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Abstract

This thesis investigates whether the announcement of cartel decisions by the European

Commission provides new information for investors and if Twitter data can be used to

explain abnormal returns. The dataset consists of 39 cartel cases involving 124 different

companies from January 2010 to May 2021. Using a standard event study methodology,

we find evidence that supports previous studies findings and confirm that variables such as

fines, geographic location, and the size of a company impact abnormal returns in relation

to the European commission’s cartel decision. These variables are confirmed important by

the use of single-factor regression and decision trees. The Twitter variables were not found

to have any explanatory power on abnormal returns. A statistical significant cumulative

abnormal return in the event window [-15,15] of -2.29% was found in the sample containing

all fined companies. We also find that companies that receive immunity from the European

Commission have no significant cumulative abnormal returns on average.

Keywords – European Cartels, Event Study, Sentiment Analysis, Twitter
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1 Introduction

Ideally, the penalty for committing corporate fraud would equal the social cost of the crime.

The fines imposed by the court does, however, often only represent a small percentage of

this cost. If the size of the punishment is too small, the chance that corporations repeat

their actions increases. However, fines are not the only means of punishment. Private

sanctions from the public entail a potentially significant cost for the corporations. Legal

and economic literature covering the topic of corporate fraud agree that private sanctions

often can deter corporate misbehaviour as much as public sanctions like fines.

While fines by nature are quantified, private sanctions from the loss of reputation and

standings in society are not and can only be estimated. Following Mariuzzo et al. (2020a),

who look at the relationship between public and private sanctions on EU cartel cases with

the help of newspaper sentiment, we try in this thesis to replicate parts of their results

and to evaluate the intangible costs of private sanctions by the use of a dictionary-based

Twitter sentiment analysis, event study methodology and newer data.

The thesis bases itself on the assumptions of the efficient market hypothesis, which

states that people are rational investors and that stock prices should reflect all available

information (Fama, 1970). With this theory of economics in mind, we aim to find out if

the relative difference in public sentiment and coverage on Twitter between companies

can explain differences seen in stock performance around the cartel decision date. Our

expectations in advance were that the markets would react negatively to the decision and

that the extent of negative Twitter coverage would influence the stock returns.

Our main finding is that Twitter data is not suitable for estimating private sanctions.

As the relative differences in Twitter sentiment between companies do not explain the

differences in abnormal returns on the day. Fines and other firm characteristics have some

explanatory power, and we find abnormal returns comparable to those of previous studies.

Our thesis contributes to the overall study of cartel convictions and deterrence theory.

We are to our knowledge the first that have tried to use sentiment analysis on Twitter

data for the purpose of measuring private sanctions.

The thesis is structured as follows: We start off in chapter 2 by describing the institutional
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setting and the legal framework that prohibits cartel competition in Europe. Then we

proceed by providing a review of relevant literature and a short description of Twitter

and social listening. The data we used is presented in chapter 3, with research questions

and hypothesis following in chapter 4. In chapter 5 we describe the main methodologies

that are being used. In chapter 6 the empirical findings and analysis are presented. The

results of the analysis are discussed in chapter 7, before we summarise and conclude the

thesis in chapter 8.
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2 Background

2.1 European Cartel - Institutional Setting

EU anti-trust policies had its early beginnings in 1957 when West Germany, Belgium,

France, Luxembourg and the Netherlands signed the treaty of Rome, forming the European

Economic Community EEC (1957). The goal of the treaty was to create a single economic

area with free competition between member states. The treaty also established the Court

of Justice of the European Union and the European Commission. In the beginning the

European commission mainly consulted the national competition authorities in each

member state and it first got its mandate to impose sanctions on infringements with the

introduction of the Council Regulation 17 in 1962. The treaty of Rome evolved into the

European Union which got established in 1993, and was created as a three-pillar structure

with the EEC as remaining part. The EEC was abolished at the treaty of Lisbon in 2009

which formed EU in its current state. The underlying treaty is now called the Treaty

on the Functioning of the European Union (TFEU) which together with the treaty on

European Union (TEU) creates the constitutional basis of the EU (Publications Office of

the European Union, 2015). It also covers the its’ competition laws.

Article 101 and 102 in the TFEU regulates illegal antitrust behaviour in the European

Union. Article 101 states that anti-competitive agreements are forbidden, examples of

behaviour it prohibit is price fixing and market sharing agreements (European Union,

2008). Article 102 prohibits the abuse of a dominant market position. It is the European

Commission that lead the investigation of cartels in EU. According to their website, a

cartel is “a group of similar, independent companies which join together to fix prices,

to limit production or to share markets or customers between them”. This leads to less

incentives for the companies to provide better or cheaper products, ending in higher prices

or worse quality products for the customers.

Cartels are hard to spot because of their illegal nature. There are several ways for an

investigation to start in the EU:

1. Investigations can start by a leniency application from one of the cartel members.

The leniency notice from 1996 secures that there is an incentive for the cartel
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members to be first at reaching out to the European Commission. Companies that

reach out to the Commission with important information about a cartel which

they have participated in may receive full or some reduction from fines (European

Commission, 1996). Normally, the first participant that apply for leniency will

receive full reduction from their fines, while other participants can receive some

reduction if they add significant value helping the case. Given the potential benefits,

the leniency notice is a significant tool to provide the Commission with insider

information.

2. In 2017, the Commission started a new tool to make it possible for individuals

to provide information about past, ongoing or planned anti-competitive breaches

according to Article 101, it is called the Whistleblower Tool (European Commission,

2017a). The anonymity of the whistleblower will be guaranteed with a special-

designed encrypted message system that allows communication between the

whistleblower and the Commission. It works well along with the leniency notice

as it retrieves information from individuals, whereas the leniency notice focus on

retrieving information from companies.

3. A complaint from citizens and firms about suspected infringements of Article 101. A

formal complaint can be filled on the Commission’s website and can lead to further

investigation from the Commission (European Commission, 2017b)

4. Sector investigations and inquiries from the Commission when it believes that a

market is not working the way it should be and believes that breaches according to

the competition rules might be one of the main factors.

The Commission normally starts of by conducting an initial investigation phase. This can

include surprise inspections on the premises of the suspected companies or the request of

information (European Commission, 2017b). When the initial phase ends, they decide

whether they want to pursue an in-depth investigation or not. If they decide to continue the

investigation, the news will be published on their home site. This statement is anonymized

and generally only include information about which sector that is under investigation.

The commission continues by trying to settle the case. From 2008 it became possible

for companies to receive a 10% settlement fine reduction if they completely acknowledge

their involvement in the cartel (Laina & Laurinen, 2013). If the commission is not able to
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settle the case, then the investigation continues until a conclusion is made.

When the commission reaches a conclusion, a press release with key information about the

case is published. This includes the fine for each company involved, and their respective

reductions. This is the phase that our study focuses on, since this is often the first time

that the public receives information about which companies that are involved.

Fines have two main objectives, to deter and to punish. The Commission considers the

sales value of the involved companies and the duration of the infringement when setting the

fine. The fine can be adjusted depending on the circumstances of the case, repeat offending

is an example of something that can lead to an increased fine (European Commission,

2011). Depending on the cooperation, further reductions through the leniency program

can be obtained.

2.2 Literature review

The relationship between public sanctions and private sanctions has been a topic in

economic and legal literature for a long time. Much of the early work has been done

by economists working within the field of deterrence theory. Believers of the deterrence

theory argue that people and corporations choose to obey or violate laws after calculating

all the possible gains and consequences of their actions. The general consensus from the

studies that address the topic of corporate crime is that private sanctions from the loss

of standings and stigma in society can deter corporate misbehaviour as good or better

than formal legal sanctions. The literature often distinguishes between offences that are

considered to affect "related-parties" and "third-parties". "Related-parties" are cases

where customers are directly affected by the fraudulent behaviour of a company, while

"third-party" offences happen when the public is indirectly affected by a corporation’s

misbehaviour. Cartel cases are mostly considered to be related party offences.

Some noticeable literature in the field of "related-party" offences have been done by Jarrell

& Peltzman (1985), Karpoff & Lott (1993) and Alexander (1999). Their studies looked

at how the markets respond to corporations that are being sentenced for fraudulent and

cheating behaviour. In these studies, private sanctions ending in losses due to a worsened

reputation have been estimated indirectly, as reputation is considered to be an intangible

asset. Their methods involved decomposing stock prices into the effects of public sanctions,
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a readjustment effect, and a residual, which is explained as reputational loss.

A big part of literature is focusing on if private sanctions can work as a deterrent to

corporate crime. Bosch & Eckard (1991) studied collusion in United States. By the use of

event study methodology, they calculated the abnormal returns of 127 firms that were

indicted in the period 1962-1980. They found the cumulative average abnormal return for

the firms to be 1.08% post indictment. The authors hypothesize that the reaction may be

explained by legal costs, loss of reputation and forgone monopoly profits.

Aguzzoni et al. (2013) did a similar study to the one done by Bosch & Eckard (1991),

but on cartel investigations in the EU. Their study looked at 180 companies that were

sentenced for cartel participation between 1979 and 2009. They found a statistically

significant cumulative average abnormal rate of return (CAAR) of negative 3.57% in

relation to the infringement decision by the European Commission. Their study also

looked at the stock price drop surrounding the initial investigations on corporate premises

and found it to be statistically significant. The total combined effects of the infringement

decision and the surprise investigation weighted by market capitalization were between

-3.03% and -4.55%. They estimated that only up to 8.9% of the total loss could be

explained by the fine amount and conjectured that most of the loss was due to the ending

of illegal activities.

A third study was done by Günster & van Dijk (2016). This study looked at a sample

set consisting of 253 firms fined by the European commission between 1974-2004. Their

result shows a CAAR of -1.85% around the final verdict, which was statistically significant.

They concluded that fines and legal costs could explain around 25% of lost market

capitalization. The remaining portion was explained by reputational impairment and

anticipated profitability decreases. Factors they found to determine the severity of the

stock price reduction were the magnitude of the fine, the duration of the infringement,

and most importantly, the media attention covering the investigation events.

Ulrich (2018) investigated the effect of cartel fines in the European Union on share prices,

dividend payments and management compensations between 2001-2018. He found a

significant cumulative abnormal return of -2.89% in his primary sample over the event

window [-25,10]. His study finds that the extent of the stock price reduction depends on

the fine, country of incorporation and firm size.
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Most similar to our work is the study conducted by Mariuzzo et al. (2020a). In their

study, they looked at cartels convicted by the European Commission between 1992-2015.

They studied the relationship between public and private sanctions and used sentiment

analysis on newspaper articles to approximate the magnitude of the reputational effect.

They found evidence supporting the findings of Aguzzoni et al. (2013) and confirmed that

cartel members are more hurt at detection than at decision date. With the use of event

study methodology, regression trees and sensitivity analysis, they found that fines are a

key variable that can explain some of the loss in firm valuation on a short window around

the decision, while reputational sanctions are more important in explaining value losses on

a larger time frame. The results of their analysis also support the idea that the sentiment

of the media coverage can work as a substitute to fines. They also conclude that private

sanctions are less effective if there are no public sanctions.

We seek to contribute to these previous works by testing whether Twitter data can explain

some of the variations in cumulative abnormal returns between companies while testing if

fine still is a significant factor when looking at more recent cases.

2.3 Twitter and Social listening

Twitter has grown to become an important platform for information and opinion sharing

since its beginning in 2006. Every Twitter user has the opportunity to share their thoughts

and opinions about all kinds of topics through a tweet containing up to 280 characters.

The tweets can be distributed and read by people from all over the world. Today Twitter

has more than 199 million active users, which combined tweet more than 500 million tweets

every day (Twitter, 2021b) (Internetlivestats, 2021). It is thus an enormous database

covering all kinds of topics.

The use of Twitter data in economic research has increased in the last decade. As an

opinion source, Twitter is benefiting from the fact that the aggregation of tweets from

many users cancels out individual misconceptions and thus presents a possible more

reliable perception of the event than traditional news media. Because of this, it is often

used to understand stakeholders’ view on corporations. Multiple studies have attempted

to predict stock prices by looking at Twitter volume and sentiment, and it has shown itself

capable of predicting index growth with a high degree of certainty Bollen et al. (2011).
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Twitter data is also being used to study public opinion about news events, and it has been

used to look at the relationships between Twitter mentions and election results (Tumasjan

et al., n.d.). In addition to being a valuable source of information for academic researchers,

modern-day corporations are spending money and resources on social listening to monitor

both their own brand and products as well as the competitors’ and the general market.

Since twitter data provides a real-time evaluation of a company’s sentiment, it gives us a

unique opportunity to compare a normal sentiment to the sentiment around the event.

This is different to the more static opinion found in more traditional news media.

Even though Twitter data can be useful in many ways, it also has its limitations, which

can make it somewhat unsuitable as an opinion source.

1. The 280-character limitation sets a limit to the amount of information each tweet

can contain.

2. It is difficult to collect the tweets other than by hashtags and user references, and

the number of tweets is so large that it becomes difficult to collect the most relevant

ones.

3. Individual tweets can be wrong, misleading, and hard to interpret for natural

language algorithms.

4. Sampling bias – Users tend to be in the age between 20 and 40 years old, and some

parts of society are more represented. Twitter is therefore not representative of the

general population.
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3 Data

We have collected and used four different datasets in this thesis. The data contains

information about all publicly listed companies sentenced for cartel participation by the

European commission from 2010-2021. We have chosen to only use data from this period

due to Twitter’s short lifespan and somewhat limited use before 2010. In this chapter

we will describe how we collected the data, choices we have made and show summary

statistics for each dataset.

3.1 Cartel data

The cartel dataset contains specific information about all the relevant cartels. We manually

gathered the data from the EU commissions webpage by querying for cases with decision

date after 01.01.2010, this resulted in a list of 46 cartel cases (European Commission,

2021). By reading prohibition decisions, press releases and summary decisions on each

cartel we got the number of involved companies, the duration of the cartel and could

label the cartel type. Not all cartels were relevant for our study. Cartels were regarded as

relevant if they had at least one publicly listed company. We also excluded two cases that

we identified as having a decision before 2010. We were left with a total of 39 cartels in

our dataset after the manual processing.

Table 3.1 below shows the summary statistics of the cartel dataset. The cartels differ

in type and size and a cartel can be classified with multiple cartel labels. We used four

different cartel labels, price fixing, quota allotment, market share allocation and bid

rigging. The labeling was done based on the information we got through the different

articles made by the commission.

Table 3.1: Cartel summary statistics

Variables N Mean Sd Min Max
Size 39 6.7 4.8 3 26
Bid rigging 3 0.07 0.26 0 1
Market share allocation 12 0.3 0.46 0 1
Price fixing 34 0.87 0.33 0 1
Quota allotment 11 0.28 0.44 0 1
Duration (years) 39 7.1 5.86 1 35
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3.2 Company data

Along with the cartel dataset we collected data on all the publicly listed firms that were

participating in the cartels. We used Google search and Yahoo Finance to identify if a firm

was publicly listed or not. Companies that either had been delisted before, or listed after

the infringement decision, were not included. Individual fines after reduction were added

for each company, as well as each cartel members’ decision date. For many of the cases

both subsidiaries and parent companies were fined by the European Commission. We kept

both parent and subsidiary as separate entities if they both had stock information. If only

the parent company was listed on a stock exchange, we only included the parent company

in the dataset and added the fine of the subsidiary to the parent company’s fine. In the

cases where one subsidiary was not public and had multiple parent companies, we divided

its’ fine between the parent companies evenly, or according to their ownership shares if it

was available. In the cases where the European Commission fined the same company for

participation in multiple cartels on the same day, we combined the fines and only included

the company once in the dataset. In total 164 company-case pairs were gathered, 124

of these were unique companies. As extra information, we added the country were the

headquarter of each company was located and the associated continent. In addition to

this we added the revenue and economic sector classification for each respective company

from Refinitiv Eikon datastream. We used the revenue from one year before the decision

for each company.

Table 3.2 contain summary statistics of this dataset. In total, 132 of the companies were

fined, and 32 received immunity from the Commission. Companies vary in size and are

mostly located in either Europe or Asia.

Table 3.2: Company summary statistics

Variables N Mean Sd Min Max
American companies 20 0.12 0.32 0 1
Asian companies 68 0.42 0.49 0 1
European companies 71 0.43 0.5 0 1
Other companies 5 0.03 0.17 0 1
Immunity 32 0.2 0.4 0 1
Non-Immunity 132 0.8 0.4 0 1
Size of fine over revenue (non immunity) 132 1.96% 2.30% 0.0008% 0.14%
Fine over revenue >= 1% 49 0.3 0.45 0 1
Fine over revenue <1% 115 0.7 0.45 0 1
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Statistics about which country the involved firms are coming from is shown in figure

3.1. We see that Japan by a clear margin is the country with the most companies in our

sample.

Figure 3.1: Companies classified by the location of their headquarter

Figure 3.2 shows the distribution of convicted companies on a yearly timeline. 2010 is the

year with the most convicted companies and also the year with most cartel cases (6).

Figure 3.2: The number of public companies convicted for cartel participation by year
in our dataset
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The table below contain the companies that have repeatedly offended EU competition

laws three or more times in 2010-2021, they are all large and well known companies. In

total 25 companies are repeat offenders in our dataset.

Table 3.3: Repeat offenders

Company Cases
Panasonic 4
JP Morgan 4
UBS 4
Hitachi 3
RBS 3
Denso 3
Samsung 3
Philips 3

3.3 Stock data

Daily stock data were downloaded for all companies in our dataset. The stock data was

collected with the use of Yahoo Finance API in R. To cover all the cartel cases in our

dataset, share prices were retrieved from 01.01.2009 to 26.05.2021. The adjusted closing

price of each stock were used as it adjusts for dividends and splits. For stocks that were

traded on multiple exchanges, for example on both NYSE and TSE, the home country’s

stock exchange was used. In addition to the daily stock data, a corresponding local market

index for every company were also added to the dataset. A full list of stock tickers and

index tickers can be found in table A4.1 in the appendix.

The data were lagged with one day for all companies and indexes that were listed on the

east Asian stock exchanges (South Korea, Taiwan, Japan, Singapore). This was done to

adjust for the difference in stock market opening hours because of time zone differences.

Decision time is not available for all cases, but time zone differences make it probable that

the first trading day on the east Asian markets after the decision will be the upcoming

day.

3.4 Twitter data

The largest collection of data is the Twitter dataset. To gain access to Twitter, a Twitter

developer account was obtained through an application for academic research. API keys
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and authentication tokens were provided with the account, which made it possible to

extract historical tweets using the programming language R.

The Twitter academic research API uses the V2 endpoint, which is new in 2021 (Twitter,

2021a). None of the old R packages that we could find worked on this endpoint. In order

to extract the data, a self-made loop was thus created in R. The loop iterated through

every search word in a pre-made query list, previously made in Excel. For every search

word, the corresponding case number was matched up against the same number in another

sheet containing a range of dates from 70 days before to one month after the decision

date. This gave us a timeline of tweets for each company over a 100-day period.

The Twitter developer account has some limitations which made the collection of tweets

a somewhat time-consuming process. The maximum number of tweets per query is sat

to 500 by Twitter and the maximum iteration rate is 900 queries every quarter (Twitter,

2021c). We worked around the iteration limit by including a three second sleep timer

between every iteration of the loop. Most of the companies had less than 500 tweets in

the daily timespan, but for larger companies like Sony and Samsung 500 tweets were not

close to cover the daily Twitter volume. To overcome this issue, a nested loop was made

to work around the 500-tweet limitation. If more than 200 tweets were collected after the

first query, then another loop was initiated from the time of the last gathered tweet to

collect more from that day. As some of the companies in our dataset gets thousands of

tweets written about them every day and we had limited capacity, we decided to collect

at most 2000 tweets per company per day.



14 3.4 Twitter data

Figure 3.3: Flowchart of the tweet downloading process

Central to the process of collecting tweets was the choice of query names. Companies

are referred to by many different names on Twitter, which makes it difficult to obtain

all the relevant tweets about a company. As the academic account was limited to 10

million tweets, one query name was used for most companies. It was necessary to use

multiple query names on companies which were identified as more uncommon to secure

that a reasonable amount of tweets were collected. As a general rule the same company

names as the EU commission used in their press release were used in the query. In the

cases where some names were too similar to other words, or were the commission used

abbreviations when naming the company, then a manual search for the name was done on

Twitter. This was done to clarify if the name was used on Twitter or not. A full list of

the query words can be found in the appendix. We searched for the mention of the word

and not the hashtag. The reasoning is that we did not want to be limited by the hashtag

and wanted all the general tweets about the company. We also did not query specifically

for the cashtag of the company, as many of the firms were thought to be too small for
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this to result in any tweets.

Queries were only done for English tweets. This was mainly done because of practical

reasons like capacity limitations and difficulties associated with multilingual sentiment

analysis. Only including English tweets is a weakness of this study, but the main language

used on Twitter is English, so it should not have too much to say. Retweets were kept

as a person that retweets a message probably share the opinions of the original tweet.

Weekends were included even though it is a non-trading day, as news that was to be shared

during the weekend could affect stock prices when the stock exchange opens on Mondays.

The time for tweet gathering was sat between 07:00 GMT to 19:00 GMT as it covers the

opening hours in the European stock markets and the time when the Commission is most

likely to publishes its press releases. We had to specify the time of the day because we

wanted the most relevant tweets and only collected 2000 a day. The API searches by

default from the latest time to the earliest time of the day, meaning it will find tweets

from 19:00 first.

Before the tweets could be used in the analysis they needed some preliminary cleaning.

Twitter messages contains many types of signs and other things which were not needed

in our analysis. We also removed all mentions, links, numbers, punctuations, digits and

symbols that are not a part of the English language. Duplicates in the cases where more

than one query name were used for a single company were also removed. Lemmatisation

and stemming were not done as the packages used in R for sentiment analysis works

around these problems (Alex, 2019).

Summary statistics about the Twitter data can be seen inn table 3.4. Approximately 5

million tweets were downloaded in total, with large variations between companies.

Variables N Mean Sd Minimum Tweets Max tweets
American companies 424781 22357 24824 25 - Trane Inc 76340 - Carpenter
Asian companies 2105328 31899 60934 1 - Holy Stone Enterprise 198099 - Samsung
European companies 2121693 30749 44383 1 - Ercros 184602 - MAN
Other companies 77365 15473 19056 79 - CSAV 44107 - Whirlpool
Motor companies 1028317 15581 31504 5 - Nachi-Fujikoshi 184602 - MAN
Electronic companies 2197623 53601 70356 1 - Holy Stone Enterprise 198099 - Samsung
Financial companies 1138545 4542 40078 1877 - Credit Agricole 160386 - Barclays
Other companies 364682 13507 37708 1 - Ercros 186485 - Panasonic

Table 3.4: Aggregated tweet statistics
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Figure 3.4 shows the distribution of tweets including the word "cartel" from all the days

we collected tweets. It shows that there are mentiones of cartels in the days before the

decision, but most of the talk happens on the day with the actual event. The large amount

of tweets 25 days before the decision is from one case.

Figure 3.4: A timeline showing the number of tweets that mention the word cartel

3.5 Data limitations

The main limitations of our data is related to the Twitter dataset, some of which come

as a consequence of limitations in the company and cartel dataset. Ideally we would

have had an even larger sample size of companies and cartels, as a larger sample size

generally makes the results more credible. The main limitation of the Twitter dataset,

is that we dont collect tweets written in another language than English. This makes

it likely that companies that are originating from English speaking countries are more

represented in our Twitter dataset than companies from non-English speaking countries.

This is especially true for small unknown companies located in non-English speaking

countries outside of the EU. This result in us getting an inaccurate representation of

the real mood/sentiment of some of the companies, which may affect the results of the
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analysis. Ideally we would have gathered all tweets about all the companies in the days

close to the event, but because of uncertainty connected to capacity limitations this was

not possible. Alternatively a sampling feature that only collected a percentage of tweets

every day would have been a viable alternative, but this is not a feature Twitter supports

for the historical archive at the moment. In addition to this we see the evolution of

Twitter as a potential limitation. Twitter as a platformed have evolved much from 2010

to 2021 and there might be differences in how it is used now compared to ten years ago.

The doubling from 140- to 280 characters in November 2017 is an example of a change

that may affect the analysis. We will therefore test this in the robustness check by only

looking at tweets created after 2017 and see if it changes the results.

Another potential problem with the Twitter data is the variation between companies

and cartel cases when it comes to their tweet amount. Figure 5 shows the companies

categorized by how many total tweets they have about them. The companies that have

very few tweets may effect the result largely in both directions because variations here

could lead to much larger abnormal mood. This will be taken into account in both the

primary method and in the robustness check. In the figure bellow very few equals less

than 100 tweets, few less than 1000 tweets, medium less then 10 000 tweets, many less

than 100 000 tweets and very many is more than 100 000 tweets.

Figure 3.5: Companies classified by their number of tweets
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4 Research Questions and Hypotheses

In this section, we present the research questions and the hypothesis that we want to test.

The research questions aim to validate previous studies’ findings and to investigate the

possible use of Twitter data in explaining abnormal returns.

Research question 1: Does cartel convictions create abnormal returns? This

has been researched before, and we aim to validate previous findings on the matter with

newer data. If the cartel sentencing provides new information, then the expected outcome

is to find abnormal stock return on the event day and in the event windows surrounding

the event day.

Research question 2: Can Twitter data be used to estimate private sanctions?

In theory information availability should affect prices in some direction. The logic being

that the the more people that know about something, the larger the potential reaction.

This make sense because an efficient market is based on information availability.

To help us answer the research questions, we have created three main hypotheses that

test our expected findings:

Hypothesis 1: The announcement of cartel decisions is associated with an

abnormal stock price reaction. Previous research has found small, but significant

negative abnormal returns on both the decision day and in narrow event windows around

the decision. We therefore expect the returns to be negative on the decision day. This

will be tested through the event study methodology.

Hypothesis 2: The announcement of the cartel decision is associated with an

abnormal Twitter mood reaction. We find it reasonable to think that sentiment will

be lower at decision than the companies’ average sentiment score. We expect the public

to react negatively on Twitter to cartel convictions. The magnitude of the reaction will

depend on how informed investors are about the negative effects of cartels.

Hypothesis 3: Twitter sentiment and the count of cartel tweets can explain

differences in abnormal returns between companies The goal is to find out if

Twitter variables can explain abnormal stock returns. This will be tested with cross-

sectional regressions and decision trees.
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5 Methodology

5.1 Event Study

To assess the consequences of the European Commission’s infringement decision on the

companies in the dataset, an event study methodology following the market model will be

utilized as described by MacKinlay (1997). The intuition behind the event study is that

we by calculating the abnormal stock returns around the event, may isolate and measure

the event specific effects by comparing actual and expected returns around the event. In

order to obtain the abnormal returns we use a benchmark return calculated with the use

of the local market index for each respective stock. The underlying assumption of the

market model is that there exists a linear relationship between the stock return and its

associated market return and that markets are at least semi strong.

The market model as it is defined by MacKinlay (1997):

Rit = ↵i + �iRmt + ✏it (5.1)

E(✏it) = 0 V ar(✏it) = �
2
✏

Here Rit is the normal return for security i at time t and Rmt is the market return at

time t of the corresponding market index. The ↵ and � parameters are estimated over

the estimation window by Ordinary Least Squares regression, and the ✏it is the estimator

of the abnormal returns. The size of �i shows the stock’s sensitivity to the chosen market

index.

Figure 5.1: Event Study timeline

Market- and stock returns can be calculated in two ways, either by calculating simple
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returns or by calculating the natural logarithm of the returns. The difference between the

methods are according to Wooldridge (2013) small when the results are close to 0. We

have chosen to use the formula for simple returns in this thesis. Normal returns are given

by the following formula:

Rit =
Pit � Pit�1

Pit�1
(5.2)

Abnormal returns (AR) are calculated for each security i for every day t in the event

window and is defined as the difference between actual returns Rit and the estimated

normal returns Rmt. The ↵i and �i are the estimated coefficients from the estimation of

the normal returns.

ARit = Rit � ↵̂i � �̂iRmt (5.3)

We have used an estimation window of 120 trading days, starting 180 trading days before

the event and ending 60 trading days before the event. There is no set length for estimation

windows in literature, but this should be a good window balancing the trade off between

improved estimation accuracy and potential parameter shifts.

We use several event windows in this study. Some windows include days before the event

and is motivated by the possibility of information leakage.

In order to study the impact of cartel convictions we have aggregated the results over each

security and event window. For the different event windows we start of by calculating the

cumulative abnormal returns (CAR) for company i in the duration of the event window L:

CARiL =
LX

i=1

ARit (5.4)

The last thing we do with the stock data is to aggregate the results over the different event

windows. We fist calculate the average abnormal return AARt and the cumulative average

abnormal return CAARNL. The average abnormal return is the the average return of

all securities on day t in the event window. The cumulative average abnormal return is

calculated by taking the sum of the CAR for every company i over the event window L
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and dividing it by the total number of company event pairs N .

AARt =
1

N

NX

i=1

ARit (5.5)

CAARL =

PL
i=1 CARiL

N
(5.6)

or alternatively

CAARL =
LX

i=1

AARt (5.7)

The statistical test used to validate the significance of the abnormal returns is the BMP

test by Boehmer et al. (1991). This test is explained in appendix A7.

5.2 Twitter sentimental analysis

Sentiment analysis is a natural language processing technique which uses computational

linguistics and textual analysis to analyze the subjective information from a text (Liu &

Zhang, 2012) (Mooney et al., 2005). There are two main methods that are used when

researchers are conducting sentiment analysis’s: machine learning and dictionary-based

analysis (Kearney & Liu, 2014). The machine learning approach uses a prelabeled dataset

to train and learn patterns which it uses to classify the unlabeled data. The dictionary

approach uses a predefined dictionary containing words which are classified as either

positive or negative and uses it to evaluate the meaning of a text.

We have in this thesis conducted a dictionary-based sentiment analysis. There are two

main reasons for this. Firstly, previous research on sentiment analysis suggests that

there are small differences in using a machine learning approach over the much simpler

dictionary approach on social media data (Hutto & Gilbert, 2015). Secondly, none of the

prelabeled datasets that we found were evaluated to be large and good enough for our use.

To validate our results we have chosen to use two sentiment packages in R. The results

of a sentiment analysis are depending on which dictionary that is being used, because

of the difference between the included words and how the words are weighted. The two
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packages we use are the sentimentr and VADER package. Inspired by Mariuzzo et al.

(2020a) we use two different methods to reflect the difference between how an assumed

layperson and someone who is familiar with the bad effects of cartel behaviour would

interpret the tweets. We use the same reasoning as stated in their paper. Their reasoning

is that if we can show that people that are more aware of the seriousness of cartels have a

larger impact on the abnormal returns and therefore the valuation of a business, then that

could work as an important policy message that improving competition culture through

increased public awareness of the downside of anti-competitive behaviour can improve the

deterrent effect of competition policy.

5.2.1 SentimentR and VADER

The sentimentr package is a lexicon-based sentiment analysis package which calculates

the sentiment of a tweet by evaluating the individual words in the tweet and to some

degree the context of the word. It does this by using valance shifters. Valance shifters

are words which impact the interpretation of the following words. One of these shifters

are "negators" which flips the sign of a polarized word, example “I do not like” will be

treated as negative instead of positive. It also uses "amplifiers" and "de-amplifiers" which

intensifies or reduce the impact of a polarized word. The last thing it does is to use

"adversative conjunctions" which overrule the previous clause that contained a polarized

word, example: “I like it but it is not worth it” (Rinker, 2019).

We use a customised lexicon that combines the standard lexicon "Syuzhet" made by

Jockers (2015), with a lexicon made by Mariuzzo et al. (2020b). The Syuzhet lexicon is a

very general dictionary that contain 10748 words, while the lexicon made by Mariuzzo

contain 608 domain specific words that are relevant to our analysis (cartel, collusion, price

fixcing etc). The main reason for using the customised lexicon is to see how a person that

is familiar with the gravity of cartel behaviour would interpret the tweets. The polarity

and intensity score of each word in the custom dictionary can take a value from -1 to 1.

To see how an assumed layperson would interpret the tweets we use the Vader package in

R. Vader is a lexicon and rule-based sentiment analyst tool which is specifically attuned

to sentiments expressed in social media. The algorithm uses the Vader lexicon (2014), a

lexicon that is empirically validated by ten independent human judges. It also uses degree
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modifiers like the sentimentr package. The dictionary contains 7520 words and emojis

where each is scored on a scale between –1 and 1 (Hutto, 2014b). We use VADER in the

robustness section of this thesis.

5.3 Variable creation

From the collected tweets we create three different variables that will be tested. The two

first are simple and similar to the newspaper variables tested by (Bosch & Eckard, 1991)

and (Mariuzzo et al., 2020a), while the last is made to see if changes to normal sentiment

affects stock returns. The three variables are:

1. Count of tweets containing company name and cartel in the event window

2. The sentiment of the tweets containing company name and the word cartel on a

continues sentiment scale.

3. Abnormal sentiment

5.3.1 Abnormal Sentiment

In order to find out if Twitter sentiment can explain some of the abnormal stock returns

in relation to the cartel conviction, we have chosen to calculate the abnormal sentiment

for each company in many of the same event windows used for the abnormal stock returns.

This is a novel method that is similar to the constant mean model used in event studies,

but we do not look at the returns of sentiment. The reason we do not look at the returns

of sentiment is because of the fact that sentiment can be negative which complicates the

calculation and interpretation of returns. Instead we use the difference between the average

sentiment of all tweets on a day (mood of the day) and the average mood for all the days

in an estimation period. This makes it possible for us to calculate the abnormal mood,

which can be aggregated over event windows and companies. The theoretical advantage

of such a variable is that it makes it possible to compare the sentiment between the

companies as we look at the change in relation to the company’s own normal sentiment.

The normal or average mood for each company is created from an estimation window

starting 70 days- and ending 16 days before the event. Only companies that have tweets

in at least 60 out of the 100 days that tweets were collected from was included. This
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was done to deal with potential extreme outliers created by companies that have a very

low Twitter presence. All tweets were classified into positive (1), neutral (0), or negative

(-1) based on the evaluation done by sentimentr or VADER. This was done to remove

the neutral tweets that are not polarising in any direction. The threshold for negative

and positive tweets were set to -0.3 and 0.3 for sentimentr. There is no consensus on

where the threshold should go in literature, so we decided on the threshold after looking

at the distribution of the scores of all the tweets. Tweets that had a higher value than

the threshold value were classified as positive and given a score of 1, while the tweets

that were lower than the threshold were classified as negative and assigned a value of

-1. Tweets in between the values were classified as neutral and given a value of 0. For

VADER we used the suggested threshold made by the creator of the package, all tweets

lower or equal to -0.05 were classified as negative, while all higher or equal to 0.05 were

classified as positive.

The mood on Twitter on day t for company i is given by the following formula. The

formula have been used in other studies looking at the relationship between stock prices

and Twitter sentiment (Ranco Gabriele, 2015).

MOODit =
Mit,pos �Mit,neg

Mit,pos +Mit,neg
(5.8)

Here Mit,pos is the number of positive tweets in a day, while Mit,neg is the number of

negative tweets in a day. The mood can thus be positive or negative for any given company

on any given day.

We calculate the average mood AMOODi for each company by taking the sum of all the

MOODit in the estimation period EW and dividing by the number of days in the period.

AMOODi =
1

EW

EWX

t=1

MOODit (5.9)

The abnormal mood on day t for company i in the event window is calculated by subtracting

the mood of a day from the average mood calculated from the estimation period. We

divide by the absolute value of the average mood to get the value in percent.



5.4 Cross sectional regression 25

ABMOODit =
MOODit � AMOODi

|AMOODi|
(5.10)

Cumulative abnormal mood is calculated as the rolling sum of all the abnormal mood in

the length of the event window L.

CABMOODi =
LX

t=1

ABMOODit (5.11)

CAABMOODL =

PL
i=1 CABMOODiL

N
(5.12)

We classify each company into one of three categories according to how negative the

abnormal mood was on Twitter. The polarity of an event is derived from the ABMOOD

in event window [0,2]. The distribution of the polarity is bell shaped (A9.1) and we

set the cutoff at the 25 percentile for the negative events, 75 percentile for the positive

events and categorise the rest as neutral. The justification for our selected cutoff values

is that sentiment should be regarded in relative terms, at least in the context of related

events. Sentiment polarity has no absolute meaning, and provide in our case just an

ordering of events according to how much they differ from their own "normal" sentiment

(Ranco Gabriele, 2015).

5.4 Cross sectional regression

To test whether our created variables poses any determinant power on the cumulative

abnormal returns, we use cross sectional regression (James et al., 2014). Cross sectional

regression is a tool often used in combination with event studies and have, for example,

been used by both Ulrich (2018) and Aguzzoni et al. (2013). In cross sectional linear

regression both the dependent and independent variables are associated with the same

period in time. We plan to mostly use single factor ordinary least squares regressions in

the form of different binary independent variables to see which that affects the abnormal

returns. In addition to our created variables we will test other control variables, some of

which have been found to be significant in earlier studies.
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5.5 Decision trees

Decision trees are used as a robustness test after the cross sectional regression. The

trees identifies which of the predictors that are the most useful and finds the interaction

between predictors. The trees are plotted with simple if or if not questions, which negates

the need for normal assumptions, for example linearity and parametric statistics. In the

tree, the top node shows the most important variable for the outcome variable. This same

logic works for all further branches of the tree. The further down in the tree, the less

important for the outcome of the CAAR (James et al., 2014). We use regression trees

and not classification trees as the outcome variable is continuous.



27

6 Analysis

6.1 Estimating the abnormal rate of return

The first analysis address the first research question with associated hypothesis. The

analysis is done on the main sample which includes all companies in our dataset and on

16 subsamples. The CAAR in percent for each sample with significance and other statics

can be found in table 6.2 below. The results from the main sample which includes all

companies in our dataset can be seen in figure 6.1. From the graph we see that there is

a steady drop in average abnormal returns from around 11 days before the event until

10 days after the event. The drop is according to the t statistics from the BMP test not

significant for the largest event window [-25,25], but the second largest window of [-15, 15]

have a CAAR of -1.63% and is significant on a 10% level. The event day itself is notably

not significant even though the AAR on the day is mildly negative (-0,28%). The event

window capturing the effect of the conviction [0,10] is significant and shows a CAAR of

-1.24%. Between 40 and 50 percent of the companies are yielding positive CAR in the

different event windows. This should contribute to increased variance which can explain

why some of the windows are not significant. Overall the findings are quite similar to

those of Mariuzzo et al. (2020a) who also found small negative abnormal returns around

the decision date.

Figure 6.1: CAAR of entire sample
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In figure 6.2 we have isolated the companies that received immunity from the European

Commission in one sample and the companies that received fines in another. We see

from the graph that the two samples behave similar until around five days before the

event day. This could imply that there is some information leakage in the days before

the conviction. The companies who received immunity have positive, but insignificant

CAARs in all event windows. Based on the graph it looks like an event window of [-5,0]

could have been significant. The percentage of companies that yield positive CAR in

this sample is between 47% and 63% in the different event windows. In contrast to the

companies that received immunity, the sample of fined companies have negative CAAR in

all event windows. Window [0,10] is especially significant with a CAAR of -1.69%. The

percentage of companies with positive CAAR in this sample is lower compared to the

immunity sample, ranging from 40% to 45%. The results are consistent with the findings

of Ulrich (2018), and could suggest that companies that are not penalized do not suffer

significant abnormal returns on average from the indictment, whereas companies that are

fined do. The reaming subsamples are only containing companies that received a fine from

the European Commission. This was done to isolate effects that otherwise would have

been affected by companies that received immunity.

Figure 6.2: Sample of immune and fined companies

Figure 6.3 shows the CAAR of fined companies split into two samples depending on the

size of the fine as a percentage of revenue. From the graph we see that the two samples

correlate right up until the event day. Multiple event windows are significant for companies
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where the fine amount for a larger share than 1% of revenue. The percentage of companies

that have a positive CAR in the different event windows are low compared to the other

samples, with positive CAR being 37% over the [-25,25] window and only 29% in the

[-1,1] window. The AAR on the event day itself is -0.96%, non significant and 37% of the

companies have positive AR on the day. For the companies that receive a fine less than

1% of their annual revenue, the drop in CAAR is smaller. Only the [0,10] event window is

significant and the drop in CAAR is only -0.91%.

Figure 6.3: Companies categorised by fine as a percent of revenue

Figure 6.4 shows the CAAR of the companies sampled by continent. From the graph we

see that there is a considerably larger drop in stock prices in the Asian sample compared

to the European and American sample for all event windows. The asian sample has

significant negative abnormal returns of -4.72% over the large event window [-25,25].

The European companies react on average negatively on the event day, with significant

negative CAAR in two event windows after the event day, [0,2] and [0,10]. This indicates

an after-effect of the conviction, but on the longer event windows there are not significant

results. The North American companies have no significant event windows, and are even

showing a positive CAAR in the more narrow windows around the event. Overall the

results are consistent with the results of Ulrich (2018) who also found the Asian companies

to have significant negative returns in the long event windows.
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Figure 6.4: CAAR categorised by continent

In figure A11.2 we have one sample containing the 25% of companies with the lowest

revenue and one with the 25% of companies with the highest revenue. From the graph, we

see that the CAAR of the companies is behaving quite similar up until two days before

the event. The small companies show a large drop in CAAR two days before the event,

suggesting information leakage. Both event window [-5,5] and [0,10] are significant and

have a CAAR of -1.99% and -2.73%. There are no significant event windows for the larger

companies, which matches well with what we see on the graph.

Figure 6.5: CAAR categorised by firm size

Figure 5 shows the CAAR categorised by economic sector. The financial sector is the

only sector with positive CAAR over the whole event window, while firms categorized
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as industry have most negative CAAR. The CAAR of the finance sector is reminiscent

of the European and American CAAR in figure 4, which makes sense as there are few

financial companies from Asia in the dataset. There is no significant event windows for

the finance sector, which makes sense because of the stable CAAR from 15 days before

the event until the end of the period. The industrial sector experience a large drop of

-7.70% over the duration of the [-25,25] window, the drop is significant on a 1% level. Non

of the more narrow event windows or the event day itself is significant. The consumer

cyclical sector have non significant CAAR in the long event windows, but experience a

significant drop in the event windows which starts around the event day. The technology

sector also suffers significant drops around the event day.

Figure 6.6: CAAR categorised by economic sector

The last figure show the companies classified into groups according to their abnormal

mood on the day of the decision. From the graph we see that the companies with the

worst abnormal mood on Twitter are declining in the larger event window [-25,25], while

the companies with a positive mood experience increases their returns. This would have

been a more interesting observation if it hadn’t been for the fact that the companies with

an average mood have the most decline during the event window.
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Figure 6.7: CAAR categorised by abnormal mood

To summarize, we see that EU cartel convictions cause significant abnormal returns in

some, but not all subsamples. The null hypothesis of zero cumulative abnormal returns is

thus conditionally rejected by the results of the event study. The magnitude of abnormal

returns seem to be conditioned on several factors and will be further tested in section 6.3

and 6.4
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Table 6.1: Abnormal return with different event windows and subsamples

Sample Event window CAAR T-value P-value Observations Positive CAR

All companies

(-25) to + 25 -1,48 % -0,94 0,35 156 46 %

(-15) to 15 -1,63 % -1,84 0.07* 156 46 %

(-10) to 0 -0,60 % -0,82 0,413 159 43 %

(-5) to 5 -0,62 % -1,42 0,16 160 47 %

(-1) to 1 -0,21 % -0,65 0,52 164 45 %

0 -0,28 % -0,7 0,48 164 43 %

0 to 2 -0,49 % -1,51 0,133 164 48 %

0 to 10 -1,24 % -2,91 0.004*** 160 42 %

Immunities only

(-25) to + 25 0,57 % -0,01 0,99 30 63 %

(-15) to 15 1,10 % 0,41 0,684 30 63 %

(-10) to 0 1,48 % 1,28 0,21 31 55 %

(-5) to 5 1,59 % 1,11 0,28 31 58 %

(-1) to 1 1,06 % 1,34 0,19 32 62 %

0 0,29 % 1,08 0,29 32 47 %

0 to 2 0,50 % 1,03 0,31 32 56 %

0 to 10 0,64 % 0,32 0,75 31 48 %

Excluding immunities

(-25) to + 25 -1,97 % -1,07 0,29 126 41 %

(-15) to 15 -2,29 % -2,43 0.02** 126 41 %

(-10) to 0 -1,11 % -1,79 0.08* 128 40 %

(-5) to 5 -1,16 % -2,44 0.02** 129 44 %

(-1) to 1 -0,52 % -1,5 0,14 132 41 %

0 -0,42 % -1,28 0,2 132 42 %

0 to 2 -0,73 % -2,24 0,03 132 45 %

0 to 10 -1,69 % -3,54 0.001*** 129 40 %

Fines >= 1% of revenue

(-25) to + 25 -1,99 % -0,86 0,39 49 37 %

(-15) to 15 -3,29 % -2,05 0.05** 49 37 %

(-10) to 0 -1,57 % -0,98 0,332 49 43 %

(-5) to 5 -2,23 % -3,17 0.003*** 49 33 %

(-1) to 1 -1,62 % -2,55 0.014** 49 27 %

0 -0,95 % -1,3 0,2 49 37 %

0 to 2 -1,77 % -2,6 0.012** 49 33 %

0 to 10 -2,91 % -3,54 0.001*** 49 31 %

Fines <1% of revenue

(-25) to + 25 -1,25 % -0,57 0,57 107 50 %

(-15) to 15 -0,88 % -0,93 0,35 107 50 %

(-10) to 0 -0,17 % -0,24 0,81 110 43 %

(-5) to 5 0,09 % 0,02 0,98 111 53 %

(-1) to 1 0,39 % 1,41 0,16 115 53 %

0 0,00 % 0,52 0,6 115 46 %

0 to 2 0,06 % 0,39 0,7 115 54 %

0 to 10 -0,50 % -1,25 0,21 111 47 %

European companies

(-25) to + 25 0,30 % 0,44 0,66 50 42 %

(-15) to 15 -1,61 % -0,87 0,39 50 42 %

(-10) to 0 -0,28 % 0,1 0,92 51 49 %

(-5) to 5 -1,04 % -1,41 0,16 52 42 %

(-1) to 1 -0,49 % -0,39 0,7 54 43 %

0 -0,37 % -0,33 0,74 54 44 %

0 to 2 -1,325 -2,33 0.023** 54 37 %

0 to 10 -1,71 % -2,05 0.05** 52 40 %

Asian companies

(-25) to + 25 -4,72 % -3,66 0.001*** 56 38 %

(-15) to 15 -3,35 % -3,19 0.002*** 56 38 %

(-10) to 0 -1,87 % -3,2 0.002*** 56 29 %

(-5) to 5 -1,18 % -1,91 0.06** 56 45 %

(-1) to 1 -0,89 % -2,82 0.01*** 57 32 %

0 -0,72 % -3,4 0.001*** 57 32 %

0 to 2 -0,615 -1,79 0.08* 57 46 %

0 to 10 -2,27 % -3,66 0.001*** 56 34 %

North American companies

(-25) to + 25 0,75 % 1,73 0,11 15 60 %

(-15) to 15 -0,51 % 0,44 0,67 15 60 %

(-10) to 0 -0,89 % 0,13 0,9 16 56 %

(-5) to 5 -1,67 % -0,8 0,44 16 44 %

(-1) to 1 0,23 % 0,76 0,46 16 56 %

0 0,37 % 1,6 0,13 16 69 %

0 to 2 0,29 % 0,94 0,36 16 62 %
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0 to 10 0,23 % 0,56 0,58 16 62 %

Industrials

(-25) to + 25 -7,70 % -4,52 0.0001*** 37 30 %

(-15) to 15 -5,40 % -3,9 0.0004*** 37 30 %

(-10) to 0 -1,39 % -1,3 0,2 37 49 %

(-5) to 5 -1,42 % -1,39 0,17 37 41 %

(-1) to 1 -0,99 % -1,34 0,19 37 35 %

0 -0,29 % -0,66 0,51 37 38 %

0 to 2 -0,91 % -1,46 0,15 37 41 %

0 to 10 -1,92 % -2,4 0.02** 37 41 %

Consumer cyclicals

(-25) to + 25 -1,60 % -0,86 0,4 21 38 %

(-15) to 15 -1,88 % -1,2 0,24 21 38 %

(-10) to 0 -0,83 % -0,38 0,71 21 52 %

(-5) to 5 -0,86 % -1,1 0,28 21 43 %

(-1) to 1 -1,20 % -1,89 0.07* 21 33 %

0 -1,31 % -1,22 0,24 21 38 %

0 to 2 -1,47 % -2,28 0.03** 21 33 %

0 to 10 -2,25 % -2,12 0.05** 21 43 %

Financials

(-25) to + 25 2,64 % 1,73 0,11 17 35 %

(-15) to 15 -2,30 % -1,7 0,11 17 35 %

(-10) to 0 -0,14 % -0,32 0,75 19 42 %

(-5) to 5 -0,63 % -1,12 0,28 20 50 %

(-1) to 1 0,45 % 0,87 0,39 23 57 %

0 0,14 % 1,02 0,32 23 57 %

0 to 2 -0,36 % -1,02 0,32 23 52 %

0 to 10 -0,63 % -0,67 0,51 20 35 %

Technology

(-25) to + 25 -2,84 % -1,8 0.08* 27 44 %

(-15) to 15 -2,30 % -0,99 0,33 27 44 %

(-10) to 0 -3,10 % -2,79 0.01*** 27 19 %

(-5) to 5 -1,65 % -1,68 0,1 27 37 %

(-1) to 1 -1,08 % -2,09 0.05** 27 30 %

0 -1 % -2,48 0.02** 27 33 %

0 to 2 -0,51 -0,7 0,49 27 56 %

0 to 10 -2,85 % -3,06 0.01*** 27 26 %

25% companies with

worst sentiment

(most negative)

(-25) to + 25 -2.45% 0.04 0.97 25 40 %

(-15) to 15 -3.72% -1.78 0.09* 25 40 %

(-10) to 0 -1.3% -0.33 0.74 26 46 %

(-5) to 5 -0.99% -0.96 0.35 26 54 %

(-1) to 1 -0.41% -0.6 0.55 28 46 %

0 -0.18% 0.27 0.79 28 54 %

0 to 2 -0.51% -0.96 0.35 28 50 %

0 to 10 -0.83% -0.73 0.47 26 46 %

25% companies with

best sentiment

(most positive)

(-25) to + 25 2.32% 0.82 0.42 19 58 %

(-15) to 15 0.98% 0.68 0.51 19 58 %

(-10) to 0 0.36% 0.46 0.65 20 45 %

(-5) to 5 -0.29% -0.64 0.53 20 45 %

(-1) to 1 -0.67% -1.44 0.17 20 40 %

0 -0.73% -3.33 0.004*** 20 25 %

0 to 2 -1.05% -2.12 0.05** 20 40 %

0 to 10 -0.99% -1.24 0.23 20 45 %

25 % companies with highest revenue

(-25) to + 25 0.13% 0.49 0.63 31 52 %

(-15) to 15 -0.14% 0.14 0.89 31 52 %

(-10) to 0 0.09% 0.57 0.57 33 42 %

(-5) to 5 0.34% 0.28 0.78 33 52 %

(-1) to 1 0.3% 0.89 0.38 33 52 %

0 -0.07% 0.27 0.79 33 55 %

0 to 2 0.08% 0.26 0.8 33 61 %

0 to 10 -0.36% -0.48 0.63 33 45 %

25 % companies with lowest revenue

(-25) to + 25 -1.52% 0.21 0.83 38 34 %

(-15) to 15 -3.07% -1.3 0.2 38 34 %

(-10) to 0 -2.11% -1.39 0.17 38 37 %

(-5) to 5 -1.99% -1.98 0.06* 38 37 %

(-1) to 1 -0.97% -0.89 0.38 38 34 %

0 -0.82% -0.56 0.58 38 45 %

0 to 2 -1.11% -1.06 0.3 38 45 %

0 to 10 -2.73% -2.56 0.14** 38 34 %
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6.2 Abnormal sentiment results

Event study analysis on corporate sentiment is performed on the base sample and on five

sub samples using sentimentr, a table showing the different samples and event windows can

be found in table A10.1 in the appendix. The figure under shows the Cumulative abnormal

average mood of the entire sample. From the graph we see that the CAABMOOD is stable

and hovering around 0% from 15 days to the day before the decision by the European

Commission. This indicates that, on average, there is no significant information leakage

that gains traction on Twitter. On the day of the decision there is a large drop of -91%

which means that the sentiment is almost twice as bad as the company’s average normal

sentiment calculated from the estimation period. The following three days are also very

negative. Over the event window [0,2] the CAABMOOD is -200% and it is -325% in the

[0,10] event window. This means that most of the negative reaction comes within the first

few days after the decision. Not all companies are experiencing a negative CABMOOD as

a result of the decision, 23% of companies have a positive CABMOOD on the day of the

decision and this percentage is increasing to 28% in the [0,10] window.

Figure 6.8: CAABMOOD of sentiment all companies

In figure 6.9, we have grouped the companies into those who received fines and those

who received immunity. From the graph we see that both groups are yielding a negative
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CAABMOOD over the long event window [-15,15]. It is interesting that the immunity

sample are experiencing such large losses in sentiment during the event window. The

sample experience a drop in sentiment close to -300% in the 15 days prior to the event,

but only -56% on the day of the event. The companies that receive fines are behaving

in a more logical way. The drop in mood is mainly happening on the day of the event,

and then stabilize after a few days. We see it as probable that the long slow decline in

mood seen in the companies that receive immunity is due to the fact that all companies

are weighted equally and that there is a small sample pool.

Figure 6.9: CAABMOOD of sentiment grouped by fine and immunity

Figure 6.10 shows the CAABMOOD for 3 subsamples; companies from North America,

Europe and Asia. All three samples show a significant fall on and in the days after the

event day, with North American companies having the most decline in mood. This is

different from the abnormal stock returns, where North American companies showed

neutral to positive CAAR in the event windows.
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Figure 6.10: CAABMOOD of sentiment categorised by continent

Table 6.2 shows that the days with significantly abnormal mood is the event day and

the upcoming days. This indicates that most of the event windows seen in table A.10.1

are significant because of these days. To conclude, most companies seem to experience

abnormal negative mood on the days of the event. Immune companies are also affected

negatively because of the event, though it is more challenging to explain their reaction.

The relationship between abnormal mood and abnormal returns, among other variables,

is explored in the next subchapter.



38 6.2 Abnormal sentiment results

Day AABMOOD T-value P-value Observations
-15 19% 1.26 0.21 100
-14 -6% -0.93 0.35 100
-13 -2% -0.65 0.52 100
-12 13% 0.66 0.51 101
-11 2% -0.39 0.7 100
-10 7% 0.13 0.9 95
-9 -5% -0.84 0.4 100
-8 -8% -1.24 0.22 103
-7 -5% -0.61 0.54 101
-6 14% 0.68 0.5 102
-5 -5% -0.44 0.66 100
-4 6% 0.19 0.85 99
-3 -19% -1.49 0.14 92
-2 -4% -0.31 0.76 102
-1 18% 1.3 0.2 103
0 -91% -7.42 0.00001*** 107
1 -65% -6.02 0.00001*** 106
2 -42% -4.43 0.00002*** 106
3 -27% -2.68 0.009*** 99
4 -19% -1.45 0.15 96
5 -28% -2.46 0.016** 97
6 -37% -2.54 0.013** 97
7 -7% -0.48 0.63 98
8 -6% -0.56 0.58 97
9 -8% -0.98 0.33 96
10 -1% -0.53 0.6 90
11 -14% -1.06 0.29 96
12 -12% -1.28 0.2 95
13 -2% 0.28 0.78 100
14 -7% -1.13 0.26 98
15 -1% -0.62 0.54 97

Table 6.2: Daily Average abnormal mood
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6.3 Regression results

Cross-sectional single-factor regression analysis is used to test for determinants of abnormal

stock price for different event windows. The null hypothesis is that there is no linear

relationship between the outcome variable and the variables that are tested. T-statistics

are used to decide whether the null hypothesis can be rejected or not.

Table 6.3 shows a description of all the variables that are tested. They can be categorized

into five different categories; Twitter data, fine characteristics, company size, business

sector and country of origin. The first 5 variables are those which tries to find out if

Twitter data has a significant impact the stock return on the event day.

Variable Description

Abnormal sentiment Abnormal sentiment score in same event window as outcome variable
25% percentile mood The 25% of companies with most negative abnormal sentiment (binary)
75% percentile mood The 25% of companies with most positive abnormal sentiment (binary)

Sentiment score cartel tweets Sentiment score on only tweets including the word "cartel"
Count cartel tweets Number of tweets including the word "cartel"

European Company is located in Europe (binary)
Asian Company is located in Asia (binary)

American Company is located in Europe (binary)
Fine % Fine as percentage of yearly revenue

Fine over 1% The fine is greater than 1% of yearly revenue (binary)
Fine over 3% The fine is greater than 3% of yearly revenue (binary)
log(Revenue) Logaritm of yearly revenue

Industrial The company is classified as industrial according to Thomson Reuters (binary)
economic sector classification

Consumer cyclicals The company is classified as consumer cyclicals according to Thomson Reuters economic sector classification (binary)
Financial The company is classified as financial according to Thomson Reuters economic sector classification (binary)

Technology The company is classified as technology according to Thomson Reuters economic sector classification (binary)
Number of years cartel Number of years from cartel started to the cartel ended

Price fixing Cartel characteristics (binary)
Market share allocation Cartel characteristics (binary)

Bid rigging Cartel characteristics (binary)
Quota Cartel characteristics (binary)

Table 6.3: Variable description

The coefficients of the different regressions are presented in table 6.4, with intercept and

R squared for significant variables in tables 6.5 and 6.6. All coefficients are presented and

statistically significant variables are labeled with stars at 10%, 5% and 1% significance

level. The regression shown in this chapter was done on companies which received a fine,

as this is the most interesting group because of the significant fall in abnormal stock

returns around the event date. The same table for immune companies can be seen in the

appendix table A8.1, with close to none significant results.

The regressions confirm that fines normalised by revenue can explain some of the drop in

returns. Larger fines in percentage of revenue leads to larger negative abnormal return. A

fine of at least 1% or 3% are correlated with more negative abnormal return of 0.8% and
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2.1% respectively on the event day, and are also significant for other event windows.

Only one of the Twitter data variables seems to have any impact on the abnormal stock

return around the event day for any of the periods. The 25% percentile of companies with

most positive abnormal return does 4.8% better than the rest on average, significant at a

5% level.

The only other variable to have significant impact on the abnormal stock return is the

revenue. Higher revenue seems to correlate with better abnormal return, indicating that

smaller companies are punished harder than large companies.

The full regression output for fine over revenue, abnormal sentiment, tweets including

"cartel" and sentiment score on those tweets can be found in the appendix for event

window [0,10], [-1,1] and on the event day. The only significant factor, fine over revenue,

explains 5,6%, 7.7% and 10% of the outcome in the three windows, indicating that the

fine is most effective on the day that it is announced.

Coefficient [-15,15] [-10,0] [-5,5] [-1,1] 0 [0,2] [0,10]
Abnormal sentiment 0.001 -0.0004 0.001 0 -0.001 -0.001 0.001
25% percentile mood -0.015 -0.001 0.001 0.003 0.006 0.002 0.01
75% percentile mood 0.048** 0.021 0.01 -0.001 -0.002 -0.005 0.007

Sentiment score cartel tweets -0,007 -0,001 0,017 -0,025 -0,025 -0,024 -0,025
Count cartel tweets 0 0 0 0 0 0 0

European 0,011 0,014 0,002 0,001 0,001 -0.01* 0
Asian -0,019 -0,014 0 -0,007 -0,005 0,002 -0,01

American 0,02 0,002 -0,006 0,008 0,009 0,012 0.022*
Fine % -0,52 -0.431** -0.321* -0.371*** -0.372*** -0.337*** -0.462***

Fine over 1% -0,016 -0,007 -0.017** -0.018*** -0.008* -0.017*** -0.02**
Fine over 3% -0,017 -0,018 -0.025** -0.025*** -0.021*** -0.025*** -0.023*
log(Revenue) 0.008* 0.005* 0.006** 0.003** 0,002 0.004*** 0.007***

Industrial -0.044*** -0,004 -0,004 -0,007 0,002 -0,003 -0,003
Consumer cyclicals 0,005 0,003 0,003 -0,008 -0,011 -0,009 -0,007

Financial 0 0,011 0,006 0,012 0,007 0,004 0,013
Technology 0 -0.025** -0.006 -0.007 -0.007 0.003 -0.015

Number of years cartel 0 0,0001 0,001 0 0 0 0
Price fixing -0,006 -0.028** -0,003 -0,009 -0,009 -0,006 0,005

Market share allocation -0,002 0,001 0,005 0,004 0,002 0,004 0,004
Bid rigging 0.13* 0.086*** 0,021 0,007 0,011 0,001 0,022

Quota -0,026 -0,009 0,005 0,003 0,001 0,003 -0,006

Table 6.4: Single-factor regression on companies that received fine
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Intercept [-15,15] [-10,0] [-5,5] [-1,1] 0 [0,2] [0,10]
75% percentile mood -0.038***
European -0,003
American -0.02*
Fine % -0,005 -0,007 0,0003 0,001 -0,002 -0.01**
Fine over 1% -0,005 0,001 -0,001 -0,001 -0.009*
Fine over 3% -0.008* -0,002 -0,001 -0,004 -0.014***
log(Revenue) -0.13** -0.143** -0.082** -0.107*** -0.186***
Industrial -0,01
Technology -0,006
Price Fixing 0,013
Bid rigging -0.028*** -0.014***

Table 6.5: Intercept for significant variables

[-15,15] [-10,0] [-5,5] [-1,1] 0 [0,2] [0,10]
75% percentile mood 0.062
European 0.026
American 0.024
Fine % 0.039 0.026 0.077 0.105 0.069 0.056
Fine over 1% 0.031 0.07 0.022 0.069 0.042
Fine over 3% 0.033 0.072 0.066 0.077 0.028
log(Revenue) 0.025 0.027 0.042 0.031 0.057 0.071
Industrial 0.053
Technology 0.038
Price Fixing 0.039
Bid rigging 0.085 0.099

Table 6.6: R squared for significant variables

6.4 Regression tree results

To dig further into the importance and interactions of the variables, regression trees has

been created. Our main variables have been used in the regression trees; abnormal mood,

sentiment score on cartel tweets, number of cartel tweets, fine, continent and economic

sector. Figure 6.11 and 6.12 shows trees for the event windows [-1,1] and [0,10], for the

companies that received a fine. Regression trees for companies with fines, and regression

trees for other event windows, can be found in the appendix.

The most significant predictor in both regression trees is the fine as percentage of revenue.

When the fine is at least 1.7% of the annual revenue in the event window, the abnormal

return is on average negative by 4% if the company is categorised as either Consumer

cyclicals or technology, elsewise it is negative by 1.1%. If the fine is less than 1.7%, then
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further inequalities from cartel sentiment, economic sector and geographical placement has

to be explored to find the expected abnormal return. The relative variable importance in

this tree is 48% fine, 25% economic sector, 16% sentiment on cartel tweets, 8% geographical

placement, 2% number of tweets including cartel and 1% abnormal sentiment.

For the other event window, [0,10], a fine over 4.7% of annual revenue is correlated with

a negative abnormal stock return of 6.4%, while companies with smaller fines has to go

through further branches. The relative variable importance in this tree is 47% fine, 20%

economic sector, 14% abnormal sentiment, 9% geographical placement and 3% sentiment

on cartel tweets.

This tree shows once again that the fine is more important than the other predictors when

it comes to explaining the abnormal returns around the event day.

Figure 6.11: Regression tree [-1,1]
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Figure 6.12: Regression tree [0,10]

6.5 Robustness checks

The first thing we wanted to test for in our robustness check was our dictionary. This was

done to see if the result would change if we tried another method. The VADER package

was used for this, as described in the methodology section.

Figure 5.12 shows the CAABMOOD over the same event window, [-15,15] as used by the

sentimentr package. It looks very different from the results of the sentimentr method,

and shows that normal words don’t capture the real meaning of the tweets that are being

tweeted. The plot for the VADER AABMOOD with 95% confidence interval each day

can be found in the appendix.
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Figure 6.13: CAAR of sentiment all companies

The interpretation of the tweets containing the word cartel could be one of the reasons

why the two methods have so different results. As mentioned in the methodology chapter,

the sentimentr algorithm with its custom dictionary will to a larger extent indicate what a

person that understands economical terminology thinks when he is reading a tweet, while

the VADER sentiment shows what a "normal" person thinks. The VADER dictionary

have a much lower average sentiment score in the tweets containing the word cartel. In

sentimentr, the average score of these tweets during the event day is -0.36, while with the

alternative VADER corpus the mean score is 0.14.

Table 5.13 shows the results when regressing abnormal sentiment with VADER on abnormal

stock return. It is not possible to reject the null hypothesis about zero correlation between

abnormal Twitter mood/sentiment and abnormal stock returns.

Figure 6.14: CAAR of sentiment all companies

The Twitter data has limitations as mentioned in the data limitation section. Companies
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with few tweets could affect the result in one way or another, and changes in how Twitter

have been used over the years could also affect the outcome.

In table 3,4 and 5 in the appendix we regress the three main Twitter variables on

abnormal stock return with three different data samples; cases before 08.11.2017, cases

after 08.11.2017 and companies with at least 10 000 tweets. As the tables show, most of

the variables are still insignificant with only the sentiment score on cartel tweets being

significant in some of the event windows. The coefficients of the variables in these windows

still indicates that more negative tweets correlates with more positive abnormal stock

return, which is the opposite of what we would expect, we interpret this as being a random

sampling issue.
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7 Discussion

We begin the discussion by repeating our first research question; does cartel convictions

create abnormal returns? Based on the results of the analysis, there seems to be some

evidence suggesting that cartel convictions create negative cumulative abnormal returns

around the event day. However, this is conditional on several factors like the size of the

fine as a percent of revenue, immunity, company size, and geographic location. Only

the event window [0,10] is significantly negative when looking at the primary sample

containing all companies. Thus, it is difficult to falsify a null hypothesis of zero cumulative

average abnormal returns for the main sample containing all convicted companies. This

does not mean that investors are not punishing companies for cartel participation, as the

results differ if the fined companies are isolated.

The reason why the immune companies don’t have negative abnormal returns is probably

due to an anticipation effect. Markets may have anticipated a fine and priced in the

expectations of the penalty in advance of the decision. The mildly positive reaction can

thus be a reaction to the lack of a fine by the EU Commission, even though it is not

significant. The fact that it, on average, is no negative price reaction for companies that

receive immunity should work as an additional incentive for companies to apply for an

immunity application, as they benefit from both no fine and no reduction in stock returns.

For the companies that receive a fine from the Commission, the results are significant and

negative in multiple event windows. The regressions and the decision trees confirm that

receiving a fine affect company returns negatively. This makes sense as a fine directly

affects a company’s earnings and reduces the company’s total market value. However, the

fine amount does only explain 10.5% of the variation seen in the cumulative abnormal

returns in the sample seen in table A8.1. The remaining differences in returns have

in previous studies been explained by the loss of extra cartel revenue and an assumed

reputational factor. This leads us to the second research question, can Twitter data be

used to estimate private sanctions?

Based on the analysis results, it seems clear that the variables created to measure private

sanctions cannot explain the differences in abnormal stock returns between companies.

The question is, therefore, why do they not? If one assumes a connection between
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reputational damage and public sentiment, one would expect that a company that receive

more negative coverage on Twitter relative to other companies, would have worse stock

returns. The results of the analysis don’t show any such relation. As we see it, there are

three possible reasons why the Twitter variables do not provide any explanatory power.

1. Data issues

2. Method issues

3. It works and there is no relation between Twitter sentiment and abnormal returns

The first explanation have already been touched upon in the data limitation section 3.5.

Better query words and a larger sample of companies and tweets might have given us

better data that could have affected the results. However the robustness checks show that

the conclusion doesn’t change when the assumptions changes, as the variables have no

more explanatory power when tried on smaller and more specified samples. This leads

us to believe that the data issue is not that relevant. It is, therefore, more likely that

improvements to the sentiment analysis could affect the results. It might be that the

algorithms over or underestimate the real sentiment of the tweets creating inaccurate

sentiment scores for each company, which would affect the explanatory power of the

variables. We tried with two different methods and they yielded very different results.

This was not surprising considering that we tested whether "a layperson" or more financial

aware people have the greater effect on returns. The results show that neither of them

affect the market, but this could also be due to the algorithm miss-classifying tweets.

The most interesting explanation is that their is no relation between Twitter mood and

abnormal returns. The variables only containing the cartel specific tweet sentiment, and

the variable of the count of cartel specific tweets is the closest this thesis comes to testing

variables similar to those used in earlier studies. Previous studies have found that the

sentiment and the count of articles from the combined news media can influence the

performance of stocks (Mariuzzo et al., 2020a) (Günster & van Dijk, 2016). That the

Twitter variables have no explanatory power is, therefore, a bit surprising. There should

be a connection between what is written by the traditional news media and what is written

on Twitter (Gan et al., 2020). Increased newspaper coverage should generate more tweets,

and the language used in the articles should also affect the opinions expressed on Twitter,
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the inverse should also apply. Because of this one would think that Twitter sentiment and

the count of tweets would be as good if not even better at measuring private sanctions, as

it contain the collective thoughts of large parts of the public.

The fact that the variables don’t have any explanatory power could mean that Twitter is a

less ideal source for measuring private sanctions. It would mean that while allot is written

on Twitter, it has small to none effect on the share price of companies, at least related to

cartel events. Even though some researchers have found the sentiment on social media

to have predictive power(Wolf & Bergdorf, 2019), some studies argue that market/stock

returns and volatility is exerting a stronger impact on investor sentiment than the other

way around (Gan et al., 2020). The relationship between positive/negative Twitter

sentiment and real-world outcomes is thus not fixed (Lim & Tucker, 2019). Some events

generate a lot of negative attention on Twitter, and the stocks still perform better than

the stocks of similar companies going through similar events with less Twitter attention.

The reason why Twitter sentiment might not affect stock prices could potentially be due

to the differences in the demographic on social media and in the stock market. While

more than 50% of Twitter users are under the age of 35 (Statista, 2021), only 1.4% of the

total stock value at least in the US is owned by the same age group(Federal Reserve, 2019)

(USA facts, 2019). This could mean that even a considerable outrage on Twitter would

not affect the returns, as the people who dictate the market might not be paying that

much awareness to what is happening on the platform. It might also be that investors

care more about the potential loss of revenue as a consequence of the cease of cartel

participation, than they do about the loss in revenue because of a reputational blow, but

this is just speculation.

Before we end the discussion, we want to reflect on some of the other variables that we

tested in the analysis. Firstly, geographic location seems to matter for the abnormal returns

of the companies. This is partly explained by differences in media coverage by previous

studies (Ulrich, 2018). We agree that media coverage might be a possible explanation, as

it is reasonable to think that news decrease in force over longer distances. However, it is

interesting that North American companies are experiencing the most abnormal mood

and coverage on Twitter on average (according to our sentimentr evaluation), when they

have no abnormal returns. This could mean that other media types have more power to
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influence stock returns in cartel specific cases, but it could also mean that media coverage,

in general, is less important than previously assumed by earlier studies. Identifying which

media type that imposes the most reputational damage on a firms value could be a

proposed future research question. We also see that small companies are more hurt by

the conviction than large companies. This is probably due to investors thinking that the

chance of bankruptcy is higher for this group. Thus, being part of a cartel provides an

additional downside for small companies when caught, as they in general get penalised

more by investors.
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8 Conclusion

In this thesis, we have investigated the effect of cartel convictions in the European Union

on stock returns. A common event study methodology has been conducted on a sample

of 164 companies involved in 39 cartel cases from 2010 to 2021. The aim of the study was

to find out if the decision by the European Commission results in abnormal stock returns

and to identify whether variables created from Twitter data could explain differences in

the abnormal returns between companies. In order to do this, we collected tweets on all

companies from 70 days before to 30 days after the decision by the European Commission,

which we used to create three different variables. Based on our methods, data, and

analysis, we have found no proof that differences in abnormal Twitter mood, the count

of cartel specific tweets, or the sentiment in these tweets can explain the differences in

abnormal returns.

In addition to trying the new Twitter variables, we have also validated the findings

of previous studies. We found the maximum cumulative average abnormal return for

companies that received a fine to be -2.29% over a period of 15 days before to 15 days after

the penalization, this suggests pre-event information leakage. By analysing subsamples

over multiple event windows, we have confirmed the findings of earlier studies and agree

with them that variables such as fine as a percent of revenue, firm size, and to some degree

the country of incorporation and economic sector matter for the magnitude of abnormal

return. Cross sectional regression and decision trees on different event windows further

confirm the significance of these variables. We also find that companies that receive

immunity from the European Commission on average are not penalised with lower stock

returns by investors.
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Appendix

A1 Cartel characteristics

Table A1.1: Cartel characteristics
Case Cartel name Size Quota Market share allocation Price fixing Bid rigging Cartel started Cartel ended Duration years Date convicted
38344 Pre-stressing steel 17 1 1 1 0 1984 2002 18 30/06/2010
38511 DRAMS 10 1 0 1 0 1998 2002 4 19/05/2010
38866 Animal Feed Phosphates 6 0 1 1 0 1969 2004 35 20/07/2010
39092 Bathroom fittings & fixtures 17 0 0 1 0 1992 2004 12 23/06/2010
39258 Airfreight 14 0 0 1 0 1999 2006 7 09/11/2010
39309 LCD 6 0 0 1 0 2001 2006 5 08/12/2010
39437 TV and computer monitor tubes 8 0 1 1 0 1996 2006 10 05/12/2012
39462 Freight Forwarding 15 0 0 1 0 2002 2007 5 28/03/2012
39574 Smart card chips 4 0 1 1 0 2003 2005 2 03/09/2014
39579 Consumer detergents 3 0 0 1 0 2002 2005 3 11/04/2011
39600 Refrigeration compressors 5 0 1 1 0 2004 2007 3 07/12/2011
39605 CRT glass bulbs 4 0 0 1 0 1999 2004 5 19/10/2011
39610 Power cables 26 1 1 0 0 1999 2009 10 02/04/2014
39639 Optical disc drives 8 0 0 0 1 2004 2008 4 21/10/2015
39748 Automotive wire harnesses 5 1 0 1 0 2000 2009 9 10/07/2013
39801 Polyurethane foam 5 0 0 1 0 2005 2010 5 29/01/2014
39824 Trucks 6 0 0 1 0 1997 2011 14 19/07/2016
39861a Yen interest rate derivatives 1 0 0 1 0 2007 2010 3 04/12/2015
39861 Yen interest rate derivatives 6 0 0 1 0 2007 2010 3 04/12/2013
39881 Occupant safety systems 5 0 1 1 0 2004 2010 6 22/11/2017
39904 Rechargeable batteries 4 0 0 1 0 2004 2007 3 12/12/2016
39914a Euro interest rate derivatives 3 0 0 1 0 2005 2008 3 07/12/2016
39914 Euro interest rate derivatives 5 0 0 1 0 2005 2008 3 04/12/2013
39920 Braking systems 3 0 0 1 0 2007 2011 4 21/02/2018
39922 Automotive bearings 6 1 0 1 0 2004 2011 7 19/03/2014
39924 Swiss franc interest rate derivatives 4 0 0 1 0 2007 2007 1 21/10/2014
39960 Thermal systems 6 0 1 1 0 2005 2009 4 08/03/2017
40009 Maritime car carriers 5 1 0 1 0 2006 2012 6 21/02/2018
40013 Lighting systems 3 0 0 1 0 2004 2007 3 21/06/2017
40018 Car battery recycling 5 0 0 1 0 2009 2012 3 08/02/2017
40028 Alternators and starters 3 1 0 1 0 2004 2010 6 27/01/2016
40098 Blocktrains 3 0 1 1 0 2004 2012 8 15/07/2015
40113 Spark plugs 3 1 0 1 0 2001 2011 10 21/02/2018
40135 Foreign exchange spot trading 6 0 0 1 0 2007 2013 6 16/05/2019
40136 Capacitors 9 1 0 1 0 1998 2012 14 20/03/2018
40299 Closure systems 3 0 1 1 0 2009 2012 3 29/09/2020
40324 EGB 7 1 0 1 1 2007 2011 4 20/05/2021
40346 SSA Bonds 5 1 0 1 0 2010 2015 5 28/04/2021
40410 Ethylene 4 0 0 0 1 2011 2017 6 14/07/2020
40481 Occupants safety systems 2 3 0 1 0 0 2001 2011 10 05/03/2019
55555 PC video games 6 0 1 0 0 2007 2018 11 20/01/2021
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A2 Twitter query words

Table A2.1: Twitter query words

Query name Case Query name Case

Denso 40113 Philips 39639

Bosch 40113 Lite-On 39639

Westlake 40410 Sony 39639

WestlakeChem 40410 Quanta storage 39639

Orbia 40410 JTEKT 39922

Clariant 40410 Nachi-Fujikoshi 39922

Celanese 40410 AB SKF 39922

Sanyo 40136 SKF 39922

Hitachi Chemical 40136 NTN Corporation 39922

hitachi 40136 Carpenter 39801

Matsuo 40136 Recticel 39801

Nichicon 40136 ABB Ltd 39610

Nippon Chemi-Con 40136 ABB 39610

BOSCH 39920 Nexans 39610

CONTINENTAL 39920 NKT 39610

UBS 40135 NKT A/S 39610

Barclays 40135 Prysmian 39610

RBS 40135 Safran 39610

Citigroup 40135 Sumitomo 39610

JP Morgan 40135 Hitachi metals 39610

Bank of Tokyo 40135 Hitachi 39610

MUFGEMEA 40135 J-power 39610

MUFG Bank 40135 SWCC 39610

Mitsubishi UFJ Financial Group 40135 Shova holdings 39610

Bank of Tokyo-Mitsubishi 40135 Mitsubishi materials 39610

Autoliv 40481 Mitsubishi cable industries 39610

Magnalnt 40299 Taihan Electric Wire 39610

Magna 40299 Taihan 39610

UBS 39861 ICAP 39861a

RBS 39861 Renesas 39574

Deutsche Bank 39861 Infineon 39574

JPMorgan 39861 Whirlpool 39600

Citigroup 39861 Panasonic 39600

Behr 39960 ArcelorMittal 38344

Denso 39960 Voestalpine 38344

Valeo_group 39960 Micron 38511

Valeo 39960 Hynix 38511

Panasonic 39960 Infineon 38511

Wilhelmsengroup 40009 Samsung 38511

Wallenius Wilhelmsen 40009 Samsung Semiconductor 38511

Philips 39574 Renesas 38511

Samsung 39574 NEC 38511

JP Morgan 39924 NEC Corporation 38511

UBS 39924 Hitachi 38511

Credit Suisse 39924 Mitsubishi Electric 38511

RBS 39924 Mitsubishi 38511

Sony 39904 Nanya 38511

Panasonic 39904 Toshiba 38511

Sanyo 39904 Kemira Oyj 38866

Samsung SDI 39904 Kemira 38866

Barclays 39914 Yara 38866

Societe Generale 39914 Tessenderlo 38866

RBS 39914 Ercros 38866

HSBC 39914a Quimica 38866

Crédit Agricole 39914a FMC Corporation 38866

JP Morgan 39914a Trane Inc 39092

MAN 39824 Masco Corporation 39092

Volvo 39824 Villeroy & Boch 39092

Daimler 39824 Samsung 39309
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Iveco 39824 LG Display 39309

DAF 39824 Chimei InnoLux 39309

Samsung SDI 39437 AU Optronics 39309

Philips 39437 HannStar Display Corporation 39309

LG Electronics 39437 Kuehne + Nagel 39462

Technicolor 39437 Deutsche Post 39462

Panasonic 39437 United Parcel Service 39462

Toshiba 39437 DSV 39462

Air Canada 39258 Johnson Controls 40018

Airfrance 39258 Recylex 40018

Air France 39258 Campine 40018

KLM 39258 Hitachi Chemical 40136

British Airways 39258 Hitachi 40136

Cathay Pacific 39258 Sanden 39960

LAN Chile 39258 K-Line 40009

Qantas 39258 Kawasaki Kisen Kaisha 40009

SAS 39258 Holy Stone Enterprise 40136

Singapore Airlines 39258 Fujikura 39610

Lufthansa 39258 NGK spark plugs 40113

Denso 40028 NGK 40113

Hitachi 40028 Mitsui 40009

Melco 40028 NYK Line 40009

Mitsubishi Electric 40028 Nippon Yusen 40009

Henkel 39579 CSAV 40009

Procter & Gamble 39579 Vapores 40009

Unilever 39579 NSK Ltd 39922

Kuehne + Nagel 40098 NSK 39922

Kuehne & Nagel 40098 #Kuehne 39462

Valeo 40013 Kuehne & Nagel 39462

#Hella 40013 Hannstar 39303

Asahi glass 39605 Villeroy 39092

Nippon electric 39605 #Kuehne 40098

Schott AG 39605 Deutsche Bank 40346

TOKAI RIKA 39881 Bank of America 40346

AUTOLIV 39881 Credit Agricole 40346

TOYODA GOSEI 39881 Credit Suisse 40346

Sumitomo 39748 NatWest 40324

Furukawa 39748 Nomura 40324

Leoni 39748 UBS 40324

Bandai Namco 55555 UniCredit 40324

Focus Home 55555 Furukawa 39610

Capcom 55555 Procter 39579
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A3 Company characteristics

Table A3.1: Company characteristics

Company Cartel Economic Sector Country Fine over revenue
Total number

of tweets

Abnormal

return % decision

date

Abnormal mood %

decision date

Cartel

tweets

Sentiment

score

cartel

tweets

ArcelorMittal 38344 Other Luxembourg 0,001701 2276 -0,01679 19 -0,28423
Voestalpine AG 38344 Other Austria 0,001892 72 0,003453 1 -0,48507
Infineon 38511 Technology Germany 0,018731 3507 -0,02681 -1,28421 86 -0,07121
Micron Technology 38511 Technology United States 0 2819 -0,00523 -0,12052 6 -0,07228
Hitachi 38511 Other Japan 0,00651 17736 -0,02313 0,094732 2 -0,17442
Hynix Semiconductor 38511 Technology South Korea 0,01107 766 -0,00845 0 8 -0,26058
Mitsubishi Electrics 38511 Other Japan 0,000593 24631 -0,01064 -0,04069 1 -0,17206
Nanya Electronics 38511 Technology South Korea 0,001883 1837 0,009755 -1,79091 2 -0,2266
NEC Corporation 38511 Technology Japan 0,000334 17324 -0,01221 0,125825 3 -0,04662
Renesas 38511 Technology Japan 0,000822 693 -0,02624 1 -0,17678
Samsung 38511 Technology South Korea 0,001783 193299 0,001083 -0,6402 96 -0,42116
Toshiba Corporation 38511 Other Japan 0,000347 72768 -0,02813 -0,21321 3 -0,1684
Ercros 38866 Other Spain 0,026061 1 -0,03131 1 0,158114
FMC Corporation 38866 Other United States 0,007241 65 0,006201
Kemira Oyj 38866 Other Finland 0 45 -0,02276
Quimica 38866 Other Chile 0,002765 409 0,010042
Tessenderlo 38866 Other Belgium 0,04 31 -0,00325 5 -0,45421
Yara 38866 Other Norway 0 4746 -0,02418 -1,54569
Masco Corporation 39092 Consumer Cyclicals United States 0 43 0,012801
Trane Inc 39092 Industrials United States 0,027385 25 -0,01014
Villeroy & Boch 39092 Consumer Cyclicals Germany 0,1 898 -0,23288 -2 6 -0,33475
Air Canada 39258 Industrials Canada 0,003425 9568 -0,05123 -2,18638 8 -0,39273
Air France 39258 Industrials France 0,007631 7306 -0,02069 1,068688 13 -0,31214
British Airways 39258 Industrials United Kingdom 0,010495 20196 -0,01225 -1,95729 28 -0,48033
KLM 39258 Industrials Netherlands 0,005305 10647 -0,02069 0,737533 3 -0,49334
LAN Chile 39258 Industrials Chile 0,003261 102 0,008169 0 0 0
Lufthansa 39258 Industrials Germany 0 9223 -0,02461 0,592217 5 -0,07261
Qantas 39258 Industrials Australia 0,000985 32668 -0,00961 -2,02314 17 -0,42509
SAS 39258 Industrials Sweden 0,01604 32454 0,013719 -0,24817 13 -0,25095
Cathay Pacific 39258 Industrials Hong Kong 0,009918 3066 -0,00119 -1,45698 2 -0,48507
Singapore Airlines 39258 Industrials Singapore 0,009731 6807 -0,00542 -1 3 -0,49502
AU Optronics 39309 Technology Taiwan 0,015438 567 -0,02953
Chimei InnoLux 39309 Technology Taiwan 0,086498 45 -0,05921
HannStar Display Corporation 39309 Technology Taiwan 0,007565 0 0,02622
LG Display 39309 Technology South Korea 0,017752 3353 -0,00179 -1,66611 118 -0,10283
Samsung 39309 Technology South Korea 0 198099 0,013218 0,020747 50 -0,02491
Philips 39437 Technology Netherlands 0,021028 117669 -0,01289 -1,52925 600 -0,43584
Technicolor 39437 Consumer Cyclicals France 0,011197 9291 -0,02128 -0,31459 4 -0,23619
LG Electronics 39437 Technology South Korea 0,012752 9282 -0,01492 -2,3172 578 -0,4569
Panasonic 39437 Technology Japan 0,002279 170727 -0,00612 -1,46423 240 -0,42535
Samsung SDI 39437 Technology South Korea 0,041947 350 -0,01817 88 -0,31969
Toshiba Corporation 39437 Other Japan 0,000926 147902 -0,00402 -0,21227 30 -0,39963
Deutsche Post 39462 Industrials Germany 0 1629 -0,00304 0,69666 4 -0,12236
DSV 39462 Industrials Denmark 6,47E-05 1690 0,01275 -3,88921 1 -0,65465
Kuehne + Nagel 39462 Industrials Switzerland 0,003354 8 0,003285 1 -0,70711
United Parcel Service 39462 Industrials United States 0,000258 3227 -0,00034 -2,03226 15 -0,30783
Infineon 39574 Technology Germany 0,021542 3843 -0,01325 -2,74767 369 -0,53002
Philips 39574 Technology Netherlands 0,000864 125565 0,002691 -1,69716 553 -0,54196
Renesas 39574 Technology Japan 0 706 -0,05123 14 -0,35142
Samsung 39574 Technology South Korea 0,000222 192806 0,014487 -0,47172 5 -0,48885
Henkel 39579 Other Germany 0 2391 -0,00504 -0,08289 14 -0,34592
Procter & Gamble 39579 Other United States 0,003597 10082 0,006827 -0,83995 108 -0,38402
Unilever 39579 Other United Kingdom 0,002405 17312 0,001564 0,371305 246 -0,37716
Whirlpool S.A 39600 Consumer Cyclicals Brazil 0,01654 44107 0,006603 -0,14282 5 -0,55036
Panasonic 39600 Technology Japan 0,000115 186485 -0,02084 -0,22816 11 -0,4481
Asahi glass 39605 Consumer Cyclicals Japan 0,003951 116 -0,00907 3 -0,72077
Nippon Electric Glass 39605 Technology Japan 0,014664 101 -0,03695 0 0
ABB Ltd 39610 Industrials Switzerland 0 36121 -0,00417 -0,07543 4 -0,32767
Nexans 39610 Industrials France 0,01053 743 0,023901 0 13 -0,24173
NKT A/S 39610 Industrials Denmark 0,001833 20998 0,060341 -1,36053 1 -0,25
Prysmian 39610 Industrials Italy 0,014384 765 0,026331 86 -0,22618
Safran 39610 Industrials France 0,000591 5155 -0,01293 0,291298
Fujikura 39610 Other Japan 0,006267 937 -0,01157
Furukawa 39610 Industrials Japan 0,00342 1736 -0,001 0,235294
Hitachi Metals 39610 Industrials Japan 0,002074 26346 -0,01279 0,071746
J-power 39610 Other Japan 0,001265 39 -0,00471
Mitsubishi Materials 39610 Other Japan 0,000273 60 -0,00425
Sumitomo 39610 Consumer Cyclicals Japan 0,00053 2413 -0,00307 0,327751
SWCC Shova Holdings 39610 Industrials Japan 0,002139 925 -0,0163
Taihan Electric Wire 39610 Industrials South Korea 0,003554 8 0,001584
Philips 39639 Technology Netherlands 0 117490 0,004654 1 -0,22613
Lite-On 39639 Technology Taiwan 0 304 0,017143 1 0,01409
Quanta storage 39639 Technology Taiwan 0,017524 24 0,001186 1 0,01409
Sony 39639 Technology Japan 0,000539 175000 0,000285 -0,36958
Leoni 39748 Industrials Germany 0,000362 6526 0,019991 -1,48689 13 -0,51659
Furukawa 39748 Industrials Japan 0,000426 3736 -0,02037 -0,51843
Sumitomo 39748 Consumer Cyclicals Japan 0 1592 0,020274 1 -0,33955
Carpenter 39801 Other United States 0,044503 76340 0,014384 -0,18501 1 -0,27735
Recticel 39801 Other Belgium 0,027609 71 0,114968 2 -0,65507
DAF 39824 Industrials Netherlands 0,042776 17490 -0,01373 -0,89333 183 -0,07759
Daimler 39824 Consumer Cyclicals Germany 0,006749 20020 -0,0008 -2,14649 209 -0,13219
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Company Cartel Economic Sector Country Fine over revenue
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Iveco 39824 Industrials Italy 0,020681 5215 -0,00856 -2,0674 158 -0,0464
MAN 39824 Industrials Germany 0 184602 0,008446 -1,58629
Volvo 39824 Industrials Sweden 0,020054 85952 0,014934 -0,43289 206 -0,10809
Citigroup 39861 Financials United States 0,000932 15167 0,001286 -4,49382 173 -0,45391
Deutsche Bank 39861 Financials Germany 0,013605 18808 0,001676 -3,06815 37 -0,0648
JP Morgan 39861 Financials United States 0,000984 62525 0,00801 -4,61151 167 -0,46487
RBS 39861 Financials United Kingdom 0,011773 79561 0,003909 -2,76004 299 -0,34625
UBS 39861 Financials Switzerland 0 24868 0,012305 -1,54804 49 -0,03069
ICAP 39861a Financials United Kingdom 0,016845 4431 -0,00982 -1,38506 94 -0,35644
Autoliv 39881 Consumer Cyclicals Sweden 0,000846 1564 0,005886 -1,16999 10 -0,41465
TOKAI RIKA 39881 Consumer Cyclicals Japan 0,00045 17 -0,00656
TOYODA GOSEI 39881 Consumer Cyclicals Japan 0,001698 190 -0,00096
Panasonic 39904 Technology Japan 0,000671 103066 0,001671 -0,24525 213 -0,4749
Samsung SDI 39904 Technology South Korea 0 1823 0,011626 26 -0,28136
Sanyo 39904 Industrials Japan 0,140885 6471 0,006287 -2,10114 136 -0,52066
Sony 39904 Technology Japan 0,000483 176548 -0,00204 -0,31858 39 -0,5906
Barclays 39914 Financials United Kingdom 0 160386 -0,00837 -0,66209 60 -0,22615
Societe Generale 39914 Financials France 0,003185 3220 -0,0022 0,747187
Credit Agricole 39914a Financials France 0,001829 5113 -0,01078 -2,20363 267 -0,23715
HSBC 39914a Financials United Kingdom 0,000422 92903 0,020371 -2,92244 193 -0,30416
JP Morgan 39914a Financials United States 0,003628 16242 -0,01314 -2,52266 9 -0,40164
Bosch 39920 Consumer Cyclicals Germany 0,02123 77728 -0,01332 0,16687 4 -0,23162
CONTINENTAL 39920 Consumer Cyclicals Germany 0,001 117504 0,004046 -0,1211 6 -0,3434
AB SKF 39922 Industrials Sweden 0,041255 4724 -0,00397 0,181595 8 -0,19721
JTEKT Corporation 39922 Industrials Japan 0 32 -0,0034
Nachi-Fujikoshi Corporation 39922 Industrials Japan 0,002752 5 0,020431
NSK Ltd 39922 Consumer Cyclicals Japan 0,010408 5790 0,005126 -0,04064
NTN Corporation 39922 Industrials Japan 0,045609 9 0,000575
Credit Suisse 39924 Financials Switzerland 0,000305 28913 -0,00067 -1,45137 150 -0,43951
JP Morgan 39924 Financials United States 0,000941 26785 0,002474 -7,02758 23 -0,59171
RBS 39924 Financials United Kingdom 0 113283 0,001951 -0,25765 115 -0,28645
UBS 39924 Financials Switzerland 0,000423 34277 0,006066 -2,39343 162 -0,43471
Behr 39960 Consumer Cyclicals United States 0,009335 6202 0,024017 -2,26442 13 -0,47097
Valeo 39960 Consumer Cyclicals France 0,00162 1849 -0,00424 -1,52963 11 -0,46271
Denso 39960 Consumer Cyclicals Japan 8,85E-06 1463 0,006155
Panasonic 39960 Technology Japan 0 58908 0,008798 -0,1914 1 -0,4
Sanden 39960 Consumer Cyclicals Japan 0,027296 1264 -0,00938 3 -0,35591
CSAV 40009 Industrials Chile 0,066882 79 -0,01692 11 -0,22863
Wallenius Wilhelmsen 40009 Industrials Norway 0,073293 196 -0,01011 2 -0,49419
K-Line 40009 Industrials Japan 0,004545 513 -0,01084
Mitsui 40009 Industrials Japan 0 3441 -0,00204 0,17148 2 -0,27732
NYK Line 40009 Industrials Japan 0,008828 199 0,000198 12 -0,24918
Hella 40013 Consumer Cyclicals Germany 0,001637 507 -0,00754 2 -1
Valeo 40013 Consumer Cyclicals France 0 3034 0,011318 -1,375 25 -0,46065
Campine 40018 Other Belgium 0,047748 51 0,000135 7 -0,44801
Johnson Controls 40018 Industrials Ireland 0 2085 -0,00693 0,076087
Recylex 40018 Industrials France 0,069986 23 -0,01156 5 -0,63151
Denso 40028 Consumer Cyclicals Japan 0 2319 0,000702 -0,67514 9 -0,27704
Hitachi 40028 Other Japan 0,006859 25899 -0,01516 -1,6919 100 -0,25429
Melco 40028 Other Japan 0,003437 3056 -0,0063 -2,08377 73 -0,23892
Kuehne + Nagel 40098 Industrials Switzerland 0 18 -0,00213
Bosch 40113 Consumer Cyclicals Germany 0,030969 77733 -0,01349 0,16687 4 -0,23162
Denso 40113 Consumer Cyclicals Japan 0 2842 -0,00032 4 -0,1502
NGK Spark Plugs 40113 Consumer Cyclicals Japan 0,009719 17061 0,007767 0,35989 2 -0,28181
Barclays 40135 Financials United Kingdom 0,006432 103228 -0,00318 -3,20672 352 -0,36668
Citigroup 40135 Financials United States 0,003776 19292 0,008384 -3,06077 217 -0,36966
JP Morgan 40135 Financials United States 0,002052 43370 0,005979 -2,74139 50 -0,41039
RBS 40135 Financials United Kingdom 0,013579 85225 -0,00024 -2,427 400 -0,39336
UBS 40135 Financials Switzerland 0 35466 -0,00225 -0,60159 25 -0,23018
Bank of Tokyo-Mitsubishi 40135 Financials Japan 0,082876 2306 0,008751 -2,3054 45 -0,40632
Hitachi 40136 Other Japan 0,004036 55318 0,001371 -0,06031 12 -0,27708
Holy Stone Enterprise 40136 Technology Taiwan 0,001959 1 0,023637
Matsuo 40136 Technology Japan 0,022248 1977 -0,02555 -2,71429 2 -0,3103
Nichicon 40136 Industrials Japan 0,087908 40 -0,01478 2 -0,3103
Nippon Chemi-Con 40136 Industrials Japan 0,101927 8 -0,03292 3 -0,302
Sanyo 40136 Industrials Japan 0 1585 -0,00036 0,115578 1 -0,1409
Magna 40299 Consumer Cyclicals Canada 0 58227 -0,00065 -1,40252 3 -0,40094
NatWest 40324 Financials United Kingdom 0 28444 0,008105 -1,80259 7 -0,076
UBS 40324 Financials Switzerland 0,006286 35220 0,002266 -2,03984 113 -0,28256
UniCredit 40324 Financials Italy 0,002966 2686 -0,00824 104 -0,24738
Nomura 40324 Financials Japan 0,007837 30814 -0,00616 -3,44884 109 -0,27505
Bank of America 40346 Financials United States 0,000145 63638 -0,00069 2,623853 41 -0,25551
Credit Agricole 40346 Financials France 5,54E-05 1877 0,005056 -2,07935 38 -0,37366
Credit Suisse 40346 Financials Switzerland 0,000409 42785 0,013513 -1,22761 39 -0,37011
Deutsche Bank 40346 Financials Germany 0 54876 0,103755 -0,6078 30 -0,32989
Celanese 40410 Other United States 0,01472 689 0,022035 5 -0,28176
Clariant 40410 Other Switzerland 0,039271 1348 0,005184 0,045701 6 -0,34697
Orbia 40410 Other Mexico 0,003536 192 0,035916 5 -0,28176
Westlake 40410 Other United States 0 20365 0,024418 -1,45081 2 -0,06259
Autoliv 40481 Consumer Cyclicals Sweden 0,026831 555 0,000441 11 -0,2252
Focus Home 55555 Technology France 0,020225 71053 -0,02037 -0,81276
Bandai Namco 55555 Consumer Cyclicals Japan 5,73E-05 13107 -0,01235 -2,14207
Capcom 55555 Technology Japan 0,000592 158223 -0,01556 -1,11401
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A4 Stock ticker information

Table A4.1: Companies with stock tickers and market index

Company name Yahoo ticker Market index Datastream ticker

AB SKF SKF-B.ST ^OMX W:SKFB

ABB Ltd ABBN.SW ^SSMI S:ABBN

Air Canada AC.TO ^GSPTSE C:AC

Air France AF.PA ^FCHI F:UTA

ArcelorMittal MT ^NYA U:MT

Asahi glass 5201.T ^N225 J:AG@N

AU Optronics 2409.TW ^TWII TW:ADT

Autoliv ALIV-SDB.ST ^OMX U:ALV

Bandai Namco 7832.T ^N225 J:N@MB

Bank of America BAC ^NYA U:BAC

Bank of Tokyo-Mitsubishi 8306.T ^N225 J:KYTB

Barclays BARC.L ^FTSE BARC

Behr MAS ^NYA U:MAS

Bosch BOSCHLTD.NS ^NSEI IN:BOH

British Airways BAY ^FTSE BAY

Campine CAMB.BR ^BFX B:CAM

Capcom 9697.T ^N225 J:CAPO

Carpenter XTY.F ^GDAXI U:CRS

Cathay Pacific 0293.HK ^HSI K:CATH

Celanese CE ^NYA U:CE

Chimei InnoLux 3481.TW ^TWII TW:INN

Citigroup C ^NYA U:C

Clariant CLN.SW ^SSMI S:CLN

CONTINENTAL CON.DE ^FCHI D:CON

Credit Agricole ACA.PA ^FCHI F:CRDA

Credit Suisse CSGN.SW ^SSMI S:CSGN

CSAV VAPORES.SN ^IPSA CL:VPR

DAF PCAR ^IXIC @PCAR

Daimler DAI.DE ^GDAXI D:DAI

Denso 6902.T ^N225 J:DE@N

Deutsche Bank DBK.DE ^GDAXI D:DBK

Deutsche Post DPW.DE ^GDAXI D:DPW

DSV DSV.CO ^OMX DK:DSV

Ercros ECR.MC ^FCHI E:ECR

FMC Corporation FMC ^NYA U:FMC

Focus Home ALFOC.PA ^FCHI F:ALFO

Fujikura 5803.T ^N225 J:GG@N

Furukawa FUWAY ^N225 J:FU@N

HannStar Display Corporation 6116.TW ^TWII TW:HDC

Hella HLE.DE ^GDAXI D:HLE

Henkel HEN3.DE ^GDAXI D:HEN

Hitachi 6501.T ^N225 J:LK@N

Hitachi Metals 5486.T ^N225 J:HM@N

Holy Stone Enterprise 3026.TW ^TWII TW:HSE

HSBC HSBA.L ^FTSE HSBA

Hynix Semiconductor 000660.KS ^KS11 KO:HYI

ICAP TCAP.L ^FTSE TCAP

Infineon IFX.DE ^GDAXI D:IFX

Iveco CNHI.MI FTSEMIB.MI I:CNHI

Johnson Controls JCI ^GSPC U:JCI

JP Morgan JPM ^NYA U:JPM

J-power 9513.T ^N225 J:EPDC

JTEKT Corporation 6473.T ^N225 J:OE@N

Kemira Oyj KEMIRA.HE ^OMX M:KEMR

K-Line 9107.T ^N225 J:KK@N

KLM AF.PA ^FCHI F:UTA

Kuehne + Nagel KNIN.SW ^SSMI S:KNIN

LAN Chile LFL.F ^GDAXI CL:LAN

Leoni LEO.DE ^GDAXI D:LEO
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LG Display 034220.KS ^KS11 KO:LGL

LG Electronics 066570.KS ^KS11 KO:JHD

Lite-On 2301.TW ^TWII TW:LOT

Lufthansa LHA.DE ^GDAXI D:LHA

Magna MG.TO ^GSPTSE C:MG

MAN MAN.DE ^GDAXI D:MAN

Masco Corporation MAS ^NYA U:MAS

Matsuo 6969.T ^N225 J:MSUC

Melco 6503.T ^N225 J:UM@N

Micron Technology MU ^NYA @MU

Mitsubishi Electrics 6503.T ^N225 J:UM@N

Mitsubishi Materials 5711.T ^N225 J:LM@N

Mitsui 9104.T ^N225 J:MO@N

Nachi-Fujikoshi Corporation 6474.T ^N225 J:FK@N

Nanya Electronics 2408.TW ^KS11 TW:NYT

NatWest NWG.L ^FTSE NWG

NEC Corporation 6701.T ^N225 J:NJ@N

Nexans NEX.PA ^FCHI F:NXS

NGK Spark Plugs 5334.T ^N225 J:KS@N

Nichicon 6996.T ^N225 J:NP@N

Nippon Chemi-Con 6997.T ^N225 J:PJ@N

Nippon Electric Glass 5214.T ^N225 J:LO@N

NKT A/S NKT.CO ^OMX DK:NKT

Nomura 8604.T ^N225 J:NM@N

NSK Ltd 6471.T ^N225 J:NSKC

NTN Corporation 6472.T ^N225 J:NTN

NYK Line 9101.T ^N225 J:NY@N

Orbia ORBIA.MX ^MXX MX:CSB

Panasonic 6752.T ^N225 J:MI@N

Philips PHIA.AS ^N100 H:PHIL

Procter & Gamble PG ^NYA U:PG

Prysmian PRY.MI FTSEMIB.MI I:PRY

Qantas QAN.AX ^AXJO A:QANX

Quanta storage 6188.TWO ^TWII TW:QSI

Quimica SQM ^NYA U:SQM

RBS NWG.L ^FTSE NWG

Recticel REC.BR ^BFX B:REC

Recylex RX.PA ^FCHI F:RX

Renesas 6723.T ^N225 J:RENE

Safran SAF.PA ^FCHI F:SGM

Samsung 005930.KS ^KS11 KO:SGL

Samsung SDI 006400.KS ^KS11 KO:SCT

Sanden 6444.T ^N225 J:SAEN

Sanyo 5958.T ^N225 J:SYAM

SAS SAS.ST ^OMX W:SAS

Singapore Airlines C6L.SI ^STI T:SAIR

Societe Generale GLE.PA ^FCHI F:SGE

Sony 6758.T ^N225 J:SO@N

Sumitomo SSUMY ^N225 J:SUEL

SWCC Shova Holdings 5805.T ^N225 J:SHEW

Taihan Electric Wire 001440.KS ^KS11 KO:TWR

Technicolor TCH.PA ^FCHI F:TCH

Tessenderlo TESB.BR ^BFX B:TES

TOKAI RIKA 6995.T ^N225 J:TI@N

Toshiba Corporation 6502.T ^N225 J:TS@N

TOYODA GOSEI 7282.T ^N225 J:TYGS

Trane Inc TT ^NYA U:TT

UBS UBSG.SW ^SSMI S:UBSG

UniCredit UCG.MI FTSEMIB.MI I:UCG

Unilever ULVR.L ^FTSE ULVR

United Parcel Service UPS ^NYA U:UPS

Valeo FR.PA ^FCHI F:FR

Villeroy & Boch VIB3.DE ^GDAXI D:VIB3

Voestalpine AG VOE.VI ^ATX O:VAS

Volvo VOLV-B.ST ^OMX W:VOBF
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Wallenius Wilhelmsen WAWI.OL ^OSEAX N:WWL

Westlake WLK ^NYA U:WLK

Whirlpool S.A WHRL4.SA ^BVSP BR:NS4

Yara YAR.OL OSEBX.OL N:YARA

A5 Regression output

Figure A5.1: Single factor on event day

Figure A5.2: Single factor on event window [-1,1]

Figure A5.3: Single factor on event window [0,10]
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A6 Robustness checks on twitter data variables

Table A6.1: "Only cases after 08.11.2011

Coefficient [-15,15] [-10,0] [-5,5] [-1,1] 0 [0,2] [0,10]
Abnormal sentiment 0.003 0 0.003* 0.001 0 -0.003 0

Sentiment score cartel tweets 0.258 0.143 0.041 0.060 -0.036 -0.055 -0.084
Count cartel tweets 0 0 0 0 0 0 0

Table A6.2: Only cases before 08.11.2017

Coefficient [-15,15] [-10,0] [-5,5] [-1,1] 0 [0,2] [0,10]
Abnormal sentiment 0 0.001 0 -0.001 0.001

Sentiment score cartel tweets -0.016 -0.009 0.014 -0.031 -0.026 -0.024 -0.024
Count cartel tweets 0 0 0 0 0 0 0

Table A6.3: Only companies with at least 10000 tweets

Coefficient [-15,15] [-10,0] [-5,5] [-1,1] 0 [0,2] [0,10]
Abnormal sentiment 0.001 0 0.001 0 -0.001 0 0.001

Sentiment score cartel tweets -0.038 0.037 0.055 0.005 -0.007 0.006 -0.019
Count cartel tweets 0 0 0 0 0 0 0

A7 BMP-test

It is important to use statistical tests to see if there are significant evidence for abnormal

returns after the event study. In our analysis of abnormal stock return, the original BMP

test have been utilized. The original BMP test Boehmer et al. (1991) is a standardized

cross-sectional method which is robust to increased variance due to events. It uses

standardized abnormal returns to try and decrease the impact of highly volatile returns.

This method weights the more volatile abnormal returns (AR) less than the others. It

is used is many similar studies, for example Aguzzoni et al. (2013) and Ulrich (2018).

Standardized abnormal returns (SAR) is made by:

SARit =
ARit

Sarit

(.1)

where the standard deviation is calculated as:

SARit =

s

S2
ARi

⇤ (1 + 1

Mi
+

Rmt �RmPT1

t=T0
⇤(Rmt �Rm)2

(.2)
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It adjust for a forecast error which is neccessary because the event window is out-of-sample

predictions. The t-statistics for the original BMP-test are:

zBMP,T =
ASARtp
NSASARt

(.3)

When testing for cumulative average abnormal return, the standard deviation changes to:

S
2
CARi =

vuut
S2
ARi

⇤ (Li +
L2

Mi
+

(
PT 2

t=T1+1(Rmt �Rm))2
PT1

t=T0
⇤(Rmt �Rm)2

(.4)

L is the number of days in the event window, while M is the number of days in the training

period. The t-value with standardized cumulative abnormal return is calculated as:

zBMP =
p
N ⇤ SCAR

SSCAR

(.5)

SCAR is the averaged standardized abnormal return (ASAR) from all firms N, with

standard deviation calculated in the same manner as with the average standard abnormal

return.

For the event study on abnormal Twitter mood, the standard cross-sectional test has

been used. Here the t-statistics are the equation below when testing for average abnormal

return:

tAARt =
p
N ⇤ AARt

SAARt

(.6)

The standard deviation comes from:

S
2
AARt

=
1

N � 1
⇤

NX

i=1

(ARi,t � AARt)
2 (.7)

When testing for cumulative abnormal return the formulas are the same, except for the

change from abnormal return to the cumulative abnormal return in the event window in

all equations:

tCAARt =
p
N ⇤ CAARt

SCAARt

(.8)
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The standard deviation comes from:

S
2
CAARt

=
1

N � 1
⇤

NX

i=1

(CARi,t � CAARt)
2 (.9)

A8 Regression coefficients for immune companies

Table A8.1: Immune companies regression

Coefficient [-15,15] [-10,0] [-5,5] [-1,1] 0 [0,2] [0,10]
Abnormal sentiment -0.0003 -0.004 -0.007** -0.001 -0.006 0.005 -0.002
25% percentile mood 0 0 0 0 0 0 0
75% percentile mood -0.001 -0.018 -0.011 -0.023 -0.014 -0.013 -0.006

Sentiment score cartel tweets -0.056 -0.003 -0.024 -0.068 -0.004 0.009 0.048
Count cartel tweets 0.0004 0.0002 -0.00003 0.0002 0.0001 0.0002 0.0001

European 0.019 0.002 -0.013 -0.008 -0.0003 -0.0002 0.005
Asian -0.008 0.012 0.003 0.001 -0.002 -0.007 -0.026

American -0.026 -0.029 0.023 0.015 0.006 0.015 0.041
log(Revenue) -0.003 -0.009 -0.012 0.001 0.005 0.005 -0.007

A9 Mood distribution and event windows of mood

Figure A9.1: distribution of companies according to abnormal mood
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A10 Full abnormal mood table

Table A10.1: Abnormal mood table for different event windows and subsamples

Sample Event window CAAR T-value P-value Observations Positive CAR

All companies

(-15) to 15 -233.00% -2.14 0.034** 108 37%
(-10) to 0 -90.00% -1.89 0.061* 108 41%
(-5) to 5 -232.00% -4.36 0.00003*** 108 29%
(-1) to 1 -184.00% -7.02 0.00001*** 108 21%

0 -115.00% -8.73 0.00001*** 108 20%
0 to 2 -233.00% -8.22 0.00001*** 108 18%
0 to 10 -251.00% -4.17 0.00006*** 108 30%

Immunity

(-15) to 15 -414.00% -2.41 0.03** 22 45%
(-10) to 0 -213.00% -2.18 0.041** 22 45%
(-5) to 5 -195.00% -2.2 0.04** 22 41%
(-1) to 1 -94.00% -2.42 0.024** 22 27%

0 -56.00% -3.44 0.002*** 22 27%
0 to 2 -104.00% -2.83 0.01*** 22 23%
0 to 10 -168.00% -2.13 0.05** 22 41%

Not immunity

(-15) to 15 -189.00% -1.45 0.156 85 34%
(-10) to 0 -59.00% -1.09 0.28 85 39%
(-5) to 5 -240.00% -3.77 0.0003*** 85 26%
(-1) to 1 -205.00% -6.57 0.00001*** 85 20%

0 -113.00% -8.22 0.00001*** 85 19%
0 to 2 -265.00% -7.82 0.00001*** 85 16%
0 to 10 -273.00% -3.69 0.0004*** 85 27%

European

(-15) to 15 -367.00% -3.14 0.003*** 54 35%
(-10) to 0 -184.00% -3.39 0.001*** 54 35%
(-5) to 5 -220.00% -4.44 0.00005*** 54 26%
(-1) to 1 -165.00% -6.45 0.00001*** 54 19%

0 -111.00% -6.94 0.00001*** 54 22%
0 to 2 -209.00% -6.62 0.00001*** 54 17%
0 to 10 -235.00% -3.67 0.0006*** 54 30%

American

(-15) to 15 286.00% 0.52 0.61 15 33%
(-10) to 0 240.00% 1.01 0.33 15 53%
(-5) to 5 -302.00% -1.13 0.28 15 13%
(-1) to 1 -415.00% -3.06 0.008*** 15 7%

0 -215.00% -3.73 0.002*** 15 7%
0 to 2 -491.00% -4.06 0.001*** 15 7%
0 to 10 -422.00% -1.31 0.21 15 13%

Asian

(-15) to 15 -150.00% -1.63 0.11 37 41%
(-10) to 0 -64.00% -1.49 0.145 37 43%
(-5) to 5 -166.00% -2.78 0.009*** 37 38%
(-1) to 1 -111.00% -4.2 0.0001*** 37 30%

0 -81.00% -4.9 0.00002*** 37 24%
0 to 2 -159.00% -4.15 0.0002*** 37 24%
0 to 10 -159.00% -3.21 0.003*** 37 35%
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A11 AAR for stock return and AABMOOD for mood

Figure A11.1: AAR with confidence interval for stock prices

Figure A11.2: AABMOOD with confidence interval


