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Abstract 

The main objective of this thesis is to evaluate if interpretable machine learning provides 

valuable insight into TrønderEnergi’s wind power prediction models. As we will see, 

interpretable machine learning provides explanations at different levels. The main objective is 

therefore answered by dividing the analysis into three different sections based on the scope of 

explanations. The sections are global, local, and grouped explanations. Global explanations 

seek to interpret the whole model at once, local explanations aim to explain individual 

observations and the grouped explanations aims to uncover observations with similar 

explanation structure. To quantify these explanations, we use Shapley Additive Explanations 

(SHAP). This approach takes a complex machine learning model and estimates a separate 

explanation model from which each feature´s marginal contribution to the predicted output is 

estimated.  

The global analysis shows that wind speed is the biggest contributor to the prediction, while 

wind direction contributes to a lower degree. However, wind direction SHAP-dependence plot 

shows why wind direction is an important feature in wind power predictions. When including 

wind direction as a feature, random forest seems to take speed-up effects and wake effects into 

account. 

In the local explanations we examine the observation with the highest prediction error and the 

one with highest imbalance cost. Inaccurate wind speed forecasts seem to be the cause of the 

observation´s large prediction error. An underestimation of the real production and a large 

spread between the spot price and RK-price seems to be the main contributor to the observation 

with highest imbalance cost.  

In the cluster analysis, we see that when Numerical Weather Prediction (NWP) models predict 

different wind speeds for the same observation, the model tends to perform worse in terms of 

RMSE. Observations where NWP-models all predict either high or low wind speeds for the 

same observation, performs significantly better, with less than half as low RMSE.  

We also discuss how these three explanation frameworks can be used to gain business benefits. 

We find that there are many potential benefits but some of the more prominent are legal, 

control and trust. 
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1. Introduction 

Machine learning models are steadily increasing their presence as a part of the decision 

making process. As they aim to become even more “human“ in their appearance, we cannot 

simply measure their performance in terms of predictive accuracy. Humane properties like 

discrimination, safety and the right to an explanation will become important parts of any 

machine learning algorithm in the future. Assuming we are on a path, where machine 

learning adapts human behavior, then a question arises: How can we quantify these 

attributes? How can we measure an algorithm’s ability to discriminate an outcome or 

specific feature? How can we supply an explanation to those affected by an algorithm? 

 

Enter Interpretable machine learning. Interpretable machine learning is all about 

understanding the reasoning of complex machine learning models. Only when we understand 

the reasoning of a model, can we evaluate the outcome in any other measure than predictive 

accuracy. In recent years, interpretable machine learning has experienced increased attention. 

Traditionally, the focus has been on increasing the predictive accuracy of machine learning 

models with little regard to interpretability. However, we now see a surge in scientific papers 

trying to explain what happens behind the curtain of machine learning models. In this thesis 

we will review some of the more established theories in the field and apply them in a case 

study of wind power predictions. 

1.1 Motivation 

In the context of wind power predictions, the focus has been on increasing predictive accuracy. 

For TrønderEnergi AS, the main objective has been to build a model that provides wind power 

predictions as close as possible to real production levels. This has led to increased complexity 

of their prediction model. As we know, accuracy tends to increase with complexity but when 

a model gets too complex for a human to easily interpret, it can be categorized as a black box 

model. We were tasked with unboxing this model to make it more interpretable. 

Focusing on interpretability is important for a number of reasons such as operative and 

financial decision making and the reduction of prediction errors. TrønderEnergi´s prediction 

models occasionally suffer from large prediction errors, which could have an impact on the 

company´s financial performance. In particular, prediction errors can significantly increase 
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their production imbalance costs, and as a result, decrease their net income. Hence, the 

company has a desire to know if there are any methods that enables humans to understand the 

decisions made by complex machine learning models, and if it discriminates on certain 

features. 

TrønderEnergi supplied all data for this work. The data mainly consists of weather predictions 

and historical production at Ytre Vikna, a wind power plant just west of Rørvik (Northern 

Trøndelag).  

1.2 Literature Review 

Some of the more notable contributions to interpretable machine learning, have come in the 

form of local interpretable model-agnostic explanations (LIME) (Ribeiro et al., 2016a) and 

Shapley additive explanations (Lundberg & Lee, 2017). These articles put forward general 

methodologies that can be applied to explain any type of machine learning model. The field is 

experiencing rapid contributions and constant improvement. Recently, Aas et al. (2019) 

released an article refining Lundeberg’s approach in the case of feature dependency and there 

are many more examples which we will refer to as we go along. Christopher Molnar does a 

good job of collecting and presenting different approaches to interpretable machine learning, 

and its benefits in his guide to make black box models explainable (Molnar, 2019). 

In recent years, some sectors have focused more on the usage of interpretable machine 

learning, than others. Typically, these are sectors or areas with a decision-making process that 

affect human-life, and also, areas that may have significant legal or ethical ramifications as a 

consequence of relying on AI. Medicine is an example of this. Here, interpretable machine 

learning has been used to explain a random forest classifier that predicts stroke (Prentzas et 

al., 2019). Another example is in financial risk-management, and typically credit-risk 

modelling.  Bussmann et al. (2020) use TreeSHAP to estimate Shapley values, and to explain 

a tree-based prediction model that predicts the probability of whether a company will default 

or not. Lin (2018) also uses TreeSHAP to explain a multiclassification model that predicts 

whether a transaction may be fraud or not. Other fields where interpretability may be crucial 

include transport and self-driving cars or military operations using AI (Adadi & Berrada, 

2018).  
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Very recently, a literature has started to emerge on the importance of interpretable machine 

learning within the energy sector. Vega García & Aznarte (2020) use SHAP-values to explain 

a deep neural network used to forecast the air quality or nitrogen dioxide concentration in 

Madrid. Other examples include Carlsson et al. (2020) who applies interpretable machine 

learning to interpret the consumption side of the energy market. The authors apply the original 

KernelSHAP method to estimate Shapley values, and use them to explain an artificial neural 

network predicting the energy consumption of an electric arc furnace. The authors pointed out 

a problem, namely that their explanations rely on estimates of SHAP-values that assume 

feature independency. As we have come to know, explanations with correlated features might 

be inaccurate. Interpretable machine learning has also been used for the supply side of the 

energy market. Kuzlu et al. (2020) use SHAP-values and LIME to explain solar PV power 

generation forecasts, provided by a random forest model. The authors objective was to create 

acceptable explanations, so interpretable machine learning can be applied in smart grid 

applications. 

To our knowledge, interpretable machine learning has not yet been thoroughly explored in 

relation to wind power prediction, especially if we consider the new and improved SHAP 

estimates from the Norwegian Computing Centre (Aas et al., 2019). We think that we bring 

something new to the table and that we demonstrate how interpretable machine learning can 

be used, and the benefits of using it for wind power suppliers.  
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1.3 Problem Statement 

The main objective of this thesis will be to evaluate if interpretable machine learning gives 

TrønderEnergi valuable insight into their wind power prediction models. As we will see, 

interpretable machine learning provides explanations at different levels. The main objective is 

therefore answered by dividing the analysis into three different sections based on the scope of 

explanations.  

Global explanations: 

How does the wind power prediction model behave globally and what features are most 

important in making predictions?   

In the first section, we try to create a holistic overview of the prediction model. Global 

explanations seek to interpret the whole model at once and provide valuable information 

regarding the estimated relationships between the response variable and features.  

Local explanations: 

Why did the wind power prediction model make a certain prediction for a specific 

observation?   

In the second section, we aim to analyze and establish explanations for single observations. 

By singling out specific observations we can get an understanding of why this exact prediction, 

turned out the way it did. The analysis will look at two particular observations, which are the 

one having the highest production imbalance cost and the one with highest prediction error. 

The method applied can be used to analyze any given observation. 

Group-based explanations: 

Why did the wind power prediction model make certain predictions for a group of 

observations?    

In the third section, explanations for multiple predictions are aggregated into group levels. 

Groups are found by using hierarchical clustering. Our goal is to analyze whether any groups 

of observations can be distinguished from one another in terms of higher production imbalance 

cost and prediction error.  



 5 

Business benefits with interpretable machine learning:  

The main objective is answered by integrating the three explanation frameworks with a 

discussion of the importance of interpretable machine learning, and the possible business 

benefits for TrønderEnergi.   

1.4 Results 

The global, local, and cluster analysis yielded a variety of explanations. The global analysis 

showed that the three wind speed features contributes the most to the predicted output. Wind 

direction has smaller contribution in general. The SHAP-dependence plots gave especially two 

valuable insights. First, they verified that the trained relationships between wind speed and 

production are in accordance with wind turbines fundamentals or the power curve. Second, 

they exhibit the importance of wind direction as a feature in wind power predictions. This 

includes random forest’s ability to consider the complex terrain at Ytre Vikna. When using 

wind direction as a feature, random forest seems to take speed-up effects and wake effects into 

account. These insights could potentially increase the trust of those domain experts or wind 

power engineers that doubt on using machine learning in wind power predictions.  

In the section with local explanations, we chose to focus on explaining the observation with 

the highest prediction error and the observation with the highest production imbalance cost. 

In the case of the largest prediction error, this seems to be caused by bad estimates of wind 

speed. The large imbalance cost is mainly caused by the huge spread between the spot and 

RK-price and the fact that the prediction resulted in an underestimation of actual production. 

The cluster analysis found groups of observations that had different patterns when considering 

prediction error and production imbalance cost. The main findings were the following: When 

NWP-models differentiate in their estimate of wind speed for any given hour, the prediction 

model tends to predict worse on an average. When predicted wind speed was relatively high 

for all NWP-models, the predictions where sufficiently better in terms of predictive accuracy. 

Low predicted wind speeds for all NWP-models, results in the predictions closest to actual 

production, likely because of low production elasticity when wind speeds are low. 

In our discussion we establish why interpretable machine learning grants valuable insights into 

wind power predictions. Three areas we focus on are to comply with regulation, retaining 
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control, and maintaining trust. Regulations may be put forward, that demands a sound 

reasoning for individual predictions. Local explanations can be used to see how features 

contributed to the prediction and uncover any irregularities. 

Control is an area of focus because with interpretable machine learning you maintain a certain 

control over developments regarding the learning process. This control can be exploited to 

improve future versions of machine learning models, and subsequently improve the model´s 

predictive performance. 

Trust can be important in an operative manner. The people working on the production central 

or in general internal stakeholders have little experience with machine learning. By giving 

them simple explanations as to why things are like they are, they might improve their 

understanding of the system as a whole. Increasing trust is beneficial since it potentially eases 

the implementation of new machine learning models in the future with less internal obstacles.   

1.5 Thesis Outline 

We will begin our thesis with an introduction to the Norwegian/Nordic power market. Here 

we will try to explain some features of the power market that has repercussions for our 

approach to creating explanations for the model. We will also define some economic variables 

used when analyzing different segments or clusters of observations. 

After exploring the power market, we will take a deeper dive into the theory behind 

interpretable machine learning to give the reader an introduction to the subject. In addition, 

we aim to explain some of the choices that had to be made during the process of creating the 

explanations such as setting tuning parameters and distributions etc. 

Then we explore the data supplied to us by TrønderEnergi. We examine the statistical 

properties of the different variables, take a look at the wind roses for Ytre Vikna, and lastly, 

perform a correlation analysis. 

The next section covers the methodologies that are used in our analysis. First, we cover how 

we built the prediction model on which the explanations are based. Second, we cover the 

explanation model used to interpret the prediction model´s individual predictions. Lastly, we 

cover the clustering method used to find similar groups of explanations. 
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When estimating our wind power production model some considerations had to be taken. 

Since we cannot present TrønderEnergi’s original model for competitive reasons, we made 

our own random forest model. Our model consists of many of the same features and returns 

similar predictions. The sources of the features have also been masked to avoid the need for 

secrecy.   

When analyzing the results, we have focused on global and local explanations before doing a 

cluster analysis. Local and global explanations focus on getting an understanding of how the 

features contribute to the outcome as well as discovering interaction effects. The cluster 

analysis groups observations based on their SHAP-values. After clustering we can analyze 

attributes within each cluster such as economic properties and prediction errors. 

1.6 Experimental Design 
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This is a visualization of our workflow or experimental design if you will. From raw data to 

complete analysis. After receiving the data, it had to be formatted, cleaned, and merged before 

we could split it into a training- and test set. We then trained our model on the training set and 

make forecasts for the test set. Based on this forecast, we estimate the SHAP- values. These 

values are then used to create local and global explanations, as well as being the features of 

our cluster analysis. 

 

2. The Power market 

The power market is a market in constant need of balancing as electricity must be consumed 

and produced at the same time. In Norway, Statnett is the responsible party for maintaining 

this balance between production and consumption. The participants of the power market do 

most of the job themselves through bidding at the day-ahead or intraday market driven by 

Nord Pool, but where there are discrepancies between supply and demand, Statnett offers 

solutions through their balance market.  

In the wholesale market, suppliers and consumers make hourly bids based on their projections 

for production and consumption the following day or hours (Intraday). In the day-ahead 

market bids are delivered to the transmission system operator (Statnett) no later than 12:00 the 

day before. The market is split into price areas based on transmission capacity and bottlenecks. 

When a supplier/consumer delivers a bid, it is implicitly also a bid for some of the capacity of 

the transmission system. The price might vary from area to area given bottlenecks and lower 

transmission capacity. The intraday market closes one hour before the operating hour and 

gives market participants some room for adjusting their bids. 

Still, there are uncertainties and challenges in planning power production as there are many 

factors involved, this is especially true for wind power since production cannot be planned to 

the same extent as for example hydro power. Production of power must also take the projected 

demand into consideration which is subject to rapid change given changes in the temperature 

and other unforeseen events such as malfunctions. 

Challenges like this is what creates the discrepancies between supply and demand. In these 

events Statnett is tasked with creating balance through their reserve market which aims to 

adjust the consumption/production up or down, securing a momentarily balance. 
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2.1 Balance Markets 

When the market participants cannot ensure a balance through the wholesale markets, Statnett 

makes use of the balance market. At a frequency of 50 Hz the market/power grid is in balance 

and no action is needed. When the frequency drops the consumption is increasing relative to 

supply and vice versa. 

When an imbalance occurs, it is first regulated by primary reserves known as frequency 

containment reserves. An automated market exists to ensure there is enough reserves to 

respond to imbalances. This reserve market is divided in a weekly market, concluded before 

the elspot market, and a D-1 market concluded after trading in the elspot market has closed to 

cover any residuals. 

Should the imbalance continue the secondary reserves are activated. The transmission system 

operator sends a signal to the suppliers which automatically changes the production at the 

facility. 

In the case of further imbalances, the tertiary reserves are activated. These reserves are known 

as regulating power and are manually operated with an activation time of fifteen minutes. 

Here, producers and consumers of power can meet to offer their latest estimates delivered as 

close as 45 minutes before the next operating hour. The regulating power price is determined 

in this market, hereby referred to as the RK (regulerkraft) price. The market is often used as 

way to manage the deviations between planned and real production. The regulating power 

market and the wholesale markets organized by Nord Pool are the physical markets for 

electrical power in Norway. 

2.1.1 How Trønder Energi Manages Production at Ytre Vikna 

The balance market and how it is operated has multiple implications for TrønderEnergi. First 

of all, they must maintain their own power balance given by the balance equation: 

 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 + 𝐼𝑚𝑝𝑜𝑟𝑡 = 𝐸𝑥𝑝𝑜𝑟𝑡 + 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (1) 

All power producers are tied to a company responsible for their balance and are legally 

obligated to maintain their own power balance. The companies plan their balance as good as 

possible and use the RK market for corrections (Ministry of Petroleum and Energy, 1999). 

There are two types of imbalances, consumption- and production balance (eSett, n.d.). 
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2.2 Production Imbalance 

The production imbalance is reported hourly and can be found by comparing planned 

production to actual production and adding any activated corrections (use of balance markets).  

 𝑃𝑟𝑜𝑑. 𝐼𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒 = 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 − 𝑃𝑙𝑎𝑛𝑛𝑒𝑑 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 ± 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠 (2) 

Imbalance is priced differently based on whether there is a surplus or a deficit in production 

and depends on the overall situation in the price area. A surplus of power (Frequency greater 

than 50Hz) in any given area demands a negative system correction to decrease the load and 

so the price for selling surplus production is the lowest of the spot price and the RK price. 

Should you need to buy during a negative correction you could get away with paying the spot 

price. If there is a deficit (frequency less than 50Hz) the situation is opposite. You would 

receive the spot price when selling during a positive correction and you would face the highest 

of the spot price and RK price when buying. This system is depicted in the table 1. 

 

Table 1: Price overview 

2.3 Consumption Imbalance 

Consumption imbalance is calculated as the deviation between consumption, planned 

production, trades, MGA imbalance and imbalance adjustment (eSett, n.d.).  

 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝐼𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒
=  𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 + 𝑝𝑙𝑎𝑛𝑛𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 + 𝑡𝑟𝑎𝑑𝑒𝑠 − 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝑠 

(3) 

Consumption represents all consumption in the price area, planned production is the corrected 

production balance (replan – day-ahead), trades is the producers recorded trade of power 

before the operating hour and the adjustments is considered to be any manually activated 

regulations. The consumption imbalance is priced at the RK price, and do not follow the two-

price system.   
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2.3.1 Deriving Income From a Production Facility 

In the production process, TrønderEnergi relies on two forecasts of production; The day-ahead 

forecast which is reported the day before production, and a replan forecast which takes updated 

variable information into account and is reported one hour before production. The volume 

reported by the day-ahead forecast is sold at the spot price, while the difference between day-

ahead and replan volume is bought/sold at the RK price. 

The difference between the replan volume and actual production volume is bought/sold in 

accordance with table 1 but without regard to the overall situation in the price area. If there is 

a production surplus, this is sold at the lowest price, and any deficit is bought at the highest 

price. In other words, we take the worst-case scenario into account. 

 𝐼𝑛𝑐𝑜𝑚𝑒 = 𝐷𝑎𝑦𝑎ℎ𝑒𝑎𝑑 ∗ 𝑆𝑝𝑜𝑡 𝑃𝑟𝑖𝑐𝑒 + 𝑅𝐾 𝑃𝑟𝑖𝑐𝑒(𝑅𝑒𝑝𝑙𝑎𝑛 − 𝐷𝑎𝑦𝑎ℎ𝑒𝑎𝑑) + 

(𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 − 𝑅𝑒𝑝𝑙𝑎𝑛) ∗ {
𝑀𝑎𝑥(𝑅𝐾, 𝑆𝑝𝑜𝑡) 𝑖𝑓 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 < 𝑅𝑒𝑝𝑙𝑎𝑛(𝐵𝑢𝑦)

𝑀𝑖𝑛(𝑅𝐾, 𝑆𝑝𝑜𝑡) 𝑖𝑓 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 > 𝑅𝑒𝑝𝑙𝑎𝑛(𝑆𝑒𝑙𝑙)
 

 

(4) 

The preferred result is to sell the whole volume at the spot price. 

 "𝑃𝑒𝑟𝑓𝑒𝑐𝑡 𝐼𝑛𝑐𝑜𝑚𝑒" = 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 ∗ 𝑆𝑝𝑜𝑡 𝑃𝑟𝑖𝑐𝑒 (5) 

 

By comparing the real income with the “perfect” income, we can get some understanding of 

how the forecasting models behavior impact the income from the production facility. This 

difference is referred to as “monetary loss” and is defined as: 

 𝑀𝑜𝑛𝑒𝑡𝑎𝑟𝑦 𝑙𝑜𝑠𝑠 = 𝑃𝑒𝑟𝑓𝑒𝑐𝑡 𝑖𝑛𝑐𝑜𝑚𝑒 −  𝐼𝑛𝑐𝑜𝑚𝑒 

 

(6) 
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The income is a result of the complex relationship between the dayahead- and replan 

prognosis, real production, and the prices in the different markets. Analyzing this relationship 

has not been the primary focus in this thesis. We have focused on creating interpretations for 

the replan prognosis and because of this, as well as the limited data we had access to in regard 

to the dayahead prognosis, we have simply used Trønder Energi’s dayahead prognosis in our 

analysis. In other words, we have estimated the replan prognosis on our own, and borrowed 

the historically recorded dayahead forecasts to compute the monetary loss. 

One interesting scenario occurs when the RK price is greater than the spot price. In this 

scenario it would be beneficial to have a low day-ahead prognosis relative to the replan 

prognosis. Although power suppliers are bound by law (Ministry of Petroleum and Energy, 

1999) to ensure their prognosis is the best estimate of actual production, it can be challenging 

to prove this if the model is in fact a black box model. Regulations may come into play that 

forces producers of power to account for their models in a way that makes interpretable 

machine learning obligatory for all suppliers. 

2.4 Production Imbalance Cost  

 

In this thesis we will focus on replicating TrønderEnergi´s replan prediction model, and 

subsequently explain this model´s individual predictions. We will also analyze the potential 

economic consequences that arises as a result of prediction errors from the replan prediction 

model. The economic consequences will mainly be from the last part of the income function. 

This is where TrønderEnergi needs to sell surplus power to the lowest of replan – and spot 

price, and they need to buy deficit power to the highest of replan – and spot price.   

Surplus power means that the replan prediction model underestimates the power produced at 

Ytre Vikna, and deficit power means that the replan prediction model overestimates the 

power produced. There are two situations where potential loss of income can occur as a 

result of replan prediction errors. We will refer to them as “production imbalance 

cost 1” and “production imbalance cost 2”.   

 

Production Imbalance cost 1 

Production imbalance cost 1 arises when the replan model underestimate produced power at 

Ytre Vikna, and at the same time the RK-price is higher than the spot price. In these 
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situations, the surplus power is sold to the spot price since this is the lower one. With a 

perfect replan prediction model, or a model that simply predict the power produced 

perfectly, the amount of surplus power would have been sold to the RK-price. This is a 

higher price than what they sold it for, and it is therefore a calculative cost, which is a result 

of the replan model’s prediction error. In these situations, there is a loss of income due to 

prediction errors and the requirement to sell surplus power for a lower price than what they 

could have got by decreasing/eliminating these prediction errors. Mathematically we express 

this calculative cost as:  

 

𝑃𝑟𝑜𝑑. 𝑖𝑚𝑏. 𝑐𝑜𝑠𝑡 1 = 

𝑟𝑒𝑝𝑙𝑎𝑛𝑛𝑜𝑘 ∗ 𝑠𝑢𝑟𝑝𝑙𝑢𝑠 𝑝𝑜𝑤𝑒𝑟 (𝑀𝑊) − 𝑠𝑝𝑜𝑡𝑛𝑜𝑘 ∗ 𝑠𝑢𝑟𝑝𝑙𝑢𝑠 𝑝𝑜𝑤𝑒𝑟 (𝑀𝑊) 

𝑆𝑢𝑟𝑝𝑙𝑢𝑠 𝑝𝑜𝑤𝑒𝑟:  

𝑈𝑛𝑑𝑒𝑟𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑝𝑜𝑤𝑒𝑟 𝑡ℎ𝑒𝑦 𝑛𝑒𝑒𝑑 𝑡𝑜 𝑠𝑒𝑙𝑙 𝑖𝑛 𝑜𝑟𝑑𝑒𝑟 𝑡𝑜 𝑎𝑐ℎ𝑖𝑣𝑒 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 

 

There are also situations where the replan model underestimates produced power at Ytre-

Vikna, while at the same time, the RK-price is lower than the spot price. In these situations, 

the surplus power is sold to the RK-price since that is the lower price. With a perfect replan 

prediction model, the amount of surplus power would also have been sold to the RK-

price. Therefore, there is no loss of income in these situations. This is because 

TrønderEnergi gets the same price for the surplus power in both scenarios where they predict 

poorly and perfectly. Thus, there is no production imbalance cost in these cases.  

 

Production Imbalance cost 2 

Production imbalance cost 2 arises when the replan model overestimates produced power at 

Ytre Vikna, and at the same time the RK-price is lower than the spot price. In these 

situations, the deficit power needs to be purchased to the spot price, since this is the higher 

price. With a perfect replan prediction model, there would be no need to purchase power, 

since there is no deficit power. However, when we overestimate the power produced, we 

need to purchase the amount of deficit power to a higher price than what we sold it for at the 

balancing market. Consequently, there is second situation with loss of income and 

production imbalance cost, that arises as a result of replan prediction errors. Mathematically 

we express this calculative cost as: 
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𝑃𝑟𝑜𝑑. 𝑖𝑚𝑏. 𝑐𝑜𝑠𝑡 2 = 

𝑠𝑝𝑜𝑡𝑛𝑜𝑘 ∗ 𝑑𝑒𝑓𝑖𝑐𝑖𝑡 𝑝𝑜𝑤𝑒𝑟 (𝑀𝑊) −  𝑟𝑒𝑝𝑙𝑎𝑛𝑛𝑜𝑘 ∗ 𝑑𝑒𝑓𝑖𝑐𝑖𝑡 𝑝𝑜𝑤𝑒𝑟 (𝑀𝑊) 

 

𝐷𝑒𝑓𝑖𝑐𝑖𝑡 𝑝𝑜𝑤𝑒𝑟:  

𝑂𝑣𝑒𝑟𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑝𝑜𝑤𝑒𝑟 𝑡ℎ𝑒𝑦 𝑛𝑒𝑒𝑑 𝑡𝑜 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒 𝑖𝑛 𝑜𝑟𝑑𝑒𝑟 𝑡𝑜 𝑎𝑐ℎ𝑖𝑣𝑒 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 

There are also situations where the replan model underestimates produced power at Ytre-

Vikna, and at the same time the RK-price is higher than the spot price. The deficit power is 

purchased at the RK-price in these situations. The amount of deficit power was sold at the RK-

price as well, and hence there is no loss of income in such situations. Consequently, in these 

situations there is no production imbalance cost, even though we see large prediction errors.  

By adding production imbalance cost 1 and 2 we get the total production imbalance cost for 

each hour, which is the economic measure we apply for production imbalance cost in this 

thesis.  
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3. Interpretable Machine Learning 

The wide range of papers and different applications for interpretable machine learning have 

led to confusion about the concept of interpretability. Lipton (2018) remark this by saying the 

term of interpretability is ill-defined, and that goals and methods used within this field are very 

different from each other. Lipton also point out that different ideas within interpretability 

machine learning need to be extricated from each other before any implementations can be 

done. In this section, there will first be a proper definition of interpretable machine learning, 

and then a classification of the different methods contained within the term.  

Murdoch et al. (2019) formulated a definition that clearly express what interpretability means 

in terms of machine learning: “Interpretable machine learning is the extraction of relevant 

knowledge from a machine-learning model concerning relationships either contained in data 

or learned by the model” 

Another definition comes from Molnar (2019): “Interpretable Machine Learning refers to 

methods and models that make the behavior and predictions of machine learning systems 

understandable to humans”.  

3.1 Classification of Interpretable Machine Learning methods 

DARPA came up with a proposal that categories explanation models into three different 

classes. These classes are Interpretable Models, Model Induction and Deep Explanation 

(DARPA, 2016). There has since been an increasing development within interpretable 

machine learning. As a result, their groups could potentially be outdated or miss some 

important aspects that distinguish explanation models. Molnar (2019) propose an updated 

overview of classes that helps distinguish different interpretability models. We will use 

Molnar’s framework to classify and distinguish the different methods used in interpretable 

machine learning (IML).  
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3.1.1 Molnar´s Classification of Interpretable Machine Learning Methods 

Intrinsic Versus Post Hoc 

Intrinsic: Interpretability is realized by restricting the complexity of a machine learning 

model. This means that prediction models are interpretable through their transparent and 

simple structure, like simple linear regression.  

According to Lipton (2018), transparency is evaluated on the three following criteria: 

simulatability, decomposability, and algorithmic transparency. Simulatability looks at the 

entire model when evaluating transparency. A model is transparent if an individual can explain 

the entire model at once. Decomposability looks at the individual components of a model to 

evaluate transparency. A model is transparent if every part of the model (inputs, parameters, 

calculation) exhibits an intuitive explanation. Lastly, algorithmic transparency looks at the 

training algorithm in order to evaluate transparency. The model is transparent if there is a 

possibility to understand the optimization process that produces predictions.  

Post hoc: Interpretability is achieved by using methods that analyze a machine learning model 

after it is trained. These interpretations do not clarify exactly how a model works 

(transparency), but they do convey valuable interpretations to stakeholders using these 

machine learning models. Post hoc analysis can handle all types of machine learning models, 

including intrinsic models, but they are often applied to explain the output from complex and 

less transparent machine learning models.  

Model-Specific Versus Model-Agnostic 

Model-Specific: 

This refers to model-based interpretability. It is machine learning models that are interpretable 

from their simple structure. Model-specific interpretation tools are only applicable for the 

particular machine learning method used. The coefficients or weights from a linear regression 

model are typical model-specific interpretations. The tree structure from a decision tree also 

provides good interpretations for why a particular prediction were made. For instance, the way 

a tree is split gives mode-specific interpretations of the feature importance. The 

abovementioned interpretation tools are only applicable for the specific method, which mean 

that they are indeed model-specific interpretations. Model-specific interpretations are always 

intrinsic.  
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Model-Agnostic: 

Model-agnostic interpretation tools are applicable for all types of machine learning models. 

They are used after a machine learning model is trained. With other words, model-agnostic 

interpretations are always post-hoc. The original model is handled as a black-box model, and 

the interpretations are based on a separate explanation model. In the separate explanation 

model, feature values are often permutated. Then we look at how the black-box model respond 

to these changes. Hence, for model-agnostic models, there is no need for transparency or 

knowledge about the inner workings of the original model in order to create interpretations. 

Ribeiro et al. (2016a) specifies three benefits by using model-agnostic methods: 

1. Model flexibility: Model-agnostic interpretation methods are applicable for any type 

of ML-models. Even for complex models such as random forest, gradient boosting, 

and neural networks.  

2. Explanation flexibility: these methods are able to produce different types of 

explanations, or with other words, they are not restricted to a specific type of 

explanation.   

3. Representation flexibility: these methods produce different feature representations.  

 

Local Versus Global 

Local - and global explanations are two categories that methods with post-hoc interpretations 

lie within (Murdoch et al., 2019). 

Local:  

Interpretation methods that explain why an individual prediction were made from a machine 

learning model, are classified as local explanations. These models try to explain a machine 

learning models local behavior with an individual observation in mind. Two examples of local 

interpretation methods are LIME and SHAP.  

Global:  

Interpretation methods providing global explanations have all observations from a dataset in 

mind. They aim to explain the entire machine learning model´s behavior at once. Two 

examples of global interpretation methods are partial dependence plots and global surrogate 
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models. It is worth noting that explanations from local interpretation methods like SHAP, can 

be aggregated and hence provide global explanations as well.  

3.2 Tradeoff-between interpretability and performance 

In this thesis we have a supervised learning problem that assumes there is a relationship 

between our quantitative dependent variable Y and features 𝑋 = (𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑝). In 

general, this relationship can be expressed as the following equation:  

 𝑌 = 𝑓(𝑋) +  𝜖 

 

(7) 

𝑓: Fixed but unknown function of the feature values X. Reflects the systematic information 

contained within X that can explain the behavior of Y. 

𝜖: Unsystematic error term with mean equal to zero and independent of X.  

𝑓 is unknown, therefore it needs to be estimated by methods from statistical learning. 

According to James et al. (2013), users of statistical learning have two different motives to 

estimate 𝑓: prediction and inference. A prediction’s objective is to estimate 𝑓 in order to get 

the best prediction of the response variable as possible. The goal of inference is to objectively 

understand how the response variable is affected when the independent variables changes.  

Estimation methods from statistical learning are quite different when we consider a model´s 

structure. Linear regression has a simple structure that produces only linear functions. In other 

words, it is an inflexible method. On another side, random forest is very flexible. This method 

has a complex structure with non-linear shapes to estimate 𝑓. Theory claims that there is trade-

off between interpretability and flexibility. According to this theory, it  is best to apply 

inflexible and simply structured models when inference is the main objective (James et al., 

2013). Flexible models are often able to find more complex relationships between the response 

variable and the feature variables which often leads to better predictive accuracy. Thus, when 

prediction is the main objective, we often seek more complex models in order to get superior 

predictive accuracy. 
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As a general rule of thumb, we often say that a model´s increased complexity leads to increased 

predictive accuracy, but at the same time decreases a model´s interpretability (DARPA, 2016; 

Oxborough et al., 2018). 

TrønderEnergi’s AI department constantly seek to find the method that estimate 𝑓 best in terms 

of predictive accuracy. We aim to create quality explanations from these complex methods. 

The goal is to provide a model with high predictive accuracy and good interpretations, which 

breaks with the trade-off above. Interpretable machine learning consists of techniques to avoid 

a trade-off by applying post-hoc analysis and model-agnostic methods (section 3.3).  

3.3 Model-Agnostics Methods 

3.3.1 Additive Feature Attribution Methods 

Explanations from model-agnostic methods handles the original prediction model 𝑓 as a black 

box, while the interpretations are based on a separate explanation model 𝑔 that tries to 

approximate the original model. LIME and SHAP are two different explanation frameworks 

used to explain a prediction model based on a single input or feature vector  𝑥. They are both 

additive feature attribution models that provide local explanations. 

In an additive feature attribution model, a prediction is simply explained as the sum of the 

effect values of all feature’s attributions. It is a linear function of binary variables: 

 

𝑔(𝑧´) =  𝜙0 + ∑ 𝜙𝑗

𝑀

𝑗=1

𝑧´ 

 

(8) 

Molnar (2019) describes 𝑧´ ∈ {0,1}𝑀 as a coalition vector, where M is the maximum coalition 

size. 0 means that the corresponding feature is “absent” in the coalition, and 1 means that the 

corresponding feature is “present” in the coalition. 𝜙𝑗 is described as the effect that feature 𝑗 

attributes with to the coalition’s output value. 
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3.3.2 Properties with Additive Feature Attribution Models 

A property with additive feature attribution models is that there exists one unique solution that 

satisfies three desirable abilities (Lundberg & Lee, 2017). These three properties are local 

accuracy, missingness and consistency. 

1. With local accuracy we mean that approximating the original model f(x) for any 

input of x, the explanation model is bound to at least match the output of x for any 

simplified input 𝑧′.  

𝑓(𝑥) = 𝑔(𝑧′) = 𝜙0 +  ∑ 𝜙𝑗

𝑀

𝑗=1

𝑧𝑗
´ 

2. Missingness tells us that in the lack of presence of a certain feature, that feature 

should have no impact. In other words, if a feature is not present in a subset of 

features, its impact is constrained to zero. 

 

𝑧𝑗
′ = 0 (𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑖𝑛𝑔 𝑡ℎ𝑎𝑡 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝒋 𝑖𝑠 𝑚𝑖𝑠𝑠𝑖𝑛𝑔) → 𝜙𝑗 = 0  

3. Consistency is the fact that if the marginal contribution of a feature increases or stays 

the same, the estimated contribution follows the marginal contribution of the feature. 

Proof of this is provided in the appendix to Lundberg & Lee (2017). 

 

Lundberg proves that only methods that are based on Shapley values can be used to satisfy 

these properties at the same time, which has great implications for our choice of methods. 

3.3.3 Shapley Values 

Shapley values is a concept that originally stems from cooperative game theory. It was 

developed of the Nobel prize winner Lloyd S. Shapley (Shapley, 1953) and is best illustrated 

through an example. 

Let us picture a cooperative game with N players, and the main objective is to maximize every 

players payoff. A subset or coalition of S players has the following notation 𝑆 ⊆ 𝑁 =

{1,2,3 … , 𝑁}. The characteristic function,  𝑣(𝑠), maps every subset of players to the expected 

payoff they receive by collaborating. In other words, it simply describes the value of a 

coalition. Under the assumption that every player collaborates, the Shapley Values “fairly” 
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distributes the total payoff between the participating players. The distribution is based on each 

player’s contribution to the total payout. The distribution is fair since it is the only set of values 

which satisfy the four properties efficiency, symmetry, dummy player and linearity (Shapley, 

1953; Young, 1985). 

The Shapley value for player 𝑖 is computed as: 

 
𝜙𝑖 =  ∑

|𝑆|! (𝑁 − |𝑆| − 1)!

𝑁!
 (𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆)),   𝑖 = 1, … , 𝑁

𝑆⊆𝑁\{𝑖}

 

 

(9) 

𝑣(𝑆 ∪ {𝑖}) : Payoff received with player 𝑖 included in the coalition 

𝑣(𝑆): Payoff received with player 𝑖 not included in the coalition 

Shapley value 𝜙𝑖 is the average marginal contribution for player 𝑖 across all potential subsets, 

and it will be player 𝑖´𝑠 distributed payoff from the grand coalition with all the players. An 

empty coalition, 𝑆 = ∅,  is also considered.  

To give the reader a more intuitive understanding of the application of Shapley Values, we 

think of a game with three players 𝑁 = {1,2, 3}. There are eight possible coalitions: 

{Ø}, {1}, {2}, {3}, {1,2}, {1,3}, {2,3} , {1,2,3}. We assume the coalitions have the following 

payouts: 𝑣{1} = 4,  𝑣{2} = 8 , v {3} = 6,  𝑣{1,2} = 12,  𝑣{1,3} = 16,  𝑣{2,3} = 14,  

𝑣{1,2,3} = 36, 𝑣{∅} = 0. 

Each player´s average marginal contribution can be computed with equation 9: 

𝜙1 =  
1

3
 (36 − 14) +

1

6
 (12 − 8) +  

1

6
 (16 − 6) +  

1

3
 (4 − 0) = 11 

𝜙2 =  
1

3
 (36 − 16) +

1

6
 (12 − 4) + 

1

6
 (14 − 6) +  

1

3
 (8 − 0) = 12 

𝜙3 =  
1

3
 (36 − 12) +

1

6
 (16 − 4) + 

1

6
 (14 − 8) +  

1

3
 (6 − 0) = 13 

Note:  𝜙0 = 𝑣{∅} is the fixed payoff when no players are included, and it is usual zero in 

cooperative games (Aas et al., 2019). However, this is not the case when implementing 

Shapley values to explain a predictive model.    
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3.3.4 Local interpretable model-agnostic explanations (LIME) 

The LIME framework proposed by Ribeiro et al. (2016b) aims to explain predictions through 

the use of local surrogate models. These surrogate models are trained to approximate the 

predictions of any underlying black box model. As the name implies, this methodology focuses 

on training local models to explain individual predictions as opposed to global explanations.  

LIME works by sampling a new dataset from the old along with the corresponding prediction 

from the black-box model. We can then train any interpretable model and weight the model 

according to the proximity of the sampled observations to the individual observation of 

interest. The goal of the trained model is to be a good approximation locally, we are not too 

concerned with the global accuracy. 

Mathematically we can write this as: 

 𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑔∈𝐺     ℒ(𝑓, 𝑔, 𝜋𝑥) +  Ω(𝑔) 

 

(10) 

Where 𝑔 ∈ 𝐺 is a set of interpretable models like linear regression models, decision trees etc. 

Since not all interpretable models have the same complexity, number of interpretable 

components or the same ease of interpretation, we let Ω(𝑔) be a complexity measure of the 

model 𝑔 ∈ 𝐺. For instance, the depth of a decision tree. f denotes the prediction model to be 

explained and 𝜋𝑥 is a proximity measure, measuring the size of the neighborhood around x 

that we consider for the explanation.  

The explanation of observation x is given by minimizing ℒ(𝑓, 𝑔, 𝜋𝑥) which measures how 

close the surrogate prediction is to the original model in the neighborhood 𝜋𝑥. The complexity 

measure is user defined but should be low enough so that the surrogate model is easily 

interpreted. 

3.3.5 SHAP (Shapley Additive explanations) 

To explain the prediction of a feature vector x by using cooperative game theory and Shapley 

values, Lundberg & Lee (2017) proposes the SHAP methodology. This method tries to explain 

individual predictions by using Shapley Values from cooperative game theory.  
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SHAP consider features as “the players”, combinations of different features as “the 

coalitions”, and the prediction as “the total payout”. The Shapley value 𝜙𝑖 is the average 

marginal contribution for feature 𝑖 throughout all potential coalitions. Thus, it explains each 

feature´s contribution to a prediction. 

In a prediction setting, we apply the training data {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛)} where 𝒙𝒊 =

(𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝)
𝑇
 to estimate a model 𝑓(𝑥). We try to explain a prediction from 𝑓(𝑥) for a 

particular feature vector 𝒙 = 𝒙∗. It is here SHAP comes in to play.   

Lundberg & Lee (2017) defines the contribution function 𝑣(𝑆) as follow: 

 𝑣(𝑠) = E [𝑓(𝒙)|𝒙𝒔 = 𝒙𝒔
∗] (11) 

𝑥𝑠 ∶ 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑖𝑛 𝑠𝑢𝑏𝑠𝑒𝑡 𝑆 

𝑥𝑠
∗ ∶ 𝑆𝑢𝑏𝑠𝑒𝑡 𝑆. 𝐼𝑛𝑝𝑢𝑡 𝑣𝑎𝑙𝑢𝑒𝑠 𝑡ℎ𝑎𝑡 𝑤𝑒 𝑡𝑟𝑦 𝑡𝑜 𝑒𝑥𝑝𝑙𝑎𝑖𝑛   

𝑣(𝑆) is the expected output from a prediction model, given that coalition S have value 𝒙𝒔
∗. In 

our case, the contribution function 𝑣(𝑆) represent the predicted production of wind power for 

a specified coalition. The Shapley value for a given feature 𝑥𝑖 is then computed by substituting 

𝑣(𝑆) in equation 9 by its conditional expectation (Redelmeier et al., 2020). 

The SHAP framework is consistent with additive feature attribution. An individual prediction 

is decomposed by equation 8 where all features are “present” in the coalition vector. In this 

setting, empty coalitions have a payoff of   𝜙0 = 𝐸[𝑓(𝑥)] instead of zero (Aas et al., 2019). 

This expected value is the average of all production and what we refer to as the baseline. As 

a result, the sum of Shapley values in an additive attribution model is equal to the difference 

between the predicted value and the global average prediction. We can say that: “Feature 𝑖´𝑠 

value in a feature vector 𝒙 = 𝒙∗, contributed 𝜙𝑖 to the prediction compared to the average 

prediction (baseline) in the training data (Molnar 2020). In other words, the Shapley value is 

simply a feature´s positive or negative contribution to the prediction relative to a baseline.  

There is a dimensional problem in computing Shapley values. The number of coalitions 

increases exponentially (2𝑁) as the number of features increases, and when a model contains 

a certain level of features the computation becomes infeasible (Molnar, 2019; Redelmeier et 

al., 2020). Thus, an approximation is often required in order to compute Shapley values in a 

practical setting. 
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3.3.6 KernelSHAP 

KernelSHAP approximates the real Shapley values to explain individual predictions. It does 

so by combining LIME with Shapley values. Shapley values could be found by using equation 

10, but this is dependent on the selection of kernel weight 𝜋𝑥´(𝑧´), the regularization term Ω 

and the loss function 𝐿.   

Under the definition that additive feature methods have an explanation model that is a linear 

function of binary variables, the only choice of πk´ ,  L ,  Ω  that make the output from equation 

10 consistent with the three properties local accuracy, missingness and consistency are: 

Ω = 0,  

𝜋𝑥´(𝑧´) =
(𝑀−1)

(
𝑀

|𝑧´|)|𝑧´|(𝑀−|𝑧´|)
, 

𝐿(𝑓, 𝑔, 𝜋𝑥´) = ∑  [𝑓 (ℎ𝑥(𝑧´)) − 𝑔(𝑧´)]
2

𝑧´∈𝑍 𝜋𝑥´(𝑧´), 

where |𝑧´| is the number of non-zero components in a coalition vector 𝑧´ 

Due to the fact that 𝑔(𝑧´) is a linear function and the loss function is a squared loss, Equation 

10 is solved, and the Shapley values are calculated by using weighted linear regression. As a 

result, features coefficient in the weighted linear regression model will correspond to their 

estimated Shapley value or their attribution in a prediction of a specific instance.  

Molnar (2020) divides the computation of Shapley values using KernelSHAP in five parts: 

1. Sample coalitions 𝑧𝑐
´ ∈ {0,1}𝑀, 𝑐 ∈ (1,2, … , 𝐶), 

 𝑤ℎ𝑒𝑟𝑒 𝟎 = "absent" feature, 𝟏 = "𝑝𝑟𝑒𝑠𝑒𝑛𝑡" 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 

 

2. Compute predictions for all coalitions 𝑧𝑐
´  by using model 𝑓 (ℎ𝑥(𝑧𝑐

´ )).  

Here, all C coalitions are mapped to their original feature space by using the mapping 

function ℎ𝑥. 1´s are mapped to their corresponding value from feature vector 𝒙 = 𝒙∗ 

that we try to explain. 0´s are mapped to a random sampled value from the training 

data. The original KernelSHAP method assumes feature independency. Mapped 

values for “absent” features will therefore be sampled from their marginal 
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distribution. Mapped values are used as input values in the original prediction model 

f and it subsequently gives each coalition a predicted value. The first two steps are 

illustrated in the figure 2, where five coalitions are sampled. Yellow values illustrate 

the mapped values for “absent features”, which are sampled values from the feature’s 

marginal distribution.  

 

Figure 2: Example of mapped coalitions 

3. Calculate the weight for each coalition 𝑧𝑐
´  by using the kernel weight function 𝜋𝑥´(𝑧´). 

From the kernel weight function, we see that coalitions with few or many “present” 

features (1´s) are weighted most heavily.  

4. Fit a weighted linear regression model, using the mapped features values as input 

values, and the predicted values for each coalition as the target value, and each 

coalition´s kernel weight. In other words, minimize the loss function 𝐿.  

5. Coefficients from the weighted linear regression model are returned as features 

approximated Shapley values or their marginal attribution in a prediction for a 

particular feature vector 𝒙 = 𝒙∗. 

 

Proof of why explanations from the KernelSHAP method are consistent with properties 1-3 

are found in Lundberg & Lee (2017) supplementary material. For a more extensive 

mathematical explanation of the KernelSHAP estimation, we recommend looking closer at 

Aas et al. (2019) paper.   

3.3.7 New version of KernelSHAP  

A disadvantage in using the original KernelSHAP in order to estimate SHAP values is the 

method´s assumption of feature independency. This can potentially lead to an estimation that 
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weight unlikely instances in a too large degree. As a result, it might yield unreliable 

explanations. If there is a high correlation or dependency between a model´s features, 

explanations from KernelSHAP could potentially be wrong.      

Aas et al. (2019) solves this problem by relaxing the independency assumption. They 

developed a method that takes dependency between features into account. In their approach, a 

conditional distribution between features 𝑝(𝑥�̅�|𝒙𝑺 =  𝒙𝑺
∗ ) is estimated using the training data. 

The notation 𝑥�̅� is the part of 𝑥 not in 𝑥𝑆, or simply absent features in a coalition. In step two 

of Molnar’s overview of how to estimate Shapley Values using the KernelSHAP, absent 

features are now sampled using the estimated conditional distribution, instead of the marginal 

distribution. Aas et al. (2019) propose four different approaches to estimate the conditional 

distributions: 

1. Multivariate Gaussian distribution 

Absent values are sampled from a multivariate gaussian distribution, where the expectation 

vector 𝝁 and full covariance matrix ∑ are estimated using the training data.  

2. Gaussian copula 

If the features are nowhere near being multivariate Gaussian distributed, this approach is 

better to use in order to estimate the features conditional distribution. Here, features 

marginals are characterized by their empirical distributions, and then the dependence 

structure is modelled by a Gaussian copula. 

3. Empirical conditional distribution 

If features dependency structure and multivariate distributions are nowhere near being 

Gaussian, this method is proposed by the authors. It is a non-parametric estimation method, 

motivated by the Nadaraya-Watson estimator. 

4. Combined approach using the empirical – and the Gaussian or Gaussian copula  

This approach combines the empirical distribution with either the Gaussian or Gaussian 

copula distribution. An example is to use the empirical approach when we are conditional 

on 1-2 features, and Gaussian distribution when we are conditional on more than two 

features.   

All approaches for estimating the conditional distribution are thoroughly explained in Aas et 

al. (2019) paper.  
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4. Data 

This section aims to give the reader better insight into the data on which the analysis is built. 

The raw data is supplied by TrønderEnergi. It has a time interval from 09. April 2017 to 09. 

September 2020 and the observations are of an hourly frequency which results in 29 976 

observations.  

4.1 Data preprocessing 

Two of the features used in predicting wind power contains 365 missing values. According to 

Pratama et al. (2016) there are three different conventional methods to handle missing values 

in time series data. They are ignoring, deletion and mean/mode imputation. Ignoring the 

missing values is not an option, due to the characteristics of our prediction model. It is not 

possible to predict an outcome using a random forest model and a feature vector containing 

missing values. This problem is often solved in random forest algorithms by imputing missing 

values (Gupta, 2015). Mean imputation replaces missing values with the mean value for a 

particular feature. Wind speed is one of the features containing missing values. Wind speed 

has a random and fluctuating pattern throughout the time series. In our opinion, it will be a 

mistake to use mean imputation because there is a probability that a replaced mean value is 

not representable for a particular observation. Replacing values using mean imputation could 

lead to misinformation about the relationship between a feature vector and the response 

variable. Hence, we are left with deletion. By deleting these observations, we lose some 

information, however it should not be a significant problem, since it only accounts for roughly 

one percent of the total data set.  

The dataset is split into a training and test set. The training data contain all observations before 

01. September 2019, and the test data contain all observations after 01. September 2019. The 

test and training data make up about 30 % and 70% of the total data, respectively. The main 

reason for this split is a desire to have explanations on out-of-sample predictions throughout a 

whole year.  
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4.2 Numerical weather predictions  

The features used in our prediction model are forecasted values from different numerical 

weather prediction (NWP) models. NWP models use current weather observations and 

combine them with a mathematical model to  provide a forecast of future weather (NCEI, 

2020). In developing a wind power prediction model, the choice of NWP model(s) is a crucial 

step. According to Foley et al. (2010) a model developer should consider the three following 

criteria when choosing between NWP models: The geographical area, resolution and forecast 

horizon. In their article, there was a solid inter-dependence between a wind power prediction 

model´s accuracy and a numerical weather prediction model´s accuracy. 

Nielsen et al. (2007) conducted an analysis with multiple wind power forecasts, which were 

all based on different numerical weather prediction models. In general, the models used in 

forecasting wind power, all had an approximately equivalent performance or accuracy. The 

authors displayed, by combining wind power forecasts based on different NWP models, the 

forecast error decreased compared with the single model’s accuracy level. The concept of 

combining multiple NWP models is used in building our prediction model as well, only now 

within a machine learning setting. 

Our features are based on three different NWP models. The weighting of the different NWP 

models changes for every single prediction. In fact, these are the weights we will be able to 

see in the separate explanation model.  

We aim to replicate TrønderEnergi’s prediction model, and then explain the predictions from 

this model. Therefore, we do not face the challenge of selecting the best NWP models for our 

data and wind park. That is a challenge already solved by TrønderEnergi and we use the same. 

4.3 Features 

In our wind power prediction model, we apply three different NWP models, and that is 

NWP100, NWP200 and NWP500. Each of these models provide a one-hour forecast of the 

wind speed and wind direction at Ytre Vikna. As a result, we have six features, three wind 

speed forecasts and three wind direction forecasts.  
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4.3.1 Wind Speed forecasts  

Figure 3: Power curves 
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The three forecasts of wind speed, all have continuous scales, and their unit is meter per second 

(m/s). The figures illustrate the relationship between the power production and wind speed 

forecasts given by the different NWP models. 

All of the 17 wind turbines at Ytre Vikna are 2,3 MW wind turbines of the type E70, and they 

are delivered by Enercon GmbH (Akram, 2014). The power curve for this type of wind turbine 

is provided by the manufacturer, and it displays the relationship between wind speed and 

power produced at a constant air density level. This is shown in appendix (see Appendix H). 

From this power curve, we see that wind turbines of this type produce wind power within a 

wind speed range of 3 m/s and 30 m/s. The production tends to be highest, and most stable, in 

the range of 15 m/s to 30 m/s. Wind speed within this range is categorized as the rated speed, 

since within this range, the turbines produce their rated/maximum power (Lydia et al., 2014). 

3 m/s is the turbines cut-in speed, which means there is no production if the wind speed is 

below this boundary. The same is true for wind speeds above 30 m/s, but this is the cut-off 

speed, which means that there is no production if the wind speed is above 30 m/s (Akram, 

2014).  

The figures show the empirical power curve for each of the NWP models, and they are 

modelled using the K-nearest neighbors (KNN). The power curves all exhibit the same pattern: 

A flat and constant production level when the wind speed is very low, which is a result of the 

cut-in speed. When the wind speed increases, the production increases in linear like fashion 

until the wind turbines capacity is reached. When the capacity is reached, the production level 

starts to flatten out until it reaches the cut-off speed. K is set to 500 in the modeling process, 

and therefore, the empirical power curves are not able to perfectly envision the cut-in/off 

points. 

The NWP models vary somewhat in regard to the empirical power curve. NWP500 and 

NWP200 tend to have the same cut-in speed. NWP100 starts increasing between 1 to 2 m/s. 

The rated speed or maximum capacity seems to be reached around 12 m/s, 10 m/s and 20 m/s 

for NWP200, NWP100 and NWP500, respectively. The cut-off speed is not displayed at the 

estimated power curves, but observations tend to decrease at 21-22 m/s, 18-19 m/s and 34 m/s 

for NWP200, NWP100 and NWP500. This may be an indication that the cut-off speed is 

reached. NWP-models differences occur mainly as a result of different height-profiles. The 

wind park is located around 100 meter above sea level, and the turbines are between 64-74,5 
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meter above ground. NWP200, NWP500 and NWP100´s predictions are approximately at 200, 

500 and 100 meter above sea levels respectively (Source: TrønderEnergi).  

4.3.2 Wind Direction forecasts 

The three predictions of wind direction are all circular variables. This means, their values are 

represented as a point on the circumference of the unit circle. Wind direction´s unit is degrees, 

and so the values are within the range of 0-360 degrees. 0 and 360 degree is far from each 

other on a linear line but is nearly identical when measured in degrees. According to Pewsey 

et al. (2013) there is a need to abandon standard statistical techniques developed for linear 

data, and instead apply statistical techniques developed for circular data. 

When building a prediction model 𝑓, there are two different approaches to handle circular 

variables. One option is to make a linear transformation, by using cosines and sinus. The other 

option is to keep the data as is. We executed a comparable analysis by training a model with 

and without transformed wind direction variables. We then compare the predictions of the two 

models. This comparison can be seen in the appendix (see Appendix A), but the difference is 

minimal. Because of the small difference we went in the most interpretable direction and chose 

to keep the direction features in their original format as degrees. 

4.4 Response 

The response variable is hourly wind power produced at Ytre Vikna. There are 17 wind 

turbines at this wind park, and the response variable´s value correspond to the aggregated 

production level from all these turbines within an hour (Rosvold, 2019). The response 

variable´s unit is megawatt (MW).   

4.5 Descriptive statistic 

In the descriptive analysis, there is a mix of linear- and circular variables. Circular statistical 

approaches are required for the wind direction features. Trigonometric functions can be used 

when calculating the descriptive statistic for wind direction. The NWP-models average wind 

direction is calculated using the resultant vector average wind direction. This approach is 

explained by Grange (2014). Wind direction´s standard deviation is approximated using the 
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Yamartino method (Yamartino, 1984). These are both methods for circular variables and 

developed specifically for wind direction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 Traditional statistical techniques for linear variables 

2 Resultant vector average wind direction (Grange, 2014) 

3 Yamartino method to approximate wind direction´s standard deviation (Yamartino, 1984) 

 Mean Median Max Min SD 

Response  

Production1 12.51 7.68 

 

38.88 0.00 12.24 

Features 

NWP100 Wind Speed
1
  5.19 4.60 23.51 0.06 3.01 

NWP500 Wind Speed
1
 10.20 9.00 39.90 0.00 6.17 

NWP200 Wind Speed
1
 7.16 6.70 23.90 0.10 3.44 

NWP100 Wind Direction 213.23
2
 - - - 92.42

3
 

NWP500 Wind Direction 217.56
2
 - - - 87.33

3
 

NWP200 Wind Direction 202.69
2
 - - - 94.51

3
 

Table 2: Descriptive statistics 
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4.6 Wind Rose  

A wind rose is a visualization tool often applied by meteorologists to outline the wind direction 

and wind speed probability distribution (Lepore et al., 2020). Here, a wind roses provide a 

good overview of the distribution of both wind direction and wind speed. The size of each 

pillar represents the frequency of a wind direction bin in the dataset. The colors represent 

different bins of wind speed, and their size within a pillar display their frequency for a 

particular wind direction bin.  

 

 

 

 

 

 

 

NWP200: The two largest pillars are between east and south, which indicate that it blows 

most frequently towards these directions. The speed in this wind direction tend to be relatively 

low, since the largest frequency within these pillars are green (5-10 m/s.) The wind speed tends 

to be highest when the wind direction is between south-west (210) and west (270). The wind 

blows less frequently towards the north (0) and east (90), and the wind speed also tend to be 

relatively low in this direction.  

NWP100: Explanations from NWP100´s wind rose is more or less the same as the 

explanations provided for NWP200.  

NWP500: The wind direction tends to have highest frequency towards 150 and 270 degrees. 

The bins with highest wind speed tend to be in the same direction as the other NWP-models, 

between 210 - and 270 degrees. The wind blows less frequently towards 0 and 90 degrees, and 

the wind speed tend to be very low in this direction.  

Figure 4: Wind Roses 
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4.7 Correlation analysis 

A correlation analysis is executed to support our choice of the SHAP estimation method. From 

3.5.5, we know that explanations from the original KernelSHAP method are potentially 

inaccurate if features are dependent on each other. The correlation analysis needs to be 

adjusted compared to a traditional analysis using the typical Pearson-correlation. The reason 

for the adjustment is the circular variables used in our model. The correlation analysis is split 

into three different parts, where each part depends on the linear or circular characteristic of the 

variables measured. The three parts use three different methods to calculate the correlation 

coefficient, and they are the following:  

Correlation between two linear variables: Traditional statistical correlation analysis, where 

Pearson correlation is used as the correlation coefficients. The correlation coefficient has a 

range from -1 to 1.  

Correlation between two circular/angular variables: To measure the correlation between 

two angular variables we use a method developed by Jammalamadaka & Sarma (1988). In the 

computation, (𝑥𝑖 − �̅�) 𝑎𝑛𝑑 (𝑦𝑖 − �̅�), from traditional correlation, are substituted with 

𝑠𝑖𝑛(𝑥𝑖 − �̅�) 𝑎𝑛𝑑 𝑠𝑖𝑛(𝑦𝑖 − �̅�). The correlation coefficient ranges from -1 to 1.  

Correlation between a linear- and circular variable: The correlation between wind 

direction and wind speed or production is found by a parametric method developed by Mardia 

(1976). The correlation coefficient ranges from 0 to 1. The mathematical computation of this 

method is explained by Lototzis et al. (2018). 

4.7.1 Correlation between a linear and circular variable  

 

 

 

 

 

 

Figure 5: Correlation between linear and circular features 
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We see that there is a very weak or no correlation between wind direction – and wind speed 

forecasts. There is also a very weak or no correlation between wind direction forecasts and the 

wind power produced at Ytre Vikna.  

4.7.2 Correlation between two linear variables   

 

 

 

 

 

 

From these numbers, we can conclude that all linear relationships in our model have a strong 

positive relationship. White numbers are P-values and low P-values signify statistically 

significant correlations.   

4.7.3 Correlation between two circular variables  

 

 

 

 

 

 

 

There is a positive relationship between the wind direction forecasts. Wind direction forecasts 

tend to positively change with each other.  

Figure 6: Correlation between linear features 

Figure 7: Correlation between circular features 
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5. Methodology 

TrønderEnergi needs to train two separate prediction models, one for the day-ahead market 

and another for the regulation-market which we refer to as the replan model. In order to make 

this thesis in a more general form, and without revealing corporate secrets we are not using 

their exact models. The objective of this thesis is not to produce the best model in terms of 

predictive accuracy, but instead to develop an explanation framework that works for any 

complex model. That includes the models used by TrønderEnergi. Hence, we will try to 

replicate TrønderEnergi´s model by using many of the same features, but with another 

algorithm. After training the model and using it to predict wind power based on the 

observations in the test data, we try to explain the individual predictions using our explanation 

model.  

Most of the features used in predicting day-ahead production had missing values throughout 

the dataset which made it hard to train a model anywhere near TrønderEnergi’s original. 

Because of this we focus on predicting wind power one hour before real production, or in 

particular for the regulating/replan market.  

We refer to the appendix if you wish to see the R-implementations and libraries needed to 

make use of the different methodologies (see Appendix E).  

5.1 Random Forest 

When building our prediction model, we decided to use random forest. Random forest is a tree 

based method, that seeks to improve upon the basic decision tree by fitting multiple trees 

through bootstrapping and then averaging the results. This process of fitting multiple trees on 

bootstrapped datasets is known as bagging. Bagging and random forest are set apart from the 

fact that in the random forest approach, the trees are to some extent uncorrelated. The benefit 

of this is that the trained trees look less similar, which can happen if say one predictor is 

dominant. Since only a subset of the predictors is considered at each split, the dominant feature 

may not be considered at all in some cases and the trees will be less correlated and have a 

greater learning curve (James et al., 2013). 
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Bagged trees have high variance and low bias due to letting the trees grow deep without 

“pruning”, but the variance is reduced severely by averaging across the trees. However, this 

leads to very low interpretability which is what this thesis is all about. 

To determine the degree of “decorrelation” we use the tuning parameter m to define the size 

of the predictor subset. The smaller m is relative to the number of predictors p, the less 

correlated the trees will be. If m equals p it will simply amount to bagging. A small m is 

typically helpful if the features are correlated, which they are in this instance. Typically, 𝑚 ≈

√𝑝 gives a small edge compared to regular bagging (James et al., 2013), and that is the tuning 

parameter we choose to use. One must also decide on the number of trees to grow, but this is 

simply a computational choice as the number of trees grown will not lead to overfitting. 

5.2 Shapley Addidative Explanations (SHAP) 

In our analysis, the model-agnostic method used to explain individual predictions is the 

KernelSHAP approach. As mentioned in the theory section, models not based on Shapley 

values violates the properties of local accuracy and consistency. This is typical for the LIME 

approach, and it consequently leads to unintuitive behavior in certain situations (Lundberg & 

Lee, 2017). KernelSHAP provides a unique solution in the class of additive attribution 

methods.   

In the correlation analysis, we displayed a strong correlation between multiple features. Wind 

speed predictions from different NWP models are highly correlated, and the same can be said 

about the different wind direction predictions. Dependency between features can potentially 

lead to incorrect explanations if the original KernelSHAP approach is used. Consequently, we 

choose to use the new version of KernelSHAP explained in section 3.3.7, which take 

dependency between features into account.  

5.2.1 Method used to estimate features conditional distribution 

Aas et. al (2019) conducted an experiment to analyze which method provides the most accurate 

approximation of the real Shapley values. The original KernelSHAP and the four different 

approximation methods proposed by Aas et. al (2019) were compared and measured against 

the true Shapley values. When features distributions were asymmetric, or skewed and heavy-

tailed, the combined approach with empirical conditional distribution (with bandwidth equal 
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to 0.1) and multivariate gaussian distribution outperformed the other approaches. By looking 

at the distributions to our features, we can say that they are asymmetric and skewed (see 

Appendix G). Hence, we assume that the above-mentioned combination performs best with 

our data as well. We therefore use the new version of KernelSHAP with a combined approach, 

applying the empirical approach for subset of dimension equal to 1 and the Gaussian approach 

otherwise.  

This implies that when we are conditioned on one feature, we use the empirical approach to 

estimate feature´s conditional distributions, and to sample values for the absent features. When 

we are conditioned on 2-6 features, we use the gaussian distribution. A bandwidth needs to be 

set by the user when applying the empirical approach to estimate the conditional distribution. 

This choice is often shown as a bias-variance trade-off. Empirical analysis shows that 

bandwidth equal to 0.1 typically delivers sufficient results, and therefore we apply the same 

bandwidth in our estimation of Shapley values (Aas et al., 2019).  

5.3 Clustering 

After estimating the SHAP values we have an 𝑛𝑥𝑝 matrix, where 𝑛 =

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑒𝑠𝑡 𝑠𝑒𝑡 and  𝑝 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠. This matrix 

consists of each feature´s marginal attribution to its respective prediction for every observation 

in the test data:  

 𝝓𝟏 𝝓𝟐 ⋯ 𝝓𝒑 

𝟏 𝜙11 𝜙12 ⋯ 𝜙1𝑝 

𝟐 𝜙21 𝜙22 ⋯ 𝜙2𝑝 

⋮ ⋮ ⋮ ⋱ ⋮ 

𝒏 𝜙𝑛1 𝜙𝑛2 ⋯ 𝜙𝑛𝑝 

Figure 8: SHAP matrix 

Based on this matrix we will identify groups with high prediction error and high production 

imbalance cost.  In order to find groups with similar explanation structure, we use a technique 

within unsupervised learning called agglomerative clustering. This technique gathers 

observations from the matrix into separate clusters based on their similarity (James et al., 

2013).  
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Figure 9: Example of dendrogram 

5.4 Hierarchical Clustering 

To find distinct groups with similar characteristics we use agglomerative clustering, which is 

a common method within hierarchical clustering. This is a bottom-up approach where all 

observations start at the bottom of the hierarchy. The final hierarchy is illustrated as a 

dendrogram. From the bottom, where all observations are their own cluster, similar 

observations/clusters are fused as we move upwards. At the highest level of the hierarchy there 

is simply one cluster, including every observation (James et al., 2013): 

  

 

 

 

 

In the example, there are nine different observations which are clustered together. A 

prespecified similarity measure decides which branches are combined. The height gives us 

information about the similarity of clusters. The higher the observations are fused, the less 

similar they tend to be. Final clusters are identified by cutting the tree with a horizontal line. 

Connected observations under this cut are grouped as single clusters. In the example, a cut at 

a height of 2.5 produces two distinct clusters.  

5.4.1 Agglomerative clustering algorithm  

Our dendrogram is given by the following algorithm (Hastie et al., 2009; James et al., 2013): 

1. Compute the pairwise “distance” between observations in the dataset. For this purpose, 

we use the Euclidean distance: 

 

 

𝑑(𝑥𝑖 , 𝑥𝑖´) =  ∑|𝑥𝑖𝑗 − 𝑥𝑖´𝑗|

𝑝

𝑗=1

 

 

(12) 
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The equation gives us the distance between observation 𝑖 and 𝑖´ in Euclidean space. This 

is computed pairwise for all 𝑛 observations, producing a 𝑛𝑥𝑛 distance matrix.  

 

2. For 𝑖 = 𝑛,   𝑛 − 1,   𝑛 − 2, … , 2 

 

I. Consider the dissimilarity between 𝑖 clusters and find the pair of clusters having 

the lowest distance between them. This pair is then fused. The distance between 

the two combined clusters decides the height at which they are combined. In the 

first iteration, there are 𝑛 clusters, and the distance matrix is used to find the pair 

of clusters with the lowest distance.  

II. Calculate the new pairwise inter-clustering distance between the 

 𝑖 − 1 outstanding clusters. A new measure is needed at this point since we 

consider the dissimilarity between a cluster with more than one observation and a 

cluster with either one or multiple observations. We use the average linkage 

approach: 

 

 
𝑑(𝐶1, 𝐶2) =  

1

𝑁𝐶1𝑁𝐶2
 ∑ ∑ 𝑑(𝑥𝑖 , 𝑥𝑖´)

𝑖∈𝐶2𝑖∈𝐶1

 

 

(13) 

𝑤ℎ𝑒𝑟𝑒 𝑁𝐶1 𝑎𝑛𝑑 𝑁𝐶2 𝑎𝑟𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒𝑠𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 

After using the average linkage approach on every pair of clusters we have a 

(𝑖 − 1)𝑥(𝑖 − 1) distance matrix. We then fuse and repeat the process. 

 

After clustering we need to choose the height at which we should cut the dendrogram. This 

cutting process decides the number of clusters obtained. In practice we often simply look at 

the dendrogram and choose a rational number of clusters. A rational choice means that the 

user should analyze the height on the dendrogram at which clusters are combined, and also the 

number of clusters preferred (James et al., 2013). In our situation, with almost 9000 

observations, the dendrogram will be large and difficult to interpret. A possible way to cut it 

is proposed by Joseph Larmarange. He proposes an algorithm where the superior partition to 

cut a dendrogram is decided by the higher relative loss of inertia criteria (Larmarange, 2020).   
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6. Analysis 

Our analysis is sectioned into global explanations, local explanations and grouped 

explanations. The basis for all the different scopes of explanations is the estimated SHAP 

values. To recap, the SHAP value is a feature´s marginal contribution to any given prediction, 

relative to the baseline. The baseline being the expected value of production.  

6.1 Global Explanations 

In this section we have aggregated the SHAP values for every observation in the test set and 

we aim to interpret them “at once” or in an a more global view. This provides especially two 

valuable insights. First, we are able to see what features that is most important in predicting 

wind power. Second, we are able to see the trained relationships between the response variable 

and features. From these explanations we are able to see if the trained relationships between 

features and the response variable are consistent with our prior beliefs. Specifically, we can 

see if they are consistent with the fundamental characteristics of wind turbines, such as their 

power curves.  

6.1.1 SHAP Summary 

  

 

 

 

 

 

 

 

 

Figure 10: SHAP summary plot 
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The SHAP summary plot shows the replan prediction model´s feature importance combined 

with each feature effects. The x-axis measures the SHAP-value, and the y-axis the different 

features. The black number beside a feature name is the mean absolute Shapley value for the 

corresponding feature. Each dot represents the SHAP-value for an individual observation and 

specific feature. For wind speed features, the color represents high or low wind speed values. 

This value is standardized (0 to 1). For the wind direction features, the color represents the 

wind direction in degrees. Green is represented at both 360 and 0 degree since this is the same 

wind direction. 

The SHAP summary plot grants a good overview of our model´s overall behavior. From the 

mean absolute SHAP-values we can tell that wind speed features have the greatest impact on 

the predictions. NWP200 wind speed is the most impactful feature. This means that NWP200 

wind speed has the largest marginal contribution to the predicted output on average. On the 

other side, NWP100 wind direction has the smallest marginal contribution to the predicted 

output on average. 

High wind speed values are associated with high and positive contribution to the predicted 

output as high wind speeds tends to lead to higher SHAP- values. Low wind speed values are 

the opposite, typically seen at the lower spectrum of SHAP values. 

The yellow color for wind direction represents a range of approximately 100-200 degrees 

which roughly equates to a range from the east to south-west. When an observation is in this 

range, it is associated with a positive, but weak contribution to the prediction. The green color 

represents the range of approximately 300 to 100 degrees which roughly covers the northern 

sphere. When an observation is in this range, wind direction is often associated with negative 

and weak contribution to the prediction. The wind roses in section 4.6 showed that in this 

range it tends to blow less frequent and at low wind speeds. The low wind speeds observed 

within this range is a possible explanation for why observations in this range tends to be 

followed by negative contribution from wind direction on the predicted output. The red color 

represents a range of 200 to 300 degrees. When an observation is in this range, wind direction 

often has no or a very weak negative contribution to the prediction. The wind roses showed 

that the fastest wind speeds tend to be observed most frequently when it blows in this direction. 

Therefore, it might be strange that this wind direction range, globally contributes less to wind 

power predictions. The potential explanation for this is discussed in the SHAP-dependence 
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section. The outlined relationship for wind direction is consistent for all the different NWP-

models.  

6.1.2 SHAP Dependence – Wind Speed Predictions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: SHAP dependence plots Wind Speed 
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The SHAP dependence plots display NWP-models wind speed forecast plotted against their 

SHAP value. SHAP-values on the y-axis, the wind speed values (m/s) on the x-axis. The colors 

correspond to the same observation’s observed wind direction value. The overall pattern is 

similar for all three NWP-models. By first ignoring the colors, we can explain wind speeds 

effect on the predicted output. The following interpretation considers NWP200´s dependence 

plot, figuratively split into four “regions” based on the level of wind speed: 

The first region is from 0 m/s towards 3 m/s approximately. Here, wind speed´s effect on the 

predicted output tend to be negative and stable at a SHAP value of -5. This means, that low 

wind speed values tend to contribute by reducing predicted production by 5 MW from the 

expected production at 12.307 MW. This region is heavily tied to the wind turbines cut-in 

speed. 

The second region is from 3 m/s to 12 m/s. Here, wind speed´s contribution to the predicted 

output tend to increase in a positive and linear fashion. At around 7 m/s the SHAP-values 

crosses zero, signifying the limit at which wind speeds starts to positively contribute to the 

predicted output, compared to the baseline. Given the steep trend in this region, we can see 

that small changes in the wind speed leads to big changes in the effect on predicted output, 

implying a high elasticity. Fluctuations in the NWP-models wind speed forecast in this region 

will likely have a greater effect on predicted production. Hence, inaccurate wind speed 

forecasts in this region will have a great impact on the wind power prediction model and 

increase the chances of large prediction errors.  

The third region is from approximately 12 m/s towards 20 m/s. Wind speed´s contribution to 

the predicted output tend to be positive and stable, with a SHAP-value around 8. This means, 

high wind speeds usually contribute with 8 MW relative to the baseline. The SHAP-values 

stop increasing as the turbines maximum capacity is getting closer. 

The fourth and last region is from 20 m/s and beyond. Wind speed’s contribution to the 

predicted output drops off steeply. This is probably caused by the wind turbines cut-off speed. 

The other NWP’s dependence plots can be viewed in the same light. However, NWP100 and 

NWP500 start increasing from the cut-on speed at an earlier and later wind speed values, 

respectively. They also reach the maximal capacity at an earlier and later wind speed values. 

This is probably due to the NWP-models different height profile, discussed in section 4.3.1. 

Wind speed´s SHAP dependence plots, and the different regions, shows our prediction model 
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ability to detect and estimate the different relationships and patterns during the power curve. 

In other words, the plots confirm that the random forest model is able to estimate the correct 

relationship between wind speed and wind power produced. 

Interaction effects arises when the effect of one feature depends on the value of another feature 

(James et al., 2013). When the wind direction is in the range of 0-100 degrees and 300-360 

degrees, the effect of wind speed seems to be more positive than other wind direction ranges. 

This is especially clear in the dependence plots of NWP200 and NWP100, and particularly 

when the SHAP values are below zero as illustrated by the horizontal line. 
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6.1.3 SHAP Dependence – Wind Direction Predictions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: SHAP dependence plots Wind Direction 
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These SHAP Dependence plots display the SHAP values of wind direction features plotted 

against the wind direction. The colors correspond to the same observations wind speed values, 

this time not standardized.  

From north to east (0-100 degrees), wind direction tends to contribute negatively to the 

predicted output. Between south-east and south (100-180 degrees), the SHAP-values spike 

upwards, so that the wind direction has a relatively high and positive contribution to the 

predicted output. From south to west (180-270), the SHAP-values drop off again. Within this 

range there is a great variability in the SHAP Values. Wind direction most often have a small, 

negative effect on the predicted output. However, there is a large number of observations that 

seemingly has no contribution and a great deal that also exhibits a low and positive SHAP-

values. A possible explanation for the large variance is interaction effects with the wind speed 

features. From west to north (270-360 degrees), wind direction tends to either have no effect 

or a slightly positive impact on the predicted output and relative to the baseline. 

Interaction effects are in place if the SHAP-values for wind direction depends on the wind 

speeds values. Potentially, we see two interaction effects in the dependence plots. The first 

can be seen when wind direction ranges from 100 to 180 degrees and 270 to 360 degrees. In 

these ranges, higher wind speeds, tend to coincide with high SHAP values for wind direction. 

This interaction effect occurs where yellow observations (high wind speed values) tend to 

systematically be above the purple observations (low wind speed values). It is particularly 

strong in the NWP200 and NWP100 dependence plot. 

The second interaction effect can be viewed in the range from 180 to 270 degrees. In this 

range, higher wind speed values tend to decrease the SHAP-values of wind direction. This 

occurs where yellow observations tend to lay below the purple observations. At first, the 

second interaction-effect seems odd, but there may be a good explanation for this. Akram 

(2014) analyzed the deviations between predicted and actual production levels at Ytre-Vikna. 

One of Akram’s findings was the reason for why production tends to be lower when it blows 

towards the south-west compared to the south-east, given equal wind speed values. The author 

concluded that a potential reason for this is the terrain and the placement of turbines. From the 

south-west, most of the turbines are placed in a straight line with short distances in between, 

typically 250-350 meter. This causes wake effects and turbulence. Wake effects are the 

decreased wind speed that occur as a result of the wind hitting/passing a previous wind turbine. 

Wake effects lead to lower production of wind power, even with high wind speeds in the area. 
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From the dependence plots of wind speed, we know that high wind speed levels are associated 

with a large and positive SHAP-value for wind speed. However, wind direction tends to 

counteract this positive effect and decrease the overall prediction when the wind direction is 

between 200-270 degrees and the wind speeds tend to be relatively high. This interaction effect 

seems to take the wake effect into account when it blows towards the south-west (200-270 

degrees), and subsequently lower the predicted production. 

When the wind blows in the range between south-east and north-east, the terrain is not as 

homogeneous or flat as it is for the south-west. There is larger variation of heights when the 

wind blows in this range. The heights at the wind park can be very steep when the wind blows 

in the south-east direction (Akram, 2014). Wind turbines placed on the top of heights tend to 

experience higher power output and lower turbulence than turbines placed on flatter ground. 

This is due to the speed-up effect (Eilenberg, 2012). That is, when the wind moves upwards 

steep heights, the wind speed increases when it reaches the top of the height. This might be 

the explanation of why wind direction’s effect on the prediction increases when the wind 

direction is between 100-180 degrees. 
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6.2 Local Explanations 

In this section, we use the SHAP-values to explain individual observations. The focus of this 

section will be to explain the observation in the test data with highest prediction error, and the 

observation with highest production imbalance cost. The force plot used to explain these 

individual observations, is applicable for any observation a user wants to get more insight into, 

here we simply examine two observations of interest. In the plots below, and the cluster 

analysis, WS and WD are abbreviations for wind speed and wind direction, respectively.  

6.2.1 Explaining the individual observation with highest prediction error  

 

 

 

 

 

 

 

 

The plot shows all features marginal contribution to the individual prediction with the highest 

prediction error. 𝜙 correspond to the features´ SHAP values, and 𝑥 correspond to the features´ 

actual values. 𝐸[𝑓(𝑥)] is the expected value when no features are contributing to the 

prediction. This is simply the average of all predicted values in the training data and referred 

to as the baseline. Each feature´s arrow is red and points to the right, which indicates that they 

all have a positive attribution to predicted production, increasing it from the baseline. All three 

wind speed features have a large, positive effect on the predicted output, and together, these 

features increase the predicted output with 22.276 MW relative to the baseline. All three wind 

direction features also have a positive effect. They increase the predicted production with 

3.327 MW from the baseline. This leads to the final prediction of 37.874 MW. 

Figure 13: Explanation of the individual observation with highest prediction error 
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The prediction of 37.874 MW is very far from the real production of only 5.76 MW. This leads 

to a production imbalance of 32.114 MW. TrønderEnergi is required to purchase this 

difference at regulating markets. The spot price is higher than the RK-price, which leads to a 

production imbalance cost. The production imbalance cost is 2435.19 NOK, which is 

significantly larger than the average production imbalance cost of 53.95 NOK. The cost is 

magnified by a large spread between the spot- and RK-price. TrønderEnergi sells the 

production imbalance of 32.114 MW to a significant lower price (10 NOK) than they are 

required to purchase it for (85.83 NOK) in order to maintain balance. 

In general, three reasons can explain why large production imbalances or prediction errors 

occurs. Firstly, NWP- model’s predicted wind speed and wind direction values can deviate 

heavily from their real values. Secondly, weaknesses in the training data which subsequently 

leads to poor models. Lastly, the local power grid can be out of service or there is unscheduled 

maintenance on one or multiple wind turbines (Akram, 2014).  

The force plot shows that the three wind speed features have the largest contributions to the 

prediction. 86.7 % of the total positive increase from the baseline stems from wind speed 

features. If they deviate heavily from the real wind speed values that hour, it subsequently 

leads to a poor prediction. The three NWP-models’ predictions are measured at different 

heights, and it was therefore difficult to collect representable real wind speed data for the time 

period. Consequently, it is difficult to measure the predicted wind speed values accuracy, and 

if they are the main reason for the large prediction error. According to Akram (2014), predicted 

wind speed values deviates heavily from their real values when the wind direction points 

towards the south-east direction at Ytre Vikna. In this case, all three NWPs tell us that the 

predicted wind direction is in the interval 146.2-149 degrees, or in the south-east direction. If 

Akram´s analysis and the wind direction predictions are consistent, there is great chance that 

the predicted wind speeds deviate from their real values. This may partially explain the large 

prediction error.  

The SHAP dependence plots indicates that the relationships estimated by the random forest 

model, are in accordance with the prior understating of how wind speed and wind direction 

impact power production. Hence, weaknesses in the training data seems to not be a factor 

contributing to the large prediction error. According to data received from TrønderEnergi, the 

available power from the turbines at the observation´s time, 16.02.20 05:00:00, were at 

maximum capacity. This means, there were no unscheduled maintenance at this hour. As a 
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result, the main contributor to the large prediction error seems to be overestimated and wrongly 

predicted wind speed values. 

NWP200, NWP100 and NWP500 predicted wind speeds of 15 m/s, 14.09 m/s and 22.5 m/s, 

respectively. In the SHAP dependence plots of wind speed, these are all in region three, were 

the contribution is large, but stable. Wind speed features contribution to predicted production 

seems to be too large when looking at the hour´s real production level. In other words, NWP-

models´ predicted wind speeds seems to be overestimated, and they will therefore have a large 

positive effect on the predicted production which leads to an overestimation. 

6.2.2 Explaining the individual observation with highest production 

imbalance cost 

 

Figure 14: Explanation of the individual observation with highest prod. 
imbalance cost 

All three wind speed features have a negative contribution to the predicted production, and 

together, these features decrease the predicted output with 9.802 MW relative to the baseline. 

NWP200 wind direction has a negative contribution and the two other wind direction features 

have a positive contribution to the predicted output. Together, they increase the predicted 

output with 0.19 MW.  
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Compared to the real production level of 4.416 MW, the predicted output of 2.657 MW is not 

too far away. NWPs wind speeds and wind directions seems to be somewhat accurate for this 

observation. However, it is here we find the largest production imbalance cost out of all 

observations in the test set. The main reason for this is the wide gap between the RK price and 

spot price. The prediction is an underestimate of the real production level, and the RK-price is 

larger than the spot price. From section 2.4, we know that this is what creates production 

imbalance cost 1. TrønderEnergi can sell their surplus power of 1.759 MW to the spot price 

77.38 NOK. However, if the replan prediction model had been better and predicted perfectly, 

they could have sold this amount at the RK-price of 3784.75 NOK. This is why the production 

imbalance cost is so large for this observation, although the prediction error is relatively small.  

In general, the spot price and RK-price tend to follow each other, and they have a correlation 

coefficient4 equal to 0.87. However, the RK-price has more significant positive and negative 

spikes throughout the time period, and also a higher standard deviation (see Appendix B). This 

implies that the RK-price fluctuations from its mean are greater than the spot price 

fluctuations, and therefore will wide gaps occasionally occur.  

 

 

 

 

 

 

 

 

 

 

4 Pearson Correlation 
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6.3 Cluster analysis – Identifying groups with high prediction 

error and high production imbalance cost  

In this section we use the SHAP values to create clusters and see if they can identify 

explanation structures with higher prediction errors and production imbalance costs, than 

others. As explained in section 5.3, the clusters are based on the test data and each 

observation´s SHAP-values. This implies that we cluster observations based on their 

explanation similarity (Molnar, 2019). An issue that often comes into play when dealing with 

clustering, is the question if you should standardize your features in order to get them on an 

equal scale before the clustering process (James et al., 2013). SHAP-values are all using the 

same scale or unit. Therefore, we do not face the issue of standardizing. This is one the benefits 

of using SHAP-values in a clustering analysis (Molnar, 2019; Niemerg, 2020).  

6.3.1 Three clusters - Results 

According to the Larmarange's (2020) algorithm discussed in section 5.4.1 and the higher 

relative loss of inertia criteria, the best partition to cut our dendrogram was by creating three 

distinct clusters.  

Cluster Mean 𝝓 

NWP100 

WD  

Mean 𝝓 

NWP500 

WD 

Mean 𝝓 

NWP200 

WD 

Mean 𝝓 

NWP100 

WS 

Mean 𝝓 

NWP500 

WS 

Mean 𝝓 

NWP200 

WS 

RMSE 

Prediction 

Error 

Random 

Forest 

RMSE 

Prediction 

Error TE 

Mean 

Production 

1 0,067 -0,020 0,040 -1,983 -1,576 -1,216 3,827 3,938 7,090 

2 0,442 0,179 0,415 6,220 4,360 5,081 5,681 5,706 28,044 

3 0,277 0,138 0,027 10,793 5,541 -7,917 10,117 10,654 22,776 

Table 3: Mean SHAP Values (𝜙), Prediction Errors and Production 

In table 3 we see the average SHAP-value for each feature and each cluster. Additionally, the 

table shows an overview of the clusters forecast accuracy. The measure used to compute each 

cluster´s forecast accuracy, is the root-mean-square of error (RMSE). The predictions for the 

observations within each cluster are all based on the same data, and RMSE is therefore the 

preferable measure since it is also in the same scale as our predictions (Hyndman & Koehler, 

2006). In this context, RMSE is the predictions average deviation from production in terms of 

MW. RMSE is computed for our model (Random Forest) and TrønderEnergi´s model (TE).  
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Cluster Mean NWP100 

WD 

Mean NWP500 

WD 

Mean NWP200 

WD 

Mean NWP100 

WS 

Mean NWP500 

WS 

Mean NWP200 

WS  

1 206,187 217,814 197,142 3,876 7,821 5,910 

2 234,619 235,947 232,001 9,519 17,604 11,578 

3 212,270 235,493 193,675 10,263 17,445 6,560 

Table 4: Mean Numerical Weather Predictions – m/s and degrees 

In table 4 we have the mean real values of each feature. For wind speed features, this means 

the average value in terms of m/s, and for wind direction it means the average value in terms 

of degrees. The average wind direction values are calculated using the resultant vector 

average wind direction method, presented by Grange (2014). 

Cluster Mean 

RK-

price 

Mean 

spot 

price 

Mean total 

production 

imbalance 

cost 

Max total 

production 

imbalance 

cost 

Mean 

monetary 

loss 

Number of 

observations 

Number of 

under-

estimations 

Number of 

over-

estimations 

1 180,412 184,560 43,554 6520,495 29,326 6405 2285 4120 

2 170,143 188,516 79,385 4309,147 76,444 2539 1341 1198 

3 80,451 108,464 156,052 963,422 65,817 20 10 10 

Table 5: Mean Economical Variables – Prices, Prod. Imbalance Cost and 
Monetary Loss 

Table 5 shows economic variables that impacts TrønderEnergi´s net income. First, we see the 

average RK-price and spot price. Then comes the production imbalance cost presented in 

section 2.4, we include the mean production imbalance cost, max production imbalance cost, 

and average monetary loss. At the end we have the number of observations in each cluster, the 

number of underestimations (surplus) and the number of overestimations (deficits).  

6.3.2 Three clusters - Analysis 

From the SHAP summary plot in section 6.1.1, we know that the wind speed features typically 

have the largest contribution to the prediction. This is also seen in table 3, for all of the three 

clusters. Predictions with a negative contribution on the predicted output from NWP200 wind 

speed, and a positive contribution from NWP100 and NWP500 wind speed, tend to have 

inaccurate predictions. This is seen for cluster three in table 3, where the RMSE equals 10.117 
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MW. When wind speed features effect on the predicted output pulling in the same direction, 

predictions tend to be better when measured in terms of RMSE. In cluster two, all wind speed 

features have a positive contribution to the predicted output on average. The RMSE for cluster 

two is 5.681 MW. This is almost half of that of cluster three. In cluster one, all wind speed 

features have a negative contribution, and RMSE equals 3.827 MW. The predictive accuracy 

therefore seems superior for observations where the NWP-models pull in the same direction. 

In other words, the model is more accurate when there is a low degree of variability in the 

weather forecasts. Further, it may imply that the model is more accurate when it is less windy, 

so that the contributions from wind speed features are negative. 

Table 4 gives a more intuitive interpretation about the cluster’s predictive accuracy. In order 

to not create any confusion in the discussion, when referring to high or low wind speeds, we 

need to consider NWP-models different height profile, as discussed in section 4.3.1. This 

means, a high estimated wind speed value for NWP100 does not necessary imply a high 

estimated wind speed value for NWP500, where the wind speed is estimated at a higher height 

profile. In cluster three, NWP200´s average wind speed value is low, while NWP100 and 

NWP500 average wind speeds are relatively high. We can say that there is a “disagreement” 

between the three NWP models in terms of whether the wind speed is high or low. In these 

situations, the model tends to predict worse compared to cluster one and two, where the NWPs 

are closer to each other. In cluster two, the wind speed features have less spread on average. 

In these cases, the RMSE value is half of that seen in cluster three where the spread is greater. 

In cluster one, there is a much smaller spread between the NWPs. When this is the case, the 

model´s predictions tend to be better in terms of RMSE.  

A potential reason for why cluster one is superior to cluster two in terms of RMSE is that the 

NWP-models tend to exhibit low wind speeds in cluster one. These values are at end of the 

flat section at the beginning of the power curve (section 4.3.1). Under- or overestimated wind 

speeds are not affecting the prediction too much at this stage of the power curve. As a result, 

NWP-models with a low predictive accuracy will not affect our prediction model´s accuracy 

significantly, as long as the wind speeds are low. On another side, the NWP-models have a 

higher wind speed value in cluster two on average. These values are clustered around the 

region of the power curve with much greater production elasticity. Under– and overestimations 

of wind speeds changes the predicted production level to a much greater extent in this region 

of the power curve. This leads to a larger deviation between predicted and real production than 

seen in cluster one, and subsequently a larger RMSE value. This conclusion is consistent with 
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Akram (2014) analysis of TrønderEnergi´s prediction models´, and their errors at Ytre Vikna 

in 2014. The same explanations could be achieved by looking at wind speed features SHAP 

dependence plot. By looking at the SHAP dependence plots in section 6.1.2, we see much of 

the same. The elasticity is much smaller in region one compared to region two, and so changes 

in wind speed leads to smaller changes in the predicted output for region one. The high 

elasticity in region two leads to a higher likelihood of great prediction errors when the wind 

speed is in region two. 

Table 5 shows that the average production imbalance cost for the observations within cluster 

one, two and three are 43.554 NOK, 79.385 NOK and 156.052 NOK, respectively. Cluster 

three has the largest production imbalance cost on average. This implies that observations with 

a similar explanation structure to cluster three, tend to produce larger production imbalance 

costs. In general, the size of the production imbalance cost depends on three factors. First, 

whether the prediction is an over- or underestimation relative to the real production level. 

Second, the relationship between the spot– and RK-price. Third, the size of production 

imbalance/ prediction error.  

The average spot price is greater than the average RK-price for all three clusters. From section 

2.4, we know that when the spot price is greater than the RK-price, it is not beneficial to 

overestimate production levels. The proportion of overestimated observations is 

approximately 50 % for cluster three and two, and roughly 60 % for cluster one. The spread 

between the spot – and RK-price is larger for cluster two and three on average, which means 

it will be extra costly to overestimate production for these clusters. From table one, we know 

that cluster three has the largest prediction error on average, cluster two has the second largest, 

and cluster one has the smallest.  

A greater RK–price relative to the spot price, a great number of overestimated observations, 

and a large prediction error are all reasons for why cluster three has largest average production 

imbalance costs. When NWPs wind speed predictions “disagree” about the wind speeds, the 

prediction tend to be inaccurate, and consequently lead to higher average production 

imbalance costs. Luckily, there is only twenty observations throughout the test data that 

exhibits this explanation structure. 

Low spread between the RK-price and the spot price and a small prediction error are the main 

reasons for why cluster one has the smallest average production imbalance cost. This implies, 
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that when NWPs wind speed predictions all have a negative effect on the predicted output, or 

they simply predict low wind speeds, the prediction accuracy tends to be better, and the 

production imbalance cost is low. However, this is only based on the average of all the 

observations in the cluster. From table three, we see that cluster one actually has the 

observation with the largest production imbalance cost. This is the observation explained in 

section 6.2.2. We know that the prediction error was low for this observation. However, the 

RK-price was at the greatest, the prediction underestimated the real production level, and the 

spread between the replan – and spot price was extremely wide. Due to the difference between 

the prices, the production imbalance cost became very large, even though the prediction error 

was low. This implies, that observations with similar explanation structure might vary greatly 

in terms of production imbalance costs. This mainly occurs when the difference between the 

spot- and RK-price is particularly great. This spread is controlled through supply and demand 

in the power markets and is therefore outside of TrønderEnergi´s control. Extreme situations 

such as this will occur now and then and should be expected as long as it is not possible to 

perfectly predict production levels. 

We would also like to point out that the choice of where to cut the dendrogram is based on a 

simple rule in this cluster analysis. However, there are different suggestions to decide where 

to cut a dendrogram. Instances of such suggestions are the Elbow, Silhouette and Gap 

statistical method. There is no common census what the right cut-off is, and the choice is often 

situation-based. The objective is to find clusters that provide us with useful information about 

observations typical explanation structure. Hence, for our objective, it might be useful to 

analyze a larger number of clusters as well. In the appendix we show the results of using six 

clusters, however, the general findings are very much the same.  
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7. Discussion 

7.1 The Importance of Interpretable Machine Learning for 

Trønder-Energi 

According to Molnar (2019), interpretability is essential when a prediction model has a 

significant impact on the stakeholders. TrønderEnergi has multiple prediction models that are 

trained to forecast the upcoming wind power production at their wind parks around Norway. 

As we have seen, large prediction errors tend to have a significant impact and may lead to poor 

outcomes for TrønderEnergi. Poor in the sense that they increase the company´s production 

imbalance cost, which subsequently leads to a negative impact on TrønderEnergi´s bottom 

line. Interpretability and understanding why a model behaved in a certain way, is important 

due to the models´ economic impact. Stakeholders might require explanations for why 

prediction errors and imbalances occur, and why they fluctuate over the course of a year. 

Interpretable machine learning and model-agnostics methods can help to answer these 

questions and explain why the prediction model behaved in a certain why.  

In a recent report from PwC, Oxborough et al. (2018) discusses the main drivers of whether 

interpretability is crucial to implement or not. They are: 

1. The potential economic impact of a single prediction. 

2. The economic utility of understanding why the prediction was made with respect to 

the choice of actions that may be taken as the result of the prediction. 

3. The economic utility of the information gleaned from understanding trends and 

patterns across multiple predictions.  

TrønderEnergi´s energy management and bidding process in the day-ahead market and 

balancing market are based on their prediction models. In section 6.2, we saw that a single 

prediction can create a significant production imbalance cost. The total production imbalance 

cost for TrønderEnergi throughout the one year of test data is 483 644 NOK when estimates 

are based on our model. This amount could potentially be reduced with better insight into the 

model´s behavior. The cluster analysis in section 6.3 presents itself as an economic tool to 

understand trends and patterns across groups of predictions. A pattern seen in the cluster 

analysis, with both three – and six clusters, is that when NWP-models differentiate in their 

estimate of wind speed for any given hour, the prediction model tends to predict poorly on an 
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average basis. For instance, in section 6.3.1, the same pattern is seen for cluster three, while 

cluster one and two have NWP-models that have smaller differences in their estimates of wind 

speed. Cluster three has twice as big RMSE as that of cluster one and two. Observations with 

a similar explanation structure to cluster three therefore has the least accurate predictions on 

average. A possible solution is to develop prediction models that only applies features that 

exhibit roughly the same estimates of wind speeds across the different height profiles. For 

instance, if two of the NWPs are considerably different from the third, the model will only use 

the two most similar. By using alternative prediction models in periods where NWP-models 

differentiates greatly in regard to wind speeds, the replan predictions´ accuracy can be 

improved, and subsequently increase TrønderEnergi´s income.  

TrønderEnergi´s prediction models have a significant impact on the stakeholders. 

Furthermore, we can say that the predictions generated by these models are in line with PWCs 

critical factors outlining why interpretability is a crucial aspect in a practical setting.  

7.2 Business Benefits with Interperatble Machine Learning 

Oxborough et al. (2018) discusses how interpretable machine learning can be applied as a 

competitive advantage for businesses. In order to optimize a model´s performance, they 

suggest retaining control, maintain trust and comply with accountability. To optimize the 

decision making they suggest retaining safety, maintain ethics and comply with regulation. In 

the sense of this thesis, and in general for wind power predictions, we see retaining control, 

maintaining trust, and complying with regulations as the most important factors. In the 

sections to come, we will discuss these three factors to see how interpretable machine learning 

benefits TrønderEnergi.  

7.2.1 Regulation  

The usage of AI and machine learning have increased rapidly over the last years. The rapid 

growth partially explains why it is so lightly regulated. However, as the usage of AI increases 

and starts impacting individuals´ life to a larger extent, regulations will increase. Standards for 

accuracy, transparency and reasoning will be focus areas for governments when implementing 

new regulations (Oxborough et al., 2018).  
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A regulation from EU that came into effect in 2018, requires a “right to an explanation” for 

automated individual decision-making processes. It requires a business to explain the 

decisions of their algorithm to individuals, and especially when it impacts an individual legally 

and financially. Denmark was the first country to implement a compulsory regulation for AI 

and Data Ethics, and it came into effect in July of 2020. The regulation gives an individual the 

right to an explanation. Specifically, companies need to deliver information regarding their 

algorithms, and demonstrate they are transparent and fair (Research, 2020; Sønnersgaard, 

2020). The Norwegian Board of Technology´s main task is to give the Norwegian Government 

recommendations about technological regulations, and the usage of new technology. In a 

report written in 2018, they proposed a strategy for using AI in Norway. One of the fourteen 

proposal in this strategy was “the right to an explanation”. It says that the Norwegian 

Government should legislate a right to explanation and avoid applying decision-systems 

without good enough explanations (Teknologirådet, 2018). From the new regulations and the 

strategy proposal, we see an increasing focus on the “right to an explanation” aspect. 

Consequently, there is a great probability that such regulations will be implemented in Norway 

as well, covering all types of industries and markets. In the future, it should come as no surprise 

if TrønderEnergi are required to explain their decisions based on machine learning models.  

TrønderEnergi is bound by law to ensure their prognosis is their best estimate of actual 

production. This is to create a balance in the market, and also to maximize the social welfare 

(NordPool, 2020). Bids from participants in the day-ahead marked must be based on its 

fundamental conditions and marginal-cost. The Norwegian Energy Regulatory Authority 

(NVE – RME) monitors the power suppliers’ bids in terms of volume and prices. If they notice 

significant deviations in a supplier´s bid compared to other participants, they might require an 

explanation. However, a phone call with the Norwegian Energy Regulatory Authority made it 

clear that a prediction model is categorized as a fundamental condition. Therefore, it is often 

enough to explain significant deviations with the model´s inaccuracy in itself, without 

exploring why this prediction error actually occurred.  

As discussed in section 2.3.1, in periods where the RK-price is systematically higher than the 

day-ahead price, there is an economic incentive to underestimate the prognosis on the day-

ahead market. We observe particular months with a systematically larger RK-price than the 

spot price throughout the data´s time interval. For instance, August is a month where this tends 

to be the case (see Appendix C). Potentially, a power supplier can train a separate model that 

systematically underestimate the predicted production level at the day-ahead market. 
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Therefore, in our opinion, if the Norwegian Energy Regulatory Authority wishes to maximize 

the social welfare in the market and ensure the law is followed, then they need to require more 

detailed information about the algorithms used to predict power production, and also require 

individual and global explanations of these predictions.  

In conclusion, there is an increasing focus on regulations that require a “right to an 

explanation” in decision that uses machine learning processes. When the RK-price is higher 

than the spot price, there is an economic incentive to violate the law, without the fear of getting 

caught. If the Norwegian Energy Regulatory Authority does not possess full insight into power 

suppliers´ prognosis, it might be difficult to uncover violations. These two aspects might 

require TrønderEnergi to explain their predictions in more detail in the upcoming future. By 

developing an interpretable machine learning framework like ours, TrønderEnergi might gain 

competitive advantages or business benefit due to their proactive behavior. If regulations 

regarding the right to an explanation starts to become popular in Norway, SHAP-values is 

potentially the only legally compliant method (Molnar, 2019). This is mainly because it is 

based on a solid theory that distributes the features contribution to the predicted output fairly 

and consistently. The framework in this thesis and the analysis therefore seems to be a good 

choice when considering legal explanations.   

7.2.2 Control 

Interpretable machine learning can help TrønderEnergi to retain control of their machine 

learning models. Control can be accomplished by monitoring the prediction model´s behavior, 

pointing out its errors, and it enable us to shut down the system or use alternative models if 

required. That is exactly what the explanations in this analysis helped us to do. First of all, 

they gave us better insight about the features used to predict wind power. Local explanations 

helped us to better explain potential reasons why an individual prediction failed in terms of 

prediction errors, and the economic issues that arises as a result of production imbalances. 

Having a better understanding of these issues helps TrønderEnergi to better maintain a certain 

level of control. The cluster analysis in section 6.3 is especially useful. It helps us to point out 

specific situations where the model tends to systematically fail in terms of prediction errors 

and production imbalance costs. As mentioned earlier, a potential solution is to use alternative 

machine learning models for observations where the original model historically has failed to 

predict wind power accurately. For instance, an option is to use alternative machine learning 

models when your observation has a similar explanation structure to that of cluster three in 
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section 6.3.1. Potentially, this could improve the replan predictions overall, and help 

TrønderEnergi to get a stable performance. 

7.2.3 Trust 

67 % of business leaders thinks AI has an adverse impact on stakeholders’ level of trust 

(Oxborough et al., 2018). Regarding TrønderEnergi and machine learning, trust is built by 

providing adequate information to their stakeholders about the prediction models. Adequate 

information in the sense that the models are making the correct decision for the right reasons. 

Global explanations in section 6.1 covers this aspect well, especially when considering domain 

experts and operators in wind power production. These types of explanations help to 

understand the prediction model´s global behaviour and help to verify if the relationships 

learned are consistent with the fundamental characteristics at Ytre Vikna. Specifically, they 

help domain experts within wind power production to trust the model and verify the reliability 

of the prediction model applied. For instance, the SHAP dependence plots for wind speed, 

shows random forests capability to model the wind turbines power curve with NWP-models 

wind speed prediction measured at different heights. 

Explicability ability helps to detect errors in the model or if there is any bias in the training 

data used to train the model. A deeper insight into the model helps to understand why it 

occasionally fails, and therefore makes it simpler to enhance the predictions (Oxborough et 

al., 2018). By using interpretable machine learning, TrønderEnergi can improve their 

predictions through a deeper understanding of their models. As explained in section 7.2.2, one 

option to improve the predictions is by using the clusters obtained in section 6.3. Hopefully, 

this will improve the predictions accuracy and make them more stable over time. Stable results 

build trust and makes it easier for stakeholders to accept TrønderEnergi´s machine learning 

models.  

The production central is a department within TrønderEnergi that monitors their power plants 

24/7. They have the short-term responsibility of planning the operation at TrønderEnergi´s 

power plants. This includes the responsibility of bids in the day-ahead - and balancing market 

(Trønder Energi, 2020). The volumes for these bids are based on the machine learning models 

developed for each power plant. The individuals employed at the production central are 

seldom experts of machine learning, and in periods where the models tend to predict wrongly, 

it is easy to lose trust in the machine. By providing reasonable explanations to the people 
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working at the production central, their knowledge about these models increases, and their 

trust levels are also likely to increase. One type of such reasonable explanations is shown in 

section 6.2 (local explanations). If the people working at the production central, or in general 

internal stakeholders, have a higher confidence and trust in machine learning processes, then 

it will be much easier for TrønderEnergi to implement new machine learning models/processes 

in the coming future. Hence, in our opinion, it is beneficial for TrønderEnergi to implement 

model-agnostic models in order to increase internal stakeholders trust levels. Subsequently, it 

will be easier to implement new innovative solutions with fewer obstacles.  

7.3 Limitations 

To answer this thesis´s research question, an new version of KernelSHAP from Aas et al. 

(2019) was used to explain individual wind power predictions. This method takes feature 

dependency into account. Features conditional distributions are estimated to handle 

dependency. As explained in section 5.2.1, we use a combined approach to estimate 

conditional distributions. Specifically, the empirical distribution for subset of dimension equal 

to 1 and Gaussian distribution otherwise.  

A simulated experiment in Aas et al. (2019) paper shows that their methods provide more 

accurate estimates of Shapley values, compared to the original KernelSHAP (Lundberg & Lee, 

2017) and TreeSHAP (Lundberg et al., 2019). Although the improved KernelSHAP used in 

this thesis provides more accurate explanations, the same experiment also displays a certain 

uncertainty. This means, our estimates are not perfect approximation of Shapley values. This 

needs to be considered when interpreting this analysis.  

Real Shapley values are difficult to compute due to the dimensional problem that arises in 

computing them. Therefore, explanations have an unquantified uncertainty. However, when 

summarizing features explanation as mean attributions, like the cluster analysis, there is a 

possibility to quantify the uncertainty. Merrick & Taly (2020) propose a solution using the 

bootstrap approach to quantify mean attributions uncertainty. In section 6.3.1 cluster analysis, 

uncertainty is quantified for mean Shapley values using the bootstrap approach to compute 

their confidence interval (see Appendix D). The confidence intervals (CI) for cluster one, two 

and three shows in general a low uncertainty since the CI spans very close to the mean value. 

This strengthens the validity of the results obtained in section 6.3. 
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8. Conclusion 

In this thesis we have evaluated whether interpretable machine learning gives TrønderEnergi 

valuable insight into their wind power prediction models. For this, we needed a separate 

interpretation method that is applicable to explain any type of machine learning model. The 

interpretation model needed to yield explanations for single observations as well as the model 

as a whole. SHapley Additive exPlanations (Lundberg & Lee, 2017)  and specifically a new 

version of the KernelSHAP approach (Aas et al., 2019) presented us with a suitable 

framework. It allowed us to examine which features that contribute the most to the final 

prediction of any given observation, and it let us aggregate these observations to interpret the 

global effects of features. When we had computed explanations for every observation in the 

test set, we could also use clustering to group explanations with similar explanation structure. 

The global analysis showed that the three wind speed features contributes the most to the 

predicted output. Wind direction has smaller contribution in general. The SHAP-dependence 

plots gave especially two valuable insights. First, they verified that the trained relationships 

between wind speed and production are in accordance with wind turbines fundamentals or the 

power curve. Second, they exhibit the importance of wind direction as a feature in wind power 

predictions. This includes random forest’s ability to consider the complex terrain at Ytre 

Vikna. When using wind direction as a feature, random forest seems to take speed-up effects 

and wake effects into account. These insights could potentially increase the trust of those 

domain experts or wind power engineers that doubt on using machine learning in wind power 

predictions.  

In the section with local explanations, we chose to focus on explaining the observation with 

the highest prediction error and the observation with the highest production imbalance cost. 

However, the methodology can be applied to any observation, so these are just interesting 

examples. In the case of the largest prediction error, this seems to be caused by bad estimates 

of wind speed. The large imbalance cost is mainly caused by the huge spread between the spot 

and RK-price and the fact that the prediction resulted in an underestimation of actual 

production. 

When clustering the observations based on their explanations, the goal was to find groups of 

observations that had the same basic explanation structure. Considering the prediction model´s 

performance, the most valuable insights were found in this section. The cluster analysis found 
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groups of observations that had different patterns when considering prediction error and 

production imbalance cost. The main findings were the following: When NWP-models 

differentiate in their estimate of wind speed for any given hour, the prediction model tends to 

predict worse on an average. When predicted wind speed was relatively high for all NWP-

models, the predictions where sufficiently better in terms of predictive accuracy. Low 

predicted wind speeds for all NWP-models, results in the predictions closest to actual 

production, likely because of low production elasticity when wind speeds are low. 

In our discussion we establish why interpretable machine learning grants valuable insights into 

wind power predictions. Three areas we focus on are to comply with regulation, retaining 

control, and maintaining trust. Regulations may be put forward, that demands a sound 

reasoning for individual predictions. Local explanations can be used to see how features 

contributed to the prediction and uncover any irregularities. 

Control is an area of focus because with interpretable machine learning you maintain a certain 

control over developments regarding the learning process. This control can be exploited to 

improve future versions of machine learning models, and subsequently improve the model´s 

predictive performance. 

Trust can be important in an operative manner. The people working on the production central 

or in general internal stakeholders have little experience with machine learning. By giving 

them simple explanations as to why things are like they are, they might improve their 

understanding of the system as a whole. Increasing trust is beneficial since it potentially eases 

the implementation of new machine learning models in the future with less internal obstacles.   

In conclusion, the three explanation frameworks proposed in this thesis, are all providing 

valuable insight into our complex prediction model. Combining this with the fact that 

interpretable machine learning is a potential competitive advantage through trust, control, and 

regulations, we definitively see it as a valuable asset for TrønderEnergi. Going forwards we 

think the next step would be to expand upon this thesis by including both the day-ahead and 

replan prognosis and digging deeper into the spread between spot prices and RK-prices. This 

could lead to a better understanding of interactions which we were not able to explore. 
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Appendix 

Appendix A 

 

 

 

RMSE with 

Transformation 

RMSE without 

Transformation 

4.4509 4.4498 
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Appendix B 

Relationship between the spot- and RK-price in the period  

from 09. September 2017 to 09. September 2020 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Mean Median Max Min Standard 

Deviation 

Spot Price 312.3 NOK 330.2 NOK 2454.3 NOK 0 145.9 NOK 

RK-price 301.3 NOK 315.1 NOK 3784.4 NOK 0 161.5 NOK 
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Appendix C 

Overview of months with an average RK-price larger than the average spot price in the 

period from 09. September 2017 to 09. September 2020 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Year Month Mean RK-price Mean Spot Price 

2017 November 313,18 NOK 308,22 NOK 

2018 August  497,96 NOK 494,63 NOK 

2019 August  365,56 NOK 364,60 NOK 

2020 June 63,56 NOK 33,78 NOK 

2020 August  75,44 NOK 67,87 NOK 

2020 September 184,59 NOK 177,14 NOK 
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Appendix D 

Three Clusters – Mean Shapley Values with confidence intervals, computed 

using the bootstrap approach. 

 

Cluster 1 

The table displays an overview of features average SHAP-value, and their 

respective confidence intervals for cluster number one in section 6.3.1. Mean 𝜙 

values are the same as the values shown in table 3, and the confidence intervals 

illustrate these values uncertainty. 

 

 

 

 

 

 

 

 

The histograms show the distribution of sampled mean SHAP-values computed 

with the bootstrap approach, and for cluster one. It also displays the overall 

mean, and 2.5 % - and 97.5 % percentiles or the confidence intervals.  

 

 

 

 

 

 

 

Feature Mean 𝝓 2.5% 97.5% 

NWP100 Wind Direction 0.067 0.049 0.085 

NWP100 Wind Speed -1.982 -2.049 -1.917 

NWP500 Wind Direction -0.02 -0.039 -0.001 

NWP500 Wind Speed -1.577 -1.659 -1.495 

NWP200 Wind Direction 0.04 0.017 0.064 

NWP200 Wind Speed -1.216 -1.306 -1.123 



 74 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 75 

Cluster 2 

The table displays an overview of features average SHAP-value, and their 

respective confidence intervals for cluster number two in section 6.3.1. Mean 𝜙 

values are the same as the values shown in table 3, and the confidence intervals 

illustrate these values uncertainty. 

 

  

 

 

 

 

 

 

Cluster 3 

The table displays an overview of features average SHAP-value, and their 

respective confidence intervals for cluster number three in section 6.3.1. Mean 

𝜙 values are the same as the values shown in table 3, and the confidence 

intervals illustrate these values uncertainty. 

 

 

 

 

 

 

 

 

Feature Mean 𝝓 2.5% 97.5% 

NWP100 Wind Direction 0.442 0.414 0.47 

NWP100 Wind Speed 6.22 6.122 6.32 

NWP500 Wind direction 0.179 0.149 0.209 

NWP500 Wind speed 4.36 4.225 4.494 

NWP200 Wind Direction 0.415 0.376 0.455 

NWP200 Wind Speed 5.082 4.921 5.241 

Feature Mean 𝝓 2.5% 97.5% 

NWP100 Wind Direction 0.281 -0.037 0.588 

NWP100 Wind Speed 10.796 9.636 11.632 

NWP500 Wind direction 0.139 -0.077 0.355 

NWP500 Wind speed 5.539 3.263 7.705 

NWP200 Wind Direction 0.032 -0.409 0.534 

NWP200 Wind Speed -7.911 -9.291 -6.504 
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Appendix E 

R-implementations and libraries used in our methodologies 

Library Methodology What it does 

“Ranger” Random Forest Used to train our prediction 

model. Optimized for high 

dimensions, but also runs 

faster at low dimensions due 

to pre-ordering and memory 

efficiency (Wright & Ziegler, 

2017). 

“Shapr” Shapley additive explanations Used to estimate Shapley 

values. Applies the improved 

version of KernelSHAP (Aas 

et al., 2019).  

“Dist” Step 1. Agglomerative cluster 

algorithm 

Calculates the Euclidean 

distance between each 

observation. Used as input in 

hclust. 

 

“Hclust” Step 2. Agglomerative cluster 

algorithm 

Calculates the dendogram. 

“Best.cuttree” Agglomerative clustering Used to find the superior 

partition to cut the 

dendrogram.  
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Appendix F 

Six Clusters – Results 

Mean Shapley Values (𝝓), Prediction Errors and Production 

Cluster Mean 𝝓 

NWP10

0 WD  

Mean 𝝓 

NWP500 WD 

Mean 𝝓 

NWP20

0 WD 

Mean 𝝓 

NWP100 

WS 

Mean 𝝓 

NWP500 WS 

Mean 𝝓 

NWP200 

WS 

RMSE 

Prediction 

Error 

Random 

Forest 

RMSE 

Prediction 

Error TE 

Mean 

Production 

1 0,299 0,201 0,545 -2,427 4,577 3,651 6,192 6,311 18,123 

2 0,456 0,202 0,433 6,286 4,680 4,956 5,642 5,686 28,349 

3 0,025 -0,060 -0,052 -1,902 -2,696 -2,102 3,214 3,329 5,083 

4 0,098 -0,405 -0,028 4,562 -3,689 8,247 6,590 6,184 20,351 

5 0,374 0,176 0,018 11,264 5,229 -7,720 8,711 9,859 22,050 

6 -1,565 -0,583 0,192 1,848 11,473 -11,668 24,610 20,576 36,576 

 

Mean Numerical Weather Predictions – m/s and degrees 

 

 

 

 

 

 

 

 

Cluster Mean 

NWP100 

WD 

Mean NWP500 WD Mean 

NWP200 

WD 

Mean 

NWP100 WS 

Mean NWP500 WS Mean 

NWP200 WS 

1 174,159 187,100 175,866 5,206 15,078 9,107 

2 233,989 235,531 231,239 9,598 17,941 11,627 

3 261,925 252,287 246,115 3,634 6,501 5,328 

4 284,342 265,172 271,595 7,524 9,132 10,351 

5 211,043 230,784 191,653 10,483 17,374 6,753 

6 11,295 355,300 288,200 6,078 18,800 2,900 
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Mean Economical Variables – Prices, Loss of Income and Monetary Loss 

Cluster Mean 

RK-

price 

Mean 

spot 

price 

Mean total 

production 

imbalance 

cost 

Max total 

production 

imbalance 

cost 

Mean 

monetary 

loss 

Number of 

observations 

Number of 

under-

estimations 

Number of 

over-

estimations 

1 218,941 232,752 81,356 3841,946 58,799 986 421 565 

2 168,939 188,817 79,174 4309,147 74,009 2442 1300 1142 

3 173,402 175,792 36,676 6520,495 23,963 5419 1864 3555 

4 200,433 180,956 84,718 907,289 137,753 97 41 56 

5 81,905 111,392 164,265 963,422 69,277 19 9 10 

6 52,820 52,822 0,000 0,000 0,061 1 1 0 

 

Six Clusters - Analysis 

The conclusions of the tables above are very equal to they in section 6.3.2. Cluster one, four 

and five all exhibit differences between the NWP-models wind speed feature effect on 

predicted output. In these clusters two NWP-models always pull in a different direction than 

the third. Two NWP-models wind speed features have a positive effect on the predicted output, 

and the last NWP-model wind speed feature has a negative effect on the predicted output. 

Looking away from cluster six which consists of only one observation, cluster one, four and 

five provides the largest prediction errors in terms of RMSE. Cluster five has the clearly largest 

RMSE value among them. This may imply that when NWP200 wind speed is the NWP-model 

that pulls in the other direction, the random forest model tends to perform the worst. This is 

consistent with the conclusion from section 6.3.1. Cluster two and three support the statement 

in section 6.3.1, that observations where the NWP-models wind speed predictions are in 

harmony tend to have the best accuracy in terms of RMSE. When all have a negative effect 

on the predicted output, implying low wind speeds, the predictive accuracy improves as 

elasticity of wind speeds effect on the prediction is low. 
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Appendix G 

Feature distributions 
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Appendix H 

Enercon E70 2,3MW power curve provided by the manufacturer 

 


