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Abstract
This thesis investigates explanatory factors on a microeconomic level that affect lead time

movements in the short term. We utilize historical voyage orders from January 2015 to

April 2021 to analyze the relationship between contract-specific determinants and the lead

time for dry bulk cargo. The data sample mainly includes smaller vessels carrying cargo

across a wide range of routes. To determine the key drivers, we apply a linear regression

model with an incorporated lasso penalty term. We divide the model into nine different

commodity groups, where each model inludes the variables of cargo size, seasonality,

infrastructure score, and voyage routes between loading and discharge regions. To find

the most prominent factors and evaluate the accuracy of the corresponding coefficients,

the model coefficients are validated through a bootstrap resampling process.

By analyzing the relationship between lead time and order-specific explanatory factors,

we seek to establish whether lead time patterns are connected to the market behaviour of

other attributes in the dry bulk sector. Our thesis is the first contribution to lead time

analysis in the literature of maritime economics. With the application of pre-fixture order

data, we are able to investigate the potential of early market insight through lead time.

Results suggest that lead time is affected by the size of cargo for all commodities, except

steel products. Among the route dynamics, we find strong evidence of a higher lead time

for transpacific routes. On the other hand, intra-Europe voyages have a consistently lower

lead time than average. Finally, no seasonal patterns seem to affect the lead time in any

direction.

Keywords – Shipping, Dry bulk, Lead Time, Voyages, Linear Regression, Lasso

Regression, Bootstrap
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1 Introduction
The market for maritime transportation has steadily grown over the last 20 years, making

the industry subject to an extensive number of studies. Dry cargo is the undoubtedly

largest market segment in maritime transportation, comprising about 67% of the world

fleet, whereby 44% of the total fleet represents dry bulk shipping, according to 2019

numbers (Clarksons Research, 2021). With seaborne trade accounting for such a large

share of the total world trade, its organization and flow are essential in multiple aspects

of the world economy.

The shipping industry comes with high risk and is subject to volatile freight rates and

ship prices (Kavussanos et al., 2010). Such risk factors dominate market players’ decisions.

Thus, any information that can provide insight into the early stages of market changes

can improve investment decisions from an economic viewpoint. Such information is highly

coveted in the shipping industry.

The time perspective of market information is essential, making lead time valuable if

containing information about market behaviour. We refer to the time elapsed from an

order first entering the market to the loading date as the lead time. Voyage orders are

known before the fixture date, enabling ahead-of-time insight into market behaviour

through available order attributes (See Figure 1.1). Shipfix1 provides a lead time index

on their platform, describing it as a tool for 1) tracking oversupply or over-demand on

particular routes and 2) detect seasonality for specific commodities. Overall, Shipfix

implies that a lead time index provides insight into maritime market volatility. In addition

to offering such information as raw data, the company utilizes lead time data to construct

forward booking curves based on orders that are currently circulating in the market. The

ability to perform such reliable forecasts on short-term demand is rarely possible and is a

helpful tool in commodity owners’ scheduling of orders to optimize freight conditions.

To our knowledge, there is no existing research on lead time in the shipping sector.

1
See Chapter 3 for further description of Shipfix
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Figure 1.1: Timeline of lead time window: First enquiry to loading date.

Contrary to fixed contractual agreements, analyses of cargo orders that are present in the

market before the fixture date requires access to a database that gathers such information

from multiple market participants. With the steady development of AI and complex

machine learning models, we expect a growth in the magnitude and precision of such

platforms. As the first of its kind, this paper will assess voyage order lead times for

dry bulk cargo to reveal the positive and negative influences. We perform an in-depth

study of micro-level, order-specific attributes, similar to the approach of Alizadeh and

Talley (2011) on trip charter fixtures. However, instead of using trip charter fixtures,

data is obtained from content extraction of voyage order emails. The aim is to determine

attributes of cargo orders that lead time is affected by, and how it is affected. This thesis

focuses mainly on minor bulk, a segment that is rarely discussed in existing literature

compared to the major bulk sector.

We suggest a two-fold objective for this thesis; (1) to define and investigate order-specific

lead time determinants and (2) to compare differences in patterns for the corresponding

determinants across dry bulk commodities. The thesis proposes a supervised learning

method rooted in a general multiple linear regression to determine the relationship between

lead time and suggested explanatory variables. Commodity segmentation is applied to

improve bias and results by capturing diversity. For further improvement, we attach

a tuning parameter to the linear model in the form of a Lasso penalty. Finally, an

implementation of a bootstrap resampling algorithm will quantify coefficient accuracy.

The remainder of this paper will first examine existing literature relevant to the thesis.

Secondly, we do a presentation of data along with relevant pre-processing steps before

model implementation. The theoretical framework is then introduced in the methodology
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section, dividing the implementation of the model into a three-step process. Finally, the

results and discussion section will reveal the effects of relevant model coefficients and

their validity, concluded with an evaluation of model limitations and further research

suggestions.
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2 Literature Review
The first part of the literature section will cover existing research on contract-specific

attributes in the dry bulk market. By investigating market factors that affect other

segments of the shipping industry, we apply these attributes to our model to test whether

they influence the lead time of voyage orders. Next, we will move the focus to geographical

research conducted in the shipping sector. The importance of scheduling and logistics in

shipping has made this field a recurrent research topic. Previous findings create the basis

for testing which geographical characteristics that are associated with fluctuations in lead

time.

To our knowledge, there is no existing research on the lead time of dry bulk cargo using

order-specific data. However, the study of Alizadeh and Talley (2011) succeed in capturing

a simultaneous relationship between freight rates and laycan periods, in addition to a

relationship between several microeconomic factors and the laycan period of fixtures for

Capesize and Panamax vessels. They describe the laycan period as the time between the

fixture date and the first layday of a chartered ship, while the lead time starts when an

order enters the market to the cargo’s first announced loading date. As seen in Figure 1.1,

the laycan period overlaps the lead time window. Consequently, we can expect that the

two attributes will respond similarly to market changes. Alizadeh and Talley (2011) finds

evidence of variations in the laycan period across multiple trip charter routes.

Similarly, Köhn and Thanopoulou (2011) investigate microeconomic factors affecting the

dry bulk sector for Panamax vessels. By quantifying quality-induced differences in dry

bulk time charter rates, their results reveal two positive relationships; the number of

days forward, referred to as the time between a fixture date and the delivery of a vessel,

correlate positively with both the charter duration and the place of delivery2. Their

findings suggest that longer commitments cause commodity producers to plan further in

advance. Our thesis uses this claim to orders of voyage charters to answer if the results

for time charter fixtures apply to the voyage market in a similar manner.

Analyses of microeconomic shipping determinants often utilize the data contained in

2
The variable “place of delivery” is split into three levels for charters delivered in Atlantic, Pacific and

worldwide.
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fixtures, as seen in Alizadeh and Talley (2011); Köhn and Thanopoulou (2011). The

usage of fixtures provides precise data on vessel-specific attributes for specific orders, such

as age and quality, which can be implemented to analyze freight rate differences across

quality-based market segments (Tamvakis and Thanopoulou, 2000; Tamvakis, 1995). We

are analyzing lead time of order information available in the market before the fixture

date, meaning that vessel specifications are unknown information. Orders are yet to be

matched with a vessel at this point in time. On the other hand, the geographical location

in which commodity owners want to load and discharge is familiar.

Commodity owners strategically put orders to the market to minimize costs without

risking a supply shortage. Considering its importance, studies on geographical data is

a well-established research field in shipping literature. For instance, Prochazka et al.

(2019) use geographic data to construct an optimization model that captures spatial

efficiency and evaluate the advantage of foresight in the dry bulk freight market. Another

research focusing on geographical differences is the study by Laulajainen (2007). The

study uses different shipping routes from individual freight fixtures and ship movements

to verify the geographical efficiency or inefficiency in the dry bulk shipping market.

Furthermore, it reveals how the ratio of demand to available ship tonnage, weighted by

sailing distance to discharge/loading region, is essential in explaining dry bulk freight

rates for individual routes. Brancaccio et al. (2020) propose a different perspective of

spatial analysis, suggesting other factors influencing the behaviour of market participants.

This study investigates the geographical effects of trade imbalance in the market, revealing

how 42% of shipments between the largest importers and exporters travel in ballast.

Analyzing dynamics of geographical distributions relative to lead time incorporates its

importance to our analysis. The mentioned literature provides the basis for a discussion

of results obtained from the spatial data applied in this thesis. By comparing our findings

with existing research, we aim to provide knowledge about the position of lead time data

relative to similar market indicators.
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3 Data
The Shipfix database provides the data sample applied in this paper. Shipfix possesses an

algorithm for extracting order information from emails for dry bulk chartering. The data

extraction technology runs an in-depth email content assessment and returns line-by-line

and in-line sub-content prediction using deep learning. Around 70 maritime players are

currently clients of Shipfix, providing insight on orders circulating in the market at any

given point in time. We consider this data as a sample of the total dry bulk sector. The

large share of private transactions present for Capesize and larger vessels are less covered in

Shipfix data. Thus, the provided data sample is highly concentrated around smaller vessels.

When emails are forwarded to the Shipfix database from its clients, they are examined

through textual analysis and information extraction. The algorithm structures this

information in a manner that provides easy data access for data analysis. For every

order entering the market within Shipfix coverage, the algorithm returns several

attributes from the information contained in the specific email. The attributes include

information such as the time and date of the first and last email, first and last announced

loading and discharge dates, cargo sizes, vessel types (matched with stated cargo

size), cargo types of different granularity levels, country of loading and discharge,

and number of emails with the same offer. Our thesis explores the historical voyage

order sample data. Shipfix also provides similar data for time-charter orders and

tonnage daily contribution3. The raw voyage order data contains 383,784 observations

of individual orders with 30 attributes, spanning from January 2015 to May 2021.

Only historical orders observed from January 2015 to April 2021 are applied in this analysis.

Table 3.1 presents the variables used in the model. Some variables are taken directly from

the original sample, while other variables reflect initial information obtained in the raw

data with some adjustments. We provide elaborate variable descriptions in the continuing

sections. For computation purposes, missing values are removed. The remaining data

sample consists of 281,946 observations in total.

3
Daily tonnage are ship openings sent to the market by either ship operators or shipowners daily.
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Table 3.1: Data variable names, descriptions and class

Variable Description Class

log�ttm Number of days from first order is placed to the
first advertised loading date. Log transformed.

Numeric

cargo�t0 Type of commodity ordered for transport Factor w/ 9 levels

log�sz Nominated in metric tons, size of cargo ordered
for shipping, log transformed

Numeric

quarter Q1-Q4 for each quarter of the year. Q1 is January
to March, Q4 is October to December.

Factor w/ 4 levels

score Infrastructure score for a loading country.
Increasing range of 1 - 5

Numeric

travel Route for loading and discharge locations. Both
are stated in regions

Factor w/ 256 levels

This chapter is structured as follows. First, we propose a commodity segmentation for the

analysis, supported by existing literature. Next, there will be an assessment of the variable

selection process, including relevant pre-processing steps. The independent variable lead

time is the first variable considered, followed by the independent variables consisting of

cargo size, seasonality, infrastructure score, and travel route.

3.1 Commodity Disaggregation

This paper proposes a model separation based on commodity type. Tsioumas and

Papadimitriou (2018) explain that differences in trading patterns across commodity

types are results of varying commodity prices. The price variation affects the

respective import and export quantities, and naturally, not all commodities will follow

identical cycles. Essentially, dissimilar market behavior suggests that aggregating over

commodities can omit relevant information in a diverse market such as the maritime sector.

A contrasting approach to segmentation is made by Alizadeh and Talley (2011), separating

vessel types in their analyses of microeconomic market factors. However, due to the

Shipfix data sample structure, this method is considered unsuitable for this microeconomic
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analysis for multiple reasons. First, the provided data sample is highly concentrated

around minor bulk vessels as shown in Table 3.2. Dividing by vessels will group over 70% of

the sample into the same model, reducing the chances of capturing diversity. Additionally,

the study of Alizadeh and Talley (2011) are based on a data sample of trip-charter fixtures,

contrary to our case with a sample of pre-fixture voyage orders. The data in this analysis

is obtained prior to a contract agreement, meaning that orders have yet to be assigned a

vessel. Accurate information on the vessel type is therefore missing from the sample and

only estimated in the Shipfix sample. Estimation of vessel types assigned to each order is

based on the weight of cargo specified in the order, cargo_sz. We exclude this attribute

from the model because estimated values cause further uncertainties in the model results.

Lastly, dividing by commodity groups will indirectly consider variations in vessel type

to some extent. Larger vessels usually carry a group of commodities such as iron ore

and coal, whereas smaller vessels traditionally carry other commodities like grains and

steel products. The division is not mutually exclusive4, and hence, the model includes an

independent variable for cargo size. This variable is discussed further in the section for

cargo size.

Table 3.2 provides insight into the distribution of cargo sizes across different vessel types

in the Shipfix data sample.

Table 3.2: Descriptive statistics of vessel types

ship_design Min
(cargo size)

Max
(cargo size) % of orders % of cargo size

Handysize 101 36997 73.3% 43.21%
Handymax 37000 49999 9.24% 14.97%
Supramax 50000 59999 11.14% 22.22%
Panamax 60000 84000 5.39% 14.28%
Capesize 85000 218315 0.81% 3.76%
VLOC 220000 490000 0.13% 1.57%

The variable ship_design is estimated by the information extraction algorithm by

Shipfix. It is not obtained directly from order emails.

Shipfix data includes attributes for five levels of granularity for the cargo type where

the levels differ in the details of the commodity description. For example, observations

categorized as Non-ferrous metals at level 0 and level 1, are grouped as Aluminum at

4
The minimum and maximum values for the different commodities cover the same ranges of cargo

size.
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level 2 and Bauxite at level 3. This paper suggests that limiting commodity granularity

to level 0 is sufficient. This categorization appears typical for the industry and improving

model interpretations. The groups of commodities are presented on the left-hand side in

Table 3.3, along with respective counts and descriptions. The latter represents examples

from commodity descriptions in higher granularity levels of the Shipfix data.

Table 3.3: Commodity groups, frequencies and description

cargo�t0 Count Description

Grains 61447 Agricultural products
Steel products 44336 Steel wire, steel spool, etc.
Ferts 36938 Phosphate, nitrogen, etc.
Other minerals 35472 Salt, sodium, clay, etc.
Coal 34834 Coking coal, steam coal, etc.
Other bulk 19754 Scrap metals, coke, etc.
Non ferrous metals 18404 Aluminium, manganese, etc.
Cement 15505 Bagged cement, cement clinker
Ferrous metals 15256 Iron, ferrous alloy

3.2 Independent Variable: Lead Time

The time between the first order email and the first advertised loading date is considered

the time�to�market in the data set, specified in days. We refer to this variable as the

lead time. We remove all orders with a time to market beyond 56 days (8 weeks). Shipfix

considers any order with a lead time exceeding 56 days to belong in the speculative

forward market. Lead time observations assumed to follow short-term market dynamics

are the observations of interest for this analysis.

When order emails contain insufficient specifications about loading dates, the Shipfix

extraction algorithm can return negative values for lead time. The algorithm is constructed

to assign a value for the year, month, and day of the loading date. It will therefore predict

these values if not specified in the email. Negative lead time observations from the original

data should be excluded from the model because an inclusion will return model estimates

based on incorrect values. On the other hand, removing observations raises concerns about
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biased results5. Shipfix considers negative lead times to generally indicate a low lead time

for an order6. Nevertheless, the values are unknown, and because we are hesitant to tamper

with original data, negative lead time observations are removed from the sample. For

interpretation purposes, the regression model states the lead time in natural logarithms.

3.3 Dependent Variables

3.3.1 Cargo Size

Alizadeh and Talley (2011) reveals a direct relationship between vessel size and laycan

period means and standard deviations7. The study emphasizes how Capesize and

Panamax vessels might have a higher laycan due to their lack of flexibility surrounding the

port decision-making process. Smaller vessels can easily connect with ports, while larger

ships mainly transport between fixed or regular routes. In maritime trade, some cargo

sizes are also ordered for shipment more frequently than others, as shown in Figure 3.1.

Consequently, these orders might be easier matched with a counterparty as they are more

common in the market. As a result, we can assume that commodity producers will be eager

to place an early order for more unusual cargo sizes to account for possible supply shortages.

High peaks in the density plots indicate a concentration around specific cargo sizes for

orders of a specific commodity. Some commodities have less visible peaks, such as Other

bulk, Cement and Ferrous metals. Figure 3.1 proves the aforementioned statement of a

high concentration around smaller cargo sizes. Orders for cargo with a weight of 80,000

metric ton or above is rare. Regardless of the deficiency of data for heavier cargo, the

plots show some patterns. For example, Steel products have a larger majority carried in

smaller amounts compared to Coal.

5
Missing values should be MCAR (missing completely at random), distributing lost information

uniformly among all variables and levels.
6
Direct communication with Shipfix provides the following example: For orders placed to the market

some days into a month, specifying a loading date “somewhere at the beginning of this month,” will return

an estimated loading date as the first day of that month. If the order is placed on the third day of a

month, the algorithm will return a lead time of -2.
7
The mean and standard deviation of laycan periods is 7.5 and 6.7 days for Capesize vessels,

respectively, and 4.4 and 4.6 days for Panamax vessels, respectively.
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Figure 3.1: Density plots of cargo sizes for all commodities

The cargo size variable is specified in metric tons in the raw data, presented with descriptive

statistics in Table 3.4. Naturally, larger vessels will carry orders of larger cargo sizes.

Table 3.2 shows that Shipfix suggests a grouping of cargo size to vessel type that is

perfectly correlated. The minimum and maximum values never overlap, a case which

does not apply to the real world. To avoid multicollinearity, we include the variable

log�sz only. Contrary to the estimated ship_design, the cargo size is extracted directly

from the emails. Therefore, we consider this variable to be more precise. As a numeric

variable, log transformation is applied to the cargo size to stabilize the mean and improve

interpretation abilities.

3.3.2 Season

To capture potential short-term effects, we include a seasonality variable. The month

of the first order email from the original data determines the assigned seasonal level

for each order. Each month is then aggregated to quarterly levels and classified as a

factor variable. The inclusion of a seasonal variable aims to capture potential short-term
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Table 3.4: Descriptive statistics table for cargo size, separated by cargo type

Cargo type Count % of total Mean Median Min Max SD

Grains 61447 21.79% 25046 25000 110 480000 21011
Steel products 44336 15.72% 15204 9800 105 480000 17232
Ferts 36938 13.1% 21130 20000 101 480000 20014
Other minerals 35472 12.58% 23837 20000 101 480000 23233
Coal 34834 12.35% 43084 45000 101 490000 27241
Other bulk 19754 7.01% 27489 25000 115 450000 22420
Non ferrous metals 18404 6.53% 23822 18000 105 480000 22937
Cement 15505 5.5% 27556 26000 110 450000 22766
Ferrous metals 15256 5.41% 34873 30000 105 450000 29680

seasonal effects, as suggested by Shipfix.

Seasonal cycles are a fact, depicted in for example the decline in order volumes for

grain in the months of July and August (Stopford, 2009)8. The distinct seasonality

patterns in certain commodity markets create incentives for investigating the potential

of transmission effects on the lead time. A transmission effect, in this context, is

present when commodity producers increase or decrease the average timing of their

order placements. The distinction from an increase or decrease in volume as a result

of temporary shifts in demand is irrelevant and should be clarified. Seasonality causes

temporary shifts in market supply and demand, making this valuable information for

shipowners and charterers in the short- and longer-term decision-making process. No

previous research has been done to determine if these shifts are reflected in the lead time.

This paper aims to answer if weak periods and temporary, seasonal shifts in demand

influence commodity owners in their timing of the initial order enquiry for voyage charters.

Kavussanos and Alizadeh (2001) elaborate on seasonality effects on freight rates in the

dry bulk sector. The study finds evidence of asymmetries in deterministic seasonality

across different market conditions. The reason is rooted in changes in demand elasticities

over the respective market conditions. With evidence of seasonality being present in

multiple aspects of the industry, we suggest that including a seasonal variable in this

8
The data sample also shows a significant reduction in order volume in the late summer months for a

specific year.
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analysis is reasonable.

Before applying a seasonal variable to the full model, we test seasonality dynamics in

lead time for aggregated quarters and months individually. The results reveal that both

models have low F-statistics and goodness of fits. Consequently, the seasonal dummy

variables applied in the models are stated in quarterly frequencies to avoid high standard

errors for the coefficient estimates. Choosing the aggregated quarterly level also reduces

model complexity.

3.3.3 Voyage Routes

As mentioned, this thesis deals with a data sample that predominantly consists of orders

for smaller cargo sizes. Smaller vessels have less concentrated routes as they can load

and discharge at almost any port. On the other hand, larger vessels like Capesize and

Panamax often travel fixed routes between a small number of ports, as discussed in

Alizadeh and Talley (2011). Their paper implements four routes that cover 86.8% of

the observed tip-charter fixtures9. However, selecting four representative routes for the

Shipfix data sample would provide much lower data coverage due to the highly scattered

routes for smaller vessels. The sample’s emphasis on smaller shipments is reflected in the

geographical distribution of transportation routes. This data sample’s four main routes in

decreasing order are intra-travel in South-Eastern Asia; South-East Asia to Northeast

Asia; Eastern Europe to Western Asia, and intra-travel in South America. In total, the

routes only account for about 12.4% of the full sample. When such a small share of

the total voyage travels from the sample is represented, it raises concerns about the

magnitude of information explained if the equivalent route selection process is applied to

our analysis. Hence, we suggest an alternative approach that incorporates every route in

the sample. A representative variable for travel distance of 256 routes in total is included

in the model, derived from the original data’s initial loading and discharge values.

The structure of loading and discharge in the original data is an essential factor for the

construction of the travel variable. Loading and discharge are both stated in countries
9
The four routes are: Trans-Atlantic Round Voyage; Continent to Far East; Trans-Pacific Round

Voyage; Far East to Continent.
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initially, meaning that data for specific ports are unavailable. The region aggregation

process suffers from this limitation, as it is typical for maritime spatial data to be grouped

by coasts or maritime regions. Grouping data in this manner is unfeasible because the

information is unavailable.

The Shipfix extraction algorithm faces some challenges when order emails contain

information about loading and discharge that deviate from the regular input it is

programmed to detect10. Such challenges emerge because the data for cargo requirements

applied in this thesis are known prior to the agreement of a charterparty, reducing the

degree of structure for this type of data compared to fixtures. The challenge is passed on

to the re-grouping process of aggregating to new regions of 16 levels. Orders that for

different reasons cannot be categorized into a region will return missing values. These are

essentially removed from the analysis.

The original sample contains 249 loading levels and 265 discharge levels in total.

Consequently, there are 65,985 shipping routes present in the data on a country level. To

include this number of routes in the model would result in high computational costs and

variance in estimated coefficients. Therefore, we propose an aggregation of the loading

and discharge values (countries and unspecified) based on existing region divisions present

in the industry11. The new levels for regions are presented in Table 3.5 and are identical

for the loading and discharge variables.

3.3.4 Infrastructure Score

A country’s infrastructure score is determined through a survey conducted by The

World Bank and the University of Turku. Logistic professionals12 are asked to rate eight

pre-selected countries based on trading experiences relative to several logistic dimensions.

The survey aims to capture numerical evidence on how easy or difficult it is to transport

10
When an order email is less specific than what the algorithm requires, the result is a variable with a

combination of country and larger region levels (some levels are for example Far East and Continent in

addition to country names).
11

Clarksons Shipping Intelligence Network: Dry Fixtures (Load and Discharge).
12

Respondents are involved in different logistic services; warehousing and distribution, customer-tailored

logistics solutions, bulk or break-bulk cargo transport, and container shipping.
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Table 3.5: Region division, variable names and associated countries

Region code Regions Countries

R1�A Northeast Asia China, Japan, South Korea, Taiwan, ...
R2�A India, Pakistan
R3�A Western Asia Turkey, Qatar, Oman, United Arab Emirates, Saudi

Arabia, Israel, Iraq, Cyprus, ...
R4�A South-East Asia Vietnam, Indonesia, Thailand, Malaysia, Singapore,

Philippines, Cambodia, ...
R5�A Other Asia Bangladesh, Iran, Sri Lanka, Kazakhstan, ...
R6�ANZ Australia, New Zealand
R7�E Western Europe France, Belgium, Germany, Netherlands, ...
R8�E Eastern Europe Ukraine, Russia, Poland, Bulgaria, Romania,

Moldova, ...
R9�E Southern Europe Italy, Spain, Greece, Portugal, Albania, Slovenia,

Croatia, Montenegro, Serbia, ...
R10�E Baltic & Northern

Europe
Lithuania, Latvia, Estonia, United Kingdom,
Scandinavia, Finland, Ireland, ...

R11�AM Northern America United States, Canada
R12�AM South America Brazil, Colombia, Peru, Venezuela, Uruguay,

Argentina, Chile, Ecuador, ...
R13�AM Central America &

Caribbean
Mexico, Guatemala, Panama, El Salvador, Cuba,
Dominican Republic, ...

R14�AF Other Africa South Africa, Madagascar, Kenya, Somalia,
Tanzania, Angola, Liberia, ...

R15�AF Northern Africa Tunisia, Morocco, Algeria, Egypt, Western Sahara,
...

R16 Other Non-specified countries (Arabian Gulf, Black Sea,
Mediterranean, ...)

See A1.1 for full overview of loading and discharge locations within each region.

goods in a country, resulting in the Logistic Performance Index scale from 1 to 5. A

country with a score of 1 is considered poor, while 5 indicates a high infrastructure

quality.

In concurrence with the survey, the World Bank and the University of Turku wrote

a report to explain the survey and its main findings. The report describes how the

Logistic Performance Index is analyzed through six different indicators (Arvis et al.,

2018): (1) the efficiency of customs and border management clearance, (2) the quality

of trade- and transport-related infrastructure, (3) the ease of arranging competitively

priced international shipments, (4) the competence and quality of logistics services, (5)

the ability to track and trace consignments and (6) the frequency in which shipments
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reach consignees within the scheduled or expected delivery time. In addition, the

report describes the risks with such surveys. For instance, they are subject to sampling

error in diverging opinions and variations in the number of received evaluations per

country. Furthermore, Arvis et al. (2018) also states that the survey applies for traded

products labeled as general merchandise. Thus, results should be interpreted carefully

for goods that require special handling for transportation, such as food or pharmaceuticals.

We include the score variable with expectations that infrastructure qualities will

vary across regions on a scale that affects the lead time in the short term. Hence,

implementing this variable will test whether commodity owners consider the loading

regions’ infrastructure quality when placing orders in the market.
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4 Methodology
This section proposes a three-step process for determining the relationship between the

chosen predictors and lead time. First, a regular multiple linear regression model is applied

to determine the overall relationship between predictors and the response by assessing

the F-statistic and goodness of fit. Commodity types divide the individual models. Then,

we introduce a lasso algorithm to improve model interpretability and account for the

high variance problem of regular linear models. Finally, we run a bootstrap resampling

algorithm on the lasso coefficients. Estimating standard errors and confidence intervals

through resampling is included to create a basis for interpretation.

4.1 Multiple Linear Regression

The purpose of a standard multiple linear model is to reveal any existing relationship

between lead time and the predictors. The null hypothesis assumes no significant nonzero

coefficients. For every disaggregated model, the null hypothesis is tested by computing

an F-statistic. The F-statistic expects to return a value close to 1 when there is no

relationship between the response and predictors. The size of how large the F-statistic

should be to reject the null hypothesis depends on the size of the sample and the number

of predictors. The F-statistic, presented in Equation 4.1, will adjust for the number of

predictors p in the model.

F =
(TSS �RSS)/p

RSS/(n� p� 1)
, (4.1)

where the total sum of squares TSS =
P

(yi � y)2 measure the total variance in the lead

time yi, and RSS =
Pn

i=1(yi � ŷi)2 measure the residual sum of squares. The latter

quantifies the variability that is left unexplained after performing the regression. In

addition to computing the F-statistic in Equation 4.1, the TSS and RSS are also utilized

in the computation of R2.

With the order-specific explanatory variables presented in Chapter 3, we formulate the
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following multiple linear regression model with lead time as the response:

ln�LTi = ↵0 + ↵1ln�szi + ↵2IFi +
SX

h=1

�hSEASi,h +
TX

k=1

�kTRAi,k + ✏i (4.2)

The natural logarithm of lead time ln�LTi is a linear function of a constant ↵0, the natural

logarithm of cargo size in metric tons ln�SZi, the infrastructure score of the loading

country IFi, the quarter of the year in which an order is placed SEASi,h and the travel

between two regions TRAi,k.

4.2 Lasso

A potential disadvantage of linear models with a high share of categorical data is when

there is a significant increase in the number of predictors (James et al., 2013). The

number of predictors interfere with the model’s validity when it is considered large

compared to the number of observations. Consequently, the model results may induce

additional interpretation challenges.

Implementing a lasso algorithm identifies a smaller subset of predictors which exhibit the

most powerful effect on the lead time. The variable selection introduces a penalty term to

the initial linear model, presented in Equation 4.3. The equation shrinks the estimated

coefficients of unimportant predictors to zero. We denote the lasso coefficients as �̂L
� ,

where one coefficient represent the estimated effect on the lead time of a given predictor,

for a sequence of values for �.

nX

i

(yi � �0 �
pX

j=1

�jxij)
2 + �

pX

j=1

|�j| (4.3)

The lasso is a shrinkage method that provides model coefficients with lower variance

than ordinary least squares (OLS) without sacrificing the low bias. Hence, the model

interpretation process is identical to a regular linear model interpretation. The shrinkage

parameter � adjusts for the flexibility of the model. The higher value of lambda, the

lower the flexibility of the lasso regression fit, resulting in lower variance but increased

bias. The OLS is the basis of the lower bound for bias, with � = 0.
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Contrary to ridge regression, where none of the coefficients are shrunk to precisely zero,

the lasso yields sparse models. Common for both shrinkage methods is the importance of

choosing an appropriate lambda value. We find the optimal regularization constant by

repeatedly predicting linear models for a sequence of lambda values. The prediction uses

10-fold cross-validation (CV). Based on specifications of a preferred length, the lambda

sequence is determined. For our model, the sequence length is set to 100 as it proves

adequate. A reduction of the length is unnecessary as the computational time is minimal.

The CV uses squared error for computing the loss. Hastie et al. (2013) propose a “one

standard error”-rule in a model selection process rather than selecting the model with the

lowest estimated MSE. The argument that one should consider the most parsimonious

model whose error is no more than one standard error above the minimum obtainable

MSE justifies this rule.

A new linear model is fitted to the full sample using the predicted optimal regularization

constant � from the 10-fold CV. The result of the lasso regression will return some nonzero

coefficients, while other coefficients will be shrunken to zero and thereby considered

non-explanatory for the lead time. In practice, using a lasso algorithm for variable

selection translates to classifying the excluded predictors as unimportant and the included

predictors as important.

4.3 Bootstrap

Studies have shown that the lasso often proves to have low precision in variable selection

(Ayers and Cordell, 2010; Bunea et al., 2011). Specifically, Ayers and Cordell (2010)

discuss the use of cross-validation to find the optimal penalization parameter as a method

that potentially can return a high number of false positives. Implementing a bootstrap

resampling will estimate standard errors and confidence intervals (CI) for the lasso

coefficients to account for this inaccuracy.

By drawing new samples from the original data and refitting the lasso model a significant

number of times, we can validate the initial lasso coefficients. When considering the



20 4.3 Bootstrap

risk of low precisions in lasso estimates, the bootstrap ensures more accurate result

interpretation by producing safety margins of confidence intervals. In this thesis, we

perform a nonparametric bootstrap where all new samples will have an equal number of

observations by enabling replacement13.

An advantage of the bootstrap algorithm is the opportunity to evaluate model uncertainties

from the lasso without generating additional samples. However, the method is

computationally expensive, resulting in a limitation of the bootstrap resampling in this

thesis to 1000 replications with replacement for each cargo type. Standard errors and

CI’s are computed using a nested cross-validation vector bootstrap approach, as proposed

by Efron and Tibshirani (1997). The process of determining the optimal lambda using a

10-fold CV and the “one standard error”-rule is thereby repeated for every resampling,

whereby every resample have a unique lambda sequence14. The confidence intervals reveal

that several nonzero coefficients from the initial lasso regression will not be sufficiently

stable to assume an explicitly positive or negative effect on the lead time. Stability in

this context refers to the consistency of the estimated coefficients for all repeated samples,

assuming that “false positives” will vary between a negative lower bound and positive

upper bound (or opposite) of a 95% confidence interval.

13
Replacement meaning that one observation can be included more than once in the same model.

14
The minimum and maximum lambda value in the sequence is determined by characteristics of the

observations in the sample. From the minimum and maximum values, the rest of the sequence is computed

to achieve a length of 100. Thus, every lambda sequence differ from each resampling.
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5 Results and Discussion
This section presents the relevant results obtained from the lasso and bootstrap models.

The first section will reveal statistics obtained from the initial linear regression model to

assess the goodness of fit. Following is a discussion of relevant model coefficients for each

explanatory variable. Each section provides a brief comparison of model coefficients for

the selected cargo types, providing insight into the explanatory power of variables across

models. Finally, we review the thesis’ limitations and present suggestions for further

research.

The initial linear model consists of 262 predictors. This includes all dummies for the

categorical variables, meaning that each predictor reflects either a numeric predictor or

one level in a categorical variable. By implementing a lasso shrinkage algorithm with

the optimal lambda as suggested in Section 4.2, we see a significant reduction in nonzero

coefficients for all models. Table 5.1 displays estimated coefficients from the regression

model with the optimal lambda and the estimated 95% confidence intervals. The table

will be discussed further in Section 5.2.

5.1 Linear Model Statistics

Models for all cargo types have a significant F-value at a 1% significance level, as seen in

Table 5.5. This value reveals the presence of explanatory powers in the chosen predictors

for all cargo types. Adjusted R2 suggests that the predictive power is the strongest in the

regression model for grains, steel products, and ferrous metals, in decreasing order. A

further assessment of the drivers behind the value of Adjusted R2 is the basis for extending

the standard regression to a lasso regression.
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Table 5.1: Linear model explanatory variables (including only top 10 largest coefficients
in absolute values for routes) from Lasso estimated coefficients and Bootstrap confidence
intervals

Steel products Grains Other minerals

coefs t0 lower95 upper95 coefs t0 lower95 upper95 coefs t0 lower95 upper95

(Intercept) 2.464 2.408 2.539 (Intercept) 1.475 1.383 1.574 (Intercept) 1.986 1.851 2.060

log_sz 0.002 -0.005 0.007 log_sz 0.110 0.102 0.119 log_sz 0.044 0.037 0.056

quarterQ2 -0.002 -0.012 0.015 quarterQ2 0.000 -0.005 0.007 quarterQ2 0.001 -0.016 0.010

quarterQ3 0.000 -0.005 0.007 quarterQ3 -0.004 -0.014 0.010 quarterQ3 0.000 -0.007 0.013

quarterQ4 0.000 -0.004 0.005 quarterQ4 0.000 -0.004 0.003 quarterQ4 0.000 -0.007 0.012

score 0.000 -0.007 0.010 score 0.005 -0.010 0.017 score 0.000 -0.009 0.016

R2-R2 -0.863 -0.996 -0.730 R10-R6 -1.438 -1.938 -0.963 R13-R9 0.697 0.541 0.803

R12-R14 0.681 0.490 0.826 R15-R6 -1.334 -3.230 -0.185 R13-R13 0.476 0.304 0.592

R1-R15 -0.661 -0.902 -0.404 R7-R10 -0.571 -0.643 -0.497 R9-R13 0.462 0.196 0.648

R7-R9 -0.660 -0.709 -0.624 R15-R13 -0.565 -1.031 -0.131 R1-R1 0.446 0.207 0.620

R15-R1 0.656 0.444 0.836 R1-R5 0.552 0.503 0.602 R1-R13 0.440 0.225 0.570

R3-R8 -0.615 -0.708 -0.530 R7-R8 -0.524 -0.753 -0.289 R1-R13 0.434 0.185 0.604

R9-R9 -0.614 -0.664 -0.579 R3-R2 -0.522 -0.760 -0.280 R6-R10 0.432 0.123 0.618

R3-R12 0.584 0.484 0.659 R1-R1 0.488 0.433 0.537 R1-R1 0.424 0.251 0.542

R7-R10 -0.570 -0.650 -0.497 R3-R10 -0.483 -0.710 -0.260 R15-R9 -0.422 -0.486 -0.335

R15-R13 0.559 0.196 0.883 R10-R8 -0.476 -0.743 -0.206 R10-R7 -0.406 -0.484 -0.305

Ferrous metals Fertilizers Other bulk

coefs t0 lower95 upper95 coefs t0 lower95 upper95 coefs t0 lower95 upper95

(Intercept) 2.221 2.081 2.397 (Intercept) 1.894 1.749 1.967 (Intercept) 1.677 1.505 1.800

log_sz 0.033 0.022 0.047 log_sz 0.042 0.035 0.054 log_sz 0.100 0.088 0.116

quarterQ2 -0.021 -0.048 0.008 quarterQ2 -0.009 -0.021 0.016 quarterQ2 0.000 -0.006 0.005

quarterQ3 0.000 -0.005 0.005 quarterQ3 0.000 -0.003 0.003 quarterQ3 0.000 -0.005 0.007

quarterQ4 0.000 -0.023 0.012 quarterQ4 -0.002 -0.012 0.021 quarterQ4 0.000 -0.014 0.009

score 0.007 -0.026 0.028 score 0.010 -0.002 0.028 score 0.000 -0.006 0.008

R2-R2 -0.914 -0.984 -0.848 R1-R6 0.599 0.369 0.735 R10-R10 -0.594 -0.689 -0.472

R2-R16 -0.602 -0.879 -0.277 R1-R1 0.536 0.423 0.594 R7-R8 -0.575 -0.892 -0.171

R6-R1 0.584 0.269 0.804 R1-R5 0.515 0.356 0.586 R3-R9 -0.569 -0.774 -0.324

R12-R4 0.565 0.379 0.665 R7-R7 -0.479 -0.595 -0.317 R15-R3 -0.521 -0.680 -0.323

R12-R5 0.538 0.322 0.676 R15-R3 -0.461 -0.548 -0.334 R10-R16 -0.494 -0.637 -0.319

R15-R9 -0.511 -0.692 -0.303 R15-R9 -0.450 -0.496 -0.370 R1-R6 0.482 0.352 0.582

R5-R1 -0.491 -0.788 -0.149 R7-R10 -0.444 -0.510 -0.342 R8-R3 -0.422 -0.544 -0.263

R1-R10 0.477 0.229 0.641 R1-R2 0.416 0.224 0.526 R10-R15 -0.384 -0.517 -0.219

R2-R1 -0.470 -0.531 -0.418 R14-R4 0.366 0.113 0.530 R1-R1 0.341 0.278 0.390

R12-R3 0.458 0.282 0.571 R15-R7 -0.348 -0.403 -0.257 R7-R9 -0.325 -0.398 -0.233

Non ferrous metals Coal Cement

coefs t0 lower95 upper95 coefs t0 lower95 upper95 coefs t0 lower95 upper95

(Intercept) 2.286 2.128 2.421 (Intercept) 2.049 1.798 2.088 (Intercept) 1.814 1.679 1.986

log_sz 0.028 0.017 0.043 log_sz 0.034 0.028 0.042 log_sz 0.064 0.047 0.075

quarterQ2 0.000 -0.005 0.004 quarterQ2 -0.007 -0.018 0.018 quarterQ2 0.000 -0.012 0.008

quarterQ3 0.000 -0.003 0.003 quarterQ3 0.000 -0.003 0.003 quarterQ3 0.000 -0.004 0.005

quarterQ4 0.000 -0.013 0.008 quarterQ4 0.000 -0.006 0.009 quarterQ4 0.000 -0.008 0.050

score 0.018 -0.007 0.040 score 0.049 0.041 0.115 score 0.000 -0.011 0.020

R10-R4 -1.293 -1.739 -0.773 R3-R9 -0.566 -0.751 -0.253 R3-R13 0.218 0.005 0.237

R7-R14 -0.724 -1.215 -0.191 R7-R10 -0.429 -0.638 -0.164 R4-R4 0.083 0.008 0.088

R3-R10 -0.577 -0.762 -0.352 R14-R14 0.395 0.305 0.457

R7-R10 -0.508 -0.679 -0.275 R6-R4 0.376 0.291 0.404

R2-R1 0.437 0.215 0.614 R12-R5 0.363 0.197 0.472

R6-R1 0.400 0.303 0.478 R14-R2 0.355 0.307 0.395

R9-R9 -0.392 -0.434 -0.329 R1-R3 0.351 0.172 0.433

R7-R7 -0.380 -0.582 -0.132 R6-R2 0.347 0.273 0.373

R9-R7 -0.371 -0.436 -0.280 R1-R4 -0.344 -0.408 -0.264

R15-R9 -0.371 -0.620 -0.024 R1-R2 0.329 0.231 0.367

Note: R1-R5 is Asia; R6 is Australia/New Zealand; R7-R10 is Europe; R11-R13 is America; R14-R15

is Africa; R16 is Other. See Table 3.5 for full description.

Table 5.5: F-statistics and Adjusted R2 for commodity groups

Commodity F-statistic Adjusted R2

Steel products 40.93** 0.1978
Grains 52.25** 0.2001
Other minerals 20.16** 0.1301
Ferrous metals 15.72** 0.2063
Fertilizers 15.92** 0.1086
Other bulk 15.82** 0.1592
Non ferrous metals 11.31** 0.1248
Coal 22.08** 0.1470
Cement 6.143** 0.0654
**

Significant at < 1% level.
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5.2 Model Results

5.2.1 Cargo Size

Estimated lasso coefficients for cargo size are significant for all commodities except for

steel orders. The significant relationships are exclusively positive, indicating that larger

cargo sizes result in higher lead time. Cargo size has the most prominent effect on grain

orders, where a 1% increase in size results in an 11.04% increase in estimated lead time.

The large impact on grain lead times compared to other commodities can be explained

by the fact that agricultural commodities require specific storage facilities at the origin

and destination locations (Stopford, 2009). For special cargo handling, limited storage

capacities in ports of loading and discharge can cause concerns about potential supply

shortages. Additionally, such transportation processes can require more comprehensive

planning because both locations must be compatible in terms of storage capacity for

special cargo at given point in time. Therefore, larger sizes of special cargo can expect to

amplify the risk of shortage and require a longer planning horizon. This creates incentives

for commodity owners to put orders to the market earlier than usual to account for

potential disruptions.

Cargo size has significant coefficient estimates varying from 2.84% to 9.96% for the seven

remaining commodities. These results are consistent with our expectations discussed

in Section 3.3.1, where we suggested that unusual or larger cargo orders can affect the

commodity owners’ behavior, resulting in earlier order placements to avoid potential

supply shortages. In addition, increasing cargo sizes require larger vessels. With heavier

cargo and a resulting deeper draught of the vessel, it will become less flexible in route

decisions (Kavussanos and Alizadeh, 2001). The costs of travelling in ballast increase with

the size of the vessel, as we assume that the estimated travel distance increase with the

vessel size. Charterers will preferably have a proportionally increasing planning horizon

with the increasing cost of travelling in ballast. Additional time to plan longer charters

can reduce the chances of travelling backhauls in ballast. Charterers will be hesitant to

accept such orders if the potential loss is sufficiently large, in which case commodity

owners desire to be early in the market to meet this requirement.
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5.2.2 Season

As suggested by Kavussanos and Alizadeh (2001), grain exporting countries suffer from

a storage facility shortage during harvest seasons. This leads to an increase in the

demand for freight services, which subsequently affects the spot freight rates positively.

In accordance with these findings, we expect that a storage facility shortage during

seasonal peaks can lead commodity owners to place orders in advance. Beside the risk of

increasing freight rates, producers of agricultural commodities fear shortage of available

freight and capacity in storage facilities that can result in delayed shipments. Such delays

can be expensive for raw materials and earlier order placements can reduce this risk.

However, our model proves that seasonal cycles are not reflected in the lead time for any

commodity. Commodity producers’ timing of order placement is not affected by seasonal

fluctuations in demand in the short run.

Voyage orders are usually placed for excess or unexpected cargo to supplement an existing

fleet of owned or time-chartered ships. During seasonal peaks, producers can resort to

voyage charters due to unexpected demand and thereby increase the volume of orders

in the market. This is evident for some commodities in the sample. Because the model

shows no indication of lead time variations as a result of the seasonal changes, lead time

is only coincidental in seasonal context rather than a response to the market shifts.

5.2.3 Infrastructure Score

In accordance with findings of increasing transportation costs for countries with poor

infrastructure (Limão and Venables, 2001), we expect poor infrastructure to result in

higher lead times. Sufficient infrastructure quality is important to avoid the risk of freight

delays. Prior to a planned sea transportation, cargo will normally undergo road or rail

transportation. Cargo located in regions with poor infrastructure might require a longer

planning horizon than regions with adequate infrastructure to avoid potential delays

due to unexpectedly long transport duration. Delays can result in additional costs for

commodity owners.
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The score variable is only significant for coal, which is estimated to 0.0495. This indicates

that any one-unit increase in the score results in a 5.0706%15 increase in the lead time.

This does not comply with our expectations of lower lead times for regions with better

infrastructure scores. Regional division can cause vague infrastructure scores because it is

aggregated over the belonging countries. When less diversity is included, minor differences

are not sufficiently strong to show significant impacts.

5.2.4 Travel Routes

For the remainder of this section, references to model coefficients are limited to the

coefficients shown in Table 5.1. All other coefficients for travel will be disregarded.

These coefficients are, for every commodity, the estimated coefficients for routes that 1)

are significantly positive or negative within 95% confidence intervals, and that 2) have

one of the ten largest effects on the lead time for a given commodity. With a total of

256 routes included in each model, we consider an interpretation of every significant

coefficient to be excessive.

Of the travel routes presented in Table 5.1, coal shows seven of the ten routes discharging

in the Asian regions. Three routes loads in America (R11 and R12) and two routes loads in

Australia and New Zealand (R6). These routes all have positive coefficients, indicating a

higher estimated lead time than the average order for coal. Similarly, the model for ferrous

metals shows six of the ten routes discharging in Asia. Half of these routes load in R12

(South America) and discharge in several regions within Asia, all of which with positive

estimated coefficients. The remaining three routes discharging in Asia are intra-Asian

routes. While our model proves the lead time to be longer for transpacific voyages going

from America to Asia, the research of Alizadeh and Talley (2011) implies shorter laycan

periods for transpacific routes of Capesize and Panamax vessels. These findings contradict

the assumption of positive correlation between lead time and laycan periods.

Additionally, coal has one route travelling intra-Asia (R1 to R4) and one travelling from

R3 (Western Asia) to R9 (Southern Europe) displayed in Table 5.1. These routes have

15
5.0706 = (exp(0.0495) -1)*100
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lower estimated lead times compared to the average. Generally, cargo of coal loading

in foreign regions before shipping to Asia have higher estimated lead times, while coal

orders loading in Asia has lower lead times. Thus, commodity owners planning to order a

charter to carry coal to Asia will put the order to the market earlier if they must load

overseas (specifically America or Australia), compared to if the cargo is loaded somewhere

else. All intra-Asian routes displayed in the ferrous metals section of Table 5.1 also have

consistently lower estimated lead times than average, contrary to the lead times for those

loading in R12, which are solely positive.

Brancaccio et al. (2020) presents a matching problem; the challenge of distributing supply

and demand to continuously match at every geographical location. The matching problem

can explain the mentioned differences in route lead times for coal and ferrous metals.

South America is the second largest exporter of ferrous metals and Asia is the largest

importing region in the sample, supporting this theory. Due to the large volume of orders

discharging in Asia, many vessels will be available for loading in these regions at any

point in time. The high availability of tonnage in Asia reduces the commodity producers’

fear of supply shortage for ferrous metal voyages. Similarly, decreasing coal demand in

America and Europe and continuously increasing demand for coal in Asia aligns with the

theory of a matching problem (Clarksons Research (2021), See Appendix A2.1). In terms

of order volume, Eastern Europe, Australia and New Zealand, and Northern America are

the second to fourth largest coal exporters in the sample. Subsequently, the four largest

importers of coal in the sample are exclusively Asian regions. Such differences in import

and export regions emphasizes the imbalance in supply and demand. The results are

equivalent to those of ferrous metals; commodity owners appear to be less concerned

about limited supply when placing orders for loading in Asia compared to Australia or

America.

According to Köhn and Thanopoulou (2011), the number of days forward to delivery

correlate positively with longer time charter periods.16 The article reveals how longer

commitments require more planning. We cannot directly compare the findings with our

research as the time windows are not identical. However, similarities in the time window
16

Number of days forward is the time between a fixture date and time of delivery.
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for lead time and the days forward to delivery suggest that a comparison is reasonable.

For instance, voyages travelling between R11 (Northern America) and Asian ports always

have a higher lead time, regardless of commodity. Transpacific voyages are expected to

have longer durations than the average. However, distance effects are only speculative in

this analysis, as the real distance dynamics lack precision when ports are aggregated on a

regional level. Nevertheless, clear patterns indicate that an assessment of distance effects

should be included.

On the other hand, routes travelling to R15 (North Africa) after loading in R11 have

a significantly lower lead time than average for steel products. The route R11 to R15

has a coefficient of -0.6606, indicating an estimated lead time below average. The route

going the opposite direction, R15 to R11, has a positive coefficient of 0.6565 for the same

commodity. These routes have the same average distance, meaning that voyages between

these regions will have the same average commitment periods for a voyage charter. The

results contradict the aforementioned comparison between the days to delivery in Köhn

and Thanopoulou (2011) and the lead time. Two important elements should be mentioned,

however. Firstly, there is no theoretical evidence of a positive correlation between lead

time and laycan periods or time to delivery. Second, a longer commitment in the context

of time charter fixtures is distinctly different from a longer commitment in voyage

charters. The latter is equivalent to travelling distance. These limitations support the

theory of other explanatory factors apart from distance affecting the lead time fluctuations.

Table 5.1 shows a clear pattern in lead times for intra-European travels. Voyages within

Europe always have a lower estimated lead time than average for any commodity. The

top ten trade routes for non-ferrous metals contain the most with four intra-European

routes, indicating that four of the ten largest coefficient estimates represent this type

of voyage. This is evident despite R1 (Northeastern Asia) being the undoubtedly

largest importer of non-ferrous metal in frequency, with 5746 observations in the

sample. R9 (Southern Europe) is the second largest discharge region with 1668

observations. The order frequency of Europe is not particularly prominent on the

loading side of non-ferrous metal trade either. Southern Europe is the fifth largest
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exporter of non-ferrous metals with 1501 observations, compared to South America

with the highest number of orders with 4218 observations in the sample. In addition

to non-ferrous metals, the segments of steel products, grain and other bulk are

the remaining models in Table 5.1 that also display at least three intra-European

routes. The large negative impact on lead time by the intra-Europe routes can be

explained by the high share of sea transportation in Europe. Coastal and short-distance

shipping account for 40% of intra-European trade today (Suárez-alemán, 2016). The

concept of short sea shipping has been on the European Commission’s agenda for

two decades, with the aim of reducing the environmental damages caused by road

transportation. Persistent work on short sea shipping within Europe improves the

internal trade flow and predictability of the trade exchanges in Europe. This can

explain the lower lead time for such a large number of intra-Europe routes for voyage orders.

R6 (Australia and New Zealand) will, on average, be the region located the furthest away

from the other regions, meaning voyages ordered to load or discharge in R6 will generally

travel a longer distance. With longer voyages, we expect higher lead times due to the

risk of travelling long distances in ballast. This type of risk accounts for other underlying

factors than the distance itself and results in higher expected transportation costs for

the charterer if they fail to find new cargo to load for the backhaul route. Commodity

owners should want to put orders to the market earlier to reduce the risk for the charterer.

In return, a longer planning horizon for the charterer reduces the possibilities for loss

and should be reflected in better terms for the commodity owners. Another argument

supporting the expectations for a positive correlation between lead time and distance

is the risk of delay. When a voyage increases in duration, the time window of which

disruptions can appear will increase proportionally. The risk of delay increases the concern

for extra costs for the charterer. Therefore, we assume that charterers prefer to receive

additional time to evaluate this risk.

With expectations of longer distances having higher estimated lead times, routes loading

or discharging in R6 should solely have positive coefficient estimates. However, Table

5.1 shows inconsistent signs of the coefficients. For instance, grain orders travelling from

R15 (northern Africa) and R10 (Baltic/northern Europe) to R6 (Australia/New Zealand)
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has estimated coefficients of -1.3338 and -1.4379, respectively. On the other hand, orders

placed for the opposite direction of R6-R10 in the model for other minerals have a positive

estimated coefficient of 0.4318. Several factors can cause the inconsistency in correlations

between distance and lead time. As mentioned, voyage charters are a last-minute resort

for commodity owners, meaning that placements of a voyage order will be urgent in

many cases. The sudden and unexpected need for additional charter causes commodity

owners to search in the voyage charter market. In such situations, lead time is likely to

be arbitrary. By looking at the routes R15-R6 and R10-R6, the confidence intervals are

large, supporting the argument of randomness and high variations in the lead time.

5.3 Limitations and Further Research

The limitation of this thesis concerns properties of the data. Firstly, limited access to

private market transactions in the sample limits the coverage of larger vessels. As orders

for larger cargo often trade within private agreements, the orders omitted from the data

sample are not random. Consequently, this analysis only covers a small segment of the

dynamics within larger vessels. Concerns about the sample distribution compared to

the total market segment should be considered. Alternatively, the interpretation of

this thesis can be restricted to markets for smaller vessels. A sample that deviate from

the population can potentially cause misleading model results. Iron ore and coal are

examples of commodities that usually are carried by larger vessels. The models for these

commodities should therefore be interpreted in the light of this limitation if the data

deficiency is not random.

Another limitation of this thesis is the large difference in observation frequencies between

commodities. This difference is also reflected in the number of nonzero coefficients in

our models. For instance, grain has 61447 observations in our data sample, with a

corresponding 70 significant nonzero coefficients in the model. On the other hand, cement

has only 15505 observations with only 4 significant nonzero coefficients. Similarly, the

shipping market in general will not have an even distribution of voyage orders. Some

commodities are transported more frequently than others. This is visible when comparing

commodities carried by Capesize vessels to those carried by smaller vessels, where voyages
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for smaller shipments are more recurrent. Uneven distribution in the sample is only a

concern if deviating from the population.

Further work with lead time analysis can explore the new technology of AIS (Automatic

identification system) to collect market data in real time. Extracting additional information

on trade flows can be accessed through this technology, thereby improving the problem of

low market coverage of private transactions. A wider range of market data provides the

basis for increased accuracy of market indices and forecasts by reducing the risks of an

unrepresentative sample. Further research can also investigate the relationship between

freight rates and lead time of cargo orders in the form of forward booking curves. Using

lead time and other order data to forecast freight rates can improve investment decisions

and strategies of market participants.
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6 Conclusion
This thesis investigates the effect of order-specific determinants on the lead time

based on a data sample for voyage orders of dry bulk cargo. The goal of this paper

is to provide a new perspective to existing research on voyage and time charter

fixtures by analysing orders immediately when they arrive to the market. The results

indicate that voyage order lead times can be explained by micro-level factors such

as cargo size and travel routes, thereby enabling insight on market behaviour ahead of time.

We initiate a linear regression model to find relationships that explain the behaviour of

lead time fluctuations, including a lasso penalty term to extract the main predictors

of an initial model of 262 predictors. The adopted shrinkage parameter of the lasso is

derived from a 10-fold cross-validation process to minimize mean squared error. Finally,

confidence intervals for all coefficient estimates are obtained from a bootstrap resampling

method to validate the lasso results. Lasso coefficients that are exclusively positive or

negative within a 95% window are considered significant.

The analysis considers the four explanatory variables of cargo size, quarter of the year,

travel route and infrastructure score. Commodities are separated into individual models

to capture cargo-related diversity. Final results show that cargo size is positively related

to the lead time for all commodities except for steel products, where it has no explanatory

power. The seasonal component in dry bulk shipping has no significant transmission

effect on the lead time for any commodity.

The variable for travel routes returns a number of significant coefficients, suggesting

that some travel routes do affect voyage order lead times. Firstly, the lead time is

influenced by different routes for different commodities. This confirms the presumption

that commodities should be considered separately to capture diversity. While some routes

are significantly affecting the lead time of one commodity, it might not have the same

effect on other groups of cargo. However, there are also similarities detected between

commodities. For instance, all transpacific routes travelling between America and either
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Asia or Australia/New Zealand that have a significant effect on lead time is always positive,

indicating a higher lead time for orders travelling transpacific routes than the average

regardless of commodity. On the other hand, significant coefficients for voyage routes

travelling intra-Europe always return a lower estimated lead time. Further, the model

results show no evidence of a consistent pattern in lead time fluctuations relative to travel

distance. This indicates that the significance in travel route coefficients contain other

underlying factors aside from the distance affecting lead time.

With the relevant order attributes, we are able to investigate sparse route dynamics of

minor bulk lead times in high-frequency voyage order data. The process of coefficient

shrinkage and resampling through lasso and bootstrap algorithms enables our model to

consider and interpret highly diverse market data.
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Appendix

A1 Full Overview of Region Divison

Table A1.1: Overview of all initial loading/discharge locations categorized into new
regions.

Regions Initial loading/discharge location

Northeast Asia China, South Korea, Taiwan, Japan, North Korea, Singapore-Japan.

India/Pakistan India, Pakistan.

Western Asia Kuwait, Turkey, Bahrain, Qatar, Oman, United Arab Emirates,
Saudi Arabia, Israel, Jordan, Syria, Yemen, Georgia, Iraq, Cyprus,
Lebanon, Azerbaijan.

South-East Asia Vietnam, Indonesia, Thailand, NA, Malaysia, Singapore, Philippines,
Brunei, South East Asia, Myanmar, Cambodia, Timor-Leste.

Other Asia Turkmenistan, Kazakhstan, Bangladesh, Iran, Pakistan, Sri Lanka,
Maldives.

Australia/New Zealand Australia, New Zealand.

Western Europe France, Belgium, Continent, Germany, Netherlands, Amsterdam-
Rotterdam-Antwerp-Ghent, North Continent.

Eastern Europe Ukraine, Russia, Poland, Bulgaria, Romania, Moldova.

Southern Europe Italy, Spain, Greece, Portugal, Albania, Slovenia, Croatia,
Montenegro, Gibraltar, Malta, Serbia.

Baltic & Northern
Europe

Lithuania, Latvia, Estonia, Baltic, Lower Baltic, United Kingdom,
Norway, Denmark, Sweden, Finland, Faroe Islands, Ireland, Iceland.

Northern America United States, Canada, Greenland

South America Brazil, Colombia, Peru, Venezuela, Guyana, Uruguay, Argentina,
Chile, Ecuador, Suriname, Paraguay, French Guiana.

Central America &
Caribbean

Mexico, Guatemala, Panama, Costa Rica, Honduras, Nicaragua, El
Salvador, Belize, Puerto Rico, Bahamas, Jamaica, Cuba, Dominican
Republic, Guadeloupe, Cayman Islands, Haiti, Curaçao, Barbados,
Dominica, Martinique.

Other Africa Mozambique, Djibouti, Madagascar, Kenya, Somalia, Eritrea,
Tanzania, East Africa, Mayotte, Réunion, Mauritius, Angola,
Cameroon, Gabon, Equatorial Guinea, Senegal, Nigeria, Guinea,
Liberia, Sierra Leone, Togo, West Africa, Ivory Coast, Mauritania,
Guinea-Bissau, Gambia, Ghana, Benin, South Africa, Namibia.

Northern Africa Tunisia, Morocco, Algeria, Egypt, Western Sahara, Libya, Sudan.

Other Non-specified countries (Red Sea, Black Sea, East Mediterranean,
Arabian Gulf, North Pacific, Melanesia, West Mediterranean,
Mediterranean, Micronesia, Polynesia)
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Figure A2.1: Annual seaborne coal imports: Asia, EU and US (2000-2020). Data
obtained from Clarkson Shipping Intelligence Network.


