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Abstract

We derive the equilibrium interest rate and risk premiums using
recursive utility for jump-diffusions. Compared to to the continuous
version, including jumps allows for a separate risk aversion related to
jump size risk in addition to risk aversion related to the continuous
part. The jump part also introduces moments of higher orders that
may matter in many circumstances. We consider the version of re-
cursive utility which gives the most unambiguous separation of risk
preference from time substitution, and use the stochastic maximum
principle to analyze the model. This method uses forward/backward
stochastic differential equations. We demonstrate how the stochastic
process for the market portfolio is determined in terms the corre-
sponding processes for future utility and aggregate consumption. It is
indicated that this model has the potential to give reasonable expla-
nations of empirical puzzles.

KEYWORDS: recursive utility, jump dynamics, the stochastic max-
imum principle
JEL-Code: G10, G12, D9, D51, D53, D90, E21.

1 Introduction

Rational expectations, a cornerstone of modern economics and finance, has
been under attack for quite some time. Questions like the following are
sometimes asked: Are asset prices too volatile relative to the information
arriving in the market? Is the mean risk premium on equities over the riskless

∗The Norwegian School of Economics, 5045 Bergen Norway. Telephone: (+47)
55959249. E-mail: Knut.Aase@NHH.NO. Special thanks to Bernt Øksendal for valuable
comments
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rate too large? Is the real interest rate too low? Is the market’s risk aversion
too high?

The results of Mehra and Prescott (1985) gave rise to some of these ques-
tions in their well-known paper, using a variation of Lucas’s (1978) pure
exchange economy with a Kydland and Prescott (1982) ”calibration” exer-
cise. They chose the parameters of the endowment process to match the
sample mean, variance and the annual growth rate of per capita consump-
tion in the years 1889-1978. The puzzle is that they were unable to find
a plausible parameter pair of the utility discount rate and the relative risk
aversion to match the sample mean of the annual real rate of interest and of
the equity premium over the 90-year period.

The puzzle has been verified by many others, e.g., Hansen and Singleton
(1983), Ferson (1983), Grossman, Melino, and Shiller (1987). Many theories
have been suggested during the years to explain the puzzle, but to date there
does not seem to be any consensus that the puzzles have been fully resolved
by any single of the proposed explanations 1.

In the present paper we reconsider recursive utility in a continuous-
time model including jump dynamics along the lines of Øksendal and Sulem
(2013). This is an extension of the model developed by Duffie and Epstein
(1992a-b) and Duffie and Skiadas (1994) which elaborates the foundational
work by Kreps and Porteus (1978) and Epstein and Zin (1989) of recursive
utility in dynamic models. The data set we consider is the same as that used
by Mehra and Prescott (1985) in their seminal paper on this subject2.

While jump dynamics has been introduced in the conventional model,
among other things to throw some light on the puzzles (see Aase (1993a-
b), in the recursive models that we analyze in this paper, jump dynamics
may play an even more interesting role. The reason for this are several:

1Constantinides (1990) introduced habit persistence in the preferences of the agents.
Also Campbell and Cochrane (1999) used habit formation. Rietz (1988) introduced fi-
nancial catastrophes, Barro (2005) developed this further, Weil (1992) introduced non-
diversifiable background risk, and Heaton and Lucas (1996) introduce transaction costs.
There is a rather long list of other approaches aimed to solve the puzzles, among them
are borrowing constraints (Constantinides et al. (2001)), taxes (Mc Grattan and Prescott
(2003)), loss aversion (Benartzi and Thaler (1995)), survivorship bias (Brown, Goetzmann
and Ross (1995)), and heavy tails and parameter uncertainty (Weitzmann (2007)).

2There is by now a long standing literature that has been utilizing recursive pref-
erences. We mention Avramov and Hore (2007), Avramov et al. (2010), Eraker and
Shaliastovich (2009), Hansen, Heaton, Lee, Roussanov (2007), Hansen and Scheinkman
(2009), Wacther (2012), Bansal and Yaron (2004), Campbell (1996), Bansal and Yaron
(2004), Kocherlakota (1990 b), and Ai (2012) to name some important contributions. Re-
lated work is also in Browning et. al. (1999), and on consumption see Attanasio (1999).
Bansal and Yaron (2004) study a richer economic environment than we employ.
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One is that the recursive model has already changed matters so much in the
right direction, that second, and higher order effects may be enough to get
satisfactory results. Another reason is that jump dynamics in the recursive
model allow for one new preference parameter related to relative risk aversion
for jump size risk, which gives the model added flexibility. This addition may
also throw some light on the behavioral puzzle of ’loss aversion’. A third
reason is that jump sizes are governed by an entire probability distribution,
not just a few moments. This can be utilized to move out of the local
mean/variance type analyses offered by the continuous model, and combine
the best properties of the discrete time with continuous time analysis.

It has been a goal in the modern theory of asset pricing to internalize
probability distributions of financial assets. To a large extent this has been
achieved in our approach. As with a Lucas-style model, aggregate consump-
tion is a given jump/diffusion process. The solution of a backward stochastic
differential equations (BSDE) provides the main characteristics in the proba-
bility distributions of future utility. With existence of a solution to the BSDE
granted, market clearing finally determines the characteristics in the market
portfolio from the corresponding characteristics of the utility and aggregate
consumption processes.

The paper is organized as follows: In Section 2 we explain the problems
with the conventional, time additive model including jump dynamics. Here
we illustrate some effects of deviation from the standard mean/variance anal-
ysis in financial economics. Section 3 contains a preview of results. Section
4 starts with a brief introduction to recursive utility in continuous time in-
cluding jump dynamics, Section 5 derives the first order conditions, Section
6 details the financial market, and Section 7 presents the analysis relevant
for recursive utility with jumps. In Section 8 we summarize our results. In
Section 9 we present some calibrations, and Section 10 concludes.

2 The problems with the conventional model

The conventional asset pricing model in financial economics, the consumption-
based capital asset pricing model (CCAPM) of Lucas (1978) and Breeden
(1979), assumes a representative agent with a utility function of consump-
tion that is the expectation of a sum, or a time integral, of future discounted
utility functions. The model has been criticized for several reasons. First, it
does not perform well empirically. Second, the usual specification of utility
can not separate the risk aversion from the elasticity of intertemporal sub-
stitution, while it would clearly be advantageous to disentangle these two
conceptually different aspects of preference. Third, while this representation
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seems to function well in deterministic settings, and for timeless situations,
it is not well founded for temporal problems (derived preferences do not in
general satisfy the substitution axiom, e.g., Mossin (1969)).

In the conventional model the utility U(c) of a consumption stream ct is

given by U(c) = E{
∫ T
0
u(ct, t) dt}, where the felicity index u has the separa-

ble form u(c, t) = 1
1−γ c

1−γ e−δ t. The parameter γ is the representative agent’s
relative risk aversion and δ is the utility discount rate, or the impatience rate,
and T is the time horizon. These parameters are assumed to satisfy γ > 0,
δ ≥ 0, and T <∞.

When jumps are included the risk premium (µR− r) of any risky security
labeled R (for ”risky”) is given by

µR(t)− rt = γ σRc(t)−
∫
Z

(
(1 + γc(t, ζ))−γ − 1

)
γR(t, ζ)ν(dζ). (1)

Here rt is the equilibrium real interest rate at time t, and the term σRc(t) =∑d
i=1 σR,i(t)σc,i(t) is the covariance rate between returns of the risky asset and

the growth rate of aggregate consumption at time t, a measurable and adap-
tive process satisfying standard conditions. The dimension of the Brownian
motion is d > 1. Underlying the jump dynamics we have {Nj}, j = 1, 2, · · · , l
independent Poisson random measures with Levy measures νj coming from l
independent (1-dimensional) Levy processes. The possible time inhomogene-
ity in the jump processes is expressed through the terms denoted γR,j(t, ζj)
for the risky asset under consideration, and γc,j(t, ζj) for the aggregate con-
sumption process, both measuring the jump sizes. Here also jump frequen-
cies at time t are embedded. The ”mark space” Z = Rl in this paper, where
R = (−∞,∞). Thus the above term in (1) is short-hand notation for the
following∫

Z

(
(1 + γc(t, ζ))−γ − 1

)
γR(t, ζ)ν(dζ)

=
l∑

j=1

∫
R

(
(1 + γc,j(t, ζj))

−γ − 1
)
γR,j(t, ζj)ν(dζj).

This is a continuous-time version of the consumption-based CAPM, allowing
for jumps at random time points. Similarly the expression for the risk-free,
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real interest rate is

rt = δ + γ µc(t)−
1

2
γ (γ + 1)σ′c(t)σc(t)

−
(
γ

∫
Z
γc(t, ζ) ν(dζ) +

∫
Z

(
(1 + γc(t, ζ))−γ − 1

)
ν(dζ)

)
. (2)

In the risk premium (1) the last term stems from the jump dynamics of the
risky asset and aggregate consumption, while in (2) the last two terms have
this origin. These results follow from Aase (1993a,b).

If the consumption process were as volatile as the stock market index, the
jump dynamics could potentially contribute to giving a better explanation
of empirical regularities than the continuous model can alone. However,
because of the relatively small sizes of the potential jumps in the consumption
process, it is unlikely that the last terms in these two relationships move these
quantities enough in the right direction. As with the continuous model, the
problem stems from the low covariance rate between consumption and the
market index.

The process µc(t) is the annual growth rate of aggregate consumption
and (σ′c(t)σc(t)) is the annual variance rate of the consumption growth rate,
both at time t, again dictated by the Ito-isometry. Both these quantities are
measurable and adaptive stochastic processes, satisfying usual conditions.
The return processes as well as the consumption growth rate process in this
paper are also assumed to be ergodic processes, implying that statistical
estimation makes sense.

Notice that in the model is the instantaneous correlation coefficient be-
tween returns and the consumption growth rate given by

κRc(t) =
σRc(t)

||σR(t)|| · ||σc(t)||
=

∑d
i=1 σR,i(t)σc,i(t)√∑d

i=1 σR,i(t)
2

√∑d
i=1 σc,i(t)

2

,

and similarly for other correlations given in this model. Here−1 ≤ κRc(t) ≤ 1
for all t. With this convention we can equally well write σ′R(t)σc(t) for σRc(t),
and the former does not imply that the instantaneous correlation coefficient
between returns and the consumption growth rate is equal to one. Prime
means transpose.

Similarly the term
∑l

j=1

∫
R γR,j(t, ζj)γc,j(t, ζj)ν(dζj) is the covariance rate

at time t between returns of the risky asset and the growth rate of aggregate
consumption stemming from the discontinuous dynamics. We use the short-
hand notation

∫
Z γR(t, ζ)γc(t, ζ)ν(dζ) for this term as well.
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Using a Taylor series expansion, the risk premium is approximately

µR(t)− rt = γ
(
σRc(t) +

∫
Z
γR(t, ζ)γc(t, ζ) ν(dζ)

)
− 1

2
γ(γ + 1)

∫
Z
γR(t, ζ)γ2c (t, ζ) ν(dζ) + · · · (3)

and an approximation for the interest rate is

rt = δ + γµc(t)−
1

2
γ(1 + γ)

(
σ′c(t)σc(t) +

∫
Z
γ2c (t, ζ)ν(dζ)

)
+

1

6
γ(γ + 1)(γ + 2)

∫
Z
γ3c (t, ζ)ν(dζ)− · · · (4)

Here the term
∫
Z γ

2
c (t, ζ)ν(dζ) is the variance rate of the consumption growth

rate at time t, stemming from the discontinuous dynamics, so that the total
consumption variance rate is (σ′c(t)σc(t) +

∫
Z γ

2
c (t, ζ)ν(dζ)) at time t. Sim-

ilarly the total covariance rate between returns of the risky asset and the
consumption growth rate is (σRc(t) +

∫
Z γR(t, ζ)γc(t, ζ)ν(dζ)).

In Table 1 we present the key summary statistics of the data in Mehra
and Prescott (1985), of the real annual return data related to the S&P-500,
denoted by M , as well as for the annualized consumption data, denoted c,
and the government bills, denoted b 3.

Expectat. Standard dev. Covariances

Consumption growth 1.83% 3.57% cov(M, c) = .002226
Return S&P-500 6.98% 16.54% cov(M, b) = .001401
Government bills 0.80% 5.67% cov(c, b) = −.000158
Equity premium 6.18% 16.67%

Table 1: Key US-data for the time period 1889-1978. Discrete-time com-
pounding.

Here we have, for example, estimated the covariance between aggregate
consumption and the stock index directly from the data set to be .00223.
This gives the estimate .3770 for the correlation coefficient 4.

Since our development is in continuous time, we have carried out stan-
dard adjustments for continuous-time compounding, from discrete-time com-
pounding. The results of these operations are presented in Table 2. This

3There are of course newer data by now, but these retain the same basic features. If
our model can explain the data in Table 1, it can explain any of the newer sets as well.

4The full data set was provided by Professor Rajnish Mehra.
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gives, e.g., the estimate κ̂Mc = .4033 for the instantaneous correlation coef-
ficient κ(t). The overall changes are in principle small, and do not influence
our comparisons to any significant degree, but are still important.

Expectation Standard dev. Covariances

Consumption growth 1.81% 3.55% σ̂Mc = .002268
Return S&P-500 6.78% 15.84% σ̂Mb = .001477
Government bills 0.80% 5.74% σ̂cb = −.000149
Equity premium 5.98% 15.95%

Table 2: Key US-data for the time period 1889-1978. Continuous-time com-
pounding.

Interpreting the risky asset R as the value weighted market portfolio M
corresponding to the S&P-500 index, equations (3) and (4) are two equations
in two unknowns that can provide estimates of the two preference parameters
by the ”method of moments”. Ignoring the higher order terms in each of these
equations, the result is γ = 26.3 and δ = −.015, i.e., a relative risk aversion
of about 26 and an impatience rate of minus 1.5%.

The jump terms might mitigate these numbers somewhat, since the jump
model can, under certain assumptions, produce a larger equity premium than
the continuous model can alone. As an example, suppose the cross-moment
term

∫
Z γR(t, ζ)γ2c (t, ζ) ν(dζ) is of the order -1.3 ·10−3 and the third moment

term
∫
Z γ

3
c (t, ζ)ν(dζ) is of the order -1.6 · 10−3. Then the model produces

results of the order δ = .08 and γ = 7.7. By taking all the higher moments
into account, these numbers could potentially be further improved. It is an
empirical question to estimate these quantities (e.g., Ait Sahalia and Jacod
(2009-11)), but see below.

2.1 Deviations from normality

In the conventional model we may use jump dynamics to study the effects
of deviations from normality. This we have done by using the pure jump
model alone to fit the data summarized in Table 1, and its logarithmic ver-
sion (Table 4). In doing so we have fixed the frequency of ”jumps” to one
per year on the average. The advantage with this approach is that we do not
have to separate the jump dynamics from the continuous part in the data.
We have modeled the simultaneous jumps in the Levy-measure ν(dζ1, dζ2)
by a joint Normal Inverse Gaussian (NIG)-distribution. This distribution
measures heavy tails, kurtosis, skewness, etc, often found in financial stock
market data. It fits fat-tailed and skewed data very well and is analyti-
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cally tractable. This distribution was brought to the attention of workers in
empirical finance by Barndorff-Nielsen (1997).

The result of this analysis weakened the puzzle using the above model
when calibrated to the data (for details, see Aase and Lillestøl (2015)).

Although there is no canonical definition of a bivariate Normal inverse
Gaussian distribution, the most common one is obtained by a mean-variance
mixture of a multivariate Normal distribution with respect to the Inverse
Gaussian (IG) distribution. This is convenient, since it leads to a relatively
simple expression for its moment generating function, which may be taken as
the definition of of the distribution itself. By maximum likelihood estimators
for the NIG-parameters, we obtain the same estimates of the moments as
given in Table 1 (and Table 4), from which we obtain the following calibrated
values: (γ, δ) = (22.2, 0.0083). Moreover, by varying the NIG-estimates, one
by one, within the bounds given by sampling errors, and using resampling
techniques, the puzzle was further weakened to (17.7, 0.058).

As a comparison, under joint normality instead we get (γ, δ) = (24.3, -
.044). Jumps alone move the risk premium down somewhat relative to the
diffusion model, deviations from normality accounts for the rest.

The result of this is encouraging for the task we now set out to do, namely
to include jumps in the recursive model.

3 Preview of results

Turning to recursive utility, one more parameter occurs in its most basic form.
It is the time preference denoted by ρ. In the form we consider, the parameter
ψ = 1/ρ is the elasticity of intertemporal substitution in consumption (EIS),
which we refer to as the EIS-parameter. In the conventional Eu-model γ = ρ,
but relative risk tolerance (1/γ) is something quite different from EIS.

We show that the standard recursive model extended to include jump
dynamics takes the following form: For ρ 6= 1 and with the same notation as
above

µR(t)− rt = ρ σc(t)
′σR(t) + (γ − ρ)σV (t)′σR(t)+∫

Z

{
γ0KV (t, ζ)−

((1 +KV (t, ζ)

1 + γc(t, ζ)

)ρ − 1
)(

1− γ0KV (t, ζ)
)}

γR(t, ζ)ν(dζ).

(5)

Here the term KV (t, ·) signify the jump sizes in the future utility process V ,
and γc(t, ζ) is the corresponding quantity for the growth rate of aggregate
consumption, both parts of the primitives of the economic model.
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The jump size function of the market portfolio is then determined in
equilibrium as

1 + γM(t, ζ) =
1 +KV (t, ζ)(1− γ0 − γ0KV (t, ζ))

1− γ0KV (t, ζ) +
((1+KV (t,ζ)

1+γc(t,ζ)

)ρ − 1
)(

1− γ0KV (t, ζ)
) (6)

where the equality holds ν(·) a.e.
Also the volatility of the market portfolio, σM(t), is determined as a linear

combination of corresponding utilities of future utility and the growth rate
of aggregate consumption, σV (t) and σc(t) respectively, as follows

σM(t) = (1− ρ)σV (t) + ρσc(t), (7)

i.e., also from primitives of the model. The jump term in (5) reduces to
the jump term in (1) when KV (t, ·) = 0 a.e., so KV has strictly to do with
recursive utility. Similarly if σV (t) = 0 a.e., we obtain the risk premium of
the conventional model for the continuous part, so this term has also to do
with recursive utility. The equation (6) is seen to be linear in γM(t, ·), and
can be seen to reduce to simpler forms in special cases.

The short term real interest rate is given by

rt = δ + ρµc(t)−
1

2
ρ(ρ+ 1)σ′c(t)σc(t)

− ρ(γ − ρ)σc(t)
′σV (t)− 1

2
(γ − ρ)(1− ρ)σ′V (t)σV (t)

−
∫
Z

{1

2
(1 + ρ)γ0K

′
V (t, ζ)KV (t, ζ) +

((1 +KV (t, ζ)

1 + γc(t, ζ)

)ρ − 1
)(

1− γ0K(t, ζ)
)

+ ργc(t, ζ)− ρKV (t, ζ)
}
ν(dζ). (8)

In the model the covariances are assumed to be measurable, adaptive, ergodic
stochastic processes satisfying standard conditions. The parameter γ0 we
interpret as the agent’s relative risk aversion related to jump size risk. When
there are no jumps, we obtain the standard recursive model. When ρ = γ the
latter model reduces to the conventional, additive Eu-model. When KV = 0
and σV = 0 the standard model with with jumps, presented in the previous
section, results.

3.1 The pure jump part

In order to study the effects from the nonlinearities caused by the jump
dynamics, we may remodel the jump part slightly by letting y := γM(t, ζ), c =
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γc(t, ζ), v = KV (t, ζ) and x = γR(t, ζ). Assuming a stationary distribution
for the jumps, for l = 1 the equation (6) can be written

1 + y =
1 + v(1− γ0 − γ0v)

1− γ0v +
((

1+v
1+c

)ρ − 1
)
(1− γ0v)

. (9)

Similarly ν(dζ) = ν(dζ1, dζ2, dζ3)) can be remodeled as λtdHt(c, v, x) for
a jump frequency λt and a cumulative distribution function Ht(c, v, x) for
the jump parts of the consumption growth rate, utility growth rate, and the
return rate on the risky securityR. The transformation (9) gives the following
connection in terms of the variables y, c and x. The jump contribution to
the risk premium can be written∫ ∞

−1

∫ ∞
−1

∫ ∞
−1

{
γ0v −

((1 + v

1 + c

)ρ − 1
)
(1− γ0v)

}
xλtdFt(c, y, x) = (10)

∫∫∫
Z′

{
γ0v −

((1 + v

1 + c

)ρ − 1
)
(1− γ0v)

}
xλtdHt(c, v, x)

where F (c, y, x) is the joint probability distribution of the jump parts of the
consumption growth rate, the return rate on the market (wealth) portfolio,
and the return rate on the risky security R. Assuming F has a probability
density function f(c, y, x), the connection to the given H, with density h,
is that h(c, v, x) = J(c, v, x)f(c, y(c, v), x). Here y = y(c, v) is given in (9),
and J(c, v, x) is the Jacobian associated with the change of variables from
(c, v, x) to (c, y, x), given by

J(c, v, x) = mod

∣∣∣∣∣∣
1 0 0
∂y
∂c

∂y
∂v

0
0 0 1

∣∣∣∣∣∣ = |∂y
∂v
|

where ”mod”means the absolute value of the expression following it. Here
∂y
∂v

can be written

∂y

∂v
=

((
1− γ0 − 2γ0v

)(
1− γ0v +

((1 + v

1 + c

)ρ − 1
)
(1− γ0v)

)
−

(
1 + v(1− γ0 − γ0v)

)((1 + v

1 + c

)ρ((ρ− γ0)− γ0(1 + ρ)v

1 + v

))
/(

1− γ0v +
((1 + v

1 + c

)ρ − 1
)
(1− γ0v)

)2

(11)
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For this to be well defined, the Jacobian must be different from zero in the
relevant domain, where the set Z ′ is the image of (−1,+∞) × (−1,+∞) ×
(−1,+∞) under the change of variables.

This version contains the higher order terms in addition to the extra
parameter γ0 for the jump size risk. As for the conventional model, one
can also consider deviations from normality in this framework. A similar
rewriting can be formulated for the jump part of the interest rate rt.

Notice the logic of the the equation (10): From the probability distri-
bution H governing the ’primitives’ of the model, which include (the jump
parts of) consumption and utility, the probability distribution F is deter-
mined in equilibrium by the transformation (9). Turning this around, by the
same relationship we also connect the mostly ’unobservable’ H to the partly
’observable’ F .

3.2 The CAPM++: ρ = 0

When ρ = 0 the equation (6) takes on the simple form

γM(t, ζ) = K(t, ζ) for all t and ζ ∈ Z,

and the relationship (7) reduces to σM(t) = σV (t), in which case we have
perfect substitutability of consumption across time. This corresponds to a
dynamic version of the classical one-period CAPM:

µR(t)− rt = γσ′M(t)σR(t) + γ0

∫
Z
γ′M(t, ζ)γR(t, ζ)ν(dζ) (12)

and

rt = δ − 1

2
γ σ′M(t)σM(t)− 1

2
γ0

∫
Z
γ′M(t, ζ)γM(t, ζ) ν(dζ). (13)

Notice that these results are exact. We denote the dynamic version of the
CAPM model based on recursive utility by CAPM++.

3.3 The second order approximation

If we disregard moments of order three and higher, the expressions for the
risk premiums and the real rate can be simplified for any non-negative value
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of ρ 6= 1 to the following:

µR(t)− rt =
ρ(1− γ)

1− ρ
σc(t)

′σR(t) +
γ − ρ
1− ρ

σM(t)′σR(t)+

ρ(1− γ0)
1− ρ

∫
Z
γc(t, ζ)γR(t, ζ)ν(dζ) +

γ0 − ρ
1− ρ

∫
Z
γM(t, ζ)γR(t, ζ)ν(dζ) + · · ·

(14)

and

rt = δ + ρµc(t)−
1

2

ρ(1− ργ)

1− ρ
σ′c(t)σc(t) +

1

2

ρ− γ
1− ρ

σM(t)′σM(t)

− 1

2

ρ(1− ργ0)
1− ρ

∫
Z
γc(t, ζ)γc(t, ζ) ν(dζ) +

1

2

ρ− γ0
1− ρ

∫
Z
γM(t, ζ)γM(t, ζ) ν(dζ)

+ · · · (15)

The possibility that γ0 is different from γ gives the recursive model an extra
degree of freedom in these relationships.

In the above the jump sizes in the market portfolio is approximately
internalized as follows

γM(t, ζ) = (1− ρ)KV (t, ζ) + ργc(t, ζ) + · · · .

This is an approximation derived from (6) disregarding higher order terms.
In the above we have used (7) as it stands.

These results show that our jump/diffusion version (5)-(8) is a natural
extension of the continuous recursive model, just as (3) and (4) show that
(1) and (2) is a natural extension to jump/diffusions of the conventional
Eu-model with continuous dynamics only.

4 Recursive Stochastic Differentiable Utility

In this section we give a brief introduction to recursive, stochastic differ-
ential utility in the continuous-time model including jumps, along the lines
of Øksendal and Sulem (2013). The starting point for this theory for the
continuous model is Duffie and Epstein (1992a-b) and Duffie and Skiadas
(1994). Our approach based on Øksendal and Sulem (2013) includes jump
dynamics, and is a more general.

We are given a probability space (Ω,F ,Ft, t ∈ [0, T ], P ) satisfying the
’usual’ conditions, and a standard model for the stock market with Levy-
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process driven uncertainty, N risky securities and one riskless asset (Section
6 provides more details). Consumption processes are chosen from the space
L of square integrable progressively measurable processes with values in R+.
The agent has utility function U , to be specified below, and an endowment
process e ∈ L.

The stochastic differential utility U : L→ R is defined as follows by three
primitive functions: f : R× R→ R, A : R→ R and A0 : R× R→ R.

The function f(t, ct, Vt, ω) corresponds to a felicity index at time t, A is
associated with a measure of absolute risk aversion related to the continuous
dynamics, while A0 is connected to a similar measure related to jump size
risk. Both the latter two terms may also depend on t. In addition to current
consumption ct, the function f also depends on utility Vt.

The utility process V for a given consumption process c that we consider,
satisfying VT = 0, is given by the representation

Vt = Et

{∫ T

t

(
f(s, cs, Vs)−

1

2
A(Vs)Z(s)′Z(s)

− 1

2

∫
Z
A0(Vs, ζ)K ′(s, ζ)K(s, ζ)ν(dζ)

)
ds
}
, t ∈ [0, T ] (16)

where Et(·) denotes conditional expectation given Ft, and Z(t) as well as
K(t, ·) are square-integrable progressively measurable processes, to be deter-
mined in our analysis. Here d is the dimension of the Brownian motion Bt,
and K(t, ·) is an l dimensional vector. We think of Vt as the utility for c at
time t, conditional on current information Ft. The term A(Vt) is penalizing
for risk in the continuous model, while the term A0(Vt, ·) penalizes for jump
size risk.

Recall the timeless situation with a mean zero risk X having variance
σ2, where the certainty equivalent m is defined by Eu(w +X) := u(w −m)
for a constant wealth w. Then the Arrow-Pratt approximation to m, valid
for ”small” risks, is given by m ≈ 1

2
A(w)σ2, where A(·) is the absolute risk

aversion associated with u. This approximation is often good also when risks
are not necessarily ”small”. The financial risks in this paper we consider
small enough.

If, for each consumption process ct, there is a well-defined utility process
V , the stochastic differential utility U is defined by U(c) = V0, the initial
utility. The triplet (f, A,A0) generating V is called an aggregator.

Since VT = 0 and
∫
Z(t)dBt and

∫ ∫
Z K(t, ζ)Ñ(dt, dζ) are assumed to be

13



martingales, (16) has the stochastic differential equation representation

dVt =
(
− f(t, ct, Vt) +

1

2
A(Vt)Z(t)′Z(t)+

1

2

∫
Z
A0(Vt, ζ)K ′(t, ζ)K(s, ζ)ν(dζ)

)
dt+ Z(t) dBt +

∫
Z
K(t, ζ)Ñ(dt, dζ).

(17)

Here Ñ(dt, dζ) = N(dt, dζ)− ν(dζ)dt is an l-dimensional compensated Pois-
son random measure of the underlying l-dimensional Levy process, and B(t)
is an independent d dimensional, standard Brownian motion.

If terminal utility different from zero is of interest, like for applications
to life insurance, then VT may be different from zero. We may think of A
and A0 as associated with functions h, h0 : R→ R such that A(v) = −h′′(v)

h′(v)
,

where h is two times continuously differentiable, and similarly for h0. U is
monotonic and risk averse if A(·) ≥ 0, A0(·, ·) ≥ 0 and f is jointly concave
and increasing in consumption.

The preference ordering represented by recursive utility is usually as-
sumed to satisfy A1: Dynamic consistency (in the sense of Johnsen and
Donaldson (1985)), A2: Independence of past consumption, and A3: State
independence of time preference (see Skiadas (2009a)).

The version we consider has the Kreps-Porteus CES utility representation
in discrete time, which here corresponds to the aggregator with the specifi-
cation

f(c, v) =
δ

1− ρ
c1−ρ − v1−ρ

v−ρ
, A(v) =

γ

v
and A0(v, ζ) =

γ0
v
, ∀ζ ∈ R (18)

If, for example, A(v) = A0(v) = 0 for all v, this means that the recursive
utility agent is risk neutral.

Here ρ ≥ 0, ρ 6= 1, δ ≥ 0, γ ≥ 0, γ0 ≥ 0. The elasticity of intertemporal
substitution in consumption is ψ := 1/ρ. The parameter ρ we call the time
preference parameter. When ρ 6= γ or ρ 6= γ0 the desired disentangling of
risk aversion from consumption substitution results.

For the model with continuous dynamics only, an ordinally equivalent
specification can be derived as follows. When an aggregator (f1, A1) is given
corresponding to the utility function U1, there exists a strictly increasing and
smooth function ϕ(·) such that the ordinally equivalent U2 = ϕ ◦ U1 has the
aggregator (f2, A2) where

f2(c, v) = ((1− γ)v)−
γ

1−γ f1(c, ((1− γ)v)
1

1−γ ), A2 = 0.
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The function ϕ is given by

U2 =
1

1− γ
U1−γ
1 , (19)

for the Kreps-Porteus specification. It has has the aggregator

f2(c, v) =
δ

1− ρ
c1−ρ − ((1− γ)v)

1−ρ
1−γ

((1− γ)v)
1−ρ
1−γ−1

, A2(v) = 0. (20)

The normalized version is used to prove existence and uniqueness of the
solution to the BSDE with semimartingale dynamics, see Theorem 1 in Duffie
and Epstein (1992b). For the aggregator of the Kreps and Porteus type, the
Lipschitz condition on utility in the above reference is not satisfied, but
existence and uniqueness has then been proven in Duffie and Lions (1992).

The reduction to a normalized aggregator (f2, 0) does not mean that in-
tertemporal utility is risk neutral, or that the representation has lost the abil-
ity to separate risk aversion from substitution (see Duffie and Epstein(1992a)).
This version will not be used in this paper.

In Aase (2014a) it is shown that these two versions have the same risk
premiums and the same short term interest rate in recursive model with
continuous dynamics only.

It is instructive to recall the that the conventional additive and separable
utility has aggregator

f(c, v) = u(c)− δv, A = 0. (21)

in the present framework (an ordinally equivalent one). As can be seen, even
if A = 0, the agent of the conventional model is not risk neutral.

4.1 Homogeniety

The following result will be made use of in sections 7.3-4. For a given con-
sumption process ct we let (V

(c)
t , Z

(c)
t , Kt(ζ)(c)) be the solution of the BSDE

dV
(c)
t =

(
− f(t, ct, V

(c)
t ) + 1

2
A(V

(c)
t )Z(t)′(c)Z(t)(c)+

1
2

∫
Z A0(V

(c)
t , ζ)K ′(t, ζ)(c)K(s, ζ)(c)ν(dζ)

)
dt+ Z(t)(c) dBt

+
∫
Z K(t, ζ)(c)Ñ(dt, dζ); 0 ≤ t ≤ T

V
(c)
T = 0

(22)

Theorem 1 Assume that, for all λ > 0,
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(i) λ f(t, c, v) = f(t, λc, λv); ∀ t, c, v, ω
(ii) A(λv) = 1

λ
A(v); ∀ v

(iii) A0(λv) = 1
λ
A0(v); ∀ v

Then

V
(λc)
t = λV

(c)
t , Z

(λc)
t = λZ

(c)
t and K

(λc)
t (ζ) = λK

(c)
t (ζ); ∀ζ, t ∈ [0, T ]. (23)

Proof By uniqueness of the solution of the BSDEs of the type (22), all we

need to do is to verify that the triple (λV
(c)
t , λZ

(c)
t , λKt(·)(c)) is a solution of

the BSDE (22) with ct replaced by λct, i.e. that
d(λV

(c)
t ) =

(
− f(t, λct, λV

(c)
t ) + 1

2
A(λV

(c)
t )λZ(t)′(c)λZ(t)(c)+

1
2

∫
Z A0(λV

(c)
t , ζ)λK ′(t, ζ)(c)λK(s, ζ)(c)ν(dζ)

)
dt+ λZ(t)(c) dBt

+
∫
Z λK(t, ζ)(c)Ñ(dt, dζ); 0 ≤ t ≤ T

λV
(c)
T = 0

(24)

By (i), (ii) and (iii) the BSDE (24) can be written
λdV

(c)
t =

(
− λf(t, ct, V

(c)
t ) + 1

2
1
λ
A(V

(c)
t )λ2Z(t)′(c)Z(t)(c)+

1
2

∫
Z

1
λ
A0(V

(c)
t , ζ)λ2K ′(t, ζ)(c)K(s, ζ)(c)ν(dζ)

)
dt+ λZ(t)(c) dBt

+λ
∫
Z K(t, ζ)(c)Ñ(dt, dζ); 0 ≤ t ≤ T

λV
(c)
T = 0

(25)

But this is exactly the equation (22) multiplied by the constant λ. Hence
(25) holds and the proof is complete. �

Remarks 1) Note that the system need not be Markovian in general, since
we allow

f(t, c, v, ω); (t, ω) ∈ [0, T ]× Ω

to be an adapted process, for each fixed c, v.
2) Similarly, we can allow A0 and A to depend on t as well5.

Corollary 1 Define U(c) = V
(c)
0 .Then U(λc) = λU(c) for all λ > 0.

Notice that the aggregator in (18) satisfies the assumptions of the theorem.

5not common in economics
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5 The First Order Conditions

In the following we solve the consumer’s optimization problem using the
stochastic maximum principle and forward/backward stochastic differential
equations. We have the specification in (17) and (18) in mind, formulated in
the previous section, where the f̃ to appear below is the drift term in (17).
However, in principle the analysis is valid for any f , A and A0 satisfying the
stated conditions. The representative agent’s problem is to solve

supc∈LU(c)

subject to

E
{∫ T

0

ctπtdt
}
≤ E

{∫ T

0

etπtdt
}
,

where e is the endowment process of the agent. Here Vt = V c
t , and (Vt, Z(t),

K(t, ·)) is the solution of the backward stochastic differential equation (BSDE){
dVt = −f̃(t, c̃t, Vt, Z(t), K(t, ζ)) dt+ Z(t) dBt +

∫
Z K(t, ζ)Ñ(dt, dζ)

VT = 0.

(26)
For α > 0 we define the Lagrangian

L(c;λ) = U(c)− αE
(∫ T

0

πt(ct − et)dt
)
.

The volatility Z(t) as well as the jump size quantity K(t, ζ) are both part
of the solution, together with the dynamics of utility V . Market clearing
combined with properties of recursive utility in Theorem 1 will be used to
internalize the corresponding quantities for ”prices”, by connecting these to
Z and K.

In order to set down the first order condition for the representative con-
sumer’s problem, we use Kuhn-Tucker and either directional derivatives in
function space, or the stochastic maximum principle. Both these methods are
rather robust. The problem is well posed since U is increasing and concave
and the constraint is convex.

Below we utilize the stochastic maximum principle (see Pontryagin (1972),
Bismut (1978), Kushner (1972), Bensoussan (1983), Øksendal and Sulem
(2013), Hu and Peng (1995), or Peng (1990)): We then have a forward back-
ward stochastic differential equation (FBSDE) system consisting of the sim-
ple FSDE dX(t) = 0;X(0) = 0 and the BSDE (26). The Hamiltonian for
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this problem is

H(t, c, v, z, k, y) = yt f̃(t, ct, vt, zt, kt)− απt(ct − et), (27)

where

f̃(t, c, v, z, k) = f(c, v)− 1

2
A(v)z′z − 1

2

∫
Z
A0(v, ζ)k′(t, ζ)k(t, ζ)ν(dζ) (28)

with A and A0 given in (18). Here yt refers to the adjoint variable to be
defined shortly. Let 5kf̃ denote the Frechet derivative of f̃ with respect to

k, and d5k f̃
dν

(ζ) denote its Radon-Nikodym derivative with respect to ν. From
the general theory, the adjoint equation is then

dYt = Y (t-)
{(

∂f
∂v

(t, ct)− 1
2
( ∂
∂v
A(Vt))Z

′(t)Z(t)

−1
2

∫
Z( ∂

∂v
A0(Vt, ζ))K ′(t, ζ)K(t, ζ)ν(dζ)

)
dt

−1
2
∂
∂z

(
A(Vt)Z

′
tZt
)
dBt +

∫
Z
d5k f̃
dν

(t, ct, Vt, Zt, K(t, ·))(ζ)Ñ(dt, dζ)
}
,

Y0 = 1.

With a general form of A0(v, ζ) as in (16), we see that the Frechet derivative,
5kf̃ , is the linear operator

h→ (5kf̃)(h) = −
∫
Z
A0(v, ζ)k′(ζ)h(ζ)ν(dζ); h ∈ L2(ν).

Therefore, as a random measure we have that 5kf̃ << ν, with Radon-
Nikodym derivative

d5k f̃

dν
(ζ) = −A0(v, ζ)k(ζ).

Based on this, the adjoint equation can be written
dYt = Y (t-)

{(
∂f
∂v

(t, ct) + 1
2
γ
V 2
t
Z ′(t)Z(t)

+1
2

∫
Z

γ0
V 2
t
K ′(t, ζ)K(t, ζ)ν(dζ)

)
dt

− γ
Vt
Z(t)dBt −

∫
Z
γ0
Vt
K(t, ζ)Ñ(dt, dζ)},

Y (0) = 1,

(29)
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which has the solution

Yt = exp
(∫ t

0

(∂f
∂v

(s, cs) +
1

2

γ(1− γ)

V 2
s

Z ′(s)Z(s)

+
1

2

∫
Z

γ0
V 2
s−
K ′(s, ζ)K(s, ζ)ν(dζ)

)
ds−

∫ t

0

γ

Vs
Z(s)dBs

+

∫ t

0

∫
Z
{ln(1− γ0

Vs
K(s, ζ)) +

γ0
Vs
K(s, ζ)}ν(dζ)ds

+

∫ t

0

∫
Z

ln(1− γ0
Vs
K(s, ζ))Ñ(ds, dζ)

)
.

(30)

The adjoint equation is now reduced to depend on primitives of the economy
only. The interpretation of Yt is a shadow price; the marginal value as of
time zero of an additional unit of utility at time t.

Sufficient conditions for a unique, optimal solution using the stochastic
maximum principle are the same as the corresponding conditions for the
existence and uniqueness of a solution to the BSDE (26).

Maximizing the Hamiltonian with respect to c gives the first order equa-
tion

y
∂f̃

∂c
(t, c∗, v, z, k)− απ = 0

or

απt = Y (t)
∂f̃

∂c
(t, c∗t , V (t), Z(t), K(t, ·)) a.s. for all t ∈ [0, T ]. (31)

where c∗ is optimal. The state price deflator πt at time t depends, through
the adjoint variable Yt, on the entire optimal paths (c∗s, Vs, Z(s), K(s, ·)) for
0 ≤ s ≤ t, which means that marginal value at time t depends on the
consumption history.

When γ = γ0 = ρ then Yt = e−δt for the aggregator (21) of the conven-
tional model, so the state price deflator is a Markov process, the utility is
additive in which case dynamic programming is known to work well.

For the representative agent equilibrium the optimal consumption process
is the given aggregate consumption c in society, and for this consumption
process the utility Vt at time t is optimal.

We now have the first order conditions for recursive utility. Before we
proceed to a solution of the problem, we need to specify the financial market
model.
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6 The financial market

Having established the general recursive utility form of interest, in his section
we specify our model for the financial market. The model is much like the
one used by Duffie and Epstein (1992a), except that we do not assume any
unspecified factors in our model.

Let νR(t) ∈ RN denote the vector of expected rates of return of the N
given risky securities in excess of the riskless instantaneous return rt, and
let σ(t) denote the N × d-matrix of diffusion coefficients of the risky asset
prices, normalized by the asset prices, so that σ(t)σ(t)′ is the instantaneous
covariance matrix for the continuous part of asset returns. The jumps in the
various assets are captured by the N × l-matrix γ(t, ζ) and a vector valued,
compensated random measure

Ñ(dt, dζ)′ = (Ñ1(dt, dζ1), · · · , Ñl(dt, dζl)) =

(N1(dt, dζ1)− ν1(dζ1)dt, · · · , Nl(dt, dζl)− νl(dζl)dt),

where {Nj} are independent Poisson random measures with Levy measures
νj coming from l independent (1-dimensional) Levy processes.

The representative consumer’s problem is, for each initial level w of wealth
to solve

sup
(c,ϕ)

U(c) (32)

subject to the intertemporal budget constraint

dWt =
(
Wt(ϕ

′
t · νR(t) + rt)− ct

)
dt+Wtϕ

′
t · σ(t)dBt

+Wtϕ
′
t ·
∫
Rl
γ(t, ζ)Ñ(dt, dζ). (33)

Here ϕ′t = (ϕ
(1)
t , ϕ

(2)
t , · · · , ϕ(N)

t ) are the fractions of total wealth Wt held in
the risky securities. The processes νR(t), σ(t) and γ(t) are progressively
measurable, ergodic processes.

Market clearing requires that ϕ′tσ(t) = (δMt )′σ(t) = σM(t) and ϕ′tγ(t, ·) =
(δMt )′γ(t, ·) = γM(t, ·) in equilibrium, where σM(t) is the volatility of the
return on the market (wealth) portfolio, γM(t, ·) is the corresponding jump
size function, and δMt are the fractions of the different securities, j = 1, · · · , N
held in the value-weighted market portfolio. That is, the representative agent
must hold the market portfolio in equilibrium, by construction.

The model is a pure exchange economy where the aggregate consumption
process ct in society is exogenously given, and the single agent optimally
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consumes ct = et in every period. The main issue is then the determination
of prices, including risk premiums and the interest rate, consistent with this
behavior.

7 The development of the recursive model

We now turn our attention to pricing restrictions relative to the given optimal
consumption plan. Recall the first order conditions are given in (31).

It is convenient to use the notation Z(t)/Vt := σV (t) and K(t, ·)/V (t−) :=
KV (t, ·), where Vt− means the value of V just before a possible jump at time
t, assuming V 6= 0. By Theorem 1, σV (t) and KV (t, ·) are both homogeneous
of degree zero in c. With this convention the utility process Vt satisfies the
following backward equation

dVt
Vt−

=
(
− δ

1− ρ
c1−ρt − V 1−ρ

t

V −ρ+1
t

+
1

2
γσ′V (t)σV (t)

+
1

2

∫
Z
γ0K

′
V (t, ζ)KV (t, ζ)ν(dζ)

)
dt

+ σV (t)dBt +

∫
Z
KV (t, ζ)Ñ(dt, dζ), (34)

where V (T ) = 0. The short-hand notation for the integrals with jump dy-
namics is as explained in Section 2. Since the jump times have Lebesgue
measure zero, Vt = Vt− a.e. on [0, T ].

Aggregate consumption is exogenous, with dynamics on of the form

dct
ct−

= µc(t) dt+ σc(t) dBt +

∫
Z
γc(t, ζ)Ñ(dt, dζ), (35)

where µc(t), σc(t) and γc(t, ·) are measurable, Ft adapted stochastic pro-
cesses, satisfying appropriate integrability conditions. We assume these pro-
cesses to be ergodic, so that they can be estimated.

Under these conditions the adjoint variable Y has dynamics given in (29).
From the FOC in equation (31) we derive the dynamics of the state price
deflator. We then seek the connection between Vt, σV (t) and KV (t, ·) and
the rest of the economy. Towards this end, by Ito’s generalized lemma,
normalizing to α = 1, we get

dπt = fc(ct, Vt) dYt + Yt dfc(ct, Vt) + d[Y, fc(c, V )](t), (36)

since f̃c = fc, where [X, Y ](t) is the quadratic covariation of the processes X
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and Y given by

[X, Y ](t) =

∫ t

0

(
σX(s)σY (s) +

∫
Z
γX(s, ζ)γY (s, ζ)ν(dζ)

)
ds

+

∫ t

0

∫
Z
γX(s, ζ)γY (s, ζ)Ñ(ds, dζ).

By the dynamics of the adjoint and the backward equations, this can be
written, using Ito’s multi-dimensional formula

dπt = Yt fc(ct, Vt)
(
{fv(ct, Vt) +

1

2
γσ′V (t)σV (t) +

1

2

∫
Z
γ0K

′
VKV ν(dζ)}dt

−γσV (t)dBt−
∫
Z
γ0KV (t, ζ)Ñ(dt, dζ)

)
+Yt

∂fc
∂c

(ct, Vt)(ctµc(t)dt+ctσc(t)dBt)

+ Yt
∂fc
∂v

(ct, Vt)
(
{−f(ct, Vt) +

1

2
γVtσ

′
V (t)σV (t) +

1

2

∫
Z
Vt−γ0K

′
VKV ν(dζ)}dt

VtσV (t)dBt

)
+ Yt

(1

2

∂2fc
∂c2

(ct, Vt) c
2
tσ
′
c(t)σc(t) +

∂2fc
∂c∂v

(ct, Vt)σ
′
c(t)σV (t)

+
1

2

∂2fc
∂v2

(ct, Vt)V
2
t σ
′
V (t)σV (t)

)
dt+Yt

(∫
Z
{fc(ct−(1+γc(t, ζ)), Vt−(1+KV (t, ζ))

− fc(ct−, Vt−)− γc(t, ζ)ct−
∂fc
∂c

(ct, Vt)−KV (t, ζ)Vt−
∂fc
∂v

(ct, Vt)}ν(dζ)dt

+

∫
Z
{fc(ct−(1 + γc(t, ζ)), Vt−(1 +KV (t, ζ))− fc(ct−, Vt−)}Ñ(dt, dζ)

)
− γσV (t)Yt{ctσc(t)

∂fc
∂c

(ct, Vt) + VtσV (t)
∂fc
∂v

(ct, Vt)}dt

−Yt
∫
Z
γ0KV (t, ζ){fc(ct−(1+γc(t, ζ)), Vt−(1+KV (t, ζ))−fc(ct−, Vt−)}ν(dζ)dt

−Yt
∫
Z
γ0KV (t, ζ){fc(ct−(1+γc(t, ζ)), Vt−(1+KV (t, ζ))−fc(ct−, Vt−)}Ñ(dt, dζ).

(37)

Here

fc(c, v) :=
∂f(c, v)

∂c
= δc−ρvρ, fv(c, v) :=

∂f(c, v)

∂v
= − δ

1− ρ
(1− ρc1−ρvρ−1),

∂fc(c, v)

∂c
= −δρc−(1+ρ)vρ, ∂fc(c, v)

∂v
= δρvρ−1c−ρ,
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∂2fc
∂c2

(c, v) = δρ(ρ+ 1)vρc−(ρ+2),
∂2fc
∂c ∂v

(c, v) = −δρ2vρ−1c−(ρ+1),

and
∂2fc
∂v2

(c, v) = δρ(ρ− 1)vρ−2c−ρ.

From the canonical representation of the state price deflator

dπt = µπ(t)dt+ σπ(t)dBt +

∫
Z
γπ(t, ζ)Ñ(dt, dζ),

from (37) we find the key characteristics of π. They are

µπ(t) = Yt

(
fc(ct, Vt)

(
fv(ct, Vt) +

1

2
γσ′V (t)σV (t)

+
1

2

∫
Z
γ0K

′
VKV ν(dζ)

)
+
∂fc
∂c

(ct, Vt)ctµc(t)

+
∂fc
∂v

(ct, Vt)
{
− f(ct, Vt) +

1

2
γVtσ

′
V (t)σV (t) +

1

2

∫
Z
Vt−γ0K

′
VKV ν(dζ)

}
+

1

2

∂2fc
∂c2

(ct, Vt) c
2
tσ
′
c(t)σc(t) +

∂2fc
∂c∂v

(ct, Vt)σ
′
c(t)σV (t)

+
1

2

∂2fc
∂v2

(ct, Vt)V
2
t σ
′
V (t)σV (t) +

∫
Z
{fc(ct−(1 + γc(t, ζ)), Vt−(1 +KV (t, ζ))

− fc(ct−, Vt−)− γc(t, ζ)ct−
∂fc
∂c

(ct, Vt)−KV (t, ζ)Vt−
∂fc
∂v

(ct, Vt)}ν(dζ)

− γσV (t){ctσc(t)
∂fc
∂c

(ct, Vt) + VtσV (t)
∂fc
∂v

(ct, Vt)}

−
∫
Z
γ0KV (t, ζ){fc(ct−(1+γc(t, ζ)), Vt−(1+KV (t, ζ))−fc(ct−, Vt−)}ν(dζ)

)
,

(38)

σπ(t) = Yt

(
−fc(ct, Vt)γσV (t)+

∂fc
∂c

(ct, Vt)ctσc(t)+VtσV (t)
∂fc
∂v

(ct, Vt)
)

(39)

and

γπ(t, ζ) = Yt

(
fc(ct, Vt)(−γ0KV (t, ζ))

+ {fc(ct−(1 + γc(t, ζ)), Vt−(1 +KV (t, ζ))− fc(ct−, Vt−)}

− γ0KV (t, ζ){fc(ct−(1 + γc(t, ζ)), Vt−(1 +KV (t, ζ))− fc(ct−, Vt−)}
)
. (40)
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7.1 The risk premiums

The risk premium of any risky security with return process R is given by

µR(t)− rt = − 1

πt
σ′π(t)σR(t)− 1

πt

∫
Z
γπ(t, ζ)γR(t, ζ)ν(dζ) (41)

where the last term follows from Aase (1993a,b). Since πt = Ytfc(ct, Vt), it is
a consequence of the expressions in (39) and (41) that the risk premium of
any risky security is given by

µR(t)− rt =
(
−

∂fc
∂c

(ct, Vt)

fc(ct, Vt)
ctσ
′
c(t)σR(t) +

(
γ −

∂fc
∂v

(ct, Vt)

fc(ct, Vt)
Vt

)
σ′V (t)σR(t)

)
+

∫
Z

(
γ0KV (t, ζ)− 1

fc(ct, Vt)

(
fc(ct−(1+γc(t, ζ)), Vt−(1+KV (t, ζ))−fc(ct−, Vt−)

)
·(

1− γ0KV (t, ζ)
))
γR(t, ζ)ν(dζ). (42)

This is our basic result for risk premiums. We now substitute in for f given
in (18) and the various partial derivatives derived above. This gives

µR(t)− rt = ρ σc(t)
′σR(t) + (γ − ρ)σV (t)′σR(t)

+

∫
Z

(
γ0KV (t, ζ)−

((1 +KV (t, ζ)

1 + γc(t, ζ)

)ρ
−1
)(

1−γ0KV (t, ζ)
))
γR(t, ζ)ν(dζ).

(43)

It remains to connect the characteristics of the market portfolio to the fun-
damentals σV and KV of the economy, which we do below. Before that we
turn to the interest rate.

7.2 The equilibrium interest rate

The equilibrium short-term, real interest rate rt is given by the formula

rt = −µπ(t)

πt
. (44)

The real interest rate at time t can be thought of as the expected exponential
rate of decline of the representative agent’s marginal utility, which is πt in
equilibrium.

In order to find an expression for rt in terms of the primitives of the model,
we use (38). Using the expression for f and its various partial derivatives,
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we obtain the expression

rt = δ + ρµc(t)−
1

2
ρ(ρ+ 1)σ′c(t)σc(t)

− ρ(γ − ρ)σc(t)
′σV (t)− 1

2
(γ − ρ)(1− ρ)σ′V (t)σV (t)

−
∫
Z

{1

2
(1 + ρ)γ0K

′
V (t, ζ)KV (t, ζ) +

((1 +KV (t, ζ)

1 + γc(t, ζ)

)ρ − 1
)(

1− γ0K(t, ζ)
)

+ ργc(t, ζ)− ρKV (t, ζ)
}
ν(dζ), (45)

first presented in (8) of Section 2, which is our basic result for the equilibrium
short rate.

7.3 The determination of the volatility and jump char-
acteristics of the market portfolio

In order to determine σM(t), and γM(t, ·) from the primitives of the model,
which in this case involve σV (t), KV (t, ·), σc(t) and γc(t, ·), first notice that
the wealth at any time t is given by

Wt =
1

πt
Et

(∫ T

t

πscs ds
)
, (46)

where c is optimal. By the definition of directional derivatives (the Frechet
derivative) we have that

5 U(c; c) = limα↓0
U(c+ αc)− U(c)

α
= limα↓0

U(c(1 + α))− U(c)

α

= limα↓0
(1 + α)U(c)− U(c)

α
= limα↓0

αU(c)

α
= U(c),

where the third equality uses that U is homogeneous of degree one as shown
in Theorem 1. By the Riesz representation theorem and dominated conver-
gence theorem it follows from the linearity and continuity of the directional
derivative that

5U(c; c) = E
(∫ T

0

πtct dt
)

= W0π0 (47)

where W0 is the wealth of the representative agent at time zero, and the last
equality follows from (46) for t = 0. Thus U(c) = π0W0.

Let Vt(c) denote future utility at the optimal consumption for our rep-
resentation. Since this function is also homogeneous of degree one and is
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continuously differentiable, by Riesz’ representation theorem and the domi-
nated convergence theorem, the same type of basic linear relationship holds
here for the associated directional derivatives at any time t, i.e.,

5Vt(c; c) = Et

(∫ T

t

π(t)
s cs ds

)
= Vt(c)

where the Riesz representation π
(t)
s for s ≥ t is the state price deflator at

time s ≥ t, as of time t. As for the discrete time model, it follows by results
in Skiadas (2009a) that with assumption A2, implying that this quantity is
independent of past consumption, the consumption history in the adjoint
variable Yt is ’removed’ from the state price deflator πt, so that π

(t)
s = πs/Yt

for all t ≤ s ≤ T . By this it follows that

Vt =
1

Yt
πtWt. (48)

This gives us the dynamics of V in terms of the other variables, which de-
termines the relationship between primitives and the endogenous variables.
By the product rule,

dVt = d
(
Y −1t

)
(πtWt) + Y −1t d(πtWt) + d[Y −1t , (πtWt)](t) (49)

where
d(πtWt) = Wtdπt + πtdWt + d[πt,Wt](t). (50)

Ito’s lemma gives

d
( 1

Yt

)
= − 1

Yt−

(
fv(ct, Vt)+

1

2
γσ′V (t)σV (t)+

1

2

∫
Z
γ0K

′
V (t, ζ)KV (t, ζ)ν(dζ)

)
dt

+
γ2

Yt−
σ′V (t)σV (t) dt+

1

Yt−
γσV (t) dBt

+

∫
Z

{ 1

Yt−(1− A0(t, ζ)K(t, ζ))
− 1

Y (t−)
− 1

Y (t−)
A0(t, ζ)K(t, ζ)

}
ν(dζ)dt

+

∫
Z

{ 1

Yt−(1− A0(t, ζ)K(t, ζ))
− 1

Y (t−)

}
Ñ(dt, dζ). (51)

From the equations (49)-(51) it follows by the market clearing condition
ϕ′t · σ(t) = σM(t) that

VtσV (t) =
1

Yt

(
πtWtγσV + πtWtσM(t)− πtWt

(
ρσc(t) + (γ − ρ)σV (t)

))
(52)
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From the expression (48) for Vt we obtain the following equation for σV

σV (t) = γσV (t) + σM(t)− (ρσc(t) + (γ − ρ)σV (t)

from which it follows that

σM(t) = (1− ρ)σV (t) + ρσc(t)). (53)

This relationship internalizes this important quantity in equilibrium. The
relationship can also be written

σV (t) =
1

1− ρ
(σM(t)− ρσc(t)), (54)

which, when inserted into (43) and (45) gives the model of Section 3 for the
continuous part of the dynamics.

The version treated by Duffie and Epstein (1992a) is the ordinally equiv-
alent one based on (20), which was claimed to be better suited for dynamic
programming, the solution method used by them. One assumption which
must be made in order to solve the associated Bellman equation is then that
the volatilities involved are constants. In the conventional model the result
of this is that the volatility of the consumption growth rate must equal the
volatility of the wealth portfolio. In the recursive model in continuous time,
this happens only if ρ = 1. In any case, this assumption does not seem well
supported by data.

Under the assumptions of this paper and without any jump dynamics,
the two ordinally equivalent versions give the same expressions for the risk
premiums and the real interest rate (see Aase (2014a)).

We turn to the equilibrium determination of γM(t, ·). From equation (51)
we define

γY −1(t, ζ) :=
γ0KV (t, ζ)

1− γ0KV (t, ζ)
.

From the equations (48)-(51), using the market clearing condition ϕ′tγ(t, ·) =
γM(t, ·), it follows that

KV (t, ζ) = γY −1(t, ζ) +
(
γπ(t, ζ)/πt + γM(t, ζ) + (γπ(t, ζ)/πt)γM(t, ζ)

)
+ γY −1(t, ζ)

(
γπ(t, ζ)/πt + γM(t, ζ) + (γπ(t, ζ)/πt)γM(t, ζ)

)
,
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or

KV (t, ζ) = γY −1(t, ζ)+(γπ(t, ζ)

πt
+ γM(t, ζ) +

γπ(t, ζ)

πt
γM(t, ζ)

)(
1 + γY −1(t, ζ)

)
We now use the expression for γπ(t, ·) found in (40). It can be simplified to

γπ(t, ζ) = πt

(
− γ0KV (t, ζ) +

((1 +KV (t, ζ)

1 + γc(t, ζ)

)ρ − 1
)(

1− γ0KV (t, ζ)
))
.

This immediately gives the following relationship between γM(t, ·), KV (t, ·)
and γc(t, ·):

KV (t, ζ)
(

1− γ0 − γ0KV (t, ζ)
)

= γM(t, ζ)+(
1 + γM(t, ζ)

)(
− γ0KV (t, ζ) +

((1 +KV (t, ζ)

1 + γc(t, ζ)

)ρ − 1
)(

1− γ0KV (t, ζ)
))
(55)

ν a.e6. This relationship is seen to be linear in γM(t, ζ, and the solution is

1 + γM(t, ζ) =
1 +KV (t, ζ)(1− γ0 − γ0KV (t, ζ))

1− γ0KV (t, ζ) +
((1+KV (t,ζ)

1+γc(t,ζ)

)ρ − 1
)(

1− γ0KV (t, ζ)
) (56)

where the equality holds ν(·) a.e.
This proves the results of Section 3.1, which we formulate in the next

section.

8 The results

We can now summarize our results so far in the following

Theorem 2 For the standard recursive model with jump dynamics included,

6By starting with the identity YtVt = πtWt instead of using (48), these computations
can be made somewhat easier.
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in equilibrium the risk premium of any risky asset R is given by

µR(t)− rt =
ρ(1− γ)

1− ρ
σc(t)

′σR(t) +
γ − ρ
1− ρ

σM(t)′σR(t)+∫
Z

(
γ0KV (t, ζ)−

((1 +KV (t, ζ)

1 + γc(t, ζ)

)ρ
− 1
)(

1− γ0KV (t, ζ)
))
γR(t, ζ)ν(dζ),

and the real interest rate by

rt = δ + ρµc(t)−
1

2

ρ(1− ργ)

1− ρ
σ′c(t)σc(t) +

1

2

ρ− γ
1− ρ

σM(t)′σM(t)

−
∫
Z

{1

2
(1 + ρ)γ0K

′
V (t, ζ)KV (t, ζ) +

((1 +KV (t, ζ)

1 + γc(t, ζ)

)ρ − 1
)(

1− γ0K(t, ζ)
)

+ ργc(t, ζ)− ρKV (t, ζ)
}
ν(dζ).

The volatility of the market portfolio σM(t) is given by

σM(t) = (1− ρ)σV (t)− ρσc(t)),

and γM(t, ζ) is given in terms of KV (t, ζ) and γc(t, ζ) by the equation (56).

Under the reformulation in Section 3 regarding the jump part, the relation-
ship (56) can be integrated in the formula for the risk premium and the real
rate, by a change of variables. Let y := γM(t, ζ), c = γc(t, ζ), v = KV (t, ζ)
and x = γR(t, ζ). As explained in Section 3, for l = 1 the relationship (56)
with this notation is

1 + y =
1 + v(1− γ0 − γ0v)

1− γ0v +
((

1+v
1+c

)ρ − 1
)
(1− γ0v)

. (57)

For the Levy-measure ν(dζ, dζ2, dζ3)) on the form λtdHt(y, c, x) the risk pre-
mium and the real rate can be written respectively

µR(t)− rt =
ρ(1− γ)

1− ρ
σc(t)

′σR(t) +
γ − ρ
1− ρ

σM(t)′σR(t)+∫∫∫
Z′

{
γ0v −

((1 + v

1 + c

)ρ − 1
)
(1− γ0v)

}
xλtdHt(c, v, x) (58)
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and

rt = δ + ρµc(t)−
1

2

ρ(1− ργ)

1− ρ
σ′c(t)σc(t) +

1

2

ρ− γ
1− ρ

σM(t)′σM(t)

−
∫∫∫

Z′

(1

2
γ0(1 + ρ)v2 +

((1 + v

1 + c

)ρ− 1
)
(1− γ0v) + ρc− ρv

)
λtdHt(c, v, x).

(59)

where ht(x, v, x) = J(c, v, x)ft(c, y(c, v), x) is the pdf of Ht. As pointed out in
Section 3, Ft(c, y, x), the joint probability distribution function of the jump
sizes in consumption, the market (wealth) portfolio and the risky asset under
consideration, is internalized this way, assuming Ft has a probability density
function ft(c, y, x).

Further transformations of variables suitable for computations are some-
times needed, as we show below.

8.1 The pure jump part when ρ = 0

Let us consider the pure jump part of the risk premium and the interest rate
in Theorem 2. The expression (56) becomes particularly simple when ρ = 0.
In this situation the agent is neutral to consumption transfers across time,
where

γM(t, ζ) = KV (t, ζ) for all t and for all ζ ∈ Z, (60)

which means that the expression for the risk premium and the real rate are

µR(t)− rt = γ0

∫
Z
γ′M(t, ζ)γR(t, ζ)ν(dζ),

and

rt = δ − 1

2
γ0

∫
Z
γ′M(t, ζ)γM(t, ζ) ν(dζ)

respectively. No approximations were used in deriving this result.
Notice that this model can be considered as a dynamic version of the clas-

sical CAPM of Mossin (1968). The CAPM is derived in a time-less setting,
where there is consumption only on the last time point, so that the interest
rate has no real meaning. In contrast, our model is valid in a dynamic setting
with recursive utility, and has an associated real, equilibrium interest rate as
given above.

As an illustration of the pure jump model, it can be seen to fit the data
summarized in in Table 1 by modeling the discrete data by a marked point
process of frequency one per year, on the average. The result of this calibra-

30



tion is: γ = 2.38, and δ = .038. As we shall see in Section 8, this is the same
result as obtained using the continuous model with no jumps, and also using
the combined model when γ0 = γ.

8.2 The approximation for the pure jump part for gen-
eral ρ 6= 1

Let us consider the relationship (56) and expand the power function in the
denominator in a Taylor series, retaining only first order terms. This gives

1 + γM(t, ζ) ≈
1 +KV (t, ζ)(1− γ0 − γ0KV (t, ζ))

1− γ0KV (t, ζ) + ρ(KV (t, ζ)− γc(t, ζ)− ργc(t, ζ)KV (t, ζ))(1− γ0KV (t, ζ))
.

Disregarding terms of higher order in the denominator, this can be written

1 + γM(t, ζ) ≈
(
1 +KV (t, ζ)(1− γ0 − γ0KV (t, ζ)))

(
1 + γ0KV (t, ζ)+

ργc(t, ζ)− ρKV (t, ζ)
)

+ · · ·

or

γM(t, ζ) ≈ KV (t, ζ)(1−ρ)+ργc(t, ζ)+ · · · for all t and for all ζ ∈ Z, (61)

an approximate internalization of γM(t, ·). This reduces to (60) when ρ = 0.
Inverting this we also have

KV (t, ζ) ≈ 1

1− ρ
(
γM(t, ζ)− ργc(t, ζ)

)
+ · · · . (62)

These relationship can be compared to the corresponding between the volatil-
ities σM(t), σV (t) and σc(t) given in Theorem 2.

The jump part of the expression for the risk premium we approximate as
follows∫
Z

(
γ0KV (t, ζ)−

(
(1+ρKV (t, ζ))(1−ργc(t, ζ))−1

)
(1−γ0KV (t, ζ)

)
γR(t, ζ)ν(dζ).

Retaining second order moments only, this expression can be written∫
Z

(
(γ0 − ρ)KV (t, ζ) + ργc(t, ζ)

)
γR(t, ζ)ν(dζ).

Inserting the expression for KV (t, ζ) from (62), we obtain an approximation
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to the risk premium for the pure jump model as follows

µR(t)− rt =
ρ(1− γ0)

1− ρ

∫
Z
γc(t, ζ)γR(t, ζ)ν(dζ)+

γ0 − ρ
1− ρ

∫
Z
γM(t, ζ)γR(t, ζ)ν(dζ) + · · · (63)

We notice that up to the first two moments this expression has the same
structure as the corresponding formula for the continuous part, except that
γ0 now replaces γ.

Turning to the interest rate, we proceed as follows. The jump part of the
interest rate can be written

−
∫
Z

{1

2
(1+ρ)γ0K

′
V (t, ζ)KV (t, ζ)+

((1 +KV (t, ζ)

1 + γc(t, ζ)

)ρ−1
)(

1−γ0KV (t, ζ)
)

+ ργc(t, ζ)− ρKV (t, ζ)
}
ν(dζ)

To obtain the same order of approximation as above, we must include one
more term in the Taylor series expansion for the power term. This gives

−
∫
Z

{1

2
(1 + ρ)γ0K

′
V (t, ζ)KV (t, ζ) +

(
1− γ0KV (t, ζ)

)
·((

1 + ρKV (t, ζ) +
1

2
ρ(ρ− 1)K2

V (t, ζ))(1− ργc(t, ζ)+

1

2
ρ(ρ+ 1)γ2c (t, ζ))− 1

)
+ ργc(t, ζ)− ρKV (t, ζ)

}
ν(dζ). (64)

First we focus on the term K ′VKV which leads to γ′MγM/(1− ρ)2 using (62).
Examining (64), we see that three terms contribute to to the coefficient of
γ′M(t, ζ)γM(t, ζ): They are

−
(1

2

γ0(1 + ρ)

(1− ρ)2
− γ0ρ

(1− ρ)2
+

1

2

ρ(ρ− 1)

(1− ρ)2

)
=

1

2

ρ− γ0
1− ρ

. (65)

From Theorem 2, or (59), we see that this is the coefficient multiplying the
corresponding σ′M(t)σM(t)-term in the continuous part of rt.

Next we focus on the term that gives γ′M(t, ζ)γc(t, ζ), which we obtain
from K ′V (t, ζ)γc(t, ζ). In addition to the previous component, the following
contributes directly from (64) to this product:

−
(
γ0ρ− ρ2

) 1

1− ρ
(
γ′M(t, ζ)γc(t, ζ)− ργ′c(t, ζ)γc(t, ζ)

)
(66)
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where we have used (62). Recall that (65) is obtained as the first part of

K ′V (t, ζ)KV (t, ζ) =
1

(1− ρ)2
(
γ′M(t, ζ)γM(t, ζ)− 2ργ′M(t, ζ)γc(t, ζ)+

ρ2γ′c(t, ζ)γc(t, ζ)
)

(67)

Taking these two terms into account, the coefficient in question is is:(1

2

ρ− γ0
1− ρ

(−2ρ)−
(
γ0ρ− ρ2

) 1

1− ρ

)
γ′M(t, ζ)γc(t, ζ) = 0,

in agreement with Theorem 2, or (59): No such term appears in the interest
rate. Finally we turn to the term γ′c(t, ζ)γc(t, ζ). We obtain from (66) the
contribution

−γ0ρ− ρ
2

1− ρ
(−ρ)γ′c(t, ζ)γc(t, ζ).

Directly from (64) we have

−1

2
ρ(ρ+ 1)γ′c(t, ζ)γc(t, ζ).

From (65) and (67) we get

1

2

ρ− γ0
1− ρ

ρ2γ′c(t, ζ)γc(t, ζ).

Adding these three terms gives the following result

−1

2

ρ(1− ργ0)
1− ρ

γ′c(t, ζ)γc(t, ζ).

This proves that the pure jump part of the real interest rate is given by

rt = δ + ρµc(t)−
1

2

ρ(1− ργ0)
1− ρ

∫
Z
γ′c(t, ζ)γc(t, ζ) ν(dζ)

+
1

2

ρ− γ0
1− ρ

∫
Z
γ′M(t, ζ)γM(t, ζ) ν(dζ) + · · ·

to the required order of approximation. Thus we have shown (14) and (15)
in Section 3.2.
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8.3 Summary of the approximative model

Combining the results in Section 3.1 and 8.2 with the formulation of the
jump model Section 8, the risk premiums and the real interest rate can be
written

µR(t)− rt =
ρ(1− γ)

1− ρ
σc(t)

′σR(t) +
γ − ρ
1− ρ

σM(t)′σR(t)+

ρ(1− γ0)
1− ρ

∫ ∞
−1

∫ ∞
−1

c x λt dF
(1)
t (c, x) +

γ0 − ρ
1− ρ

∫ ∞
−1

∫ ∞
−1

y x λt dF
(2)
t (y, x)

(68)

and

rt = δ + ρµc(t)−
1

2

ρ(1− ργ)

1− ρ
σ′c(t)σc(t) +

1

2

ρ− γ
1− ρ

σM(t)′σM(t)

−1

2

ρ(1− ργ0)
1− ρ

∫ ∞
−1

∫ ∞
−1

c2 λt dF
(1)
t (c, x)+

1

2

ρ− γ0
1− ρ

∫ ∞
−1

∫ ∞
−1

y2 λt dF
(2)
t (y, x)

(69)

respectively. Here F
(1)
t (c, x) and F

(2)
t (y, x) are the marginal distributions

of Ft(c, y, x). We assume F
(1)
t (c, x) has density f

(1)
t (c, x) and F

(2)
t (y, x) has

density f
(2)
t (c, x).

In the following it will be an advantage to consider the model in expo-
nential, rather than in the stochastic exponential form. We therefore make
the substitution 1 + y = ezW , 1 + c = ezc and 1 + x = ezM which leads to the
following expressions

µR(t)− rt =
ρ(1− γ)

1− ρ
σc(t)

′σR(t) +
γ − ρ
1− ρ

σM(t)′σR(t)+

ρ(1− γ0)
1− ρ

∫ ∞
−∞

∫ ∞
−∞

(ezc − 1)(ezM − 1)λt dG
(1)
t (zc, zM)+

γ0 − ρ
1− ρ

∫ ∞
−∞

∫ ∞
−∞

(ezW − 1)(ezM − 1)λt dG
(2)
t (zW , zM) (70)
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and

rt = δ + ρµc(t)−
1

2

ρ(1− ργ)

1− ρ
σ′c(t)σc(t) +

1

2

ρ− γ
1− ρ

σM(t)′σM(t)

− 1

2

ρ(1− ργ0)
1− ρ

∫ ∞
−∞

∫ ∞
−∞

(ezc − 1)2 λt dG
(1)
t (zc, zM)

+
1

2

ρ− γ0
1− ρ

∫ ∞
−∞

∫ ∞
−∞

(ezW − 1)2 λt dG
(2)
t (zW , zM) (71)

where G(1) has density function g(1) given by

g(1)(zc, zM) = f (1)(c(zc), x(zM))J (1)(zc, zM)

and where the J (1) is the Jacobian

J (1)(zc, zM) = mod

∣∣∣∣ ezc 0
0 ezM

∣∣∣∣ = ezc+zM

and similarly for G(2)(zW , zM). This form we will make use of in the calibra-
tions of the next section.

9 Some calibrations

In this section we calibrate the recursive model to the data summarized in
Table 1. Some calibrations of the recursive model with only continuous dif-
fusion dynamics are shown in Table 2. This model is based on the aggregator
(20) in Section 4, and the risk premium was first derived by Duffie and Ep-
stein (1992a)7. The interest rate was first derived in Aase (2014a), and also
follows from our approach in the present paper. In the calibration we have
fixed the time impatience rate δ and solved the two equations (5) and (8) in
the two remaining unknowns γ and ρ, for values of δ between 1.5 and 3.8 per
cent.

The values obtained for γ and ρ seem reasonable, in particular the ones
corresponding to δ ≥ 0.022. For comparisons, the results for the conven-
tional additive model is given in the first line of Table 2, and for the pure
jump model with joint NIG-distributed jump sizes in the second line. In
applied economics values of the impatience rate between 1 and 4 per cent
seem common. One reason for this is of course that the conventional, ad-
ditive Eu-model is often taken for granted, and from the expression for the

7The coefficients were all constants, since dynamic programming was used. This is not
necessary in our approach
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γ ρ EIS

Conventional Eu-Model
δ = −.015 26.37 26.37 .037

Conventional Eu-model
with jumps only (NIG)
δ = .0083 22.2 22.2 .045
Continuous recursive model
δ = .015 .46 1.34 .74
δ = .020 .90 1.06 .94
δ = .025 1.33 .78 1.28
δ = .030 1.74 .48 2.08
δ = .035 2.14 .18 5.56
δ = .038 CAPM+ 2.38 .00 +∞

Table 3: Calibrations of the continuous recursive model

interest rate in (2) (disregarding the jump terms) one simply does not obtain
reasonable values for the short rate unless δ is in this range, or smaller.

With the jump terms included, we may expect some changes. The above
continuous model gives interesting results in itself. One might conjecture
that only minor adjustments may be required, which the discontinuous part
could provide.

To investigate this, we employ the model on the form summarized in
Section 8.3. Since this requires a transformation to log returns, the relevant
statistics is summarized in Table 4. Notice that this table is not a mere
transformation of Table 1, but developed from the the original data set used
in the Mehra and Prescott (1985)-study, by taking logarithms of the relevant
yearly quantities, and basing the statistical analysis on these transformed
data points. As an illustration, of the total annual variation of .02509 in

Expectat. Standard dev. Covariances

Consumption growth 1.75% 3.55% cov(M, c) = .002268
Return S&P-500 5.53% 15.84% cov(M, b) = .001477
Government bills 0.64% 5.74% cov(c, b) = −.000149
Equity premium 4.89% 15.95%

Table 4: Key US-data for the time period 1889-1978 in terms of log returns
of discrete-time compounding.

the stock market, measured as variance, suppose we allocate .0126 to jumps.
Similarly, the total annual variance of the consumption growth rate of .00126
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is divided in two so that the jump part retains .00063. The expected growth
rate of the jump part of the consumption variable is set to .01 and the jump
parts contribution to the annual return on the market portfolio is set to .028.
Higher order terms are ignored, so it is the new aspect of γ0 6= γ, as well as
the existence of a full, joint probability distribution for the jump sizes that is
investigated here. The latter distribution is assumed to be joint lognormal,
and as a consequence both G(1) and G(2) are both joint normal probability
distribution functions. Some results are presented in Table 5. As can be

γ ρ γ0 EIS

Recursive model
including jump dynamics
δ = .005 1.06 1.02 .95 .98
δ = .010 1.04 1.02 .95 .98
δ = .015 1.04 1.03 .90 .97
δ = .020 .98 .96 1.10 1.04
δ = .025 1.04 .87 1.30 1.15
δ = .030 1.14 .55 2.00 1.82
δ = .035 1.71 .69 1.50 1.45
δ = .040 2.60 .57 1.30 1.75
δ = .045 2.97 .62 1.10 1.61

Table 5: Calibrations of the model including jump dynamics

seen from this table, with the new elements added, the model explains the
data also for small values of the impatience rate δ, (as well as for large ones).
When the impatience rate becomes small, the continuous model does not fit
the data at all. With jumps included, and the risk aversion on jump size
risk γ0 can differ from γ, we obtain better results, although values of the risk
aversion around one is considered a bit low. It may be interesting to notice
that log utility in the conventional model, the so-called ’Kelly-criterion’, is
known to have certain advantages as an objective in the long run (see e.g.,
Breiman (1960)).

9.1 CAPM++: ρ = 0

When the time preference parameter ρ = 0 no approximations are involved.
This model corresponds to the dynamic version of the classical one-period
CAPM, which we denote by CAPM++. Some results are presented in Table
6. For the upper six rows in the table the assumptions are as in the last
section. For the last three rows we have set the return rate to minus one
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percent annually for the jump part. This is to check the casual observation
that jumps in the stock market often seem associated with slumps, or even
market crashes.

CAPM++ γ ρ γ0

Recursive model with ρ = 0
including jump dynamics
δ = .038 2.38 .00 2.38
δ = .038 1.25 .00 3.00
δ = .038 2.42 .00 2.00
δ = .038 4.18 .00 .50
δ = .038 3.59 .00 1.00
δ = .038 3.01 .00 1.50

δ = .038 4.77 .00 .00
δ = .038 5.27 .00 -.50
δ = .038 5.76 .00 -1.00

Table 6: Calibrations of the model including jump dynamics

The parameters γ and γ0 are seen to supplement each other; when one
is large the other is small, and vice versa, and both the impatience rate and
the risk aversions calibrate to plausible values.

For the last three rows of the table jumps are associated with negative
shocks in the stock market, so we may check if loss aversion is supported by
the model by choosing a low, or even a negative value of γ0 (since loss aversion
is associated with risk proclivity for losses). The ordinary risk aversion γ is
then a between four and six, and the impatience rate is still reasonable at
3.8 per cent. This indicates a utility based connection to loss aversion (see
e.g., Kahneman and Tversky (1979)).

9.2 The market portfolio is not a proxy for the wealth
portfolio

In the above calibrations we have assumed that all income is investment
income. This may be justified in the present paper, since we compare different
models. If we can view exogenous income streams as dividends of some
shadow asset, our model is valid if the market portfolio is expanded to include
the new asset. However, if the latter is not traded, then the return to the
wealth portfolio is not readily observable or estimable from available data.
Still we should be able to get a fair impression of what can be expected
in a more elaborate model. This is analyzed in Aase (2014a,b) for the pure
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continuous recursive and the discrete time model respectively, and the results
are promising. Using a pure jump model, the results are even more promising
as we shall see.

Below we take the pure jump model to represent the data, with frequency
one per year on the average, as explained in Section 2.1. The advantage of
this approach is that we do not need to separate jumps from the continuous
part of the data paths. This way we may study the deviations from the local
mean square analysis in isolation, and take advantage of the joint probability
distribution of jump sizes. The model of Section 8.3 then takes the form

µR(t)− rt =
ρ(1− γ0)

1− ρ

∫ ∞
−∞

∫ ∞
−∞

(ezc − 1)(ezM − 1)λ dG(1)(zc, zM)+

γ0 − ρ
1− ρ

∫ ∞
−∞

∫ ∞
−∞

(ezW − 1)(ezM − 1)λ dG(2)(zW , zM) (72)

and

rt = δ + ρµc(t)−
1

2

ρ(1− ργ0)
1− ρ

∫ ∞
−∞

∫ ∞
−∞

(ezc − 1)2 λ dG(1)(zc, zM)

+
1

2

ρ− γ0
1− ρ

∫ ∞
−∞

∫ ∞
−∞

(ezW − 1)2 λ dG(2)(zW , zM) (73)

Now W signify the wealth portfolio. Below we set µW (t) = .02, σW (t) = .10,
κc,W = .40 as before, and set κW,R = .80. We assume a joint lognormal
distribution F for the the various variables c, W and M , in which case the
two marginal distributions G(1) and G(2) are both joint normal distribution
functions.

The results of the calibrations are given in Table 7. As can be seen, they
correspond to plausible values of the various parameters.

In the above we have set the growth rate of the wealth portfolio to two
per cent, which is captured by the joint probability distribution function
G(2) (or H(2)). The result is a fairly patient agent. Since the majority (9/10)
did not invest in the stock market for the period the data covers, this value
for the growth growth rate is likely to better reflect the average return that
this majority received. This group also dominates in aggregate consumption
because of the sheer number of people it represents.

For the agent in the stock market receiving about seven per cent annual
return, this higher return may not change the results all that much in a
two agent model, because this ’agent’ consumes only a smaller fraction of
the aggregate consumption (because of the small size of the population that
this agent represents). Typically, one would expect that the latter agent will
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ρ γ0 EIS

Recursive model.
Pure jump dynamics

δ = .015 .97 1.11 1.03
δ = .017 .86 1.53 1.16
δ = .019 .74 1.93 1.35
δ = .020 .68 2.51 1.47
δ = .022 .55 2.13 1.81
δ = .025 .35 3.06 2.86
δ = .027 .21 3.42 4.76
δ = .028 .14 3.59 7.14
δ = .029 .07 3.75 14.28

Table 7: Calibrations when the market portfolio is not
a proxy for the wealth portfolio.

display more impatience than the former.

9.3 Some related issues

In the above we have ignored the higher order moments than the two first
ones, specific for the jump model. In Section 2 we noticed that including
all the features of the jump model can make some difference. A numerical
analysis can be based on the results of Section 3.3, where the pure jump
model may, as above, be taken to represent the data alone with frequency
one per year on the average. This way we may study the deviations from the
local mean square analysis in isolation. Some of this deviation was indeed
captured in the previous section, but not all. This approach would also allow
for deviations from normality. The associated numerical analysis we do not
consider here.

The topic of separating the jump part from the continuous part of a data
set is dealt with in e.g., Ait Sahalia and Jacod (2009-11).

More numerical work is of course desired, possibly combined with statisti-
cal estimation theory, aimed at separating the discontinuous dynamics from
the continuous part. However, the general picture seems to be that jumps
may be of particular interest in the recursive model.
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10 Conclusions

We have addressed the well-known empirical deficiencies of the conventional
asset pricing model in financial- and macro economics. We have considered
the recursive model in continuous time jump/diffusion setting with the Kreps-
Porteus specification where we have derived both the equilibrium real interest
rate, and risk premiums.

We use a general method of optimization, the stochastic maximum prin-
ciple, together with the theory of forward/backward stochastic differential
equations, which allow for an extension to jump dynamics.

The recursive model has several interesting features when jumps are al-
lowed in the dynamics of the aggregate consumption process as well as in the
future volatility process. In addition to the nonlinear terms that are intro-
duced, it also gives a new parameter for the risk aversion related to jump size
risk. Both together, and in isolation, these new features may improve many
results for the continuous recursive model in relation to explaining real data.

We have demonstrated that for the US-data in the Mehra and Prescott
(1985)-study, our extended model may calibrate, with a few simplifications
regarding the jump dynamics, to reasonable values of the preference parame-
ters. We also consider the more realistic situation where the market portfolio
is not a proxy for the wealth portfolio.

From a theoretical point of view, a most important step in our derivation
is the internalization of the probability distribution, or more precisely, the
stochastic process, for the market and the wealth portfolios. They are deter-
mined in equilibrium, by the first order conditions and market clearing, from
the primitives of the underlying economic model, which are the stochastic
process for future utility (preferences) and the process determining the dy-
namics of the growth rate of aggregate consumption (the given endowment
process).
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