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Abstract 

Accurate predictions of fuel consumption are an essential tool in the pricing of forward cargo 

contracts. This thesis develops a predictive model for fuel consumption using noon report data 

from Handysize and Supramax vessels. In the process, we employ a wide selection of machine 

learning algorithms, including decision trees, shrinkage models, and an artificial neural 

network. Furthermore, we replace all weather and oceanographic variables with third-party 

data. The replacement ensures the model is independent of noon report weather data and 

allows us to generate predictions using historical weather conditions from the last decades. 

The trained models are used to study the seasonal patterns of weather margins for two case 

routes. Estimated weather margins and fuel consumption may be used by chartering managers 

to improve cost predictions and facilitate more profitable contract selection. 
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1. Introduction 

Maritime shipping is the backbone of world trade. According to UNCTAD's review of 

maritime transport (2020), around 80% of the volume of international trade in goods is carried 

by sea, and the percentage is even higher for most developing countries. UNCTAD (2020) 

further estimates the total volume of maritime trade in 2019 at 11.08 billion tonnes. For a given 

freight, almost two-thirds of the expenses are attributed to fuel consumption (Stopford, 2009). 

This makes accurate fuel consumption predictions highly valuable for dry bulk operators who 

must price cargo that will be lifted several weeks ahead. Fuel predictions are, however, a 

complex task, and many factors must be taken into consideration.  

Some of these factors can be grouped under the common term weather margin, sometimes also 

referred to as sea margin. We will use weather margin to refer to the increase in consumption 

due to weather compared to consumption in ideal conditions. A rule of thumb is to use a 

weather margin of 10-15%. For example, Nabergoj and Prpi (2007) found a weather margin 

of 10% when studying a passenger ship, but also mentions that 15-30% are typical values used 

by ship designers. However, weather conditions can be highly volatile, and traditional weather 

forecasts cannot provide reasonable long-term forecast accuracy. According to Hu and Skaggs 

(2009), the National Oceanic and Atmospheric Administration's 6- to 10-day forecasts are only 

correct 40% of the time. With forward cargoes being signed weeks in advance, chartering 

managers have to make contract pricing decisions based on unreliable weather forecasts or 

find alternative tools to reduce the weather margin uncertainty. 

Previous authors have used a wide array of methods to predict fuel consumption. Some focus 

on modeling ships' physical features and relationships, often referred to as white-box models. 

In recent times, data-driven methods referred to as black-box models have increased in 

popularity. These methods are purely data-driven and use data to determine the historical 

relationships of ship features. Machine learning (ML) is an important tool in this process. 

Authors have applied a wide range of ML algorithms, from decision trees to artificial neural 

networks, with varying results. 

A complicating factor in research on fuel consumption in shipping is the availability of high-

quality data. As exemplified by this thesis, many prediction models are based on data from 

noon reports, which are often incomplete and not perfectly accurate. Moreover, noon reports 

are generally not publicly available, and their contents and formats may differ. As we will see 
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in our literature review, the difference in data quality and format makes it difficult to determine 

the comparative performance of predictive models. These differences also mean that 

developed models cannot directly be applied to new data sources. 

This thesis contributes to the literature by showing how free and publicly available third-party 

weather data can be used to reduce the problem of data availability and model generalizability. 

We show that all weather-related data from the noon reports can be discarded and replaced 

with standardized third-party weather data while achieving comparable predictive accuracy. 

We further find indications that higher-resolution weather data available from 2019 onwards 

may boost predictive accuracy beyond what is achievable with noon report data only. If these 

results are replicated by others, then the use of third-party weather data may serve as a step 

toward developing generalized predictive models for fuel consumption in the shipping 

industry. 

The second contribution of our thesis is to demonstrate how the third-party weather data can 

further be used to estimate expected consumption on any voyage, thus mitigating some of the 

uncertainty stemming from the lack of long-term weather forecasts. To achieve this, we use 

our trained models together with 25 years of weather data to predict consumption given the 

historical weather conditions along the routes. The resulting predictions give us insight into 

how seasonal weather patterns translate into changes in expected consumption and variance at 

different times of the year and on different voyages. 

We believe our approach may prove to be a viable method for improving cost estimates and 

subsequently enabling more accurate pricing of forward cargo and a better understanding of 

the risk associated with a given voyage. Margins in the shipping industry are relatively modest. 

For example, Fidan (2019) estimates the industry average to be around 6-10%. This means the 

economic margins are comparable in size to the variation in weather margins, underlining the 

economic importance of accurate weather margin predictions. 

The remaining sections of this thesis are structured as follows. Section 2 will study the 

theoretical framework for fuel consumption and prediction. Section 3 covers the existing 

literature within the shipping analytics field. Section 4 describes our methodological approach. 

Section 5 will present our modeling results. Section 6 will analyze weather margins for two 

real-world cases. Section 7 will outline the limitations of our study and propose future areas 

of research. Finally, section 8 will present our overall conclusions. 



 6 

2. Theory 

2.1 Vessel fuel consumption 

There are many features influencing fuel consumption, such as vessel speed, draft, trim, 

waves, wind, sea current and propeller slip (Gkerekos et al., 2019; B. J. S. Wang et al., 2018). 

Vessel speed is one of the most important predictors of fuel consumption, as has been shown 

by numerous authors in the past (e.g., Adland et al., 2020; Gkerekos et al., 2019; B. J. S. Wang 

et al., 2018). As described by Meng et al. (2016), vessel speed 𝑉𝑉 primarily impacts 

consumption by increasing the total resistance 𝑅𝑅𝑇𝑇 according to the formula: 

 𝑃𝑃𝐸𝐸 = 𝑅𝑅𝑇𝑇 × 𝑉𝑉 (1) 

where 𝑃𝑃𝐸𝐸 denotes the effective power necessary to move the ship forward at the given speed 

and is closely related to fuel consumption. According to the authors, 𝑅𝑅𝑇𝑇 consists of three 

components: 

 𝑅𝑅𝑇𝑇 = 𝑅𝑅𝐹𝐹 + 𝑅𝑅𝑅𝑅 + 𝑅𝑅𝐴𝐴 (2) 

where 𝑅𝑅𝐹𝐹 represents the frictional force of the hull and the propeller, 𝑅𝑅𝑅𝑅 is the residual 

resistance mainly caused by waves, and 𝑅𝑅𝐴𝐴 is the air resistance. Although the exact proportions 

can vary, the authors suggest that the three resistance components are in proportion to 𝑉𝑉2. 

Vessel speed also influences the relationship between 𝑃𝑃𝐸𝐸 and fuel consumption by affecting 

the efficiency of the engines, the propellers and more (MAN Diesel & Turbo, 2015). For 

example, the highest efficiency for electronically and mechanically controlled MAN engines 

is obtained at 70% and 80% of maximum power, respectively (MAN Diesel & Turbo, 2015). 

The magnitude of the impact from waves (through residual resistance 𝑅𝑅𝑅𝑅) is dependent on 

factors such as wave height and modal period (Arribas, 2007). Similarly, the magnitude of air 

resistance 𝑅𝑅𝐴𝐴 depends on factors such as wind direction, wind speed and the size of the 

superstructures determining the total resistance (Magnussen, 2017). Even though the frictional 

resistance 𝑅𝑅𝐹𝐹 is a large part of the total resistance 𝑅𝑅𝑇𝑇 (Meng et al., 2016), the impact of sea 

current speed and current direction on consumption are relatively low (Abebe et al., 2020; 

Adland et al., 2020). Hull condition is another factor that impacts 𝑅𝑅𝐹𝐹, and as will be discussed 

in section 4.1.3, this variable can have a large influence on fuel consumption. 
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The complexity of vessel fuel consumption makes it difficult to model accurately. Variables 

can be correlated with each other and themselves in forms that are not always easily 

reproduced in linear regression (LR) models. For example, the cubic law of ship speed claims 

that fuel consumption can be well approximated by a cubic function of speed (S. Wang & 

Meng, 2012). While the approximation fit has later been challenged Adland et al. (2020), it is 

clear there may exist non-linear relationships between predictors and fuel consumption. 

Another example is that a vessel's draft is determined by its weight, which again is determined 

by its cargo. The shape of a hull also means the marginal increases in water displacement rise 

with increasing draft size. There are also many more influential predictors for fuel 

consumption, which we will introduce and study later in the thesis. 

2.2 Machine learning 

In an attempt to more accurately model these complex, and at times nonlinear relationships 

with fuel consumption, authors have implemented various data-driven machine learning 

approaches. Machine learning can be broadly defined as computational methods using 

experience to improve performance or make accurate predictions (Mohri et al., 2018). 

Machine learning algorithms take many different forms but can be grouped based on 

similarities. We will now study some of the relevant groups for our thesis. 

Regression methods estimate the relationship between a dependent variable and one or more 

independent variables based on historical data and iteratively minimizes the estimation errors. 

The most common method is Ordinary Least Squares (OLS) regression, where the estimation 

errors are measured as the sum of squared differences. Shrinkage models, or regularization 

algorithms, are an extension of other algorithms which penalize increased model complexity, 

such as added predictors (Brownlee, 2020a). The regularization methods are often combined 

with regression methods, as described above. Ridge and Lasso are two examples of shrinkage 

algorithms that are based on regression.  

Another group of machine learning algorithms is instance-based models. These algorithms 

generate instances or examples of training data deemed important or required for the model 

instead of using the training data itself (Brownlee, 2020a). These algorithms are useful when 

the target function is very complex but can be broken down into less complex generalizations. 

Examples of instance-based algorithms include support vector machines (SVMs) and 

k-nearest neighbor algorithms. 
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Decision trees are amongst the most popular groups of algorithms in machine learning. They 

work by forking decisions in a tree-like structure until a final classification or prediction is 

reached (Brownlee, 2020a), hence their name. Decision trees are often highly accurate and 

come in many different variants, including Random Forests (RF), which uses bootstrap 

replicas and optimal splits, and Extra Trees (ET), which uses the whole learning sample and 

randomly selected splits (Geurts et al., 2006). Cubist is a third variant that combines decision 

trees with regression. 

Bayesian machine learning methods are based on the principle of Bayes' rule (Tipping, 2004). 

They can use a non-parametric approach; instead of learning exact values for every parameter 

in a function, the Bayesian approach infers a probability distribution over all possible values. 

Examples of Bayesian methods include the Naïve Bayes, the Gaussian Naïve Bayes and the 

Multinomial Naïve Bayes. 

The last group we examine has grown immensely in the last few years. Artificial Neural 

Networks (ANNs) are a class of pattern recognition algorithms that uses interconnected nodes 

with associated weights and activation functions to make predictions. ANNs contain nodes 

structured in an input layer, one or more hidden layers, and an output layer. ANN algorithms 

can differ in workflow. In Feed-Forward Networks, the data flows in one direction from start 

to finish. Recurrent Neural Networks are a more advanced form, where data can be fed back 

into the input layer or previous traversed hidden layers. 

2.3 Performance metrics 

For evaluation and comparisons of the performance of the different models, we need to select 

performance metrics. There is no ideal "one-fits-all" performance metric. Each has drawbacks 

and advantages, so it is important to study the measure's purpose (Swalin, 2018) and possibly 

include several measures. For this thesis, we need a metric that is well suited to compare a 

large number of models. Secondly, we need a scale-free measure to compare our achieved 

accuracy with the accuracy of other authors in the literature. Lastly, we want a measure that is 

easily interpretable for our readers. To fulfill all these purposes, we decided to include several 

measures. The selected measures are RMSE, nRMSE, sMAPE and R squared. In the 

following, we will explain the measures and why we found them appropriate for our purposes. 

The Root Mean Squared Error is defined as 
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𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝑛𝑛
�(𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 (3) 

The RMSE takes the difference between the predicted value 𝑦𝑦�𝑖𝑖 and the true value 𝑦𝑦𝑖𝑖 i.e., the 

prediction error, and squares it so that negative and positive errors are weighted equally. 

Squaring the errors has the collateral effect of penalizing larger prediction errors more harshly 

than smaller errors, which is often desirable in an economic setting where risk has a cost. This 

makes the measure suitable for our thesis. All prediction errors are then summed and divided 

by the number of observations to find the average error, before the square root is applied. 

Lower RMSE corresponds to better model performance. RMSE is scale-dependent but a good 

measure to select between models on the same dataset (Chugh, 2020; Swalin, 2018), and is 

widely used in literature and comparable studies from our literature review. As such, we will 

use RMSE to determine our best-performing model.  

The Normalized Root Mean Squared Error is defined as 

 𝑛𝑛𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝜎𝜎𝑦𝑦

 (4) 

The RMSE also has several normalized variants that are scale-free, including the standard 

deviation normalized variant presented above. The normalization makes the measure suitable 

for comparing models with different units or scales, such as if a dependent variable is to be 

compared with a log-transformed dependent variable (Otto, 2019). The standard deviation 

variant of nRMSE is a good choice as it represents the ratio between the variation not explained 

by the regression versus the overall variation in the dependent variable (Otto, 2019). A nRMSE 

score of 0 means all variation is captured by the model, while a score of 1 means the model 

captures no variation. Consequently, lower values represent better performance. 

The Mean Absolute Percentage Error is defined as 

 
𝑅𝑅𝑀𝑀𝑃𝑃𝑅𝑅 =  

1
𝑛𝑛
��

𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖
𝑦𝑦𝑖𝑖

�
𝑛𝑛

𝑖𝑖=1

 (5) 

In contrast to RMSE, which squared the prediction errors, MAPE divides them with the true 

value before averaging them. This ensures that the measurement is scale-free and comparable 
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to other author's models and datasets, which is one of the purposes we wanted to fulfill. One 

key difference compared to RMSE is that absolute errors are used rather than squared errors, 

making it less sensitive to outliers and less attractive for model selection. On the other hand, 

the measure is more interpretable than RMSE. Lower MAPE values correspond to better 

model performance.  

The Symmetric Mean Absolute Percentage Error is defined as 

 
𝑠𝑠𝑅𝑅𝑀𝑀𝑃𝑃𝑅𝑅 =  

1
𝑛𝑛
�

|𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖|
(|𝑦𝑦𝑖𝑖| − |𝑦𝑦�𝑖𝑖|)/2

𝑛𝑛

𝑖𝑖=1

 (6) 

While the normal MAPE is a good measure, it has some drawbacks that are corrected for in 

the symmetric MAPE presented above. Firstly, MAPE can go over 100% for positive values 

but not for negative values, so it tends to weigh positive errors higher than negative errors 

(Lewinson, 2020). Additionally, MAPE is undefined when actuals are zero. The sMAPE 

mitigates these drawbacks by setting 200% as the upper bound and setting actual observation 

values of zero equal to the upper bound. The described corrections convert sMAPE into a 

similar but improved version of the normal MAPE, and as such, we will only be using the 

symmetric version of MAPE in our results. 

The R squared is defined as 

 
𝑅𝑅2 =  1 −

∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦� 𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

= 1 −
𝑈𝑈𝑛𝑛𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑛𝑛𝑈𝑈𝑈𝑈 𝑣𝑣𝑈𝑈𝑣𝑣𝑈𝑈𝑈𝑈𝑛𝑛𝑛𝑛𝑈𝑈

𝑇𝑇𝑇𝑇𝑇𝑇𝑈𝑈𝑈𝑈 𝑣𝑣𝑈𝑈𝑣𝑣𝑈𝑈𝑈𝑈𝑛𝑛𝑛𝑛𝑈𝑈
 (7) 

R squared subtracts from one the sum of the squared prediction errors divided by the squared 

differences of the true values and the average actual value. In simpler terms, it calculates the 

proportion of the variation of a dependent variable explained by the independent variable(s) 

(Fernando, 2020). A model preferably explains as much of the variance as possible, thus a 

higher R squared means a better performing model. This measure is well known and easily 

interpretable (Swalin, 2018), so we will include it for the purpose of explaining the models' 

performance in an interpretable and familiar manner for our readers. 
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3. Literature review 

3.1 White-box models 

As mentioned, white-box models are based on the physical characteristics of the ships and the 

environment. Jalkanen et al. (2009) modeled fuel consumption using their Ship Traffic 

Emission Assessment Model (STEAM) based on data from Automatic Identification System 

(AIS) data, with prediction errors within 5%. They further improved the accuracy in their 2012 

publication (Jalkanen et al., 2012). Tillig and Ringsberg (2019) used Monte Carlo simulations 

to estimate fuel consumption during the ship design phase. The simulations were built on 

numerous empirical methods applied to data about the various physical ship features. They 

achieved prediction errors below 4% in the later design phases. Goldsworthy and Goldsworthy 

(2015) made a generic model for predicting fuel consumption and emissions, using a 

combination of AIS data and ship mechanical data from Lloyd's database. Their prediction 

errors reached below 3%. Magnussen (2017) modeled ship resistance using ISO standards and 

further estimated sea margins for a case ship sailing three different routes, and found the sea 

margins to be 18-20%. Eide (2015) modeled the sea margins based on data from noon reports, 

and found that the proposed margin by the ship designer of 15% was accurate at design speed, 

but inaccurate at lower speeds.  

3.2 Black-box models 

Linear regression is one of the simplest types of black-box models. It provides excellent 

interpretability in combination with accurate predictions. Adland et al. (2020) used linear 

regression to calculate fuel consumption, with R squared scores of 82.4% and 87.3% for 

Aframax and Suezmax vessels, respectively. Similarly, Erto et al. (2015) used linear 

regression to predict the fuel consumption of a cruise ship in the Mediterranean Sea, and 

achieved an R squared of 94% on their training data.  

Continuing with machine learning models, Pedersen and Larsen (2009) used linear and 

nonlinear regression and ANNs on data from noon reports, onboard sensory data and hindcasts 

of weather and sea information to predict full-scale propulsion power. The highest accuracy 

was achieved using ANNs on onboard sensory data. They further found that introducing 

hindcast data reduced the prediction errors and gave the best solutions in general. Petersen et 
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al. (2012) used publicly available data in ANNs and Gaussian Process (GP) models. While the 

GP models have the advantage of quantifying the uncertainty, they fall short of the accuracy 

of the ANNs. Their paper highlights the difficulty of comparing models across different 

datasets and encourages the release of more data to the public. Jeon et al. (2018) developed 

ANN models to predict ship fuel consumption with accurate results. The ANNs outperformed 

both Polynomial Regression and SVMs on the dataset. Uyanik et al. (2019) also used ANN to 

predict ship fuel consumption from 23 days' worth of data from a voyage, though with lower 

performance metrics scores than Jeon et al. (2018).  

One potential pitfall in machine learning modeling is overfitting, where the model performs 

well on the training data but generalizes poorly. Shrinkage models attempt to counteract this 

phenomenon by restricting the total weights that can be allocated to the variables. The method 

often leads to reduced variance at the cost of slightly more bias in the fitting process. Soner et 

al. (2019) applied the shrinkage-based Ridge and LASSO models on the same data as Petersen 

et al. (2012). They achieved a comparable prediction accuracy that was lower than the ANNs 

but higher than the GP models. Wang et al. (2018) proposed a LASSO regression to predict 

consumption, resulting in highly accurate results combined with high interpretability and low 

running time. The model outperformed the ANN model on the same data, despite ANNs 

having proved to be amongst the more accurate model types. 

Gkerekos et al. (2019) compares a large selection of data-driven regression algorithms on both 

noon reports and onboard sensory data, and focuses on giving the models equal grounds for 

comparison. They find that the RF models provide the most accurate predictions of fuel oil 

consumption, closely followed by ANNs and SVMs. The much simpler LR model also 

provides comparable results. Similarly, Abebe et al. (2020) proposes a maritime data analysis 

framework based on AIS and marine weather data to predict ship speed over ground (SOG). 

They used a combination of AIS satellite data and noon-report weather data of 14 tankers and 

62 cargo ships, and applied various machine learning algorithms. Like Gkerekos et al. (2019), 

they found that ET and RF achieved the most accurate results. 

Based on the literature alone, it is difficult to tell which models perform best. Algorithms that 

perform better in some studies perform worse in others. For example, Petersen et al. (2012) 

and Jeon et al. (2018) achieved the highest accuracy with ANNs, while both Gkerekos et al. 

(2019) and Abebe et al. (2020) found that ET outperformed ANNs. However, as neither 
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Petersen et al. (2012) or Jeon et al. (2018) applied ET algorithms, we cannot rule out that they 

would have achieved better results than the ANNs.  

The comparisons become even more complicated when we take into consideration the data 

the models are based on. If one author achieved better results with ANNs than another 

achieved with ET, we cannot rule out that it was not just higher quality or quantity of data (or 

both) that led to the disparity in results. Furthermore, models may require or perform better on 

data with certain characteristics. Algorithms that perform best on some datasets are not 

necessarily the best on other datasets. For example, it is unclear why Gkerekos et al. (2019) 

achieved high accuracy with SVM, while Jeon et al. (2018) achieved sub-par performance 

from the same algorithm. 

The modeling insight from the literature therefore brings us back to Petersen et al. (2012). 

They highlighted the difficulty of comparing models across dissimilar data, and emphasized 

the need for more publicly available data for easier comparisons of models. Gkerekos et al. 

(2019) also emphasize that there may be a larger gain from testing different algorithms 

compared to meticulously tuning a single algorithm. Until more data becomes publicly 

available, it will therefore be necessary to apply several of the competing algorithms to ensure 

the best algorithm is not excluded. In our thesis, we will follow this recommendation and test 

a wide selection of algorithms that have proven to give reasonable results in the literature or 

in our own testing. These are ANN, ET, RF, LASSO, Cubist, SVM, and GP. For the SVM and 

GP models, we will apply two variants of kernels; polynomial and radial. We also include LR 

to serve as a baseline model.  
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4. Data and methods 

The data and methodology section is structured chronologically, i.e., in the same order as the 

modeling procedures were carried out. We have followed the workflow used by Abebe et al. 

(2020), illustrated in Chart 1 below, and the steps are described in greater detail in their 

corresponding paragraphs. Using this workflow ensures important data modeling principles 

are followed, such as setting aside an unseen test set for model evaluation while training and 

tuning the models on separate training and validation sets. In our case, cross-validation is used 

to create the train and validation sets. We will start by describing our data acquisition, and the 

other steps will follow after that. All implementation of methodology was performed in R, 

using a Windows 10 operating system. 

Chart 1. Methodology workflow (Abebe et al., 2020). 
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4.1 Data acquisition 

4.1.1 Noon report data 

Many authors, including us, rely on noon reports for their data collection. Noon reports are 

prepared once per day at noon, usually by the ship's captain or chief engineer, with 

standardized data to assess the ship's performance based on its speed and environmental forces, 

including weather conditions (Anish, 2019). Other authors rely on more accurate data from 

automated onboard sensors. These can provide additional data parameters and have an update 

frequency as low as seconds. However, they are used to a lower extent than noon reports, and 

acquiring data from the same number of ships might be challenging. 

Noon reports are not necessarily perfectly accurate due to their many possible sources of error, 

which may negatively impact model accuracy. When noon reports are prepared manually, it 

exposes them to the risk of human errors such as misinterpreted readings and input errors, and 

chief engineers might use different units, rounding, or even leave parts of reports empty or fail 

to deliver reports at all. Sensors may also fail, be inaccurate or uncalibrated, or give erroneous 

readings for other reasons. Aldous et al. (2013) studied the uncertainty of noon reports as a 

data source. They suggest additional sources of uncertainty, including failure to adjust for time 

zones, using different sensors to populate the same fields, and the low resolution of reporting 

units, such as the Beaufort scale or binary values for load status. Their study fitted a regression 

model that captured as much as possible of the information affecting fuel consumption and 

ensured the remaining residuals were normally distributed, leading to a model that closely 

approximated the true underlying model. Their regression results showed relative standard 

errors in the range of 1-8% for various types of oil tankers, and 15.8% for LNG carriers, which 

they argue is due to the aleatory and measurement uncertainty present in noon report data. To 

address the high uncertainty present in noon reports, it is clear that a rigorous pre-processing 

routine is required before the data can be used in our models. 

For this thesis, we received access to an unprocessed dataset from the international shipping 

company Western Bulk, consisting of 8,995 noon reports from November 2015 to April 2021. 

Of these, 6,580 are sourced from a fleet of approximately 100 Supramax bulk carriers of the 

same design. The remaining are from approximately 25 Handysize bulk carriers, all of which 

are also of the same design. For an overview of the scope of the dataset, noon reports from the 

respective vessel type can be seen plotted on world maps in Figure 1 below. We see a high 
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degree of route overlap for the two designs, with the Supramax carriers possibly being a bit 

more present in the East and the Indian Ocean than the Handysize carriers. Certain shipping 

lanes account for significant parts of the noon reports, such as the coastlines surrounding 

Africa. 

Figure 1. Map of the geographic locations of all Handysize and Supramax noon reports. 

 

4.1.2 Third-party weather data 

In addition to the noon reports, we have retrieved third-party weather and oceanographic data. 

Table 1 summarizes the datasets and variables we have used. 
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Table 1. All used third-party weather datasets and variables. For variables available at different 
depths, we have used values at a depth of 0.5 meters. The wind variables are "surface level", which 
is defined as an altitude of 10 meters. CDS: Coperernicus Climate Data Store; CMEMS: E.U. 
Copernicus Marine Service Information. 

We have used the original resolution of all variables. It is worth noting that the highest 

resolution dataset for temperature, current, and salinity is available only from 2019 and later. 

For noon reports earlier than this date, we have instead used a different dataset with a daily 

(rather than hourly) resolution. The lower resolution is likely to have a more significant impact 

on sea current accuracy than salinity, since salinity is essentially time-invariant. Figure 2 

illustrates this, with significant variations in sea current and close to constant salinity levels. 

Ocean temperature and salinity are less commonly used as input variables for prediction fuel 

consumption but may still have some predictive power. According to Abebe et al. (2020), 

these variables are directly proportional to the viscosity and density of the seawater. A higher 

viscosity or a higher density of water will increase the frictional resistance of the vessel. Since 

water starts decreasing in density when warming past 4 degrees Celsius, fuel consumption 

 

1 (Copernicus Climate Change Service (C3S) Climate Data Store (CDS), 2018) 
2 (E.U. Copernicus Marine Service Information, 2019) 
3 (E.U. Copernicus Marine Service Information, 2018) 

Dataset 
(Source) 

Storage 
Size 

Temporal 
Resolution 

Spatial 
Resolution 

Temporal Coverage  
(Period Used) 

Variables Used                        
(Variable Identifier in Dataset) 

ERA5 hourly data on 
single levels from  1979 

to present1 
(CDS)  

186 GB 1 hour 0.5° 1950-01-01 - Current 
(1995-01-01 - Current) 

Mean wave period (mwp) 

Mean wave direction (mwd) 

Combined height of wind waves      
and swell (swh) 

476 GB 1 hour 0.25° 1950-01-01 - Current 
(1995-01-01 - Current) 

Eastward component of wind (u10) 

Northward component of wind (v10) 

Global Sea Physical 
Analysis and 

Forecasting Product2  
(CMEMS) 

1,060 
GB 1 hour 1/12°   2019-01-01 - Current   

(All) 

Sea water temperature (thetao) 

Eastward component of current (uo) 

Northward component of current (vo) 

54 GB 6 hours 1/12°   2019-01-01 - Current   
(All) Sea water salinity (so) 

GLORYS12V1 - 
Global Ocean Physical 

Reanalysis Product3 
(CMEMS) 

538 GB 24 hours 1/12° 1993-01-01 - 2019-12-31 
(1995-01-01 - 2018-12-31) 

Sea water temperature (thetao) 

Eastward component of current (uo) 

Northward component of current (vo) 

Sea water salinity (so) 
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may be lower in warmer waters. On the other hand, higher temperatures are related to higher 

biofouling rates, which we will describe in more detail in the next section. 

In the later case studies, we will be using historical weather data going back to 1995 to estimate 

seasonal patterns in consumption. This analysis relies on the assumption that weather patterns 

in this entire period are representative of current weather patterns, meaning that there must not 

be any influential long-term trends. Figure 2 shows long-term changes in the weather 

variables. The figure does not reveal any notable long-term trends or cycles, indicating that 

our assumption holds. 

Figure 2. Long term trends in weather. Yearly means are calculated from monthly samples from 19 
locations evenly distributed along the transatlantic route that we will be presenting in Section 6.3. 
This gives a total of approximately 500 samples per variable per year. The graph shows "true" 
weather forces (as experienced by a stationary observer). 

Based on our testing, the long-term trends shown in Figure 2 were not notably different when 

sampled from other routes or locations. The same cannot be said for the seasonality in weather 

patterns, which can differ significantly depending on the location from which it is sampled. 

For this reason, we have included separate figures (Figure 14 and Figure 17) showing 

seasonality for the two routes we will be examining in the case studies. These can be found in 

Sections 6.2 and 6.3. 
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4.1.3 Clarksons’ World Fleet Register 

Hull fouling describes the deterioration of the hull condition over time, mainly due to marine 

growth (biofouling). By increasing the roughness of the hull, full fouling increases the 

frictional resistance from moving through water which in turn increase fuel consumption. This 

problem can be attenuated by periodic hull cleaning. Adland et al. (2018) show that the daily 

fuel consumption of oil tankers is reduced by 17% after hull cleaning in dry docks and by 9% 

after underwater hull cleaning. This finding shows the large impact hull fouling can have on 

fuel consumption. 

Biofouling generally occurs when vessels are stationary or at speeds below 2 knots but is also 

highly dependent on water temperature, salinity, and sea currents (Dürr & Thomason, 2010). 

Salinity affects self-polishing rates and biocide release rates and, consequently, the ability to 

prevent or limit biofouling (Lindholdt et al., 2015). Increased salinity corresponds to more 

leaching of the protective coating (Lindholdt et al., 2015) and, as a consequence, may increase 

biofouling. As illustrated in Figure 2, the salinity levels in oceans are nearly constant, which 

means the observed effect of salinity changes largely depends on location. Higher 

temperatures typically lead to higher biofouling intensity (Lindholdt et al., 2015), and are 

associated with higher rates of polishing and dissolution of protective paints on the hull (Kiil 

et al., 2002). These effects lead to increases in biofouling when sailing in warmer and more 

saline waters and mean that if included, the temperature and salinity variables may pick up 

some of the added effects of biofouling from sailing in these conditions. 

We retrieved data on dry docking events from the Clarksons’ World Fleet Register (Clarksons 

Research Services Limited, 2021). Although a complete record could not be obtained, we 

managed to determine the most recent dry docking date for about half of our noon reports. In 

addition, we will use data about vessel age in combination with the typical inter-docking 

interval to impute the remaining values which, according to Bohlander (2009), is five years. 

The data was then added to the dataset as a "time since last dry docking" feature, with the goal 

of capturing the negative effect hull fouling has on fuel consumption. 

We also retrieved data on vessel age. The physical degradation of ships is a gradual process, 

and older ships generally have a higher operating cost (Stopford, 2009). Rakke (2016) found 

that engine age could affect fuel consumption by as much as 10%. Unless exceptionally well 

maintained, hull fouling will also gradually reduce the maximum operating speed (Stopford, 
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2009). These factors indicate that vessel age may be an important feature for fuel consumption, 

where higher ages are related to lower fuel efficiency. In addition to vessel age, we also 

included a factor variable for the main engine model to capture potential efficiency 

differences. Finally, we included a variable describing whether the propeller has been fitted 

with either a propeller duct or a boss cap fin. Research has shown that some types of ducts can 

increase efficiency by up to 12% (Yilmaz et al., 2013), and similarly, boss cap fins have been 

shown to increase the open water efficiency by 1-5% (Xiong et al., 2013). Based on this, we 

expect ships with these efficiency augmentations to have slightly higher fuel efficiency. 

Table 2 shows the final selection of variables used as input to the machine learning models, 

grouped by their data sources. A more thorough description of some of the transformed 

variables follows in the next chapter. 

Final selection of input parameters 
 Parameter  Unit  

Noon report data 

1 Speed over ground  kts 

2 Draft  m 

3 Trim  m 

4 Latitude  deg. 

5 Longitude  deg. 

6 Imo number  - 

Clarksons’ World Fleet Register data 

7 Time since dry docking  years 

8 Vessel age years 

9 Eco Propellar T/F 

10 Main engine model - 

Copernicus data 

11 Sea surface temperature °C 

12 Sea surface salinity psu  

13 Mean wave period sec  

14 Wave height  m  

15 Wave height/direction interaction m ⋅ deg. forwards 

16 Wind speed  kts  

17 Wind speed/direction interaction kts ⋅ deg. 
forwards 

18 Current speed  kts  

19 Current speed/direction interaction kts ⋅ deg. 
forwards 

Table 2. The final selection of input parameters for the  
machine learning models, grouped by data sources. 
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4.2 Pre-processing and transformation 

4.2.1 Scope of the model 

In this thesis, we have limited our models to predict only the fuel consumption of the main 

engines. There may also be additional fuel consumption from auxiliary engines that generate 

electricity for the vessel, but their consumption is dependent on a different set of factors than 

the main engines. Combining them in the same models could therefore have reduced the 

accuracy of the predictions.  

The low temporal resolution of noon reports puts some limits on what can be modeled. 

Activities such as maneuvering near ports and shores or acceleration cannot be accurately 

represented in the noon reports but still impact consumption. Using these observations in our 

model could have led to an overestimation of the fuel consumption under normal sailing 

conditions on the open sea. Therefore, we limit our analysis to fuel consumption during open-

sea sailing.  

Some of the criteria we set to achieve this include filtering noon reports where the current 

status was marked as anything other than open-sea sailing. For the same reason, reports with 

SOG below 7 or above 15 knots were removed. Noon reports filed sooner than 20 hours or 

later than 27 hours after the previous report were also discarded, as many of the possible 

reasons the reports are not registered on time may also imply sailing activities not 

representative of open-sea sailing. 

An interesting observation about the scope of the model is that a narrower scope often leads 

to increased performance metrics. The reason for this can be illustrated with an exaggerated 

example. By narrowing the allowed values of fuel consumption down to just values between 

19-20 tonnes and training the model on these observations, a good model would rarely miss 

by more than 1 tonne, which would lead to seemingly good scores of metrics like sMAPE. 

This further complicates the already tricky performance comparisons with models of other 

authors, who may have used different scopes. 

4.2.2 Transformations 

We previously described how some of the predictors in our model, such as draft and speed, 

may have a nonlinear relationship to the dependent variable. Log-transforming fuel 
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consumption to adjust for this in the model was thus tested during the modeling phase. The 

results of the comparison are seen in Table 3 below. The performances are relatively similar 

between the two, with five models performing better for the log-transformed dependent 

variable and three models performing better with the untransformed dependent variable. As 

the log-transformed version scored slightly better, we decided to apply the log-transformation 

on our dependent variable. We performed a similar test for log-transforming the speed over 

ground (SOG) feature but decided not to apply it as the performance was slightly worse with 

the transformation applied. The results of this comparison are available in Appendix C. 

Log/level comparison for Supramax 

Transformation Log-
transformed Level 

Model sMAPE (%) sMAPE (%) 
Linear Regression 7.77 7.77 
Neural Network 6.42 6.28 
Extra Trees Regression 3.62 3.62 
Random Forest 6.47 6.57 
LASSO 7.81 7.83 
Ridge 7.83 7.85 
SVM Poly 6.01 6.19 
SVM Radial 5.20 4.71 
GP Poly 5.81 7.80 
GP Radial 15.31 15.25 

Table 3. Comparison of model performance between 
a model with log-transformed fuel consumption and 
the same model using level fuel consumption. 

The vessel's bearing is a key variable as it is a prerequisite for direction-dependent effects like 

sea current and wind. The noon reports did not include this information, so it was preferentially 

added from external AIS data by matching based on IMO number and the midpoint time 

between the current and the previous noon report. In total, AIS data for bearing and position 

was available for only 3,743 noon reports, with data missing for the remaining 5,252 noon 

reports. 

To fill the remaining information, we imputed the values based on the position and time of 

consecutive noon reports. Each noon report provided the current time and the elapsed time 

since the last noon report, which could be used to calculate the expected time of the previous 

report. Thus, we grouped the reports by vessels using their IMO numbers, calculated the 

expected time of the previous noon report, and searched for any matching reports. An error 

margin of two hours was applied for matching the expected time with the actual time. Given 
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the importance of knowing a vessel's bearing, we discarded the approximately 400 

observations where this information could not be determined. 

For every observation matched with its preceding observation, we now had its starting and 

ending position for the past approximately 24 hours. We used this to estimate the midpoint 

position and average bearing. Since AIS data was unavailable for these noon reports, the 

estimation had to be made with the assumption that the vessels held a constant speed and sailed 

in a straight line. Over 24 hours, the bearing of a vessel sailing in a straight line may change 

up to several degrees due to Earth's curvature. We used the vessel's straight-line bearing 

calculated from the midway point to approximate the average bearing over this period. 

A problem with the described approach is the mentioned assumptions that vessels were sailing 

in a straight line at a constant speed. In particular, vessels routinely navigate around land to 

reach their destination, sometimes resulting in a significant difference between the straight-

line distance and the reported sailing distance. To mitigate this, we compared the implied 

straight-line distance traveled with the distance traveled as stated on the noon reports. A 

straight-line distance lower than the reported distance implies maneuvering, invalidating our 

straight-line assumption and, in turn, our bearing and midpoint calculation. A greater straight-

line distance implies a data or rounding error. We discarded a total of 197 rows with a straight-

line distance lower than 90% or greater than 105% of the reported distance. 

A more precise approach would have been calculating the shortest possible distance, 

accounting for known land masses. However, since noon reports provide only the cumulative 

fuel consumption since the previous report, it is unclear whether it would have resulted in a 

more accurate model. For instance, it would not be possible to disentangle the fuel impact of 

head wind before a 90-degree turn from the effects of port side wind after the turn. 

4.2.3 Matching and processing third-party weather 

Our third-party weather data was organized along three dimensions: latitude, longitude, and 

time. Depending on the year, there may only be one data point every 24 hours, similar to the 

noon reports. Since fuel consumption from the noon reports details the cumulative 

consumption since the previous report, each report was matched with the weather at the time 

and location of the midpoint between itself and the preceding report. These values were 

matched with weather data using nearest-neighbor interpolation. 
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A different interpolation technique could have possibly achieved more accurate results. In 

particular, we believe that linear interpolation in the time dimension might improve the result. 

We were, however, unable to attempt this due to the excessive amount of computational time 

required (with disk reading speed being the bottleneck). 

Initially, noon report data for wind, sea current, and waves include separate variables for 

direction and force. However, the direction of these forces does not matter with respect to fuel 

consumption if there is no wind, current, or waves. To facilitate our model to interpret the 

effects of these forces on the vessels accurately, we replaced the directional variables with 

interaction terms of the direction and speed of the forces. This meant that we first had to 

transform the forces’ directions to a scale from 90° to -90°, where -90° are forces moving the 

same direction as sailing direction and 90° are forces moving the opposite of sailing direction. 

This transformation is illustrated in Figure 3. We then multiplied the directional variables with 

the forces of the effects. This ensured wind from astern and wind from ahead of equal speed 

affect the fuel consumption in opposite directions. The relevant interaction variables are 

between the direction and speed of the wind, the direction and speed of the sea current, and 

the wave direction and wave height. 

Figure 3. Illustration of how directional 
variables are transformed.  

While the interaction variables capture much information of the directional effects of the 

forces, they do not necessarily capture all the effects. The interaction terms give wind and sea 

currents directly from the sides a neutral weighting as they are multiplied by zero, but the 

vessels still need to steer slightly into the sea current to avoid going off course. Wind may also 

lead to a slight tilt which can increase hull drag or propeller slip. These effects are captured 
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by retaining the variables representing the weather forces (wave height, wind speed and 

current speed). 

4.2.4 Cargo and draft 

The noon reports contain variables for both cargo weight, draft, and load status. Load status 

and cargo weight provide essentially the same information, and draft and cargo weight are also 

highly correlated. 

Accordingly, observations with conflicting values in these columns were discarded as likely 

incorrect, and a relatively high amount of missing draft values were imputed using a simple 

linear regression model with cargo weight as the predictor. Jia et al. (2019) performed a similar 

regression, where they predicted cargo using draft as a predictor and achieved accuracy of 

91%, which indicates our regression should be sufficiently accurate. We opted to keep only 

the draft variable to keep our model comparable to most previous work. Nevertheless, due to 

our overarching goal of providing actionable results, our estimated regression equations are 

included in Appendix A. The equations allow for simple conversion between cargo and draft 

for each vessel class. 

With all filtering procedures carried out, and as many missing values salvaged as possible, 

there were still 2,247 missing values left. These could not remain missing as some of our 

models could handle missing input values. The distribution of these across the predictors are 

shown in Table 4 below. These missing values were consequently imputed by replacing them 

with the mean value of their respective columns to reduce their influence on the predictions. 

Remaining missing values 
Sea surface salinity 284 
Trim 247 
Draft/trim interaction 247 
Sea surface temperature 198 
Current speed 198 
Current speed/direction interaction 198 
Mean wave period 121 
Wave height 121 
Wave direction/height interaction 121 
Wind speed 43 
Wind speed/direction interaction 43 
SUM 1,821 
Table 4. Distribution of remaining NA values 
that were imputed before model training. 
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The pre-processed datasets now contain 1,672 rows of Handysize noon reports and 4,720 rows 

of Supramax noon reports. Summary statistics for the final selection of input variables for the 

two vessel designs are shown in Table 5 below. We find that most variables have similar 

values. Most notable is the difference of 1.9m in mean draft between the smaller Handysize 

and larger Supramax designs.  

Handysize - Descriptive statistics of input variables (N = 1672) 
Feature Unit Mean St. Dev. Min Max 
Speed over ground  kts 11.5 1.3 7.1 15.0 
Draft m 9.1 1.5 5.1 10.7 
Trim m 0.8 0.8 -2.1 3.1 
Latitude deg. 13.9 23.7 -36.8 62.1 
Longitude deg. 7.2 85.3 -179.6 179.8 
Time since dry docking years 2.7 1.2 0.04 4.8 
Vessel age years 2.8 1.1 0.1 5.4 
Sea surface temperature °C 23.2 5.9 -0.4 33.3 
Sea surface salinity psu 35.2 1.9 7.1 40.0 
Mean wave period sec. 8.0 2.1 2.5 15.1 
Wave height  m 1.9 0.9 0.1 7.0 
Wave height/direction interaction  m ⋅ deg. forwards -3.9 109.6 -631.5 373.6 
Wind speed  kts 12.8 5.7 0.9 37.5 
Wind speed/direction interaction kts ⋅ deg. forwards -47.9 824.1 -3,033.0 2,402.7 
Current speed  kts 0.4 0.4 0.002 3.6 
Current speed/direction interaction  kts ⋅ deg. forwards 0.4 34.4 -201.2 280.6 

Supramax - Descriptive statistics of input variables (N = 4720) 
Feature Unit Mean St. Dev. Min Max 
Speed over ground  kts 11.6 1.5 7.0 15.0 
Draft m 11.0 2.5 5.5 13.6 
Trim m 0.8 0.9 -0.1 4.2 
Latitude deg. 7.4 24.5 -55.6 62.6 
Longitude deg. 32.4 82.6 -180.0 179.2 
Time since dry docking years 2.5 1.6 0.000 5.0 
Vessel age years 3.6 1.7 0.03 7.7 
Sea surface temperature °C 24.0 6.1 1.4 32.8 
Sea surface salinity psu 34.9 1.9 5.6 40.6 
Mean wave period sec. 7.9 2.1 2.1 15.9 
Wave height  m 1.9 0.9 0.1 7.0 
Wave height/direction interaction  m ⋅ deg. forwards -7.8 106.5 -516.1 424.1 
Wind speed  kts 12.4 5.9 0.2 40.6 
Wind speed/direction interaction kts ⋅ deg. forwards 28.2 781.6 -2,830.8 2,655.1 
Current speed  kts 0.5 0.4 0.005 3.7 
Current speed/direction interaction  kts ⋅ deg. forwards 0.3 37.4 -222.1 319.7 

Table 5. Descriptive statistics of input variables for Handysize and Supramax vessels. 
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4.2.5 Standardization and train-test split 

The variables in our dataset have varying ranges and signs. For some machine learning models, 

this can lead to variables with higher values being weighted unproportionally and for the 

models to become unstable and converge slower (Jaitley, 2018). To prevent this, we 

standardize all variables to zero mean and unit variance, which is achieved by subtracting the 

mean and then dividing by the standard deviation (Gkerekos et al., 2019). The transformation 

is shown in equation (8). 

 𝑈𝑈′ =
𝑈𝑈𝑖𝑖 − 𝜇𝜇
𝜎𝜎

 (8) 

An alternative approach would be min-max scaling which maps all values between 0 and 1. 

However, scaling based on the maximum values makes the approach sensitive to outliers and 

other high values in the predictors (Aggarwal, 2015, p. 37), and could become problematic 

due to the diverse nature of our predictors. 

Training and selecting models based on their performance on the test data directly, or simply 

knowing their performance on the test data, can lead to overfitting (Aggarwal, 2015, p. 335), 

as the models to some degree become tailored to the specific data. To compute an unbiased 

measure of the models' performance, we instead split the data into a train and a test set, where 

the test set remains unseen until the final performance measurement. There is no single optimal 

ratio between the train and test data. Literature usually defines ratios between 50-50 and 80-

20 as common (Brownlee, 2020b), and comparable studies to ours have used 70-30 (Jeon et 

al., 2018) and 80-20 (Du et al., 2019). Based on this, we find 70-30 to be an appropriate ratio. 

When splitting into a train and a test set, random sampling is often used to avoid 

autocorrelation between adjacent rows. However, random sampling may still lead to a 

disproportionate distribution of values of the dependent variable, and consequently, a sub-par 

trained model. To ensure our train and test sets both are randomly sampled and contain a 

proportionate distribution of the dependent variable's values, we use a splitting function that 

randomly samples from different quantiles of the target variable. 

4.3 Parameter tuning and model training 

When tuning a machine learning model, it is the model parameters we are trying to optimize. 

These parameters decide the features of the algorithms, such as how many hidden layers an 
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ANN should have, or the penalty value of a shrinkage model. There are several methods to 

decide which combinations of parameters to test. The two most common are grid searches that 

test all possible combinations of a pre-set list of values, and random search which tests 

randomly selected configuration within a predefined range. With the high dimensionality of 

our dataset, the computational load of the grid searches can become substantial. Random 

search tends to perform just as well or better than grid search at a fraction of the computational 

cost (Bergstra & Bengio, 2012), so we will apply the random search method in our tuning 

approach. 

The underlying principle of machine learning algorithms is that they improve by learning from 

their achieved predictive performance for their given parameters. Since the test data set must 

remain untouched, we require an additional set for measuring accuracy during model training, 

commonly referred to as a validation set. There are several methods available for this, 

including holdout, cross-validation, and bootstrap. Holdout implies a single validation set, and 

while the method is computationally fast, it is subject to biased results if the train-test split is 

not representative of the complete data. The bootstrap method selects several test sets 

randomly, but may still lead to biased results if the same data is selected as test data several 

times. It does, however, generally lead to lower variance than cross-validation (Abraham, 

2017). 

Cross-validation (CV) is sometimes split into leave-one-out CV and k-fold CV. Leave-one-

out CV loops over all observations and uses each observation once as a test set with the 

remaining data as the train set. With the number of observations and variables in our data, this 

method becomes computationally infeasible. K-fold CV uses the same principle as leave-one-

out, but instead of using single observations, it groups them into subsets ("folds") of equal size 

without replacement. More folds can increase the predictive accuracy but is more 

computationally costly. A typical number of folds is 10 (Aggarwal, 2015, p. 336). The reduced 

exposure to bias by avoiding replacement makes K-fold an attractive method for our purposes, 

and as such, we will apply this method with the typical 10 folds. As our cross-validation 

implementation creates train and validation folds only from within the training set, the test set 

remains separate and unseen.  
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5. Results and discussion 

5.1 Results of models with third-party weather data 

5.1.1 Model selection 

To determine which of the applied machine learning algorithms achieve highest predictive 

performance, each algorithm was fitted to the training data separately for the two vessel 

designs, and their performance and computation times were measured on the previously 

unseen test set. All metrics are thus based on out-of-sample predictions. The models are trained 

and tested on the same dataset with the same dependent variable, so the RMSE scores can and 

will be used to determine the best-performing model. The results are shown in Table 6. 

Model comparison for Handysize 

Model sMAPE (%) R2 (%) RMSE nRMSE (%) Train duration (sec) 
Linear Regression 10.33 56.29 2.047 66.05 2.2 
Neural Network 7.08 75.26 1.540 49.69 9.2 
Extra Trees Regression 4.46 86.83 1.123 36.25 22.1 
Random Forest 6.29 80.17 1.378 44.49 44.9 
LASSO 10.30 56.54 2.041 65.85 0.8 
Ridge 10.29 56.39 2.044 65.97 0.7 
SVM Poly 9.86 55.73 2.060 66.47 3.3 
SVM Radial 6.98 70.88 1.670 53.91 4.6 
GP Poly 9.35 43.23 2.332 75.27 8.4 
GP Radial 7.75 73.61 1.590 51.32 8.3 
Cubist 5.21 82.37 1.300 41.94 61.9 

Model comparison for Supramax 

Model sMAPE (%) R2 (%) RMSE nRMSE (%) Train duration (sec) 
Linear Regression 7.77 65.50 2.241 58.72 3.0 
Neural Network 6.42 74.00 1.946 50.97 9.0 
Extra Trees Regression 3.62 87.60 1.331 35.20 16005.0 
Random Forest 6.47 75.85 1.875 49.13 188.4 
LASSO 7.81 65.18 2.251 58.99 1.0 
Ridge 7.83 64.88 2.261 59.24 1.0 
SVM Poly 6.01 65.12 2.253 59.04 869.1 
SVM Radial 5.20 78.58 1.766 46.27 60.7 
GP Poly 5.81 77.46 1.811 47.46 274.2 
GP Radial 15.31 -0.78 3.830 100.36 278.7 
Cubist 4.96 83.11 1.568 41.09 344.4 
Table 6. Model performance comparison for Handysize and Supramax vessels, using third-party 
weather data. 
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For the smaller Handysize dataset with N = 1,672, the Extra Trees (ET) model achieved the 

clearly best performance with an RMSE score of 1.123. ET was also best scoring model for 

predicting ship speed in the comparison performed by Abebe et al. (2020). The ET model we 

trained explained 86.8% of the observed variance and had a sMAPE of 4.5%. The Cubist was 

ranked second with an RMSE score of 1.300, followed by the Random Forest and Artificial 

Neural Network models. On the lowest ranks, we find the linear models LR, Ridge and 

LASSO, as well as SVM polynomial and lastly GP Polynomial, all scoring within an RMSE 

interval of 2.041 to 2.332. 

Continuing with the results from the Supramax dataset with N = 4,720, we also find that the 

ET model has the highest performance, achieving an RMSE of 1.331. The model's R squared 

was 87.6%, and its sMAPE was 3.62%. Cubist again ranked second, but this time the SVM 

Radial model ranked third. The worst performing models for Supramax were GP Radial and 

the linear models. We found the results from the SVM and GP algorithms to be highly 

unpredictable. Their performance appears tightly knit with the data structure compared to the 

kernel type used and the selection of hyperparameters (Pedregosa et al., 2011). The one 

negative R squared score means that the model, in this case, was less accurate than a 

hypothetical model predicting the mean test set value for all observations. 

In the data acquisition section, we discussed the data uncertainty of noon reports as a data 

source and referred to literature claiming that it could be between 1% and 16%, depending on 

ship types. This means it is uncertain whether the models can be significantly improved given 

the data available.  

The ET models have a high training time compared to the other algorithms, with 22.1 seconds 

for the Handysize dataset and closer to four and a half hours for the Supramax dataset. The 

significant difference in training duration between the two datasets is mainly due to IMO 

numbers being used as a factor variable to capture vessel-specific effects and that Supramax 

has considerably more unique IMO numbers. With dummy variables for IMO numbers, this 

translates to high dimensional data and an exponentially increasing number of branches. All 

performance metrics presented were from a model with input variables described earlier in 

Table 2 and with a 10-fold cross-validation training procedure with a random hyperparameter 

search. These training times were achieved using a personal computer with a 6-core, 4.1 GHz 

CPU and 32GB RAM. 
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5.1.2 Feature importance 

Determining feature importance in machine learning is not always as straightforward as with 

models such as OLS Regression. While we in regression can use the model's coefficients to 

determine importance, our most accurate machine learning model is in the form of a decision 

tree. One can use several feature importance functions, but we found that they generally gave 

inconsistent results that could change drastically between runs with similar model 

configurations. An alternative to the feature importance functions is to use the correlation 

coefficients between the predictors and the dependent variables. These will not pick up model-

specific variations in feature importance or possible non-linear relationships the models might 

find. However, based on their robustness, we considered them to give the most accurate 

representation of the true variable importance. The plot of correlation coefficients can be seen 

in Figure 4. 

Figure 4. Absolute correlation coefficients of all predictors. 

Studying the correlation coefficients, we see that SOG appears to be the most important 

predictor. As described earlier, the relationship between speed and fuel can be roughly 

approximated as a cubic function of speed, at least near the common operating speeds. 

Therefore, we would expect SOG to be the most important predictor. The draft appears to be 
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the next most important factor. Deeper drafts correspond to more of the hull being exposed to 

water friction and resistance, so it is as expected that a higher value for the draft is correlated 

with more drag and higher fuel consumption. Since cargo weight and draft are almost perfectly 

correlated, the former's effect on consumption is captured by the draft variable. The third most 

important variable is vessel age. As described previously, there are several factors dependent 

on age that may correlate with fuel consumption. Among other factors, we described how 

newer engines could be around 10% more efficient, and as such, it is expected that vessel age 

has a significant effect. 

Latitude and longitude also seem highly correlated with fuel consumption. However, since 

comparable models in the literature achieve high accuracy despite rarely including these 

variables, we consider it unlikely also in our case that the variables truly are highly influential. 

Therefore, their relatively high correlation with fuel consumption underlines an important 

point when interpreting our correlation matrix, which is that correlation does not necessarily 

imply causation. We suspect that most of the observed correlation will disappear when 

accounting for other variables, but the high correlation nevertheless justified a closer 

examination of their impact on prediction accuracy. To test their impact, we trained our models 

both with and without the latitude and longitude variables while holding all else equal. The 

results, available in Appendix C, showed an improvement in RMSE from 1.383 to 1.331 when 

adding the variables. They were therefore kept. We hypothesize that their remaining predictive 

power results from local effects not captured by other variables, such as ocean depth, local 

regulations, areas necessitating maneuvering, or other unknown influences.  

One interesting finding from the figure is that the variable describing the time since the last 

dry docking has a non-negligible correlation with fuel consumption. This variable aims to pick 

up how hull fouling affects fuel consumption. As described in greater detail in section 4.1.3, 

hull fouling can significantly increase fuel consumption. The correlation we find here indicates 

that our variable may at least partly capture this effect. However, the variable is potentially 

correlated with vessel age, which could mean it captures some effect actually caused by the 

ship's aging. We trained our models with and without the dry docking variable to further test 

the effects and compared the RMSE values. With dry docking included, the best achieved 

RMSE was 1.331, and with dry docking excluded, the best RMSE was 1.382. The comparison 

results are available in Appendix C. This indicates that the variable leads to minor 

improvements in prediction accuracy. 
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We only had data on the last dry docking time for around half of the noon reports, and the rest 

were imputed with an uncertain method based on typical dry docking intervals. Other key data 

we were missing included underwater hull cleaning and accurate data on time spent stationary 

by vessels in our dataset. Based on this, larger improvements in accuracy could not be 

expected. As we know, the effect of fouling can be significant on fuel consumption, and further 

work might use more complete data sources to better capture the effect of hull fouling. 

Salinity and temperature show some correlation to fuel consumption. We previously 

hypothesized that the variables might capture some of the effects from additional biofouling 

in warmer and more saline waters, as well as changes in the frictional resistance due to water 

viscosity and density. As before, we tested the hypothesis by running the model with and 

without the variables. However, we found worse performance with the variables added this 

time, with the RMSE increasing from 1.331 to 1.343. Comparison results are available in 

Appendix C. There are a few reasons why accuracy does not always increase when adding 

variables correlated to the dependent variable. One reason could be that the model exhibits 

overfitting, where it finds relationships in the training data that are not present in the unseen 

data. Overfitting may happen if the added correlation is low, as in this case. Another reason 

could be that by increasing the complexity of the model, the current hyper-parameter tuning 

length may no longer be sufficient to model the most important predictors as accurately as 

before. Based on the comparison results, the models could not make use of the low correlation 

present, and we decided to exclude the variables from our models. 

The interaction terms of both waves and wind seem much more important than corresponding 

variables measuring their magnitude. The direction of the weather forces alone may not 

necessarily explain resistance adequately as they cannot differentiate between low and high-

speed winds and sea currents, or low and high waves. However, the factor directions combined 

with their force can determine whether and how much resistance the vessel is subject to. This 

is the effect we hoped to capture by creating the interaction terms, and the figure indicates that 

we may have been successful in doing so. As described earlier, weather forces perpendicular 

to the vessel heading can still increase the resistance by requiring the vessel to steer into the 

forces to stay on course and a possible tilting that might increase hull drag and propeller slip. 

As such, it was as expected that the weather forces still retain some correlation with fuel 

consumption.  
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5.1.3 Prediction accuracy analysis 

Figure 5 and Figure 6 illustrate the predictive accuracy of the models. These show that the 

models can explain most of the variance in the actual values, and that more significant 

prediction errors often occur on more extreme observations. 

Figure 5. Handysize: Actual observations of daily fuel consumption plotted against the predictions 
from our best performing ML models. The plot includes a random sample of 200 observations from 
the test set. 

Figure 6. Supramax: Actual observations of daily fuel consumption plotted against the predictions 
from our best performing ML models. The plot includes a random sample of 200 observations from 
the test set. 

For the next part of the analysis, we study how the prediction errors are distributed, both in 

sum and in relation to varying predictor values. We start with the Supramax dataset. In Figure 

7 below, we see that the prediction error density resembles the normal distribution. The mean 

prediction error is close to the mode prediction error. Figure 8 shows how absolute prediction 

errors are distributed along with varying values for SOG. Each dot in these types of plots 

represents one prediction of the observations in the test set, and the red line is the rolling mean 

of the prediction errors. We find that the mean errors are relatively uniform for different values 

of SOG, with the lowest values near 13 knots. There are two likely reasons for this. The first 

is that speeds around 13 knots are the most common in the dataset, as can be seen by the dots, 

meaning that the model has trained on more observations in this range. Another reason could 

be that 13 knots often corresponds to standard operation in the open seas, which is easier to 

predict than, e.g., the more unpredictable patterns found while navigating a canal.  
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For draft, shown in Figure 9, we find the model displays sporadic differences in accuracy that 

are not necessarily correlated with the density of the observations. Some of the most accurate 

intervals lay between 10 to 13 m, but the differences are, for the most part, minor. For 

prediction errors by wave height, shown in Figure 10, we find that the prediction errors display 

a slight increase in correlation with increasing wave heights. With stronger forces in motion, 

it would be expected with some reduction in accuracy. The errors peak at around 3.5 m, but 

we see that there are much fewer observations in this area. This means that the apparent lower 

accuracy could be due to a few outliers and that it might have changed considerably given 

more test data.  

Figure 7. Prediction error distribution on fuel consumption reported in Supramax 
noon reports. 

Figure 8. Absolute prediction errors on fuel consumption reported in Supramax noon reports, sorted 
by speed over ground, with a rolling mean of 𝑘𝑘 = 50. 
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Figure 9. Absolute prediction errors on fuel consumption reported in Supramax noon reports, sorted 
by draft, with a rolling mean of 𝑘𝑘 = 50. 

Figure 10. Absolute prediction errors on fuel consumption reported in Supramax noon reports, 
sorted by wave height, with a rolling mean of 𝑘𝑘 = 50. 

The same set of figures for the Handysize dataset are available in Appendix D. For Handysize 

vessels, we found some of the same trends as we did with the Supramax data above. However, 

there are noticeably fewer observations in the Handysize dataset and a slight increase in 

variance in the prediction errors. For the mean prediction errors by SOG in Figure 26, there 

appears to be a slight increase in correlation with increased SOG. For the draft in Figure 27, 

we find that the model seems most accurate between 9.5 and 10.5m, which corresponds to 

sailing in laden for this design. Lastly, in Figure 28, wave height appears similar to Supramax 

but with fewer signs of an increasing trend in errors. 

5.1.4 Cumulative voyage prediction errors 

So far, we have analyzed our models' prediction errors in detail on the level of individual 

predictions. In practice, the model may be more useful for generating predictions for an entire 
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voyage or route, a use case which we will demonstrate in the case studies in chapter 6. For this 

purpose, we would also like to quantify prediction errors in the voyage level to see whether 

daily prediction errors tend to cancel out or accumulate throughout the voyage.  

In Figure 11, noon reports have been grouped by individual voyages4. Since we want to 

compute out-of-sample prediction errors, observations from the training data have been 

excluded before calculating prediction errors and voyage duration. This means the voyage 

durations presented may be artificially lower than the actual durations. For each voyage, the 

error term is calculated as the difference between the sum of actual fuel consumption on a 

given voyage and the sum of the predicted consumptions. Voyages are then grouped by their 

duration to show the distribution of voyage level errors for voyages of different durations. 

Figure 11. Distribution of prediction errors on the voyage level for voyages of different durations. 
Errors from both the Supramax and Handysize models showed similar trends, so they have been 
pooled in this plot. The boxes show median error, 25-75% quartiles, and whiskers to the closest of 
min/max/1.5 × Inter-quartile range. 

The figure shows that although predictions are largely unbiased regardless of voyage duration, 

the errors seem to quickly cancel out, resulting in a marked improvement in accuracy. For 

voyages four days or longer, there are almost no voyage-level errors above 4%. Table 7 

presents the performance metrics on total fuel consumption from voyages that are a minimum 

of 7 days long. We achieve an R squared of 99.5% and 98.6% for Handysize and Supramax 

designs, respectively. For comparison, Abebe et al. (2020) computed their performance 

 

4 Noon reports within four days of each other and with matching IMO numbers were considered as part of the 
same voyage or route. 
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measures for a single route of different vessels and achieved an R squared of 98.5% with their 

best model. 

Predictive accuracy for fuel consumption on voyages minimum seven days long 
Vessel design Voyages sMAPE (%) R2 (%) RMSE nRMSE (%) 
Handysize 18 1.80 99.49 3.147 6.92 
Supramax 50 2.17 98.64 5.425 11.53 

Table 7. Performance metrics for total fuel consumption of all voyages at least 
seven days long. All metrics are from out-of-sample predictions. The total number 
of individual predictions is 162 for Handysize and 463 for Supramax. 

Based on these results, we can conclude that the model can generate highly accurate fuel 

consumption predictions if the weather along a route is known. Knowing the weather in 

advance is, of course, often not realistic. In the case studies below, we will therefore 

demonstrate how our models may still be used to estimate consumption for a given voyage 

without prior knowledge of weather. 

5.2 Impact of third-party weather data on prediction 
accuracy 

For our later weather margin analysis, we needed the model to be trained on only third-party 

weather variables that could be sampled many years back in time. In addition, we had to 

remove all weather data from noon reports that could otherwise have captured some of the 

effects of the third-party weather variables. In this section, we want to study how these 

requirements affected the prediction accuracy of the model. We measure this effect by 

comparing our models with baseline models that were not subject to these requirements. The 

optimal feature selection for the baseline models is seen in Table 8 below.  



 39 

Final selection of input parameters 
 Parameter   Unit  

Noon report data 
1 Speed over ground  kts 
2 Draft  m 
3 Trim  m 
4 Latitude  deg. 
5 Longitude  deg. 
6 Imo number  - 
7 Wind speed kts 

8 Wind speed/direction 
interaction 

kts ⋅ deg. 
forwards 

9 Swell height m 

10 Swell height/direction 
interaction 

m ⋅ deg. 
forwards 

Clarksons’ World Fleet Register data 
11 Time since dry docking  years 
12 Vesssel age years 
13 Eco Propellar T/F 
14 Main engine model - 

Table 8. Final selection of features for baseline models 
without third-party weather data. 

The modeling procedure for the baseline models was kept similar to the models with third-

party weather data to ensure a fair basis of comparison. We previously presented the 

performance of the models with third-party weather data in Table 6. The performance for the 

baseline models is presented in Table 9 below. Based on the RMSE metric, Extra Trees (ET) 

was the best performing algorithm on both vessel designs for the baseline models. Since the 

models with and without third-party weather data have the same dependent variable, the 

RMSE metric can also compare the models’ relative performance. The results show that 

predictions for both vessel designs are similar across the models. For the Handysize dataset, 

the model with third-party weather data performs slightly worse with an RMSE of 1.123 versus 

1.089 for the baseline model. The model with third-party weather data also performs slightly 

worse on the Supramax dataset with an RMSE of 1.331 versus 1.284 for the baseline model. 

The changes in accuracy are mainly caused by the replacement of weather variables from noon 

reports with third-party data. Noon report variables should reflect average experienced values 

since the last noon report. This could make them more accurate than our third-party weather 

variables, which retrieve weather data from a virtual midpoint location between two given 

noon reports. On the other hand, the third-party weather data we add consists of more variables 

such as sea currents and the directions of the weather forces relative to the vessel heading. 
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With more information, the prediction accuracy may increase. Nevertheless, the total effect is 

a minor reduction in accuracy compared to the baseline models. 

Model comparison for Handysize  
Model sMAPE (%) R2 (%) RMSE nRMSE (%) Train duration (sec)  
Linear Regression 10.73 52.24 2.139 69.04 3.3 
Neural Network 6.82 76.06 1.515 48.88 8.0 
Extra Trees Regression 4.13 87.62 1.089 35.15 19.1 
Random Forest 5.64 82.16 1.308 42.20 39.6 
LASSO 10.75 52.38 2.136 68.94 0.8 
Ridge 10.77 52.02 2.144 69.20 1.1 
SVM Poly 9.92 49.34 2.203 71.11 174.0 
SVM Radial 7.39 69.25 1.716 55.40 3.5 
GP Poly 8.40 64.78 1.837 59.29 8.4 
GP Radial 7.48 73.32 1.599 51.60 8.9 
Cubist 5.07 82.97 1.277 41.23 46.5  

Model comparison for Supramax  
Model sMAPE (%) R2 (%) RMSE nRMSE (%) Train duration (sec)  
Linear Regression 8.44 60.04 2.412 63.19 3.2 
Neural Network 6.82 71.15 2.049 53.69 9.7 
Extra Trees Regression 3.33 88.68 1.284 33.63 14598.3 
Random Forest 5.82 79.28 1.737 45.50 161.4 
LASSO 8.46 60.01 2.413 63.22 1.0 
Ridge 8.48 59.93 2.415 63.28 1.0 
SVM Poly 5.40 74.44 1.929 50.54 599.6 
SVM Radial 5.37 76.13 1.864 48.83 70.7 
GP Poly 8.49 59.88 2.417 63.31 274.1 
GP Radial 15.31 -0.78 3.830 100.36 277.1 
Cubist 4.56 84.90 1.483 38.85 324.0  

Table 9. Model performance comparison for Supramax and Handysize vessels, using only noon 
report weather variables. 

 

  



 41 

Table 9 showed that the baseline models' results were comparable to the models using third-

party weather data. While the Extra Trees model achieved the best single performance based 

on noon report data, the majority of the models performed better when trained on third-party 

weather data. In light of the above discussion, we hypothesize that the higher-resolution third-

part weather data only available in 2019 and later could have changed the outcome had it been 

available for the entire period covered by the noon reports. This dataset had a temporal 

resolution of 1 hour, as compared to the 24-hour resolution of the alternative dataset. We 

compared the predictive accuracy of models trained only on data from 2019 and later to 

explore this possibility. Although this almost halves the available training data, we found 

improved prediction accuracy compared to models trained on the entire dataset, as shown in 

Table 10. 

Comparison of models trained on different datasets 

Data source Noon reports 
only 

With third-party 
weather data 

With third-party 
weather data 

(2019 and later) 
Model RMSE RMSE RMSE 
Linear Regression 2.412 2.241 2.156 
Neural Network 2.049 1.946 1.666 
Extra Trees Regression 1.284 1.331 1.299 
Random Forest 1.737 1.875 1.755 
LASSO 2.413 2.251 2.144 
Ridge 2.415 2.261 2.177 
SVM Poly 1.929 2.253 2.302 
SVM Radial 1.864 1.766 1.535 
GP Poly 2.417 1.811 2.163 
GP Radial 3.830 3.830 1.769 

Table 10. Comparative performance of models trained on different 
training data. Results in the rightmost column are from models 
trained on slightly more than half the number of observations 
compared to the other results. 

The baseline ET model proved the most accurate overall and is therefore the preferred choice 

for retrospective predictions on the test set data. However, when using the baseline models, 

the only observations we have of the noon report weather variables are from when the trip 

took place. If we want to study how the weather would have been if the trip took place a week 

before, we would not know which values to use for the noon report weather variables. Since 

we aim to investigate weather margins more generally, we depend on being able to study fuel 

consumption under various historical weather conditions. This means that the baseline models 

do not fulfill our requirements for weather margin analysis. Moreover, as we will show in the 

case studies, we do not have enough training data to accurately predict consumption in 
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unusually rough weather conditions. Therefore, we also consider the models based only on 

2019 and later observations to be unsuitable for use in our case studies. 

By training the models on the third-party weather data from the Copernicus database, we can 

simulate routes where we sample historical weather many years further back in time. This 

allows us to make more accurate estimations of the weather margins we want to study. 

Nevertheless, the comparison with the baseline models gives us a useful impression of how 

much accuracy had to forego to facilitate the sampling of decades of historical weather data, 

and overall, we found only a slight reduction in accuracy. 
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6. Case studies 

Western Bulk has expressed a desire to understand better how seasonal weather patterns 

impact weather margins, thereby improving cost predictions related to forward pricing of 

cargos. Predictions would be particularly useful beyond the 10-day forecast horizon where 

weather forecasts can no longer provide reasonable accuracy. This section aims to use our 

trained models to explore in greater detail how weather impacts fuel consumption for a given 

route. To this end, we picked one voyage for each vessel type from our data, as shown on the 

map in Figure 12. The dotted lines are the actual paths taken by two ships traveling these 

routes. These are voyages commonly sailed by vessels in our dataset and serve as a 

representative example of applying the model to a real-world scenario. Western Bulk 

mentioned the North Pacific voyage specifically as a route with highly variable fuel 

consumption driven by strong weather effects and seasonality. 

Figure 12. Map showing the actual paths taken by ships sailing the case routes. The Handysize case 
from Japan to North America is plotted with green dots, and the Supramax case from Gibraltar to 
Houston is plotted with red dots. 

To study the routes in a broader weather context, we include a map in Figure 13 showing the 

annual wind power density. The northern hemisphere winter season is shown in the top panel, 

and the northern hemisphere summer season is shown in the lower panel. Red and white colors 

represent high power winds, while green and blue represent lower power winds. Comparing 

this map with Figure 12 shows that two case routes pass through the North Pacific and the 

North Atlantic oceans, respectively. The wind map shows these areas experience heavy winds 

during the winter seasons but much milder winds during the summer seasons. 
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Figure 13. Annual wind power density. Top panel: Northern hemisphere winter. 
Bottom panel: Northern hemisphere summer season. Red and white colors represent  
high power winds, while green and blue represent low power winds. 
Source: (ScienceX, 2008). 

6.1 Procedure 

Chart 2 shows the procedure we have followed for each of the two case routes. In this section, 

we will describe key steps and the reasoning behind them. 
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Chart 2. Procedure for calculating weather margins for case routes. 

For each case study, we have used a real voyage from our dataset as a starting point. All input 

variables shown in the figure were left unchanged. For example, this means that a vessel’s age 

increases during the voyage but is identical for the first noon report of all simulated voyages 
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(regardless of the simulated start date). The January 1st, 1995 start date for the first simulated 

voyage was chosen due to it being the earliest date for which we have historical weather data. 

As previously described (see section 4.2.3), the weather for any given noon report should be 

retrieved from the temporal and spatial midpoint between itself and the preceding noon report. 

The spatial midpoint could easily be calculated as we knew the location of both the current 

and previous noon reports. However, determining the temporal midpoint posed more of a 

challenge because SOG and elapsed time since the previous report was unknown at this step 

due to our decision to make SOG dependent on weather conditions. The reasoning behind this 

decision will be discussed in the subsequent paragraphs. To solve this problem, we used the 

SOG from the preceding noon report as a best guess of the current SOG. This SOG was then 

used to calculate the time it would have taken to reach the spatial midpoint, which enabled 

calculating the temporal midpoint, and finally, to retrieve weather data for this midpoint.5 

In the next step, we predict SOG based on the original input data and the weather conditions 

we just retrieved. Changing SOG based on weather conditions does have some drawbacks for 

our analysis. First, as described above, not knowing SOG when retrieving weather adds 

uncertainty to the exact time that should be used when retrieving weather data. Second, it 

means that our case study results now show the combined effect of changes to weather and 

SOG on consumption, rather than the isolated effect of weather. 

However, there are also drawbacks associated with keeping SOG invariant to the weather due 

to the clear correlation between SOG and adverse weather. In particular, there is a correlation 

of −0.4 between wave height and SOG. One possible explanation for this is that strong adverse 

weather increases frictional resistance, sometimes increasing the power and rpm requirement 

to maintain SOG to beyond the engine's limits (Tillig & Ringsberg, 2019). In other words, if 

SOG is not reduced in adverse weather, our simulation results may be based on impossible 

combinations of SOG and weather.  

In addition to involuntary speed loss, it is also likely that voluntary adjustments are made to 

the planned voyage depending on weather conditions. For instance, if there is severe weather 

 

5 Higher accuracy could have been achieved by retrieving weather along a smaller segment of the path, predicting 
SOG for this segment, then repeating this for the entire path between the location of the two noon reports. 
Unfortunately this approach proved computationally infeasible. 
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on a given route, the operator may postpone the voyage, or the captain may change course to 

avoid the worst parts of the weather or reduce speed to maintain safe operation. Some 

adjustments may, in part, be motivated by increased fuel efficiency. For instance, Du et al. 

(2019) has conducted a study on optimal SOG and trim for a given route configuration and 

weather state. They found that using optimal SOG or trim could lead to 7.5% or 5-6% fuel 

savings, respectively. As these features' effect on fuel consumption is interwoven, the 

simultaneous optimization of the two features enabled fuel savings of 8.25%. 

Based on the above, adjusting speed depending on weather enables more realistic and 

representative results, and we believe these benefits outweigh the mentioned drawbacks. We 

aim to set a value for SOG that is realistic and representative for the given voyage and weather 

conditions. As we previously determined that the Extra Trees model performs well on our 

dataset, we trained such a model using the same input variables as our previous models, except 

for fuel consumption and trim. Fuel consumption was left out as a predictor because it is 

unknown when predicting SOG for these case studies. Trim will be discussed in the following 

paragraph.  

As previously mentioned, trim and SOG can be jointly optimized to increase fuel efficiency. 

However, it is traditionally set based on trim tables that indicate trim based on speed and 

displacement (equivalent to draft; Du et al., 2019). Such a method of setting trim seems to 

approximate our data well, as the correlation coefficient between trim and draft is −0.78, and 

0.22 between trim and SOG. Therefore, we will assume a causal relationship between SOG 

and trim, specifically in the direction of SOG → trim. This causal relationship explains why 

using trim as a predictor when predicting SOG would be inappropriate and why adjustments 

to SOG necessitates adjustments to trim to achieve realistic results in these case studies. As 

with SOG, we trained an Extra Trees model to predict trim, this time leaving out only fuel 

consumption as a predictor. 

The SOG and trim prediction models were trained on the same training data as was used to 

train the consumption prediction models. A brief summary of these models’ performance on 

the test data is shown in Table 11. 

 SOG Trim 
Design sMAPE RMSE sMAPE RMSE 
Supramax 1.28 % 0.2009 14.70 % 0.02713 
Handysize 1.25 % 0.2008 9.60 % 0.03258 
Table 11. Performance of the models predicting SOG and trim. 
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So far, we have estimated midpoint, retrieved weather, and predicted SOG and trim. The only 

remaining step in processing a single simulated noon report is predicting fuel consumption. 

The procedure for this was identical to predictions on our test set data, although we used our 

second-best Cubist models for this purpose due to its superior extrapolation capacity, which 

we will discuss in detail in section 6.4. 

The above describes the processing of a single noon report, which was done sequentially for 

each noon report in a simulated voyage. The starting date of the voyage was then set to 15 

days later before the entire process was repeated, for a total of 631 simulated voyages per case 

route. 

6.2 Handysize case voyage 

The selected route for the Handysize model starts in late April from Japan. From there, it sails 

in ballast across the North Pacific Ocean to the North American west coast, where it loads 

around 37,000 tonnes of cargo before returning to Japan. Originally, the average SOG during 

open-sea sailing was around 11 knots, for a total duration of 36 days. 

From the 631 generated datasets, 47 were discarded due to missing weather data. The 

following is based on the remaining 584 datasets. Figure 14 shows the weather conditions 

encountered at different times, revealing a clear seasonal pattern with stronger wind and wave 

forces in the winter season. There is a slight increase in the wave and wind variance in the 

winter, but this change in variance appears minor compared to the change in means. A similar 

plot showing the less influential or less seasonal sea temperature, current, and salinity variables 

is shown in Figure 24 (Appendix B). 
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Figure 14. Weather conditions experienced along the route at different times of the year. Each 
observation shows the median weather encountered on a given voyage. The black line shows the 
estimated means. 

Figure 15 shows the time of year, the total consumption, and the total duration predicted by 

our model for each generated dataset. As the plot indicates, the weather margin is, on average, 

much lower during summer than during winter. In addition, there appears to be a much higher 

variance in consumption during winter. We also see from the color scaling that higher fuel 

consumption is correlated with longer trip durations. 

Figure 15. Start time, total consumption, and total duration for each simulated voyage. The blue line 
shows the estimated mean of our fuel consumption predictions for the Handysize case route. 
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Figure 16 shows in more detail the monthly distribution in fuel consumption for four selected 

months. The plot indicates that the average consumption and distribution of consumption are 

relatively similar between March and September, but July and November are clearly different. 

July has a much narrower distribution that is also situated at the lower fuel consumption levels. 

Conversely, consumption tends to be higher in November, but is also much less densely 

distributed, with predictions stretching from below 560 to above 620 tonnes. 

Figure 16. Variation in predicted fuel consumption for four selected months. 

In addition to the figures, numerical descriptive statistics are available in Appendix E. Voyages 

starting in July are predicted to have the lowest fuel consumption, with a mean prediction of 

522 tonnes. Fuel consumption is highest in November with 586 tonnes, a difference of 12.3%. 

However, some of the highest estimates are based partly on predictions for weather conditions 

not present in the test data and may therefore not be accurate. We will discuss this issue in 

greater detail in section 6.4. The 3-day difference in duration between July and November 

corresponds to a decrease in average SOG from 12.0 knots to 11.0 knots. The results also 

showed that variance was greater in the winter months. From Appendix E, we find that the 

largest difference in standard deviation is between July with 7.8 tonnes and November with 

18.5 tonnes, an increase of 137%. Expressed as Coefficients of Variance (CoV), the standard 

deviations equate to a CoV of 1.49% for July and a CoV of 3.16% for November. The CoV 

expresses the standard deviation as a ratio of the mean (Brown, 1998). 
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To summarize the Handysize case route between Japan and the North American west coast, 

we found that the seasonal variation in fuel consumption was around 12.3% between winter 

and summer, with standard deviations varying from 7.8 tonnes in July to 18.5 in November. 

Operators on this route may use our estimated fuel consumption for the various months shown 

in Appendix E to price their forward cargo contracts more accurately. In addition, variances 

throughout the seasons indicate that the financial risk related to forward pricing is much higher 

during the winter than during the summer.  

6.3 Supramax case voyage 

The selected route for the Supramax vessel is from the Gulf of Mexico to Gibraltar, with the 

entire route being sailed in laden condition. Originally the vessel held an average SOG of 

around 11 knots, and the total fuel consumption was 323 tonnes. From the 631 generated 

datasets, 24 were discarded due to missing weather data. 

Figure 17. Weather conditions experienced along the route at different times. Each observation 
shows the median weather encountered on a given voyage. The black lines show the estimated 
means. 

Figure 17 shows the weather conditions experienced along the route at different times. This 

route also shows a significant increase in the variance of weather conditions during the winter 

months, which in turn results in a greater increase in the uncertainty of consumption and 

duration estimates. Additional but less influential weather variables can be seen in Figure 23 

(Appendix B). 

 



 52 

 

Figure 18. Start time, total consumption, and total duration for each simulated voyage. The blue line 
shows the estimated mean of our fuel consumption predictions for the Supramax case route. 

As shown in Figure 18, Voyages starting in July are predicted to have the lowest fuel 

consumption, with a mean prediction of around 309 tonnes. Consumption is highest in 

November with 329 tonnes, a difference of 6.4%. The average voyage duration increased by 

14 hours from July to November as the average SOG decreased from 12.2 to 11.8 knots. The 

consumption variance more than doubles during winter compared to summer. The highest 

difference in standard deviation is found between July with 4.8 tonnes and October with 10.8 

tonnes, an increase of 125%. The CoV is 1.6% in July and 3.3% in November. Numerical 

descriptive statistics areas are available in Appendix E. 
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Figure 19. Variation in predicted fuel consumption for four selected months. 

As with the Handysize case, some predictions in some voyages are based on wave heights 

higher than seen in the dataset the model trained on, and the accuracy of these predictions are 

therefore uncertain. There are fewer instances of such predictions in this case, however, with 

only 5.2% of the 9,712 individual predictions based on wave heights above 4 meters and 2.0% 

above 5 meters. 

To summarize the Supramax case route between the Gulf of Mexico and Gibraltar, we found 

that the seasonal variation in fuel consumption was around 6.4% between winter and summer, 

with standard deviations varying from 4.8 tonnes in July to 10.8 in October. Similarly, as for 

the last case, operators may use the fuel estimates available in Appendix E to improve the 

pricing of their forward cargo contracts. In addition, our estimates show that the financial risk 

associated with routes during the winter is much higher than during the summer.  

6.4 Extrapolation of training data 

Section 6.1 briefly mentioned that we used our second-best Cubist models to make fuel 

consumption predictions in these case studies rather than our best-performing Extra Trees 

models. This section will describe the reasoning behind this and discuss some limitations in 

the presented results. 
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When combined, the results in these case studies were based on more than 1,000 simulated 

voyages and 30,000 noon reports spanning 25 years. In comparison, our original dataset 

contains around 6,500 noon reports after pre-processing, spanning just under five years. The 

lower volume means that we, in our simulations, run the risk of encountering weather 

conditions rarely or never observed in our training data. Our analysis showed that this is indeed 

the case, particularly for high wave heights and, to a lesser extent, high wind speeds. This is 

illustrated in Figure 20. 

Figure 20. The number of observations at different weather conditions in the 
generated Supramax datasets and the original noon report dataset. Twenty 
observations with wave heights above 7m and 10 observations with wind speeds 
above 35k are not shown. 

The distribution of observed wave heights in the original dataset looks comparable to our 

dataset, but the higher number of observations also leads to more extreme observations. The 

same is also true for the Handysize case. Consequently, our models need to extrapolate to 

make predictions outside the boundaries of the training data. Such extrapolation can be 

problematic for black-box models. Since physical and hydrodynamic principles do not 

constrain them, there is no guarantee that predictions outside the training data boundaries will 

be reasonable. The superior extrapolation capacity is, in fact, an area where white-box models 
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and gray-box models are superior to black-box models (Coraddu et al., 2015). Gray-box 

models are able to combine the modeling of physical features from white-box models with the 

data-driven approach of black-box models. 

There are also considerable differences between different black-box models in their capacity 

to extrapolate. Decision trees are inferior in this regard, as they can only interpolate (Malistov 

& Trushin, 2019). Linear regression is, on the other hand, much better suited for extrapolation, 

as the estimated predictor coefficients will ensure that the prediction is based on the estimated 

relationship between the dependent and independent variables even outside the boundaries of 

the training data. This difference is illustrated in Figure 21. 

Figure 21. The sampling distribution shown is a simple exponential function with some 
added noise. The three models shown have been trained on values in the range 0 < 𝑈𝑈 ≤ 100. 

The Extra Trees (ETR) predictions in Figure 21 show a simplified example of decision trees’ 

predictions outside the training data boundaries. When ETR is applied to the case studies 

presented, this will result in predictions that underestimate consumption in strong adverse 

weather. For this reason, we opted to use our second-best performing algorithm, Cubist, for 

providing predictions in our case studies. As a combined tree- and linear regression-based 

algorithm, Cubist is especially well-suited for this purpose because it combines the excellent 

accuracy of decision trees with the favorable extrapolation capability of linear regression 

models. 

Nevertheless, the small number of observations in the training data will lower prediction 

accuracies for more unusual values. In our two case studies, this will primarily affect voyages 

where the median wave height for the voyage approaches 4 meters. For reference, wave 
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heights encountered along the voyages are shown in Figure 14 and Figure 17. Due to the lack 

of data, neither bias nor accuracy can be quantified for predictions in this range. 

6.5 Cost estimate example 

This section will provide a numeric example showing how our findings in the Supramax case 

voyage translate into changes in costs associated with the voyage. For this simplified example, 

we will assume that the vessel is hired on a time charter contract where the charterer pays a 

fixed daily rate, in addition to voyage costs that include fuel costs and port charges. The 

charterer’s total costs are then: 

 Costs = Fuel consumption ⋅ Fuel Price + Duration ⋅ Charter Rate + Port Charges (9) 

The vessel carried 52,760 tonnes of cargo on this voyage, giving a profit function as follows: 

 Profit =  52,760 ⋅ Freight Rate − Costs (10) 

In the following, we will assume a daily charter rate of $22,500 per day, a bunker (fuel) price 

of $500 per tonne, and fixed port charges of $50,000 for the voyage. The variable component 

of the costs for the voyage is then $500 ⋅ Fuel Consumption + $22,500 ⋅ Duration. Figure 

22 shows the result of applying this cost function to the results previously presented in the 

Supramax case study. 

Figure 22. Distribution of variable costs for Supramax case route assuming a daily charter rate of 
$22,500 per day and a fuel price of $500 per tonne. 
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Although similar to the consumption distribution presented in Figure 18, this plot clearly 

shows the economic impact of the predicted variation. These results can further be used to find 

the minimum required freight rate for the expected profit to be positive, as shown below. 

Using the mean variable cost of $470,000 in July: 

 52,760 ⋅ Freight Rate − 470,000 − 50,000 > 0 ⇒ Freight rate > 9.86 (11) 

Using the mean variable cost of $500,000 in November: 

 52,760 ⋅ Freight Rate − 500,000 − 50,000 > 0 ⇒ Freight Rate > 10.42 (12) 

6.6 Prediction uncertainty in case studies 

When predicting consumption for a future voyage without knowing the weather conditions, 

there are two sources of uncertainty. First, there is uncertainty caused by the inherent variance 

in the weather conditions, and how these weather conditions will impact consumption. The 

variances in our case study predictions are our best estimates of this uncertainty. For instance, 

we found a CoV of 1.6% for the Supramax case voyage in July, and a CoV of 3.3% in 

November. The second source of uncertainty stems from our models’ prediction errors in the 

given weather conditions. Our initial results, detailed in Section 5.1.4, quantifies this second 

source of uncertainty: the models achieved mean absolute prediction errors of around 2% on 

the voyage level. 

When making predictions for a specific voyage based on the case study results, it is also useful 

to know the expected consumption. This is simply the estimated mean of the predictions for 

the given time of year, as shown by the blue lines in Figure 15 and Figure 18. There is also 

uncertainty related to the estimated means due to the models’ prediction errors. 

There are two ways to improve upon the prediction accuracy we achieve with our framework. 

The first would be to reduce the uncertainty of our estimates. The model prediction errors of 

2% can be further reduced through better-quality data and improved modeling approaches. In 

addition, the added uncertainty we introduced through extrapolation may be reduced through 

increased quantities and diversity of data, or by using white or grey-box models.  
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The second means of improvement would be to reduce the uncertainty caused by the inherent 

variance in the weather conditions by using weather forecasts. The estimated CoV provides 

an indication of the potential value this can have. We previously described how weather 

forecasts are only correct 40% of the time when forecasting weather 6-10 days ahead. 

However, the weather forecasts only need to provide slightly more accurate forecasts than the 

average weather conditions to improve prediction accuracy.  
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7. Limitations and further work 

While prediction errors can be measured on a test set, it is not possible to measure the achieved 

accuracy of the case study predictions, given that they are based on simulated voyages. The 

lack of a test set makes it difficult to quantify the uncertainty related to our weather margin 

estimates accurately. As previously discussed in greater detail, our models must sometimes 

extrapolate predictions outside the dataset range to estimate weather margins. The uncertainty 

related to the extrapolation increases the further the model must extrapolate, and it is difficult 

to measure precisely how much uncertainty is introduced as a result. Further work may negate 

some of this uncertainty by using gray-box models, which are more suitable for extrapolation. 

Furthermore, the data we used contained many missing values. Many were accurately imputed 

based on their relationship with other values, but the remaining 2,247 values were imputed 

based on the average value of the feature. This imputation technique means our models were 

trained on data where the predictors had lower variances than the actual variances of these 

features, while the dependent variable they were trained to predict had unchanged variance. 

The models may thus have compensated by increasing the marginal effects of the predictors 

to achieve accurate predictions. Our weather margin estimates are computed based on varying 

values of predictors that have unchanged variance, which means the models may at times have 

overestimated the actual variation in fuel consumption. One possible extension that could have 

reduced the tendency to overestimate would have been using a more advanced imputation 

algorithm. An example of this is a forest-based method that aims to minimize the impact of 

imputed values on the final result while accounting for all other predictors (e.g., Stekhoven & 

Buhlmann, 2012). 

Another limitation relates to the way we set SOG and trim in the case studies. As mentioned 

in the Procedure section, there are many potential reasons why speed might change in different 

weather conditions, both voluntary and non-voluntary. In our case studies, we took a rather 

simplistic approach to set SOG, primarily relying on a data-driven approach to ensure that the 

values used seemed representative for the given weather. The same procedure was then 

performed for trim. In this area, it seems likely that a closer familiarity with the exact policies 

employed for ships in our dataset could make the results more representative. Another issue 

with adjusting SOG based on weather is that our results no longer show how weather impacts 

consumption. Instead, the results show the combined effect of, in most cases, higher SOG and 

better weather or lower SOG and worse weather. In choosing to adjust SOG based on weather, 
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we have prioritized showing how the case voyages tend to unfold rather than showing the 

isolated effect of weather on consumption. Nevertheless, the framework we have described 

can easily accommodate any arbitrary policy for setting SOG and trim, not least using a 

constant SOG and trim setting. 
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8. Conclusion 

This thesis proposes a data-driven modeling framework for estimating weather margins in the 

shipping industry. The study was based on noon report data from Handysize and Supramax 

vessels, weather data from Copernicus (CDS and CMEMS), and Clarksons’ World Fleet 

Register data. For the first part of the study, we developed a predictive model for fuel 

consumption and applied several machine learning algorithms in the process. We found that 

Extra Tree models gave the most accurate predictions, with an R squared of 87.6% for 

Handysize vessels and 88.7% for Supramax vessels. The accuracy increased to 99.5% and 

98.6%, respectively, for total fuel consumption on a voyage level. We also found that Cubist, 

RF, ANN, and variants of SVM and GP with radial kernels achieved accurate predictions, 

while the linear models, SVM and GP with polynomial kernels and shrinkage-based models 

were less accurate. 

For the second part of our thesis, we used the trained models to generate predictions using 

historical weather conditions from the last decades and studied the seasonal patterns of weather 

margins. We applied this methodology on two real-world case routes, one for Handysize 

vessels across the North Atlantic and one for Supramax vessels across the North Pacific. Our 

model predictions suggest a seasonal variation in fuel consumption of 12.3% and 6.4% for the 

Handysize and Supramax case routes, respectively. In addition, we found the standard 

deviations for weather margins to be more than twice as high during winter as during summer 

for both cases. 

The weather margin estimates are, however, computed under some degree of uncertainty. 

Complicating factors include the imputations’ effect on predictor weighting, the uncertainty 

related to extrapolation outside the range of our dataset, and the behavioral patterns related to 

weather avoidance and route optimization measures. The combination of model uncertainty 

and generally high variance in weather conditions also make accurate point predictions 

unfeasible, even for voyages planned for a couple of weeks into the future. Weather forecast 

integration may reduce this uncertainty in future work. Nevertheless, we have shown how the 

vast amounts of historical weather data freely available can be used to estimate averages and 

variances for seasonal patterns in weather margins, and by extension, fuel consumption. The 

framework may be used by chartering managers to determine the expected weather margin 

and variance given any route and load configuration. This information can indicate the cost 

and risk associated with a route, thus facilitating improved forward pricing of cargo. 
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Appendices 

Appendix A - Cargo weight - draft relationship 

We here provide an estimated regression formula for both vessel classes that accurately 

estimates the relationship between draft in meters and cargo weight in tonnes. Equation (13) 

for the Handysize vessels achieved an R squared of 94%. 

 𝐷𝐷𝑀𝑀 = exp(1.7024 + 0.000017268 ⋅ 𝐶𝐶𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡) (13) 

where 𝐷𝐷𝑀𝑀 denotes draft in meters, and 𝐶𝐶𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡 denotes cargo weight in tonnes. 

For the Supramax vessels, a simple linear regression function becomes imprecise when cargo 

weight is below 5000 tonnes, and for this configuration, we instead provide the mean draft as 

a good approximation. The regression on cargo weights above 5000 tonnes, shown in Equation 

(14), achieved an R squared of 98%. 

 𝐷𝐷𝑀𝑀 = � 5.89, 𝐶𝐶𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡 < 5000
exp(1.6960 + 0.000014836 ⋅ 𝐶𝐶𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡) , 𝐶𝐶𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡 ≥ 5000 (14) 
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Appendix B - Seasonality in sea state for case routes 

Figure 23. Seasonal variation in weather variables along the Supramax case route. 

Figure 24. Seasonal variation in weather variables along the Handysize case route. 
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Appendix C - Result comparison for different predictors 

Log/level comparison for speed - Supramax 

Transformation Log-
transformed Level 

Model sMAPE (%) sMAPE (%) 
Linear Regression 7.89 7.77 
Neural Network 6.50 6.42 
Extra Trees Regression 3.65 3.62 
Random Forest 6.49 6.47 
LASSO 7.93 7.81 
Ridge 7.96 7.83 
SVM Poly 5.85 6.01 
SVM Radial 5.23 5.20 
GP Poly 5.66 5.81 
GP Radial 15.31 15.31 

Table 12. Impact of log-transforming speed 
variable on prediction accuracy. 

Longitude and latitude comparison for Supramax 

Transformation Long/lat 
included 

Long/lat  
not included  

Model RMSE RMSE 
Linear Regression 2.241 2.235 
Neural Network 1.946 1.879 
Extra Trees Regression 1.331 1.383 
Random Forest 1.875 1.915 
LASSO 2.251 2.250 
Ridge 2.261 2.256 
SVM Poly 2.253 2.182 
SVM Radial 1.766 1.814 
GP Poly 1.811 2.247 
GP Radial 3.830 3.830 
Cubist 1.568 1.617 

Table 13. Impact of including latitude  
and longitude on prediction accuracy. 
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Dry docking comparison for Supramax 

Transformation Dry docking 
included 

Dry docking  
not included  

Model RMSE RMSE 
Linear Regression 2.241 2.242 
Neural Network 1.946 2.003 
Extra Trees Regression 1.331 1.382 
Random Forest 1.875 1.928 
LASSO 2.251 2.253 
Ridge 2.261 2.261 
SVM Poly 2.253 1.959 
SVM Radial 1.766 1.696 
GP Poly 1.811 2.367 
GP Radial 3.830 3.830 
Table 14. Impact of including dry docking  
variable on prediction accuracy. 

Temperature and salinity comparison for Supramax 

Transformation  Variables 
included 

Variables  
not included  

Model RMSE RMSE 
Linear Regression 2.237 2.241 
Neural Network 1.791 1.946 
Extra Trees Regression 1.343 1.331 
Random Forest 1.882 1.875 
LASSO 2.249 2.251 
Ridge 2.256 2.261 
SVM Poly 1.774 2.253 
SVM Radial 1.655 1.766 
GP Poly 2.246 1.811 
GP Radial 3.830 3.830 
Table 15. Impact of including temperature  
and salinity on prediction accuracy. 
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Appendix D - Prediction error distributions for Handysize 
vessels 

Figure 25. Prediction error distribution on fuel consumption reported in Handysize  
noon reports. 

Figure 26. Absolute prediction errors on fuel consumption reported in Handysize noon reports, 
sorted by speed over ground. Plotted with a rolling mean of 𝑘𝑘 = 50. 
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Figure 27. Absolute prediction errors on fuel consumption reported in Handysize noon reports, 
sorted by draft. Plotted with a rolling mean of 𝑘𝑘 = 50. 

Figure 28. Absolute prediction errors on fuel consumption reported in Handysize noon reports, 
sorted by wave height. Plotted with a rolling mean of 𝑘𝑘 = 50. 
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Appendix E - Descriptive statistics of fuel consumption 
estimates from case routes 

Handysize – Descriptive statistics for fuel consumption estimates 

Statistic Mean 
fuel 

Std. 
fuel 

5% 
fuel 

25% 
fuel 

75% 
fuel 

95% 
fuel 

Mean 
duration 

Std. 
duration 

5% 
duration 

25% 
duration 

75% 
duration 

95% 
duration 

January 577  16.7  551  563  591  601  36.9  0.8  35.6  36.4  37.5  38.0  
February 570  16.4  546  561  579  599  36.6  0.8  35.3  36.1  37.1  37.8  
March 563  12.0  543  556  574  580  36.1  0.8  34.8  35.5  36.6  37.3  
April 542  10.8  526  534  549  559  34.9  0.6  34.0  34.4  35.2  35.8  
May 533  8.0  521  527  537  546  34.2  0.4  33.7  33.9  34.5  34.9  
June 526  7.9  515  520  532  540  33.9  0.3  33.5  33.7  34.0  34.4  
July 522  7.8  510  517  528  534  33.8  0.3  33.3  33.6  34.0  34.4  
August 536  12.4  517  527  545  554  34.5  0.6  33.7  33.9  34.9  35.3  
September 554  11.8  536  545  562  572  35.4  0.6  34.5  35.1  35.8  36.3  
October 571  14.7  549  561  580  599  36.3  0.8  35.2  35.8  36.9  37.5  
November 586  18.5  560  573  595  621  37.2  0.7  35.9  36.7  37.8  38.3  
December 582  15.5  560  569  593  603  37.1  0.7  36.0  36.5  37.6  38.1  
Table 16. Handysize - Descriptive statistics of consumption and duration estimates. 

Supramax – Descriptive statistics for fuel consumption estimates 

Statistic Mean 
fuel 

Std. 
fuel 

5% 
fuel 

25% 
fuel 

75% 
fuel 

95% 
fuel 

Mean 
duration 

Std. 
duration 

5% 
duration 

25% 
duration 

75% 
duration 

95% 
duration 

January 323  8.4  311  318  330  337  14.6  0.2  14.3  14.4  14.6  15.0  
February 324  9.9  314  318  326  342  14.6  0.3  14.2  14.4  14.7  15.1  
March 324  8.2  312  318  327  341  14.5  0.3  14.2  14.3  14.7  15.1  
April 320  7.7  308  315  325  331  14.4  0.2  14.1  14.2  14.5  14.8  
May 315  5.3  306  313  318  323  14.2  0.1  14.0  14.1  14.3  14.5  
June 310  5.1  302  307  313  319  14.1  0.1  14.0  14.0  14.2  14.3  
July 309  4.8  302  306  311  316  14.1  0.1  14.0  14.0  14.2  14.2  
August 310  5.0  302  307  312  318  14.2  0.1  14.0  14.1  14.2  14.3  
September 319  7.9  310  314  321  332  14.4  0.3  14.1  14.2  14.5  15.0  
October 323  10.8  311  317  328  339  14.6  0.4  14.2  14.4  14.8  15.1  
November 329  10.5  314  324  333  348  14.7  0.4  14.3  14.5  14.9  15.4  
December 325  8.8  314  319  329  340  14.7  0.3  14.3  14.4  14.8  15.1  
Table 17. Supramax - Descriptive statistics of consumption and duration estimates. 


	Abstract
	Acknowledgments
	Contents
	1. Introduction
	2. Theory
	2.1 Vessel fuel consumption
	2.2 Machine learning
	2.3 Performance metrics

	3. Literature review
	3.1 White-box models
	3.2 Black-box models

	4. Data and methods
	4.1 Data acquisition
	4.1.1 Noon report data
	4.1.2 Third-party weather data
	4.1.3 Clarksons’ World Fleet Register

	4.2 Pre-processing and transformation
	4.2.1 Scope of the model
	4.2.2 Transformations
	4.2.3 Matching and processing third-party weather
	4.2.4 Cargo and draft
	4.2.5 Standardization and train-test split

	4.3 Parameter tuning and model training

	5. Results and discussion
	5.1 Results of models with third-party weather data
	5.1.1 Model selection
	5.1.2 Feature importance
	5.1.3 Prediction accuracy analysis
	5.1.4 Cumulative voyage prediction errors

	5.2 Impact of third-party weather data on prediction accuracy

	6. Case studies
	6.1 Procedure
	6.2 Handysize case voyage
	6.3 Supramax case voyage
	6.4 Extrapolation of training data
	6.5 Cost estimate example
	6.6 Prediction uncertainty in case studies

	7. Limitations and further work
	8. Conclusion
	References
	Appendices
	Appendix A - Cargo weight - draft relationship
	Appendix B - Seasonality in sea state for case routes
	Appendix C - Result comparison for different predictors
	Appendix D - Prediction error distributions for Handysize vessels
	Appendix E - Descriptive statistics of fuel consumption estimates from case routes


