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Abstract

The academical research on offshore shipping markets is very lim-
ited. This thesis is an attempt to improve our understanding of the
spot rates for offshore shipping markets and consequently our ability to
do more accurate pricing. I perform an empirical analysis of the most
significant characteristics of the spot rates for Platform Supply Vessels
(PSV) and Anchor Handling Tug Supply (AHTS) vessels and propose
a model able to capture these dynamics. The proposed spot rate model
is an extension to the simple geometric mean reversion model, incorpo-
rating two-regime mean reversion, jumps and a deterministic seasonal
function. Parameters are estimated based on the historical spot rates
and the model is calibrated for the North Sea market. Using modern
derivatives techniques I derive the risk adjusted spot rate process and
adopt Tvedt’s [30] approach to pricing vessels as a spot rate contingent
claim on cash flows, where the pay-off structure can be described as a
continuous American call option. The proposed spot rate model is then
applied to the problem and the partial differential equation satisfying
the value function of a vessel is derived.
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1 Introduction

Platform Supply Vessels (PSV) and Anchor Handling Tug Supply (AHTS)-
vessels represents one of the largest cost elements in the upstream oil and gas
industry [1]. A PSV-vessel is a ship specially designed to supply offshore
oil and gas installations. Installations are dependent on regular supplies
from PSV-vessels to ensure continuous production. AHTS-vessels are mainly
built to handle anchors for oil rigs, but can also be used as a substitutes for
supply ships. They differ from PSVs in being fitted with winches for towing
and anchor handling, having an open stern to operate such equipments.
Even though PSV and AHTS-vessels may be concerned with fairly different
operations, they both operate in the same offshore market and the dynamics
of the underlying spot rate process share many of the same characteristics.
It would therefore be natural to include both in the same analysis. Note
that unless otherwise stated, the term ”spot rate” refers to the timecharter-
equivalent (TCE) spot rate1.

The contribution of this paper is threefold. Firstly, I examine four styl-
ized facts about the spot rate for PSV and AHTS-vessels. Secondly, I present
a model able to capture the most significant characteristics of the spot rate
and estimate the parameters for the North Sea market. Thirdly, I propose
a framework for valuation of PSV and AHTS spot rate contingent claims.

1.1 Motivation

The validity of the general arbitrage pricing framework depends on the capa-
bility of investors to follow a dynamic portfolio strategy that replicates the
payoff to the spot rate contingent claim. As first pointed out by Merton[20],
the critical assumption required for the replicating portfolio strategy to be
feasible is that the spot rate process can be described by a stochastic pro-
cess. A good model for the underlying spot rate process is therefore crucial.
As far as I know, there has not been conducted any research on the spot rate
for the offshore segment. The most relevant paper on this subject is written
by Aas et al. [1]. They explore the role of PSV-vessels in offshore logistics,
revealing some of the dynamic properties behind the spot rate generating
process.

In the next subsections I present the stylized facts of the spot rate and
discuss methods for modelling and pricing of spot rate contingent claims,

1The TCE spot rate equals the net spot rate for a trip or operation less all costs related
to fuel and port costs, divided by the trip duration in number of days
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with review of relevant research on these subjects in other fields with appli-
cations to the offshore shipping market.

1.2 Modelling the Spot Rate

Even though the research on offshore shipping markets are limited, the spot
rate of PSV and AHTS-vessels have many similar characteristics with elec-
tricity prices and the larger ocean-going shipping segments. The spot rate
in shipping markets in general is, from a academical stand point, fairly well
covered. The most common approach to modelling spot rates and electricity
prices are to use simple parametric stochastic differential equations: Geo-
metric Brownian motion (Dixit and Pindyck [9]), Ornstein-Uhlenbeck pro-
cess (Vasicek [32], and Bjerksund and Ekern[7]) and the Geometric Mean
reversion (Scwhartz [25] and Tvedt [30]).

A weaknesses of such one-factor Markovian models are that they often
ignore higher order autocorrelations in both the autoregressive and the mov-
ing average part. As will be shown later, most one-factor Markovian mean
reversion models, such as the Ornstein-Uhlenbeck, are continuous time ana-
logues of the discrete time AR(1)-process. Application of such models are
often imposing too simplistic dynamics on the underlying resulting in signif-
icant autocorrelation in residuals. As an example Adland [4] identifies lag
effects in the conditional variance and short term momentum in the spot
rate, indicating significant higher order autoregressive and moving average
terms in the underlying spot rate-process. However, the specification of any
model will always be subject to a trade-off between analytical tractability
and forecast accuracy. This class of models is usually preferred because
these models are analytically solvable and offers closed form solutions for
certain freight rate contingent claims.

As pointed out by Adland [2] and Bandi [5], there have more recently
been a tendency to turn to non-parametric approaches to estimation of scalar
diffusion models. The advantage of this approach is that by not imposing a
specific parametric structure, the extent of misspecification can be reduced.
Another approach is to model the spot rate in a stochastic equilibrium frame-
work (see, for instance, Adland and Strandenes [3] and Tvedt [29]).

1.2.1 Stylized Facts About the Spot Rate

a) Jumps

Spot rates for PSV and AHTS vessels are defined by very large price move-
ments. When all vessels in the market are fully employed, short term supply
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can only be increased through higher utilization of the current fleet. As dis-
cussed in [4] this can be achieved by higher vessel speed, reduced port time,
shorter ballast legs, and delaying regular maintenance. However, this strat-
egy is limited by technical constraints. When the fleet is sailing at maximum
capacity, the supply function becomes almost perfectly inelastic. The de-
mand curves for offshore shipping services are, as discussed in [1], inelastic
due to the enormous shortage costs that can arise if an installation is not
kept operational. These factors, combined with short spot rate contracts
and a small regional market, induce the very high volatility observed in the
North Sea spot rate.

In markets with such extreme volatility there is an inherent limitation
to models with dispersion terms relying only on the Gaussian distribution.
This problem can be overcome by modeling the diffusion as a stochastic
process containing jumps. Jump diffusion models of electricity prices are
quite common. See, for instance, Lucia and Schwartz [17], Escribano et
al. [10] and the Vilaplana extenstion to Schwartz and Smith [33] two-factor
model. Jump diffusion models in shipping are however less common, but
as shown by Nomikos et al. [21] jump-extended models yield important
improvements over the basic log normal setting.

b) Seasonality

The North-Sea offshore industry are subject to particular harsh weather
conditions. The ability of the vessel to perform in bad weather are mainly
determined by the machinery, propulsion arrangement and hull design [1].
Traditionally in shipping, loading and unloading capabilities is associated
with ports. This is not the case for PSV-vessels where the main challenges
in this regard are to be found offshore. The AHTS-vessels are similarly doing
most of the operations offshore. Combined with gradually more demand-
ing operations, weather becomes a relevant factor for supply and demand.
Weather conditions in the North Sea follow seasonal fluctuations, implying
a deterministic seasonality function for the spot rate. This will be discussed
further in Section 2.2.

c) Stationarity

Another important characteristic of shipping markets in general, is the sta-
tionary dynamics of the spot rates. The implied asymptotically explosive
behaviour of a non-stationary processes is not consistent with the notion
of mean reversion and the observed properties of the spot rate. The main
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argument for suggesting that the spot rate follows a mean reverting process
is capacity adjustments[4]. Persistent high spot rates are not sustainable in
the long run as exit from lay up and new ordering will increase the supply
and bring spot rates down. Similarly, when the spot rates are low supply
is expected to decrease due to lay-up and scrapping. Following the discus-
sion of non-linearity in [2] Kokkebakker et al. [15] argues that the spot rate
is only mean reverting in the extremes of the distribution, exhibiting non-
stationary behaviour over most parts of the empirical range. Stationarity is
tested in Section 2.3

While the prevailing notion in maritime economic literature have been
that the spot freight rate processes of ocean-going shipping are mean re-
verting, most empirical research have concluded that the spot freight rate is
non-stationary. As discussed in [2] this is often a consequence of incorrectly
assuming that the spot rate exhibits linear dynamics. Non-linear properties
are for instance level effects in the conditional variance or volatility cluster-
ing not due to the spot rate level. This will be discussed in the subsections
e) and f) and investigated in Section 2.4 by fitting a linear time series model
and checking for autocorrelation in squared residuals.

d) Two-Regime Mean Reversion

Modelling mean reversion with jumps introduces a few issues related to the
rate of mean reversion. As often observed in electricity prices (see, for in-
stance, Weron et al. [34]), random fluctuations in the spot rate tends to
revert slowly back to the equilibrium, while price jumps revert quickly. In
classic maritime literature, Koopmans [16] characterized the short-term sup-
ply curve in shipping by two distinct regimes, distinguished by whether the
fleet is fully employed or not. He suggested a short-term supply function
that is very elastic when tonnage is unemployed (i.e. low spot rates), and
very inelastic when the fleet is fully employed (i.e. high spot rates). Fur-
thermore, demand is also assumed to be very inelastic with respect to the
spot rate. Thus, combined with short spot rate contracts, a shock to the
system would cause the spot rate to jump and then revert quickly back to
equilibrium. Contrary to classical jumps, events with such characteristics
are often classified as spikes2. Random fluctuations during periods of un-
employed tonnage, on the other hand, revert rather slowly. Modelling mean
reversion with standard error correction model would therefore impose too
fast reversion for the process under the normal regime and too slow reversion

2I will denote these ”extreme” events as jumps in the remainder of this thesis.
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under the jump regime. Using insights from Geman [13] and Mayer et al.
[19] I derive a solution to the problem using a two-regime mean reversion
model.

e) Level Effect in the Conditional Variance

Adland [4] argues that the price elasticity of the supply and demand func-
tions with respect to the spot rate will influence the volatility of the spot
rate. As the demand for offshore shipping services reaches the lower break-
even limit, short term supply curves becomes almost perfectly inelastic as
discussed in d). The conditional probability distribution in this theoretical
interval will be upward biased and zero at the break-even level. Equivalently
the upper limit of the spot rate will exhibit a downward bias such that the
theoretical conditional probability density function is ”hump”-shaped. The
phenomenon can be captured by modelling the spot rate as a log normal
process, as done by Tvedt [30].

f) Short-Term Momentum

There is a prevailing notion of shipping cycles in the maritime economic
literature (see, for instance, Stopford[27] and Zannetos [35]). The concept
of shipping cycles, mean reversion and seasonality suggests that spot rate
trends tend to persist in the short run. This violates the assumptions of
Markov processes which are, by definition, only dependent on the current
spot rate level. As argued by Adland [4] the existence of such trends are
not irrational, because the spot rate for PSV and AHTS segments cannot
be stored or traded, implying that it is difficult to exploit these trends
by constructing arbitrage portfolio’s. This will be discussed more in the
Section 1.3. In particular, only the charterers can potentially profit from a
negative trend, while only shipowners can profit from a positive trend, in
both cases by delaying the fixtures of vessels. Moreover, Adland argues that
the alternative costs related to delaying fixtures may outweigh the potential
profit for both charterers and shipowners if spot rates where to increase or
decrease in the short term. Thus, relaxing the constraints of the efficient
markets hypothesis [11] and extending the insights from Zannetos [35].

g) Lag Effects in Conditional Variance

As identified by Adland [4] the lag effects in conditional variance is a con-
sequence of the level effect due to the characteristic shape of short-terms
supply and demand functions. The two-regimes identified by Koopmans
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induce different types of volatility on the spot rate. In the low-volatility
regime spot rates are low and the supply function is very elastic, and in the
high-volatility regime spot rates are high and the supply function is very
inelastic. Tvedt incorporates the level effect by using the geometric mean
reversion model, where spot rates are log-normally distributed.

Kavussanos [14] tested the performance of Generalized Autoregressive
Conditional Heteroskedasticity (GARCH)- models in capturing higher or-
der lag effects in the condition variance, revealing that there are lag effects
in the conditional variance not due to the level effect. He argues that there
is significant volatility clustering during and after external shocks. An ex-
ample is, for instance, political events. Jumps are often a consequence of
such information reaching the market. During such periods the increased
uncertainty related to information will induce higher volatility. There is
however no direct link between the spot rate level and its volatility in such
models.

1.3 Pricing of Spot Rate Contingent Claims

When a model for the spot rate is obtained, PSV and AHTS-vessels can be
valued as a claim on the cash flow from the uncertain spot rate. As identified
by Tvedt [30] and Martinussen [18], at any point in time, there are three
alternatives for an offshore vessel; operation, lay-up and scrapping. The
pay-off function from a vessel is consequently similar to that of a continuous
American option. The pay-off function for the option captures both the
value of the flexibility related to lay-up and scrapping, and the value of the
uncertain claim on cash flow from operation. The option is continuous in the
sense that exercising it, i.e. laying-up the vessel, does not keep the investor
from re-entering into the market and thus reactivating the same option. The
maturity of the option is at the maximum age of the vessel, where the vessel
is scrapped and the shipowner receives the value of the vessel as sold to a
demolition yard.

In the standard option pricing framework, derivatives securities are priced
by solving stochastic differential equations with dynamics equal to the un-
derlying asset. In maritime economic literature, Bjerksund and Ekern [7] is a
pioneer contribution on this subject. They apply contingent claims analysis
to the pricing of shipping derivatives, using arbitrage arguments on the spot
rate to derive closed form solutions. However, this approach relies on the
assumption that investors are able to follow dynamic replicating portfolio
strategies. An implicit assumption is the notion of complete markets, and
consequently that investors are able to replicate pay-offs from the security in
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all possible states of the market. This is known as the fundamental theorem
of asset pricing. As pointed out by Adland [4], contrary to commodities and
financial assets, the spot rate is the price of a service that cannot be stored
or traded. This implies that the usual arbitrage arguments used for pric-
ing purposes does not apply to the spot rate. Because we cannot construct
risk neutral probabilities, pricing of spot rate contingent claims from PSV
and AHTS-vessels are dependent on investors utility functions. However,
Nomikos et al. [21] identifies a more recent fundamental transformation of
the market for ocean-going shipping freight, from being a service market, to
a market where freight rate can be bought and sold for investment purposes.
This is due to the a rising derivatives market for ocean-going freight rate.
Currently there are no such derivatives market for the offshore market. Un-
der such conditions, a common approach is to assume that we are already
working under risk neutral probabilities, and thus proceed with pricing di-
rectly. This approach relies on calibration of the model through implied
parameters. A different approach by Lucia and Schwartz[17], consists of
incorporating the market price of risk in the drift term.

The remainder of this thesis is organized as follows. In section 2 I
present the data and perform an empirical analysis to investigate the above-
mentioned characteristics in the spot rate. In section 3 I present the the-
oretical framework and derive a model for the spot rate, replicating the
underlying dynamics. In section 4 I estimate the parameters for the North
Sea market and in section 5 I apply Tvedt’s approach to pricing spot rate
contingent claims. Section 6 conludes.

2 Data Analysis

In this section i will perform an empirical analysis of the dynamics of the
North Sea spot rate for PSV and AHTS-vessels. The spot rate for PSV-
vessels are divided into the segments 6− 800m2 and > 800m2. The AHTS
spot rate segments are 13 − 18 000bhp and > 18 000bhp. The spot rates
are provided by Clarksons SIN-database and are qouted weekly, deducted
for fuel and port costs. The spot rate analysed can therefore be thought of
as the time charter equivalent(TCE)-spot rate and therefore includes two
sources of uncertainty, i.e. the £/ton spot rate and the North Sea fuel price.
A plot of the spot rates are shown in Figure from August 1996 to October
2014 are shown in Figure 1.
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Figure 1: Spot rates

2.1 Normality Test

In financial modelling prices are often assumed to be log-normally dis-
tributed, in order to account for the limited liabilty feature of publicly listed
companies and level effect of the stock price. This is equivalent to saying
that returns have a Normal or Gaussian distribution. The large spot rate
movements3 observed for North Sea PSV and AHTS-vessels indicates that
the probability of ”extreme” events is higher than what we would expect un-
der the Normal distribution. Jumps in the spot rate are provoked by shocks
to the system and reflects the supply side’s short-term inability to react to
demand fluctuations. As discussed in the introduction, according to [16] the
supply function is very inelastic when the fleet is fully employed (i.e. when
the spot rate is high). When the fleet is not fully employed (i.e. when the
spot rate is low) the supply function is very elastic. Marginal returns from

3Spot rate movements, i.e. spot rate returns, Rt, are defined as ln( St
St−1

)
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an oil-platform are much higher than to the marginal cost of chartering a
PSV/AHTS vessel, making the demand inelastic with respect to the spot
rate. These factors combined with highly weather dependent operations, a
small regional market and short spot rate contracts allow the spot rate to
exhibit extreme volatility.

Figure 2: Normality probability test for spot rate returns

In Figure 2 I have plotted the spot rate returns against the theoretical
quantiles of the Normal distribution. It can clearly be observed that both
the PSV and AHTS-segments show a significant departure from the Normal
distribution, which is represented by the straight line. This implies that the
Normal distribution is not suitable for modelling the diffusion process of the
spot rate.

In order to extract jumps I deseasonalize the data by subtracting the
mean of every day across the series according to

Rt = rt − r̄d (1)
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where Rt is the deseasonalised spot rate return, st the spot rate return at
time t and s̄d is the corresponding mean. The seasonal values are removed
and the remainder is smoothed to find the trend.

I extract the jumps by writing a numerical iterative algorithm that filters
the de-seasonalised, de-trended spot rate movements with absolute value
above 1,5 times the interquartile range (IQR) from the 25th percentile. IQR
is defined as the difference between the 75th and 25th percentiles, and is a
standard robust measure of scale. The filter is defined as

Rt /∈ [1.5 ∗ IQR−Q1] ∩ [1.5 ∗ IQR+Q3] (2)

which is the analogue to a filter of three standard deviations from the mean.
Figure 4 shows a plot of the jumps in the spot rate defined by this filter.

In Figure 3 I have plotted the filtered returns against the theoretical
quantiles of the Normal distribution. We can clearly observe that the nor-
mality test improves, indicating the jump diffusion-model is able to capture
the dynamics of the spot rate diffusion.

2.2 Seasonality

The North-Sea offshore industry is subject to particular harsh weather con-
ditions. As previously stated, PSV and AHTS-vessels are doing most of
the operations offshore. Combined with gradually more demanding opera-
tions, weather becomes a relevant factor the supply and demand. Weather
conditions in the North Sea follow seasonal fluctuations, implying that a
deterministic seasonality function would be able to capture spot rate fluc-
tuations caused by weather conditions.

Seasonality can be evaluated with an autocorrelation test. Figure 5
shows a plot of the autocorrelation functions of the respective spot rates on
level form. A visual inspection reveals no clear seasonal properties in the
spot rate. But a slight oscillation in the AHTS segments is observed.

The Fourier series is suitable to model the wave-like function of seasonal
fluctations in weather conditions. It decomposes the periodic function in
the spot rate into a sum of oscillating, sine and cosine-functions. In order to
test the significance of seasonality I will fit an ARMA-model with a Fourier
series of order K to capture the seasonality in the spot rate

yt = a+

K∑
k=1

[αsin(2πkt/m) + βcos(2πkt/m)] +Nt (3)
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Figure 3: Normality probability test for filtered spot rate returns

where m is the seasonal frequency, Nt is an ARMA(p, q)-model containing
p autoregressive parts and q moving average parts

Nt = α0 +

p∑
i=1

αiyt−i +

q∑
i=0

βiεt−i + εt. (4)

The ARMA-model captures all the linear dynamic relationships in the spot
rate yt and the random factor εt, while the Fourier series captures the sea-
sonality. The model with seasonality will be compared to an equivalent
model without seasonality by using the Diebold-Mariano test to determine
the significance of the seasonal component. The test determines whether
the seasonal component improves the prediction accuracy of the model, i.e.
whether it has a significant lower mean squared prediction error (MSPE)
than the model without the seasonal component.

The ARMA-model is fitted by implementing the algorithm proposed
by Gardner et al [12] in R to compute the exact maximum likelihood via
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Figure 4: Jumps

the Kalman Filter, subject to minimizing the Aikaike Information Criterion
(AIC). AIC deals with the trade-off between goodness of fit and the and
complexity of the model. The order of K in the Fourier series for the seasonal
component is equivalently chosen by minimizing the AIC. In figure 6 I have
plotted the AIC under Fourier series of different order K’s. Observe that
K = 2 gives the lowest AIC for all segments except AHTS 13-18000bhp.
Selecting K accordingly, fitting the model and applying the Diebold-Mariano
test to get output shown in table 1. The test reveals that the seasonal
component is significant at 5% significance level for PSV >800m2 and AHTS
13-18000bhp. The test is not significant for AHTS>18000bhp, while the PSV
6-800m2 segment pass at 10 %confident level.
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Figure 5: Autocorrelation function for PSV and AHTS spot rates

The test is not conclusive, but points in the direction of a seasonal com-
ponent. However, the models with the seasonal component have a lower
AIC, compared to the models without a seasonal component. In table 2 we
can see that this is true for all segments. Shibata [26] showed that minimiz-
ing the AIC is asymptotically equivalent to minimizing the one-step-ahead
out-of-sample mean squared error. This indicates that the seasonal compo-
nent improves the forecast accuracy of the model for all segments.

The significance of the seasonal function can further be tested by dis-
cussing the causal relationship between different weather conditions on the
spot rate, and see if that corresponds with the estimated seasonal functions.

Weather conditions tends to be more harsh during the autumn/winter
months, and more easy during the summer months. Bad weather will typi-
cally bottleneck the supply and reduce the demand. The question is which
of these effects is the dominating the other. If the supply effect dominates,
bad weather would imply higher spot rates during the winter months, ceteris
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Figure 6: AIC of different order K in Fourier series

paribus. On the other hand, if the demand effect is dominating it would lead
to lower spot rates in months associated with bad weather. The seasonal
functions estimated by the Fourier series are plotted in Figure. 7.
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Segment
MSPE

DM-Statistic P-Value
With Seasonality Without

PSV 6-800m2 0.0970 0.0986 1.4497 0.0737
PSV >800m2 0.0809 0.0825 2.0878 0.0185
AHTS 13-18000bhp 0.1663 0.1885 1.8736 0.0306
AHTS >18000bhp 0.1865 0.1885 1.0651 0.1436

Table 1: Diebold-Mariano test

Segment
AIC
With Seasonality Without

PSV 6-800m2 497.167 505.724
PSV >800m2 322.5872 334.1109
AHTS 13-18000bhp 1006.849 1126.093
AHTS >18000bhp 1118.347 1126.093

Table 2: Aikaike Information Criterion

Figure 7: Deterministic seasonality functions
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The seasonal functions are more or less monotonically increasing from
the minimum point in July until the global maximum point in February, with
a saddle point for the PSV segments and the biggest AHTS segment around
January. The spot rates are then a decreasing functions until the turning
point in July. The low spot rates during the summer months reflects that the
easy weather conditions in this period increase the efficiency of the fleet, and
consequently the supply, more than demand. The saddle point in January,
reflects the effect of bad weather on the spot rate. A rig-move, for instance,
can generally be delayed or scheduled according to weather conditions. This
would increase the backlog, demand, and consequently the spot rate in the
subsequent periods. This effect can be observed with seasonal maximum
points in February. The largest AHTS segment lags the smaller segment
by a few months, with maximum as late as March/April, and with a local
saddle point in January. This illustrates that the sensitivity of demand with
respect to bad weather for more heavy duty offshore operations.

While weather conditions likewise represent a bottleneck for PSV sup-
ply, it does not necessarily change the demand. Offshore installations are
dependent on consistent delivery of supplies to stay operational[1]. As a con-
sequence, the spot rates for PSV-vessels show a more persistent high level
throughout the winter months. During the summer months rates tends to
go down as weather conditions are more easy and vessels are becoming more
efficient. The latter holds for both PSV and AHTS-vessels.

2.3 Stationarity

In finance stationarity is often refered to as mean reversion. As discussed in
the Section 2.1 the spot rate for PSV/AHTS-vessels are subject to frequent
shocks driven by the oil industry’s inelastic demand for offshore supply and
AHTS-services. The notion of mean reversion in shipping markets imposes
an implicit condition of stationarity on the spot rate. A stationary time
series has a finte mean and variance, which makes us able to predict future
values of the underlying stochastic process. A shock to a stationary system
would only have temporary effect as the underlying dynamics would exhibit
mean reversion towards a long term equilibrium. If the spot rate had an
infinte variance a shock would amplify in magnitude with respect to a change
in the time regime, exhibiting asymptotically explosive behaviour making
the variance dominate the deterministic seasonality, trend, drift or mean.

As discussed in the introduction, the main argument for suggesting that
the spot rate follows a mean reverting process is capacity adjustments[4].
Persistent high spot rates are not sustainable in the long run as exit from
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lay up and new ordering will increase the supply and bring spot rates down.
Similarly, when the spot rates are low supply is expected to decrease due
to lay-up and scrapping, and thus increasing the spot rates. Koekebakker
et al. [15] argues that there must, from a theoretical point of view, exist a
lower and upper bound to spot freight rates. The lower bound reflects the
break-even level of the spot freight rates and the upper bound represents
the maximum price for which charterer is willing to ship his goods. The
existence of such upper and lower bounds is not consistent with the implied
properties from a non-stationary spot rate process. Although the prevailing
notion in shipping literature has been that the spot rate is stationary, most
empirical research have concluded otherwise. A common demoninator of
these researches have been that they assume linear properties on the spot
rate. Adland and Cullinane[2], on the other hand, conclude that the spot
rate follows a non-linear process. By imposing non-linear properties on the
spot rate, Koekebakker et al. [15] show that the spot rate process is mean-
reverting only at the extremes of the distribution, exhibiting non-stationary
behaviour over most parts of the empirical range.

2.3.1 Augmented Dickey-Fuller Test

I can check if the spot rate is mean reverting by testing whether the time
series process is stationary. Stationarity can be assessed by checking for unit
root in the spot rate using the Augmented Dickey-Fuller(ADF)- test. The
ADF-test imposes a linear stochastic difference equation on the underlying
process to check if the coefficients sum to one.

Consider an p’th-order autoregressive process for the spot rate

yt = a0 +

p∑
i=1

aiyt−i + εt (5)

taking the first order difference, yt − yt−1, to obtain

∆yt = a0 +
( p∑
i=1

ai − 1
)
yt−1 +

p∑
i=2

ai∆yt−i + εt (6)

The Augmented Dickey-Fuller test for our time series is thus specified as

H0 :

p∑
i=1

ai = 1, the series contains a unit root,
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H1 :

p∑
i=1

ai < 1, the series is stationary.

The Dickey-Fuller test assumes that residuals are independent and have a
constant variance. This creates problems as the underlying spot rate process
may contain both autoregressive and moving average components. Fortu-
natly, Said and Dickey [24] have shown that we can solve this problem by
using a finite order autoregression to approximate the true data-generating
process. Thus, an unknown ARIMA(p,n,q) process can be approximated by

an ARIMA(n,1,0) process of order n < T
1
3 , where T is the total number of

observations. I select number of lags by minimizing the AIC.
The ADF-test statistic is shown in 3. The test statistic reveals that the

spot rates are stationary on level form for all segments at < 1% significant
level. I.e. the test confirms statistically significant mean reversion in the
spot rate for PSV and AHTS-vessels.

Segment Test statistic
PSV 6-800 -3.8179
PSV 800 -3.8849
AHTS 13-18000 -6.757
AHTS 18000 -7.1122

Table 3: Augmented Dickey-Fueller test

2.4 Nonlinearity

The non-linear dynamics of the spot rates can be investigated by performing
a Ljung-Box test for autocorrelation on the squared residuals from a linear
time series model fitted to the spot rate level. I will use the Box-Jenkins
framework to select the specification of a linear stochastic difference equa-
tion, containing p autoregressive parts and q moving average parts. This is
known as the ARMA(p,q)-model:

yt = α0 +

p∑
i=1

αiyt−i +

q∑
i=0

βiεt−i + εt (7)

The ARMA-model is fitted as in Section 2.2 with the algorithm proposed
by Gardner et al [12]. The estimated ARIMA-model captures the linear
dynamic relationships in both the spot rate yt and the random factor εt. A
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visual indication on the suitable numbers of autoregressive terms can be ob-
tained by looking at a plot of the partial autocorrelation function (PACF).
There is however a trade-off between goodness of fit and the number of pa-
rameters we introduce. The AIC deals with the trade-off between goodness
of fit and the principal of parsimony, and is a measure of the relative quality
of time series model. Using the Box-jenkins framework subject to minimum
AIC to arrive at the linear ARIMA models with diagnostics shown in figure
8,9,10 and 11. The red-line indicates 5%-significance level. The Ljung-Box
p-values implies that we do not reject the null hypothesis that the residuals
are independently distributed. This means that there are no autocorrelation
in the residuals from the model and that residuals are driven by a white-
noise process. In other words, the fitted models are able to capture all the
linear dynamics in the spot rate. However, there are still some significant
autocorrelations left in higher order lags for the smaller AHTS-segment.
The plot of the residuals shows indications of volatility clustering, meaning
that there are autocorrelation in squared residuals.

Figure 8: ARIMA(2,0,1) fitted to PSV 6-800m2
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Figure 9: Diagnostics of ARMA(2,0,1) fitted to PSV >800m2

Figure 10: Diagnostics of ARMA(2,0,2) fitted to AHTS 13-18 000bhp
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Figure 11: Diagnostics of ARMA(3,0,1) fitted to AHTS >18 000bhp

I can test for non-linearity by applying the Ljung-Box test on the squared
residuals from these models. A plot of the Ljung-Box p-values for the
squared residuals are provided in figure 12. The p-values reveal that there
are significant autocorrelation for lags of the squared residuals, indicating
significant lag effects in the conditional variance. The question is whether
there are lag effects in the condtional variance that are not due to the level
effect. The effect of volatility clustering can be investigated by using the
McLeod-Li test to identify the order of lags in a autoregressiv conditional
heteroscedastic (ARCH)-process:

ε̂2t = α̂0 +

q∑
i=1

α̂iε̂
2
t−i (8)

where

H0 :

q∑
i=1

ai = 0, there is no autocorrelations in ε2t ,

H1: At leas one α 6= 0, there exist autocorrelations in ε2t .
The test statistic in Figure 13 reveals significant lag effects in conditional

variance for all the segments. However, in (G)ARCH-models there are no
direct link between the level of the spot rate and its volatility. In other
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Figure 12: Ljung-Box test of squared residuals

words, the test will reveal autocorrelations due to the level effect, but an
ARCH-process specified on the spot rate will not be able to capture it. To
capture the level effect on autocorrelations in the conditional variance I can
model the spot rate as a log-normally distributed process. To arrive at a
log normally distributed mean reversion process for the spot rate St I can,
for instance, apply the Ornstein–Uhlenbeck-process to the spot rate return
Xt, such that ln(St) = Xt. In figure 14 I have applied the Mcleod-Li test
to the log transformed spot rate. The test reveals that the lag effects in
conditional variance is only statistically significant for the largest AHTS-
segment. This implies that the geometric mean reversion-process is able to
capture most of the autocorrelations in the conditional variance, and that
these autocorrelations mostly comes from the level effect. The left over lag
effect in the largest AHTS-segment is consequently volatility clustering. I.e.
large changes tends to be followed by large changes, independent of current
spot rate levels.
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Figure 13: McLeod-Li Test. From top left to down right: PSV 6 − 800m2, PSV
> 800m2, AHTS 13− 18 000bhp and AHTS > 18 000bhp

2.5 Model selection

Mean reversion properties for a stationary process can be modelled by using
error correction models such as the Ornstein–Uhlenbeck (OU)-process

dXt = θ(µ−Xt)dt+ σ(t)dWt (9)

In order to capture the level effect of spot rates, I apply the OU-process to
the log transformed spot rate Xt, such that ln(St) = Xt. The OU-process
can be considered a continuous time analogue to the AR(1)-process. To
show this, assume we want to solve the OU-process numerically. This can
be done by applying the Euler-Maruyama scheme to Xt in 9:

∆Xt = Xt+∆t −Xt = θ(µ−Xt)∆t+ σ
√

∆tεt−∆t (10)

which can be re-written as an AR(1)-process

Xt+∆t = θµ∆t+ (1− θ∆t)Xt + σ
√

∆tεt−∆t (11)
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Figure 14: McLeod-Li Test. From top left to down right: PSV 6 − 800m2, PSV
> 800m2, AHTS 13− 18 000bhp and AHTS > 18 000bhp

where θµ∆t is the intercept-term and (1− θ∆t) ≡ ρ is the coefficient of the
AR-term. The OU-process is mean reverting when | ρ |< 1, which can only
happen if

1− κ∆t < 1⇔
[
0 < ∆t <

2

α

]
. (12)

Selecting the time step ∆t accordingly is therefore crucial in the simulation.
Moreover, if I choose to model the spot rate return as a geometric mean

reversion process I am implicitly making an assumption that the spot rate
can be explained by an AR(1)-process. The validity of this assumption can
be evaluated by fitting an AR(1)-process to the log transformed spot rate
level. The coefficients of this model are shown in table 4, where α0 is the
intercept and α1 is the mean reversion coefficient of the AR(1) process.

The Ljung-Box test of the residuals and the squared residuals from the
AR(1)-models fitted to the spot rates using the Kalman-filter algorithm in
[12] is plotted in figure 15 and 16. The Ljung-Box test reveals that there
are significant linear and non-linear autocorrelation in the residuals from all
the AR(1)-models fitted to the log transformed spot rate level. This reflects
the momentum dynamics and the lag effects in the conditional variance. As
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Segment α0 α1

PSV 6-800 8.9929 0.8720
PSV 800 9.2872 0.8941
AHTS 13-18000 9.3718 0.8253
AHTS 18000 9.7933 0.8491

Table 4: Parameters of fitted AR(1)-process

Figure 15: Ljung-Box test on residuals from AR(1). From top left to down right:
PSV 6− 800m2, PSV > 800m2, AHTS 13− 18 000bhp and AHTS > 18 000bhp

discussed, the level effect is a contributing factor to the lag effects in the
conditional variance. The level effect can be captured by modelling the spot
rate as a log normal process.

It is evident that an AR(1)-model is not able to capture all the dynamics
in the spot rate. But the geometric mean reversion-model is among a small
class of analytical solvable stochastic differential equations. The specifica-
tion of the model will always be subject to a trade-off between analytical
tractability and prediction accuracy.

The spot rate for PSV and AHTS-vessels share some of the same dynamic
properties as electricity prices. Random fluctuations of the spot rate will
revert slowly back to the equilibrium in times without extreme events while
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Figure 16: Ljung-Box test on squared residuals from AR(1). From top left to
down right: PSV 6 − 800m2, PSV > 800m2, AHTS 13 − 18 000bhp and AHTS
> 18 000bhp

price spikes revert very quickly. The two-regime characteristics for mean re-
version becomes a problem when the model is based on the standard mean
reversion processes. I would consequently impose an unrealistically high re-
version rate for the diffusion process and too slow reversion for the jump
process. A solution to this problem has been described by Benth et al[6]
and Geman and Roncoroni[13]. The solution involves separating the mean
reversion factors for the process under the spike regime and normal regime.
Such two-regime models serves as an extension to the standard autoregres-
sive models, allowing for higher order of flexibility through a change of the
mean reversion parameter. This problem will be dealt with in Section 3.2.

3 Theoretical Framework

The data analysis revealed four characteristics that should be accounted for
in the model. First, the tendency of spot rate returns to exhibit frequent
jumps with greater magnitude than what the Normal distribution would
predict. This can be captured by a diffusion model containing jumps.

The second observation is that spot rate jumps tend to revert quickly
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while random standard normal fluctuations revert rather slowly. This can
be modelled by a two-regime mean reversion model.

The third characteristic is the non-negative spot rates and the level effect
in the conditional variance. As discussed the level effect of spot rates is also
inducing a lag effect in the conditional variance. These properties can be
captured by modelling the spot rate with a log-normally distributed process.

The fourth observation is a significant seasonal component in the spot
rate. This can be modelled by using a Fourier series of order K to estimate
a deterministic seasonal function for the spot rates.

3.1 Mean-Reverting Jump Diffusion With Seasonality

As in [17] I can prevent negative spot rates and capture the level effect in
the conditional variance, by assuming that the log freight rate process, St,
can be written as

lnSt = Xt + g(t), (13)

such that the spot freight rate can be expressed as

St = eXtG(t) (14)

where G(t) ≡ eg(t) is the deterministic seasonality function and Xt is a mean
reverting jump diffusion process for the underlying spot freight rate whose
dynamics are given by the Ornstein-Uhlenbeck process

dXt = (µ− αXt)dt+ σ(t)dWt + lnJdNt. (15)

In Equation 15, µ is the drift parameter (intercept), representing the long
term equilibrium of St, α is the mean reversion rate, σ is the time dependent
volatility, dWt is the increment of the Wiener process, J is the random jump
size, and dNt is a poison process subject to

dNt =

{
1 with probability λdt,
0 with probability 1− λdt (16)

where λ is the arrival frequency of jumps 4. Additionally, dWt, dNt and J
are assumed to be independent. The random jump size, J , has the following

4The arrival frequency of jumps are defined as number of jumps per unit time.
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properties

J = eφ, φ ∼ N(µJ , σ
2
J) (17)

E[ln(J)] =
1

2
σ2 (18)

V ar[ln(J)] = σ2 (19)

The jump risk is non-systematic and can consequently be hedged by diver-
sification. Furthermore, by assuming that E(J) ≡ 1, I can ensure that there
are no excess returns to this strategy.

Applying Itô’s Lemma to the continuous part in Equation 14 and an
analogous lemma for the jump part to get the dynamics for the spot freight
rate

dSt =
(dg(t)

dt
+ µ− αlnSt + αg(t) +

1

2
σ
)
Stdt+ σStdWt + (J − 1)StdNt

(20)

which can be expressed as a Geometric Mean Reversion (GMR)-process with
jumps

dSt = α(µ(t)− lnSt)Stdt+ σStdWt + (J − 1)StdNt (21)

where the equilibrium level of the spot rate process is given by

µ =
1

α

(dg(t)

dt
+

1

2
σ2(t)

)
+ g(t) (22)

The model in Equation 21, is an extension of the log-normal mean reversion
model first applied to spot rates by Tvedt [30]. The extended model incor-
porates both seasonality and jumps. In the next section I will also account
for two-regime mean reversion dynamics in the spot rate.

3.2 Two-Regime Model

Smooth Transition Autoregressive (STAR)-models are extensions to stan-
dard autoregressive models, allowing for higher order of flexibility through
a change of the mean reversion parameter.
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The general STAR-model for a univariate time series yt with p’th order
autoregressive lags and transition function T (st; γ, c) is given by [28] as:

yt =(φ1,0 +

p∑
i=1

φ1,iyt−p)(1− T (st; γ, c))

+ (φ2,0 +

p∑
i=1

φ2,iyt−p)T (st; γ, c) + εt, t = 1, ..., T

(23)

Implementing the two-regime framework can easily be done by splitting
the spot rate process dSt in Equation 15 into a normal diffusion process dYt
and an jump diffusion process dZt:

dXt = dYt + dZt (24)

dYt = (µ− αY Y (t))dt+ σ(t)dW (t) (25)

dZt = −αZZ(t)dt+ dN(t) (26)

where Xt is the log transformed spot rate, αY is the mean reversion rate for
the normal diffusion process and αZ be the mean reversion under the jump
process.

3.3 Risk-Adjusted Dynamics of the Spot Freight Rate

Suppose that the brownian motion can be defined on the underlying filtered
probability space (Ω,F ,P). Let P be the function that return the proba-
bilities of different events defined by the σ-algebra F on the outcome space
Ω.

In a complete market, it is possible to replicate pay-offs from all finan-
cial instruments in all potential states of the market. This is known as the
fundamental theorem of asset pricing. In a complete market we can con-
sequently hedge all freight rate contingent claims. Thus, we are able to
construct risk-neutral probabilities Q for different events on our outcome
space Ω. The risk neutral probability measure Q is often referred to as the
Equivalent Martingale Measure.

Offshore shipping markets have several properties that violates the as-
sumption of a complete market. As stated earlier, the spot rate are defined
by jumps that cannot be explained by the normal distribution. In the pres-
ence of jumps, returns from spot freight rate contingent claim are discon-
tinuous and the market is, by definition, incomplete. This will be further
discussed in Section 5.
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The presence of complete markets in shipping does not only depend
on the assumption of continuous returns, but also on the assumption that
investors are able to construct replicating portfolios. As pointed out by
Adland [4], contrary to commodities and financial assets, the freight rate
is the price of a service that cannot be stored or traded. This implies that
the typical cash-and-carry arbitrage arguments used for pricing purposes
does not apply to the spot rate. Because we cannot construct risk neutral
probabilities, pricing of spot rate contingent claims from PSV and AHTS-
vessels are dependent on investors utility functions.

In incomplete markets the equivalent martingale measure is not unique,
and we need to select an appropriate measure. Under such market condi-
tions a common approach is to assume that we are already working under
an equivalent martingale measure and calibrate the model with implied pa-
rameters.

For now assume that we are able to construct risk neutral probabilities.
Then the risk-adjust the spot rate process St can be obtained by deflating
with the risk-free asset, represented by government bonds, and applying the
Girsanov’s theorem.

As in [17] let rt be the risk free rate and Bt the risk free asset, with the
following dynamics

Bt = e
∫ T
t rudu

Let St represents the mean reverting jump diffusion process under the prob-
ability measure P for the underlying spot freight rate, with dynamics equal
to what I derived in Equation 21

dSt = α(µ(t)− lnSt)Stdt+ σStdWt + (J − 1)StdNt

where µ(t) = 1
α

(
dg(t)
t + 1

2σ
2(t)
)

+ g(t).

As in Merton’s Jump Diffusion model[20] the drift component of the spot
rate µ can be decomposed into the instantaneous expected return µ̃ and the
market price of jump risk, λκ, where λ is defined as the arrival frequency of
jumps per unit time and κ ≡ E(J − 1) is the expected percentage change in
the spot rate.

If I deflate the freight rate process St with the risk free asset Bt

St
Bt
≡ St

e
∫ T
t rudu

≡ S∗t (27)

I can modify the mean and the diffusion by applying Itô’s Lemma and
Girsanov’s Theorem to arrive at the risk-adjusted dynamics for the spot
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freight rate process St under the equivalent martingale measure Q. Applying
Itô’s Lemma to S∗t to arrive at

dS∗t = (αµ̃− αlnSt − r − λκ)S∗t dt+ σS∗t dWt + (J − 1)S∗t dNt (28)

Now having adjusted the mean of St I need to apply Girsanov’s Theorem to
ensure that our diffusion is still a Wiener process. Girsanov’s Theorem says
that for any market price of risk, θ, there exist risk neutral probabilities Q’s
such that

dW̃t = dWt + θdt (29)

is a Wiener process under the new probability measure Q. Equivalently
will the compound poisson process

∑N
n=1 Jn have a new intensity rate λ̃ =

λ(1 + κ′).

dS∗t = (αµ̃− αlnSt − r − λκ− σθ + λ̃κ̃)S∗t dt+ (J − 1)S∗t dNt + σdW̃ (30)

which is a martingale if and only if the drift is equal to zero, which implies
that the risk premium equation is

α(µ− r − lnSt)− λκ+ λ̃κ̃

σ
= θ (31)

where the jump risk premium is λκ−λ̃κ̃ and the Wiener risk is σθ. Applying
Girsanov’s theorem to Equation 30 to obtain the risk-adjusted spot rate
process under the equivalent martingale measure Q:

dSQ
t = (r − λ̃κ̃)Stdt+ (J − 1)StdNt + σStdW̃

Q
t (32)

Observe that the drift of the risk-adjusted process follows the risk free rate
r, deducted for market price of jump risk under the risk neutral measure.
This is consistent with the drift we would expect given replicating portfolios
and a risk-neutral position in the underlying.

4 Calibration

4.1 Seasonality

The deterministic seasonality function in Equation 13, g(t), is estimated
by fitting a Fourier series of order K to the log-transformed spot rate Xt
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by minimizing the AIC. K is of the same order as estimated in Figure 6.
The deterministic approach to the seasonality function offers more reliability
than, for instance a seasonality function that depends on parameters from
the historical data. Such a non-deterministic function would add unreliabil-
ity to the calibration of the model which is based on a particular noisy data
set with fairly few observations (N=952). The estimated seasonal functions
are plotted in Figure 7.

Figure 17: Jump vector

4.2 Mean reversion

After removing seasonality from the spot rate I can estimate the parame-
ters of mean reversion. The mean reversion effect will be modelled by the
Geometric mean reversion model derived in last section. The discrete-time
representation of 24 becomes

∆Xt = ∆Yt + ∆Zt (33)
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Using equations 25 and 26, I can rewrite Equation 33 using the same pro-
cedure as in Mayer et al. [19]

∆Xt = (µY − αY Y (t))∆t+ σ(t)∆W (t)− αZZ(t)∆t+ ∆N(t)

= (µY − αY Y (t)− αZZ(t))∆t+ σ(t)∆W (t) + ∆N(t)

=
( µY
Z(t) + Y (t)

− αY
Z(t)

Z(t) + Y (t)
+ αZZ(t)

Y (t)

(Z(t) + Y (t)

)
(Z(t) + Y (t))∆t+ σ(t)∆W (t) + ∆N(t)

= αXX(t)∆t+ σ(t)∆W (t) + ∆N(t) (34)

The mean reversion rate αZ can now be estimated as a linear regression of
log-prices against the log returns

∆X(t) = φZ(t)∆t+ εt (35)

where φ is the autoregressive parameter and ε is the changes in the spot
rate not caused by mean reversion. Assuming that αZ = −φ, I estimate the
mean reversion rates as listed in table 5.

Segment αX
PSV 6-800 0.1332
PSV 800 0.1054
AHTS 13-18000 0.1804
AHTS 18000 0.1542

Table 5: Combined mean reversion rate

After removing the mean reversion effect from the spot rate I obtain the
diffusion process ε, shown in figure 18. I can determine the jump vector by
applying a numerical algorithm that filters out jumps defined as absolute
value spot rate movements above 1,5 times the interquartile range (IQR)
from the 25th percentile. Filtered jumps are marked by red.

The vector of jumps are then used to estimate the mean reversion, αZ ,
under the jump diffusion process in Equation 26, and the filtered spot rates
are used to estimate the mean reversion, αY , under the normal diffusion
process in Equation 25.

The mean reversion of the normal diffusion process, Yt, follows a Ornstein-
Uhlenbeck type mean reversion. The parameters of this process are calcu-
lated using maximum likelihood estimation. The log-likelihood function of
the spot rate can be derived from the conditional density function as done
in [31]. I write an algorithm that estimates the mean reversion by solves
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Figure 18: Jump vector

Segment µ αZ ε
PSV 6-800 0.6887 0.0769 0.2527
PSV 800 0.6523 0.0702 0.2450
AHTS 13-18000 0.8638 0.0911 0.3392
AHTS 18000 1.0574 0.1079 0.3849

Table 6: Parameters of the normal spot rate process

the maximum likelihood equations in appendix A. The maximum likelihood
estimated parameters of mean reversion for Yt are shown in table 6.

The mean reversion for the jump diffusion process, Zt, can be estimated
by the same procedure. The drift of the jump process is set to zero, allowing
the effects of a jump to revert back to zero. The estimated mean reversion
parameters for the jump diffusion process are listed in table 7

4.3 Jumps

The arrival frequency of jumps, λ, are defined as the number of jumps per
unit time. The arrival frequency for the different segments are calculated
by dividing the number of jumps, defined by the filter in Equation 2, on the
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Segment αZ ε
PSV 6-800 0.3208 0.2614
PSV 800 0.2996 0.2572
AHTS 13-18000 0.6218 0.3524
AHTS 18000 0.5687 0.4053

Table 7: Parameters of the jump spot rate process

number of observations. The probability of a jump in the spot rate is thus
equal to λ, listed in Table 8.

Segment λ
PSV 6-800 0.042
PSV 800 0.025
AHTS 13-18000 0.050
AHTS 18000 0.021

Table 8: Parameters of the jump spot rate process

Observe that the probability of jumps are higher in the smaller segments.
As noted in [1], the probability that a smaller vessel is in harbour when
something urgently needs to be taken care of is higher, than with a larger
vessel. In a small regional market smaller vessels are therefore more flexible
and efficient in dealing with demand uncertainties, allowing more frequent
positive jumps in the spot rate of the smaller segments.

4.4 Simulation

As discussed earlier, a problem with applying the Euler-Maruyama scheme
to the spot rate level, is that it can generate negative rates. A solution to
this problem is to simulate returns Xt = ln(St). The continous time process
of the Ornstein Uhlenbeck can be approximated by the Euler scheme in
discrete time. As discussed earlier an AR(1)-process is only stationary if
| α |< 1, which can only happen if

1− κ∆t < 1⇔
[
0 < ∆t <

2

α

]
(36)

Selecting the time step ∆t accordingly, and writing an algorithm that sim-
ulates price return paths

lnSt = Xt + g(t),
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such that the spot freight rate can be expressed as

St = eXtG(t) (37)

where G(t) ≡ eg(t) is the deterministic seasonality function and Xt has
dynamics equal to those in Equation 15

dXt = (µ− αXt)dt+ σ(t)dWt + lnJdNt. (38)

In order to capture the two-regime mean reversion dynamics I split the
normal diffusion process and the jump process as done in Equation 24:

∆St = ∆SYt + ∆SZ

The discrete time representation of the normal diffusion process, SYt , is

∆SYt = SYt+1 − SYt = e(µ− αXt)δt+ σ(t)
√

∆tεt

SYt+1 = SYt + e(µ− αXt)δt+ σ(t)
√

∆tεt + g(t) (39)

and the discrete time jump diffusion process, SZt , with drift is

SZt+1 = SZt + αZS
Z
t + (J − 1)StdNt. (40)

In Figure 19, 20, 21 and 22 I have plotted a simulated a path of each of the
spot rates using the parameters estimated in Section 4. Each plot consists
of 8 000 points and has a time step, ∆t, of 0.1 such that time horizon
corresponds to approximately 15 years.
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Figure 19: Simulated spot rate PSV 6-800m2

Figure 20: Simulated spot rate PSV >800m2
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Figure 21: Simulated spot rate AHTS 13-18000bhp

Figure 22: Simulated spot rate AHTS >18000bhp
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5 Application

Martinussen [18] focuses on the importance of lay-up and scrapping in valu-
ation of tanker vessel. Just like in tanker markets, at any given time, there
are three alternatives for an offshore vessel; operation, lay-up and scrapping.
As suggested by Tvedt [30], the cash flow from PSV and AHTS-vessels have
the same structure as an American option. The vessel is a continuous op-
tion on the cash flow, until the maturity to scrap the vessel and receive the
value of the vessel as sold to demolition. The American option captures the
value of the spot rate contingent claims on cash flow, but also the value of
flexibility related to lay-up and scrapping of the vessel.

Adopting Tvedt’s approach to pricing spot rate contingent claims, I can
derive the solution to the extended problem where the underlying spot rate
follows a geometric mean reverting jump diffusion process. As in [30] the
model assumes that there are zero costs related to laying up a vessel and
re-entering the market. It also ignores costs associated with re-classing and
docking a vessel. The cash flow from operation and lay-up until a vessel is
scrapped can be described by the continuous American call option

Ct = max(St − w,−m)

= (St − w)1[St−w>−m] −m(1− 1[St−w>−m]) (41)

where St is the time charter equivalent spot rate, w is the operating costs
excluding voyage related costs and m is the cost of keeping the vessel idle.
The option described above is continuous in the sense that exercising the
option and laying-up the vessel does not keep the investor from re-entering
into the market with an option of the same payoff structure. 1[St−w>−m] is
an indicator function of the event that the cash flow from keeping a vessel
operational is larger than cash flow of keeping the vessel idle. The optimal
policy when this event does occur is to keep the vessel operational, and
recieve cash flow St − w. Otherwise it is optimal to exercise the option of
laying-up the vessel with cash flow −m.

When the age of the vessel, t, reaches the maximum lifespan, T , the
value of the vessel converges with the scrapping value Ψt. The vessel may
be sold at any point in time before T. Assuming a risk neutral investor, the
optimal policy is to scrap the vessel if the present value of Ct ≤ Ψt. The
time at which the vessel is sold or scrapped is equal to the stopping time, τ ,
of the option Ct. The optimal policy of termination is, as in [30], given by

τ = inf(0 < t < T ; Φt,s ≤ Ψt) (42)
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where Ψ is the market value of the vessel defined below. I.e. the optimal
time of termination is the first point in time where the present value of the
vessel as a going concern is less than or equal to the scrapping value of the
vessel.

Assuming complete markets, or equivalently, that we can replicate pay-
offs in all states of the economy, it is possible to hedge the cash flow Ct, and
introduce the equivalent martingale measure Q. As in [30] the market value
of the vessel is then equal to the risk neutral present value of the cash flows
generated from time t to τ , given by

Φt,s = EQ
[ ∫ T

t
e−r(u−t)Cudu+ e−r(τ−t)Ψτ

]
(43)

Assuming complete markets we can hedge the cash flow from Ct and
estimate the value of a vessel by the use of arbitrage pricing arguments. The
cash flow from Ct can be hedged by constructing a self-financing replicating
portfolio, by trading in the underlying spot rate, St, and the risk free asset,

Bt = e
∫ T
t −rdu, with dynamics

dBt = rtBtdt. (44)

Let ϕ denote the amount invested in the underlying asset and, θ, the amount
in the risk-free asset. The replicating portfolio becomes

Ct = ϕtSt + θtBt. (45)

where the spot rate St has the same dynamics as in Equation 21. Thus, the
dynamics of the replicating portolio becomes

d(ϕtSt + θtBt) = (ϕµSt + θrtBt)dt+ ϕ(σStdWt + (J − 1)StdNt) (46)

Assuming no jumps (λ = 0), by Itô’s Lemma, Ct has dynamics

dCt =
(∂C
∂t

+ µS
∂C

∂s
+

1

2
σ2
S

∂2C

∂s2

)
dt+

∂C

∂s
σdWt. (47)

I can make sure that the portfolio is replicating by ensuring the drift and
dispersion terms are everywhere equal

dCt = d(ϕtSt + θtBt). (48)

By manipulations of the above equation, I can find the portfolio weights
that satisfies the self-financing replicating argument to arrive at the partial
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differential equation in the Black-Scholes framework. The dispersion term
is replicating if and only if

∂C

∂S
σdWt = ϕσStdWt

ϕ =
∂C

∂S
, (49)

and drift term is replicating if and only if

ϕµSt + θrtBt =
∂C

∂t
+ µ

∂C

∂s
+

1

2
σ2
S

∂2C

∂s2

θ =
1

rtBt

(∂C
∂t

+
1

2
σ2
S

∂2C

∂s2

)
. (50)

Inserting the portfolio weights, ϕ and θ, back into Equation 45 to arrive at
the Black-Scholes PDE

rCt = rS
∂C

∂S
+
∂C

∂t
+

1

2
σ2
S

∂2C

∂S2
(51)

However, in the presence of jumps, it is not possible to hedge away the
idiosyncratic risk due to jumps. This is because the replicating portfolio is
a linear hedge, given an infinitesimal change in the spot rate, but the option
price is a non-linear function of the spot rate. The Black-Scholes ”hedge” is
done in continuous time and requires an uninterrupted dynamic rebalancing
of the portfolio given changes in the underlying spot rate, and consequently
the option delta. Moreover, when jumps are present, the spot rate follows
a discontinuous process, and the Black-Scholes hedge will not eliminate risk
even in the continuous limit. As a consequence Merton [20] chose to leave the
jump-risk unpriced, resulting in no change in the jump terms when changing
the probability measure. A different method is to incorporate market price
of jump-risk by using two options expiring at different maturities to hedge
the underlying jump diffusion [23]. For application, see for instance Cheang
[8].

I can adjust Tvedt’s model [30] to allow for jumps in the spot rate. Let
Yt denote the state of the system

Yt =

[
u+ t
St

]
(52)

Then it follows that the risk-adjusted increments of Yt is given by

dYt =

[
1
µSt

]
dt+

[
0
σSt

]
dWt +

[
0

(J − 1)St

]
dNt (53)
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The Itô diffusion Yt has an infinitesimal generator A, given by

Af(t, s) =
∂f(t, s)

∂t
+ µSt

∂f(t, s)

∂s
+

1

2
σ2∂f(t, s)

∂s
+ λ(f(t, x+ (t, x))f(t, x)).

(54)

From Equation 43, it follows that the present value of a vessel, Φ0,s, is a
solution to a combined Dirichlet-Poisson problem (see, for instance, [22]).
The value function Φt,s satisfies the two conditions

AΦt,s = −ertCt, when Φt,s > Ψt (55)

lim
t→τ

Φt,s = ertΨt, when Φt,s ≤ Ψt (56)

Assume that the function for the market value of a vessel can be expressed
as Φt,s = Vte

−rt, when Φt,s > Ψt. Then it follows from Equation 55 that the
value of the vessel in this interval satisfies the following partial differential
equation

−rV +
∂V

∂t
+ µS

∂V

∂S
+

1

2
σ2
S

∂2V

∂S2
+ λE[V (J)− V ]dNt = rC (57)

where µS is the drift and σS is the standard deviation of the underlying spot
rate. Thus, if we assume that we are able to construct risk neutral portfolios
in the underlying vessel the spot rate dynamics becomes equal to those in
Equation 32 and the partial differential equation becomes

−rV +
∂V

∂t
+ (r − λ̃κ̃)St

∂V

∂S
+

1

2
σ2S2

t

∂2V

∂S2
+ λ̃EQ

J [V (J)− V ]dNt = rC

(58)

The optimization problem given by the equations 55 and 56, can be solved
numerically. A closed form solution, is to my knowledge, not available.
Moreover, when departing from the simple geometric Brownian motion, and
incorporating mean reversion and jumps in a fairly complex pay-off function,
closed form solutions becomes very hard, if not impossible, to obtain. The
performance of the numerical method applied to such problems depends
ultimately on the ability of the model to capture the dynamics of the spot
rate process.

A numerical solution to the problem can be obtained by the Monte Carlo
method. This method involves simulating random paths of the spot rate
according to the procedure in Section 4.4, with the estimated parameters
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from Section 4, to arrive at different present values of a vessel given by the
problem in equations 55 and 56. Given the central limit theorem and the
law of large numbers, the mean of the implied probability density function
of vessel values will converge with the true value of a vessel as the number
of simulated paths goes to infinity.

6 Conclusions

In this thesis I have analysed some of the most significant characteristics of
the spot rates for PSV and AHTS-vessels. I have proposed a model able to
capture these dynamics, estimated the parameters for the North Sea market,
and derived a framework for pricing of PSV and AHTS-vessels.

The empirical analysis revealed a tendency of the spot rate to exhibit
frequent jumps with greater magnitude than what the Normal distribution
would predict. By incorporating a jump process I was able to capture these
price movements, as shown in Section 2.1. Furthermore, the analysis in
Section 2.2 confirmed existence of statistically significant mean reversion for
all the segments. As discussed in Section 3.2, spot rate jumps tend to revert
quickly while random standard normal fluctuations revert rather slowly. In
order to account for this phenomenon I estimated different reversion rates
for the normal diffusion process and the jump process in Section 4.2. I also
identified a significant seasonal component in the spot rate in Section 2.2,
which was estimated by using a Fourier series of order K to arrive at a
deterministic seasonal function for the spot rates in Section 4.1. In Section
2.4, assuming that spot rates are log-normally distributed I was able to
capture the level effect in the conditional variance and consequently some
of the autocorrelations in the conditional variance due to this level effect.

The characteristics revealed in the empirical analysis was then used to
derive an extension to the geometric Mean reversion model used by Tvedt
[30], incorporating both jumps, seasonality and two-regime mean reversion,
in Section 3. In Section 5, the model was then implemented in Tvedt’s
framework for prising of VLCCs, where the cash flow is modelled as a con-
tinuous American call option. The option consequently captures the value
of the spot rate contingent claim on cash flow, and the value of flexibility
related to lay-up and scrapping of the vessel. Furthermore, I derive the par-
tial differential equation satisfying the value function of the vessel, where
the solution to this problem can be solved numerically. Closed form solu-
tion for this optimization problem does not exist. Moreover, when departing
from the simple geometric Brownian motion, and incorporating mean rever-
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sion and jumps in a fairly complex pay-off function, closed form solutions
becomes very hard, if not impossible, to obtain. The performance of the nu-
merical method applied to such problems depends ultimately on the ability
of the model to capture the dynamics of the spot rate process. Even though,
the proposed model is able to capture the most significant characteristics of
the spot rate, there are still significant linear and non-linear autocorrelations
left in the residuals. This confirms the existence of short-term momentum
in the conditional mean of the spot rate, represented by trends caused by
shipping cycles, mean reversion and seasonality. Such trends violates the
theory of efficient markets, but are able to persist in the short-run because
spot rates are non-tradeable assets and therefore arbitrage portfolios are not
easily obtained. Following the discussion in [4], there are also transaction
costs for both charterer and shipowner related to delaying fixtures when the
spot rate is trending.

According to the McLeod-Li test there are also significant autocorre-
lations in the conditional variance. The same test applied to the log-
transformed series revealed that only the largest AHTS-segment showed
significant lag effects in the conditional variance not due to the level effect.
This implies that the geometric mean reversion model is able to capture all
the non-linear dynamics in the conditional variance of the spot rate for PSV-
vessels and the smaller AHTS-segment. The largest AHTS-segment, on the
other hand, needs an autoregressive conditional heteroscedastic (ARCH)-
model to be fully specified in the moving average part of the process.

However, there is a trade-off between analytical tractability and predic-
tion accuracy. The former is of great importance, but because the model
is already solved in a numerical framework the analytical tractability is ar-
guably less relevant and the value of a more complex model is worth quan-
tifying. A model incorporating higher order continuous time ARMA-terms
for the linear dynamics and ARCH-terms for the non-linear part may be
appropriate.
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Appendix

A Maximum Likelihood Equations for the Orn-
stein Uhlenbeck-Process

λ =
S1S22 − S1S12

n(S22 − S12)− (S2
2 − S2S1)

φ = −1

δ
ln(

S21 − µS2 − µS1 + nµ2

S22 − 2µS2 − S2S1
)

ε̃2 =
1

2
[S11 − 2αS21 − α2S22 − 2µ(1− α)(S1 − α)(S1 − αS2) + nµ2(1− α)2]

ε2 = ε̃2
2λ

1− α2

where µ = λφ and

α = e−λδ

S2 =
n∑
i=1

Si−1

S1 =
n∑
i=1

Si

S22 =
n∑
i=1

Si−1

S21 =
n∑
i=1

Si−1Si

S11 =

n∑
i=1

S2
i

µ = λφ
α = e−λδ
S2 =

∑n
i=1 Si−1

S1 =
∑n

i=1 Si
S22 =

∑n
i=1 Si−1

S21 =
∑n

i=1 Si−1Si
S11 =

∑n
i=1 S

2
i

51



References

[1] B. Aas, Ø. Halskau Sr, and S. W. Wallace. The role of supply vessels
in offshore logistics. Maritime Economics & Logistics, 11(3):302–325,
2009.

[2] R. Adland and K. Cullinane. The non-linear dynamics of spot freight
rates in tanker markets. Transportation Research Part E: Logistics and
Transportation Review, 42(3):211–224, 2006.

[3] R. Adland and S. P. Strandenes. A discrete-time stochastic partial
equilibrium model of the spot freight market. Journal of Transport
Economics and Policy (JTEP), 41(2):189–218, 2007.

[4] R. O. Adland. The stochastic behavior of spot freight rates and the
risk premium in bulk shipping. PhD thesis, Massachusetts Institute of
Technology, 2003.

[5] F. M. Bandi and P. C. Phillips. Fully nonparametric estimation of
scalar diffusion models. Econometrica, 71(1):241–283, 2003.

[6] F. E. Benth, L. Ekeland, R. Hauge, and B. R. F. Nielsen. A note on
arbitrage-free pricing of forward contracts in energy markets. Applied
Mathematical Finance, 10(4):325–336, 2003.

[7] P. Bjerksund and S. Ekern. Contingent claims evaluation of mean-
reverting cash flows in shipping. Real options in capital investment:
Models, strategies, and applications, pages 207–219, 1995.

[8] G. Cheang and C. Chiarella. A modern view on merton’s jump-diffusion
model. Technical report, 2011.

[9] A. K. Dixit. Investment under uncertainty. Princeton university press,
1994.

[10] A. Escribano, J. I. Peña Sánchez de Rivera, and P. Villaplana. Modeling
electricity prices: international evidence. 2002.

[11] E. F. Fama. Random walks in stock market prices. Financial Analysts
Journal, pages 55–59, 1965.

[12] G. Gardner, A. Harvey, and G. Phillips. Algorithm as 154: An al-
gorithm for exact maximum likelihood estimation of autoregressive-
moving average models by means of kalman filtering. Applied Statistics,
pages 311–322, 1980.

52



[13] H. Geman and A. Roncoroni. Understanding the fine structure of elec-
tricity prices*. The Journal of Business, 79(3):1225–1261, 2006.

[14] M. G. Kavussanos. Price risk modelling of different size vessels in
the tanker industry using autoregressive conditional heteroskedasticity
(arch) models. The Logistics and Transportation Review, 32(2):161–176,
1996.

[15] S. Koekebakker, R. Adland, and S. Sødal. Are spot freight rates sta-
tionary? Journal of Transport Economics and Policy, pages 449–472,
2006.

[16] T. C. Koopmans. Tanker Freight Rates and Tankship Building: An
Analysis of Cyclical Fluctuations, by Dr. T. Koopmans. Number 27.
De erven F. Bohn nv, 1939.

[17] J. J. Lucia and E. S. Schwartz. Electricity prices and power deriva-
tives: Evidence from the nordic power exchange. Review of Derivatives
Research, 5(1):5–50, 2002.

[18] E. Martinussen. The importance of scrapping and lay-up for the val-
uation of VLCCs. PhD thesis, Thesis (HAS), Norwegian School of
Economics and Business Administration, Bergen, 1993.

[19] K. Mayer, T. Schmid, and F. Weber. Modeling electricity spot prices:
combining mean reversion, spikes, and stochastic volatility. The Euro-
pean Journal of Finance, (ahead-of-print):1–24, 2012.

[20] R. C. Merton. Option pricing when underlying stock returns are dis-
continuous. Journal of financial economics, 3(1):125–144, 1976.

[21] N. K. Nomikos, I. Kyriakou, N. C. Papapostolou, and P. K. Pouliasis.
Freight options: Price modelling and empirical analysis. Transportation
Research Part E: Logistics and Transportation Review, 51:82–94, 2013.

[22] B. Øksendal. Stochastic differential equations. Springer, 2003.

[23] S. T. Rachev. Handbook of Heavy Tailed Distributions in Finance:
Handbooks in Finance, volume 1. Elsevier, 2003.

[24] S. E. Said and D. A. Dickey. Testing for unit roots in autoregressive-
moving average models of unknown order. Biometrika, 71(3):599–607,
1984.

53



[25] E. S. Schwartz. The stochastic behavior of commodity prices: Implica-
tions for valuation and hedging. The Journal of Finance, 52(3):923–973,
1997.

[26] R. Shibata. Asymptotically efficient selection of the order of the model
for estimating parameters of a linear process. The Annals of Statistics,
pages 147–164, 1980.

[27] M. Stopford. Maritime economics. Psychology Press, 1997.
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