as a grouping variable,

with the rationale that these these features are most likely very similar for properties in

the same area. For features that likely depend on the specific type of housing, such as the

number of bedrooms, we use housing type as grouping variable. In cases where grouped

median cannot be computed because all values for a given group are missing, we use the

26The lower limit of property values established by SSB (Takle and Melby, 2020).
27Where 1 represents yes and 0 represents no.
28Primary area, gross area and gross total area.
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median value. Lastly, missing values for categorical variables are imputed using a default

value that we set for each relevant variable.

After missing values have been imputed, we investigate all features and ensure that

they have been encoded in a way that makes it easy for machine learning algorithms to

understand the inputs. Categorical variables are encoded using one-hot encoding (dummy

variables), as recommended by Kuhn and Johnson (2019) and Zheng and Casari (2018).

Some of the categories in our categorical variables appear very infrequently. To handle

this we combine the least frequent categories into a joint category.

Following the encoding process, we construct new features from our existing set of variables.

We use the original BuildYear variable to create a new variable for the age of a property

at the time of the sale. Using SiteArea and SiteAreaUndeveloped, we also create a new

variable to indicate undeveloped site area as a percentage of total site area. This will serve

as a proxy for the potential of a property in terms of investments and expansion, and in

general as a measure of how spacious the property is. To capture seasonal differences

in sales prices, we use the MarketSaleDate variable to make two new date variables that

indicate the month and year of a sale (SalesMonth and SalesYear). Lastly, we use Floor

and FloorNumber to create dummy variables that indicate whether an apartment29 lies

on the ground floor, top floor, or somewhere in between. This is done to enhance the

signaling effect of the floor variables, as the most important aspect is usually not the

actual floor number, but the positioning of the apartment relative to the total number

of floors. Apartments with missing values for these variables are imputed as lying on a

middle floor.

3.2.2 Outliers

Outliers are extreme observations that fall outside the normal range of the data to the

degree that they raise suspicion about the veracity of the observations. While such

observations should not automatically be removed, they do warrant further investigation.

We have been made to understand that, while uncommon, our data set may contain errors

in both the response variable and the predictor variables. The sources of such errors may

include typing errors, recording errors, incomplete data migration, or data corruption. As

29Floor variables are only reported for apartments.
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such, we deem that outliers in our data set should be addressed and potentially removed

in the interest of maximizing prediction accuracy. Identifying the erroneous outliers and

handling them is a challenge that is compounded by the number of observations, the large

number of variables, the lack of an identifiable error pattern and our own lack of industry

experience. This makes it hard to heuristically determine a set of criteria for addressing

outliers in each variable.

In this thesis, we therefore employ Isolation Forest (IF), a model-based anomaly detection

algorithm developed by Liu et al. (2008). This approach is preferred over a heuristic

approach in our situation because it is relatively inexpensive to implement and has been

shown to work well with data that contains a large number of possibly irrelevant features

(Liu et al., 2008). By addressing outliers in a statistical manner, the algorithm allows

us to perform data cleaning in an unbiased manner which has been proven to be robust

(Liu et al., 2008) and has been successfully adopted in machine learning contests (Kaggle,

2018). While the algorithm does not guarantee that only erroneous data is identified,

we still deem it to be less flawed than a heuristic approach given the large number of

variables and our lack of industry expertise. A detailed description of the algorithm can

be found in Appendix A2.

For each row in the training data the algorithm computes an anomaly score, as shown in

Equation .1.

s(x, n) = 2−
E(h(x))

c(n) (3.1)

In this setting, h(x) is the path length of observation x, E(h(x)) is the expected or average

path length of observation x, c(n) is the average path length of unsuccessful search in

a binary search tree and n is the number of external nodes in a tree (Liu et al., 2008).

A score closer to 1 indicates an anomaly, whereas a score closer to 0.5 indicates normal

observations. We train IF using a random sample of 512 observations from the training

data, and apply it on the remaining training set. The algorithm is not employed on the

test set to avoid introducing bias and overestimating our results. To establish a threshold

for removing outliers, we remove all observations with an anomaly score that lie in the

99th percentile (of the anomaly score) or higher. This is done to ensure that we only



34 3.2 Phase 2: Additional Variables

remove the most extreme observations that are most likely to represent true outliers. In

total, 1648 observations are classified as anomalies and consequently removed from the

training data. This corresponds to 1.4% of the data set.

Figure 3.1 illustrates the classification of observations of the response variable. The figure

shows that the three observations with highest price per square meter are not classified as

anomalies. A possible explanation for this is that these observations had predictor values

that were in line with extraordinarily high sales prices. As such, they do not represent

outliers when considering the rest of the feature space.

Figure 3.1: Anomaly plot of the response variable using Isolation Forest

This figure shows anomaly scores of the response variable for each observation in the
training set. Points with light shading (lower half) are classified as normal observations
(True), while darker shaded points are classified as anomalies (False) by the IF algorithm.
Black shading indicates clustering of observations among the outliers.

3.2.3 Descriptive Statistics

As in Phase 1, the vast majority (98.2%) of properties in the Phase 2 data set are

apartments. In the interest of prediction accuracy, we therefore limit the analysis to only

consider apartments in Phase 2 as well, as we do not have a sufficient amount of data

to produce reliable and accurate predictions for other housing types. Upon completing
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feature engineering and data cleaning, we end up with 116,126 observations and 6030

predictor columns in total. Table 3.3 shows descriptive statistics for a subset of the

continuous variables from the final sample, and Table 3.4 shows descriptive statistics for a

subset of the dummy variables. Complete descriptive statistics for all variables can be

found in Appendix A3.1 and A3.2.

Table 3.3 shows that the average apartment in Oslo is a two-bedroom apartment covering

approximately 63 square meters of primary area, that lies 51 meters above sea level and

roughly 2.1 km from the coastline. Moreover, the building is on average 72 years old,

lies in an area with approximately 4,100 units in adjoining squares and has a total site

area of 3,700 square meters. The value of such property is on average 56,500 NOK per

square meter with 121,200 NOK in shared debt. From the table we see that there are

large variations in some of the variables, as evidenced by the large gap between minimum

and maximum values. The average sales price, for instance, is approximately 56,500 NOK

per square meter, but it varies from 1,200 to 226,900 NOK per square meter. This means

that the distribution of the response variable is highly skewed. Large variations are also

found in the different metrics for square meters (primary and gross area) as well as total

and undeveloped site area.

30Includes dummy variables.
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Table 3.3: Descriptive statistics for a subset of the continuous variables used in Phase 2

This table shows descriptive statistics for a subset of the continuous variables. Mean, Min
and Max are the average, minimum and maximum value for each variable, respectively.
Price per square meter is reported on its original scale, but will be log-transformed before
fitting the models as described in Chapter 5. All observations with an anomaly score that
fall in the 99th percentile (of the anomaly score) or above have been removed from the
training set, but not the test set. Missing values for all variables have been imputed using
grouped median, median or default value. Unreliable observations have been removed. The
data contains transactions for apartments in the period 2005-2020 and covers properties
from Frogner, Grünerløkka, St. Hanshaugen, Sagene and Ullern. N = 116,126. Note that
the data was split into a training and test set before missing values and outliers were
handled. The following table is constructed by combining the final training and test data
after pre-processing, and is only used to illustrate the entire data set in this chapter. The
training and test data remain separated for all other purposes.

Variable Mean Min Max

Price per square meter (NOK) 56,535.94 1,209.68 226,851.90
Shared debt in joint ownership (NOK) 121,240.60 0 5,201,000
Primary area (m2) 62.80 10 386
Gross area (m2) 68.08 10 386
Age of building (years) 71.87 0 256
Number of bedrooms 1.69 0 23
Site area (m2) 3,671.85 0.00 61,435.60
Undeveloped site area (m2) 2,741.13 0.20 49,273.60
Altitude (meters) 51.28 0 190
Distance to coast (meters) 2,120.45 5 10,000
Slope of site (degrees) 3.65 0 37
Number of units in adjoining squares 4,146.67 258 6,653
Consumer price index 96.94 81.20 112.90
NIBOR 3-month (%) 2.17 0.23 7.91
Brent Spot (USD) 75.57 19.33 146.08

Table 3.4 shows the distribution of a subset of the dummy variables. We see that the

majority of apartments are block apartments (51.2%), and that a large fraction of the

apartments do not have a specific sub-type (47.8%). Moreover, the majority of apartments

have a balcony (66.8%), and 38.9% of them have an elevator installed. Furthermore,

we see that the vast majority of these apartments are middle-floor apartments (76.8%),

whereas top- and ground-floor apartments only account for 5.9% and 17.3%, respectively.

The data indicate that the areas with highest turnover are Grünerløkka (27.7%), Sagene

(25.7%) and Frogner (23.9%). When it comes to ownership, the two most common forms
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of ownership are condominiums31 (52.2%) and joint housing cooperatives (37%). Finally,

the vast majority of lot sites are owned by the home owners (88.4%), and the remaining

11.6% of sites are leased.

Table 3.4: Descriptive statistics for a subset of the dummy variables used in Phase 2

This table shows descriptive statistics for a subset of the dummy variables. Mean is the
average value for each dummy variable. All observations with an anomaly score that fall in
the 99th percentile (of the anomaly score) or higher have been removed from the training
set, but not the test set. Missing values for all variables have been imputed using a default
value. The data contains transactions for the period 2005-2020 for apartments only and
covers properties from Frogner, Grünerløkka, St. Hanshaugen, Sagene and Ullern. N =
116,126. The data was split into a training and test set before missing values and outliers
were handled. The following table is constructed by combining the final training and test
data after pre-processing, and is only used to illustrate the entire data set in this chapter.
The training and test data remain separated for all other purposes.

Variable Mean

Balcony 0.668
Elevator 0.389
Ground floor 0.173
Middle Floor 0.768
Top floor 0.059
Frogner 0.239
Grünerløkka 0.277
Sagene 0.257
St. Hanshaugen 0.171
Ullern 0.056
Apartment 0.478
Apartment in block 0.512
Other 0.010
Stock apartment 0.108
Housing cooperative 0.370
Cooperative apartment 0.00002
Condominium 0.522
Leasehold site 0.116
Site owner 0.884

31Independent apartment that is owned solely by the owner.
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4 Methodology

In this chapter we outline the approach for our analysis and describe the methodology by

which we implement and evaluate our machine learning models. The first section describes

the analyses we will perform and the order of actions taken. The second section deals

with our model selection process, and will outline how we implement hyperparameter

tuning and resampling methods for each model. Finally, the last section describes the

metrics used for model assessment.

4.1 Approach

The aim of our analyses is to investigate whether our non-linear machine learning models

can achieve increased prediction accuracy for housing prices in the Norwegian housing

market compared to linear models. To investigate this, we apply a two-pronged approach

where we split the analyses into two separate phases. In Phase 1 of our analyses, we replicate

the housing data methodology developed by SSB and compare SSB’s model against our

non-linear machine learning models trained on the same data set utilized by SSB. In Phase

2, we implement our machine learning models and the benchmark linear model (LM)

on the expanded data set. The expanded data set includes additional property-specific

variables obtained from Eiendomsverdi in addition to external macroeconomic variables32.

In this manner, Phase 1 isolates the effects of the different algorithms and demonstrates

the effects of changing the learning algorithm employed. Phase 2 investigates how much

accuracy can be increased by including additional variables and implementing different

pre-processing, and how the different algorithms capture this additional information.

4.1.1 Phase 1: SSB Replication

In the first phase of our analysis, we predict the log-adjusted price per square meter in

accordance with the methodology developed by SSB (Takle and Melby, 2020). Primary

area, age, location33, and year are used as predictors.

The data cleaning process proposed by SSB is replicated34, ensuring that all models are
32See Chapter 3 for a detailed overview of the data sets in Phase 1 and Phase 2.
33Referred to as Price Zone in the SSB paper.
34Described in Section 3.1.1.
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fitted on the same data that SSB uses. Each model is tuned according to the tuning

regimen specified in Section 4.2.2.2, with the final fitted models representing the best

tuning of each algorithm. The final models are evaluated based on their prediction

accuracy in terms of RMSE and computation speed as specified below in Section 4.3.

4.1.2 Phase 2: Additional Variables

In Phase 2 we utilize all available property-specific variables obtained from Eiendomsverdi

as well as the additional macroeconomic variables35 described in Section 3.2.1. The

expanded data set also makes use of observations from earlier dates, and undergoes a

more extensive pre-processing and feature engineering regimen than in Phase 136. We

log-adjust the price per square meter (response variable) in order to allow for comparison

between the two phases and to reduce the variable’s skew.

Because we operate with a large number of features, we apply the Boruta algorithm

(Kursa et al., 2010) for feature selection to remove any unimportant variables and verify

the importance of the remaining ones. A detailed description of how the algorithm works

can be found in Appendix A4. This is motivated by two considerations. First, it allows

us to carry out feature selection in a systematic and unbiased manner. Second, many

machine learning algorithms exhibit decreasing performance when the number of features

are significantly higher than what is optimal (Kohavi et al., 1997). Applying the Boruta

algorithm will help us to remove features that may lead to poor performance. Finally,

each model is tuned and fitted according to the tuning regimens we specify below. The

final models are evaluated according to the same metrics as in Phase 1.

4.2 Model Selection

All the models implemented must be tuned and trained for each phase of our analysis.

The following sections describe our specific process in this regard.

35Oil price, NIBOR and CPI.
36Described in Chapter 3.



40 4.2 Model Selection

4.2.1 Software and Computing Platforms

All models and analyses are implemented using the R programming language. We make

use of different packages for each model, the selection of which has been made in order to

comply with best practices and facilitate ease of implementation. Each model makes use

of the same packages in both phases.

The linear regression benchmark is implemented with the built-in stats library in R. For

Random Forest and XGBoost, we use the caret (Kuhn, 2020) package in combination

with the algorithm-specific randomForest (Breiman et al., 2018) or XGBoost (Chen et al.,

2020) packages. The DFNN is implemented through the keras (Allaire and Chollet, 2020)

package with tensorflow (Allaire and Tang, 2020) as its backend. A difference between

the two phases is that both keras, tensorflow and XGBoost are implemented with GPU

support in Phase 2 in order to facilitate accelerated computing for XGBoost and DFNN.

H2o (LeDell et al., 2020) is used to implement the Stacked Regression model.

All Phase 1 models are run on a Windows machine with eight logical processors and 16 GB

RAM. For Phase 2 of our analyses, we utilize Amazon Web Services (AWS) to set up cloud

computing virtual machines with enhanced memory, more logical processors and with

Tensorflow-compatible GPUs. These AWS machines all run on Ubuntu OS. Regrettably,

AWS policies prohibit us from immediately ramping up to our preferred processing and

memory specifications in Phase 2. As a consequence, the models in Phase 2 are run on

different machine specifications, with the first models being run on lower specification

machines and the last models being run on machines with higher specifications. The

Phase 2 machine specifications for each model are described in Chapter 5.

4.2.2 Model Training

4.2.2.1 Data Partitioning and Resampling Methods

All models will be trained using a random sample of 70% of the data. The remaining

30% constitute the test set which will only be used to generate out-of-sample predictions

and compute the test error of the models. As discussed in Section 2.2.5, hyperparameter

tuning will be performed by means of k-fold CV. The exception is for the DFNN, where we

use a validation set approach due to keras package limitations. As mentioned previously,
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we set k = 5 when performing k-fold CV because we find it to provide a good balance

between computing time, bias and variance.

4.2.2.2 Hyperparameter Tuning

As discussed in Chapter 2, the machine learning models we employ have several

hyperparameters that must be tuned in order to optimize performance. To do so, we

first define each model’s hyperparameter feature space37, and thereafter try different

combinations of hyperparameter values according to our tuning method.

In this thesis we employ grid search and random search as tuning methods. Grid search

systematically fits a model for each combination of hyperparameters across the whole

hyperparameter feature space grid in order to find the model that yields the lowest

validation error. This is the most thorough method since the whole hyperparameter

feature space is trialed. This is useful in cases where we implement an efficient algorithm

and there are few possible combinations of hyperparameters. In cases where there are a

large number of hyperparameters to tune and the hyperparameter value ranges are large,

it becomes prohibitively expensive to implement grid search for most algorithms. In such

cases, it is more efficient to implement random search. This involves fitting randomly

sampled hyperparameter combinations from the hyperparameter feature space. While this

method is not as exhaustive as grid search, it has been shown to be more efficient in finding

good models than grid search (Bergstra and Bengio, 2012) because it is able to effectively

search a larger hyperparameter configuration space. Although random search samples a

relatively low number of random hyperparameter combinations, it still produces a high

probability of finding a model that is close to the optimal hyperparameter combination.

This can be shown by

1− (1− v

V
)T = p (4.1)

which shows the probability of finding a target model through random search (Bergstra

and Bengio, 2012). Here v
V

is the volume of the target relative to the hyperparameter

37The value range each hyperparameter can have.
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hypercube, T is the number of sampled hyperparameter combinations, and p is the

probability of finding a model in the target volume (Bergstra and Bengio, 2012; Scriven,

2018). If the target is to find a model within 5% of the optimal model ( v
V

= 0.05) with a

95% probability (p = 0.95), then solving for T shows that we must sample 59 models.

Table 4.1 shows the hyperparameter tuning methods and the number of combinations

tried for each model in both phases of our analysis.

Table 4.1: Hyperparameter Tuning Methods and Combinations Sampled

Phase 1

Model XGBoost Stacked RF DFNN LM
Tuning method Random Automatic Grid Random None
# Combinations tried 120 100 8 120 1
# Combinations possible 504,000 100 9 100,018,800 1

Phase 2

Model XGBoost Stacked RF DFNN LM
Tuning method Random Automatic None Random None
# Combinations tried 120 100 1 120 1
# Combinations possible 448,000 100 60 100,018,800 1

The tuning method applied to each model largely reflects the number of hyperparameters

and hyperparameter values each model can have, while also taking into consideration other

implementation issues such as R package compatibility and computing requirements. The

benchmark LM has no hyperparameters to tune and is therefore not a concern. XGBoost

and DFNN, as we have seen, have numerous tunable hyperparameters with broad value

ranges. For the DFNN, some hyperparameters are heuristically set as fixed values, as

described in Chapter 2. Apart from those, we set value ranges for the XGBoost and DFNN

hyperparameters by reviewing existing literature and best practices from competition

platforms such as Kaggle. The final tuning ranges of these models’ hyperparameters can be

seen in Appendix Sections A8 and A9. The DFNN tuning range remains the same in both

phases and amounts to over 100 million unique combinations of hyperparameter values.

For XGBoost, the tuning range in Phase 1 amounts to 504,000 unique combinations. In

Phase 2 we have to reduce the tuning range of the max depth parameter because we do

not have enough memory to process a model with the highest max depth value (30). The

number of hyperparameter combinations has consequently been reduced to 448,000 in
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Phase 2. Nonetheless, the number of possible combinations is too high to tune through

grid search, and we therefore opt for random search with 120 sampled models fitted

for both XGBoost and DFNN. According to Equation 4.1, this corresponds to a 95.5%

probability that our best performing model for each algorithm lies within 2.5% of the

optimal model.

Our implementation of Random Forest calls only for tuning the mtry hyperparameter,

while the ntree is set to a sufficiently high number such that the error stabilizes. mtry ’s

hyperparameter value range is limited by the number of variables in the data set, but

should not equal the number of variables. For Phase 1, where the data set only contains

nine38 predictor columns, we conduct a grid search of eight models. Our preference would

be to implement the same method for Phase 2, but the expanded data set used in our

second phase increases the computational requirements of the Random Forest algorithm

to the point where we are unable to fit more than one model. Hyperparameter tuning of

the Random Forest model in Phase 2 has therefore been abandoned in favour of using the

default value of mtry39. The Phase 1 and Phase 2 tuning grids for Random Forest can be

seen in Appendix A7.1 and A7.2.

The Stacked Regression model differs from the others since we have to consider both the

base learners as well as the metalearner wrapper. Tuning each base learner is extremely

time- and resource consuming. To avoid selecting and tuning new models we instead use the

models previously described40 as our base learners, and use the hyperparameters obtained

from tuning these models. The metalearner we have chosen has two hyperparameters to

tune: α and λ. The package we use to implement the Stacked Regression model inhibits

an efficient tuning of α, but has an automatic tuning functionality for λ. It tunes λ by

trying a high λ value first and decreasing it until it starts overfitting (LeDell et al., 2020).

100 different λ values are tried in our implementation.

4.3 Model Assessment

This thesis is primarily concerned with the prediction accuracy of our models in terms of

RMSE. We therefore evaluate the performance of the models based on their test error. We

38Including K − 1 dummy variables for each categorical variable
39p/3
40RF, DFNN, XGBoost and LM.
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also record the computing time of each model in order to gain an indication about each

model’s computational complexity and to shed light on the trade-off between accuracy

and computing time, although we consider this a secondary concern.

We use RMSE as a universal metric for assessing the accuracy of our prediction models.

This metric is preferred over MSE because it is reported on the same scale as the response

variable, making it easier to interpret (Hyndman and Koehler, 2006). RMSE is computed

for both the training and test data. The training RMSE is used as a baseline for evaluation,

whereas the test RMSE is used to evaluate the out-of-sample performance of the models.

Equation 4.2 shows the formula used to compute RMSE.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − f̂(xi))2 (4.2)

In this setting, n is the number of observations, yi is the observed (i.e. true) value and

f̂(xi) is the predicted value for the ith observation. A small value for RMSE indicates

that the predicted values are close to the true values, whereas a large value for RMSE

indicates the opposite. A convenient property of RMSE is that it uses squared residuals

to compute the error, implying that large residuals will be penalized (James et al., 2013).
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5 Analysis

In this chapter we carry out the procedures described in Chapter 4 and apply the models

described in Chapter 2. The following analysis is divided into two phases. In Phase 1 we

compare the predictive performance of the non-linear machine learning algorithms against

the linear model developed by SSB using the same data and variables used by SSB. In

Phase 2 we seek to investigate the models’ performance on an expanded data set with

additional variables. Feature selection is performed by means of the Boruta algorithm. In

each phase we first evaluate the performance of the models in regards to accuracy and

computing time. This is followed by a discussion on model interpretability.

5.1 Phase 1: SSB Replication

Phase 1 of our analysis compares the performance of our non-linear machine learning

algorithms against the linear benchmark model developed by SSB, using the exact same

data and feature selection procedure. The training data used in this phase contains 55,929

observations and consists of the variables primary area, location, year and age. The data

has been cleaned in accordance with SSB’s filtering process41.

5.1.1 Model Assessment

The resulting training- and test errors of the final models can be seen in Table 5.1. An

overview and discussion of the final tuned hyperparameter configurations for each model

in Phase 1 can be seen in Appendix A11.

Table 5.1: RMSE of final models

Metric XGBoost Stacked RF DFNN SSB

Training RMSE 0.1812 0.1811 0.1821 0.1892 0.2045
Test RMSE 0.1851 0.1856 0.1872 0.1875 0.2023

The results reveal that XGBoost has the best out-of-sample performance among all the

models, closely followed by the Stacked model. With a test RMSE of 0.1851, XGBoost

41As described in Section 3.1.1.
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delivers an accuracy gain of 8.5%42 compared to the benchmark model in terms of RMSE.

By back-transforming43 the predictions to get values in NOK, we find that this corresponds

to a test RMSE of 10,033 NOK per square meter for XGBoost, compared to a test RMSE

of 11,415 NOK for the benchmark SSB model.

Furthermore, none of the models demonstrate signs of overfitting or underfitting, as seen

from the relative differences between training error and test error for each model. This

indicates that all models generalize well and demonstrate a good balance between bias and

variance. The results also show that all four machine learning algorithms outperform SSB’s

linear model in terms of RMSE. This indicates that nonlinear learning algorithms are

better suited to model the relationship between price per square meter and the predictors,

at least with regards to prediction accuracy. This may suggest that the data exhibits

non-linear relationships that a linear regression model cannot effectively capture.

5.1.1.1 Accuracy Distribution

A breakdown of the out-of-sample predictions of the best performing model and the

benchmark SSB model is shown in Table 5.2. The table illustrates how much the predicted

square meter prices correspond to the actual prices in the test data for the two models. The

table reveals that 48.67% of the predictions made by XGBoost have a predicted value that

corresponds to 81-100% of the actual market price, and that 35.39% of the predictions lie

within 101-120% of the actual price. This means that 84.06% of the XGBoost predictions

lie within ± 20% of the actual price. This represents an improvement over the benchmark

model, where 79.5% of the predictions lie within the same range. The table also shows that

the tails are small for both models. This is especially true for the left tail. For XGBoost,

only 6.53% of the predictions have a predicted value that corresponds to less than 80% of

the actual market value, whereas 9.17% of the predictions fall into the same group for

SSB’s model. This demonstrates that there are few grossly underestimated observations.

The accuracy on the opposite side of the distribution is slightly worse for both models, but

XGBoost performs better for these groups as well. The results indicate that XGBoost is

overall more accurate than the benchmark linear model and that XGBoost is less prone to

extreme underestimation and overestimation. A visual illustration of the overall accuracy

42Percentage reduction in test RMSE.
43e raised to the power of x, where x is the natural logarithm of the predicted price for instance x.
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of both models can be found in Appendix A10.1.

Table 5.2: Accuracy distribution for XGBoost and SSB

This table illustrates the accuracy distribution of the best performing model (XGBoost)
and the benchmark SSB model. Distribution is how much the predicted values correspond
to the actual values in the test set, divided into 10 groups. n is the number of predictions
that falls into a given group. % is n as a percentage of the total number of observations
in the test set. Cumulative % is the cumulative percentages per group. For example, for
XGBoost, the first row shows that only 3 observations have a predicted value that is less
than 40% of the actual value and that the predictions in this group accounts for 0.01% of
the test data. The table is inspired by Takle and Melby (2020).

XGBoost SSB

Distribution (%) n % Cumulative % n % Cumulative %

0-40 3 0.01 0.01 1 0.004 0.004
41-60 74 0.31 0.32 89 0.37 0.38
61-80 1488 6.21 6.53 2110 8.80 9.17
81-100 11666 48.67 55.20 10863 45.32 54.49
101-120 8484 35.39 90.59 8193 34.18 88.67
121-140 1453 6.06 96.65 1788 7.46 96.13
141-160 296 1.23 97.88 349 1.46 97.59
161-180 162 0.68 98.56 173 0.72 98.31
181-200 82 0.34 98.90 115 0.48 98.79
201+ 262 1.09 100.00 289 1.21 100.00

5.1.1.2 Computing Time

While our main concern in this thesis is prediction accuracy, it is also important to address

computing time. Different models have different computational requirements, which is

reflected in the time taken to train them44. The total time consumed tuning a model is a

function of the inherent computational efficiency of the algorithm as well as the number

of tuning iterations. An overview of the computing time of the Phase 1 models can be

seen in Table 5.3.

44Assuming models are run on similar computational platforms.
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Table 5.3: Model Tuning and Computing Time Comparison

This table provides an overview of the methods and time spent tuning each model. All
models were run on a similar computational platform consisting of eight logical processors
and 16 GB RAM. Computing time is measured as time from the start of model tuning
until the final optimal model has been fitted. Mins per model is the average time in
minutes consumed per model tuned for each algorithm. *Computing time for Stacked
Regression includes model fitting time and tuning time for the base learners.

XGBoost Stacked RF DFNN SSB

Tuning method Random Automatic Grid Random NA
Computing time 1.48 h 30.02* h 13.89 h 14.65 h 0.12 s
Models tuned 120 100 8 120 1
Mins per model 0.74 18.01 104.19 7.32 0.00204

The results reveal that increased accuracy comes at a cost. The DFNN, which demonstrates

an accuracy gain of 7.32%45 compared to SSB’s model, has a total computation time of 14

hours and 65 minutes. This is a dramatic difference compared to SSB’s model which only

takes 0.12 seconds to fit. A poor trade-off between accuracy and training time is also found

for RF, which underwent 13 hours and 89 minutes of training to achieve less than 8%

increase in accuracy46 compared to the benchmark model. Among the non-linear models,

XGBoost achieves by far the best trade-off in this regard, as it is able to outperform47

all models in a much shorter time. However, it is still substantially slower than the

benchmark model. The Stacked Regression model requires the longest time to fit. This is

because we not only fit and tune the metalearner algorithm, but also have to account for

the time it takes to tune the base learner models. Total training time thus equates to the

sum of training time for the XGBoost, RF, DFNN and LM, plus the training time of the

metalearner algorithm. The isolated training time of the metalearner algorithm, however,

was only 30 minutes.

While DFNN takes the largest tuning time of the individual models48, it ranks third when

considering time per model. Random Forest is the most time consuming in this regard,

consuming a total of 104.19 minutes per model fitted. The benchmark LM is the least

time consuming, fitting in less than a second. XGBoost seems to be the most efficient

45In terms of test RMSE
46In terms of test RMSE
47In terms of test RMSE
48All models except Stacked Regression.
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with regards to accuracy and computing time, taking only 44.449 seconds to fit each

model. The computing times demonstrate that any practical implementation of the above

algorithms for housing price prediction should also carefully review the computational

power available and the time frame for analysis. However, if the models only need to be

re-trained on a monthly or quarterly basis to accommodate new data, computing time

should not pose any practical problems for industry application.

5.1.1.3 Model Interpretability

A common critique against machine learning algorithms is their black box nature. Although

they are capable of providing highly accurate predictions, they are notoriously hard to

interpret. Because of this, machine learning often represents a clear trade-off between

accuracy and interpretability. Thanks to recent advancements in the machine learning

literature it is increasingly possible to interpret the output of these models and investigate

the relationship between the variables. This is important because it allows us to gain an

understanding of which features are the most important in predicting housing prices, and

in which direction they affect prices.

Several frameworks have been developed to explain the output of different machine

learning models (Štrumbelj and Kononenko, 2014; Datta et al., 2016; Ribeiro et al., 2016;

Shrikumar et al., 2017; Lundberg and Lee, 2017). In this thesis, we adopt the SHapley

Additive exPlanations (SHAP) framework by Lundberg and Lee (2017). SHAP provides a

mathematical framework for interpreting the output of machine learning models. Based

on the concept of Shapley values50, SHAP values represent the average magnitude change

in the model output when a feature is hidden from the model (Lundberg et al., 2020).

A detailed description of the theoretical framework and relevant plots can be found in

Appendix A6 and A6.1. Unlike standard variable importance plots, which only show the

relative importance of the features, SHAP plots also show the direction in which a given

feature affects the response variable. To apply this framework for the best prediction

model in Phase 1 (XGBoost), we utilize the SHAPforxgboost library in R by (Liu and Just,

2019). It is important to note that while we can use SHAP to investigate the relationship

between variables, we cannot use it to establish causal relationships.

4960s × 0.74 minutes.
50A solution in cooperative game theory that distributes costs or gains depending on the average

marginal contributions of the players (Shapley, 1953).
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Figure 5.1 shows a SHAP Summary plot. The plot shows that Year and PRom51 are the

most important features in terms of predictive power52, followed by the location dummies

for Grünerløkka and Sagene. A possible explanation as to why year is the most important

variable is that it serves as a proxy for both inflation as well as market specific price

growth in housing due to increasing demand over time. Hence, it captures the general

increase in price levels during the period, which, as expected, explains a lot of the variation

in the sales price. The fact that primary area has high predictive power is not surprising,

as it is closely related to our response variable and because size is a fundamental metric

for evaluating a property.

We see from the figure that there is a positive correlation between year and sales price.

Lower values for year (yellow) are associated with lower prices, and higher values (purple)

are associated with higher prices. This is intuitive given that the feature captures the

general increase in price levels. The plot also reveals that there is a negative correlation

between the size53 of an apartment and the sales price. This may seem counter-intuitive

at first glance. However, this is because prices are quoted per square meter. Hence, for a

given property value, an increase in square meters will lead to a lower price per square

meter, all else equal. This should not be confused with total price values, which likely

increase with the number of square meters.

The location dummies show the effect of an apartment being located in a particular

location relative to Frogner, as this category is the reference category. The plot shows

that all locations have a negative effect on the sales price relative to Frogner. This is

reasonable, as Frogner is considered to be the most expensive area of the ones covered in

our data. For the age dummies, apartments older than 34 years at the time of sale is used

as reference. They show that apartments between 10 and 34 years are on average more

expensive than apartments older than 34 years. The net effect is unclear for apartments

that were built less than 10 years ago, as such apartments are associated both with higher

and lower sales prices.

51Primary area
52SHAP value.
53Square meters of primary area
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Figure 5.1: SHAP Summary plot Phase 1

This figure displays a SHAP summary plot for all variables used in Phase 1 for the XGBoost
model. The vertical axis shows the features ranked according to their importance (average
SHAP value per feature across all values of the feature - See Appendix A6.1) and the
horizontal axis shows the SHAP value for each observation (dot) for each feature. Each
unique transaction is represented by one dot on every row. Clustering of dots indicates
higher density. The colors indicate the value of a feature; yellow indicates low values and
purple indicates high values. The horizontal location of the dots shows whether the effect
of a feature value is associated with a higher or a lower predicted value; it shows the
impact that a given feature has on the model’s prediction. The dots that lie left of center
are associated with lower predicted prices and values that lie right of center are associated
with higher predicted prices.
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5.2 Phase 2: Additional Variables

Phase 2 implements our models on the expanded data set which includes additional

property-specific variables and macroeconomic data. The training data used in this phase

consists of 80,781 observations and 60 predictor variables. These variables include the

original variables from Phase 1 as well as additional variables such as distance to coast,

sunlight conditions, common debt, story, inflation rate and NIBOR. Before training our

models, we use the Boruta algorithm to perform feature selection on all features. The

results from the algorithm suggest that all features should be included for predictive

purposes. An in-depth discussion of the results from the Boruta algorithm and possible

concerns in this regard can be found in Appendix A5. An overview and discussion of

the final tuned hyperparameter configurations for each model in Phase 2 can be seen in

Appendix A12.

5.2.1 Model Assessment

The performance of the final models in Phase 2 are summarized in Table 5.4. It reveals

that all models perform significantly better when trained on the expanded data set with

additional variables.

The Stacked model demonstrates best out-of-sample performance amongst the models,

closely followed by the XGBoost and the DFNN. With a test RMSE of 0.1073, the Stacked

model demonstrates an accuracy gain of 39.52%54 relative to the benchmark LM. By

back-transforming the Stacked model’s predictions, we find that this amounts to a total

test RMSE of 5,631 NOK. For the LM, the test RMSE corresponds to 9,778 NOK. Hence,

the relative performance between the best model and the benchmark model is consistent

with the results from Phase 1, but the difference in accuracy is substantially larger.

Table 5.4: RMSE of final models - Phase 2

Metric XGBoost Stacked RF DFNN LM

Training RMSE 0.0721 0.0718 0.0475 0.0992 0.1682
Test RMSE 0.1076 0.1073 0.1197 0.1159 0.1774

The RF model has the lowest RMSE on the training data, suggesting that it captures
54In terms of test RMSE.
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the training data particularly well. However, the test error reveals that the model is

overfitting. This may be a consequence of the lack of tuning for this model in this phase55.

The remaining models do not show egregious signs of overfitting, indicating a better

balance between bias and variance.

While Stacked Regression failed to deliver superior performance in Phase 1, the algorithm

now outperforms the best individual model, although by a small margin. This may

indicate that the expanded data set with additional variables used in Phase 2 contains

more non-linear relationships for each algorithm to learn and that the different algorithms

capture different subsets of these relationships, thereby complementing each other better

in a Stacked regression model. This seems plausible considering the drastic increase in

feature relationships we would expect from increasing the data set to include many times56

the number of variables as in Phase 1.

5.2.1.1 Accuracy Distribution

To further investigate the performance of the models, we examine the accuracy distribution

of the best performing model and the benchmark LM. Table 5.5 shows that the relative

differences in accuracy between the models are larger than in Phase 1. Only 1.63% of

the Stacked model’s predictions have an estimated value that corresponds to less than

80% of the actual market price, whereas 7.87% of the predictions made by the benchmark

LM fall in the same group. The results demonstrate that extremely few observations

are grossly underestimated by the Stacked model, while the LM is more prone to gross

underestimation. Moreover, Table 5.5 that 95% of the predictions made by the Stacked

model fall within ± 20% of the actual sales prices. For the LM, 81.14% of the predictions

fall in the same range. The Stacked model also appears to be more robust on the right tail

of the distribution, as significantly fewer observations are grossly overestimated compared

to the LM. We see that there are significant accuracy gains to be made by opting for a

Stacked model as opposed to a linear regression model for this particular data. However,

both models seem to struggle more with overestimation than underestimation, suggesting

that an overall loss in accuracy can to a larger extent be attributed to overestimation.

This is consistent with the findings from Phase 1. Predicted versus actual values for both

55The default value for mtry was used due to computational limitations.
56From 9 to 60 predictors, including dummy variables.
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models are visualized in Appendix A10.2, which further shows that the Stacked model is

consistently more accurate than the benchmark LM.

Table 5.5: Accuracy distribution for Stacked Regression and LM for Phase 2

This table shows the accuracy distribution of the best performing model (Stacked) and
the benchmark LM. Distribution is how much the predicted values correspond to the
actual values, divided into 10 groups. n is the number of predictions that fall into a given
accuracy group. % is n as a percentage of the total number of observations in the test set.
Cumulative % is the cumulative percentages per group. For example, for Stacked, the
first row shows that 2 observations have an estimated value that is less than 40% of the
actual value and that the predictions in this group accounts for 0.01% of the test data.
The table is inspired by Takle and Melby (2020).

Stacked LM

Distribution (%) n % Cumulative % n % Cumulative %

0-40 2 0.01 0.01 23 0.06 0.06
41-60 29 0.08 0.09 175 0.49 0.56
61-80 545 1.54 1.63 2582 7.30 7.87
81-100 17111 48.41 50.04 14705 41.60 49.47
101-120 16467 46.59 96.63 13977 39.54 89.01
121-140 986 2.79 99.42 3116 8.82 97.83
141-160 107 0.30 99.72 456 1.29 99.12
161-180 51 0.14 99.87 122 0.34 99.46
181-200 12 0.03 99.90 57 0.16 99.62
201+ 35 0.10 100.00 132 0.37 100.00

5.2.1.2 Computing Time

Table 5.6 shows the computing time and processing specifications for the models in Phase

2. Although the models were not run on similar processing specifications and tuning

methods, the time spent is still indicative of computational requirements. All models take

significantly longer time to fit compared to Phase 1. However, the relative performance in

terms of speed of each model is more or less consistent with our expectations and earlier

findings.

The biggest surprise is the increase in Random Forest’s computational load. This algorithm

has a drastic increase in computing time compared to Phase 1, as it spends 12.53 hours to

fit just one model in Phase 2. This is despite reducing the number of trees grown from 1000

to 500. XGBoost once again demonstrates high computational efficiency and has perhaps

the best trade-off between prediction accuracy and speed, producing predictions that are
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on average 39.35% more accurate than the benchmark while spending only 2.37 minutes

on each model. While demonstrating superior prediction accuracy, the Stacked model is

still the slowest model to fit since its computing time also includes tuning of each base

learner. If we disregard the base learners, the isolated training time for the metalearner in

the Stacked Regression was 164.42 minutes. The benchmark LM requires no tuning and is

fitted in less than a second. However, it has the worst out-of-sample performance among

the models, resulting in a poor trade-off between accuracy and efficiency. The results thus

far show that significant prediction accuracy gains can be made if one is willing to invest

up to 35 hours to tune the prediction model chosen. As long as models are not required

to be re-trained frequently to accommodate new data, this should not pose a barrier for

industry adoption.

Table 5.6: Model Tuning and Computing Time Comparison for Phase 2

This table provides an overview of the tuning methods, time spent, and computational
platform for each fitted model in Phase 2. The models were run on machines with varying
specifications. XGBoost and DFNN were fitted using GPUs for accelerated processing,
while the LM, Random Forest and the Stacked Regression only used CPUs. Computing
time is measured as time from the start of model tuning until the final optimal model has
been fitted. Mins per model is the average time in minutes consumed per model tuned for
each algorithm. Computing time for Stacked Regression includes both model fitting time
and tuning of the base learners.
*Denotes system CPUs available, not necessarily parallel workers used. **GPU-memory

XGBoost Stacked RF DFNN LM

Tuning method Random Auto NA Random NA
Computing time 4.74 h 34.82 h 12.53 h 17.55 h 0.5513 s
Models tuned 120 1 1 120 1
Mins per model 2.37 2089.21 751.8 8.77 0.0092
Processors* 1 GPU 16 CPU 32 CPU 1 GPU 16 CPU
Memory 16 GB** 64 GB 128 GB 12 GB** 64 GB
Ubuntu version 18.04 18.04 18.04 16.04 18.04

5.2.1.3 Model Interpretability

To investigate which features are most important in this phase, we compute and visualize

their SHAP values57. Figure 5.2 shows a SHAP summary plot for the 10 most important

features used in Phase 2. The plot reveals that inflation, sales year and primary area (CPI,

57SHAP values are computed using XGBoost instead of Stacked Regresion. This is because the h2o
package in R does not offer SHAP compatibility for Stacked models.
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SalesYear, and PRom) are the most important features for predicting property prices. The

fact that inflation and sales year are the two most important features corroborates the

findings from Phase 1 that general increases in price levels have strong predictive power for

property prices. The figure indicates that higher inflation levels are associated with higher

predicted prices and vice versa. The negative relationship between prices and primary

area persists in this phase as well, which is reasonable given that we are still predicting

prices per square meter. Longitude appears to be the most important geographical feature

for predicting prices. The fact that none of the location dummies nor latitude are among

the top features suggest that it is the east-west position of an apartment that is the more

important aspect in terms of prices.

We also see that both high and low values for TargetPriceCommondebt, which is the shared

debt for housing cooperatives, are associated with lower predicted prices on average. This

suggests that common debt has a negative impact on the value of an apartment relative

to independently owned apartments without such debt, and that the magnitude of the

debt matters. This is expected because higher levels of common debt will result in higher

monthly debt service, thus warranting compensation to the buyer in the form of a lower

up-front transaction price. BuildYear and Balcony appear to be positively correlated with

prices. This is reasonable, as newer apartments with balconies are typically more desirable.

Apartments situated on the ground floor are associated with lower prices relative to middle

floor apartments. Lastly, higher levels of NIBOR are associated with lower prices, and

vice versa. As previously mentioned, this is consistent with financial theory that higher

mortgage rates reduce demand for housing, which in turn leads to lower prices.
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Figure 5.2: SHAP Summary plot Phase 2

This figure displays a SHAP summary plot of the 10 most important features for XGBoost
in Phase 2. The vertical axis shows the features ranked according to their importance
(average SHAP value per feature across all values of the feature - See Appendix A6.1)
and the horizontal axis shows the SHAP value for all observations for each feature. Each
unique transaction is represented by one dot on every row. Clustering of dots indicates
higher density. The colors indicate the value of a feature; yellow indicates low values and
purple indicates high values. The horizontal location of the dots shows whether the effect
of a feature value is associated with a higher or a lower predicted value; it shows the
impact that a given feature has on the model’s prediction. The dots that fall left of center
are associated with lower predictions and values right of center are associated with higher
predicted values.

To further investigate the relationships between the features and the response variable,

we plot the SHAP values for a feature against the values of that feature. This is known

as SHAP Dependence plots. A SHAP dependence plot for CPI, NIBOR, Primary Area

and Longitude is shown in Figure 5.3. The CPI plot clearly demonstrates a positive linear

correlation between the inflation index and apartment prices. This further illustrates that

inflation explains a lot of the price variation in the data. The plot also shows that there
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is a negative correlation between NIBOR and sales price, but the relationship is less clear.

Low NIBOR rates are indeed associated with higher average prices, but prices seems to

respond slowly to changes in NIBOR. Average prices stay roughly the same when NIBOR

increases from 0.2-1.5% but decrease rapidly from 1.5-2.5%. From 2.5-5% prices seem to

increase modestly before decreasing sharply for NIBOR rates above 5%. One plausible

explanation for this is that it usually takes some time before changes in NIBOR result in

changes in mortgage rates. It is important to note that there are large variations inherent

in both CPI and NIBOR. This is revealed by the large vertical spread associated with

each feature value, indicating that there may be interaction effects between these variables

and other variables.

The plot for PRom exhibits a clear negative relationship between the price per square

meter and size of an apartment. However, the relationship is not linear. Instead, the plot

reveals that there are diminishing returns associated with square meter prices and size;

prices decrease sharply up to a certain point before flattening out for apartments that are

larger than 100 square meters. This relationship seems to hold up to 250 square meters in

size, after which the price per square meter starts to increase again. However, we should

be careful not to establish general patterns for apartments larger than 200 square meters,

as we have limited data for apartments of this size.

The bottom right plot shows the relationship between Longitude and price per square

meter. We see that there are clear price trends related to the east-west location of an

apartment. Lower values for longitude, which corresponds to Ullern in our data, are

associated with lower average prices. This is also true for apartments located in eastern

parts of Oslo, such as Grünerløkka. Middle values, on the other hand, corresponding

to Frogner and St. Hanshaugen, are associated with significantly higher average prices.

This is consistent with empirical price data for Oslo. The large vertical dispersion of

dots indicate that there are large variations in how important longitude is in prediction

of prices, and that there may be interaction effects at play between longitude and other

variables.
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Figure 5.3: SHAP Dependence plot Phase 2

This figure shows SHAP Dependence plots for CPI, NIBOR, PRom and Longitude. The
vertical axis in each of the four plots indicates the SHAP value for each observation
(change in the margin output of the model - see Appendix A6.1) and the horizontal axis
shows the value of the feature. Each dot corresponds to a sales transaction. Dots located
higher in the two-dimensional space have a feature value that is associated with higher
predicted prices and vice versa. Yellow indicates lower values for a feature and purple
indicates higher values. The vertical dispersion of dots for a given feature value indicates
the range of predicted prices associated with that feature value. High vertical dispersion
may indicate interaction effects. The red curve shows the locally estimated scatterpot
smoothing (LOESS) curve.

5.3 Summary of Results

A summary of our best performing models and the benchmark models from both phases

is presented in Table 5.7.
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Table 5.7: Summary of results from Phase 1 and Phase 2

Phase 1 Phase 2

XGBoost SSB Improvement Stacked LM Improvement

Test RMSE 0.1851 0.2023 8.50% 0.1073 0.1774 39.52%

The results of our Phase 1 analysis show that XGBoost has the best out-of-sample

performance, with 8.5%58 increased prediction accuracy compared to the benchmark linear

model currently employed by SSB. As with most machine learning algorithms, this comes

at the price of reduced insight into the resulting model and increased computational

requirements. However, frameworks such as SHAP mitigate these issues by offering

visual insights into the relationship between the response variable and the predictors. By

implementing the SHAP framework, we find that sales year and the square meterage of an

apartment are the most important predictors for apartment prices given that an XGBoost

model is used.

As for computational requirements, the machine learning models are very slow compared

to the benchmark SSB model. If accuracy is the main concern, our results clearly indicate

that XGBoost yields the best results. Furthermore, the analysis reveals that all our

non-linear machine learning algorithms improve the accuracy of predictions, suggesting

that the non-linear algorithms capture more complex relationships in the data than the

linear model. Immediate improvements can thus be made to the benchmark model simply

by changing the algorithm.

The results from Phase 2 demonstrate even starker differences between the non-linear

machine learning algorithms and the LM benchmark in terms of prediction accuracy.

By including additional property-specific and macroeconomic variables, as well as

implementing different pre-processing and feature selection methods, we find that the

prediction accuracy of all models is improved. The expanded data set contains more

information and more feature relationships. The non-linear machine learning algorithms

consequently increase their performance lead over the linear model. In terms of variable

importance59, we find that inflation (CPI), primary area and longitude are the most

important predictors of housing prices, where the two latter clearly demonstrate non-linear
58Percentage reduction in test RMSE
59For the XGBoost model.
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relationships with housing prices.

The two best models from Phase 1, XGBoost and Stacked Regression, retain their leading

positions in terms of out-of-sample prediction accuracy in Phase 2. The Stacked model has

the best performance, with an increased accuracy of 39.52%60 compared to the benchmark

LM. The improvements in accuracy come at a cost: an increase in the number of variables

increases the computational requirements for each model despite using more powerful

machines and enabling GPU computation. Although prediction accuracy is our main

concern in this thesis, it should be noted that the Stacked model requires the longest time

to tune and fit, since it requires individual tuning of each base learner. Because of this,

XGBoost, performing only marginally poorer and requiring the least tuning and fitting

time, is perhaps the better trade-off in a practical situation if computational requirements

and training time are important factors. However, the tuning times of both XGBoost and

Stacked Regression are reasonable as long as industry applications do not require models

to be re-fit frequently (e.g. daily or weekly) to accommodate new data. In summary,

the results from Phase 2 indicate that considerable prediction accuracy can be gained

by combining non-linear machine learning algorithms with data that includes additional

property-specific and macroeconomic variables such as CPI, longitude, common debt and

NIBOR.

While we cannot draw conclusive comparisons between the models in the two phases due

to differences in sample size, pre-processing and feature engineering, we can still gain

valuable insight and indications about the relative performance of the models. Table 5.8

shows the back-transformed test RMSE in NOK for the Phase 2 Stacked Regression and

Phase 1 SSB model for the period 2010-2019. The overall back-transformed61 Phase 2

Stacked model’s test RMSE of 4,91862 NOK per square meter is much lower than the Phase

1 SSB benchmark model’s test RMSE of 11,415 NOK. The table also reveals that the

Phase 2 Stacked model yields a considerably lower RMSE for all price ranges, especially

for the tails of the distribution. For the 25th percentile, the Stacked model’s RMSE

of 2,348 NOK corresponds to a reduction in RMSE of 57,42% compared to the Phase

1 linear benchmark for the same percentile. Although the Stacked model undoubtedly

60Percentage reduction in test RMSE.
61e raised to the power of x where x is the natural logarithm of the predicted price for instance x.
62This deviates from the back-transformed Phase 2 Stacked RMSE presented in Phase 2 because the

test sample is restricted to 2010-2019 in this section to increase comparability across the two phases.
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demonstrates prediction accuracy gains compared to the benchmark model, such accuracy

improvements must be considered in light of the increased computational requirements

discussed earlier and a potential loss of interpretability for real-world applications.

Table 5.8: Comparison of RMSE between Stacked and SSB’s model

In this table the predictions of our best model (Phase 2 Stacked Regression) are compared
with SSB’s model (Phase 1) grouped by quartiles of actual square meter prices. Predicted
is the average predicted price per square meter per quartile, Actual is the average true
price per square meter per quartile. RMSE is test RMSE per quartile. Stacked Regression
(Phase 2) test sample has been limited to observations for the period 2010-201963 in order
to ensure a more reliable comparison.

Stacked SSB

Percentile Predicted Actual RMSE Predicted Actual RMSE

25 41282.93 39709.72 2348.49 45509.70 39829.34 5515.71
50 54221.13 53985.71 2385.48 54203.40 54162.30 4064.30
75 66974.91 67031.44 2801.56 65869.30 67006.73 4720.25
100 85275.56 88017.99 4078.96 78270.28 87717.33 7815.19
All 61944.20 62192.60 4917.77 60963.25 62179.06 11414.88

Similar performance is seen on an aggregated level. Table 5.9 shows cumulative64 predicted

property values compared to the actual65 cumulative property values for the Phase 2

Stacked model and the SSB linear benchmark model in each quartile and in total66.

64Sum of all property values within a quartile or in total.
65Sum of the true transaction prices
66These values are found by multiplying the predicted and actual square meter prices with each

property’s primary area in the test set and computing the sums of the resulting property values.
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Table 5.9: Total property value estimates

This table shows total predicted and actual property values in billion NOK grouped
by quartiles of actual total property values for the Phase 2 Stacked model and Phase 1
SSB benchmark model. Predicted and Actual are the sum of the predicted and actual
property values for each quartile and for the entire test set. Error is how much the
difference between the sum of the predicted and actual property values account for the
actual property values. The sample is restricted to only consider predictions for the
period 2010-2019 for both models in order to make predictions across the two phases more
comparable.

Stacked SSB

Percentile Predicted Actual Error (%) Predicted Actual Error (%)

25 11.94 11.66 2.34 12.75 11.71 8.83
50 17.89 17.74 0.84 17.80 17.73 0.45
75 23.74 23.77 -0.14 23.59 23.63 -0.15
100 38.61 39.44 -2.11 36.18 39.25 -7.83
All 92.17 92.61 -0.48 90.32 92.31 -2.16

The table shows that the SSB linear model underestimates the sum of total property

values by 2.16%, compared to only 0.48% for the Phase 2 Stacked model. As such, both

models demonstrate a small negative bias in predictions on the test set. The per-quartile

breakdown in the table provides a more nuanced picture of the models’ biases. Both

models overestimate the cheapest properties (25th and 50th percentiles) and underestimate

the more expensive properties (75th and 100th percentile). They have somewhat similar

errors for the 50th and 75th percentile, with the SSB benchmark model outperforming

the Stacked model in the 50th percentile. However, the Stacked model has a considerably

lower error than the SSB benchmark for the 25th and 100th quartiles, corresponding

respectively to the least and most expensive properties. Once again, this may indicate

that our non-linear machine learning models are able to capture more feature relationships

than the linear benchmark and that property values vary in a non-linear fashion.

In conclusion, our Phase 1 analysis demonstrates that switching from linear models to

non-linear machine learning algorithms can yield improvements in prediction accuracy,

likely due to the prevalence of non-linear feature relationships in the data. Phase 2

demonstrates that utilizing non-linear machine learning algorithms on expanded data

sets with additional property-specific and macroeconomic variables can yield significant

improvements in accuracy over linear models. The improvements demonstrated may have
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considerable economic impact if adopted, both for the benchmark SSB model’s original

taxation purpose and for other applications. The economic impact of increased prediction

accuracy will be discussed in the following chapter.
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6 Discussion

In this chapter we discuss some of the economic implications of our results as well as the

trade-offs from adopting machine learning models with regards to interpretability. We

also highlight the limitations of this thesis and promising avenues for further research.

6.1 The Economic Implications of Improved Accuracy

Our analysis demonstrates that there is a large potential to improve estimates of property

values by adopting non-linear machine learning algorithms and including additional

property specific and macroeconomic variables in the data set. This suggests that there

also exists a strong potential for economic gains to be made. For one, the residential

real estate market is by itself a huge market where the property value of a house is a key

metric for all players involved. If we also consider ancillary services and industries which

in some way utilize property prices, there is clearly potential for economic gains from

more accurate housing price predictions.

The applications for improved prediction models are numerous. A natural point of

departure for discussion in this thesis is tax estimation for property and wealth taxes,

since this is the original application of the SSB benchmark model. However, we also

see potential benefits in credit evaluation, property transactions, risk assessment and

valuation of financial instruments. In the following sections we discuss these applications

in an economic context.

6.1.1 Property and Wealth Tax Estimation

There are two kinds of property tax in Norway: a direct property tax67 and an indirect

wealth tax. Details relating to each tax are listed in Table 6.1. Property tax is charged

as a percentage of a property’s value minus a minimum deduction. Wealth taxes are

charged as a percentage of a person’s net wealth, including property value, that exceeds a

minimum threshold. By law, both these taxes are calculated as a function of a property’s

presumed market value, which we in this thesis assume to be the price a property would

fetch in an open market sale at any given time. This is also the assumption about market

67Only applicable in certain municipalities, such as Oslo.
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prices made by Norwegian tax authorities, since they also accept observed transaction

prices as documentation for market value (Skatteetaten, 2020). The correct taxes, as

decided by society through legislation, should therefore reflect true property market values.

Given existing tax policies, correct taxation is therefore the situation where everyone pays

taxes according to the true market value of their properties.

Table 6.1: Property and Wealth taxes Applicable to Oslo

This table presents an overview of the information used to assess taxes. *Tax rate specific
for Oslo. **Minimum standard deduction for Oslo. ***The activation threshold after
which the wealth tax is triggered based on net wealth.

Tax base Tax rate Minimum standard deduction

Property tax 70% of market value 0.30%* 4,000,000 NOK**
Wealth tax 25% of market value 0.85% 1,500,000 NOK***

As discussed in the introduction, the market value of a property is easy to establish if a

recent transaction has taken place, but hard to find if the previous transaction was long

ago. Norwegian tax authorities therefore use SSB’s linear model (our Phase 1 benchmark)

as an AVM to estimate property market values for tax purposes. An issue with this

approach is that the SSB model’s estimation may be relatively inaccurate, as discussed

in Section 5.3. This is especially problematic if the SSB model systematically under- or

overestimates certain price ranges or wealth brackets, as our results seem to indicate.

Any such bias could shift the weight of tax burden to specific brackets of the population,

typically in the same socio-economic group. A more precise model, such as our Phase 2

Stacked model, may provide more accurate assessments of property values and thus more

correct taxes. In the following two sections we will examine model-specific differences

in tax estimations between the SSB benchmark model and our best performing Phase 2

model, Stacked Regression.

6.1.1.1 Property Taxes

We use our test data from Phase 1 and Phase 2 to predict the property tax effects of the

Phase 1 SSB model and our Phase 2 Stacked model. By doing this we assume that our

transaction data can act as an acceptable proxy for the real property distribution in the

five boroughs68 it covers. In order to increase comparability across the two phases, we
68Frogner, St. Hanshaugen, Grünerløkka, Ullern and Sagene.
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restrict the sample size for the Stacked model to only include observations from 2010 to

201969. Differences in sample sizes between the two phases due to different pre-processing

regimes and additional variables still inhibit an accurate and conclusive comparison of

results. Moreover, since we do not split the observations by individual years, the estimates

made only reflect the approximated relative sizes of the tax burden. Even so, we believe

such an exercise to be useful as an indication of the effects of model choice on taxation.

First we look at the aggregated predicted70 property taxes compared to the

aggregated correct71 taxes. Predicted and correct property taxes are computed as

max{0, ((Property value× 0.70− 4, 000, 000) ∗ 0.003)}, in accordance with Table 6.1. A

detailed description of how predicted and correct taxes are computed for this example

can be seen in Appendix A13.

Since our test samples only act as a proxy for the real distribution of properties in the

boroughs, we are only interested in the relative differences between predicted taxes due

and correct taxes due. Table 6.2 shows the results of this exercise.

Table 6.2: Total Tax Liability per Model

This table shows the property tax liabilities of the properties in the SSB benhcmark LM
(Phase 1) and Stacked Model (Phase 2) test sets. Predicted taxes are the sum of property
taxes calculated using each model’s predicted property values as base value. Correct taxes
are the sum of property taxes calculated using the true market values (transaction prices)
of each property in the test sets. Error is the percentage difference between correct and
predicted taxes.

SSB Stacked

Predicted taxes 9,876,247 13,511,782
Correct taxes 13,940,275 14,568,365
Error -29.15% -7.25%

Both the Stacked Regression and the SSB benchmark models underestimate total property

tax liability, but the degree of underestimation differs considerably. The benchmark model

underestimates total taxes by 29.15%72, while the Stacked model underestimates by only

69In accordance with the Phase 1 test sample.
70Predicted taxes are calculated based on the predicted market value of a property. This corresponds

to the back-transformed predicted Ŷ variable from our analyses multiplied with the true apartment size.
71Correct taxes are calculated based on the true market value of a property. This corresponds to the

back-transformed true Y variable in our test set multiplied with the true size of the apartment.
72Difference between the sum of predicted and actual taxes divided by actual taxes for the entire test

set for both phases.
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7.25%. The difference in underestimation between the models is significant considering

that Oslo municipality collected NOK 655.5 million in residential property taxes in 2019

(SSB, 2020).

To further investigate tax effects, we isolate the properties who should pay property

taxes73 and those who should not pay property taxes. The proportion of properties in

each Phase’s test sample that should and should not pay property taxes according to their

transaction price is shown in Table 6.3.

Table 6.3: Proportion of Properties Liable for Property Tax

This table shows the proportion of observations in each Phase’s test sample that are and
are not liable to pay property taxes based on their actual market values (transaction
prices). Properties that should pay property taxes have an actual market value × 0.70 in
excess of NOK 4 million.

.
Phase 1 SSB Phase 2 Stacked

Should pay 13.97% 14.17%
Should not pay 86.03% 85.83%

We first consider the properties whose actual market values imply that they should not

pay property taxes. This is done to investigate whether any of the models overestimate

property values to the extent that they become liable for property taxation74 when in

reality they should not pay property taxes. For the SSB benchmark model, 2.19% of

properties in our test set are liable to pay property taxes despite their true market

value indicating they should not. For the Stacked model, only 1.5% of properties are

unduly charged due to overestimation. Hence, although the absolute difference is small,

the Stacked model reduces the proportion of homeowners who are unduly charged with

property taxes by 31.5%. Assuming the relative differences between the models can be

extrapolated to the whole of Oslo, a total of 527975 properties are unduly charged by the

SSB model, and 361676 properties are unduly charged by the Stacked model. Roughly

1,663 fewer apartments will be charged with property taxes by adopting the Phase 2

Stacked model for housing price prediction.

73All properties whose actual market value (transaction prices) × 0.70 exceeds 4,000,000 NOK.
74Observations whose true market value × 0.70 is below NOK 4 million, but whose predicted market

value × 0.70 is above NOK 4 million
75241,058 apartments in Oslo × 0.0219
76241,058×0.015
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Next, we consider the properties whose actual values imply that they should pay taxes

(13.97% of observations in Phase 1 and 14.17% of observations in Phase 2) to examine

the accuracy of the tax estimates for different property value brackets. A comparison

between the tax predictions of our best model and the benchmark SSB model is shown in

Table 6.4. The table reveals that the SSB model underestimates total property taxes by

almost 33%, while the Stacked model only underestimates taxes by 9.02%77. The table

also breaks down these tax predictions by quartile of actual total property values. With

an error range spanning from -3.74% to -12.17% for the 50-100th percentiles, the Stacked

model seemingly estimates property taxes much more accurately than the benchmark SSB

model, whose error ranges from -30.68% to -36.16% of actual tax for the same percentiles.

The exception is for the 25th percentile, where the SSB model is more accurate.

Table 6.4: Property tax estimation by quartiles of actual property values

This table shows the predicted and actual property taxes in millions NOK for each model
grouped by quartile of actual property values in the test set. The test sample is restricted
to homeowners whose actual property values imply that they should pay property taxes.
Predicted and Actual are the sum of the predicted and actual property taxes for each
quartile and for the entire (restricted) test sample. Error is how much the difference
between the sum of the predicted and actual property taxes account for the actual taxes
for each quartile. The sample is restricted to only consider predictions for the period
2010-2019 for both models in order to make predictions across the two phases more
comparable.

Stacked SSB

Percentile Predicted Actual Error (%) Predicted Actual Error (%)

25 0.67 0.52 29.81 0.62 0.53 15.67
50 1.55 1.61 -3.74 1.09 1.57 -30.68
75 3.12 3.43 -9.09 2.18 3.29 -33.73
100 7.91 9.01 -12.17 5.46 8.55 -36.16
All 13.25 14.57 -9.02 9.34 13.94 -32.99

Assuming that correct taxes are the ones that are computed from the actual tax values

based on the true market value of a property, our findings indicate that adopting non-

linear machine learning algorithms on expanded data sets can improve the accuracy of tax

estimates. The Phase 2 Stacked model considerably improves the accuracy of the overall

tax take. We also find that the Stacked model reduces the number of properties subjected

77These values differ from previous results (29.5% and 7.25%) because the sample is now restricted to
those properties whose actual values imply they should pay property taxes.
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to undue tax charges by 31.5% compared to the SSB model. While the relatively poorer

performance of the benchmark model likely can be attributed to non-linear relationships

in the data, it may also be due to omitted variable bias in the SSB linear model. Our

results indicate beneficial economic gains in taxation applications can be achieved by

adopting non-linear machine learning models such as our Stacked model.

6.1.1.2 Wealth Tax

Wealth tax effects are more difficult to estimate than property taxes. This is because

people are taxed based on their net wealth exceeding the activation threshold, and not on

an asset-by-asset basis. Hence, we cannot provide wealth tax estimates for property values

since we do not know each property owner’s holdings of debt or other assets. However, we

can say something about the models’ effects on properties’ wealth tax base value, which is

set by law at 25% of market value. As with property taxes, this market value is usually

estimated using SSB’s linear model (our Phase 1 benchmark). The relative inaccuracy

of the SSB model compared to our Phase 2 Stacked model demonstrated in Section 5.3

indicates that the Stacked model can provide more accurate predictions of property market

values and thus property wealth tax base values. This is especially true for the least and

most valuable properties. Considering the fact that over 511,000 Norwegians had a net

wealth that exceeded the activation threshold in 2018 (SSB, 2018), the change in levied

taxes that stems from more accurate estimates could be profound.

While we leave any discussions about the morality and utility of property and wealth

taxation to others, our findings suggest that implementing non-linear machine learning

algorithms to predict property values can contribute significantly to producing more

correct taxes on an individual and aggregated level. Any practical application to this effect

must however weigh the benefits from increased accuracy against any loss in transparency,

as we will discuss in Section 6.2.

6.1.2 Other Applications

Improved prediction accuracy can yield economic benefits in numerous business

applications other than taxation. However, due to the proprietary nature of these

applications in business practices, it is harder for us to estimate quantitative effects.
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Economic implications for some applications also require extensive research before

quantification can be made, and thus lie outside the scope of this thesis. In this section

we will nevertheless outline some potential uses for housing price predictions and describe

the general effects from improving predictions of housing prices.

An obvious benefit from improved housing price predictions is better transparency and

risk reduction in second hand real estate markets. Individuals seldom have extensive

knowledge about the housing market or particular properties, making it hard for them to

make accurate value assessments of a property. Instead, they rely on physical appraisals

and model valuations. However, we have seen that common valuation models such as

SSB’s linear model can be relatively inaccurate. Similarly, research shows that up to

74% of properties are sold above the appraised value (Benedictow and Walbækken, 2020).

Such inaccuracies can lead to uncertainty about the fair market value of a property, and

subsequently cause considerable uncertainty and friction in the market. Research also

indicates that appraisals have an anchoring effect (Benedictow and Walbækken, 2020),

limiting the range of bids in housing auctions. Consequently, adopting AVMs for housing

prices that increase prediction accuracy can help by reducing buyer uncertainty and

helping the market find true property value. This could benefit both buyer and seller by

enabling a fair exchange while mitigating problems relating to asymmetrical information.

Better prediction accuracy may also have positive economic effects for residential mortgage

refinancing. A bank needs an accurate valuation of a mortgage’s underlying property in

order to negotiate appropriate loan terms for new customers wishing to refinance a mortgage

from another bank. This is needed both for fulfilling regulatory requirements (such as

Loan-to-Value (LTV) limits) and for the bank’s own profitability and risk requirements.

Finding the market value of a property is trivial for fresh mortgage applications, since this

corresponds to the transaction price. For mortgage refinancing, however, transaction prices

are usually dated, and the property market value must be estimated. Physical appraisals

for this purpose are impractical due to their cost. Many banks therefore prefer using

AVMs to estimate the current property value (Lund, 2020). Applying non-linear machine

learning algorithms to improve accuracy of housing valuation can therefore yield economic

benefits in refinancing situations as it allows the banks to provide more appropriate loan

terms to each customer, thereby reducing risk and increasing competitiveness. Better
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predictions of property values will also enable banks to offer more appropriate loan terms

in other types of financing situations, as they will allow banks to gauge each individual’s

net worth and credit worthiness better.

Banks also use AVMs to monitor the value of the collateral values of their residential

mortgage portfolios. These portfolios account for approximately 42.6% of Norwegian

banks’ loan portfolios (Jansrud, 2017), and are usually secured on the underlying property.

It is therefore imperative that banks monitor the value of their collateral portfolio in

order to ensure prudent risk management. Increased accuracy from AVMs through the

use of non-linear machine learning models can potentially provide a better overview of

the total value of the collateral property and thus improve banks’ risk management and

profitability.

Finally, improved property price prediction accuracy may yield benefits in pricing and

monitoring of housing-related financial instruments whose value depends on the underlying

property value, such as mortgage-backed securities and covered bonds78. Norway has a

large covered bond market that may directly benefit from adopting non-linear machine

learning models to monitor the value of underlying properties. The outstanding volume

of Norwegian covered bonds amounted to NOK 1158 billion in 2017 (Finance Norway,

2018). These are backed almost exclusively by residential mortgages. Since these bonds

are ultimately secured by the value of the underlying properties, regulation and prudent

risk management requires that the LTV ratio of each property is monitored and updated

regularly (Finance Norway, 2018). Being able to make accurate predictions of property

values is therefore important to ensure fair prices and low risk. Norwegian covered

bond issuers typically monitor property valuations of the underlying portfolio based on

Eiendomsverdi’s proprietary AVM (Finance Norway, 2018). Any increase in prediction

accuracy that can be gained through adoption of non-linear machine learning algorithms

such as those we have developed can thus add value by reducing risk and contributing to

improved asset pricing.

78Covered Bonds are debt securities issued by banks and mortgage institutions that are collateralized
against a pool of underlying assets (BIS, 2014).
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6.2 Interpretability and Industry Acceptance

As previously mentioned, a common critique of machine learning methods is the black

box nature of many algorithms. This characteristic makes it difficult to observe what

actually goes on in a particular model, and why its predictions turn out as they do. Even

when using advanced methods for interpretation such as the SHAP-methods employed in

this thesis, interpretability is still much more limited than linear models and other classic

approaches. SHAP approaches will for example demonstrate general relationships between

the features, but cannot say anything about their incremental impact in the same way

that linear regression coefficients can. Such losses in interpretability represent important

obstacles to adoption of machine learning models, and there is still some distance to

travel before models such as the ones developed in this paper can see widespread adoption.

According to Lund (2020), many commercial customers of AVM services today require

in-depth insight into the workings of the models employed and the effects of different

variables in the data set. They may need such information for a variety of purposes,

including regulatory requirements, their own due diligence requirements, or because their

customers demand it in turn.

While the discussion in the section above indicates that our models can yield economic

benefits, difficulties with interpretability suggest that adoption of machine learning will

be carefully scrutinized despite the advantages in prediction accuracy. Adoption will most

likely be staggered across industries and subject to individual customer needs. Machine

learning models such as ours will likely not supplant existing methods for the foreseeable

future, but we expect to see an increase in their use to complement existing methodologies.

We believe that the growth of big data, enhancements in computing power and the

potential gains in accuracy ensure an economic future for machine learning in housing

price prediction.

6.3 Limitations and Further Research

The methodologies and analyses in this thesis have certain limitations. Some stem from

implementation issues, some from resource limits, some from data availability and others

from methodological choices we have made.
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A general limitation of our thesis is the limited scope of our data, which only covers five

boroughs in Oslo. While this still suffices to answer our research question, we cannot

expect the results to generalize to Oslo or Norway as a whole. These five boroughs also

have very few observations of other housing types than apartments, forcing us to focus

only on this type of housing. Furthermore, the five boroughs may not be representative for

Oslo as a whole, as they are commonly considered among the more popular and expensive

districts. This may have biased our results. Future analyses on this topic should preferably

cover larger parts of the country and incorporate housing types such as detached houses,

duplexes, and semi-detached houses.

In addition to comparing the performance of our machine learning models with our

benchmark model, we have also compared our machine learning models with each other in

terms of prediction accuracy and computing time. A fair comparison should also ideally

involve setting equal computational budgets for each model, for example by allowing each

model to tune and train for a predefined length of time. Despite the large differences in

model fitting time we have not done so in this thesis, mostly due to resource constraints.

An ideal analysis would include sufficient computing power to implement computational

budgets without sacrificing model variety.

A related issue concerns the machines used to run our Phase 2 analyses. These were

run on AWS virtual machines. Due to AWS policies that required us to demonstrate

usage before ramping up to our desired specifications, some of our models in Phase 2 were

run on more powerful machines than others. These machines should ideally have been

similarly configured. However, the end results in terms of accuracy and time still seem

ordinally in line with expected performance.

The limited resources available in terms of time and computing power also limited the

thoroughness of our analysis. As we have seen, many machine learning models take a

long time to train and fit. This problem is compounded by the need for hyperparameter

tuning. The computational resources available to us included personal laptops and limited

AWS virtual machines. This severely limited the scope of our hyperparameter tuning

for each model in both phases. Although we still believe our results are indicative of

each algorithm’s performance, we cannot conclude that changes to the hyperparameter

configurations would not lead to different results in terms of which models perform best.
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In general we believe there is potential to improve each model by increasing the scope

of hyperparameter tuning, especially so for the DFNN and XGBoost models, both of

which sampled only a fraction of possible hyperparameter combinations. Limits due to the

available computing power also required us to reduce the number of trees and abandon

tuning of the Random Forest model in Phase 2. Future implementations should seek to

conduct even more extensive hyperparameter tuning, including separate tuning of the

Stacked Regression’s base learners.

The software packages used to implement our models also impose certain limitations. Our

implementation of the DFNN uses the keras package in R. While this package is widely

renowned and versatile, it does not allow for easy implementation of k-fold CV resampling

when conducting random hyperparameter search. Our implementation therefore makes

use of the validation set resampling method for the DFNN. This differs from the k-fold

CV resampling method used by the other models. Similarly, the h2o package used to

implement the Stacked Regression model does not have an efficient method for customized

tuning of the metalearner. Our recourse was to utilize the automatic tuning function in

this package, but this only tuned lambda, leaving alpha at the default value. Furthermore,

an ideal implementation of the Stacked Regression model would have allowed us to fully

replicate the best tunings of our individual models. However, differences between h2o and

the other model packages used inhibited a full replication of each base learner, forcing us

to make heuristic decisions for some hyperparameters in the base learners.

The different sample sizes of our data sets in Phase 1 and Phase 2 can also be considered

a limitation, although this choice was made consciously. Since the two phases utilize

different data sets and cleaning procedures, a direct comparison of results across the

phases is not possible. Related future analyses may want to utilize similar sample sizes for

both phases in order to mitigate this. However, the decision to use a larger sample size

and different pre-processing and feature engineering procedures in Phase 2 was motivated

by a desire to fully utilize available data to investigate the models’ potential accuracy

levels.

Although mentioned in Section 6.1.1, we feel obliged to also note that the discussion of

taxation effects from using machine learning models is a simplified estimation exercise

intended only for indicative purposes. The relatively small sample size of our data is a
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limitation in this estimation. Since the tax effects must be estimated using the test set, we

are only using a random sample of 30% of our total data. This makes any year-by-year tax

estimation difficult because each year would have a relatively small number of observations.

Since both the training and test data are sampled randomly, we also run the risk of using

more recent data to predict taxes back in time, which is not ideal for practical purposes.

A more robust approach would look at the effects of our models on taxation by year,

in addition to providing a generally more extensive and methodically sound analysis of

property taxes.

The discussion of economic impacts as a whole is limited by the proprietary nature of

business practices, with few businesses willing to freely share such information. Deeper

analysis of each application and the potential economic benefits from better housing price

predictions are therefore promising avenues for further research. This should preferably be

done in collaboration with an industry partner such as a bank or a covered bond issuer.

In this thesis we have proved that there is potential to improve housing price predictions

considerably by implementing any one of only four different non-linear machine learning

models. Future research could benefit from investigating the performance of other machine

learning models than the ones used here.

One particularly promising idea for research can be found by combining machine learning

models with property image data. Property listings on platforms such as Finn.no usually

include numerous images of the property in question. Training a specialized image classifier,

such as a Convolutional Neural Network, on this image data in order to predict housing

prices or expected deviations from appraised value can provide valuable insight into the

aesthetics or types of images associated with higher or lower prices. Such a model could

yield valuable predictions by itself, or be incorporated into a Stacked model along with

models such as the ones trained in this paper.
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7 Conclusion

In this thesis we have examined whether non-linear machine learning models can improve

housing price predictions compared to linear regression models in the Norwegian residential

housing market.

In the first phase of our analysis we replicated the data filtering process employed by SSB

and compared the performance of our machine learning algorithms against the benchmark

SSB model using the same variables and data that SSB uses. This was done to isolate the

effect of switching to more advanced non-linear machine learning models. We found that

the XGBoost model performed the best and increased out-of-sample prediction accuracy

by 8.5% in terms of RMSE compared to SSB’s linear model. Our results suggest that

a modest increase in accuracy can be made by simply opting for non-linear machine

learning algorithms over linear regression models due to the existence of non-linear feature

relationships in the data.

In the second phase, we examined whether prediction accuracy could be further increased

by training the same models on a data set with additional property-specific and

macroeconomic variables. We found that the Stacked Regression model performed the best

and was able to produce 39.52% more accurate predictions compared to the benchmark

linear model in terms of RMSE. Moreover, all the non-linear models outperformed the

linear benchmark. The results demonstrate that significant accuracy gains can be made by

adopting a non-linear machine learning approach in conjunction with additional variables.

Increased housing price prediction accuracy from non-linear machine learning models can

yield economic gains in applications including taxation, property transactions, refinancing

and risk management. While the proprietary nature of business practices limits the extent

of our estimations of economic gains, preliminary tax estimates indicate that adoption

of our best machine learning model may have several beneficial effects that lead to more

correct property taxes. This includes a 31.5% reduction in properties being unduly charged

with property taxes, as well as a considerable reduction in underestimation of property

taxes for the most valuable dwellings.

Future research should focus on deeper analyses of the economic effects and applications

for improved housing price prediction. We also recommend further exploration of different
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types of machine learning algorithms, especially in conjunction with other data types such

as image data from property listings.
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Appendix

A1 Variable Description and Imputation Methods

Table A1.1 presents an overview of all variables along with a description and imputation

method for each variable in Phase 2. For features that only take one of two values, such as

whether a particular estate type has a balcony (yes or no), we simply assume that missing

values indicate that the particular estate type does not have a balcony. Hence, we set a

default value of 0 for such variables (where 1 represents yes and 0 represents no). This

also applies to features where missing values likely represent a value of 0, such as the value

of the debt of housing associations with cooperative ownership. It is reasonable to assume

that such debt is only reported for estate types that have such debt (such as apartment

blocks), but not for other property types. Hence, it is reasonable to set a default value of

0 in case of missing values for these types of instances, as they are not missing at random.

Numerical features are imputed using grouped median or median, except for the square

meter metrics. Since at least one square meter metric is available for all transactions, we

use the different metrics as a proxy for each other, as it is reasonable to assume that this

is a better proxy than the median value of all apartments. We impute missing values for

primary area as gross area, and vice versa. Similarly, we impute missing values for gross

area as total area, and vice versa. In cases where the value of a feature likely depends

on the geographical location of a property, such as for altitude, coast distance and coast

direction, we use city district as a grouping variable. The reasoning behind this is that

these features are most likely very similar for properties in the same area, whereas there

might be huge differences for properties that lie on different sides of the city. For features

that likely depend on the specific type of property, such as the number of bedrooms, we

use estate type as grouping variable. In cases where grouped median cannot be computed

because all values for a given group are missing, we use the median value.
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Table A1.1: Variable description and imputation methods

This table shows variable description amd imputation method for all variables.

Variable Description Type Imputation method Source

CityDistrict Location (borough) Dummy None Eiendomsverdi
PricePerSquareMeter Sales price per square meter (NOK) Continuous None Eiendomsverdi
TargetPriceCommondebt Shared debt of housing cooperative (NOK) Continuous None Eiendomsverdi
TargetPriceMarketSaleDate Sales date Date None Eiendomsverdi
EstateType Type of property Dummy None Eiendomsverdi
EstateSubType Sub category for property type Dummy Default (EstateType) Eiendomsverdi
OwnershipType Type of ownership Dummy None Eiendomsverdi
SiteOwnershipType Site ownership type Dummy None Eiendomsverdi
PRom Square meters of primary area Continuous Default (BRA/BTA) Eiendomsverdi
BRA Square meters of gross area Continuous Default (Prom/BTA) Eiendomsverdi
BTA Square meters of gross total area Continuous Default (BRA/Prom) Eiendomsverdi
BuildYear Building build year Continuous Grouped median Eiendomsverdi
NumberOfBedrooms Number of bedrooms Continuous Grouped median Eiendomsverdi
Balcony Balcony (yes/no) Dummy Default (0) Eiendomsverdi
Elevator Elevator (yes/no) Dummy Default (0) Eiendomsverdi
SiteArea Total square meters of site Continuous Grouped median Eiendomsverdi
SiteAreaUndeveloped Undeveloped site area (square meters) Continuous Grouped median Eiendomsverdi
Longitude Longitude coordinates Continuous None Eiendomsverdi
Latitude Latitude coordinates Continuous None Eiendomsverdi
CoastDistance Distance to coast (meters) Continuous Grouped median Eiendomsverdi
CoastDirection Direction of coast (degree) Continuous Grouped median Eiendomsverdi
Altitude Altitude above sea level (meters) Continuous Grouped median Eiendomsverdi
SunsetHour Sunset time during summer Continuous Grouped median Eiendomsverdi
SiteSlope Slope of site (degrees) Continuous Grouped median Eiendomsverdi
SiteSlopeDirection Site slope direction (degrees) Continuous Grouped median Eiendomsverdi
NumberOfUnitsInAdjoiningSquares Number of housing units within one square of the property Continuous Median Eiendomsverdi
NumberOfUnitsInAdjoiningSquaresX2 Number of housing units within two squares of the property Continuous Median Eiendomsverdi
NumberOfDetachedHousesInAdjoiningSquares Number of detached houses within one square Continuous Median Eiendomsverdi
NumberOfDetachedHousesInAdjoiningSquaresX2 Number of detached houses within two squares Continuous Median Eiendomsverdi
NumberOfFlatsInAdjoiningSquares Number of flats within one square Continuous Median Eiendomsverdi
NumberOfFlatsInAdjoiningSquaresX2 Number of flats within two squares Continuous Median Eiendomsverdi
NumberOfAttachedHousesInAdjoiningSquares Number of attached houses within one square Continuous Median Eiendomsverdi
NumberOfAttachedHousesInAdjoiningSquaresX2 Number of attached houses within two square Continuous Median Eiendomsverdi
NumberOfSemiDetachedHousesInAdjoiningSquares Number of semi-detached houses within one square Continuous Median Eiendomsverdi
NumberOfSemiDetachedHousesInAdjoiningSquaresX2 Number of semi-detached houses within two squares Continuous Median Eiendomsverdi
PreviousValue Market value at previous sale Continuous Default (0) Eiendomsverdi
PreviousValueCommondebt Value of debt at previous sale Continuous Default (0) Eiendomsverdi
PreviousPriceValueCategory Sales category of previous sale Dummy Default (No sale) Eiendomsverdi
CPI Norwegian Consumer Price Index Continuous None Bloomberg
NIBOR NIBOR 3-month Continuous None Bloomberg
Brent Norwegin Brent Spot Continuous None Eikon
SalesYear Year of sale Continuous None Eiendomsverdi
GroundFloor Ground floor (yes/no) Dummy None Eiendomsverdi
MiddleFloor Between ground floor and top floor (yes/no) Dummy Default (MiddleFloor) Eiendomsverdi
TopFloor Top floor (yes/no) Dummy None Eiendomsverdi
Age Age at time of sale Continuous None Eiendomsverdi
SiteAreaUndevelopedPerc Undeveloped site area as a percentage of total area Continuous None Eiendomsverdi
SalesMonth Month of sale Continuous None Eiendomsverdi

A2 Anomaly Detection with Isolation Forest

Isolation Forest is an unsupervised learning algorithm that, unlike most model based

anomaly detection procedures, identifies anomalies instead of identifying normal points

(Liu et al., 2008). Because of this, Isolation Forests only needs to be trained on a small

fraction of the data in order to effectively identify anomalies (Liu et al., 2008). Just like

other Ensemble methods, it is based on the idea of building a large number of decision

trees. In each of these decision trees, which are built using only a small subset of the

data, branches are created by randomly selecting a feature. The data contained in each

feature is then divided by randomly selecting a split value between the minimum and



A2 Anomaly Detection with Isolation Forest 87

maximum value of the feature (Liu et al., 2008). If a given observation has a lower value

than the split value, it will follow the left branch in the tree. Otherwise, it will follow

the right branch. The process of splitting data and creating new branches within a tree

continues until a single point is isolated or a maximum depth is reached (Liu et al., 2008).

The key idea is that since the split value is chosen randomly, all split values have equal

probabilities. Then, since outliers in theory are few and lie further away from the normal

observations in the feature space (which are usually clustered together), it takes on average

significantly fewer splits to isolate an outlier as opposed to normal observations (Liu

et al., 2008). Hence, outliers should lie closer to the root of the tree and therefore have

a shorter average path length compared to normal observations. After all features have

been considered, an anomaly score is computed for each unique observation in the data.

Equation .1 shows the formula used to compute the anomaly score.

s(x, n) = 2−
E(h(x))

c(n) (.1)

In this setting, h(x) is the path length of observation x, E(h(x)) is the expected or average

path length of observation x, c(n) is the average path length of unsuccessful search in

a binary search tree and n is the number of external nodes in a tree (Liu et al., 2008).

A score closer to 1 indicates an anomaly, whereas a score closer to 0.5 indicates normal

observations.
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A3 Descriptive Statistics

Table A3.1: Descriptive statistics for all continuous variables in Phase 2

Variable Mean St. Dev. Min Max

Price per square meter (NOK) 56,535.940 21,358.970 1,209.677 226,851.900
Shared debt in joint ownership (NOK) 121,240.600 258,578.800 0 5,201,000
Primary area (m2) 62.803 27.597 10 386
Gross area (m2) 63.424 28.018 10 401
Gross total area (m2) 68.082 30.925 10 386
Build year 1,940.937 38.362 1,750 2,020
Number of bedrooms 1.685 0.729 0 23
Site area (m2) 3,671.846 7,499.272 0.000 61,435.600
Undeveloped site area (m2) 2,741.128 6,910.578 0.200 49,273.600
Longitude 262,251.300 1,721.930 255,603 265,311
Latitude 6,651,022.000 827.326 6,648,000 6,653,021
Distance to coast (meters) 2,120.448 1,002.593 5 10,000
Coast direction (degrees) 222.139 21.468 29 375
Site slope (degrees) 3.646 3.148 0 37
Site slope direction (degrees) 199.281 60.740 0 351
Number of units in adjoining squares 4,146.666 1,141.798 258 6,653
Number of units in adjoining squares (X2) 10,712.780 2,749.728 1,482 15,781
Number of detached houses in adjoining squares 27.457 31.834 0 316
Number of detached houses in adjoining squares (X2) 85.849 80.033 3 700
Number of flats in adjoining squares 3,883.720 1,119.208 38 6,270
Number of flats in adjoining squares (X2) 9,956.705 2,718.613 328 14,692
Number of attached houses in adjoining squares 17.577 23.578 0 255
Number of attached houses in adjoining squares (X2) 47.565 52.924 0 524
Number of semi detached houses in adjoining squares 23.102 19.465 0 171
Number of semi detached houses in adjoining squares (X2) 76.471 46.718 3 384
Previous value (NOK) 755,361.100 1,329,970.000 0 14,400,000
Previous value shared debt (NOK) 35,597.810 149,869.500 0 5,201,000
Consumer price index 96.938 9.085 81.200 112.900
NIBOR 3-month (%) 2.174 1.359 0.230 7.910
Brent Spot (USD) 75.567 25.186 19.330 146.080
Sunset time during summer 20.651 0.426 17.250 21.390
Altitude (meters) 51.277 27.509 0 190
Sales year 2,012.807 4.497 2,005 2,020
Age 71.870 38.272 0 256
Undeveloped site area (%) 1.658 15.160 0.001 1,341.070
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Table A3.2: Descriptive statistics for all dummy variables in Phase 2

Variable Mean

Balcony 0.668
Elevator 0.389
Ground floor 0.173
Middle floor 0.768
Top floor 0.059
January 0.077
February 0.076
March 0.090
April 0.089
May 0.107
June 0.110
July 0.042
August 0.113
September 0.100
October 0.091
November 0.075
December 0.030
Frogner 0.239
Grünerløkka 0.277
Sagene 0.257
St. Hanshaugen 0.171
Ullern 0.056
Apartment 0.478
Apartment in block 0.512
Other 0.010
Stock apartment 0.108
Housing cooperative 0.370
Cooperative apartment 0.00002
Condominium 0.522
Leasehold site 0.116
Site owner 0.884
Market sale 0.295
No previous sale 0.705

A4 The Boruta Algorithm

The Boruta algorithm utilizes the original Random Forest algorithm to identify the

relevance of attributes (i.e features) by comparing their relevance to random probes (Kursa

et al., 2010). The algorithm works by creating a shadow attribute for each attribute in

the data, where the values of a given shadow attribute is obtained by randomly shuffling
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the original value of the attribute across objects (Kursa et al., 2010). The algorithm then

leverages the Random Forest algorithm to classify the importance of the shadow attributes.

The idea is that given the random nature of the shadow attributes, their importance can

only be nonzero due to random fluctuations (Kursa et al., 2010). Hence, the importance

of the shadow attributes can be used as a reference to evaluate the importance of the real

attributes. After all attributes have been classified, a Z-score, as shown in Equation .2, is

computed for all decision trees to determine the relevance of an attribute.

Z =
Average loss

Standard deviation of variable
(.2)

The algorithm then finds the maximum Z-score amongst the shadow attributes. If an

attribute has significantly lower score than the maximum Z-score, it is deemed unimportant

and permanently removed (Kursa et al., 2010). Otherwise, it is deemed important. At the

end of the iteration, all shadow attributes are removed. This process is then repeated until

importance is assigned to all attributes, or until the algorithm reaches the predetermined

maximum number of runs (Kursa et al., 2010). If the importance of an attribute cannot be

deemed within the maximum number of runs, importance can be assigned by comparing

the median attribute Z-score against the median Z-score of the most important attribute

(Kursa et al., 2010).

A5 Feature Selection with the Boruta Algorithm

We use the Boruta library in R (Kursa et al., 2010) to perform feature selection using

the Boruta algorithm in Phase 2. All features are included in the model, and price per

square meter is declared as the response. The algorithm is performed on 50 percent of the

data to speed up computation time. Figure A5.1 shows a graph of all features and their

corresponding importance. Unsurprisingly, square meter metrics such as PRom and BTA

are considered highly relevant. After 50 iterations, all features are confirmed important

except TopFloor and SalesMonth, which are marked as tentative. A possible explanation

for this is that the features had Z-scores very close to the maximum Z-score, rendering

the algorithm unable to make a decision with the desired statistical confidence within a

realistic number of iterations. However, after performing a tentative fix on the remaining
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features in which the median Z-score of the feature is compared against the median

Z-score of the most important shadow attribute, both tentative features are confirmed as

important.

Hence, the results from the Boruta algorithm suggest that all features should be included

for predictive purposes. A possible concern in this regard is multicollinearity, a situation

in which two or more predictors are strongly correlated, meaning that they explain a lot

of the same variation in the response variable (Paul, 2006; Stock and Watson, 2015). The

main implication of multicollinearity is that statistical inference becomes unreliable, as it

gets harder for the models to isolate the relationship between the response variable and

each of the predictors (Stock and Watson, 2015; Paul, 2006). However, since we are only

interested in prediction and not inference, multicollinearity will not be a problem (Paul,

2006). It is also worth noting that because the Boruta algorithm uses the Random Forest

classifier, it is not affected by problems with multicollinearity in the fitting process (Kursa

et al., 2010; Chen et al., 2018).

Figure A5.1: Feature selection using the Boruta algorithm

This figure shows a plot of the features and their corresponding relevance according to the
Boruta algorithm. The horizontal axis maps the features and the vertical axis displays
their corresponding importance. Blue boxplots convey the minimal, average and maximum
Z-score of an attribute, while red and green boxplots represent the same information for
the actual features. The higher the feature is located in the two-dimensional space, the
more important it is considered to be.
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A6 SHapley Additive exPlanations

SHapely Additive exPlanations (SHAP) are based on the concept of Shapley Values, a

solution in cooperative game theory that assigns payouts to the players in a coalition

depending on their marginal contributions (Shapley, 1953). In the context of machine

learning Shapley values can be used to explain the output of models by assuming a game

where each feature value is a player and the prediction is the output (Molnar, 2019). As

in the original case, Shapley values can then be used to determine how to fairly distribute

the payoff among the features (i.e. players) (Shrikumar et al., 2017).

In order to understand how SHAP values are computed, we must first understand how

Shapley values are computed in the context of interpreting the output of machine learning

models. The Shapley Value for one feature is the average marginal contribution of a

feature value across all possible coalitions of features (Molnar, 2019). Mathematically,

the Shapley value can be interpreted as the contribution φj of the jth feature on the

prediction of a particular instance (Molnar, 2019). The Shapley value is defined by a value

function val consisting of a subset S of players, where the Shapley value of feature j is

the average contribution of j to the payout across all possible feature value combinations

(Molnar, 2019):

φj(val) =
∑

S⊆{x1,...,xp}/{xj}

|S|!(p− |S| − 1)!

p!
(val(S ∪ {xj})− val(S)) (.3)

Where S is a subset of the features, x is a vector of feature values of the particular instance

that we seek to explain and p is the number of features (Molnar, 2019). Then, valx(S) is

the prediction for the feature values contained in set S that are marginalized over the

features that are not included in this set (Molnar, 2019):

valx(S) =

∫
f̂(x1, ..., xp)dPx/∈S − EX(f̂(X)) (.4)

It can be shown that the cooperative solution represented by the Shapley value is the

only solution that satisfies the properties required for a fair distribution of the payout,

namely Efficiency, Symmetry, Dummy and Additivity. We refer to Shapley (1953) for
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details regarding these properties.

To estimate the Shapley Value of feature j, we must evaluate all possible coalitions (i.e.

sets) of feature values with and without the jth feature. The exact estimation of the

Shapley value is what separates the original solution by Shapley (1953) from the ones

proposed by Lundberg and Lee (2017). In their original paper, Lundberg and Lee (2017)

proved that SHAP values satisfy the same properties as the Shapely Value79.

In the SHAP framework, the Shapley value is represented as an additive feature attribution

method, meaning that it is a linear function of binary variables (Lundberg et al., 2018).

This allows for connecting Local Interpretable Model-agnostic Explanations (LIME), which

is a local surrogate model, and Shapely values. The goal is to explain the prediction of an

instance x by quantifying how much each feature contributes to the prediction (Molnar,

2019; Lundberg and Lee, 2017), which is specified as:

g(z′) = φ0 +
M∑
j=1

φjz
′
j (.5)

Where g is the linear explanation model, z′ ∈ {0, 1}M is the simplified features or the

"coalition vector", M is the number of input features (i.e maximum coalition size) and

φj ∈ R is the feature attribution for feature j (i.e the Shapley value) (Molnar, 2019;

Lundberg et al., 2018). In the coalition vector, a value of 1 means that the feature value is

present (z′j = 1) and a value of 0 means that it is absent (z′j = 0) (Molnar, 2019; Lundberg

et al., 2018). Simulation is then used to dictate which features are present (i.e. playing)

and which are absent (i.e. not playing) (Molnar, 2019). For a particular instance x, the

coalition vector x′ is a vector containing only 1’s80, which simplifies to:

g(x′) = φ0 +
M∑
j=1

φj (.6)

Lundberg and Lee (2017) show that φ satisfy the properties Local accuracy, Missingness

and Consistency, which correspond to the properties that the Shapely value satisfy. Hence,

SHAP values are consistent with Shapley values.

79Referred to as Local accuracy, Missingness and Consistency in Lundberg and Lee (2017)
80Meaning that all feature values are present
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Based on the original SHAP framework, the SHAP authors proposed TreeSHAP (Lundberg

et al., 2018, 2019), which is what we use in this thesis. TreeSHAP is a model-specific

SHAP framework for ensemble methods (Lundberg et al., 2018). TreeSHAP differs from

the original SHAP framework in that it uses the conditional expectation EXS |XC
(f(x)|xS)

to define the value function instead of the marginal expectation (Molnar, 2019). In

short, TreeSHAP computes the Shapley values of an ensemble of decision trees as the

weighted average of the Shapley values of the individual decision trees (Molnar, 2019).

The computation of Shapley values for a single decision tree can be extended to a tree

ensemble due to the Additivity property of Shapley values.

In order to evaluate the exact effect that missing (i.e. absent) features has on a model f ,

a mapping function hx must be defined (Lundberg et al., 2018). According to Lundberg

et al. (2018), hx maps between a binary pattern of missing features represented by z′

(the coalition vector) and the original function. This allows for evaluating f(hx(z′)) and

thereby compute the effect of a feature being present (z′j = 1) or absent (z′j = 0) (Lundberg

et al., 2018).

To compute SHAP values for a model f , Lundberg et al. (2018) define

fx(S) = f(hx(z′)) = E[f(x)|xS] (.7)

Where S is a set of non-zero indexes in the coalition vector z′ and E[f(x)|xS] is the

expected value of the function conditioned on the subset S containing the input features

(Lundberg et al., 2018). SHAP values are then computed by combining the conditional

expectations with the original Shapley values from Equation .3:

φi =
∑

S⊆N/{i}

|S|!(M − |S| − 1)!

M !
[fx(S ∪ {i})− fx(S)] (.8)

Where N is the set of all features. Hence, to compute SHAP values for a tree model,

one must estimate E[f(x)|xS] and then use Equation .8 where fX(S) = E[f(x)|xS]. The

exact algorithms for estimating E[f(x)|xS] can be found in Lundberg et al. (2018)81.

81Referred to as Algorithm 1 (exponential time) and Algorithm 2 (polynomial time) in the paper.



A7 Random Forest Hyperparameter Tuning Grids 95

A6.1 SHAP Plots

In Chapter 5 we utilize SHAP Summary plots and SHAP Dependence plots. SHAP

Summary plots show global feature importance and feature effects, sorted by importance.

Feature importance is based on SHAP values, which in turn are based on Shapley values.

Features with large absolute SHAP values are deemed important, and vice versa (Lundberg

et al., 2019). Global importance is found by computing the average absolute SHAP value

per feature across the data, as shown in Equation .9.

Ij =
n∑

i=1

|φ(i)
j | (.9)

In SHAP Summary plots, each point along the horizontal axis represents a SHAP value

φ
(i)
j for a given instance for a feature (Molnar, 2019). The positioning on the horizontal

axis shows in which direction a feature affects the response variable and the Shapley value

for each instance of a feature (Molnar, 2019).

In SHAP Dependence plots, a feature is plotted against the SHAP values of that feature

for each data instance (Molnar, 2019). The feature value is shown on the horizontal axis

and the SHAP value is shown on the vertical axis. Mathematically, the plot contains the

points {(x(i)j , φ
(i)
j )}ni=1.

A7 Random Forest Hyperparameter Tuning Grids

Table A7.1: Random Forest Hyperparameter Tuning Values - Phase 1

Hyperparameter Value

Ntree 1000
Mtry (1, 2, 3, 4, 5, 6, 7, 8)

Table A7.2: Random Forest Hyperparameter Tuning Values - Phase 2

Hyperparameter Value

Ntree 500
Mtry 20
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A8 XGBoost Hyperparameter Tuning Values

Table A8.1: XGBoost Hyperparameter Tuning Values - Phase 1

Hyperparameter Value

Number of trees (50, 100, 300, 500, 700, 1000, 1300, 1500)
Maximum Tree Depth (2, 3, 6, 8, 10, 15, 20, 25, 30)
Learning Rate (0.01, 0.02, 0.03, 0.1, 0.3, 0.6, 1)
Gamma (0, 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5)
Minumum Child Weight (1, 3, 5, 10, 15)
Column Subsampling (0.500, 0.625, 0.750, 0.875, 1.000)
Row Subsampling (0.500, 0.625, 0.750, 0.875, 1.000)

Table A8.2: XGBoost Hyperparameter Tuning Values - Phase 2

Hyperparameter Value

Number of trees (50, 100, 300, 500, 700, 1000, 1300, 1500)
Maximum Tree Depth (2, 3, 6, 8, 10, 15, 20, 25)
Learning Rate (0.01, 0.02, 0.03, 0.1, 0.3, 0.6, 1)
Gamma (0, 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5)
Minumum Child Weight (1, 3, 5, 10, 15)
Column Subsampling (0.500, 0.625, 0.750, 0.875, 1.000)
Row Subsampling (0.500, 0.625, 0.750, 0.875, 1.000)
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A9 DFNN Hyperparameter Tuning Values

Table A9.1: DFNN Hyperparameter Tuning Values - Phase 1 & 2

Hyperparameter Value

Batch size (16, 32, 64, 128, 256, 512, 1024)
Layer 1 hidden units (16, 32, 64, 128, 256, 512, 1024)
Layer 2 hidden units (16, 32, 64, 128, 256, 512, 1024)
Layer 1 dropout rate (0.0, 0.1, 0.2, 0.3, 0.4, 0.5)
Layer 2 dropout rate (0.0, 0.1, 0.2, 0.3, 0.4, 0.5)
Layer 1 bias initializer (0, 0.01)
Layer 2 bias initializer (0, 0.01)
Initial LR* (0.0001, 0.0005, 0.001, 0.005, 0.01)
LR* annealing factor (0.01000, 0.03375, 0.05750, 0.08125, 0.10500, 0.12875, 0.15250, 0.17625, 0.20000)
L2 regularization (0, 0.0001, 0.001, 0.01, 0.1)
Optimizer (SGD, RMSprop, Adadelta)
Momentum (0, 0.5, 0.9)

Preset Values Value

Hidden layers 2
LR* annealing patience 5
Activation function Rectified Linear Unit (ReLU)
Max epochs 1000
Early stopping patience 20
Layer 1 weight initializer Glorot Uniform
Layer 2 weight initializer Glorot Uniform
Include bias layer 1 True
Include bias layer 2 True

*Learning Rate
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A10 Predicted Versus Actual Values

Figure A10.1: Predicted versus actual values - Phase 1

This figure shows predicted versus actual values for the SSB Linear Regression (OLS)
(top) and XGBoost (bottom). Actual values in the test data are displayed on the vertical
axis and the predicted values are displayed along the horizontal axis. The blue diagonal
line represents 100 % accuracy.



A11 Phase 1 Model Selection 99

Figure A10.2: Predicted versus actual values - Phase 2

This figure shows predicted versus actual values for the linear benchmark model (OLS)
(top) and Stacked model (bottom). Actual values in the test data are displayed on the
vertical axis and the predicted values are displayed along the horizontal axis. The blue
diagonal line represents 100 % accuracy.

A11 Phase 1 Model Selection

As described in the methodology chapter, hyperparameter tuning is conducted by means

of Grid Search or Random Search for the individual models. Hyperparameter values

for the base learners that make up the Stacked model are obtained from the individual

tuning of these models. In cases where perfect replication of the individual models was

not possible in the base learners, other similar values and approaches have been selected.

A11.1 XGBoost

Hyperparameter tuning for XGBoost was conducted via random search on a pre-defined

grid, sampling 120 different combinations of hyperparameter values. The specifications of
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the resulting model are shown in Table A11.1.

Table A11.1: XGBoost final hyperparameters

Hyperparameter Value

Number of trees 1000
Maximum Tree Depth 10
Learning Rate 0.01
Gamma 0.2
Minumum Child Weight 5
Column Subsampling 1
Row Subsampling 0.875

The hyperparameter values provide insight into this model’s learning process and the

balancing between regularization and data fitting. The high number of trees grown makes

the model, in isolation, prone to overfitting, since each additional tree captures ever more

of the variance in the fitted data set. However, this is offset by the selection of a low

learning rate. The net effect is that, although the model grows many trees, each tree’s

influence is relatively low, such that the overall model learns much of the relationships in

the data set while still generalizing well.

With a maximum tree depth of 10, each tree is relatively deep, thereby allowing for more

complexity to be captured than a shallower tree. This increases the risk of overfitting.

However, non-zero values of Gamma and Minimum Child Weight act as regularizing

factors to counteract this complexity. Similarly we see regularization effects from row

subsampling only allowing each tree to sample a subset of the data when training.

A11.2 Random Forest

Grid Search was implemented to tune hyperparameters for the Random Forest algorithm.

The resulting best model can be seen in Table A11.2. As mentioned in our theory section,

Random Forest is robust to overfitting from the number of trees grown. As as long as

the number of trees is set sufficiently large, the only hyperparameter that must be tuned

is the number of predictor variables to consider at each node split, known as mtry. Our

Phase 1 model includes only four variables, but due to one-hot encoding, the dataset

encompasses nine columns. The tuning grid consisted of eight models with 1000 trees
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each, and mtry ranging from one to eight 82.

Table A11.2: Random Forest final hyperparameters

Hyperparameter Value

mtry 4
ntree 1000

Allowing the algorithm to only sample four out of nine predictors at each split forces the

model to sometimes grow trees that consider the weaker predictors in the data set. This

is very much in line with the essential principles behind Random Forest described in our

theory section, thereby decorrelating the trees and reducing variance. Furthermore, this

number is also closely aligned with the recommended number of predictors to sample in a

Random Forest regression, which Breiman et al. (2018) suggest should be set to p/3 83.

In our case this corresponds to three predictors being sampled at each split.

A11.3 Deep Feedforward Neural Network

As with XGBoost, the DFNN was tuned via random hyperparameter search sampling

120 unique combinations over a pre-defined set of values for each hyperparameter. The

resulting model configuration can be seen in Table A11.3. The full hyperparameter grid

sampled is found in Table A9.1.

82The upper limit of eight predictors was set to ensure the algorithm’s randomness.
83p is the total number of predictors available.
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Table A11.3: Deep Feedforward Neural Network Tuned Hyperparameters

Hyperparameter Value

Number of epochs completed 92
Batch size 16
Layer 1 hidden units 256
Layer 2 hidden units 512
Layer 1 dropout rate 0
Layer 2 dropout rate 0.4
Layer 1 bias initializer 0
Layer 2 bias initializer 0.01
Initial learning rate 0.005
Learning rate annealing factor 0.0812
L2 regularization (Weight Decay) 0.0001
Optimizer Minibatch Stochastic Gradient Descent (SGD)
Momentum 0.9

Preset Values Value

Hidden layers 2
Learning rate annealing patience 5
Activation function Rectified Linear Unit (ReLU)
Max epochs 1000
Early stopping patience 20
Layer 1 weight initializer Glorot Uniform
Layer 2 weight initializer Glorot Uniform
Include bias layer 1 True
Include bias layer 2 True

The model implements SGD with momentum as the optimizer, which, combined with a

relatively large initial learning rate, allows the model to learn and converge faster. This is

particularly useful in the early phase of training when large improvements can be made

quickly. However, the model compensates for the large initial learning rate by including a

relatively large annealing factor, which reduces the learning rate by a factor of 8.12 when

loss plateaus, ensuring improved learning can be made in smaller increments. Although

SGD is the non-adaptive optimizer in the tuning grid, our implementation of learning rate

annealing when loss plateaus ensures that the learning rate in fact does change as training

proceeds. Although the allowed number of epochs was 1000 iterations, the final model

returned only completed 92 epochs before early stopping halted further learning. The

relaitvely low number of epochs reduces the model’s potential complexity. However, the

small batch size of 16 is in general better for gaining a good fit to the data at the expense

of increased complexity and poorer generalization. Furthermore, the large number of
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hidden units in each layer also adds to the complexity of the model, allowing it to find

more patterns in the data. However, further regularization of the model is done through

the introduction of a large dropout rate in Layer 2 and L2 regularization that penalizes

complexity in the weights between nodes.

A11.4 Linear Regression

The final Phase 1 linear regression model is shown in Table A11.4. The results indicate

that all predictors are associated with the response variable. It is important to stress that

we cannot use the estimated model to infer relationships between the variables or interpret

the coefficients explicitly, as the least squares assumptions may not be satisfied. This

implies that the coefficients and corresponding p-values may not be accurate. Although

OLS diagnostics can be performed, it is outside the scope of this thesis. That being said,

the estimated coefficients seem to be consistent with the findings from the SHAP plot,

suggesting that there is a negative relationship between the price and square meters, and

that the apartments located at Sagene, Grünerløkka, St. Hanshaugen and Ullern are

associated with lower prices relative to Frogner.

Table A11.4: Linear Regression Coefficients

Estimate

Primary area (m2) −0.190∗∗∗
Age (0-10) 0.098∗∗∗
Age (10-19) 0.085∗∗∗
Age (20-34) 0.063∗∗∗
Sagene −0.208∗∗∗
Grünerløkka −0.262∗∗∗
St. Hanshaugen −0.128∗∗∗
Ullern −0.143∗∗∗
Year 0.080∗∗∗
Constant −149.789∗∗∗

Observations 55,929

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

A11.5 Stacked Regression

We use the R library h2o by LeDell et al. (2020) to implement a Stacked regression model,

as this allows us to stack models that we have already tuned. The hyperparameters for the
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base learners84 are therefore the same as the ones obtained during tuning for these models,

apart from a few instances where incompatibilities between R packages prohibit us from

implementing the exact same configuration. A regularized linear regression is used as the

metalearner to mitigate problems related to overfitting and highly correlated base learners.

Regularization is introduced through incorporation of alpha and lambda-parameters for the

metalearner. Hyperparameter tuning is only conducted for lambda, through the package’s

automatic Lambda Search functionality. The lack of tuning for alpha is a limitation in the

analysis. The optimal weights for the base learners is obtained through k-fold CV using

k = 5.

The final regularization parameters and weights for the Stacked model are shown in Table

A11.585. An alpha value of 0.5 implies that the distribution of the penalty terms from

the Lasso and Ridge regression should be equally weighted. In the context of stacking,

this allows for shrinking the weights of highly correlated base learners (Ridge) as well as

completely shutting off base learners (Lasso). The lambda parameter controls the extent

to which regularization should be performed. A final value of 0.0035 indicates that the

penalty terms should not be heavily emphasized.

The final regularization parameters have direct implications for the final weights. The

XGBoost and DFNN models, which have the best and second best CV-performance

amongst the base learners, also receive the largest relative weights. However, the individual

performance of the base learners does not exclusively determine the weights. The RF

model, which has the worst performance of the base learners, is weighted more aggressively

than the linear model. This is likely due to regularization, or because Random Forest

captures some particular feature relationships better than the other models even though

the overall performance is worse. Finally, the linear regression is marginally weighted in

the Stacked model. This may suggest that linear regression does not contribute enough to

variance reduction, and likely that it does not capture much new information vis-a-vis the

other base learners. It also demonstrates that even with a small value for lambda, the

metalearner will still largely disregard base learners that lead to deteriorating performance.

84XGBoost, RF, DFNN and Linear Regression.
85A full overview of the Stacked model and the configuration of the base learners can be seen in Table

A11.6
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Table A11.5: Stacked Regression Phase 1 - Final regularization parameters and weights

This table shows the final configuration of the Stacked Regression model for Phase 1. All
base learners were trained using optimal values found during tuning of the individual
models. Where we were unable to implement those values, similar or default values
and approaches were chosen. Alpha was fixed at default value, while lambda was tuned
through the package’s automatic lambda search tuning function.
*Cross-validation error

Parameter/Weight Value Test RMSE CV RMSE*

α 0.5
λ 0.00351
XGBoost 0.656567 0.1861 0.1892
FNN 0.22709 0.1878 0.1909
RF 0.11609 0.2038 0.2089
Linear Regression 0.002917 0.2022 0.2046
Intercept -0.02868
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Table A11.6: Stacked model configuration - Phase 1

Stacked Model Configuration

Stacked Ensemble

Hyperparameter Value
Metalearner Regularized Linear Model
Alpha 0.5
Lambda 0.000534
Lambda Search True
Lambda max Default
Lambda min Default
Family Gaussian
CV-folds 5
CV-folds per base learner 5
CV-fold assignment Modulo

Base Learners

XGBoost DFNN

Hyperparameter Value Hyperparameter Value
Booster gbtree Epochs completed 92
Number of Trees 1000 Batch size 16
Max Tree Depth 10 Layer 1 Hidden Units 256
Learning Rate 0.01 Layer 2 Hidden Units 512
Gamma 0.2 Layer 1 Dropout rate 0
Minimum Child Weight 5 Layer 2 Droupout rate 0.4
Column Subsampling 1 Layer 1 Bias Initializer* NULL
Row Subsampling 0.875 Layer 2 Bias Initializer* NULL

Initial Learning rate 0.005
Learning rate annealing* 1e-06
L2 Regularization (Weight Decay) 0.0001
Optimizer SGD
Momentum start* 0.9
Momentum stable* 0.9
Hidden Layers 2
Learning rate annealing patience* 0
Activation function ReLu
Max Epochs 92
Early stopping patience 20
Layer 1 Weight initializer* UniformAdaptive
Layer 2 Weight initializer* UniformAdaptive
Include bias layer 1 True
Include bias layer 2 True
Loss* Quadratic

Random Forest Linear Regression

Hyperparameter Value Hyperparameter Value
Number of trees 1000 Alpha 0
Number of predictors sampled 4 Lambda 0

Solver IRLSM
Family Gaussian

*Values deviate from individual tuned models.
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A12 Phase 2 Model Selection

A12.1 XGBoost

The optimal Phase 2 configuration for XGBoost resulting from our hyperparameter

tuning process can bee seen in Table A12.1. A natural assumption is that the optimal

configuration of the model changes when new variables are added to the data set, and

the results do indeed show that different values for regularizing parameters are employed.

While the number of trees, maximum depth, and row subsampling retain the same values

as in Phase 1, the learning rate has increased to 0.02. This allows each sequential tree

to retain more information than in Phase 1. This seems natural considering that the

expanded data set used in Phase 2 likely also exhibits more relationships between features.

Furthermore, gamma, controlling how much loss is required to partition a leaf node, has

been reduced to zero, thereby increasing the potential complexity of the model. However,

this is likely offset by a higher minimum child weight, this time requiring at least 10

instances to continue tree building. Column subsampling also plays a major role in

regularization. Roughly two thirds of the predictor variables are sampled for each tree

grown, thus reducing the risk of overfitting and decorrelating the model’s trees. Although

further tuning of the model is out of this paper’s scope, the discrepancy between in-sample

and out-of-sample errors show that improvements in generalization may be made by

adding more regularization to this configuration.

Table A12.1: XGBoost final hyperparameters - Phase 2

Hyperparameter Value

Number of trees 1000
Maximum Tree Depth 10
Learning Rate 0.02
Gamma 0
Minumum Child Weight 10
Column Subsampling 0.625
Row Subsampling 0.875
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A12.2 Random Forest

Our preferred approach for model selection for the Random Forest algorithm was to

conduct a full or limited grid search of possible mtry values. However, due to the

algorithm’s extremely long model fitting time, any meaningful implementation of a

hyperparameter search was impossible with our available computational power, budget

and time frame. We therefore fitted the final Random Forest model for Phase 2 using the

default recommendation for mtry value86, as well as a reduced number of trees compared

to our implementation in Phase 1. While the lack of tuning for mtry weakens our analysis,

we still believe the current model to be indicative of the Random Forest algorithm’s

performance potential. It is in line with the relative performance of the models observed

in Phase 1, and tuning results from Phase 1 indicate that the default recommended value

for mtry might anyway be close to the optimal value. The regrettable reduction in ntree

was a computational necessity, as the memory required to fit our original number of

trees exceeded the available memory. This does not seem to have undermined model

performance. Our final Random Forest model configuration for Phase 2 can be seen in

Table A12.2.

Table A12.2: Random Forest Hyperparameter Configuration - Phase 2

Hyperparameter Value

mtry 20
ntree 500

A12.3 Deep Feedforward Neural Network

Tuning the DFNN model was conducted in a similar manner as in Phase 1 by implementing

random search of 120 models on the same tuning grid of values. The resulting final

configuration can be seen in Table A12.3.

86p/3, where p is the number of predictor variables.
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Table A12.3: Deep Feedforward Neural Network Tuned Hyperparameters - Phase 2

Hyperparameter Value

Number of epochs completed 111
Batch size 16
Layer 1 hidden units 256
Layer 2 hidden units 512
Layer 1 dropout rate 0
Layer 2 dropout rate 0.4
Layer 1 bias initializer 0
Layer 2 bias initializer 0.01
Initial learning rate 0.005
Learning rate annealing factor 0.0812
L2 regularization (Weight Decay) 0.0001
Optimizer Minibatch Stochastic Gradient Descent (SGD)
Momentum 0.9

Preset Values Value

Hidden layers 2
Learning rate annealing patience 5
Activation function Rectified Linear Unit (ReLU)
Max epochs 1000
Early stopping patience 20
Layer 1 weight initializer Glorot Uniform
Layer 2 weight initializer Glorot Uniform
Include bias layer 1 True
Include bias layer 2 True

Interestingly, the resulting configuration is the same as the one identified in Phase 1

of the analysis. The only difference between the configurations in Phase 1 and Phase

2 is the number of epochs completed, with 92 epochs completed in Phase 1 compared

to 111 in Phase 2. This allows for a little more complexity in the model compared to

before. Otherwise the hyperparameter configurations have similar effects as in Phase 1;

we therefore refer to the discussion in Appendix A11.3 for a deeper analysis of the final

configuration.

While we expected larger differences in model configuration due to the increased number

of variables in the data set, the results indicate that the optimal model found in Phase

1 was robust to increasing the dimensionality of the data. It may also indicate that

this model configuration is well suited for the characteristics of our data, and that the

additional variables did not change the overall character of the data set. Furthermore, it
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should be noted that, due to reproducability considerations, the tuning process in Phase 2

sampled the same 120 configurations as were sampled in Phase 1. An obvious consequence

is that the effective ability to select a new configuration is therefore limited to those 120

configurations.

A12.4 Linear Regression

The final linear model using all available predictors is shown in Table A12.4. Note that the

age variable and the dummy variable for housing cooperative are removed before fitting the

linear model to avoid problems with multicollinearity. The final estimates show that the

vast majority of predictors are associated with price and statistically significant. However,

there are some predictors that do not seem to be associated with the response variable at

all, such as the percentage of undeveloped site area and number of semi-detached houses

in adjoining squares. Again, since the least squares assumptions may not be satisfied, we

cannot use the estimated model for statistical inference. Although many of the coefficients

are consistent with with the SHAP plot in Figure 5.2, many of them are not. This may

indicate that the least squares assumptions are in fact not satisfied, or that there are

non-linear properties inherent in some of the features which a linear regression model

cannot capture, resulting in high bias. The SHAP dependence plot in Figure 5.3 provides

evidence that both NIBOR, PRom and Longitude have a non-linear relationship with

price per square meter. This may explain why the estimated coefficients for CPI and

NIBOR, for instance, is counter-intuitive.
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Table A12.4: Linear Regression Coefficients in Phase 2

Estimate

TargetPriceCommondebt −0.00000∗∗∗
PRom −0.006∗∗∗
BRA 0.001∗∗∗
BTA 0.001∗∗∗
BuildYear 0.001∗∗∗
NumberOfBedrooms 0.026∗∗∗
Balcony 0.015∗∗∗
Elevator 0.030∗∗∗
SiteArea 0.00000∗
SiteAreaUndeveloped −0.00000∗
Longitude −0.00002∗∗∗
Latitude 0.00005∗∗∗
CoastDistance −0.0001∗∗∗
CoastDirection −0.0001∗∗
SiteSlope −0.001∗∗
SiteSlopeDirection 0.00001
NumberOfUnitsInAdjoiningSquares 0.0003∗∗∗
NumberOfUnitsInAdjoiningSquaresX2 −0.0002∗∗∗
NumberOfDetachedHousesInAdjoiningSquares −0.0003∗∗∗
NumberOfDetachedHousesInAdjoiningSquaresX2 −0.0001∗
NumberOfFlatsInAdjoiningSquares −0.0003∗∗∗
NumberOfFlatsInAdjoiningSquaresX2 0.0002∗∗∗
NumberOfAttachedHousesInAdjoiningSquares −0.001∗∗∗
NumberOfAttachedHousesInAdjoiningSquaresX2 0.0003∗∗∗
NumberOfSemiDetachedHousesInAdjoiningSquares 0.0001
NumberOfSemiDetachedHousesInAdjoiningSquaresX2 −0.00000
PreviousValue 0.000∗∗∗
PreviousValueCommondebt 0.00000∗∗∗
CPI −0.005∗∗∗
NIBOR 0.011∗∗∗
Brent −0.001∗∗∗
SunsetHour 0.025∗∗∗
Altitude 0.0001∗
SalesYear 0.079∗∗∗
GroundFloor −0.059∗∗∗
TopFloor 0.052∗∗∗
SiteAreaUndevelopedPerc 0.0001
SalesMonth.2 0.015∗∗∗
SalesMonth.3 0.020∗∗∗
SalesMonth.4 0.030∗∗∗
SalesMonth.5 0.040∗∗∗
SalesMonth.6 0.040∗∗∗
SalesMonth.7 0.047∗∗∗
SalesMonth.8 0.061∗∗∗
SalesMonth.9 0.055∗∗∗
SalesMonth.10 0.061∗∗∗
SalesMonth.11 0.054∗∗∗
SalesMonth.12 0.047∗∗∗
CityDistrict.GRUNERLOKKA −0.096∗∗∗
CityDistrict.SAGENE −0.078∗∗∗
CityDistrict.ST.HANSHAUGEN −0.036∗∗∗
CityDistrict.ULLERN −0.117∗∗∗
EstateSubType.Annen.subtype 0.044∗∗∗
EstateSubType.Leilighet −1.681∗∗∗
OwnershipType.Aksjeleilighet 1.649∗∗∗
OwnershipType.Borettslag 1.696∗∗∗
SiteOwnershipType.Festet −0.011∗∗∗
PreviousPriceValueCategory.Markedsalg 0.012∗∗∗
Constant −472.710∗∗∗

Observations 80,781

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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A12.5 Stacked Regression

Table A12.5 shows the regularization parameters, base learner weights and base learner

performances of the Stacked Regression model in Phase 2. See Table A12.6 for a full

overview of the base learners’ configurations. As in Phase 1, XGBoost is the best

performing base learner, but this time Random Forest performs marginally better than the

DFNN. The linear benchmark model clearly performs the worst. The relative weighting

of the base learners reflect these performances by weighting XGBoost the highest, and

directly penalizing the benchmark model with a negative weight. Although the RF model

outperforms the DFNN base learner, the stacked model gives the latter a higher weight

than RF, which is weighted only marginally above zero. This may indicate that the two

tree-based models XGBoost and RF are highly correlated and capture much of the same

information, while the DFNN is able to complement the XGBoost model better than RF

due to an ability to capture different feature relationships in the data. The low value for

λ indicates almost no regularization is performed in the metalearner.

As in Phase 1, the base learner performances do not fully replicate the performance of our

individually tuned models due to package differences that force different implementations.

In fact, all base learners have a worse test-error performance than their individually

tuned counterparts, apart from XGBoost, which performs as well as the individual model.

The superior performance of Stacked Regression in Phase 2, although by a small margin

compared to the individual XGBoost model, may indicate that the stacking procedure

allows the different base learners to compliment each other in identifying relationships

between features.
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Table A12.5: Stacked Regression - Final regularization parameters and weights - Phase
2

This table shows the final configuration of the Stacked Regression model for Phase 2. All
base learners were trained using optimal values found during tuning of the individual
models. Where we were unable to implement those values, similar or default values
and approaches were chosen. Alpha was fixed at default value, while lambda was tuned
through the package’s automatic lambda search tuning function.

Parameter/Weight Value Test RMSE CV RMSE*

α 0.5
λ 0.0007756108
XGBoost 0.9243904 0.1076 0.1033
FNN 0.08342137 0.1240 0.1184
RF 0.003390168 0.1201 0.1164
Linear Regression -0.006353007 0.1774 0.1686
Intercept -0.05300023

*Cross-validation error
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Table A12.6: Stacked model configuration - Phase 2

*Values deviate from individual tuned models.

Stacked Model Configuration

Stacked Ensemble

Hyperparameter Value
Metalearner Regularized Linear Model
Alpha 0.5
Lambda 0.0007756108
Lambda Search True
Lambda max Default
Lambda min Default
Family Gaussian
CV-folds 5
CV-folds per base learner 5
CV-fold assignment Modulo

Base Learners

XGBoost DFNN

Hyperparameter Value Hyperparameter Value
Booster gbtree Epochs completed 111
Number of Trees 1000 Batch size 16
Max Tree Depth 10 Layer 1 Hidden Units 256
Learning Rate 0.02 Layer 2 Hidden Units 512
Gamma 0 Layer 1 Dropout rate 0
Minimum Child Weight 10 Layer 2 Droupout rate 0.4
Column Subsampling 0.625 Layer 1 Bias Initializer* NULL
Row Subsampling 0.875 Layer 2 Bias Initializer* NULL

Initial Learning rate* NULL
Learning rate annealing* NULL
L2 Regularization (Weight Decay) 0.0001
Optimizer* Adadelta
Momentum start* 0.9
Momentum stable* 0.9
Hidden Layers 2
Learning rate annealing patience* 0
Activation function ReLu
Max Epochs 111
Early stopping patience 20
Layer 1 Weight initializer* UniformAdaptive
Layer 2 Weight initializer* UniformAdaptive
Include bias layer 1 True
Include bias layer 2 True
Loss* Quadratic

Random Forest Linear Regression

Hyperparameter Value Hyperparameter Value
Number of trees 500 Alpha 0
Number of predictors sampled 20 Lambda 0

Solver IRLSM
Family Gaussian
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A13 Property Tax Calculation Procedure

To estimate the aggregated property taxation effects of the Phase 2 Stacked Regression

model and Phase 1 SSB benchmark model, we undertake the following process:

1. Back-transform87 the predicted price per square meter from our analyses in Chapter

5 and the actual price pre square meter to get predicted values and actual values in

NOK.

2. Compute each property’s correct property value and predicted property value by

multiplying the actual88 square meter prices (y) and predicted square meter prices

(ŷ) with the size89 of the property.

3. For each property, compute predicted and correct property tax (PT) using the

following formula:90

PT = max{0, ((Property value ∗ 0.70− 4, 000, 000) ∗ 0.003)} (.10)

4. Summarize the correct and predicted property taxes for each observation in the test

set of each model.

5. Compute the total tax error (TE) for each model using the formula:

TE =
Predicted tax− Correct tax

Correct tax
(.11)

87e raised to the power of x where x is the natural logarithm of the predicted value for instance x.
88Obtained from the test set.
89Square meters of primary area (PRom)
90Derived from tax details shown in Table 6.1.


