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Abstract

This thesis examines how the IMO 2020 low-sulphur regulation has affected drybulk

shipping. Firstly, we examine which routes scrubber vessels sail compared to what

maritime economic theory would suggest. Secondly, we determine if scrubber vessels

increase speeds compared to non-scrubber vessels after IMO 2020. Thirdly, we analyze

whether scrubber vessels are less likely to be used for short-term time charter fixtures

(trip charter) than voyage charter fixtures. Lastly, we examine if IMO 2020 has caused

scrubber vessels to trade at lower $/tonne rates relative to non-scrubber vessels.

We use the difference-in-differences methodology to estimate the effects of the policy

change on the Capesize fleet. We include two-way fixed effects to control for both

time differences and vessel heterogeneity. 30,806 individual voyages and 120,047 weekly

speed observations are calculated from 36,767,462 Automatic Identification System (AIS)

positions in 2019-2020. Further, 1,016 individual fixture contracts are extracted from

Clarksons Shipping Intelligence Network to analyze the effects on the freight market.

We find that scrubber vessels sail on longer voyages than non-scrubber vessels. However,

the difference in voyage distance does not increase between the two groups as a result

of IMO 2020. Our analysis further suggests that the difference in speeds increases for

scrubber vessels compared to non-scrubber vessels after IMO 2020. In addition, scrubber

vessels are less likely to be offered on a trip charter than a voyage charter after IMO 2020.

Lastly, our results indicate that scrubber vessels on average trade at similar $/tonne rates

as non-scrubber vessels, suggesting that shipowners investing in scrubbers are gaining the

potential savings from the lower fuel costs.

Keywords – IMO 2020, drybulk shipping, AIS, Difference-in-Differences, speed, freight

rates, fuel prices
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1 Introduction

The shipping industry accounts for approximately 12% of the global sulphur oxide (SOx)

emissions (GEF-UNDP-IMO GloMEEP Project and IMarEST, 2018). Exposure to SOx

has damaging effects on both human health and the environment (Ackermann et al.,

1999). Therefore, on January 1. 2020, the UN International Maritime Organization

(IMO) introduced a new regulation named IMO 2020 to reduce the ship-to-air emissions

of sulphur oxide, by restricting sulphur contents in marine fuels from 3.5% to 0.5%.

Shipowners can comply with the regulation in two ways. First, by installing a scrubber

cleaning system, the exhaust is cleaned post-combustion to meet the emission requirements.

The second option is changing fuel type from heavy fuel oil (HFO) to low sulphur fuel oil

(VLSFO) with sulphur contents below 0.5%. The two options create a trade-off between

investing in a cleaning system and keeping the marginal costs at the current level versus

changing to the more expensive bunker type, resulting in increased marginal costs.

In this thesis, we study the impacts of IMO 2020 by its effect on the choice of either

installing a scrubber or switching to VLSFO on a variety of micro-market behaviors in

the drybulk market. As Capesize vessels are the largest drybulk carriers operating on

intercontinental voyages, the Capesize fleet is a substantial polluter of SOx emissions.

The contribution of the paper is fourfold. Firstly, we explore if scrubber fitted vessels,

hereafter called “scrubber vessels”, sail on longer voyages compared to non-scrubber vessels

after IMO 2020. Secondly, we analyze if the regulation has affected vessel speeds for the

two groups. Thirdly, we examine if scrubber vessels are less likely to be used for time

charter fixtures. Lastly, we investigate if scrubber vessels trade at a lower voyage charter

spot rate on specific routes after IMO 2020.

As the capital, operating and cargo handling costs increase disproportionate to the cargo

capacity, the unit cost of transport generally falls when the vessel size increases (Stopford,

2009). The economies of scale make Capesize vessels preferred on the long-haul routes

as their $/tonne costs are lower than for the smaller vessels. In addition, the average

fuel cost for a bulk carrier is estimated to account for 60-70% of the total voyage costs

(Stopford, 2009; Rehmatulla and Smith, 2015). Due to port time being relatively fixed

(Clarksons Research, 2021c), the result of scrubber installation and reduced fuel costs



2

would suggest that scrubber vessels sail on longer voyages. Hence, spending more time

at sea and taking advantage of the lower fuel costs. Braemer ACM Shipbroking (2021)

identifies that the average voyage duration is approximately 14% longer for scrubber

vessels than non-scrubber vessels in 2020. However, our results do not indicate that

scrubber vessels sail on the longer routes after IMO 2020.

Ronen (1982) argues that the optimal vessel speed depends on the ratio of freight rate and

fuel price. In times of low freight rates and high fuel prices, slow steaming has become

a widely adopted practice to reduce fuel costs (Lee et al., 2015). IMO 2020 imposes an

increase in fuel costs for non-scrubber vessels, suggesting that the sailing speeds between

the two groups could differ. When studying the effects of stricter sulphur requirements in

the North Sea, Adland et al. (2017a) find no reduction in vessel speeds within Emission

Control Areas (ECAs). However, our results indicate that scrubber vessels increase speeds

compared to non-scrubber vessels after IMO 2020.

Shipowners have the flexibility to offer their vessels on either voyage charter contracts

or time charter contracts. The shipowner is responsible for all costs on a voyage charter,

and freight rates are paid per tonne of cargo transported. Conversely, a trip charter is

fixed on a time charter basis, paid per day for the period determined by the voyage and

specific cargo, where the charterer pays for voyage costs such as fuel (Stopford, 2009).

Interestingly, scrubber vessels conducted 143 voyage charter contracts and only ten trip

charter contracts after the implementation of IMO 2020 (Clarksons Research, 2021c).

Therefore, the shipowner’s choice of charter type does not seem randomly selected and

should be analyzed further.

Previous research has thoroughly investigated market failures such as the principal-

agent problem in the time charter market, where the shipowner invests in the energy-

efficient technology and the savings in fuel expenditure accrue to the charterer (Agnolucci

et al., 2014; Adland et al., 2017b; Longarela-Ares et al., 2020). Our results suggest that

shipowners are less likely to offer their scrubber vessels on trip charter contracts after IMO

2020. It is essential to clarify that scrubber installation is not an investment in energy

efficiency per se as all vessels need to reduce emissions. However, it illustrates that the

shipowner’s incentives for investing in a scrubber change depending on the contract type.
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The spot freight market is established by negotiations between shipowners and charterers,

where the freight price reflects the balance of ships and cargoes available (Stopford, 2009).

Adland et al. (2016) argue that the freight market consists of several micro-markets as

only the ships able to reach laycan can bid for a voyage contract. Traditionally, the

marginal vessel is a non-scrubber vessel. However, after IMO 2020, the marginal ship

could either be a scrubber or non-scrubber vessel. Consequently, if scrubber vessels cluster

on similar routes, the freight rate formation can potentially decrease to the marginal cost

of a scrubber vessel, which is lower due to their reduced fuel costs. Our results suggest

that scrubber vessels do not trade at a different rate than non-scrubber vessels after IMO

2020, indicating the shipowners offering their vessels on voyage charter contracts accrue

the potential fuel cost savings.

The remainder of this thesis is structured as follows. Section two presents a literature

review covering theory and empirical testing of vessel speed optimization, principal-

agent theory and freight rate formation theory. Further, section three presents the data

foundation. Then, in section four, we present the empirical strategy. Thereafter, we

present and discuss the results in section five before finally rounding off with concluding

remarks in section six.
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2 Literature Review

The bulk spot freight market is described by Norman (1979) as a textbook example of a

perfectly competitive market, where the $/tonne freight rate is determined by the marginal

cost of the marginal vessel required to meet the demand for transportation. The market

of the cargo transported, international seaborne trade and the world economic activity

determine the demand side (Stopford, 2009). The supply-side depends on the fleet size,

the available tonnage of the fleet, newbuilding of vessels, bunker prices, scrapping rate

and the fleet’s operational efficiency at any given time (Strandenes, 1983; Beenstock and

Vergottis, 1989).

A perfectly competitive market depends on six conditions (Colander, 2012); (1) both buyers

and sellers are price takers, (2) the number of firms is large, (3) there are no barriers to

entry, (4) firms’ products are identical, (5) there is complete information about the market

and (6) selling firms are profit-maximizing entities. The drybulk market meets these

conditions on a macro level. A fleet of several thousand vessels operated by hundreds of

different owners are competing for the same transportation service. Shipbrokers assist both

the buying and selling sides and create a transparent market with efficiently distributed

information (Strandenes, 2000). Financing of vessels is generally available, and both ships

and their owning companies can move their operation to light regulatory- and low tax

regimes (Adland et al., 2016).

The research on freight rate formation is separated by a macro and micro perspective.

The first wave of freight market research in drybulk shipping focused on the interaction of

supply and demand on a macro-level (Tinbergen, 1959; Norman, 1979; Wergeland, 1981;

Charemza and Gronicki, 1981; Strandenes, 1986; Evans, 1994). Later studies use stochastic

modeling to forecast freight rate formation. Both time series models (Kavussanos and

Alizadeh, 2001; Kavussanos, 1996) and univariate continuous-time models (Bjerksund

and Ekern, 1995; Adland, 2006) solely consider historical and current spot freight rate

information. These models disregard market information such as the age profile of the fleet

and the size of the order book entirely. Lastly, studies combine the previous frameworks

by modeling the supply and demand of transportation as stochastic processes within a

dynamic equilibrium setting. Adland and Strandenes (2007) develops a freight market
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equilibrium model that incorporates a time-varying shape of the supply curve from

microeconomic analysis of vessel-specific characteristics of the fleet.

The recent focus on micro-level analysis on determinants of freight rates using individual

contracts considers the heterogeneity of geographical regions and vessel specifications.

Tamvakis and Thanopoulou (2000) investigate if there exists an age-premium in the

drybulk freight market and find no significant difference between freight rates paid

for newer versus older vessels. Alizadeh and Talley (2011) expand the research on

microeconomic determinants of drybulk spot freight rates to include the lead time (time

between contracting date and the earliest date for loading) and macroeconomic proxies

representing the market conditions, such as the Baltic Capesize Index (BCI) and its rolling

one-month standard deviation as a measure of volatility. Adland et al. (2016) propose

a model for freight rate formation in individual contracts incorporating charterer and

owner heterogeneity and owner-charterer match effects. Although market conditions and

routes remain the most influential covariates, they conclude that fixed effects related to

the identity of the charterer and owner-charterer match are significant contributors to the

Capesize spot freight rate.

Adland et al. (2017c) discuss the potential circularity problem and flaw of including a

macro freight index derived from micro data as a control variable for freight rate formation

on individual contracts. Their results suggest that using BCI as a control variable on

fixture data analysis substantially affects the vessel’s estimated coefficients and contract-

specific factors. Furthermore, they claim this circularity potentially causes an endogeneity

problem in the estimated regressions. As a counter to the circularity problem, they develop

a methodology for deriving objective market indices from micro-level fixture data.

Ship operators should adjust speeds to maximize profits (Strandenes, 1983). The traditional

speed optimization theory is anchored in the model proposed by Ronen (1982). Based

on the cubic law, he illustrates that speed is a function of the square root of the ratio

between the freight rate and fuel price. Further, Beenstock and Vergottis (1989) are the

first to empirically test Ronen’s theory finding a positive correlation between the freight

rate and fuel price ratio and speeds in the tanker market. Research by Devanney (2010)

later finds that vessels in the voyage and time charter market face the same optimization

problem, as charterers can re-offer a vessel on time charter to the spot market.
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The availability of micro-level positional vessel data through the Automated Identification

System (AIS) has made it easier to empirically test traditional economic theories on

speed optimization. Aßmann et al. (2015) find evidence that supports the theory by

Ronen (1982), but to a lesser extent and primarily regarding the ballast leg. Contrary,

Adland and Jia (2016, 2018) conclude that shipowners do not adjust vessel speeds based

on freight market conditions and the level of fuel prices. They suggest that speeds

are mainly determined by factors outside their models, such as weather conditions and

contractual constraints on both charter parties and port policies. Adland et al. (2017a)

find that the stricter sulphur regulations in the North Sea did not affect vessel speeds

once macro-factors were considered. However, they acknowledge that external factors

such as weather conditions and charter party clauses limit the ability of the shipowner

to optimize speeds on the laden lag. Adland et al. (2020) later question the correctness

of the cubic relationship assumption put forward by Ronen (1982) if actual speed differs

substantially from the vessel design speed.

There exists an extensive amount of research on market failure and principal-agent

problems regarding investments in energy efficiency. The principal-agent problem refers

to the observation that the economic benefits of energy conservation do not accrue to

the person who is trying to conserve (Golove and Eto, 1996). The time charter market

in drybulk shipping represents such a market. A shipowner can invest in energy-efficient

vessels, but any savings in fuel expenditures accrue to the charterer. Agnolucci et al.

(2014) investigate if there exists a rate premium for fuel efficiency in the Panamax time

charter market and find that on average, only 40% of financial savings delivered by energy

efficiency accrue to the shipowner for the period 2008-2012. Adland et al. (2017b) expand

this study to several vessel sizes and a more extended sample period to include an entire

market cycle. They find that only 14-27% of fuel cost savings are reflected in a higher

rate during normal market conditions. However, in poor market conditions, they find that

inefficient energy vessels attract a premium.
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3 Description of Data

This section presents the different data sources and the descriptive statistics. We utilize

data on Capesize vessels from 2019-2020 to study multiple effects of the IMO 2020

regulation on the drybulk market. Clarksons Research (2021b) categorizes Capesize

vessels as bulk ships ranging from 100,000 deadweight tonnes (DWT). In addition, Very

Large Ore Carriers (VLOC) are included in the sample and range from 220,000 to 400,000

DWT.

3.1 Data Collection

3.1.1 AIS Data

IMO requires the use of AIS to increase the safety and security of the maritime industry,

improve regulations and monitor ship traffic (Lee et al., 2019). Therefore, all vessels from

300 gross tonnage on international voyages must be equipped with an AIS transponder

(IMO, 2021). The AIS transponders send out information on vessel identity (IMO number),

position, speed and course using Very High Frequency (VHF) radio waves. In addition,

AIS data can be exchanged with nearby vessels, satellites and AIS base stations. Each

AIS component is explained in detail in appendix A1.

We have been granted AIS data by Vesseltracker GmbH, containing information on

drybulk vessels in 2019-2020. This dataset originates from two datasets of different AIS

reporting frequencies, with a shorter time difference between each observation in January

2019 to August 2019 compared to August 2019 to December 2020. This is discussed

closer in appendix A2.3. We extract information on vessel location, corresponding speed,

and draught level for each vessel from the AIS data. We combine the dataset with

Clarksons World Fleet Register (WFR) using the IMO number to include vessel-specific

characteristics such as age, size and scrubber information.

3.1.2 Signal Ocean Voyage Data

We have been granted access to voyage data on The Signal Ocean Platform by The

Signal Group. This dataset contains voyage information on the laden and ballast legs
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for Capesize vessels in the sample period. The voyage data consists of the IMO number

and route information based on AIS data, including port, regions and time for loading

and discharging of cargo. We use the Signal Ocean voyage dataset to establish a starting

port (area) and an ending port (area) for each voyage with the corresponding starting

and ending time. This allows us to establish the start- and endpoints for each trip in the

AIS data.

3.1.3 Fixture Data

The fixture data is extracted from Clarksons Shipping Intelligence Network (SIN) and

consists of both voyage and trip charter contracts for Capesize vessels in 2019-2020. The

main difference between these two contract types is the allocation of voyage expenses,

particularly the fuel cost, between the owner and charterer. The IMO number for each

vessel is not included in the fixture data. Hence, we first match the contracts with

ship-specific data based on vessel name, year of build and DWT. Secondly, we match

remaining contracts with vessels by ex-name, year of build and DWT.

3.1.4 Macro-level data

Clarksons SIN also provides additional data on freight market conditions and fuel prices

regarding the Capesize segment.

Freight rate indices

The Baltic indices are freight market indicators giving insight into supply and demand

trends for different routes and consist of weekly average earnings ($/tonne) for a typical

non-scrubber Capesize vessel. We note that the literature has moved away from the freight

market index as an explanatory variable for micro freight rate formation (Adland et al.,

2017c). However, when analyzing vessel speeds, we include the appropriate freight rate

from BCI C2, BCI C3, BCI C5, BCI C7 or BCI C17. In cases where voyages are on routes

without a corresponding Baltic rate, proxies based on distance traveled are applied. For

example, BCI C3 is the longest route traveling from Brazil to China (approx. 11,500 nm)

and BCI C5 is the shortest route traveling from West Australia to China (approx. 3,500

nm) in our specification. The difference in voyage length affects the differences in the

$/tonne freight rates, illustrated in Figure 3.1.
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Figure 3.1: BCI freight rates ($/tonne) for 2019-2020
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Bunker prices

The development in bunker prices is important for shipowners and charterers as fuel

costs account for a large proportion of the voyage costs (Stopford, 2009). Historic weekly

bunker prices from the main bunker locations Fujairah, Panama, Singapore, Rotterdam

and Gibraltar are extracted from Clarksons (SIN). In addition, we specify a bunker price

proxy for each voyage leg by locating the nearest bunker location at the starting date of

both the laden and ballast legs.

In this thesis, we use two fuel types, IFO 380 representing HFO and VLS IFO representing

VLSFO. The bunker price is measured in $/tonne. VLSFO bunker price data is only

available from November 2019 and onwards. We assume that all vessels use HFO before

IMO 2020 as this is the cheapest fuel option. As non-scrubber vessels would not be

allowed to carry HFO after January 1, 2020, a vessel is categorized as carrying VLSFO

if the ending date of the voyage is after the policy change, in order to comply with the

regulation.

Braemer ACM Shipbroking (2021) argue that many market participants expected a fuel

price spread of 200 $/tonne before Covid-19 and the sharp oil price decline in March 2020.

However, after the initial shocks, the fuel price spread stabilized at around 100 $/tonne

for the rest of 2020, supported by Figure 3.2.
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Figure 3.2: Average weekly bunker prices (Singapore) for 2019-2020
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3.2 The Capesize fleet

The capital expenditure for scrubber retrofitting ranges from $2 million to $6 million,

depending on the scrubber solution (Danish Ship Finance, 2018). The bunker spread is

an essential factor determining the payback period. For example, with a bunker spread

of $100, the payback period is nearly four years, while a spread of $200 would result in

a payback period less than two years. Therefore, older vessels near the end of their life

cycle find it less attractive to invest in a scrubber, as uncertainty in the bunker spread

impacts the profitability of the scrubber investment. Interestingly, 80% of vessels built

after 2017 have a scrubber installed in our AIS sample. Furthermore, 72% of these vessels

installed the scrubber at the design stage, while 28% are retrofitted. However, only 18%

of vessels built before 2005 have a scrubber installed.

Age and size characteristics of the Capesize fleet are presented in Table 3.1. The cleaned

AIS sample consists of 501 scrubber vessels and 1,104 non-scrubber vessels. VLOC vessels

are presented in a separate panel due to the difference in vessel characteristics.
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Table 3.1: Characteristics for vessels with AIS observations in 2019-2020

(a) Capesize

Built DWT
Non- Non-

Scrubber Scrubber Scrubber Scrubber

N 388 987 388 987
Mean 2012 2012 187,276 185,167
SD 4 4 13,999 13,311
Min 2003 2003 149,733 120,397
Max 2020 2020 216,461 216,656

(b) VLOC

Built DWT
Non- Non-

Scrubber Scrubber Scrubber Scrubber

N 113 117 113 117
Mean 2014 2015 332,306 290,470
SD 3 4 68,556 48,611
Min 2004 2004 226,371 226,381
Max 2019 2020 403,919 402,303

Panel (a) displays similar vessel characteristics for the two groups consisting of 388

scrubber and 987 non-scrubber Capesize vessels. Contrary, the VLOC vessels in Panel (b)

are more balanced with 113 scrubber vessels and 117 non-scrubber vessels. The average

vessel size between the group of VLOC vessels differs substantially.

3.3 Routes

Figure 3.3 illustrates the movement and trading patterns of the Capesize fleet for 2019-

2020. The blue lines represent Capesize vessels, while the green lines represent VLOC

vessels. We observe that the main routes are from Australia to the Far East, Atlantic

America to the Far East and Africa to the Far East. The main drybulk areas in the Far

East are China, Taiwan, Japan, Korea and Singapore. Further, the figure illustrates the

fixed travel pattern of VLOC vessels mainly sailing between Brazil and China.

The sailing patterns between the respective areas correspond with the supply and demand

patterns of iron ore. According to Statista (2020a,b), Australia, Brazil and South Africa
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are the top three iron ore exporting countries, while China, Japan and South Korea are

the top three iron ore importing countries

Figure 3.3: Capesize voyages in 2019-2020

We have further utilized AIS data for 2020 to illustrate the movement of scrubber vessels

and non-scrubber vessels after the implementation of IMO 2020, illustrated in Figure 3.4.

The blue lines represent scrubber vessels, while the green lines represent non-scrubber

vessels. Interestingly, the trading patterns of scrubber vessels are mainly on the routes

from Australia to the Far East, from Atlantic America to the Far East and from Africa

to the Far East. Appendix A3 points out that these three routes account for 84% of all

scrubber voyages, and the percentage of scrubber vessels on each route is 27%, 50% and

22%, respectively.

Figure 3.4: Capesize voyages by scrubber status in 2020
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3.4 Descriptive Statistics

3.4.1 Summary statistics

The voyage distance and speed analysis are based on 36,767,462 AIS positions, derived

into 30,806 uniquely identified voyages and 120,047 weekly speed observations. A detailed

description of the data pre-processing and speed calculations are found in appendix A2.

The fixture data consists of 157 trip charter fixtures and 859 voyage charter fixtures in

2019-2020. Table 3.2 presents the summary statistics for the four main regressions.

Table 3.2: Summary statistics

(a) Summary statistics for distance

N Mean SD Min Max
Distance 30,806 5,555 3,202 1,501 17,302

Sailing days 30,806 24 15 5 75
Built 30,806 2012 4 2003 2020
DWT 30,806 198,938 42,880 120,397 403,919

(b) Summary statistics for speed

N Mean SD Min Max
Speed 120,047 11.43 1.43 8.00 17.32

Freight rate 120,047 11.02 5.41 2.88 28.79
Fuel price 120,047 366.90 87.95 124.75 775.50

Built 120,047 2012 4 2003 2020
DWT 120,047 202,927 50,765 120,397 403,919

(c) Summery statistics for charter type

N Mean SD Min Max
Trip charter 1,016 0.15 0.36 0 1

Built 1,016 2011 4 1998 22
DWT 1,016 179,875 10,077 106,355 261,761

(d) Summary statistics for voyage charter contracts

N Mean SD Min Max
$/tonne rate 832 11.42 5.91 3.40 32.08

Distance 832 6,844 3,755 2,857 14,592
Age 832 2011 4 2000 2020

DWT 832 180,511 9,987 106,355 261,761
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The minimum and maximum freight rates in Panel (b) capture the market fluctuations

over time and differences between routes. Similarly, the values on fuel price capture the

price volatility over time and differences in HFO and VLSFO, illustrated in Figure 3.2.

We note that the average design speed in our sample is 14.9 knots, which is substantially

higher than the average observed speeds. The mean value for the variable Trip charter

in Panel (c) represents the average number of trip charter contracts relative to the total

number of contracts in 2019-2020. It implies that there are 15% trip charter contracts and

85% voyage charter contracts in the sample. Finally, we note that DWT is lower in panels

(c) and (d) compared to panels (a) and (b). A reasonable explanation is that VLOC

vessels predominantly operate on fixed routes between Brazil and China, as illustrated in

Figure 3.3, and therefore not appearing in the spot market.

3.4.2 Descriptive statistics by scrubber status and year

Panel (a) in Table 3.3 displays descriptive statistics on distance both before and after

IMO 2020 for scrubber and non-scrubber vessels. Further, Panel (b) illustrates similar

statistics for average weekly speeds.
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Table 3.3: Descriptive statistics for distance and speed

(a) Distance by scrubber status for 2019-2020

Pre-policy (2019) Post-policy (2020)
Non- Non-

Scrubber Scrubber Scrubber Scrubber
N 887 14,531 4,776 10,612

16% 58% 84% 42%
Distance 5,357 5,432 6,289 5,410

(3,055) (3,102) (3,618) (3,104)
Sailing days 23 24 27 25

(13) (14) (15) (15)
Built 2013 2011 2014 2011

(4) (4) (4) (4)
DWT 204,969 197,341 215,159 193,320

(43,068) (41,476) (58,709) (33,466)

(b) Speed by scrubber status for 2019-2020

Pre-policy (2019) Post-policy (2020)
Non- Non-

Scrubber Scrubber Scrubber Scrubber
N 3,310 54,649 20,127 41,961

14% 57% 86% 43%
Speed 11.79 11.43 11.74 11.25

(1.45) (1.43) (1.44) (1.39)
Freight rate 13.39 11.58 11.31 9.98

(5.88) (5.71) (5.13) (4.87)
Fuel price 388.19 402.77 274.71 362.71

(59.31) (45.64) (50.16) (110.11)
Built 2014 2011 2014 2011

(4) (4) (4) (4)
DWT 210,977 222,626 200,970 195,391

(50,742) (67,019) (49,505) (39,634)

Note: % of scrubber status group, SD in parenthesis

In Panel (a), we note an apparent increase in voyages by scrubber vessels and a decrease

in voyages by non-scrubber vessels. The average distance traveled and the number of

sailing days increase for scrubber vessels in 2020, implying that scrubber vessels are placed

on the long-haul routes. Further, we experience an increase in average DWT for scrubber

vessels. A greater DWT for scrubber VLOC vessels compared to non-scrubber VLOC

vessels in Table 3.1, can partially contribute to the difference in DWT shown in Panel (a).
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These findings correspond with Braemer ACM Shipbroking (2021), arguing that scrubber

vessels are of greater size and used on long-haul voyages. As vessels on long-haul routes

generally spend more time at sea and less time handling cargo in port, the ship operators

take advantage of the fuel cost savings.

The increase in the number of observations from 2019 to 2020 and the age difference

between scrubber vessels and non-scrubber vessels can potentially be explained in two

ways. Firstly, it can indicate that newer vessels are utilized to a greater extent compared

to older vessels. Secondly, as pointed out in Section 3.2, 80% of vessels built after 2017

have a scrubber installed. In addition, 72% are newbuilds entering the market, and 28%

are retrofitted vessels, both positively impacting the year of build. Finally, it is worth

noting that the statistics for non-scrubber vessels in Panel (a) are relatively similar in

2019 and 2020.

Panel (b) displays a difference in average weekly speeds between the groups. We

observe similar weekly speed observations for scrubber vessels, while non-scrubber vessels

experience a decrease in average weekly speeds. The decrease in speeds for non-scrubber

vessels is consistent with the presumption that increased fuel costs reduce vessel speeds.

The freight rate represented by the Baltic indices indicates a similar decrease for both

groups, in line with the change in market conditions from 2019 to 2020. As we would

expect, scrubber vessels have a lower average fuel price compared to non-scrubber vessels

in 2020.

When examining observed speeds for the laden and ballast leg in Table 3.4, we witness

differences in speeds between the two legs. This corresponds with the study by Adland

and Jia (2018), where greater average speeds are explained by a lower draught ratio,

meaning less resistance and lower fuel consumption. In addition, they argue that charter

party clauses constrain the potential for speed optimization on the laden leg.
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Table 3.4: Speed comparison for laden and ballast leg for 2019-2020

Pre-policy (2019) Post-policy (2020)
Non- Non-

Scrubber Scrubber Scrubber Scrubber
N (Laden) 1,857 32,192 10,466 22,851

Speed (Laden) 11.25 10.86 11.31 10.78
(1.22) (1.20) (1.28) (1.25)

N (Ballast) 1,899 24,319 9,215 17,248
Speed (Ballast) 12.37 12.16 12.22 11.88

(1.41) (1.37) (1.46) (1.33)

Table 3.5: Descriptive statistics for charter type and $/tonne rates

(a) Charter type by scrubber status for 2019-2020

Pre-policy (2019) Post-policy (2020)
Non- Non-

Scrubber Scrubber Scrubber Scrubber
N 51 490 153 322

25% 60% 75% 40%
Trip charter 0.27 0.22 0.07 0.08

(0.45) (0.41) (0.25) (0.27)
Built 2012 2010 2012 2010

(4) (4) (4) (4)
DWT 182,914 179,133 180,994 179,990

(12,210) (9,558) (10,181) (10,329)

(b) Voyage charter contract by scrubber status for 2019-2020

Pre-policy (2019) Post-policy (2020)
Non- Non-

Scrubber Scrubber Scrubber Scrubber
N 37 369 140 286

21% 56% 79% 44%
$/tonne rate 12.82 11.76 11.22 10.90

(6.26) (6.32) (5.08) (5.68)
Distance 6,164 6,370 7,599 7,175

(3,453) (3,603) (3,885) (3,839)
Built 2012 2010 2012 2010

(4) (4) (4) (4)
DWT 183,759 179,624 181,329 180,833

(13,370) (9,832) (10,476) (9,332)

Note: % of scrubber status group, SD in parenthesis
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Table 3.5 presents descriptive statistics before and after IMO 2020 for scrubber and

non-scrubber vessels in Panel (a) for charter type and in Panel (b) for voyage charter

freight rates.

In Panel (a), we observe an increase in scrubber fixtures and a decrease in non-scrubber

fixtures from 2019 to 2020. In addition, there is a decrease in both voyage charter

and trip charter contracts for non-scrubber vessels in 2020, supported by Figure 3.5.

One explanation is that vessels switch to the scrubber group during the sample period.

Interestingly, there is a decrease in trip charter contracts and an increase in voyage charter

contracts for the scrubber vessels. This supports the fact that shipowners investing in

a scrubber want to capitalize on the potential fuel cost savings and prefer to offer their

vessels on voyage charter contracts. We note that scrubber vessels are of newer build

compared to non-scrubber vessels. Further, the vessel size is similar in the two time

periods for both groups.

Figure 3.5: Number of fixtures by charter type and scrubber status
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(a) Scrubber vessels on voyage charter
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(b) Non-scrubber vessels on voyage charter
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(c) Scrubber vessels on trip charter
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(d) Non-scrubber vessels on trip charter
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Panel (b) consists of descriptive statistics for voyage charter fixtures. The average $/tonne

rate is greater for scrubber vessels, as longer voyage distances can partially explain the

differences in rates. In addition, size and age difference affects the rates. The results are

reasonable as the distance differences and vessel characteristics are not controlled for in

the mean rate. The total number of voyage charter contracts is relatively steady in the

sample period, supporting the notion that a decrease in trip charter contracts causes the

decrease in the total number of fixtures in Panel (a).

Table 3.6 presents a closer breakdown of the descriptive statistics for selected voyage

charter fixtures. The table displays the number of contracts by scrubber status for only

2020 with the corresponding mean freight rates. We have grouped the routes based on

geographical regions to increase the sample size of each micro-market with similar $/tonne

rates.

Table 3.6: Voyage charter rates per route in 2020

N Mean ($/Tonne)
Scrubber Non-Scrubber Scrubber Non-Scrubber

Australia - Far East 63 142 6.87 6.40
Atlantic America - Far East 65 110 15.46 16.44
Africa - Far East 8 26 12.60 12.63
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4 Empirical Strategy

4.1 Model specification

We have created a dynamic and flexible model to investigate the effects of IMO 2020

on voyage distance, average weekly speed, charter type and voyage charter freight rates.

Applying the Difference-in-Differences (DiD) method with two-way fixed effects (TWFE),

as presented in appendix A5, allows us to analyze the causal effects of IMO 2020 with the

model:

Yit = β ∗ Scrubberit ∗ Postt + α ∗ Scrubberit + µ ∗Xit + δi + γt + εit (4.1)

Where i indexes the individual vessels, and t specifies the time by date for regressions

on distance, charter type and voyage charter. Further, t specifies the time by week for

speed. Yit is the dependent variable. Conditional on the effects we are analyzing, the

dependent variable is (1) distance, (2) weekly average speed, (3) binary variable for charter

type or (4) the voyage charter freight rate. The coefficient β represents the IMO 2020

implementation effect (DiD estimate) and is labeled SP in the regression outputs.

Postt is a dummy variable indicating whether an observation is after the policy

implementation on January 1. 2020. Further, Scrubberit is a dummy variable defining

if an observation is in the treatment or control group. A scrubber vessel is categorized

in the treatment group and given a value equal to 1 if the starting date of a voyage is

after January 1, 2020. Contrary, a non-scrubber vessel will be in the control group with a

value equal to 0. This causes the dynamic aspect to the model, as scrubber vessels have

different treatment periods reflecting the scrubber’s installation timing.

Xit are various covariates that may affect the dependent variable in the model. Based on

the findings of Ronen (1982) and Adland and Jia (2016, 2018) regarding speed analysis,

we include continuous variables for freight rate and bunker price, and a dummy variable

for loading condition. The different freight rates from Baltic Exchange are illustrated in

3.1. The fuel price variable varies by time and geographical location.
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The fixed effects are included to absorb much of the residual variation (Kearney and

Levine, 2014). By controlling for the heterogeneity in our sample, we can isolate the

effects of scrubber installation. Including vessel fixed effects δi controls for differences

in time-invariant characteristics such as vessel size and age. The time fixed effects γt,

picks up the time-variant effects such as market conditions. In addition, we apply route

fixed effects to the models on speed and $/tonne spot rate to control for geographical

differences.

Regarding inference, Bertrand et al. (2004) argue that one must cluster on the unit of

policy implementation if possible. After testing for heteroscedasticity using Breusch-Pagan

(Breusch and Pagan, 1979), all our models use clustered standard errors on vessel level as

observations within each group may not be independently and identically distributed.

The regression models for voyage distance and speed consist of linear and log-transformed

models, while the voyage charter freight rate models are solely log-transformed. The

market conditions have a large impact on spot rates, with a lower bound close to zero in

poor markets and greatly increased rates in thriving markets caused by inelastic supply

curves in the short term. This leads to a positively skewed distribution, and it is reasonable

to use the natural logarithm on the dependent variable for the $/tonne rate (Alizadeh and

Talley, 2011; Adland et al., 2016). The reason for including log-transformed regression

models on voyage distance and speed is to ease the interpretation of coefficients. The

interpretation of the dummy coefficients in the log-transformed models is the following:

If D switches from 0 to 1, the % impact of D on Y is 100[exp(c) − 1] (4.2)

The identifying assumption underlying this research design is not a random assignment of

scrubber vessels and non-scrubber vessel, but rather that these groups would have trended

similarly in the absence of IMO 2020 (appendix A5). To verify the identifying assumption,

we test for parallel trend in Section 5.5
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5 Discussion of Results

The subsequent analysis consists of six sections to present and discuss how IMO 2020 has

affected various micro-market behaviors in the drybulk market. The first four sections

discuss the effects of scrubber installation on voyage distance, vessel speeds, charter

type and voyage charter freight rates. The final two sections review the parallel trend

assumption and discuss uncertainties potentially influencing the results.

5.1 Are scrubber vessels sailing on longer routes than

non-scrubber vessels after IMO2020?

Firstly, we investigate if installing a scrubber influences the sailing distance after IMO

2020. The descriptive statistics indicate that scrubber vessels operate on longer duration

voyages, corresponding with the findings of Braemer ACM Shipbroking (2021). This

suggests that vessels with lower marginal costs due to reduced fuel costs, increase the

savings by spending more time at sea. The effects of scrubber installation on distance are

tested using the regressions in Table 5.1. Models (5) and (6) are log-transformed to ease

the interpretation of the coefficients.

Table 5.1: Scrubber effects on voyage distance

(1) (2) (3) (4) (5) (6)
Distance Distance Distance Distance lnDistance lnDistance

SP 483.2∗∗ 180.1 0.0714∗∗ 0.0238
(176.4) (138.1) (0.0271) (0.0213)

Scrubber 608.7∗∗∗ 422.4∗∗∗ 300.2 275.8∗ 0.0439 0.0401
(107.4) (92.16) (182.9) (136.0) (0.0280) (0.0210)

Post -197.3∗∗∗ -0.0352∗∗∗
(52.79) (0.00852)

VLOC 1,393.4∗∗∗ 1,379.4∗∗∗ 0.195∗∗∗
(249.8) (249.3) (0.0375)

N 30,806 30,806 30,806 30,806 30,806 30,806
Method OLS OLS DiD DiD DiD DiD
V esselFE No Yes No Yes No Yes
TimeFE No Yes No Yes No Yes
Standard errors in parentheses. Standard errors clustered on vessel level.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001



5.1 Are scrubber vessels sailing on longer routes than non-scrubber vessels after
IMO2020? 23

The scrubber dummy in model (1) is significant at a 1% level. The coefficient indicates

that scrubber vessels on average sail 609 nautical miles longer than non-scrubber vessels

per voyage in the sample period. The model does not account for differences in the year

of build or vessel size. As illustrated in Figure 3.3, the VLOC vessels have a fixed trading

pattern primarily operating between Brazil and China. Therefore, we include a dummy

variable controlling for the effects of VLOC vessels. The variable is significant at a 1%

level, indicating that VLOC vessels on average sail 1,393 nautical miles longer than the

remaining Capesize fleet.

In model (2), TWFE are included to control for market conditions and vessel heterogeneity.

Scrubber vessels are on average larger and of newer build. From panel (a) in Table 3.3,

the difference in vessel characteristics increases from 2019 to 2020, as age and size of

non-scrubber vessels remain constant. In general, newer vessels are more energy efficient

due to improvements in designs (Lindstad and Eskeland, 2015). In addition, larger vessels

can take advantage of economies of scale. Both factors impact the route placement and we

expect a decrease in the scrubber coefficient once we control for the vessel characteristics.

The time fixed effects control for market conditions such as changes in freight rates and

fuel prices over time. The model gives a significant coefficient at a 1% level, indicating

that scrubber vessels on average sail 422 nautical miles longer than non-scrubber vessels

per voyage.

The DiD framework in model (3) allows us to analyze if scrubber vessels sail longer than

non-scrubber vessels after the policy implementation. The SP coefficient represents the

DiD estimate and is significant at a 5% level. The coefficient suggests that the difference

in voyage length between scrubber and non-scrubber vessels increases by 483 nautical

miles after IMO 2020. The VLOC coefficient indicates that VLOC vessels on average

sail 1,379 nautical miles longer than the rest of the Capesize fleet. Similar to model

(3), the log-transformed model in (5) returns significance in the SP coefficient at a 5%

level, suggesting that scrubber vessels sail 7.4% longer than non-scrubber vessels after

the implementation of IMO 2020. In addition, the VLOC dummy is significant at a 1%

level and indicates that VLOC vessels, on average, sail 21.5% longer than the remaining

Capesize fleet.
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5.2 Are scrubber vessels increasing sailing speeds compared to non-scrubber vessels after

IMO 2020?

For the same reasons as in model (2), we control for differences in vessel characteristics

and market conditions by applying TWFE in model (4). The SP coefficient loses its

significance once we control for differences in vessel characteristics and market conditions.

This implies that the difference in voyage length between scrubber and non-scrubber

vessels does not increase due to IMO 2020. Similar to model (4), we do not experience a

significant SP coefficient in the log-transformed model (6).

Overall, our analysis suggests that scrubber vessels sail on longer voyages. However, we do

not find evidence that IMO 2020 has resulted in an increased difference in voyage length

between scrubber and non-scrubber vessels when accounting for vessel heterogeneity and

market fluctuations. The contradiction of results in model (5) and (6) indicate that vessel

characteristics such as age and size potentially explain the difference in distance, rather

than the scrubber installation or the policy change itself.

5.2 Are scrubber vessels increasing sailing speeds

compared to non-scrubber vessels after IMO 2020?

The second topic of investigation is whether scrubber vessels increase speeds compared

to non-scrubber vessels after IMO 2020. Table 5.2 presents the regression models. The

purpose of models (1), (2) and (3) is to determine if the scrubber dummy affects vessel

speeds. Models (4), (5) and (6) examine whether the difference in vessel speeds increases for

scrubber vessels compared to non-scrubber vessels after IMO 2020. The dependent variable

is weekly average speed, presented in knots. Models (7), (8) and (9) are log-transformed

models of (4), (5) and (6).

All variables in model (1) are significant. The scrubber coefficient indicates that scrubber

vessels sail 0.32 knots faster than non-scrubber vessels. The laden variable is significant at

a 1% level and indicates that vessels sail 1.2 knots slower on laden legs compared to ballast

legs. This is in line with the findings of Adland and Jia (2018). The freight rate and

bunker price coefficients are significant at a 1% and 5% level, respectively. The coefficient

signs correspond with classical speed optimization theory. Simultaneously, the effects of

change in freight rates and fuel prices on speed are minor, supporting previous empirical

testing of the classical speed theory (Aßmann et al., 2015; Adland and Jia, 2016, 2018).
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5.2 Are scrubber vessels increasing sailing speeds compared to non-scrubber vessels after

IMO 2020?

When time and vessel fixed effects are included in model (2), the scrubber coefficient

indicates that scrubber vessels sail 0.29 knots faster than non-scrubber vessels. As vessel

characteristics such as age and size are controlled for in vessel fixed effects, the scrubber

coefficient decreases but remains significant at a 1% level. We exclude the freight rate

and bunker price variables from the model, since the market conditions are controlled for

in time fixed effects.

In model (3) we include route fixed effects to control for route differences such as voyage

duration and loading condition. Consequently, we observe an insignificant laden dummy.

However, the scrubber variable is significant at a 1% level, suggesting that scrubber vessels

on average sail 0.26 knots faster than non-scrubber vessels. Furthermore, as we distinguish

between a laden- and a ballast leg in our dataset, the route fixed effects capture differences

in the two legs, hence explaining the insignificance of the laden dummy.

The DiD framework is applied in model (4) to investigate if IMO 2020 has affected vessel

speeds. We experience significance in the SP coefficient at a 10% level. This indicates that

the difference in vessel speeds increases by 0.10 knots between scrubber- and non-scrubber

vessels after IMO 2020. Time and vessel fixed effects are included in model (5). The SP

coefficient is significant at a 5% level, suggesting that scrubber vessels increase speeds by

0.14 knots relative to non-scrubber vessels because of the policy implementation. The

freight rate and bunker price variables are excluded for the same reason as in model (2).

Model (6) includes route fixed effects, resulting in a significance at a 1% level for the DiD

estimator. The SP coefficient indicates that IMO 2020 has increased the difference in

speeds between scrubber and non-scrubber vessels by 0.14 knots. The effects of including

route fixed effects on the laden dummy are similar to model (3). The model shows that

scrubber vessels increase speeds compared to non-scrubber vessels after the IMO 2020

regulation.

As the effects of scrubber, freight rates and fuel prices on speed are small, model (7) is

log-transformed to ease the interpretation of the coefficients. The freight rate and fuel

price variables are significant at a 1% level, with a similar sign as in model (4). This

suggests that a 1% change in freight rate leads to a 0.01% increase in speed. Further,

a 1% change in fuel price leads to a 0.01% decrease in speed. The SP coefficient is

significant at a 10% level, indicating that the difference in vessel speeds between scrubber
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and non-scrubber vessels increases by 0.9% after IMO 2020. Both model (8) and model (9)

return similar results as (5) and (6), where the SP coefficients indicate that the difference

in vessel speeds between scrubber and non-scrubber vessels increases by 1.2% after the

policy change.

Overall, the findings suggest that scrubber vessels do increase vessel speeds due to IMO

2020. Even though our results indicate that scrubbers significantly affect vessel speeds,

we experience minor effects. The findings contradict the study of Adland et al. (2017a)

on speeds in Emission Control Areas (ECAs) with stricter limits on sulphur content in

marine fuels. Recent literature on speed optimization denies the magnitude of freight

market conditions and fuel price on speed (Aßmann et al., 2015; Adland and Jia, 2016,

2018), especially when observed speeds differ from the design speed (Adland et al., 2020).

The calculated speeds are lower than design speeds in our sample and we observe similar

limited effects of freight rates and fuel price.

5.3 Are scrubber vessels less likely to be used on trip

charter contracts after IMO 2020

The third area of interest is to investigate if shipowners are less likely to offer scrubber

vessels on trip charter contracts after IMO 2020. Shipowners have the flexibility to offer

their vessels on either voyage charter or trip charter. As investments in energy efficiency

rarely result in higher freight rates (Agnolucci et al., 2014; Adland et al., 2017b), the

shipowner will primarily benefit from their scrubber investment in the form of potential

fuel cost savings, by offering their vessels on voyage charter contracts. Therefore, it is

interesting to test if there exists a market failure related to this principal-agent problem,

where the charterer in a trip charter contract benefits from the shipowner’s investment.

We use a linear probability model (LPM) with a dummy for trip charter contracts as

the dependent binary variable in Table 5.3. The dummy for scrubber installation is the

explanatory variable in models (1) and (2), while the DiD estimator is the explanatory

variable in models (3) and (4).
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Table 5.3: Scrubber effects on charter type

(1) (2) (3) (4)
Trip charter Trip charter Trip charter Trip charter

SP -0.068 -0.375∗
(0.079) (0.187)

Scrubber -0.045 -0.089 0.056 0.187
(0.028) (0.110) (0.074) (0.181)

Post -0.141∗∗∗
(0.025)

N 1,016 1,016 1,016 1,016
Method OLS OLS DiD DiD
V esselFe No Yes No Yes
TimeFe No Yes No Yes
Standard errors in parentheses. Standard errors clustered on vessel level.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

In model (1), the scrubber variable is insignificant, indicating that the scrubber installation

does not influence the shipowner’s choice of offering their vessel on trip charter versus

voyage charter. The insignificance may be explained by the fact that we study the effects

on the entire sample, while the benefits of fuel cost savings only occurred after January 1,

2020. We experience the same outcome when including TWFE in model (2). Including

vessel fixed effects has a small impact on charter type, as the vessel characteristics

on average are similar between scrubber and non-scrubber vessels. In model (3), the

insignificant SP coefficient suggests an existence of market failure in the freight market.

The model indicates the shipowners investing in scrubbers do not offer their vessels on

less trip charter contracts. This suggests that the charterer accrues the potential fuel cost

savings from the scrubber investment.

Contrary, the DiD estimator in model (4) is significant at a 10% level when time- and

vessel fixed effects are included. The negative coefficient indicates that a scrubber vessel

is 37.5% less likely to be offered on a trip charter than a voyage charter after IMO 2020.

The change in significance indicates that important factors regarding market conditions

are picked up in time fixed effects, as vessel characteristics are similar for scrubber and

non-scrubber vessels. The SP coefficient suggests that shipowners are more likely to offer

scrubber vessels on voyage charter contracts, where they pay for fuel costs and benefit

from potential fuel cost savings. This indicates a strategic adjustment to the policy change,



5.4 Are scrubber vessels trading at a lower $/Tonne rate relative to non-scrubber vessels
after IMO 2020? 29

suggesting the market failure on charter type is not an issue as a result of IMO 2020.

5.4 Are scrubber vessels trading at a lower $/Tonne

rate relative to non-scrubber vessels after IMO

2020?

Finally, we investigate if scrubber vessels trade at lower voyage charter rates compared to

non-scrubber vessels. This allows us to investigate if there is a split of potential fuel cost

savings between the shipowner and the charterer in the spot market.

The freight rate in a perfectly competitive market is determined by the marginal cost

of the marginal vessel, where the bidding on transportation is confined within a specific

geographical area (Norman, 1979; Adland et al., 2016). Suppose scrubber vessels cluster

on specific routes, the freight rates can decrease below the traditional marginal cost of a

non-scrubber vessel. Significant lower rates in our models can be an indication of such a

scenario. We analyze the routes of Australia to the Far East, Atlantic America to the

Far East and from Africa to the Far East, as these routes represent micro-markets, where

scrubber vessels have a substantial impact on the supply side, illustrated in appendix

A3. Table 5.4 presents the OLS and DiD models. The dependent variable is the natural

logarithm of the $/tonne spot rate.

Table 5.4: Scrubber effects on voyage charter freight rates

(1) (2) (3) (4) (5) (6)
lnRate lnRate lnRate lnRate lnRate lnRate

SP -0.056 0.449∗∗ 0.014
(0.098) (0.142) (0.060)

Scrubber 0.041 0.219 0.016 0.112 -0.166 0.004
(0.043) (0.175) (0.056) (0.086) (0.192) (0.072)

Post -0.078
(0.042)

N 832 832 832 832 832 832
V esselFE No Yes Yes No Yes Yes
TimeFE No Yes Yes No Yes Yes
RouteFE No No Yes No No Yes
Standard errors in parentheses. Standard errors clustered on vessel level.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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In model (1), the scrubber dummy is insignificant, suggesting that scrubber vessels trade

at a similar $/tonne rate as non-scrubber vessels. Model (2) incorporates fixed effects for

both the time differences and vessel individuality. There is no change to the significance

of the scrubber dummy, potentially explained by the similarities in vessel characteristics

illustrated in Panel (b) of Table 3.5. However, as the $/tonne rate and distance traveled

are greater for scrubber vessels than non-scrubber vessels, we include route fixed effects to

control for these differences. We experience the same outcome in model (3) as in models

(1) and (2).

Models (4)-(6) incorporate the DiD framework. The SP coefficient in model (4) shows no

significance, suggesting that the difference in $/tonne rates is unchanged between scrubber

and non-scrubber vessels after IMO 2020. However, including time and vessel fixed effects

to model (5) tells a different story. The DiD estimator is significant at a 5% level, and the

coefficient indicates that the difference in $/tonne rate between scrubber and non-scrubber

vessels increases by 56.7% after IMO 2020. This can either indicate that scrubber vessels

trade at a premium or that scrubber vessels, to a greater extent, trade on long-haul routes

with higher $/tonne rates. The latter is supported by the descriptive statistics, where

scrubber vessels are sailing longer per voyage compared to non-scrubber vessels.

Therefore, we include route fixed effects in model (6) to account for variation in rates for

different routes. This leads to an insignificant DiD estimator at any level and indicates

that scrubber vessels do not trade at a lower $/tonne rate compared to non-scrubber

vessels after IMO 2020. Overall, our analysis suggests that shipowners of scrubber vessels

accrue the potential savings from lower fuel costs. The investment in scrubber contributes

to a reduction in marginal costs, while the marginal income remains at the same level for

both groups.

5.5 Testing parallel trend assumption

To test for parallel trends, we run a set of regressions using our final DiD model on each

topic of investigation. The purpose is to analyze if there exists a parallel trend before

the regulation and if the treatment has a clear effect ex-post. We control for vessel fixed

effects and time fixed effects in all models. In addition, we control for route fixed effects

in the models on speed and voyage charter rate.
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Figure 5.1 illustrates the coefficient plot of the DiD estimates relative to the first quarter

after the IMO 2020 implementation (2020q1). We compare the difference between scrubber

and non-scrubber observations against the base quarter. Hence, the reason for placing

this point to the far left in each panel. The dot equals the DiD estimate for the respective

quarter, while the whiskers indicate the 95% confidence intervals. The dots before 2020q1

should follow the red line, indicating that the treatment and control group have parallel

trends. Contrary, if the regulation has an effect on the treatment group, we expect the

dots after the dashed vertical line to move away from zero, either in a positive or negative

direction. We analyze the parallel trend assumption by visual inspection.

Figure 5.1: Test for parallel trend assumption
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(d) Voyage freight rate

Panel (a) illustrates some irregularities in the trend, as two of the quarters are significantly

different. Visual examination of the pre-trend indicates an upward slope. The dots after

2020q1 indicate similar DiD estimates for the two groups. The treatment effect seems to

occur prior to IMO 2020, as we see an increase from 2019q2 before stabilizing. However,

the post-period does not return a significant difference on distance.
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In Panel (b), we observe pre-trend DiD estimates close to zero, indicating that the parallel

trend assumption holds. The exception is 2019q3, returning a significant difference between

scrubber and non-scrubber vessels. Further, the treatment effect is positive in the second

half of 2020, suggesting that scrubber vessels increase speeds compared to non-scrubber

vessels after IMO 2020. However, the treatment effect does not contribute to a significant

difference in the quarterly DiD estimates.

Panel (c) suggests that the parallel trend assumption is fulfilled, as there are no deviations

from the red line in the pre-trend. After the implementation of IMO 2020, all the

coefficients turn negative, suggesting a negative treatment effect. However, the whiskers

suggest no significant difference in the percentage of trip charter contracts relative to

voyage charter contracts after IMO 2020.

We experience pre-trend DiD estimates close to zero in Panel (d), indicating that the

parallel trend assumption holds. The treatment effect seems to positively impact the

natural logarithm of voyage charter freight rates, with the effect starting in 2019q4. The

whiskers do not indicate a significant difference in $/tonne rates for each quarter after the

regulation.

Overall, the parallel trend assumption in panels (a) and (b) seems to be fulfilled by visual

inspection, despite some exceptions in the pre-trend estimates. The pre-trend is clear in

panels (c) and (d), indicating that the parallel trend assumption holds.

5.6 Elements of uncertainty

Distance calculation based on shortest-path algorithm

There may be some uncertainty in the distance and speed calculations due to the choice

of distance algorithm. By using a shortest-path algorithm between the AIS observations,

we do not account for non-sailable waters and land areas that may hinder the direct path

between two observations. This can potentially underestimate the distance calculations

and overestimate the calculated speeds. As the frequency of AIS observations decreases,

the duration between two AIS positions increases, causing uncertainty to the actual sailing

path. Hence, the estimation errors may increase. This is further discussed in appendix

A2.
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Short sample period

We only have 12 months of data post-regulation, as IMO 2020 entered into force on 1.

January 2020. Consequently, the sample size of fixture data is relatively small. This

affects the micro-market analysis and may create uncertainty regarding the results on the

charter type and the voyage charter freight rate. In addition, we only account for 2019 as

our pre-treatment year. By increasing the sample period before 2020, the market cycles

in the drybulk market could be accounted for to a greater extent. Further, increasing the

sample size prior to IMO 2020 could improve the testing of the parallel trend assumption.

Covid-19 effects on drybulk shipping

The shipping industry has experienced irregularities through 2020 due to the covid-19

pandemic. According to Clarksons Research (2021a), the total drybulk market experienced

trade growth of 0.5% for 2020. However, there are large differences in the trade growth of

specific drybulk commodities. For example, the coal trade decreased by 9.4%, while the

iron ore- trade increased by 4.8%. As there are several effects occurring in 2020, there

exists potential uncertainty regarding the causal effect relationships.
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6 Concluding Remarks

In this thesis, we have investigated the effects of IMO 2020 on the drybulk market using

the DiD framework. The vessel sample consists of Capesize vessels separated by scrubber

vessels and non-scrubber vessels. We have studied how the implementation of the low

sulphur emission policy has affected voyage distance and vessel speeds backed by AIS

data, as well as charter types and $/tonne rates in voyage charter contracts. Our analysis

suggests that IMO 2020 has affected drybulk shipping in different ways when examining

various micro-market behaviors.

Our empirical results can be summarized as follows. Firstly, our analysis indicates that

scrubber vessels sail on longer routes compared to non-scrubber vessels. However, we do

not find evidence that the difference in voyage distance increases as a result of IMO 2020.

This suggests that other factors such as age and vessel size potentially affect the route

placement to a greater extent.

Secondly, our models show that the difference in speeds between scrubber and non-scrubber

vessels increases after IMO 2020. These findings are in line with maritime economic theory

suggesting that lower fuel costs for HFO compared to VLSFO results in greater speeds,

all else equal.

Thirdly, our model finds little evidence of market failure in the form of a principal-agent

problem concerning preferred charter type. The results indicate that shipowners investing

in scrubber installation are more likely to offer their vessel on voyage charter contracts

after IMO 2020. Hence, shipowners with scrubber vessels are more likely to benefit from

the potential fuel cost savings.

Finally, our analysis suggests that there is no difference in voyage charter freight rates

for scrubber vessels and non-scrubber vessels. This implies that shipowners of scrubber

vessels retain the same marginal income as non-scrubber vessels, while the marginal cost

is reduced relative to non-scrubber vessels. Hence, the shipowners of scrubber vessels

accrue the potential savings from the difference in fuel price between HFO and VLSFO.

Complemented by the fact that a scrubber vessel is less likely to be offered on a trip

charter, shipowners would benefit from the potential fuel cost savings.
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Appendices

A1 AIS components

Table A1.1: AIS message components

Message component Definition Example
imo Unique ship identification 9593452
timestamp position Date and time for the position 2019-02-01T22:18:15Z
lon Longitude of the position -128.2225
lat Latitude of the position 5.219407
speed Observed speed in knots 10.9
draught Draught in meters 17.9

Table A1.1 illustrates relevant components in the initial AIS dataset. All vessels are

identified by a unique 7-digit IMO number. Contrary to vessel name, the IMO number is

constant throughout a vessel’s lifetime.

A2 Data Pre-processing

The data pre-processing is twofold and is separated by data processing of AIS data and

fixture data. The pre-processing for distance and speed consists of (1) combining the AIS

data with vessel characteristics from Clarksons WFR, (2) combining the dataset from

(1) with Signal Ocean voyage data to specify starting- and ending date of each voyage

and (3) cleaning the final data sample. The pre-processing for fixture data consists of

(1) combining vessel characteristics from Clarksons WFR with the fixture data and (2)

cleaning the final data sample.
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A2.1 Discussion on AIS reporting frequency

Figure A2.1: Frequency of AIS observations in 2019-2020
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When splitting each year into six-month periods to highlight the frequency change in

August 2019, the difference in reporting frequency becomes apparent in average time and

distance between each AIS observation. Therefore, we have set a cut-off for voyages with

an average time between observations of greater than six hours and an average distance

between observations greater than 80 nautical miles. We also remove voyages with a

total distance of less than 1,500 nautical miles or greater than 18,000 nautical miles and

voyages with days sailing less than five days or greater than 75 days.

Table A2.1: Average time and distance between AIS observations

2019 2020
Number of voyages 15,418 15,388
Avg hours between observations 1.95 3.33
Avg nautical miles between observations 22.78 38.13

We have calculated the average time between AIS observations and the average distance

between the two points to validate our data further. We compare observations from 2019

with 2020 and experiences greater mean values in both time and distance in 2020. This

seems reasonable due to the different frequencies of observation in our dataset.
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A2.2 Data pre-processing of sample on distance and speed

The raw AIS dataset consists of 207,084,018 observations. We drop all observations with

registered speeds below three knots, indicating that the ship is at port or has an anchorage

status to reduce the initial dataset. In addition, we remove observations with speeds

over 18 knots. Further, we only keep observations for Capesize vessels determined by the

Clarksons WFR dataset by merging IMO numbers from AIS and Clarksons WFR.

The speeds are calculated based on the distance and time traveled from point to point

represented by the geographical position. Hence, we use a Haversine formula to compute the

geographical distances between two latitude-longitude positions (Positionn+1−Positionn).

The Haversine formula determines the great-circle distance in kilometers between two

points on an earth-sized sphere (Nichat, 2013). The distance is converted from kilometers

to nautical miles by dividing with 1.852 for speed estimation in knots. Hence, the distances

between the points are calculated with a shortest-path algorithm. The speed between

the points can be found by dividing the distance traveled by the time difference of two

consecutive AIS observations.

Speed =
Positionn+1 − Positionn

(Timen+1 − Timen)
∗ 1

1.852
(.1)

We exclude average speeds lower than 8 knots and greater than 18 knots from our sample.

Speeds lower than 8 knots suggests that a vessel is in port or drifting at very low speeds.

Further, speeds greater than 18 knots are considered unrepresentative as this would require

perfect sailing conditions, in addition to full steam ahead (Adland and Jia, 2016). Lastly,

the calculated speeds in knots are converted into time-weighted average speeds for each

vessel on a weekly basis.

Time weighted avg weekly speed =
N∑

n=1

(
Timen+1 − Timen∑N

n=1(Timen+1 − Timen)
∗ Speed) (.2)



42 A2 Data Pre-processing

The AIS reported draught and the ship-specific design draught from Clarksons WFR

are combined to calculate the draught ratio for each voyage. This allows us to control

the accuracy of the laden and ballast leg determination of the Signal Ocean platform.

The histogram below illustrates the distribution of the draught ratios for weekly speed

observations.

Figure A2.2: Draught ratio and loading condition
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There is a clear separation in draught ratios at value 0.7. This fits well with the paper by

Adland and Jia (2016), stating that laden- and ballast legs equal a draught ratio from 0.8

to 1 and from 0.25 to 0.64, respectively. In addition, we remove observations of draught

ratios less than 0.4 and greater than 1.05. We include observed draught ratios between 1

and 1.05 to account for tropical draught, which is 1
48

above the summer load line of the

vessel and can lead to a draught ratio greater than 1 (Eyres and Bruce, 2012). Further,

we remove observations with a laden dummy equal to 1 and a draught ratio less than 0.7.

Similarly, this applies to observations with a laden dummy equal to 0 and a draught ratio

greater than 0.7.
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A2.3 Data pre-processing of sample on fixtures

Figure A2.3: Cleaning of fixture data
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Note: Step 6 equals the sample for charter type, while Step 8 equals the sample for
voyage charter freight rates

Table A2.2: Explanation of cleaning steps for fixture data

Cleaning step Reason
0 Raw observations in sample period
1 Dropping missing names and

name equal to "TBN" (To be announced)
2 Matching on Name, Built, DWT

or Ex-name Built, DWT
3 Dropping missing rates
4 Dropping missing load and discharge values
5 Dropping missing laycan period
6 Dropping duplicate and conflicting rates
7 Dropping trip charter contracts
8 Dropping routes with few scrubber vessels



44 A3 Most traveled routes

A3 Most traveled routes

Table A3.1: Main Capesize routes by scrubber status for 2019-2020

Non- Non-
Scrubber Scrubber Scrubber Scrubber
(2019) (2019) (2020) (2020)

Australia-Far East 288 4613 1183 3172
Atlantic America-Far East 93 1103 603 611

Africa-Far East 14 576 120 418
Atlantic America-Mediterranean/UK 16 315 65 123
West Coast South America -Far East 6 147 36 105

Far East - India/Pakistan 7 179 20 85
Black Sea/Sea Of Marmara - Far East 3 109 46 98

Africa-India/Pakistan 4 98 27 83
West Coast North America-Far East 13 92 22 58

Atlantic America-Black Sea 6 103 18 52

Table A3.2: Scrubber percentage on specific routes and percentage of scrubber voyages
in 2020

Scrubber Total
on route Scrubber

voyages
(2020) (2020)

Australia- Far East 27.16% 52.00%
Atlantic America - Far East 49.67% 26.51%

Africa - Far East 22.30% 5.27%
Atlantic America - Mediterranean / UK 34.57% 2.86%
West Coast South America - Far East 25.53% 1.58%

Far East - India / Pakistan 19.05% 0.88%
Black Sea / Sea Of Marmara - Far East 31.94% 2.02%

Africa - India / Pakistan 24.55% 1.19%
West Coast North America - Far East 27.50% 0.97%

Atlantic America - Black Sea 25.71% 0.79%
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A4 Validation of distance calculations

Table A4.1: Route distance comparison

Route 1 2 3 2 - 1 3 - 1
Dampier - Qingdao 3443 3594 3582 139 152
Ponta Da Madeira - Dalian 11,973 12,088 12,688 115 715
Saldanha Bay - Tianjin 8024 8272 8564 112 141

Table A4.2: Route distance comparison description

Id Description
1 Our calculation
2 Seadistance.org
3 Signal Ocean

We have compared the average calculated distance from our AIS sample with the ones

listed on sea-distance.org and Signal Ocean to validate our distance calculations. We only

experience minor differences, indicating that our approximations are reasonable.

A5 A review of the Difference-in-Differences method

The difference-in-difference (DiD) method is regarded as one of the most popular tools of

applied research design to evaluate the causal effect of public interventions (Kropko and

Kubinec, 2020). The DiD method consists of two time periods and two groups. In the

first period, none of the groups are treated. In the second period, one group is given a

treatment, while the other works as a control group. For example, a treatment could be a

vaccine or a law regulation only affecting the treatment group. The treatment effect can be

estimated by comparing the average change in outcomes experienced by the treated group

to the average change in outcomes experienced by the comparison group (Fredriksson and

Oliveira, 2019). Hence, the DiD estimate can be presented in the following manner, where

ȳ is the mean outcome variable:

DiD = (ȳs=Treatment,t=After − ȳs=Treatment,t=Before) − (ȳs=Control,t=After − ȳs=Control,t=Before)

(.3)
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The parallel trend assumption is essential. In the absence of a treatment, the two groups

should follow a parallel trend over time (Callaway and Sant’Anna, 2020). This implies

that the time series of outcomes in each group should differ by a fixed amount in each

period and should exhibit a common set of period-specific changes. This would imply

that the two groups should follow parallel trend lines as panel (a) in Figure A5.1 (Wing

et al., 2018).

Figure A5.1: DiD model
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We illustrate the general DiD estimate using the OLS framework, where the β coefficient

represents the DiD estimate. Yit is the dependent outcome variable for unit i at the time,

t. Further, Dit can be defined as the value of treatment for unit i, at time t. In addition,

δi and γt are the unit and time fixed effect estimates. Lastly, we have the idiosyncratic

error term, εit (Bertrand et al., 2004)

Yit = δi + γt + β ∗Dit + εit (.4)

The DiD equation takes account of both time and individual fixed effects. When unit

and time fixed effects are included, we account for both unit-specific time-invariant and

time-specific unit-invariant unobserved confounders in a flexible way (Imai and Kim, 2020).

From the static TWFE model, we can interpret as the overall effect of participating in

the treatment across groups and time periods.
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Callaway and Sant’Anna (2020) expand on the model above and present a more dynamic

model specification of the DiD model as presented below:

Yit = αt + αg +
−2∑

e=−K

∗δanticipe ∗De
it +

L∑
e=0

∗βe ∗De
it + vit (.5)

The more dynamic model has a more complex mathematical notation, where at and ag

in this case are the fixed effects, respectively for time, t and group, g. Callaway and

Sant’Anna (2020) describes De
it = 1(1 − Gi = e) as an indicator for a unit, i being e

periods away from the initial treatment time, Gi. Lastly, K and L are positive constants,

while vit is the error term. The general interpretation of βe for e ≥ 0 in the dynamic model

is the measurement of the effect of participating in the treatment at different lengths of

exposure to the treatment.

Based on the dynamic model of Callaway and Sant’Anna (2020), the following model is

identical but with the same notation as in the static model. This makes the model easier

to interpret. Compared to the static model, it also includes the possibility of multiple

treatment periods by including several DiD estimates across time:

Yit = δi + γt +
T∑

t=1,t6=t0

∗βt ∗Dit + εit (.6)

All βt coefficients measure the effect relative to period t0, which indicates the policy

implementation. The inclusion of multiple time periods is beneficial in two ways. First,

if there are multiple time periods before the policy implementation, it allows for partial

testing of the underlying assumptions using pre-trends. Second, if there are multiple time

periods after the policy implementation, it is possible to examine the timing of the effect.


