
Discussion paper

INSTITUTT FOR FORETAKSØKONOMI

DEPARTMENT OF BUSINESS AND MANAGEMENT SCIENCE

Norges
Handelshøyskole

Norwegian School of Economics 

NHH
Helleveien 30
NO-5045 Bergen
Norway

Tlf/Tel: +47 55 95 90 00
Faks/Fax: +47 55 95 91 00
nhh.postmottak@nhh.no
www.nhh.no

Discussion paper

INSTITUTT FOR FORETAKSØKONOMI

DEPARTMENT OF BUSINESS AND MANAGEMENT SCIENCE

 

A new Semi-Lagrangean Relaxation  
for the p-median problem

BY
Alex Butsch, Kurt Jörnsten AND Jörg Kalcsics

FOR 1 2015
ISSN: 1500-4066
January 2015



1 
 

 A new Semi-Lagrangean Relaxation for the p-median problem 

Alex Butsch#,  Kurt Jörnsten*, Jörg Kalcsics# 

*Norwegian School of Economics, Helleveien 30, 5045 Bergen, Norway 
Email address  Kurt.Jornsten@nhh.no 
# Institute for Operations ResearchKarlsruhe Institute of Technology  Germany Email addresses  
kalcsics@kit.edu alex.butsch@kit.edu 

 

Abstract  

Recently Beltran-Royo et.al presented a Semi-Lagrangean relaxation for the classical p-median location 
problem. The results obtained using the Semi-Lagrangean relaxation approach were quite impressive. In 
this paper we use a reformulation of the p-median problem in order to start from a formulation more 
suitable for Semi-Lagrangean relaxation and analyse the new approach on examples from the OR library. 

Keywords: p-median Location, Lagrangean Relaxation, Mathematical Programing 

 

1. Introduction  

The p-median problem is a well studied integer programming problem. Over the years the problem has 
been approached by many authors using various mathematical programming methods.  In a recent 
study of Beltran-Royo et al. use a Semi-Lagrangean approach to the p-median problem. Another recent 
study has benn conducted by Garcia et al., in which a reformulation is used which they name the radius 
formulation.  In this paper we will make use of a reformulation of the p-median problem more suitable 
for Semi-Lagrangean relaxation. Apart from that we also show that the optimal Semi-Lagrangean dual 
variable have a very interesting economic interpretation. 

The paper is organized as follows. In section 2 The standard formulation of the p-median problem is 
given followed by the reformulation that is to be used in the rest of the article. Section 3 gives a short 
description of the Semi-Lagrangean relaxation in general and its properties and describe the Semi-
Lagrangean relaxation subproblem for the reformulated  p-median model.  In section 4 we illustrate the 
procedure on an example taken from the literature. Section 5 presents the computational results 
obtained on larger problem instances. Finally in section 6 we give conclusions that can be made from 
our investigation. We also comment on the similarities with our approach and the approach used by 
Garcia et. al. 
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2. The formulation of the p-median problem and a reformulation suitable for Semi-Lagrangean 
relaxation 

The standard formulation of the p-median problem is as follows 

 

𝑀𝑀𝑀∑ ∑ 𝑐𝑖𝑖𝑥𝑖𝑖𝑛
𝑖=1

𝑚
𝑖=1                (1) 

Subject to 

∑ 𝑥𝑖𝑖𝑚
𝑖=1 = 1 ∀ 𝑗 ∈ 𝐽                             (2) 

   𝑥𝑖𝑖 ≤ 𝑦𝑖            ∀ 𝑗 ∈ 𝐽, ∀ 𝑀 ∈ 𝐼         (3) 

∑ 𝑦𝑖𝑚
𝑖=1 = 𝑝            (4) 

𝑥𝑖𝑖  ,𝑦𝑖 ∈ {0,1}                                       (5) 

 

 

Where 

P is the number of facilities to be opened 

𝑐𝑖𝑖= cost of assigning  customer j to facility i 

𝑦𝑖=1 if facility i is opened, 0 otherwise 

𝑥𝑖𝑖=1 if customer js demand is satisfied from facility i, 0 otherwise 

Equation (2) guarantees that all customers’ demands are satisfied. Constraint (3) is the requirement that 
demand can only be satisfied from a facility that is open, constraint (4) states that exactly p facilities 
shall be opened and (5) are the integral requirements.  

In the sequel we will use the following reformulation of the p-median location problem 

𝑀𝑀𝑀∑ ∑ 𝑐𝑖𝑖𝑥𝑖𝑖𝑛
𝑖=1

𝑚
𝑖=1       (1) 

Subject to 

∑ 𝑥𝑖𝑖𝑚
𝑖=1 ≤1          (5) 

   𝑥𝑖𝑖 ≤ 𝑦𝑖            ∀ 𝑗 ∈ 𝐽, ∀ 𝑀 ∈ 𝐼       (3) 

∑ 𝑦𝑖𝑚
𝑖=1  =p         (4) 

∑ ∑ 𝑥𝑖𝑖𝑛
𝑖=1

𝑚
𝑖=1 = |𝐽|                            (9)  

𝑥𝑖𝑖  ,𝑦𝑖 ∈ {0,1}                                     (4) 
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The formulations are clearly equivalent and if the p-median problem were to be solved by any regular 
method, the reformulation makes no sense. However as we shall show, if the solution approach is based 
on Semi-Lagrangean relaxation this formulation yields a more efficient relaxation procedure. 

Avella has an alternative formulation, which is as follows 

𝑀𝑀𝑀∑ 𝑐𝑖𝑖𝑖𝑖∈𝐴 𝑥𝑖𝑖         (12) 

Subject to 

∑ 𝑥𝑖𝑖 + 𝑦𝑖𝑖∈𝑉\{𝑖} = 1  ∀ 𝑗 ∈ 𝑉   (13) 

   𝑥𝑖𝑖 ≤ 𝑦𝑖            ∀ 𝑀𝑗 ∈ 𝐴        (14) 

∑ 𝑦𝑖𝑖∈𝑉 =p         (15) 

 𝑦𝑖 ∈ {0,1}        j∈ 𝑉                              (16) 

𝑥𝑖𝑖 ≥ 0  𝑀𝑗 ∈ 𝐴     (17) 

 

3. Semi-Lagrangean Relaxation 

The Semi-Lagrangean approach builds upon the well-known Lagrangean relaxation, but with the 
difference that when having equality constraint, the constraint is divided in two inequalities, namely a 
“greater than or equal to” inequality and a “less than or equal to” inequality. The former is relaxed and 
added to the objective function, while the latter is left as an inequality constraint in the sub-
problem(Beltran et al. 2006).  Mathematically, if we have a minimisation problem of the following type

{ }= = ∈ = ∩ �* min | ; :T n

x
z c x Ax b x S X then, the Semi-Lagrangean function is written as  

{ }{ }λ λ
λ λ λ= = + − ≤ ∈max ( ) max min ( ) | ;T T T

SLR SLR x
z b c A x Ax b x SL

.
 

It is proved by Beltran-Royo et al. that the Semi-Lagrangean relaxation closes the duality gap. The 
easiest way to see this is that the relaxation is the result of the intersection between the following two 
polytopes 

𝐶𝐶𝑀𝐶{𝑚𝑀𝑀𝑥(𝑐𝑇𝑥|𝐴𝑥 ≤ 𝑏, 𝑥 ∈ 𝑆)} ∩ 𝐶𝐶𝑀𝐶{𝐴𝑥 ≥ 𝑏} 

Which obviously is equal to 𝐶𝐶𝑀𝐶�{𝑚𝑀𝑀𝑐𝑇𝑥|𝐴𝑥 = 𝑏, 𝑥 ∈ 𝑆}� 

The following theorem from Beltran-Royo et.al. gives the properties of the Semi-Lagrangean dual 

Theorem: (Beltran-Royo et.al) 

The following statements holds 

1. The Semi-Lagrangean dual l(u) is concave and b-Ax(u) is a subgradient at u 
2. L(u) is monotone and L(u´)≥L(u) if u´≥u with strict inequality if u´>u and u not belonging to 𝑈∗ 
3. 𝑈∗ = 𝑈∗ ∪ 𝑅+𝑚 thus U is unbounded 
4. 𝐼𝐼 𝑥(𝑢)𝑀𝑖 𝑖𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐴𝑥(𝑢)𝑏 𝑡ℎ𝑒𝑀 𝑢 ∈ 𝑈∗ and x(u) solves the original problem 
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5. 𝐶𝐶𝑀𝐶𝑒𝐶𝑖𝑒𝐶𝑦 𝑀𝐼 𝑢 ∈ 𝑀𝑀𝑡(𝑈∗) then any minimizer x(u) is optimal in the original problem 
6. 𝑇ℎ𝑒 𝑆𝑒𝑚𝑀 − 𝐿𝑎𝐿𝐶𝑎𝑀𝐿𝑒𝑎𝑀 𝐶𝑒𝐶𝑎𝑥𝑎𝑡𝑀𝐶𝑀 𝑐𝐶𝐶𝑖𝑒𝑖 𝑡ℎ𝑒 𝑑𝑢𝑎𝐶𝑀𝑡𝑦 𝐿𝑎𝑝 

However there are some difficulties involved in calculating the optimal Semi-Lagrangean multipliers 
especially in the multi-dimensional case. The main problem is that the optimal Semi-Lagrangean prices 
are non-unique (in the multi-dimensional case). Moreover for large enough multipliers u x(u) will be a 
solution to the original problem and the relaxed problem is basically identical to the original problem. 
Also we are not looking for a maximum of the concave function L(u) rather we are looking for the 
“minimal” multiplier values for which L(u) reaches its maximal value. 

Applying a Semi-Lagrangean relaxation to the reformulated UFL problem, relaxing the single equality 
constraint yields the following dual problem 

Max L(u) subject to u≥0 

Where L(u) is defined by the following optimization problem 

𝑀𝑀𝑀∑ ∑ 𝑐𝑖𝑖𝑥𝑖𝑖𝑛
𝑖=1

𝑚
𝑖=1 − 𝑢(∑ ∑ 𝑥𝑖𝑖 − |𝐽|𝑛

𝑖=1
𝑚
𝑖=1  )    (8) 

Subject to 

∑ 𝑥𝑖𝑖𝑚
𝑖=1 ≤1          (5) 

   𝑥𝑖𝑖 ≤ 𝑦𝑖            ∀ 𝑗 ∈ 𝐽, ∀ 𝑀 ∈ 𝐼       (3) 

∑ 𝑦𝑖𝑚
𝑖=1  =p         (4) 

∑ ∑ 𝑥𝑖𝑖𝑛
𝑖=1

𝑚
𝑖=1 ≤ |𝐽|                            (9)  

𝑥𝑖𝑖  ,𝑦𝑖 ∈ {0,1}                                     (4) 

Note we have only one Semi-Lagrangean multiplier to search for as compared with the multi-
dimensional search needed in Beltran-Royos et.al.s Semi-Lagrangean relaxation of the standard p-
median model. This means that any one-dimensional search procedure can be used. Also the optimal 
Semi-Lagrangean price has a meaningful economic interpretation. The optimal Semi-Lagrangean price 
𝑢∗ is the price that has to be payed to be able to deliver to all customers. It should also be noted that it 
is easy to get an initial estimate on u since we know that all customer demand has to be satisfied. Hence 
a minimal u is obtained by 𝑚𝑎𝑥𝑖𝑚𝑀𝑀𝑖(𝑐𝑖𝑖). 

Also note that in the subproblems only alternatives ij with negative coefficients are of interest. Hence 
the subproblems will in most cases, have fewer 0/1 variables than the number of 0/1 variables in the 
original problem. 
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4. Illustrative Examples  

As a first illustration we use the example from the book by Daskin. 

Here the Demand times distance matrix for the 12 node problem is as follows 

 A B C D E F G H I J K L 

A 0 225 555 825 360 900 270 495 720 600 870 1005 

B 150 0 220 400 380 520 330 480 420 550 610 610 

C 444 264 0 216 192 360 492 336 240 696 468 468 

D 990 720 324 0 612 216 1062 828 432 1116 774 612 

E 120 190 80 170 0 180 125 60 120 235 185 215 

F 1440 1248 720 288 864 0 1368 1008 288 1200 744 528 

G 198 363 451 649 275 627 0 165 495 242 440 671 

H 528 768 448 736 192 672 240 0 480 592 400 736 

I 624 546 260 312 312 156 585 390 0 494 247 247 

J 880 1210 1276 1364 1034 1100 484 814 836 0 418 880 

K 1102 1159 741 817 703 589 760 475 361 361 0 399 

L 1340 1220 780 680 860 440 1220 920 380 800 420 0 

 

In order to select a reasonable value for the Semi-Lagrangean multiplier we proceed as follows. Given a 
value u for the Semi-Lagrangean multiplier, we can formulate a set covering problem with 10 variables 
and 10 constraints. The coefficients in the constraint matrix of this set covering problem are 1, if the 
cost in the cost matrix is less than u and 0 otherwise. We would like to select the first value for the Semi-
Lagrangean multiplier such that the resulting relaxed  p-median problems, having only variables for 
which the cost coefficients in the Semi-Lagrangean subproblems are negative includes a feasible 
solution to the original p-median problem. Solving the set covering problem with the objective function 
in which the number of median nodes is to be minimized leads to that the minimum possible value for 
the Semi-Lagrangean multiplier is equal to u=361 
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This means that the modified demand times distance matrix is 

 A B C D E F G H I J K L 

A -361 -136 X X -1 X -46 X X X X X 

B -211 -361 -141 X X X -31 X X X X X 

C X -97 -361 -145 -169 -1 X -25 -121 X X X 

D X X -37 -361 X -145 X X X X X X 

E -241 -171 -281 -191 -361 -181 -236 -301 -241 -126 -176 -146 

F X X X -73 X -361 X X -73 X  X X 

G -163 X X X -86 X -361 -196 X -119 X X 

H X X X X -169 X -121 -361 X X X X 

I X X -101 -49 -49 -205 X X -361 X -114 -114 

J X X X X X X X X X -361 X X 

K X X X X X X X X 0 0 -361 X 

L X X X X X X X X X X X -361 

 

All variables with coefficients larger than 361 are not present in an optimal solution to the Semi-
Lagrangean subproblems and can be deleted. 

The optimal solution to the Semi-Lagrangean  subproblem is to select nodes A,F,H,J and L and allocate 
the remaining nodes in the following way nodes C,E and G is allocated to  H, node B is allocated to A, 
nodes D and I is allocated to F and finally node K is allocated to J. The objective function value for the 
Semi-Lagrangean relaxation is -2888 and hence the lower bound is 4332-2888=1444. Since this is the 
value of the current solution which is feasible, optimality has been proved. In this example the optimal 
Semi-Lagrangean multiplier value is equal to the value of the most costly assignment in the solution. 
This is however not always the case as the next illustrative example will show. 

The data for the second illustrative example is as follows. 

 
id 1       2       3       4       5       6       7       8       9      10 
x 
y 

46.5  47.3  44.8  46.0  49.8  51.3  48.3  44.2  41.5  44.9 
51.2  51.5  51.0  49.9  50.5  52.0  53.7  52.8  50.1  48.0 

weight 249   155   233   209   215   245   224   219   249   257 
The exact coordinates and weights of the basic units. 

 

This gives us the following matrix of weighted distances 
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 1 2 3 4 5 6 7 8 9 10 

1 0 212.7 426.2 346.8 840.0 1211.69 767.1 697.6 1274.8 890.8 
2 132.4 0 395.2 319.5 417.4 624.825 374.6 521.0 924.8 657.8 
3 398.8 594.0 0 379.3 1170.8 1532.32 1030.0 442.1 797.0 699.4 
4 291.1 430.9 340.2 0 804.0 1191.48 928.3 713.4 941.4 458.8 
5 725.3 578.9 1080.4 827.1 0 456.084 759.8 1301.6 1786.6 1182.7 
6 1192.2 987.6 1611.2 1396.7 519.7 0 844.8 1750.5 2445.7 1849.1 
7 690.1 541.3 990.2 995.0 791.6 772.394 0 940.3 1723.5 1486.7 
8 613.6 736.2 415.5 747.5 1325.8 1564.74 919.3 0 836.2 1062.3 
9 1274.8 1485.7 851.7 1121.6 2069.1 2485.64 1915.8 950.8 0 995.1 

10 919.5 1090.7 771.4 564.2 1413.7 1939.63 1705.7 1246.7 1027.0 0 
The matrix of weighted distances. 
 
 

Let p=2. Proceeding in the same way as before to find the minimum possible Semi-Lagrangean 
multiplier, i.e., by checking if the generated set covering problem has a cover with the value of at least p 
gives us the initial multiplier value u=851.711 

Solving the Semi-Lagrangean subproblem for this u gives us the optimal objective function value of           
-4231.5958 and a lower bound of 4285.5.. 

In this solution there are two units left unassigned,  9 and 10, and the medians selected are 1 and 6. The 
solution is illustrated graphically in this figure 

In order to generate a feasible solution and an upper bound we proceed as follows. We solve the 
strengthened relaxation in which the constraints for node 9 and 10 are equalities instead of inequalities. 
Note that this relaxation will also provide us with a lower bound to the optimal p-median problem. The 
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objective function value for the strengthened relaxation is -4088.351 and the lower bound is thus 
8571.1-4088.351=4428.76 which is the value of the current feasible solution and hence optimality has 
been proved. The solution is illustrated graphically in the figure with node 3 and 6 as medians. 

 

  If we instead continue with the original Semi-Lagrangean relaxation we need to increase the multiplier 
value further in order to prove optimality and generate the optimal 2-median solution. For a Semi- 
Lagrangean multiplier value of 940.267 optimality is proved. As can be seen from this example normally 
the Semi-Lagrangean subproblem will give us a lower bound for the optimal solution value and leave 
some of the locations not assigned to any of the chosen medians. 

The question is of course how to select the initial Semi-Lagrangean multiplier value and if the optimal 
Semi –lagrangean multiplier has a usable economic interpretation. 

 
4. An Economic Interpretation of the procedure 

Looking at the Semi-Lagrangean subproblem 

𝑀𝑀𝑀∑ ∑ 𝑐𝑖𝑖𝑥𝑖𝑖𝑛
𝑖=1

𝑚
𝑖=1 − 𝑢(∑ ∑ 𝑥𝑖𝑖 − |𝐽|𝑛

𝑖=1
𝑚
𝑖=1  )    (8) 

Subject to 

∑ 𝑥𝑖𝑖𝑚
𝑖=1 ≤1          (5) 

   𝑥𝑖𝑖 ≤ 𝑦𝑖            ∀ 𝑗 ∈ 𝐽, ∀ 𝑀 ∈ 𝐼       (3) 

∑ 𝑦𝑖𝑚
𝑖=1  =p         (4) 

∑ ∑ 𝑥𝑖𝑖𝑛
𝑖=1

𝑚
𝑖=1 ≤ |𝐽|                            (9)  

𝑥𝑖𝑖  ,𝑦𝑖 ∈ {0,1}                                     (4) 
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 We can observe that he Semi-Lagrangean sub problem can be thought of as a procedure to search for a 
market price in a market in which customers located in different places should be served from p 
locations. In order to serve the various markets the goods has to be transported from one of the open 
sources to the customer. Each customer has a demand for one unit, hence the total demand is |𝐽|. 

The optimal Semi-Lagrangean price u* corresponds to the market price for which all customer demands 
are satisfied. At a lower price than u* one or more of the customers will be left unserved. An interesting 
question is how the market price, optimal Semi-Lagrangean multiplier varies with the number of 
medians p? 

In order to find that out we conducted some numerical experiments on larger p-median problems. 

We also show how the market price varies as a function of the value of p. For this purpose, two 
problems were considered one with 100 and one with 300 basic points. 

The results for the problem with 100 basic points, (the data for this problem can be found in the 
appendix), is as follows 

Areas Median optLambda obj 
100 4 84,6577 2401,74 
100 5 75,9394 2149,38 
100 6 75,9394 1966,18 
100 7 57,0797 1794,45 
100 8 57,2712 1684,85 
100 9 55,9870 1580,19 
100 10 52,9555 1489,29 
100 11 46,5587 1401,78 
100 12 43,2219 1310,33 
100 13 40,8280 1248,12 
100 14 38,8826 1172,82 
100 15 37,2251 1111,16 

  
As can be seen the market price is almost always decreasing as a function of p. However, in this example 
the market price increases when p is increased from 7 to 8. The increase is not large and the reason for 
the increase is the discrete nature of the p-median problem. It turns out to be more expensive to assign 
the last basic unit when p=8 than it is when p=7. A graphical illustration of the solutions for p=7 and p=8 
is shown in the figures below. 
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For the 300 basic unit problem the results are as follows 

#Area #Median optLambda obj 
300 5 116,8030 3422,1 
300 6 120,2950 3109,23 
300 7 83,4527 2822,1 
300 8 83,5651 2602,37 
300 9 62,5821 2418,81 
300 10 62,5821 2296,82 
300 11 62,5821 2183,86 
300 12 59,9683 2077,32 
300 13 55,0258 1982,52 
300 14 51,9112 1897,6 

 

Here the market price increases when p is increased from 7 to 8 as before with a small increase. 
However, the increase in market price when p is increased from 5 to 6 is substantial. 

In the figures below, we give a graphical illustration of what happens. 
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5. Conclusions 

In this article, we have presented a Semi-Lagrangean relaxation method for the p-median problem. We 
use a reformulation more suitable for Semi-Lagrangean relaxation. Since the reformulated and relaxed 
problem has only one multiplier, no subgradient procedure is needed to update the multiplier value. 
Also the number of potential multiplier values is limited to the number of different costs in the cost 
matrix. In order to find the initial value for the Semi-Lagrangean multiplier a set covering problem is 
studied. It is shown that for a more restricted version of the Semi-Lagrangean relaxation, the optimal 
multiplier value is equal to the most costly assignment in the optimal solution. However, in the ordinary 
Semi-Lagrangean relaxation of the reformulated problem the optimal Semi-Lagrangean multiplier value 
is equal to the price that has to be payed in order for all basic units demand to be fulfilled. 
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