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Summary

This dissertation consists of three separate papers about the risk-return trade-off

in asset markets.

The first paper, co-authored with Mikhail Chernov and Lars Lochstoer, de-

velops a new test for asset pricing models in a multi-horizon setting. The main

idea behind the test is that a model should price payoffs correctly at all hori-

zons. We show that the problem of testing whether pricing errors are zero at

all horizons can be re-written as a single-horizon problem with appropriately

chosen instruments. Thus, our approach effectively generates “new” test assets

that are endogenous to the model. We also show formally that our approach

can in principle detect most types of conditional misspecification.

The paper carries out an empirical investigation where we apply our test

to a set of prominent factor models using the minimal requirement that the

model prices its own factors at every horizon. Interestingly, we reject most of

the factor models under consideration, indicating that the test has good power

properties. Furthermore, the pricing errors on multi-period returns are often

large, with annualized pricing errors frequently being similar in magnitude to

the average premiums on the factors themselves.

The second paper investigates the implications of a counter-cyclical policy,

e.g. monetary or fiscal policy, on the risk-return relationship on a broad stock

market index. In particular, I show the presence of such a policy can explain

the weak relationship between the volatility and expected returns seen in the

literature. The intuition is straightforward. If the policy is expansive in bad

states of the economy, it acts as a partial insurance to investors. The value of

the insurance increases with risk. At the same time, the insurance is a “negative

beta” asset and consequently earns a negative risk premium. The negative effect

of the insurance on market risk premium therefore grows when risk increases.
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In the time-series this leads to a weakened relationship between conditional

volatility and risk premia.

When investors expect the policy to be in place for the foreseeable future,

the policy can be viewed as a portfolio of implicit claims where each claim

corresponds to the policy in place at a given future date. As expected, the

claims to policy in the near future earn negative risk premia. However, the

claims to policy further in the future earn large, positive risk premia. The

reason is that the size of stimulus must in the long run be positively related to

the size of the overall economy.

The third paper proposes a distance-metric for the multi-horizon setting

analogous to the first metric proposed in Hansen and Jagannathan (1997) for the

single-horizon setting. The distance metric can be used to answer the question

“Which model is closer to explaining a set of test asset returns in a multi-horizon

setting?”.

In contrast to the J-statistic derived in Chernov, Lochstoer and Lundeby

(2021), the distance metric does not reward variability of the candidate pricing

kernel. Thus, if model A has larger pricing errors than model B, the distance

metric will be larger for model A. In contrast, the J-statistic for model A might

be lower than that of model B if model B is sufficiently variable.

In a simple example economy, I show that the multi-horizon distance metric

can be large even in the case that the single-horizon HJ-distance is small or

zero. Thus, a model that seemingly does a good job of explaining the risk-

return relationship at a given frequency, e.g. monthly, might do a poor job of

explaining the risk-return relationship at different frequencies.
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1 Introduction

In this paper we propose a new asset-pricing test and apply it to a set of leading 

linear factor models. Do we need another test, you might ask. Current tests take 

the set of test assets as given, although it is well-understood that this decision on 

the part of the researcher is critical for test performance. Over time novel expected 

return patterns observed in the historical data prompt modifications in the existing 

models to account for these patterns. As this process unfolds, viewing the test assets 

as “outside” the model, as the tests assume, becomes tenuous.1

We argue that using multi-horizon returns (MHR) offers a useful way to address 

these issues. Specifically, we show formally that MHR effectively generate a set of 

test assets that are endogenous to the model at hand and that allow for testing 

most, if not all, aspects of conditional model misspecification. No matter how much 

conditioning information a model already accounts for in the construction of the 

model’s factors, the MHR-based test generates new test assets that leverage this 

information in an endogenous fashion.

Our test is derived using the standard no-arbitrage condition and by formulating 

models in terms of their implications for the stochastic discount factor (SDF). No-

arbitrage implies that the h-period SDF equals the product of the h corresponding 

single-period SDFs. It is therefore straightforward to derive a model’s implication for

1A classic test evaluates whether test assets have zero “alpha” (Gibbons, Ross, and Shanken, 
1989). Lo and MacKinlay (1990) discuss the effects of data snooping. Lewellen, Nagel, and Shanken 
(2010) and Daniel and Titman (2012) cover the effects of test asset factor structure.

8



returns at any horizon. Thus, with MHR we are testing overidentifying restrictions 

of the model.

In our empirical contribution we show that misspecification of the implicit temporal 

dynamics in state-of-the-art models of the SDF, as uncovered by MHR, indeed are 

quantitatively large. Specifically, we consider eight linear factor models: the un-

conditional CAPM, a two-factor model related to Black, Jensen, and Scholes (1972)

(the market factor plus a betting-against-beta factor), the Carhart (1997) four-factor 

model (the three Fama and French (1993) factors plus momentum), the Fama and 

French (2015) five-factor model, the Daniel, Mota, Rottke, and Santos (2020) five-

factor model, the Stambaugh and Yu (2017) four-factor model, the Hou, Xue, and 

Zhang (2015) four-factor model, and the Haddad, Kozak, and Santosh (2020) six-

factor model. These models which are either workhorse or recent cutting-edge models 

for empirical risk-return modeling. We test the minimal requirement that a model 

prices its own factors at multiple return horizons.

As an example of the test results, consider the market factor in the Fama-French 

model. The h-period gross return to this factor is simply the product of the one-

period gross returns from t to t + h. The model trivially prices the one-period 

return to this factor, but quickly generates pricing errors when we consider the 

model’s implications for longer-period returns. At the four-year horizon, the model’s 

annualized pricing error for the market factor is 7% – about the same as the market 

risk premium itself.

This example is not unique. The average annualized pricing error across all factors
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and models is 4.5% when tested jointly on horizons of 1, 3, 6, 12, 24, and 48 months. 

This is about the same magnitude as the average annualized factor risk premiums 

the models where designed to explain in the first place.

Five out of these eight models are rejected at the 5% level. The Black, Jensen, and 

Scholes (1972) and the Carhart (1997) models are rejected at the 10% level. The 

CAPM is not rejected. All the models are rejected at the 5%-level in an alternative 

test, where we use MHR to a common set of test assets (the five Fama and French 

(2015) factors) across all the eight models.

The baseline MHR-test rejections imply that the models fail to price their own factors 

conditionally, indicating that the factors need to be timed in order to span the un-

conditionally mean-variance efficient (UMVE) portfolio. As a next step, we develop 

further intuition by illustrating some statistical and economic properties of factors 

vis-a-vis the implications of the null hypothesis. Under the null, the factors (excess 

returns on traded portfolios) span the unconditionally mean-variance efficient port-

folio. This implies that the conditional expectation of these factors is proportional 

to their conditional second moment. We use this observation to construct artificial 

asset returns corresponding to the null.

Armed with these artificial returns, we compare their cumulative autocorrelations 

and Sharpe ratios with those of actual factors. For the market portfolio, the auto-

correlation in the data exhibits little persistence as is the case under the null. Many 

of the other models, however, have much stronger patterns. For instance, in the 

Daniel, Mota, Rottke, and Santos (2020) model the autocorrelation in the data is
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much higher than that under the null and the two are statistically significant different 

from each other. The Hou, Xue, and Zhang (2015) model exhibits similarly strong 

but the opposite pattern: the autocorrelation in the data is much lower than that 

under the null. Thus, the null hypothesis implicitly misspecifies dynamic properties 

of factors.

Sharpe ratios convey a similar message. In misspecified models the Sharpe ratios 

under the null and in the data tend to diverge with horizon. If the autocorrelation is 

higher in the data than under the null, the Sharpe ratios are lower in the data, and 

vice versa. The differences are economically large. For instance, in the Hou, Xue, 

and Zhang (2015) model the annualized Sharpe ratios in the data and in the model 

at the 48-month horizon are 0.75 and 0.48, respectively.

As a final step in our empirical analysis, we evaluate state-of-the-art approaches of 

factor timing with the ultimate objective to model the UMVE portfolio. Specifically, 

we consider out-of-sample volatility timing of Moreira and Muir (2017), expected 

return timing using book-to-market ratio of Haddad, Kozak, and Santosh (2020), and 

timing on a non-linear function of many stock characteristics of Kozak, Nagel, and 

Santosh (2020). We apply volatility timing to the CAPM, the Carhart (1997), and 

the Fama and French (2015) models. Expected return timing is applied to the static 

version of Haddad, Kozak, and Santosh (2020) model.2 Lastly, the characteristic-

based timing is applied to the UMVE portfolio implied by that approach. We reject 

all the models using our test, and the MHR pricing errors are of a similar magnitude

2 Kozak, Nagel, and Santosh (2018) is the antecedent to static Haddad, Kozak, and Santosh 
(2020). Throughout, we refer to the model as Haddad, Kozak, and Santosh (2020), or HKS, for 
convenience and because we use the same dataset.
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or larger than in the versions of the models without factor timing.

Our rejection of the most advanced models in the literature suggests the extreme 

challenge of correctly estimating the conditional factor dynamics. In fact, as the 

number of factors in a model increases, so does the complexity of their conditional 

dynamics. Simultaneously, those same rejections indicate that our test has good 

statistical power properties. Taken together our evidence poses a challenge for future 

research in terms of understanding and estimation of the conditional risk-return 

trade-off. The MHR-based test that we propose should serve as useful guidance for 

this endeavor.

Related literature. There are many papers that test conditional versions of factor 

models. For instance, Boguth, Carlson, Fisher, and Simutin (2011), Ferson and 

Harvey (1999), Farnsworth, Ferson, Jackson, and Todd (2002), Ghysels (1998), Ja-

gannathan and Wang (1996), Kelly, Pruitt, and Su (2019), Lettau and Ludvigson 

(2001), Lewellen and Nagel (2006), and Moreira and Muir (2017). Our contribu-

tion relative to this literature is to show that MHR in asset pricing tests effectively 

serve as conditioning variables endogenous to the model and that, empirically, multi-

horizon factor returns indeed are informative in terms of uncovering novel conditional 

dynamics of prominent factor models. In contemporaneous and independent work 

Haddad, Kozak, and Santosh (2020) and Linnainmaa and Ehsani (2019) use different 

methods to study factor dynamics with a focus on single-horizon returns.

Our paper makes a connection with a literature that seeks to characterize multi-

horizon properties of “zero-coupon” assets, such as bonds, dividends strips, vari-
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ance swaps, and currencies. Such work includes Backus, Boyarchenko, and Chernov 

(2018), Belo, Collin-Dufresne, and Goldstein (2015), van Binsbergen, Brandt, and 

Koijen (2012), Dahlquist and Hasseltoft (2013), Dew-Becker, Giglio, Le, and Ro-

driguez (2015), Hansen, Heaton, and Li (2008), Koijen, Lustig, and Nieuwerburgh 

(2017), Lustig, Stathopoulos, and Verdelhan (2013), and Zviadadze (2017).

A related strand of the literature considers multiple frequencies of observations when 

testing models (e.g., Brennan and Zhang, 2018, Daniel and Marshall, 1997, Jagan-

nathan and Wang, 2007, Kamara, Korajczyk, Lou, and Sadka, 2016, Parker and 

Julliard, 2005), though none of these consider the implications of a joint test across 

horizons.

Baba Yara, Boons, and Tamoni (2020) consider the predictive power of character-

istics lagged at different horizons. Favero, Melone, and Tamoni (2020) analyze a 

factor model that also incorporates long-run relationships through cointegration. 

Bessembinder, Cooper, and Zhang (2020) model and document changes in measures 

of mutual fund performance at long horizons.

Notation. We use E for expectations and V for variances (a covariance matrix if 

applied to a vector). A t-subscript on these denotes an expectation or variance con-

ditional on information available at time t, whereas no subscript denotes an uncon-

ditional expectation or variance. We use double subscripts for time-series variables, 

like returns, to explicitly denote the relevant horizon. Thus, a gross return on an 

investment from time t to time t + h is denoted Rt,t+h.
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2 Linear factor models and multi-horizon returns

This section has three main objectives. First, we offer a unified view of model con-

struction in cross-sectional asset pricing. Second, we highlight difficulties in testing

and evaluating progress in improving such models. Third, we introduce a testing ap-

proach that is essentially a dual to the dominant testing paradigm in the literature.

This new approach is attractive because it allows sidestepping many issues that we

describe.

2.1 Factor model construction

A long-standing paradigm in asset pricing is that of the construction of the mean-

variance frontier (MVF). Applications include linear beta-pricing models of the cross-

section of expected returns, as well as a more general understanding of the properties

of the minimum-variance SDF (see, e.g., Cochrane, 2004, Hansen and Richard, 1987).

Here, we review key concepts to set the stage and introduce notation for our novel

test.

Let Rei
t,t+1 represent asset i’s one-period excess return. Stack excess returns on all

assets into an It×1 vector Re
t,t+1. The unconditional MVE portfolio (UMVE) is then

RU
t,t+1 = k(wUt )>Re

t,t+1,

wUt = (1 + θt)
−1 · Vt

(
Re
t,t+1

)−1
Et
(
Re
t,t+1

)
, (1)
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where θt is the maximal squared conditional SR:

θt = Et
(
Re
t,t+1

)>
Vt
(
Re
t,t+1

)−1
Et
(
Re
t,t+1

)
,

and k is a constant governing the leverage of the portfolio. Setting k = (1 −

E((wUt )>Re
t,t+1))

−1, the SDF

Mt,t+1 = 1− (RU
t,t+1 − E(RU

t,t+1)), (2)

prices all excess returns both conditionally and unconditionally: Et(Mt,t+1R
e
t,t+1) = 

E(Mt,t+1R
e
t,t+1) = 0. See Appendix A.1 for a derivation of these relations. Ferson and 

Siegel (2001) offer an alternative derivation by computing UMVE weights directly.

Finding the UMVE portfolio weights in Equation (1) faces three major hurdles: 

handling all assets (stocks) is an intractable problem for a variety of reasons, the full 

information set implicit in the subscript t is not known, and computation of correct 

conditional mean and variance of returns is not possible without knowing their true 

distribution at each point in time t. In response to these challenges, the literature 

evaluates portfolios of stocks (Black, Jensen, and Scholes, 1972) and considers various 

conditioning variables as explicit proxies for the information set, such as the cross-

section of market-to-book ratios (Fama and French, 1993) or the aggregate dividend-

price ratio (Fama and French, 1988).
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All of these approaches translate to the following form of the UMVE weights:

k(wUt )> = b>t Ct,

where Ct is a K ×Nt matrix of stock-level characteristics, and bt is a K × 1 timing

vector. The characteristics define a set of K factors,

Ft,t+1 ≡ CtR
e
t,t+1,

which, if the model is true, conditionally span the UMVE portfolio: RU
t,t+1 = b>t Ft,t+1.

The K×1 factor timing vector, bt, optimally combines these factors over time to get

to the UMVE portfolio. If b is constant, the factors defined by the characteristics Ct

unconditionally span the UMVE portfolio.

Factor timing, as studied in the literature, can be generically represented as

bt = D0 +D1zt, (3)

where D0 and D1 are a K × 1 vector and a K ×L matrix of parameters, respectively, 

while zt is a L × 1 vector with observable conditioning variables. As one example, if 

the market dividend-price ratio (dpt) is used as a conditioning variable for each factor, 

zt = dpt, while D1 is a K × 1 vector(e.g., Ferson and Harvey, 1999, Jagannathan and 

Wang, 1996, and Lettau and Ludvigson, 2001). As another example, conditioning 

variables may be factor-specific as well. For instance, Moreira and Muir (2017) 

advocate using the inverse conditional variance as the timing variable for each factor.
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In this case, zt is a K × 1 vector with factor k’s inverse conditional variance in row

k, while D1 is a diagonal K × K matrix. Similarly, Haddad, Kozak, and Santosh

(2020) use factor book-to-market ratios.

Given the factor weights, bt, the SDF can now be written as:

Mt+1 = 1−
(
b>t Ft,t+1 − E(b>t Ft,t+1)

)
. (4)

Substituting in for bt using Equation (3) leads to an SDF with constant loadings

on the original factors combined with additional factors that are interactions of the

original factors and the variables in zt.

Theoretically, we know what drives the time-variation in bt. From Equation (1) for

the UMVE portfolio weights, using the factors as the set of base assets, we have:

bt ∝
Vt (Ft,t+1)

−1Et (Ft,t+1)

1 + θFt
, (5)

where θtF is the maximal squared conditional Sharpe ratio possible from investing in 

the factors. If the frequency of the data is high, 1 + θtF is close to 1. Thus, a model 

where bt is constant over time implicitly assumes something about the dynamics of 

Ft,t+1 in the form of a specific relation between their conditional mean and variance. 

In fact, an alternative form of this equation is that the conditional factor means must 

be proportional to the conditional second moment of the factors. See Appendix A.1. 

If this is not true, the factor model will exhibit conditional mispricing.

In summary, a linear factor model consists of several important ingredients: the
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initial set of assets, the set of cross-sectional conditioning variables Ct that generates

factors that conditionally span the UMVE portfolio, and the time-series conditioning

variables zt that optimally weight these factors over time.

2.2 Testing linear factor models

Consider a version of the SDF in Equation (4) where bt = b is constant, which implies

that the factors span the UMVE portfolio

Mt,t+1 = 1− b>(Ft,t+1 − E(Ft,t+1)). (6)

Researchers focus on the implication from this SDF that any asset’s risk premium is

linear in the factor risk premiums. The model is therefore commonly tested via the

regression

ΩtR
e
t,t+1 = α + βFt,t+1 + εt+1, (7)

where Ωt is a L × It matrix of time t portfolio weights, highlighting that test assets 

typically are trading strategies in the underlying set of base assets. Further, α is a 

L × 1 vector, β is an L ×K matrix, and εt+1 is an error term with covariance matrix 

V (εt+1). If the SDF in Equation (6) is correctly specified, α = 0 (see Gibbons, Ross, 

and Shanken (1989) for the associated test statistic).

The testing challenge is to find a set of test portfolios that are sufficiently informative 

about a given model. The ideal test asset is the UMVE portfolio, which is unattain-
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able (e.g., Barillas and Shanken, 2017). Thus, in practice, researchers instead search 

for test portfolios that have two properties: (i) large spread in average returns and 

(ii) returns that are not spanned by the model factors (e.g., Daniel and Titman, 

2012, Lewellen, Nagel, and Shanken, 2010).

Importantly, if a model is rejected in this test, we know how to modify the model so 

that it prices the test assets in-sample. As explained in MacKinlay (1995), we need 

to add a factor with portfolio weights proportional to V −1(εt+1) · α from regression 

(7). That is, we tend to use information from the construction of the test assets for 

the construction of new factors. This insight informs the search for additional char-

acteristics and timing variables, which refine the conditioning information implicit in 

zt and Ct. A logical conclusion of this process is the explicit data-mining approach of 

Kozak, Nagel, and Santosh (2020), which considers all functions of all characteristics 

used in prior research in the model test and construction.

Thus, “the model” is in practice the union of the factors and the test assets. A 

question that arises is how to test such a model, where there is a feedback from the 

in-sample performance of test assets to factor construction (see Lo and MacKinlay 

(1990) for an early discussion of these issues). In the next section, we show that 

MHR provide a way to test this broader notion of a model that, unlike existing tests, 

does not rely on specifying further conditioning information beyond the Ct and zt 

already used in the model construction.
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2.3 The role of multiple horizons

In this paper we propose using MHR in model tests by making use of the models’

no-arbitrage implications for returns across different horizons. It turns out there

is a tight connection between correct conditional pricing and unconditional pricing

across multiple horizons. In order to describe the connection, we have to extend

factor models to multiple horizons.

As is known from extant literature, see e.g., Grossman, Melino, and Shiller (1987),

Levhari and Levy (1977), and Longstaff (1989), a factor model does not apply across

all horizons. To see this, consider the two-period SDF implied by Equation (6):

Mt,t+2 = Mt,t+1Mt+1,t+2 = (a− b>Ft,t+1)(a− b>Ft+1,t+2)

= a2 − ab>Ft,t+1 − ab>Ft+1,t+2 + b>Ft,t+1F
>
t+1,t+2b,

where a = 1 + b>E(Ft,t+1). This implies that the corresponding regression for the 

two-period return Rei
t,t+2 will essentially feature a new set of factors even if the original 

single-horizon model is correctly specified.

The SDF-based approach is a natural way to translate a regression-based linear factor 

model for expected returns into its counterpart at any longer horizon h. Denote the 

one-period gross risk-free rate by Rf
t,t+1, and the asset’s gross return by Ri

t,t+1 = 

Rei
t,t+1 + Rf

t,t+1. The multi-horizon SDF and returns are simple products of their
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single-horizon counterparts:

Mt,t+h =
h∏
j=1

Mt+j−1,t+j,

Ri
t,t+h =

h∏
j=1

Ri
t+j−1,t+j.

Thus, we cast analysis in this paper in terms of SDFs. Switching over to the SDF

language means that the focus on the magnitude of α changes to the focus on whether

E(Mt,t+hR
i
t,t+h) = 1. (8)

Simply put, in a correctly specified model the present value of any $1 investment is

indeed $1.

Proposition 1. Consider the Euler equation (8) at the single and h−period horizons.

1. Suppose Et(Mt,t+1R
i
t,t+1) = 1 for any i, then E(Mt,t+hR

i
t,t+h) = 1 for any i, h.

2. Suppose E(Mt,t+hR
i
t,t+h) = 1 for any i and h, then for any i, the conditional

pricing error, Et(Mt,t+1R
i
t,t+1)−1, is zero-mean and uncorrelated with the lagged

“Euler equation errors”, Mt−h,tR
i
t−h,t − 1, for any h.

We present the proof here because it is helpful in developing intuition about the 

meaning of the Proposition.

Proof.
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1. By recursively iterating on the following equation for h = 1, 2, . . . , we have:

E[Mt−h,t+1R
i
t−h,t+1] = E[Mt−h,tR

i
t−h,tMt,t+1R

i
t,t+1]

= E[Mt−h,tR
i
t−h,tEt[Mt,t+1R

i
t,t+1]] = E[Mt−h,tR

i
t−h,t] = 1.

2. First note that conditional pricing errors, Et(Mt,t+1R
i
t,t+1)− 1, have zero mean

because E(Mt,t+1R
i
t,t+1)− 1 = 0. Next, consider two-period returns:

1 = E(Mt−1,t+1 ·Ri
t−1,t+1) = E(Mt−1,tMt,t+1 ·Ri

t−1,tR
i
t,t+1)

= E(Mt−1,tR
i
t−1,tEt(Mt,t+1R

i
t,t+1))

= E(Mt−1,tR
i
t−1,t) · E(Mt,t+1R

i
t,t+1) + Cov(Mt−1,tR

i
t−1,t, Et(Mt,t+1R

i
t,t+1)).

If (8) holds at both one- and two-period horizons, then

Cov(Mt−1,tR
i
t−1,t − 1, Et(Mt,t+1R

i
t,t+1)− 1) = 0.

A generalization to (h+ 1)-period returns is

h∑
j=1

Cov(Mt−j,tR
i
t−j,t − 1, Et(Mt,t+1R

i
t,t+1)− 1) = 0. (9)

These equations tell us that conditional pricing errors are uncorrelated with

Euler equation errors for any h.

The second part of the Proposition forms the basis for the test of asset-pricing models
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that we propose in this paper. Specifically, we advocate testing if E(Mt,t+hR
i
t,t+h) = 1

jointly for a set of different h and i. In order to appreciate what the rejection of this

null tells us, we revisit some elements of the proof.

Express Mt,t+hRt,t+h − 1 as η
(h)
t + νt,t+h, where η

(h)
t is the pricing error, η

(h)
t =

Et(Mt,t+hRt,t+h)− 1, and νt,t+h is the innovation, which is uncorrelated with η
(h)
t by

the properties of the conditional expectation. Then, Equation (9) can be re-written

as:

h∑
j=1

Cov(η
(j)
t−j + νt−j,t, η

(1)
t ) = 0. (10)

In words, rejection of the null implies that either pricing errors are persistent,

Cov(η
(j)
t−j, η

(1)
t ) 6= 0, or errors are contemporaneously correlated with innovations,

Cov(νt−j,t, ηt
(1)

) 6= 0, or both.

Thus, exploring a model’s pricing implications over multiple horizons appears to be 

a promising avenue. It allows to test for conditional pricing, Et(Mt,t+1R
i
t,t+1) = 1, 

using model-implied conditioning information, without the need to specify auxiliary 

conditioning variables from outside the model. Given that the informational variables 

zt and Ct are already implicit in the candidate SDF, Mt,t+1, MHR-based testing can 

incorporate whatever conditioning is advocated in the literature.

The next section develops our testing methodology which is applicable to any model 

that respects the Law of One Price and to any set of test assets. Before we do so, 

we offer two examples that illustrate the Proposition further.
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2.4 Examples

Consider two examples to get a sense of what kind of models can be rejected by the

proposed test.

Persistent pricing errors

Suppose that a misspecified one-factor model is

M̃t+1 = 1− (bFt,t+1 − E [bFt,t+1]) , b = V −1 (Ft,t+1) · E (Ft,t+1) , (11)

where the factor is the excess return to a traded portfolio. The correct model,

however, is:

Mt,t+1 = 1− (btFt,t+1 − E [btFt,t+1])

with bt = B0 +B1bt−1 + ut where ut is an error term. That is, Ft,t+1 is only CMVE,

not UMVE. The candidate model prices factor returns unconditionally:

E
[
M̃t,t+1Ft,t+1

]
= 0.

However, due to the misspecification, we have:

Et

[
M̃t,t+1Ft,t+1

]
=

(
1 + bE [Ft,t+1]

1 + E [btFt,t+1]
bt − b

)
Et
[
F 2
t,t+1

]
.

That is, the model does not correctly price the factor conditionally. See Appendix 
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A.2. The pricing error, η
(1)
t , is persistent since the true bt is persistent. Thus,

Cov(η
(j)
t−j, η

(1)
t ) 6= 0. Note that in this case, the timed factor btFt,t+1 would price

assets conditionally and unconditionally.

Correlated pricing errors and innovations

Another example is short-term dependence in returns, as seen in short-term reversal.

Again, let the proposed model be as the one in Equation (11). What is different from

the previous example is that now the factor returns are i.i.d. Thus, the model prices

the factors both conditionally and unconditionally. However, a test asset’s returns

are not. In particular, consider:

Rie
t,t+1 = βiFt,t+1 + εi,t+1 + θεi,t,

where εi,t+1 is an i.i.d. error term uncorrelated with Ft,t+1 at all leads and lags.

This model represents reversal if θ < 0. The SDF prices Rie
t,t+1 unconditionally. See

Appendix A.3. Thus, a GRS test with Re
t,t+1 as the test assets would fail to reject

this model because all alphas are equal to zero.

However, the model does not correctly price excess returns conditionally:

Et

[
M̃t,t+1R

ie
t,t+1

]
= θεi,t.

See Appendix A.3.
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Using the notation in Equation (10), the pricing error θεi,t = η
(1)
t . Thus, in this

example pricing errors are not persistent, so Cov(η
(j)
t−j, η

(1)
t ) = 0. However, the one-

period pricing error is correlated with the innovation, Cov(νt−1,t, η
(1)
t ) 6= 0. See

Appendix A.3.

To summarize, failure to reject a model using MHR does not imply that the model

prices assets conditionally. The model could still have errors with two properties: (i)

the errors are not persistent, and (ii) the errors have no contemporaneous correlation

with innovations. While, mathematically, it is possible to have a model that is

misspecified along these lines, we could not think of any model contemplated in the

literature that would match this description. Thus, Proposition 1.2 justifies the use

of MHR to test for many important, although formally not all, conditional pricing

implications.

3 Testing linear factor models using MHR

3.1 Testing general asset pricing models using MHR

In this section, we develop a GMM-based test using MHR that is applicable to any

asset pricing model that satisfies the Law of One Price. As shown in Proposition

1.1, such a model implies Equation (8) for any asset i, which we repeat here for

convenience:

E(Mt,t+hR
i
t,t+h − 1) = 0
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for any asset i and horzion h. This condition can be easily tested jointly for multiple

horizons h in a GMM framework.

The proof of the Proposition in section 2.3 demonstrates that these MHR-based

moments are equivalent to Equation (9). The Equation implies moment conditions

that we ultimately use in our testing. Specifically, for test assets i = 1, ..., I

f it+1 =



Mt,t+1R
i
t,t+1 − 1

z
(h2)
i,t (Mt,t+1R

i
t,t+1 − 1)

...

z
(hn)
i,t (Mt,t+1R

i
t,t+1 − 1)


, (12)

where the conditioning variable is

z
(h)
i,t =

h−1∑
j=1

Mt−h+j,tR
i
t−h+j,t, (13)

n is the number of horizons used in the test, and {hj }jn=2 are the set of horizons used 

in addition to the single-period horizon. The null hypothesis is E(ft
i
+1) = 0 for all i, 

and the test is thus an unconditional test of the conditional properties of the asset 

pricing model as explained in the second part of the Proposition.

The virtue of the moments in Equation (12) is that the associated residuals are not 

serially correlated under the null hypothesis. See Appendix A.4. Imposing this ad-

ditional restriction when estimating the covariance matrix of the moment conditions 

improves the small-sample properties of the standard errors and test statistics. See 

Hodrick (1992) for a similar argument in the context of overlapping observations in
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regressions.3

A common approach in the literature is to introduce conditioning information via

instrumental variables, such as dividend-price ratios (e.g., Hansen and Singleton,

1982, Hodrick and Zhang, 2001). Denoting such variables by z̃t, this strategy implies

that z̃t(R
i
t,t+1 − R

f
t,t+1) is just an excess return on another asset. Thus it could be

incorporated as a new test asset using the moments outlined in Equation (12). This

logic highlights the conceptual difference between the existing and our approaches.

While the former relies on exogenously selected conditioning variables, the latter is

using those dictated by a given model and set of test assets.

The test falls into the standard GMM framework, where:

g(θ) =
1

T

T∑
t=1



f 1
t (θ)

f 2
t (θ)

...

f It (θ)


,

where θ are the parameters in the SDF to be estimated. The objective function is
3Hodrick (1992) emphasizes, in the context of return predictability, that returns could be seri-

ally correlated under plausible alternative hypotheses. That prompts him to consider alternative, 
heteroskedasticity and autocorrelation robust (HAR), standard errors. That consideration is not

applicable in our case because the predicted variable is ηt
(1) 

in Equation (10). That variable is not 
serially correlated under an alternative that retains the hypothesis that the model unconditionally 
prices MHRs. While using HAR standard errors is not incorrect even in this case, imposing the 
null leads to a more efficient estimate of the test statistic with better small sample properties. For 
completeness, we report HAR-adjusted results in Appendix A.6.
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as usual:

argmin
θ

g(θ)>Wg(θ),

where W is an (I × n) × (I × n) positive definite weighting matrix (e.g., Hansen

and Singleton, 1982). Relevant test statistics and parameter standard errors can be

found using the usual GMM toolkit.

3.2 Adopting the general test to linear models

Moment conditions

We slightly re-write the K-factor model in Equation (6) as

Mt,t+1 = 1− b>(Ft,t+1 − µ), (14)

to emphasize the need to estimate µ = E(Ft,t+1). Guaranteeing that this SDF prices 

the risk-free rate conditionally requires adding auxiliary assumptions that are not 

explicit in the settings that are traditionally used for testing linear factor models. 

Because our goal is to assess the original models’ performance, we make a slight 

adjustment to the moment conditions to ensure we do not reject the models based on 

mispricing of the multi-period risk-free rates, something that they were not designed 

to match.

Specifically, we note that predicting discounted gross returns, MRi, as in the covari-
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ance condition in Equation (9), is equivalent to predicting discounted excess returns,

M(Ri−Rf ), if the model prices the risk-free asset. We therefore replace the moment

conditions in Equation (12) with the following ones:

f it+1 =



Mt,t+1(R
i
t,t+1 −R

f
t,t+1)

z
(h2)
i,t Mt,t+1(R

i
t,t+1 −R

f
t,t+1)

...

z
(hn)
i,t Mt,t+1(R

i
t,t+1 −R

f
t,t+1)


.

The resulting I × (n+ 1) GMM moments are:

g(b, µ) =
1

T

T∑
t=1



Ft,t+1 − µ

f 1
t (b, µ)

f 2
t (b, µ)

...

f It (b, µ)


. (15)

Note that the managed portfolio weights z
(h)
i,t in each f i are exactly the same as in

Equation (13), that is, they still depend on gross returns rather then excess ones.

Test assets

We consider the factors themselves as the set of test assets. A rejection implies that 

the model does not price assets conditionally, as in the first example of section 2.4. 

Further, failure to reject does not necessarily imply that the model is well-specified.
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A richer cross-section of assets might still reject the model. The reason for this 

limited choice of test assets is three-fold.

First, the factors in these models are created from mechanical trading strategies to 

price documented empirical spreads in the cross-section of expected returns. Thus, 

a natural and minimal requirement for a well-specified model is that the model can 

price these strategies at any horizon.

Second, it is clear that each model can price the single-horizon excess returns as-

sociated with its factors unconditionally. We will in fact estimate b such that the 

single-horizon returns (SHR) to the factors themselves are priced without error and 

set µ equal to the factor sample means. We choose the weighting matrix accordingly 

to ensure these are the only moments used to identify the parameters. That is in line 

with the standard Black, Jensen, and Scholes (1972) regressions in Equation (7), as 

the regression imposes the sample mean of the factors in the estimation of α. Thus, 

any rejection is due to the joint test of the models’ pricing of longer-horizon returns.

Third, this choice of test assets implies that there exists an SDF with time-varying 

loadings bt as in Equation (4) that does price the factors conditionally and, therefore, 

prices these factors unconditionally at any horizon per the first part of the Proposition 

in section 2.3. We discuss this alternative hypothesis in more detail in a later section.

Additional properties associated with linear models

The linear structure of the model allows us to characterize properties of the proposed 

test more explicitly, which is helpful with interpreting the evidence. Specifically, we
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can interpret our test as a version of GRS, which corresponds to suitably defined

multi-horizon alphas and allows for non-normal and heteroskedastic errors in Equa-

tion (7).

In particular, the test asset k = (i, h) is a strategy in factor i, where the time-varying

weights are given by lagged h-period discounted returns in factor i, i.e.,

Re
k,t,t+1 ≡ z

(h)
i,t F

i
t,t+1,

where the instrument z
(h)
i,t is endogenous because it depends on the estimated SDF

M in Equation (14). Consider the time-series regression

Re
k,t,t+1 = αk + β>k Ft,t+1 + εk,t+1

for each test asset k. In this equation each alpha represents mispricing at some 

horizon. Collect the alphas into a vector αz, betas into a matrix βz, errors into a 

vector εz, and excess returns into a vector Rz
e.

Proposition 2. Consider the GMM J−test corresponding to the moment conditions 

outlined in Equation (15), with a weighting matrix that sets the factor means equal 

to the sample return on the factors and one-period pricing errors to zero.
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1. The test statistic is equal to

J/T = E(Mt,t+1(R
e
z,t,t+1 − βzFt,t+1))

> × V −1(Mt,t+1εz,t+1) (16)

× E(Mt,t+1(R
e
z,t,t+1 − βzFt,t+1))

= α>z · V −1(Mt,t+1εz,t+1) · αz. (17)

J is distributed χ2 with I × (n− 1) degrees of freedom. The J−statistic is not

affected by the endogeneity of the instruments z
(h)
i,t .

2. If the squared pricing error ε2z is uncorrelated with the squared SDF, M2, the

test statistic simplifies to

J/T =
α>z · V −1(εz,t+1) · αz
1 + µ>z V

−1(Ft,t+1)µz
,

which is identical to the asymptotic GRS test.

See Appendix A.5 for the proof.

As in the GRS test, one can interpret the test statistic as a measure of the mispricing

of a portfolio that is orthogonal to the original factors.

Corollary (to Proposition 2). Consider the portfolio with excess return

R∗et,t+1 ≡ α>z V
−1(Mt,t+1εz,t+1)(R

e
z,t,t+1 − βzFt,t+1) (18)

= α>z V
−1(Mt,t+1εz,t+1)(αz + εz,t+1).
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1. Using this portfolio as the only multihorizon test asset leads to the same

J−statistic.

2. Under the simplifying assumption of Proposition 2.2, the squared SR of

this portfolio is equal to the squared maximal Information ratio (IR),

α>z V
−1(εz,t+1)αz.

See Appendix A.5 for the proof. The IR of this portfolio gives a direct measure 

of the degree of mispricing in a given model. Decomposing this portfolio into the 

contributions of individual factors characterizes how the factors should be timed to 

exploit the model misspecification.

Lastly, we discuss whether our test relies on tradeable portfolios. Our initial moment 

conditions, with their general form given in Equation (8), are tests of whether a 

candidate SDF prices returns across multiple horizons. Because all the factors we 

are looking at are tradeable, the longer-run buy-and-hold returns to these factors 

are tradeable as well. There is therefore no look-ahead bias in the test assets, even 

though the parameters in the SDF are, as is usually the case, estimated over the full 

sample.

The interpretation of the MHR moment conditions as managed portfolios in one-

period returns is convenient for intuition about the results and helps in formulating 

moment conditions that are not correlated over time under the null hypothesis. At 

the same time, this one-period interpretation may suggest that the test is provid-

ing specific real-time implementable timing strategies, embedded in the endogenous
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instruments z
(h)
i,t . These endogenous timing variables are the product of lagged re-

turns and SDFs, where the latter is a function of parameters estimated over the full 

sample. It is, therefore, interesting to see if the test results survive using managed 

portfolios that are tradeable in real time. In Appendix A.7, we report results for the 

case of rolling estimation of the SDF parameters.

4 Evidence

4.1 Models and data

We select our models based on their historical importance, recent advancements, and 

data availability. Specifically, we include the unconditional CAPM, CAPM combined 

with the BAB factor (Frazzini and Pedersen, 2014, Black, Jensen, and Scholes, 1972, 

Novy-Marx and Velikov, 2016), Fama and French five-factor model, FF5, (Fama and 

French, 2015), a version of the FF5 model with hedged unpriced risks (Daniel, Mota, 

Rottke, and Santos, 2020), Fama and French three-factor model with momentum 

(Carhart, 1997, Fama and French, 1993), the four-factor models of Hou, Xue, and 

Zhang (2015) and Stambaugh and Yu (2017), and the six-factor model of Haddad, 

Kozak, and Santosh (2020).

The Fama-French five-factor model includes the market factor (MKT), the value 

factor (HML), the size factor (SMB), the profitability factor (RMW; see also Novy-

Marx, 2013), and the investment factor (CMA; see also Cooper, Gulen, and Schill,
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2008). These data and the momentum factor MOM (Jegadeesh and Titman, 1993) 

are provided on Kenneth French’s webpage. The returns are monthly and the sample 

is from July 1963 to June 2017.

The hedged versions of these factors studied by Daniel, Mota, Rottke, and Santos 

(2020) (DMRS) are available on Kent Daniel’s webpage. The sample period is July 

1963 to June 2017. The factors studied by Hou, Xue, and Zhang (2015) (HXZ) are 

MKT, SMB, I/A (investment-to-assets) and ROE (return on equity), and are avail-

able on Lu Zhang’s website. The sample is from January 1967 to December 2017. 

Stambaugh and Yu (2017) propose two factors intended to capture stock mispricing, 

in addition to the existing MKT and SMB factors: PERF and MGMT. We denote 

this four-factor model as SY. These data are available on Robert Stambaugh’s web-

page. The sample period for these factors starts January 1963 and ends December 

2016. Haddad, Kozak, and Santosh (2020) (HKS) propose, in addition to MKT, 

factors that are the first five principal components (PC1-5) of fifty anomaly portfo-

lios that are entertained in the literature. Their sample period is January 1974 to 

December 2017.

Given the recent critique by Novy-Marx and Velikov (2016), we depart from the 

BAB factor construction of Frazzini and Pedersen (2014). We use the value-weighted 

beta- and size-sorted portfolios on Kenneth French’s webpage as the building blocks 

for constructing this factor, following Fama and French (2015) and Novy-Marx and 

Velikov (2016). See Appendix A.8.

Finally, we get the monthly risk-free rate from CRSP and create the real risk-free
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rate by subtracting realized monthly inflation from the nominal rate. The inflation

data are from CRSP as well.

Before we proceed with the discussion of results, we emphasize again that each model

is tested using MHR on its own factors. For example, the CAPM is tested using the

market return at various horizons, and the FF5 model is tested using the returns

to each of its five factors at various horizons. While we test the conditional pricing

of the models, we cannot readily compare the results across them because the test

assets vary. As a robustness exercise, we consider a common set of test assets across

the different models. Specifically, we consider the five factors from the FF5 model.

See Appendix A.9.

4.2 MHR pricing errors and model tests

In the tests we use the horizons 3, 6, 12, 24, and 48 months in addition to the

one-period (monthly) horizon. Because the evaluated factors are designed as zero-

investment long-short portfolios, we construct Ri = Rf + F i for each factor i when

evaluating z
(h)
i,t in Equation (13).

We start by computing pricing errors for each factor in each model across horizons. 

The pricing errors should be understood as the net present value of an h-period $1 

buy-and-hold investment in the gross factor return. Since the models are estimated 

to match one-period returns unconditionally, non-zero net present values are due to 

mispricing of the conditional factor return. To facilitate comparison we annualize
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errors so that each reported number reflects the same period irrespective of the hori-

zon. Thus, the pricing error for a factor F i at horizon h is 12/h×E(z
(h)
i,t Mt,t+1F

i
t,t+1).

The non-annualized version of these pricing errors are equal to the corresponding el-

ements of αz appearing in the Corollary to Proposition 2 as our estimation sets 

E(Mt,t+1) = 1.

The horizons for reported errors range from 1 to 48 months. Figure 1 displays 

the pricing errors for the first four factor models. The top left panel shows that the 

pricing errors of the CAPM are small across horizons, always less than 1% annualized. 

Thus, for the market model, a constant b coefficient in the SDF works reasonably 

well for pricing market returns across these horizons.

The top right panel shows the MKT+BAB model. In this case, pricing errors are 

much larger for both factors. For the BAB factor, the annualized pricing error 

increases with horizon (in absolute value) to almost 10% per year at the 48-month 

horizon. That is about twice the average annualized monthly returns on this factor.

The bottom left plot shows the Carhart model (FF3+MOM), where the pricing errors 

get very large, exceeding 50% p.a. for the 4-year MOM return. The bottom right 

panel shows the corresponding pricing errors for the FF5 model. Again pricing errors 

increase in absolute value with horizon. Three of the five factors (MKT, RMW, and 

CMA) have absolute pricing errors in excess of 5% p.a. at the 4-year horizon.

Panel A of Table 1 gives the p-values of the J-test of these models. The test fails to 

reject the CAPM. MKT+BAB and FF3+MOM are rejected at the 10% level. Lastly, 

FF5 is rejected with a p−value of 0.02. We calculate the mean absolute pricing error

38



(MAPE) for each model as the mean of the absolute value of the annualized pricing 

errors across the factors and horizons. For the CAPM, the MAPE is only 0.7%, for 

the CAPM+BAB it is 3%, for the Carhart model it is 7.6%, and for the FF5 it is 

1.9%.

Figure 2 shows the pricing errors for the remaining four models. The top left panel 

shows pricing errors for the FF5DMRS model. Its pricing errors exceed 10% p.a. for 

two factors (their versions of the MKT and SMB factors) and 5% for their version 

of the CMA factor. The remaining plots show the pricing errors for the SY, HXZ, 

and HKS models. For these models, pricing errors are even larger, with the largest 

pricing error exceeding 100% p.a. (PERF in the SY model). As p-values in Panel B 

of Table 1 indicate, all these models are rejected with high levels of confidence.

Overall, Table 1 shows the average MAPE across all eight models is 4.4%, which 

is about the same as the annualized factor risk premiums that these models were 

originally designed to match. We conclude from this that the current benchmark 

models for risk-adjustment do a poor job accounting for MHRs. For all models 

but the CAPM, the MHR to the models’ own factors have power to detect model 

misspecification. Economically, requiring that a model is able to price its own factors 

at various horizons is a minimal requirement of model consistency. Failing this 

requirement implies that the factor dynamics are not consistent with the constant b 

assumption.

In robustness checks reported in Appendixes A.6 (HAR standard errors) and A.9 

(the same test assets across models) we reject all the eight models. One exception
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is the CAPM that is not rejected even with HAR standard errors when using MHR 

to MKT only. The test with out-of-sample instrument estimation in Appendix A.7 

rejects FF3+MOM, FF5DMRS , SY, and HKS.

4.3 Sharpe and Information ratios

Table 1 also displays the annualized maximal SR, [E(F )>V (F )−1E(F )]1/2, implied 

by each factor model. A higher SR suggests that the factors are closer to spanning 

the unconditional MVE portfolio. As is well-known, the SR of the MKT factor is 

much lower than the maximal SR in more recent multi-factor models. For instance, 

the SY model has an annualized SR of 1.7 compared to 0.4 for the CAPM.

Finally, Table 1 reports the annualized maximal IR for each model as an alternative 

economic measure of the mispricing implied by the MHR, as motivated by the Corol-

lary to Proposition 2. The models’ IRs are economically large, ranging from 0.61 to 

1.14 for the rejected models, similar in magnitude to the model’s maximal SR. That 

is, timing of the model factors, as implied by the MHR-based instruments, yields 

high ex-post Sharpe ratios of strategies that are orthogonal to the original factors.

We can gain more insight into the sources of mispricing by considering the IRs of 

individual timing strategies. This is standard practice in the typical cross-sectional 

tests, where one looks at the individual alphas and SRs of particular portfolios (e.g., 

value has a positive alpha and high SR while growth has negative alpha and low SR). 

The difference is that in the case of the MHR test a given portfolio is a horizon-based
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trading strategy for a particular factor. We focus on IRs instead of alphas so that 

the magnitudes are easily comparable across horizons.

We select one factor per model for the clarity of exposition by simply picking the 

factor with the largest average pricing error across horizons: MKT from the CAPM, 

BAB from MKT+BAB, MOM from FF3+MOM, RMW from FF5, SMBDMRS from 

FF5DMRS , PERF from SY, ROE from HXZ, and PC2 from HKS. Figures 3 and 4 

show the annualized IRs of the factor’s timing strategies for each horizon.

The top left plot of Figure 3 shows the IRs of timed versions of the MKT factor in 

the CAPM. This case is particularly interesting because MKT is the single factor 

and test asset in this model. Each bar in the chart corresponds to timing based on 

the instruments for each horizon in our test (3, 6, 12, 24, and 48 months). The IR of 

the 3-month timing factor is −0.3. As Equation (9) implies, one can thus increase SR 

by increasing the exposure to MKT when the lagged 2-month risk-adjusted returns, 

Mt−2,tRt−2,t, are low. The 6-month timing strategy has a similar IR, while IRs 

corresponding to longer horizons are negative and decreasing in absolute value. Thus, 

while the mispricing seems strongest at shorter horizons, all horizons exhibit reversal 

in risk-adjusted returns.

The test does not reject the CAPM despite the large absolute values of the IRs. To 

understand why, recall that the joint test in Equation (17) takes into account the 

correlation between the test assets. If the IRs (alphas) line up with the correlation 

structure of the test assets, the probability that the pattern of sample alphas are due 

to a single shock increases and the joint test is less likely to reject.
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Specifically, in the case of the CAPM the test actually rejects if we only use the

3-month horizon (the p−value is then 0.030). In the general test, the correlations

between the returns to the 3-month strategy and the other horizon strategies are

positive and declining in the horizon in a similar fashion to how the absolute values 

of the IRs are declining.4 That suggests that the alphas (IRs) arise due to a common

shock.

As another example, MOM is the factor with the largest average pricing errors in 

the FF3+MOM model. Its IRs are displayed in the bottom left plot of Figure 3. 

The term corresponding to the strategy with h = 3 months has a positive IR and 

indicates that one can increase SRs by increasing the exposure to MOM when the 

lagged 2-month risk-adjusted returns are high, which is opposite to the MKT in the 

CAPM. However, at the 48-month horizon the IR is negative. This implies that if 

risk-adjusted momentum did well over the last 47 months, it will likely do poorly the 

following month.

Besides the sign, IRs differ in magnitude as horizon changes. For instance, the bottom 

left plot in Figure 4 shows the IRs for the ROE factor in the HXZ model. In this case, 

there appears to be valuable timing information in the short horizon (2-month) and 

long-horizon (47-month) instruments, but not in the intermediate horizons. The fact 

that both short- and long-run discounted returns are important suggests persistent

dynamics in bt are needed at both short- and long-run frequencies.

4We use the correlations to get predicted IRs relative to the 3−month IR via ρ3,h × IR3, where 
h is the other horizons and ρ3,h is the correlation in realized pricing errors between the 3-month 
timing and the h-month timing. In our sample the predicted IRs of -0.26, -0.21, -0.16, and -0.13 
for horizons 6, 12, 24, and 48, respectively. These predicted values are quite close to the estimated 
IRs reported in the Figure.
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Overall, many factors have negative IRs across horizons. That indicates reversal in 

risk-adjusted returns per Equation (9). These reversal patterns play out at both long 

and short horizons. The size of the IRs indicates how strong the timing effect is at 

a particular instrument’s horizon. In terms of the implications for the optimal bt, 

a reversal in risk-adjusted returns suggests that bt ought to be lower (higher) after 

high (low) risk-adjusted returns. Said differently, since bt governs the conditional 

risk-return trade-off, these results suggest that the conditional Sharpe ratio of these 

factors tend to go down when lagged risk-adjusted returns are high. Positive IRs 

(such as those of PERF from SY, or PC2 from HKS) have the opposite implications 

as these result from momentum in risk-adjusted returns.

While these plots are informative about the nature of optimal timing activity, a 

caveat is that they ignore cross-correlations that show up in the test statistic and 

that are also important for the model rejections. One way to address this additional 

dimension of the data is to inspect the implied portfolio weights of the rejecting 

portfolio, αz> ·V −1(Mt,t+1εz,t+1). We leave this for future research as in-depth analysis 

of the nature of timing across these eight models and thirty-one factors is beyond 

the scope of this paper.

Figure 5 shows each model’s MAPE plotted against the respective maximal SRs 

Interestingly, there is a positive relation. The higher a model’s SR the closer it 

should be to spanning the unconditionally mean-variance efficient portfolio and thus 

the lower the pricing errors should be. The opposite being the case indicates that the 

search for high SR models has increased the complexity of the conditional dynamics, 

consistent with the findings in Haddad, Kozak, and Santosh (2020). Such dynamics
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have received relatively little attention in the literature as researchers have focused 

on short-term average returns and Sharpe ratios.

4.4 Factor dynamics and long-horizon investment

The null hypothesis that the SDF in Equation (6) is correctly specified implies that 

conditional mean of factor returns is proportional to their conditional second mo-

ment. See Appendix A.1. That our test rejects the models implies that this require-

ment does not hold in the data.

In order to gain further intuition about the rejection results, we evaluate both statis-

tical and economic metrics that are relevant for long-horizon investors. We compare 

the long-term properties of actual asset returns to those of artificial returns that are 

generated under the null hypothesis. For illustration purposes, we focus on one fac-

tor per model that corresponds to the largest pricing error, just like in the previous 

subsection.

We construct artificial returns in three steps. First, we estimate the conditional 

second moment of actual returns via the DCC-GARCH(1,1) model. Second, we 

construct the model-implied conditional mean exploiting the proportionality of the 

two under the null. Third, we construct artificial return shocks by resampling with 

replacement the unconditionally de-meaned returns, descaling the resulting series by 

their sample standard deviation, then rescaling them by the standard deviations from 

the previously estimated DCC-GARCH(1,1), and, lastly, adding the model-implied
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conditional mean to the result. The resampling also offers us the means of computing 

confidence bands under the null hypothesis.

Statistical assessment

One way to illustrate long-term dynamics of returns is to compare cumulative serial 

correlations of asset returns across multiple horizons. Figures 6 and 7 display such 

serial correlation for the chosen factor in each model. We also report confidence 

bands bootstrapped under the null.

The market factor in the CAPM displays almost no departures from the null for 

horizons up to 20 months, becoming slightly lower afterwards, with the difference 

peaking at 0.2 at the horizon of 36 months. The subsequent decline in the difference 

is consistent with a long-run mean-reverting component in market returns.

All the other models display markedly stronger departures from the constant b base-

line. To start with the most extreme cases, the BAB factor in MKT+BAB and the 

SMBDMRS factor FF5DMRS have serial correlations that are steeply and significantly 

departing from the null, with the difference exceeding 0.6 at 12 to 24 months. For 

the remaining models the differences between cumulative serial correlations peak be-

tween 0.3 and 0.5. The difference is insignificant for the MOM factor in FF3+MOM.

These observations are suggestive of the potential difficulty of spanning UMVE stat-

ically. Clearly, there are strong persistent components in the factor return dynamics 

that are inconsistent with a constant b.
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Economic assessment

We offer another perspective on this conclusion by assessing the economic impact

of these dynamics for long-horizon investors. The Sharpe ratio of investing in a

factor across different investment horizons is affected by the autocorrelation of factor

returns, as autocorrelation determines how return variance grows with horizon. We

calculate annualized SRs by horizon for the same chosen factors as before, both in

the data and as implied by the model. Excess returns at horizon h is the average

h-period gross return minus the h-period gross risk-free rate, where both of these

are calculated by multiplying together h one-period gross returns. The SR is then

the mean excess return divided by the standard deviation of excess returns. We

annualize by multiplying with
√

12/h.

Figures 8 and 9 display the SR and their benchmarks as implied by the respective 

models, accompanied by the confidence bands bootstrapped under the null. In the 

case of the CAPM, the SR barely changes with horizon, and there is no difference 

between the data and the null. That is consistent with all the evidence presented on 

the CAPM heretofore: MHR to MKT do not reject the model, MKT has relatively 

small MAPE across horizons, and cumulative autocorrelation of MKT returns in the 

data does not deviate much from that under the null.

The difference between the model-implied and empirical SRs across all other models 

is expanding with the horizon (HKS is the exception as the difference starts declining 

after 24 months). Consistent with the autocorrelation plots in Figures 6 and 7, the 

Sharpe ratios are too low (high) in the data if the factor’s autocorrelations are too
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high (low). Thus, the misspecified dynamics as implied by the constant b models 

affects inference about long-run investment performance. Just to highlight some 

statistically significant magnitudes, in the case of FF5 the 48-month SR under the 

null is 0.2, while it is 0.4 in the data; for SY the numbers are 0.35 and 0.6, respectively; 

for HXZ they are 0.45 and 0.75; and for HKS they are 0.3 and 0.55 (at 20 months 

in this case).

The difference between SRs under the null and in the data for other models 

(MKT+BAB, FF3+MOM, FF5DMRS) are insignificant. Testing SRs of individual 

factors in a model is less powerful than the MHR test, which weighs all the factors in 

a given model and does so optimally. The main purpose of this section is to illustrate 

economic implications of the misspecified factor dynamics associated with the null 

hypothesis.

4.5 Towards improvement of pricing MHR to factors

The model rejections is a consequence of factor dynamics unaccounted for in the 

linear SDF specification. In this section, we consider these dynamics. Full accounting 

for the uncovered role of dynamics and proposing a convincing alternative to each 

model is beyond the scope of this paper. We have a more modest objective of 

providing an illustration of what recognizing the dynamic properties of the factors 

might entail and to suggest a path for future research.

Per part one of Proposition 1, an SDF that prices the factors conditionally also 

prices MHR to the factors unconditionally. Following the discussion in Sections 2.1
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and 2.2, the UMVE portfolio formed by dynamic trading in the factors prices them 

both conditionally and unconditionally, as in the SDF in Equation (4), where the 

optimal timing vector bt is a function of the conditional means and covariance matrix 

of the factors as in Equation (5).

We now turn to most recent research on the topic of factor timing. Specifically, 

Haddad, Kozak, and Santosh (2020) and Moreira and Muir (2017) propose factor 

timing approaches, which are both out-of-sample and rely on estimates of Et(Ft,t+1) 

and Vt(Ft,t+1) as prescribed by Equation (5). As discussed in Section 2.1, both their 

approaches can be represented in the form of Equation (3). Moreira and Muir (2017) 

time volatility via bit = biVt−1(F it,t+1), which is estimated using squared realized 

daily factor returns. HKS use bit = biEt(F it,t+1), where out-of-sample conditional 

expectations are constructed for their factors using each factor’s value spread. HKS 

also contemplate a version with bit = biEt(F it,t+1)Vt
−1(F it,t+1) with Vt estimated in-

sample. In all cases, we estimate the constants of proportionality bi for each factor 

i by matching the in-sample average returns to the timed factors in the model at 

hand, analogous to how we estimated the constant b vector in the baseline models.

Under the null of correct conditional pricing of the factors Ft,t+1, the timed combi-

nation of the factors that is the UMVE portfolio bt>Ft,t+1 should be priced as well. 

Thus, we include this model-implied timed portfolio into the set of test assets in 

our MHR-based test, in addition to the original factors. This is an important step 

because in a model with a time-varying bt, the UMVE portfolio embodies conditional 

information not captured by the factors themselves.
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Panels A and B in Table 2 reports testing results. Because of the specifics of the 

methodologies employed in these papers, we cannot test all the models that we 

have considered heretofore. In the case of Volatility Timing, we report CAPM, 

FF3+MOM, and FF5. In the case of HKS, we report two versions of the model: 

out-of-sample timing with Et only, and hybrid timing with the same Et and in-

sample Vt. All models are rejected with economically large MAPEs for the MHR to 

the model factors.

For the Volatility Timing case, the SRs of the timing portfolio are higher than those 

in the constant b case, but the MAPEs are still large. Thus, volatility timing is insuf-

ficient for spanning the UMVE correctly. The case of the CAPM is the most striking 

as volatility timing appears to make matters strictly worse. While the evidence in 

Moreira and Muir (2017) is clear that such timing improves single-horizon returns, it 

is better to stay with the original factor if one is interested in MHR. This conclusion 

is a flipside of our discussion of the baseline test in Table 1: the original factor is 

rejected by the SHR test, but not by the MHR one.

For the HKS factor timing results, we note that the sample is only the last half of 

the original sample, due to the estimation of out-of-sample means in HKS. Thus, a 

direct comparison to the corresponding constant b model in Table 1 cannot be made. 

That said, the MAPEs are economically large, more than 5% annualized on average 

per factor. For all of these timing strategies the Information ratios are still large, all 

above 1.

In Appendix A.10 we introduce our own version of factor timing for the 8 models we
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considered heretofore. We do so in-sample to simplify the task. We still reject all the 

models. Overall, the MAPEs and the Information ratios are still large even when 

considering models that attempt to account for factor timing. While factor timing 

does tend to increase the maximal SR of the model, this is a one-period metric. 

Testing the model with MHR, however, brings in moments that are particularly 

sensitive to persistent misspecification in the conditional factor dynamics. This new 

perspective indicates that there is substantial work to do in improving estimates of 

these dynamics.

As we pointed out in section 2.2, yet another alternative to improving a linear factor 

model is to change the factors themselves rather than their timing. Kozak, Nagel, 

and Santosh (2020) propose just that by introducing weights on all CRSP stock 

returns that are non-linear functions of 50 characteristics Ct. The end product is 

a one-factor model where the factor is an estimate of the UMVE portfolio. They 

advocate using both what they term sparsity (L1−norm) and shrinkage (combining 

L1− and L2−norms) penalties in selecting portfolio weights. Because the authors 

have more characteristics than time periods at the monthly frequency, they opt for 

estimation of the daily SDF to improve precision.

We evaluate the model using MHR on the UMVE portfolio associated with the 

proposed SDF. We normalize the volatility of this candidate UMVE portfolio to 

equal that of the market factor so the MAPE is comparable. We use horizons of 3, 

6, 12, 24, and 48 days rather than months to be consistent with the Kozak, Nagel, 

and Santosh (2020) observation frequency. Panel C of Table 2 reports the results. 

The model is rejected with MAPEs of 3.4% and 6.6%, indicating that the factor
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construction even in this case does not pay sufficient attention to factor dynamics.

5 Conclusion

We propose a new unconditional test of conditional asset-pricing models. It is GMM-

based and uses multi-horizon returns (MHR) to evaluate the ability of any model 

to price risky cash flows that accrue at different horizons. We argue that MHR are 

appealing because they effectively provide a set of test assets that are endogenous to 

the model being tested and because these assets identify a broad set of conditional 

model misspecification. Thus, the test does not require any conditioning variables 

beyond those used in the construction of a model.

Our empirical exercise, involving a number of prominent linear factor models, sug-

gests that our test has statistical power. We reject most of these models, including 

recently proposed models that explicitly incorporate factor timing in the model con-

struction. The associated pricing errors and Information ratios are economically 

large.

The reason the models do a poor job pricing longer-horizon returns is that the model-

implied conditional properties of risk pricing are strongly at odds with dynamic 

properties of the factors associated with these models. Because long-run investment 

entails exposure to conditional return dynamics even in the absence of factor timing, 

these dynamics show up as large mispricing in longer-run returns.
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Many economic applications, such as capital budgeting and consumption-savings de-

cisions, require discounting cash flows accruing at multiple horizons. Our evidence

suggests that there is still much to be done to arrive at models that can successfully

be applied to such problems. In particular, correct specification of the joint condi-

tional dynamics of pricing factors appears even more quantitatively important than

previously emphasized in the literature.
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A Appendix

A.1 MVE portfolios and the SDF

Portfolios with the maximal time t conditional Sharpe ratio are conditionally mean-variance efficient
(CMVE) and given by

RCt,t+1 = (wCt )>Ret,t+1,

wCt = k−1t V −1t

(
Ret,t+1

)
Et
(
Ret,t+1

)
,

where wCt is the vector of time t portfolio weights and kt is any positive constant known at time t,
governing the leverage of the portfolio. The CMVE “prices” any combination of these assets in the
sense that there exists an SDF, M∗t,t+1, derived from the CMVE that prices Ret,t+1 conditionally
and unconditionally, E(M∗t,t+1R

e
t,t+1) = Et(M

∗
t,t+1R

e
t,t+1) = 0. Specifically,

M∗t,t+1 = 1− kt(RCt,t+1 − Et(RCt,t+1)),

kt = V −1t

(
RCt,t+1

)
Et
(
RCt,t+1

)
.

This SDF is only conditionally linear in the CMVE portfolio, as kt and Et(R
C
t,t+1) are time-varying,

and therefore does not directly imply an unconditional, linear beta-pricing model. To that end,
note that if Et(M

∗
t,t+1R

e
t,t+1) = 0, then Et(at ·M∗t,t+1R

e
t,t+1) = 0, if at is known at time t. Thus,

dividing M∗t,t+1 by 1 + ktEt(R
C
t,t+1) we obtain another SDF that prices the same set of assets:

M̃t+1 = 1− kt

1 + ktEt
(
RCt,t+1

)RCt,t+1

= 1− kt

1 + Et
(
Ret,t+1

)>
Vt
(
Ret,t+1

)−1
Et
(
Ret,t+1

)RCt,t+1

= 1− δtRCt,t+1.

Next, divide M̃t+1 by the constant 1 − E(δtR
C
t,t+1) to get the final version of the SDF that still

prices the same set of assets conditionally and unconditionally:

Mt,t+1 = 1−
(
RUt,t+1 − E(RUt,t+1)

)
,

where RUt,t+1 ≡ δtR
C
t,t+1/(1− E(δtR

C
t,t+1)) is the excess return to timing the CMVE portfolio in a

way that renders it unconditionally mean variance efficient (UMVE). The latter is true as its returns
have a perfectly negative unconditional correlation with Mt,t+1. Letting k = (1 − E(δtR

C
t,t+1))−1,

the associated portfolio weights are:

kwUt = kδtw
C
t

= k
V −1t

(
Ret,t+1

)
Et
(
Ret,t+1

)
1 + Et

(
Ret,t+1

)>
V −1t

(
Ret,t+1

)
Et
(
Ret,t+1

) .
60



The common model specification in the literature assumes there is a set of K factors, Ft,t+1, that
unconditionally span the UMVE portfolio: RUt,t+1 = b>Ft,t+1. Thus, the SDF can be written

Mt,t+1 = 1− b> (Ft,t+1 − E(Ft,t+1)) .

Note that this assumption has implications for factor dynamics. In particular, using the above
expression for UMVE weights, setting these to a constant vector b, and substituting in the factors
for the vector of base assets, we have:

b ∝ V −1t (Ft,t+1)Et (Ft,t+1)

1 + θFt
⇐⇒

Et (Ft,t+1) ∝ Vt (Ft,t+1)
(
1 + θFt

)
× b,

where θFt = Et (Ft,t+1)
>
V −1t (Ft,t+1)Et (Ft,t+1) is the maximal squared conditional Sharpe ratio

possible from combining the factor returns. If the frequency of the data is high, 1 + θFt is close to
one and the conditional factor means are approximately proportional to their conditional variance.
Applying the Sherman-Morrison formula to the above expression, one can show that Et (Ft,t+1) ∝
Et
(
Ft,t+1F

>
t,t+1

)
× b. In fact, this latter result is easiest found by applying the conditional LOOP

to the factors themselves:

Et(Mt,t+1F
>
t,t+1) = 0 ⇐⇒

Et(F
>
t,t+1) =

b>

1 + b>E(Ft,t+1)
Et(Ft,t+1F

>
t,t+1).

In words, if the factors span the UMVE portfolio, the conditional expected factor returns are
proportional to the conditional second moment of factor returns. If the frequency of the data is
high, the conditional factor means are approximately proportional to the conditional variance.

A.2 Misspecified model with persistent errors

We have:

Et

[
M̃t+1Ft+1

]
= Et [(1− b(Ft+1 − E [Ft+1])Ft+1]

= Et [Ft+1] (1 + bE [Ft+1])− bEt
[
F 2
t+1

]
.

The correctly specified model implies that

Et [Ft+1] (1 + E [btFt+1])− btEt
[
F 2
t+1

]
= 0.

Thus,

Et [Ft+1] =
bt

1 + E [btFt+1]
Et
[
F 2
t+1

]
,
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and

Et

[
M̃t+1Ft+1

]
= Et [Ft+1] (1 + bE [Ft+1])− bEt

[
F 2
t+1

]
=

(
1 + bE[Ft+1]

1 + E [btFt+1]
bt − b

)
Et
[
F 2
t+1

]
.

A.3 Misspecified model with i.i.d. errors

The SDF prices Riet,t+1 unconditionally:

E
[
M̃t,t+1R

ie
t,t+1

]
= E [(1− b (Ft,t+1 − E [Ft,t+1])) (βiFt,t+1 + εi,t+1 + θεi,t)]

= βiE

[
Ft,t+1 −

E [Ft,t+1]

V ar (Ft,t+1)
(Ft,t+1 − E [Ft,t+1])Ft,t+1

]
= 0.

However, that is not the case conditionally:

Et

[
M̃t,t+1R

ie
t,t+1

]
= Et [(1− b (Ft,t+1 − E [Ft,t+1])) (βiFt,t+1 + εi,t+1 + θεi,t)]

= βiEt

[
Ft,t+1 −

E [Ft,t+1]

V ar (Ft,t+1)
(Ft,t+1 − E [Ft,t+1])Ft,t+1

]
+Et [(1− b (Ft,t+1 − E [Ft,t+1])) θεi,t]

= θεi,t.

Next, we show that Cov
(
νt−1,t, η

(1)
t

)
6= 0. Because

η
(1)
t−1 + νt−1,t = (1− b (Ft−1,t − E [Ft−1,t])) (βiFt−1,t + εi,t + θεi,t−1) ,

we have that:

Cov
(
η
(1)
t−1 + νt−1,t, θεi,t

)
= θV ar (εi,t) .

Because Cov(η
(1)
t−1, θεt,t) = Cov(η

(1)
t−1, η

(1)
t ) = 0, Cov

(
νt−1,t, η

(1)
t

)
= θV ar (εi,t) .

A.4 No serial correlation in residuals

That residuals are not autocorrelated follows from Equation (8). For simplicity, consider one
horizon, h. We have that

E(f it · f it+1) = E(f it · Et(f it+1)) = E(f it · z
(h)
i,t Et(Mt,t+1R

i
t,t+1 − 1)) = 0,

because, under the null, Et(Mt,t+1R
i
t,t+1 − 1) = 0 for all t.
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A.5 Derivation of the test statistics for the linear SDF

To avoid clutter, we do not distinguish between populations and sample versions of objects, such
as E vs ET , or V vs VT , and the various concepts that follow from that. The derivation relies on
standard GMM analytics, thus it should not create a confusion.

In this section we will keep the test assets more general, in the sense that we estimate the model to
price K factors correctly unconditionally, but allow the other moments to be trading strategies in
I excess returns that are assumed priced by the model. As a special case, those K excess returns
are the factors themselves.

Let N = 2K + I(n− 1), Mt = 1 + b′µ− b′Ft, with µ, b K × 1 vectors. Let γ ≡ [µ>, b>]>, and g(γ)
is given in Equation (15).

Define

a(γ) ≡ ∂g>(γ)

∂γ
W

d(γ) ≡ ∂g(γ)

∂γ>

where a(γ) is an 2K ×N matrix, d(γ) is an N × 2K matrix, and W is an N ×N weighting matrix.

The J-test statistic is then

J ≡ Tg(γ)>
[(
I − d(ad)−1a

)
S
(
I − d(ad)−1a

)>]−1
g(γ)

where S is the spectral density matrix of ft.

We estimate using only the first 2K conditions and test on the remaining N − 2K conditions.
Therefore, we use the following weighting matrix throughout

W =

(
I2K×2K 02K×(N−2K)

0(N−2K)×2K 0(N−2K)×(N−2K)

)
Then

a =
(
∂g2K(γ)>

∂γ 02K×(N−2K)

)
d =


∂g2K(γ)
∂γ>

∂gN−2K(γ)
∂γ>


where g2K(γ) denotes the 2K first moment conditions and gN−2K denotes the last N−2K moment
conditions. Then

ad =
∂g2K(γ)>

∂γ

∂g2K(γ)

∂γ>
.
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Furthermore,

∂gi,h
∂γ>

(γ) = E
(
Mt+1(γ)Riet+1

∂z
(h)
i,t

∂γ>
(γ) + z

(h)
i,t (γ)Riet+1

∂Mt+1

∂γ>
(γ)
)

= E
(
z
(h)
i,t (γ)Riet+1

∂Mt+1

∂γ>
(γ)
)
,

where the last equality follows from the null. Using the structure of M gives us

∂gi,h
∂γ>

(γ) = E
(
z
(h)
i,t (γ)[Riet+1b

>, Riet+1(µ− Ft+1)>]
)

=
(
E[z

(h)
i,t (γ)Riet+1]b>,−Cov[z

(h)
i,t (γ)Riet+1, F

>
t+1]

)
Stacking the expressions gives us

∂gh
∂γ>

(γ) =
(
E[z

(h)
t (γ) ◦Ret+1]b>,−Cov[z

(h)
t (γ) ◦Ret+1, F

>
t+1]

)
≡ (µzhb

>,−Σzh,F ),

∂g

∂γ>
(γ) =


−IK×K 0K×K
µb> −Σ
µz2b

> −Σz2,F
...

...
µznb

> −Σzn,F

 ,

where µzh ≡ E[zht (γ)◦Ret+1] is a vector of expected excess return and Σzh,F ≡ Cov[zht (γ)◦Ret+1, F
>
t+1]

is the covariance matrix between zht (γ) ◦ Ret+1 and Ft+1 (note that it is generally not symmetric)
and µ and Σ denote the expected excess factor returns and covariance matrix, respectively.

We then have [∂g2K
∂γ>

]−1
=

(
−IK×K 0K×K
µb> −Σ

)−1
= −

(
IK×K 0K×K

Σ−1µb> Σ−1

)
,

[∂(g2K)>

∂γ

]−1
=

(
−IK×K bµ>

0K×K −Σ

)−1
= −

(
IK×K bµ>Σ−1

0K×K Σ−1

)
.
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Therefore,

d(ad)−1a = d

(
IK×K 0K×K

Σ−1µb> Σ−1

)(
IK×K bµ>Σ−1

0K×K Σ−1

)(
−IK×K bµ> 0K×(N−2K)

0K×K −Σ 0K×(N−2K)

)
= −d

(
IK×K 0K×K

Σ−1µb> Σ−1

)(
I2K×2K 02K×(N−2K)

)

= −


−IK×K 0K×K
µb> −Σ
µz2b

> −Σz2,F
...

...
µznb

> −Σzn,F


(
IK×K 0K×K

Σ−1µb> Σ−1

)(
I2K×2K 02K×(N−2K)

)

=


IK×K 0K×K
0K×K IK×K

(Σz2,FΣ−1µ− µz2)b> Σz2,FΣ−1

...
...

(Σzn,FΣ−1µ− µzn)b> Σzn,FΣ−1


(
I2K×2K 02K×(N−2K)

)

=


IK×K 0K×K 0K×(N−2K)

0K×K IK×K 0K×(N−2K)

(Σz2,FΣ−1µ− µz2)b> Σz2,FΣ−1 0I×(N−2K)

...
...

...
(Σzn,FΣ−1µ− µzn)b> Σzn,FΣ−1 0I×(N−2K)

 .

Note that

E(Mt+1z
(h)
t ◦Ret+1) = E(z

(h)
t ◦Ret+1)− Cov(z

(h)
t ◦Ret+1, F

>
t+1)b

= µzh − Σzh,FΣ−1µ ≡ αzh ,

where αzh denotes the vector of pricing errors for horizon h. Furthermore, note that βzh ≡ Σzh,FΣ−1

is a matrix of regression coefficients obtained by regressing z
(h)
t ◦ Ret+1 on Ft+1 with an intercept.

In particular, row i in βzh are the coefficients from regressing z
(h)
i,t R

ie
t+1 on Ft+1. The intercepts in

these regressions equal the pricing error because E(M) = 1 and E(MF ) = 0.

As a result

I − d(ad)−1a =


0K×K 0K×K 0K×(N−2K)

0K×K 0K×K 0K×(N−2K)

αz2b
> −βz2

...
... I(N−2K)×(N−2K)

αznb
> −βzn

 =

(
02K×K 02K×K 02K×(N−2K)

αzb
> −βz I(N−2K)×(N−2K)

)
,

where αz ≡ (α>z2 , . . . , α
>
zn)> and βz ≡ (β>z2 , . . . , β

>
zn)>.
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Partition the spectral density matrix

S =

S00 S01 L0,z

S10 S11 L1,z

Lz,0 Lz,1 Γ


where Sij are the parts of S relating solely to the moments we use for estimation, Γ is the part
of S relating to the moments used for testing, and Li,j are the parts of S relating to interactions
between estimation and test moments.

Then

(
I − d(ad)−1a

)
S
(
I − d(ad)−1a

)>
=

(
02K×K 02K×K 02K×(N−2K)

αzb
> −βz I(N−2K)×(N−2K)

)S00 S01 L0,z

S10 S11 L1,z

Lz,0 Lz,1 Γ


×

 0K×2K bα>z
0K×2K −β>z

0(N−2K)×2K I(N−2K)×(N−2K)


=

(
02K×K 02K×K 02K×(N−2K)

αzb
>S00 − βzS10 + Lz,0 αzb

>S01 − βzS11 + Lz,1 αzb
>L0,z − βzL1,z + Γ

)

×

 0K×2K bα>z
0K×2K −β>z

0(N−2K)×2K I(N−2K)×(N−2K)


=

(
02K×2K 02K×(N−2K)

0(N−2K)×2K Q(N−2K)×(N−2K)

)
,

where

Q ≡
(
αzb
>S00 − βzS10 + Lz,0

)
bα>z −

(
αzb
>S01 − βzS11 + Lz,1

)
β>z + αzb

>L0,z − βzL1,z + Γ.

Under the null, αz = 0, thus we get a simplified Q-matrix

Q = Γ− βzL1,z − Lz,1β>z + βzS11β
>
z .

Now, suppose we estimate the spectral density matrix S as

S = Cov(ft, f
>
t )

=

 Σ Cov(Ft+1,Mt+1F
>

t+1) Cov(Ft+1,Mt+1R
e>

z,t+1)

Cov(Mt+1Ft+1, F
>

t+1) Cov(Mt+1Ft+1,Mt+1F
>

t+1) Cov(Mt+1Ft+1,Mt+1R
e>

z,t+1)

Cov(Mt+1R
e
z,t+1, F

>

t+1) Cov(Mt+1R
e
z,t+1,Mt+1F

>

t+1) Cov(Mt+1R
e
z,t+1,Mt+1R

e>

z,t+1)
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(under the null this is correct for Γ, L1,z, Lz,1 and S11, which are the parts that enter Q). Then

Q = V (MRez)− βzCov(MF,MRe
>

z )− Cov(MRez,MF
>

)β>z + βzV (MF )β>z

= V (M(αz + βzF + εz))− Cov(MβzF,M(αz + βzF + εz)
>)

− Cov(M(αz + βzF + εz),M(βzF )
>

) + V (MβzF )

= V (M)αzα
>
z + V (MβzF ) + V (Mεz) + Cov(MβzF,M(αz + εz)

>)

+ Cov(M(αz + εz),M(βzF )>) + Cov(Mαz,Mε>z )

+ Cov(Mεz,Mα>z )− Cov(MβzF,M(αz + εz)
>)

− Cov(M(αz + εz),M(βzF )
>

)− 2V (MβzF ) + V (MβzF )

= V (M)αzα
>
z + V (Mεz) + Cov(Mαz,Mε>z ) + Cov(Mεz,Mα>z )

= V (Mεz),

where the last equality again uses the null that αz = 0.

Our J test can therefore be written in any of the following forms:

J/T = E(MRez)
>V −1(Mεz)E(MRez)

= α>z V
−1(Mεz)αz

= E(M(Rez − βzF ))>V −1(Mεz)E(M(Rez − βzF )).

Moving on to the connection to GRS, we can write

V (Mεz) = E(M2εzε
>
z )− E(Mεz)E(Mε>z ) = E(M2)E(εzε

>
z ) + Cov(M2, εzε

>
z )

= {E(M)2 + V (M)}E(εzε
>
z ) + Cov([1 + b>µ− b>F ]2, εzε

>
z )

= {1 + µ>Σ−1µ}V (εz)− 2(1 + b>µ)Cov(b>F, εzε
>
z ) + Cov(b>FF>b, εzε

>
z )

It is therefore clear that V (Mεz) = {1 + µ>Σ−1µ}V (εz) if εzεz> is uncorrelated with both b>F and 
b>F F >b. For example, that is the case if εz is homoscedastic and unpredictable, as in the GRS 
test. In this case, our J test would simplify to the standard GRS test

T {1 + µ>Σ−1µ}−1α>V (εz)−1α.

One natural question is whether we can find a single portfolio that gives us exactly the same J 
statistic as the original I(n − 1) trading strategies. The starting point would be to guess that the 
portfolio in question is

R∗e = αz
>V −1(Mεz)(Rz

e − βzF ).

The pricing error of this portfolio is

α∗ ≡ E(MR∗e) = αz
>V −1(Mεz)E(MRz

e) = αz
>V −1(Mεz)αz.
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Furthermore, ε∗ = α>z V
−1(Mεz)εz. Thus,

V (Mε∗) = V (Mα>z V
−1(Mεz)εz) = α>z V

−1(Mεz)V (Mεz)V
−1(Mεz)αz

= α>z V
−1(Mεz)αz.

As a result, the J−statistic with this single portfolio would be

J/T =
E(MRe∗)2

V (Mε∗)
=

(α>z V
−1(Mεz)αz)

2

α>z V
−1(Mεz)αz

= α>z V
−1(Mεz)αz,

which is the same as the previously derived J−statistic.

A.6 HAR standard errors

Our test given in Proposition 2 is derived under the null hypothesis that pricing errors are not
predictable, which implies no autocorrelation in the moments. Imposing the null hypothesis this
way generates a more efficient test statistic that is better behaved in small samples.

That said, the general GMM formulas can in principle be applied with HAR-adjustment, which
accounts for autocorrelation in the moments. Under the null hypothesis errors are not predictable
so autocorrelations should be zero and therefore not matter asymptotically. Of course, in a small
sample they would add noise to the estimate of the covariance matrix. For completeness, we also
report p−values from such tests. We include as many lags of potential autocorrelation in the Newey-
West procedure as the maximal return horizon (48 months). With the exception of the CAPM,
the resulting p-values are uniformly substantially smaller than those we report in our main test in
Table A1, now rejecting all of these models at the 1% level.

A.7 Out-of-sample instruments

If the focus is only on one-period returns, one might wonder if the test results survive using managed
portfolios that are tradeable in real time. To this end, we estimate the parameters in the SDF using

only data up until time t to construct the instrument z
(i,h)
t . In order to have a reasonable “burn

in”-period for all models, we start the test datasets in July 1983.

Table A2 shows that the results for FF3+MOM, FF5DMRS , SY, and HKS are highly significant 
despite the loss of power due to the relatively short samples. IRs continue to be high relative to 
the SRs of the models’ factors.

A.8 Construction of the BAB factor

We construct four value-weighted portfolios: (1) small size, low beta, (2) small size, high beta,
(3) big size, low beta, and (4) big size, high beta. The size cutoffs are the 40th and 60th NYSE
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percentiles. For betas, we use the 20th and 80th NYSE percentiles. Denote these returns as
Rs`, Rsh, Rb`, Rbh, respectively, where s denotes small size, ` denotes low beta, b denotes big size,
and h denotes high beta. We also compute the prior beta for each of the four portfolios and shrink
towards 1 with a value of 0.5 on the historical estimate. We denote these as βs`,t, βb`,t, βsh,t, and
βbh,t. We construct these portfolios using the 25 size and market beta sorted portfolio returns, as
well as the corresponding market values and 60-month historical betas, given on Kenneth French’s
webpage.

The factor return is then constructed as follows:

BABt,t+1 =
1

β`,t

(
1

2
Rs`,t,t+1 +

1

2
Rb`,t,t+1 −Rf,t,t+1

)
− 1

βh,t

(
1

2
Rsh,t,t+1 +

1

2
Rbh,t,t+1 −Rf,t,t+1

)
,

where β`,t = 1
2βs`,t + 1

2βb`,t, and βh,t = 1
2βsh,t + 1

2βbh,t. As a result, the conditional market beta of
BAB should be close to zero, as in Frazzini and Pedersen (2014).

A.9 Testing models with MHR to the same assets

In our main test we chose to use MHR to each model’s factors as test assets. This allows us to trace 
a rejection to the dynamics of the model’s factors being inconsistent with those implicitly assumed 
when assuming the factors unconditionally span the UMVE portfolio.

However, as the set of test assets vary across models, we cannot say that one model is “better” than 
another based on the test. For instance, our MHR test does not reject the unconditional CAPM, 
but a large literature has soundly rejected this model using various characteristic-sorted portfolios 
as test assets.

To level the playing field, we ask all models to price MHR to the FF5 factors. We have converged 
on this set of factors because it is a relatively recent set of factors that are arguably important for 
the cross-sectional asset pricing. Also, the factors are available across the data spans applicable to 
all the models that we study.

As in the baseline case, the models are estimated to match its factor single-horizon returns (SHR). 
Thus, to establish a straw man, we first test if models price SHR to the FF5 factors. One can 
anticipate that some of our models would be rejected on the basis of SHR alone. After all, that is 
the reason for Fama and French (2015) to introduce the five-factor structure.

Indeed, as Table A3 demonstrates, all the models on Panel A are rejected on the basis of SHR (the 
SHR test for FF5 is not applicable because in this case testing coincides with the baseline). In 
Panel B, which contains more recent models, only HKS is rejected using SHR to the FF5 factors. 
The MHR test rejects all the models.
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A.10 Alternative factor timing

In order to obtain bt in Equation (5), we explicitly estimate Et(Ft,t+1) and Vt(Ft,t+1) for each
model. We emphasize that, because of the illustrative nature of our exercise, the estimation is
in-sample. We estimate the conditional monthly variance-covariance matrix of the factor returns
using the multivariate CCC-GARCH method of Bollerslev (1990). We estimate conditional mean
of each element k of the vector of factors F using a simple regression model that is motivated by
the uncovered strong dependencies in factor returns documented in Section 3.5:

F it,t+1 = βi,0 +
n∑
j=1

βi,hj
x
(hj)
i,t + εit+1,

where x
(h)
i,t =

∑h
j=1 F

i
t−j,t−j+1. We use the same horizons h as in our GMM tests.

We follow the post LASSO approach of Belloni and Chernozhukov (2013) to estimate the regression 
above for each factor. That is, we use the LASSO to select strong predictive variables and, because 
the LASSO yields biased return estimates, we next use OLS with these selected regressors to get 
conditional expectation Et(F it,t+1).

Lastly, because dividing by estimated variance introduces a bias, we rescale each element i of the 
estimated version of portfolio weights in (5) by a constant, bi. We mitigate the bias by ensuring, via 
bi, for i = 1, ..., K that the unconditional factor SHRs are priced correctly. That is also consistent 
with our testing strategy in the constant b case of the preceding section. Thereby, this approach 
connects with factor-timing, bt, as described in Equation (3), with D0 = 0, diagonal D1 with 
element i equal to bi, and zt = bt, where the latter are UMVE portfolio weights as defined in 
Equation (5).

Table A4 presents test results along with pricing errors and Sharpe ratios. The results suggest 
that, overall, we reject the same models as in the case of constant b. There are some differences. 
MKT+BAB is marginally rejected when b is constant, while we fail to reject when it is time-varying. 
FF3+MOMs p−value is 0.020, a rejection when bt is time-varying.

Table A4 shows the Sharpe ratio of the additional test asset, which is constructed as the UMVE 
portfolios F Ut,t+1 implied from each model’s estimated conditional factor means and covariance 
matrices as described in Equation (5). This is the maximal Sharpe ratio, comparable to that given 
in Table 1 for the constant b models. As one would expect, the Sharpe ratio reported for the models 
with time-varying bt are generally higher than those from the constant b versions of the models. 
SY’s maximal Sharpe ratio decreases, indicating poor estimates of the conditional factor dynamics 
for this model.

Table A4 reports MAPE across the original factors and horizons and is, thereby, comparable to the 
ones in Table 1. As an example, the constant b MAPE for the F F 5DMRS model is 3.4%, while 
it is 20% for the time-varying bt case. This occurs despite the maximal Sharpe ratio increasing 
from 1.59 to 1.83 with factor timing. That is the case more generally. Despite the increase in the 
maximal Sharpe ratios, the MAPEs across models are in many cases higher than those reported for 
the constant b case.
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While it might seem surprising that pricing errors increase when the model’s maximal Sharpe ratio
increases, thus presumably getting closer to the true UMVE portfolio, this is a manifestation of the
Herculean task of estimating the correct conditional dynamics. Misspecification in the conditional
mean and variance processes likely results in persistent errors, which in turn show up in MHR per
Equation (9).

As in Section 4.2, we report the maximal annualized Information ratio for each model by running

regressions (7). The left hand side test assets returns are z
(h)
i,t × F it,t+1 for factor i and horizon h,

where we again add the timing UMVE portfolio as a test asset. In this case, the right-hand side
factor is the implied UMVE portfolio. The Information ratios are similar to those of the constant b
models, although these are not directly comparable due to the addition of the MHR-based return
of UMVE portfolio in each model as a test asset.
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Figure 1
Term structure of annualized factor pricing errors I

(A) CAPM (B) MKT+BAB
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(C) FF3+MOM (D) FF5
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The panels show factor pricing errors for various models at horizons 3, 6, 12, 24, and 48 months.

Annualized pricing errors at horizon h are 12/h × ET (z
(h)
i,t Mt,t+1F

i
t,t+1), where ET denotes the

sample average, z
(h)
i,t is the endogenous conditioning variable for factor i at horizon h described in

the main text, and F it,t+1 is the return to factor i. The population average of a correctly specified
model is zero. The sample is monthly, from 1963 to 2017.
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Figure 2
Term structure of annualized factor pricing errors II

(A) FF5DMRS (B) SY
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(C) HXZ (D) HKS
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The panels show factor pricing errors for various models at horizons 3, 6, 12, 24, and 48 months.

Annualized pricing errors at horizon h are 12/h × ET (z
(h)
i,t Mt,t+1F

i
t,t+1), where ET denotes the

sample average, z
(h)
i,t is the endogenous conditioning variable for factor i at horizon h described in

the main text, and F it,t+1 is the return to factor i. The population average of a correctly specified
model is zero. The sample is monthly, from 1963 to 2017 for FF5DMRS , 1963 to 2016 for SY, 1967
to 2017 for HXZ, and 1974 to 2017 for HKS.
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Figure 3
Information ratios I

(A) CAPM (B) MKT+BAB
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(C) FF3+MOM (D) FF5

3 6 12 24 48

Horizons

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

A
n

n
u

a
liz

e
d

 I
n

fo
rm

a
tio

n
 R

a
tio

3 6 12 24 48

Horizons

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

A
n

n
u

a
liz

e
d

 I
n

fo
rm

a
tio

n
 R

a
tio

The panels show annualized Information Ratios (IR) for one factor from each model corresponding
to timing strategies based on the 3, 6, 12, 24, and 48 month horizon moments. The information
ratio is defined as

√
12α/σ(ε). For each model the chosen factor is the one with the maximal average

pricing error (see Figure 1). The chosen factors are MKT (CAPM), BAB (MKT+BAB), MOM
(FF3+MOM), and RMW (FF5). The sample is monthly, from 1963 to 2017.
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Figure 4
Information ratios II

(A) FF5DMRS (B) SY
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(C) HXZ (D) HKS
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The panels show annualized Information Ratios (IR) for one factor from each model corresponding
to timing strategies based on the 3, 6, 12, 24, and 48 month horizon moments. The information
ratio is defined as

√
12α/σ(ε). For each model the chosen factor is the one with the maximal average

pricing error (see Figure 2). The chosen factors are SMB (FF5DMRS), PERF (SY), ROE (HXZ),
and PC2 (HKS). The sample is monthly, from 1963 to 2017 for FF5DMRS , 1963 to 2016 for SY,
1967 to 2017 for HXZ, and 1974 to 2017 for HKS.
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Figure 5
Max Sharpe ratio of single-horizon factor model vs.
multi-horizon pricing errors
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Max Sharpe Ratio vs. Mean Absolute Pricing Error (MAPE)

The figure plots the annualized maximal in-sample Sharpe ratio combination of the factors in each
model against the annualized mean absolute pricing error (MAPE) of the corresponding model,
when the model is estimated using one-period returns and tested on excess factor returns with
horizons 1, 3, 6, 12, 24, and 48 months. The sample is monthly, from 1963 to 2017 for all models
except SY, which is 1963 to 2016, HXZ, which is 1967 to 2017, and HKS, which is 1974 to 2017.
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Figure 6
Cumulative autocorrelations I

(A) CAPM (B) MKT+BAB
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(C) FF3+MOM (D) FF5
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The panels show cumulative autocorrelation coefficients for one factor from each model from the 
1- to 48-month horizon. For each model the chosen factor is the one with the maximal average 
pricing error (see Figure 1). The chosen factors are MKT (CAPM), BAB (MKT+BAB), MOM 
(FF3+MOM), and RMW (FF5). The red, dashed lines give the cumulative autocorrelation of the 
factor returns as implied by the model the factor belongs to, and the dotted lines give the associated 
90% confidence bands. The sample is monthly, from 1963 to 2017.

77



Figure 7
Cumulative autocorrelations II

(A) FF5DMRS (B) SY

0 10 20 30 40 50

Months

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

C
um

ul
at

iv
e 

au
to

co
rr

el
at

io
n

Data
Implied

0 10 20 30 40 50

Months

-0.5

0

0.5

1

1.5

2

C
um

ul
at

iv
e 

au
to

co
rr

el
at

io
n

Data
Implied

(C) HXZ (D) HKS
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The panels show cumulative autocorrelation coefficients for one factor from each model from the 1-
to 48-month horizon. For each model the chosen factor is the one with the maximal average pricing 
error (see Figure 2). The chosen factors are SMB (FF5DMRS ), PERF (SY), ROE (HXZ), and PC2 
(HKS). The red, dashed lines give the cumulative autocorrelation of the factor returns as implied 
by the model the factor belongs to, and the dotted lines give the associated 90% confidence bands. 
The sample is monthly, from 1963 to 2017 for FF5DMRS , 1963 to 2016 for SY, 1967 to 2017 for 
HXZ, and 1974 to 2017 for HKS.
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Figure 8
Term structure of Sharpe ratios I

(A) CAPM (B) MKT+BAB
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(C) FF3+MOM (D) FF5
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The panels show annualized Sharpe ratios for one factor from each model. For each model the chosen 
factor is the one with the maximal average pricing error (see Figure 1). The chosen factors are MKT 
(CAPM), BAB (MKT+BAB), MOM (FF3+MOM), and RMW (FF5). In each case, we add the 
gross real risk-free rate to the factor return and get h-period returns to this portfolio as Rt,t+h = 
Rt,t+1 × Rt+1,t+2 × ... × Rt+h−1,t+h. The h-period√risk-free rate is found in the same way. We then 
calculate the h-period annualized Sharpe ratio as 12/h×E(Rt,t+h−Rft,t+h)/V 1/2(Rt,t+h−Rft,t+h)
(solid, blue line). The red, dashed lines give the annualized Sharpe ratios as implied by the model 
the factor belongs to, and the dotted lines give the associated 90% confidence bands. The sample 
is monthly, from 1963 to 2017.
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Figure 9
Term structure of Sharpe ratios II

(A) FF5DMRS (B) SY
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(C) HXZ (D) HKS
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The panels show annualized Sharpe ratios for one factor from each model. For each model the
chosen factor is the one with the maximal average pricing error (see Figure 2). The chosen factors
are SMB (FF5DMRS), PERF (SY), ROE (HXZ), and PC2 (HKS). We add the gross real risk-free
rate to the factor return and get h-period returns to this portfolio as Rt,t+h = Rt,t+1 ×Rt+1,t+2 ×
... × Rt+h−1,t+h. The h-period risk-free rate is found similarly. The h-period annualized Sharpe

ratio is then
√

12/h×E(Rt,t+h−Rft,t+h)/V 1/2(Rt,t+h−Rft,t+h) (solid, blue line). The red, dashed
lines give the annualized Sharpe ratios as implied by the model the factor belongs to, and the 
dotted lines give the associated 90% confidence bands. The sample is monthly, from 1963 to 2017 
for FF5DMRS , from 1963 to 2016 for SY, 1967 to 2017 for HXZ, from 1974 to 2017 for HKS.
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Table 1: MHR tests of linear factor models

Panel A: CAPM MKT+BAB FF3+MOM FF5
p−value (GMM) 0.191 0.059 0.073 0.022
MAPE 0.007 0.030 0.076 0.019
Max Sharpe Ratio 0.395 0.701 1.004 1.116
Max Information Ratio 0.380 0.613 0.909 1.025

Panel B: FF5DMRS SY HXZ HKS
p−value (GMM) 0.006 0.024 0.023 0.025
MAPE 0.034 0.119 0.061 0.068
Max Sharpe Ratio 1.588 1.670 1.431 1.308
Max Information Ratio 1.017 0.939 0.907 1.135

The first row of each panel gives the p−value from the GMM J−test, where the
linear factor models are estimated on the one-period factor returns and tested on
multi-horizon factor returns. The second row displays the annualized mean absolute
price error (MAPE) across the test assets. The returns horizons used are 1, 3,
6, 12, 24, and 48 months. The table also reports the sample Sharpe ratio of the
in-sample MVE combination of each model’s factors, as well as maximal annualized
Information ratio implied by the MHR returns. The sample is monthly, from 1963
to 2017 for all models except SY, which is 1963 to 2016, HXZ, which is 1967 to
2017, and HKS, which 1974 to 2017.
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Table 2: MHR tests of conditional linear factor models: out-of-sample conditioning

Panel A:
Volatility Timing CAPM FF3+MOM FF5
p−value (GMM) 0.037 0.000 0.000
MAPE 0.014 0.051 0.077
Max Sharpe Ratio 0.416 1.183 1.149
Max Information Ratio 0.642 1.172 1.245

Panel B:
HKS Factor Timing Et only Et and Vt
p−value (GMM) 0.040 0.026
MAPE 0.032 0.025
Max Sharpe Ratio 1.242 1.109
Max Information Ratio 1.674 1.709

Panel C:
KNS Stock Timing L1 − L2 penalty L1 penalty
p−value (GMM) 0.014 0.000
MAPE 0.034 0.066
Max Sharpe Ratio 3.898 3.028
Max Information Ratio 0.659 0.768

Panels A and B report test statistics from the factor models with time-varying
SDF loadings bt, as opposed to the constant b model tests given in Table 1. The
bt are computed out-of-sample. The exception is HKS, where Et is computed
out-of-sample but the conditional covariance Vt is computed in-sample. The first 
row of each panel gives the p-value from the GMM J-test. The returns horizons 
used in the test are 1, 3, 6, 12, 24, and 48 months. The second row gives the mean 
absolute pricing errors (MAPE) of the model factors across horizons, excluding the 
pricing errors of the timing portfolio so as to be comparable to the MAPEs in Table 
1. The third row gives the sample annualized maximal Sharpe ratio as implied by 
the model with time-varying bt, while the fourth row gives the maximal Information 
ratio implied by all MHR returns. The sample is monthly, from 1963 to 2017 for 
Volatility Timing, and from 1996 to 2017 for HKS. Panel C shows results from 
the UMVE construction using non-linear functions of characteristics and machine 
learning methods by Kozak, Nagel, and Santosh (2020). Here the sample is daily, 
from 1974 to 2017.
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Table A1: MHR tests of linear factor models: HAR standard errors

Panel A: CAPM MKT+BAB FF3+MOM FF5
p−value (GMM) 0.693 0.000 0.000 0.000

Panel B: FF5DMRS SY HXZ HKS
p−value (GMM) 0.000 0.000 0.000 0.000

The first row of each panel gives the p−value from the GMM J−test, where the
linear factor models are estimated on the one-period factor returns and tested on
multi-horizon factor returns. Different from Table 1, the p−value is calculated via
standard GMM formulas with HAR-adjustment, as opposed to fully imposing the
null hypothesis as we do in our porposed test. The return horizons used are 1, 3, 6,
12, 24, and 48 months as before. The sample is monthly, from 1963 to 2017 for all
models except SY, which is 1963 to 2016, HXZ, which is 1967 to 2017, and HKS,
which 1974 to 2017.
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Table A2: MHR tests of linear factor models: out-of-sample instruments

Panel A: CAPM MKT+BAB FF3+MOM FF5
p−value (GMM) 0.582 0.201 0.044 0.146
MAPE 0.005 0.030 0.102 0.172
Max Sharpe Ratio 0.508 0.781 0.931 1.212
Max Information Ratio 0.366 0.849 1.040 1.180

Panel B: FF5DMRS SY HXZ HKS
p−value (GMM) 0.000 0.001 0.165 0.041
MAPE 0.190 0.317 0.110 0.172
Max Sharpe Ratio 1.718 1.662 1.372 1.372
Max Information Ratio 1.584 1.257 0.903 1.264

The first row of each panel gives the p−value from the GMM J−test, where the
linear factor models are estimated on the one-period factor returns and tested on
multi-horizon factor returns. In this case, the timing weights are estimated in
an out-of-sample fashion. The second row displays the annualized mean absolute
price error (MAPE) across the test assets. The returns horizons used are 1, 3,
6, 12, 24, and 48 months. The table also reports the sample Sharpe ratio of the
in-sample MVE combination of each model’s factors, as well as maximal annualized
Information ratio implied by the MHR returns. The sample is monthly, starting in
July 1983 for all models, with the earlier data used as a burn-in period to help with
estimation of the out-of-sample instruments.
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Table A3: MHR tests of linear factor models: MHR to the same assets

Panel A: CAPM MKT+BAB FF3+MOM FF5
p−value (SHR) 0.000 0.000 0.000 NaN
p−value (GMM) 0.000 0.000 0.002 0.022
MAPE 0.032 0.026 0.029 0.019
Max Sharpe Ratio 0.395 0.701 1.004 1.116
Max Information Ratio 1.238 1.118 1.079 1.025

Panel B: FF5DMRS SY HXZ HKS
p−value (SHR) 0.562 0.652 0.670 0.010
p−value (GMM) 0.015 0.036 0.037 0.005
MAPE 0.037 0.061 0.031 0.023
Max Sharpe Ratio 1.588 1.671 1.429 1.301
Max Information Ratio 1.021 0.958 1.001 1.144

In this table all models are tested using MHR to the FF5 factors. The models are 
estimated by pricing the one-period returns to the model’s own factors without 
error. The second row of each panel gives the p−value from the GMM J−test, 
where the linear factor models are estimated on the one-period factor returns and 
tested on multi-horizon factor returns. The third row displays the annualized 
mean absolute price error (MAPE) across the test assets. The returns horizons 
used are 1, 3, 6, 12, 24, and 48 months. The table also reports the sample 
Sharpe ratio of the in-sample MVE combination of each model’s factors, as well as 
maximal annualized Information ratio implied by the MHR returns. The first row 
gives the p-values when the additional test assets are only single-period return to 
the FF5 assets. The sample is monthly, from 1963 to 2017 for all models except 
SY, which is 1963 to 2016, HXZ, which is 1967 to 2017, and HKS, which 1974 to 2017.
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Table A4: MHR tests of conditional linear factor models

Panel A: CAPM MKT+BAB FF3+MOM FF5
p−value (GMM) 0.878 0.189 0.020 0.007
MAPE 0.003 0.044 0.088 0.055
Max Sharpe Ratio 0.396 0.919 1.226 1.380
Max Information Ratio 0.347 0.667 0.974 1.093

Panel B: FF5DMRS SY HXZ HKS
p-value (GMM) 0.002 0.000 0.003 0.018
MAPE 0.200 0.126 0.201 0.122
Max Sharpe Ratio 1.832 1.604 1.631 1.540
Max Information Ratio 1.140 1.385 1.081 1.261

This table reports test statistics from the factor models with time-varying SDF
loadings bt, as opposed to the constant b model tests given in Table 1. The first
row of each panel gives the p-value from the GMM J-test. The returns horizons
used in the test are 1, 3, 6, 12, 24, and 48 months. The second row gives the mean
absolute pricing errors (MAPE) of the model factors across horizons, excluding the
pricing errors of the timing portfolio so as to be comparable to the MAPEs in Table
1. The third row gives the sample annualized Sharpe ratio of the unconditional
MVE portfolio as implied by the model with time-varying bt, as well as maximal
annualized Information ratio implied by all MHR returns. The sample is monthly,
from 1963 to 2017 for all models except SY, which is 1963 to 2016, HXZ, which is
1967 to 2017, and HKS, which 1974 to 2017.
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The Impact of Policy on the Risk-Return Relationship

Stig R. H. Lundeby

May 10, 2021

Abstract

I incorporate counter-cyclical monetary and fiscal policy into an otherwise standard long-run risk

model. The policy acts as a partial insurance to investors. As insurances are negative “beta” assets, the

policy typically earns a negative risk premium. Furthermore, insurance becomes more valuable in risky

times, thereby weakening the risk-return trade-off. I also find that a policy intended to insure the market

can at times increase risk and risk-premia.
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1 Introduction

Negative news about the economy, often signaled or accompanied by stock market turmoil, frequently

triggers fiscal and monetary stimulus. The policy response has in recent decades been both swift and

strong. Market participants therefore expect substantial policy response to significantly negative stock

market returns also going forward.

This paper incorporates fiscal and monetary policy into a standard long-run risk economy (Bansal

and Yaron, 2004). The policy response is triggered by poor economic or stock market performance, thus

effectively insuring investors. This insurance is a negative beta asset which means it carries a negative

risk premium. When overall risk in the economy increases, the insurance becomes more valuable and

thus more strongly impacts the stock market. The insurance thereby also gains a stronger impact on

expected return on the stock market. Thus, increased risk is attenuated by increased insurance, thereby

dampening the increase in expected return in response to increased risk.

“A rebound fueled by unprecedented fiscal and monetary efforts has pushed global indexes

back up, though economies remain fragile and life in many places is on hold amid a slower-

than-expected vaccine rollout”

- Bloomberg, February 12, 2021 a

ahttps://www.bloomberg.com/markets/fixed-income

The current pandemic illustrates the point well. Between February 20, 2020 and March 20, 2020, the

S&P 500 fell by a little over 30%. By March 26, 2020 S&P 500 had recovered about one third of the

initial loss and by April 20, 2020 half the initial loss was recovered. In fact, the S&P 500 had completely

recovered by August and, despite second and third waves of infections, closed the year 16% higher than it

started. For comparison, the Bureau of Economic Analysis reports that real GDP in the fourth quarter of

2020 was 2.4% smaller than fourth quarter 2019.1 Over the same time period we saw fiscal and monetary

responses of an unprecedented scale. Elgin, Basbug and Yalaman (2020) calculates that as of April 2020

the fiscal stimulus package in the US amounted to 10.50% of GDP. As of January 7, 2021, this figure

had risen to 18.22% of GDP. Including the latest stimulus package from the Biden administration, the

Washington Post reports that the total US fiscal stimulus amounts to an astonishing 27.09% of GDP.2

The US also saw exceptionally accommodating monetary policy. On unscheduled FOMC meetings on

March 3, 2020 and later on March 15, 2020 the Federal Reserve cut its target rate by 0.5 and 1 percentage

points respectively. Additionally, on the March 15 meeting, the Federal Reserve also announced that it

would purchase at least $500 billion of Treasuries and at least $200 billion of agency mortgage-backed

securities over the coming months. In fact, the Federal Reserve purchased $3 trillion of assets in the space

1Source: https://www.bea.gov/news/2021/gross-domestic-product-fourth-quarter-and-year-2020-second-estimate
2The Washington Post on March 10, 2021 (source: https://www.washingtonpost.com/world/2021/03/10/coronavirus-

stimulus-international-comparison/)
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of three months, almost doubling its balance sheet (Putniņš, 2020). Putniņš (2020) calculates that the

aggressive monetary response accounted for one third of the rebound in stock markets since March 2020.

A similar conclusion is reached in an IMF report:

“The disconnect between the performance of stock markets and the real economy ... has

become a topic of much interest and debate. After considering several hypotheses for the

disconnect, this note concludes that the most compelling is that unprecedented monetary

policy actions, while needed to stem the impact of COVID-19, have driven asset prices up”

- Igan, Kirti and Peria (2020)

The policy response during the pandemic is not an isolated event, except perhaps for the scale. The

financial crisis of 2007-2009 saw large fiscal and monetary responses both in the US and around the

world. Policies ranged from rate cuts and large scale asset purchase programs (QE) by central banks

to direct fiscal transfers, tax reductions, and increased government spending. Indeed, counter-cyclical

government responses to recessions is nothing new. Ever since the Great Depression and the ensuing

stimulus packages, like the New Deal, many governments and central banks have adopted Keynesian

ideas by seeking to boost output and employment when economic downturns threaten. Thus, it seems

plausible that investors expect some form of government stimulus when times are bad in the overall

economy.

Furthermore, there seems to be an increasing amount of evidence for policy not only responding to

economy-wide downturns, but also to worsening conditions in asset markets. For instance, Cieslak and

Vissing-Jorgensen (2020) use textual analysis of FOMC documents to find that negative stock-market

mentions predict federal funds rate cuts in the period since mid-1990s. Rigobon and Sack (2003) estimates

that a 5% drop in the stock market is associated with a 50 percentage point increase in the probability of

a 25 bp monetary easing. Bernanke and Kuttner (2005) estimates that a 25 bp (unexpected) monetary

easing causes the stock market to increase by about one percent. There is an asymmetry in the Federal

Reserve’s responses to stock market performance. Fed policy responds promptly to falling stock markets

while it does not seem to tighten policy in response to rising markets (e.g. Dahiya, Kamrad, Poti and

Siddique (2019) and Putniņš (2020)). This asymmetry in policy response has received a lot of attention

by practitioners to the point that terms like “the Greenspan put”, “the Yellen put”, “the Powell put”

etc. has become so common that many now just refer to “the Fed put”.

“It’s official: there is a Greenspan put option. Yesterday’s half a percentage point interest

rate cut by the US Federal Reserve may not have been designed explicitly to bail out the

stock market. But that is exactly what it is in danger of doing - especially since the cut came

between official meetings, thereby heightening its impact”

- The Financial Times, January 4, 2001

89



Nor is the monetary policy restricted to adjusting policy rates. Since the financial crisis, central banks

around the world have increasingly relied on QE to achieve their policy goals. While there have been

considerable debate about the effectiveness of QE on the broader economy and the channels through

which it works, there is an increasing amount of evidence that QE boosts asset prices (e.g. Barbon and

Gianinazzi (2019), Putniņš (2020)). QE comes in many flavors, the Federal Reserve buys Treasuries

and mortgage backed securities, while the Bank of Japan buys exchange traded funds (ETFs) to the

extent that it has become one of the largest shareholders in several Nikkei index companies (Barbon

and Gianinazzi (2019)). Furthermore, the Federal Reserve balance sheet seems to behave in a manner

consistent with a “Fed put”. Putniņš (2020) estimates that a 10% fall in the stock market is associated

with a balance sheet expansion of about 5.5%, while a positive return does not result in a similar balance

sheet contraction.

Clearly there is a large degree of heterogeneity in policies and the channels through which they operate.

In this paper I wish to capture the insurance aspect. Government policy is therefore modeled as transfers

to the market from the non-traded economy, where the rule governing the transfers is allowed to be very

general. This allows me to capture two important features: (1) policy is expansive in “bad” times, (2)

expansive policy increases market prices all else equal. Since I consider a representative agent, endowment

economy, the policy does not affect the pricing kernel. As a consequence, the results in this paper is driven

by the correlation between market return and the pricing kernel. In particular, when risk is high, the

insurance becomes valuable and the correlation between market returns and the pricing kernel decreases

in magnitude.

Bruno and Haug (2018) show that leverage causes idiosyncratic return volatility to be correlated with

expected return. They arrive at this conclusion by considering equity as a call option on assets. In my

paper the government policy can be thought of as put options. The market is then a portfolio of the

“fundamental” market and put options, which we expect should behave much like a call. My paper differs

from theirs in a few important aspects. First, they take the leverage as given, which translates into a

fixed (known) strike price. In my setup, government policy reacts to shocks in the economy. This gives

rise to an interesting term structure of discount rates for the policy. Since the payoffs from policies in the

near future tend to be negatively related to the economy, they earn a negative risk premium. However,

as long as the government stimulus relative to the size of the stock market is stationary, i.e. the size of

the stimulus does not persistently grow or fall as a fraction of market capitalization, the payoffs from

government policies further in the future must be positively related to the economy. As a result, discount

rates for policy payoffs far enough into the future must be positive. The policy response is akin to the

government writing put options. Since the policy is expected to continue in the future, the policy acts

as a portfolio of put options. Some of these options have already been written in response to recent

economic developments while a substantial part of the put portfolio reflect expected future policy. This
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expected future policy is akin to claims issued today that turn into options in the future with strike

prices determined at the time of the future issuance. For plausible policies, the strike prices are positively

related to economic fundamentals. Thus, the future options have a similar risk exposure as the overall

market.

There are several papers that have shown a seeming disconnect between the risk in the stock market

as measured by its variance and expected returns, e.g. Moreira and Muir (2017) shows that a timing

strategy that takes a smaller (larger) position in the market when the variance is high (low) earns alpha

with respect to the market and increases the Sharpe ratio. Similarly, Glosten, Jagannathan and Runkle

(1993) find a negative relationship between conditional variance and conditional expected returns. These

results are puzzling from a theoretical point of view, as most models imply that the risk premium should

be higher in risky times. In my setup, the government policy is able to generate the weak risk-return

trade-off observed in these papers.

Lochstoer and Muir (2020) show that the weak risk-return trade-off uncovered in these papers can

be explained by investors having biased expectations about volatility. In my paper, investors are fully

rational, but the presence of a counter-cyclical policy changes both the market’s conditional variance and

conditional correlation with the pricing kernel. The variance of market returns therefore becomes less

connected to priced risk.

2 Model

In this section I present the economy and some theoretical results. The starting point is a long-run

risk endowment economy similar to that in e.g. Bansal and Yaron (2004), which I will refer to as the

fundamental economy. The aggregate consumption in the economy is the sum of dividends on a stock

market index, henceforth the fundamental market, and income from other sources, e.g. human capital. I

will then introduce a government policy that acts as a partial insurance to investors in the fundamental

market while leaving aggregate consumption unchanged. In other words, the policy payoff at any time is

financed by the non-traded economy. This implies the pricing kernel is the same in the insured economy as

in the fundamental economy. While it would certainly be interesting to allow for macroeconomic effects of

the policy, I show that even in the absence of such effects, government policy can have significant impact

on risk-return relationships in financial markets. This is particularly interesting given the debate about

the efficacy of QE on stimulating the broader economy.
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2.1 Fundamental Economy

The starting point is an economy similar to that in Bansal and Yaron (2004). The investor has Epstein-Zin

preferences where the value function is

Vt ≡ max
Ct,ωt

{
C

1− 1
ψ

t + βEt(V 1−γ
t+1 )

1− 1
ψ

1−γ
} 1

1− 1
ψ (1)

β is the discount factor of future utility, ψ is the intertemporal elasticity of substitution (IES) and γ is

the coefficient of relative risk aversion. The budget constraint is

Wt+1 = (Wt − Ct)ω>t Rt+1 ≡ (Wt − Ct)Rω,t+1 (2)

ωt is a vector of time t portfolio weights, Rt+1 a vector of asset returns and Rω,t+1 is the corresponding

portfolio return. We allow for the possibility of non-traded assets (like human capital), in which case the

dividend on the non-traded asset is simply the consumption it offers each period. The return on such an

asset would only be implicit - the price is set such that the investor would not want to trade it even if he

could. Epstein and Zin (1991) shows that the stochastic discount factor in this economy can be written

(see appendix A)

Mt+1 = βθ
(Ct+1

Ct

)− θ
ψ
Rθ−1
c,t+1 (3)

where θ ≡ 1−γ
1− 1

ψ

and Rc,t+1 is the implicit return on an asset that pays aggregate consumption as dividends

each period. It is worth noting that the CRRA expected utility SDF obtains if γ = 1
ψ

. If γ > 1
ψ

, we have

preference for early resolution of uncertainty. We usually consider γ > 1 and ψ ≥ 1, i.e. the investor

is more risk-averse and more willing to substitute (risk-free) consumption across time than a log-utility

investor. These parameter choices would imply θ < 0.

Suppose the aggregate log consumption and the log dividend on a broad stock portfolio (the funda-

mental market) evolves as follows

∆ct+1 = µc + xt+1 −
τ

2
σ2
t −

τx
2
σ2
x,t + σtεt+1

∆dt+1 = µd + %∆ct+1 −
τd
2
σ2
d,t + σd,tεd,t+1

xt+1 = ρxxt + σx,tεx,t+1

σ2
t+1 = ϕσ2

t + ηt+1

σ2
d,t+1 = ϕdσ

2
d,t + ηd,t+1

σ2
x,t+1 = ϕxσ

2
x,t + ηx,t+1

where ρx, ϕ, ϕx, ϕd ∈ (0, 1). The shocks are assumed independent of each other and across time with
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(εt+1, εx,t+1, εd,t+1)′ ∼ N(0, I) and ηi,t+1 ∼ IG
(
(1− ϕi)σ2

i , λi
)
. The variance shocks have means

Et(ηi,t+1) = (1− ϕi)σ2
i

i.e. the variances follow AR(1) processes with means σ2
i . Throughout, I will refer to the ε.,t+1 shocks as

cash-flow shocks, σ2
t , σ

2
x,t as systematic risk and σ2

d,t as idiosyncratic/unsystematic risk.

This dividend and consumption process is a generalization of Bansal and Yaron (2004) in that we allow

current variance processes to directly affect expected consumption and dividend growth. In their set-up,

it is assumed that variances does not forecast dividends and consumption in logs, with the consequence

that variances must forecast levels positively. In my set-up, setting τi = 1 implies levels are not forecasted

by variance, setting τi > 1 implies levels are negatively forecasted by variance and vice versa for τi < 1.

There might be some reasonable arguments for why variances should forecast lower growth, e.g. a greater

uncertainty might slow down investments in positive NPV risky projects until more information arrives,

resulting in a lower growth for dividends or consumption.

Another slight deviation from the typical set-up is that I assume the variance shocks are Inverse Gaus-

sian distributed. The Inverse Gaussian distribution has two attractive features over the more standard

assumption that shocks to variance is normal: (1) the Inverse Gaussian distribution has positive support,

eliminating the possibility of negative variances, (2) the distribution is positively skewed, which is in line

with what we typically observe for variance processes. Additionally, the Inverse Gaussian distribution

(like the normal distribution) has a moment generating function, which makes it tractable to find an ap-

proximate partial analytical solution to the model using the same log-linearization technique as employed

by Bansal and Yaron (2004) and Campbell and Shiller (1988).

To price the cash flows, let us rewrite the discount factor in logs as

mt+1 = θlog(β)− θ

ψ
∆ct+1 + (θ − 1)rc,t+1 (4)

Note that the log return to an asset i can be written as (see Appendix B)

ri,t+1 = log
(
ezi,t−zi,t+1 + ezi,t

)
+ ∆di,t+1

where zi,t ≡ log(
Di,t
Pi,t

). We can approximate the log-return by taking a first-order Taylor approximation

of log
(
ezi,t−zi,t+1 + ezi,t

)
around E(zi,t+1) = E(zi,t) ≡ zi. We then get (see Appendix B)

ri,t+1 = κi,0 + zi,t − κi,1zi,t + ∆di,t+1
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In particular, for the implicit return rc,t+1 we have

rc,t+1 = κc,0 + zc,t − κc,1zc,t+1 + ∆ct+1 (5)

and the log-SDF is

mt+1 = θlog(β)−
(

1− θ +
θ

ψ

)
∆ct+1 + (θ − 1)(κc,0 + zc,t − κc,1zc,t+1) (6)

The log consumption-price ratio can be written as an affine function of the state variables xt, σ
2
t and

σ2
x,t as follows 3.

zc,t = Ac +Ac,xxt +Ac,σ2σ2
t +Ac,σ2

x
σ2
x,t (7)

Substituting in the assumed processes for the state variables in t+ 1 gives us the following expression

for the return and SDF (see Appendix D)

rc,t+1 = Γrc + Γrc,xxt + Γrc,σ2σ2
t + Γrc,σ2

x
σ2
x,t + Γrc,εσtεt+1 + Γrc,εxσx,tεx,t+1 + Γrc,ηηt+1 + Γrc,ηxηx,t+1

mt+1 = Γm + Γm,xxt + Γm,σ2σ2
t + Γm,σ2

x
σ2
x,t − Γm,εσtεt+1 − Γm,εxσx,tεx,t+1 − Γm,ηηt+1 − Γm,ηxηx,t+1

In Appendix D, I show that Γm,η and Γm,ηx are negative for plausible parameter values. Thus, shocks to

variance would be positively related to marginal utility. Assets that pay off more in such states, should

therefore carry a negative risk premium. A put option is one such asset.

Similarly, we can log-linearize the return to the fundamental market portfolio. In this case, the log

dividend-price ratio is also a function of the idiosyncratic volatility since it enters the dividend process

directly 4

zd,t = Ad +Ad,xxt +Ad,σ2σ2
t +Ad,σ2

x
σ2
x,t +Ad,σ2

d
σ2
d,t (8)

And the resulting log-return is given by (see Appendix D)

rd,t+1 = Γrd + Γrd,xxt + Γrd,σ2σ2
t + Γrd,σ2

x
σ2
x,t + Γrd,σ2

d
σ2
d,t

+ Γrd,εσtεt+1 + Γrd,εxσx,tεx,t+1 + Γrd,εdσd,tεd,t+1 + Γrd,ηηt+1 + Γrd,ηxηx,t+1 + Γrd,ηdηd,t+1 (9)

3Note that in a representative agent economy, the consumption-price ratio on the consumption portfolio should not depend
on the idiosyncratic volatility σd,t as this does not affect current or future consumption. However, the dividend-price ratio on
the fundamental market portfolio should depend on σd,t as it affects the expected dividend growth on this portfolio.

4Note that the idiosyncratic volatility cannot predict stock market returns in levels. The flip side is that it must predict
stock market returns in logs.
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Proposition 1. The conditional (log-) risk premium on the fundamental market is

logEt(Rd,t+1)− rf,t = α+ γ%σ2
t +

γ − κc,1ρx
ψ

1− κc,1ρx
%− κd,1ρx

ψ

1− κd,1ρx
σ2
x,t (10)

Furthermore, the risk premium is increasing in σ2
t .

Proof. See Appendix D.3. �

Corollary 1 (to Proposition 1). γψ ≥ 1 and %ψ ≥ 1 is a sufficient condition for the conditional (log-)

risk premium on the fundamental market to be increasing in σ2
x,t.

Proof. Recall that κc,1, κd,1, ρx ∈ (0, 1). The result then follows directly from Proposition 1. �

Proposition 1 tells us that the conditional risk premium on the fundamental market is affine in sys-

tematic risk and is always increasing in short-run risk σ2
t . The corollary tells us that if the investor

has a preference for late resolution of uncertainty and the fundamental market is sufficiently exposed to

consumption shocks, the risk premium is also increasing in long-run risk σ2
x,t. In particular, the typical

parameter choices γ, ψ, % ≥ 1 satisfies the condition in Corollary 1. Under the condition of Corollary 1

the risk premium is increasing in the risk aversion γ, the intertemporal elasticity of substitution ψ, the

persistence of consumption growth ρx and the market exposure % to consumption risk. The risk aversion

and consumption exposure affects both the compensation for short- and long-run risk, whereas the IES

and persistence of consumption growth only affects compensation to long-run risk.

Proposition 2. Suppose we regress the fundamental market risk premium on the fundamental market

return variance as follows

logEt(Rd,t+1)− rf,t = φ0 + φ1Vt(rd,t+1) + ut+1 (11)

The population regression coefficient is then given by

φ1 =
γ%3V(σ2

t ) +
γ−

κc,1ρx
ψ

1−κc,1ρx

(
%−

κd,1ρx
ψ

1−κd,1ρx

)3

V(σ2
x,t)

%4V(σ2
t ) +

(
%−

κd,1ρx
ψ

1−κd,1ρx

)4

V(σ2
x,t) + V(σ2

d,t)

(12)

Furthermore, γψ > 1 and %ψ > 1 is a sufficient condition for the regression coefficient to be positive.

Proof. See Appendix D.3. �

Proposition 2 tells us that if the fundamental market risk premium is increasing in long-run risk σ2
x,t it

is also higher on average when the return variance is high. Importantly, increasing the variance of idiosyn-

cratic risk, lowers the magnitude of the regression coefficient, but does not alter its sign. Additionally,
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we can see that a higher risk aversion increases the regression coefficient, causing a stronger relationship

between fundamental market return variance and risk-premium.

2.2 Insurance policy

Suppose the government introduces a form of insurance policy to the market. In particular, at each time

Th = t+ h, the government policy implies a payoff

XTh = eqTh (s)(KTh − PTh −DTh)+ = PTh−1e
qTh

(s)(e−gTh (s) − erd,Th )+ (13)

to the market, where gTh ≡ log
(
PTh−1

KTh

)
. PTh and DTh are the price and dividend on the fundamental

market at time Th.

Each of the payoffs can be priced separately and considered as separate assets or claims. Since the

payoffs in (13) are reminiscent of put option payoffs, I will often refer to each claim as a put option.

The policy is specified in terms of the pair (qTh(s), gTh(s)). We can think of qTh(s) as governing the

number of claims the government issues to the market, and gTh(s) governs the strike price of those claims.

A partial insurance would imply eqTh (s) ∈ (0, 1). The number s is a constant which I sometimes will refer

to as the duration of the options. Both qTh(s) and gTh(s) are allowed in general to depend on any shocks

and state variables between time Th − s and Th, i.e.

gTh(s) = ḡ0 +

s∑
j=0

(
ḡx,jxTh−j + ḡσ2,jσ

2
Th−j + ḡσ2

x,j
σ2
x,Th−j + ḡσ2

d
,jσ

2
d,Th−j + ḡε,jσTh−j−1εTh−j

+ ḡεx,jσx,Th−j−1εx,Th−j + ḡεd,jσd,Th−j−1εd,Th−j + ḡη,jηTh−j + ḡηx,jηx,Th−j + ḡηd,jηd,Th−j
)

(14)

qTh(s) = q̄0 +

s∑
j=0

(
q̄x,jxTh−j + q̄σ2,jσ

2
Th−j + q̄σ2

x,j
σ2
x,Th−j + q̄σ2

d
,jσ

2
d,Th−j + q̄ε,jσTh−j−1εTh−j

+ q̄εx,jσx,Th−j−1εx,Th−j + q̄εd,jσd,Th−j−1εd,Th−j + q̄η,jηTh−j + q̄ηx,jηx,Th−j + q̄ηd,jηd,Th−j
)

(15)

Observe that (qTh(s), gTh(s)) is stationary as long as s <∞. The policy payoff normalized by fundamental

market capitalization is therefore stationary as well.

2.2.1 Policy Examples

The specification in (14) and (15) is very general and allows policy to respond to any observable variable

in the economy. Table 1 gives four examples of strike prices and the corresponding ḡ parameters that

implement the policy.

In the first example (second column), strike price is simply proportional to the fundamental market

value s periods before maturity. Assuming qTh(s) ≡ q, the policy corresponds to the government every
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Table 1: Columns 2-5 are examples of possible strike price specifications contained as special
cases of the more general policy in equation (14) and the corresponding parameter values for
the ḡ-coefficients are given in the rows.

Strike Price KT

g e−gPT−s e−g
∏s
j=1 P

1/s
T−j e−ge−zd+dT−s e−ge−zd,T+dT−s

ḡ0 g+ (s−1)(µd+%µc) g + s−1
2

(µd + %µc) g + (s− 1)(µd +
%µc) + zd

g + (s− 1)(µd +
%µc) +A

ḡx,0 0 0 0 Ax

ḡx,1 %−Ax − s−1
s

(Ax − %) %−Ax %−Ax

ḡx,j % Ax
s

+ s−j
s
% % %

ḡx,s Ax
Ax
s

0 0

ḡσ2,0 0 0 0 Aσ2

ḡσ2,1 −Aσ2 − s−1
s
Aσ2 −Aσ2 −Aσ2

ḡσ2,j − %τ
2

A
σ2

s
− s+1−j

s
%τ
2

− %τ
2

− %τ
2

ḡσ2,s Aσ2 − %τ
2

1
s

(Aσ2 − %τ
2

) − %τ
2

− %τ
2

ḡσ2
x,0

0 0 0 Aσ2
x

ḡσ2
x,1

−Aσ2
x

− s−1
s
Aσ2

x
−Aσ2

x
−Aσ2

x

ḡσ2
x,j

− %τx
2

A
σ2
x
s

− s+1−j
s

%τx
2

− %τx
2

− %τx
2

ḡσ2
x,s

Aσ2
x
− %τx

2
1
s

(Aσ2
x
− %τx

2
) − %τx

2
− %τx

2

ḡσ2
d
,0 0 0 0 Aσ2

d

ḡσ2
d
,1 −Aσ2

d
− s−1

s
Aσ2

d
−Aσ2

d
−Aσ2

d

ḡσ2
d
,j − %τd

2

A
σ2
d
s

− s+1−j
s

τd
2

− %τd
2

− %τd
2

ḡσ2
d
,s Aσ2

d
− %τd

2
1
s

(Aσ2
d
− τd

2
) − %τd

2
− %τd

2

ḡε,0 0 0 0 0

ḡε,1 % s−1
s
% % %

ḡε,j % s−j
s
% % %

ḡε,s 0 0 0 0

ḡεx,0 0 0 0 0

ḡεx,1 0 0 0 0

ḡεx,j 0 0 0 0

ḡεx,s 0 0 0 0

ḡεd,0 0 0 0 0

ḡεd,1 1 s−1
s

1 1

ḡεd,j 1 s−j
s

1 1

ḡεd,s 0 0 0 0

ḡη,j 0 0 0 0

ḡηx,j 0 0 0 0

ḡηd,j 0 0 0 0

period issuing a standard European put-option with a time-to-maturity s. In other words, the government

promises the shareholders that if Pt+s+Dt+s falls sufficiently below the current fundamental market value,

the shareholders will be (partly) compensated for the loss.

The second example (the third column in Table 1) offers a smoother policy by setting the strike price
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proportional to the geometric average fundamental market capitalization between issuance at Th − s

and Th − 1. In this case, the strike price is forward-looking at issuance and falls with the fundamental

market. The policy therefore insures more against large, sudden drops in the fundamental price than

small, repeated drops that add up to a fall of similar magnitude.

The policies in the fourth and fifth columns have a slightly different flavor. In the former, the strike

price on the option expiring at t + s is set proportional to Vt = e−zd+dt , where zd is the mean log

dividend-price ratio. Note that Vt would be the fundamental market value if the dividend-price ratio at

time t was zd. We can thus think of a policy maker who calculates a pseudo price assuming discount

rates and expected dividend-growth is constant and then promises to compensate investors if the actual

market price and dividend at t+ s is sufficiently below this pseudo price. One rationale for such a policy

would be to not insure investors too much at times when discount rates are low (low discount rates imply

low zd,t and high Pt).

The final column is similar in spirit. At maturity the policymaker calculates the pseudo price Vt+s =

e−zd,t+s+dt , which is the fundamental market price at time t had the dividend-price ratio been zd,t =

zd,t+s. The strike price at maturity will therefore be high if discount rates at maturity are low and vice

versa. The policy therefore compensates falls in the stock market due to cash-flow shocks, whereas shocks

to discount rates receive less compensation.

Clearly, Table 1 only gives a flavor of the types of policies that can be entertained within my framework.

For example, we can design policies to compensate cash-flow or discount rate shocks. Or we could make it

explicitly dependent on realized or expected economic growth etc. Furthermore, all the policies in Table 1

can be conditionally scaled based on observable variables in the economy through the appropriate choice

of q̄. E.g. if the policy aims to mitigate effects arising from uncertainty, qt(s) could be dependent on

(σ2
t , σ

2
x,t, σ

2
d,t) or on Vt(rd,t+1). In summary, the very general nature of my policy specification allows

me to capture a lot of the complexity and heterogeneity observed in actual monetary and fiscal responses.

2.2.2 Policy Pricing

The time t value of the insurance payoff occurring at time Th is

PXh,t ≡ Et(Mt,ThXTh) = PtP̃
X
h,t (16)

PX0,t ≡ Xt (17)

In order to get a partial analytical price for the policy claims, the following notation proves useful.

Let Ft denote the full information set at time t generated by {εj , εx,j , εd,j , ηj , ηx,j , ηd,j}tj=−∞ and Ht the

partial information set generated by {ηj , ηx,j , ηd,j}tj=−∞. Note the latter is a coarser (smaller) information

set containing only information generated by the shocks to variance. I will use the following notation:

98



Et(X) ≡ E(X|Ft) and Et(X|Ht+h) ≡ E(X|Ft,Ht+h), i.e. an expectation with a time subscript refers to

the conditional expectation w.r.t. the full information set and use the explicit conditioning when taking

conditional expectations w.r.t. the full information set augmented by the realization of (future) variance

shocks. Furthermore, for any random variable X let

X̂T |T−j ≡ ET−j(XT |HT )

X̃T |T−j ≡ XT − X̂T |T−j

The payoff at time Th in equation (13) can be written as

XTh = PTh−1e
qTh

(s)−gTh (s)(1− erd,Th+gTh
(s))+ (18)

Note that whether the claim pays off or not only depend on rTh + gTh(s). It is useful to represent

rd,Th + gTh(s) as follows

rd,Th + gTh(s) = r̂d,Th|t + ĝTh|t(s) +

h−1∑
j=0

Kε,jσTh−1−jεTh−j +Kεx,jσx,Th−1−jεx,T−j +Kεd,jσd,Th−1−jεd,Th−j

where K·,j are constants. Let

yt,Th ≡ log(Mt,ThPTh−1)− log(Pt) + qTh(s)− gTh(s)

= m̂pTh|t + q̂Th|t(s)− ĝTh|t(s) +

h−1∑
j=0

Lε,jσTh−1−jεTh−j + Lεx,jσx,Th−1−jεx,Th−j + Lεd,jσd,Th−1−jεd,Th−j

where L·,j are constants. See Appendix E for derivations and definitions. m̂pTh|t ≡ Et(log(Mt,ThPTh−1)|HTh)−

log(Pt) is the expected value of log(Mt,ThPTh−1)− log(Pt) conditional on time t information augmented

by the variance shocks up to time Th. Thus, m̂pTh|t does not depend on the future cash-flow shocks ε·,t+j

for j > 0. Define the following conditional variances and covariance

ζy,t,Th−1 ≡ Vt
(
yt,Th

∣∣HTh) =

h−1∑
j=0

L2
ε,jσ

2
Th−1−j + L2

εx,jσ
2
x,Th−1−j + L2

εd,jσ
2
d,Th−1−j

ζrd+g,t,Th−1 ≡ Vt
(
rd,Th + gTh(s)

∣∣HTh) =

h−1∑
j=0

K2
ε,jσ

2
Th−1−j +K2

εx,jσ
2
x,Th−1−j +K2

εd,jσ
2
d,Th−1−j

ζy,rd+g,t,Th−1 ≡ Covt
(
yt,Th , rd,Th + gTh(s)

∣∣HTh)
=

h−1∑
j=0

Lε,jKε,jσ
2
Th−1−j + Lεx,jKεx,jσ

2
x,Th−1−j + Lεd,jKεd,jσ

2
d,Th−1−j

The following proposition gives a partial analytical solution to the prices of policy claims

Proposition 3. Suppose s < ∞ and K·,j 6= 0 for at least some ε, εx, εd and some j = 0, 1, . . . , h − 1.
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Then the value of the claim that expires h periods in the future is

PXh,t = PtEt

[
em̂pTh|t+q̂Th|t−ĝTh|t(s)+

ζy,t,Th−1

2

(
Φ
(
−
ĝTh|t(s) + r̂d,Th|t + ζy,rd+g,t,Th−1√

ζrd+g,t,Th−1

)
− eĝTh|t(s)+r̂d,Th|t+ζy,rd+g,t,Th−1+

ζrd+g,t,Th−1

2 Φ
(
−
ĝTh|t(s) + r̂d,Th|t + ζrd+g,t,Th−1√

ζrd+g,t,Th−1

−
√
ζrd+g,t,Th−1

))]

where Φ(.) denotes the standard normal CDF.

Proof. See Appendix E. �

Proposition 3 gives us a more efficient and precise way to calculate the claims prices. The condition

that at least one K·,j 6= 0 requires that whether the claim pays off depends on at least one cash-flow

shock.

Corollary 2 (to Proposition 3). Suppose s <∞ and K·,j = 0 for all ε, εx, εd and all j = 0, 1, . . . , h−1.

Then the value of the claim that expires h periods in the future is

PXh,t = PtEt

[
em̂pTh|t+q̂Th|t−ĝTh|t(s)+

ζy,t,Th−1

2

(
1− eĝTh|t(s)+r̂d,Th|t

)
IĝTh|t(s)+r̂d,Th|t≤0

]

where IĝTh|t+r̂d,Th|t≤0 is an indicator function that takes the value 1 if ĝTh|t+ r̂d,Th|t ≤ 0 and 0 otherwise.

Proof. See Appendix E. �

The corollary provides the partial analytical price for the claim in the case that cash-flow shocks do

not influence whether or not the claim pays off. Note that the actual cash-flow at maturity can still

depend on cash-flow shocks through PTh−1e
qTh

(s)−gTh (s). Corollary 2 then gives a way to price such

claims without having to simulate the cash-flow shocks.

Part 3 of Theorem 1 shows an interesting and perhaps paradoxical effect of the policy. Although the

policy insures the market, implicit claims today corresponding to the market’s expectation that further

insurance will be performed in the future may increase the risk of the market today and thus command

a large positive risk premium

Theorem 1. Assume s <∞ and that PXh,t is given by Proposition 3. Then

1. For h > s

Covt−1

(
σt−1εt, log(PXh,t)

)
= Covt−1

(
σt−1εt, log(Pt)

)
> 0

2. If %ψ > 1, there exists a number k s.t. ∀h > k

Covt−1

(
σx,t−1εx,t, log(PXh,t)

)
> 0
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3. If %ψ > 1, the limiting covariance

lim
h→∞

Covt−1

(
σx,t−1εx,t, log(PXh,t)

)
=
%− ρx

ψ

1− ρx
σ2
x,t−1 > Covt−1

(
σx,t−1εx,t, log(Pt)

)

Proof. See Appendix G �

Theorem 1 tells us that the policy claims maturing far enough in the future have positive risk premia.

For claims expiring h > s periods in the future, the exposure to short-run consumption shocks is the same

as that of the fundamental market. To see why this makes sense, consider the payoff at maturity given

by (13). Since dividends are random walks (with stochastic drift) the fundamental market price at Th−1

moves by the same relative amount as Pt in response to a shock εt. The requirement h > s implies that

the policy cannot respond to εt, thus the payoff exposure to εt is the same as that of PTh−1. The last two

statements are less straightforward because the policy (qTh(s), gTh(s)) can depend directly on xTh−j for

j = 0, 1, . . . , s and fundamental market return rd,Th depend on xTh . Through the dependence on xTh−j ,

they also depend on εx,t indirectly. The intuition for the result is that the indirect dependence on εx,t

decreases exponentially at rate ρh−sx with time to maturity, whereas the direct dependence coming from

current dividends never die out. Thus, at some point the latter must dominate. These results indicate

that the claims maturing far enough into the future, will carry positive risk premiums. Furthermore,

the last part of the theorem states that not only will the exposure of PXh,t to εx,t be positive for a

sufficiently long time-to-maturity, it can even be greater than the fundamental market exposure to εx,t.

As a consequence, the risk premiums on those claims can actually be higher than the risk premium on

the fundamental market.

The total market value and dividends at time t can be written

P ∗t = Pt +

∞∑
h=1

PXh,t = Pt
(

1 +

∞∑
h=1

P̃Xh,t

)
D∗t = Dt +Xt

and the total return from t to t+ 1 is

R∗t+1 = ω0,tRd,t+1 +

∞∑
h=1

ωh,tR
X
h,t+1

where ω0,t ≡ Pt
P∗t

, ωh,t ≡
PXh,t
P∗t

and RXh,t+1 ≡
PXh−1,t+1

PX
h,t

.

2.3 Intuition

Theorem 1 part 1 gives us a useful way to classify the claims. The claims maturing i ≤ s periods from now

can be thought of as options that are already issued. Correspondingly, claims that expire i > s periods
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from now would then be a claim to receive the option i−s periods from now. The market return can then

be divided into three parts: (1) the fundamental return Rt+1, (2) the return on the portfolio of options

already issued RXI,t+1 ≡ 1∑s
i=1 ωi,t

∑s
i=1 ωi,tR

X
i,t+1, and (3) the return on the portfolio of claims to future

options RXU,t+1 ≡ 1∑∞
i=s+1 ωi,t

∑∞
i=s+1 ωi,tR

X
i,t+1. As shown in section 2.1, the fundamental return earns a

positive risk premium unconditionally, and the conditional risk premium is increasing in the fundamental

return variance.

For policies that compensates investors in bad times, the return on issued options behaves like that

of a standard put option. Firstly, issued put options earn negative risk premiums unconditionally. The

reason is that the probability of these options paying off, and the corresponding payoff, both increases

when the fundamental market falls. In other words, the expected cash-flow to these options increase

when fundamentals worsen. For a given discount rate, the value of the options must therefore increase.5

Since issued options tend to be negatively correlated with consumption, they earn a negative risk pre-

mium. Secondly, the conditional risk premium on issued options should become more negative when the

systematic risk rises and less negative when the unsystematic risk is high. The explanation is reminiscent

of the finding in Bruno and Haug (2018) that higher systematic (idiosyncratic) risk increases (decreases)

the positive correlation with the discount factor.

The claims to future options are less straightforward, but Theorem 1 gives us a general idea. All of

these claims are positively correlated with the εt consumption shock, which requires compensation. Fur-

thermore, the correlation with εx,t also tends to be positive for these claims (possibly with the exception

of when ρx is very close to 1). We therefore expect the portfolio of future options will earn a positive risk

premium unconditionally. This is less puzzling than one might expect for two reasons. First, as long as

the stimulus is in some way “proportional” to the market capitalization of the fundamental market over

time, the payoffs to claims expiring far into the future must be positively related to dividends, and thereby

consumption. These claims therefore carry systematic risk. If this was not the case, the policy payoffs

would either end up accounting for the vast majority of cash-flows to shareholders, or an insignificant

fraction. Second, if discount rates were negative for all claims, their price would increase with maturity

(unless the market capitalization is expected to persistently fall). In particular, as time to maturity goes

towards infinity, the corresponding price would too. Consequently, it is very natural to expect discount

rates to be positive for long maturities.

Theorem 1 also gives us an idea about what to expect conditionally. Clearly, an increase in σ2
t causes

next-period risk premium on future options to be higher. Similarly, the second and third part of the

theorem indicates that an increase in σ2
x,t should cause an increased risk premium as well. Perhaps

somewhat paradoxically, the claims to future insurances in some important aspects tend to behave more

5Since the options are non-linear in the underlying, assuming discount rates remain the same when the underlying falls is
clearly not correct as the ”leverage” of the options changes. However, the effect resulting from changing the discount rate should
not be large enough to offset the cash-flow effect.
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like the fundamental market than an insurance. As a consequence, introducing the policy might lower

unconditional risk premium on the market by less than might otherwise be expected.

For the return on the market, R∗, we also have to take into account the portfolio composition effect.

Following the above discussion, we can write

R∗t+1 = ω0,tRd,t+1 + ωI,tR
X
I,t+1 + ωU,tR

X
U,t+1 (19)

ω0,t, ωI,t, ωU,t are the time t portfolio weights of the fundamental market, the options that are already

issued, and future options respectively. Rt+1, R
X
I,t+1, R

X
U,t+1 are the corresponding returns. When

variance is high, the fundamental price tends to be low due to higher discount rates, whereas the value

of the insurance is high. We therefore expect ω0,t to be negatively related to current variance and ωI,t

to be positively related to current variance. The effect of increased variance on ωU,t is less clear due to

two possible opposing effects: (1) higher systematic variance tend to increase the discount rate causing

the prices of claims to future options to fall, (2) to the extent that variance is persistent, high current

variance predicts variance at issuance to be high as well, thereby raising expected cash-flow and thus

current prices. My numerical results indicate that the net effect is that ωU,t does not change by a lot.

The total return is therefore more similar to the issued put return when the risk is high, leading to a

weaker, possibly negative, risk-return trade-off.

3 Numerical Results

In this section I report numerical results for the baseline parameters. Under the policy, the government

writes 0.05 put options every period with time-to-maturity of 12 months. The strike price is e−0.2 ≈ 82%

of the geometric average fundamental market capitalization between issuance at time Th − 12 and a

month before maturity Th−1. In other words, at issuance the options have a forward-looking strike price

that falls with the fundamental market price. However, the strike price falls less than one-for-one as the

fundamental market falls, thus offering an insurance to investors.

3.1 The Risk-Return Relationship

Figure 1 plots annualized mean returns against return variance on the market portfolio. We see that the

expected return on the market, the blue line, does not vary much with variance. In fact, it is around 8%

both when the variance is in the bottom and top quintile. This is in stark contrast to the fundamental

market, the red dashed line, whose expected return increase from about 8.2% when the variance is in

the bottom quintile, to about 12% for variance in the top quintile. Mean risk free rate, plotted as

purple crosses, remains around 3% for all quintiles of variance. Thus, the policy virtually eliminates the
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Figure 1: This figure plots average annualized expected returns and risk free rate (y-axis)
against annualized market return variance (x-axis). The dashed red line is the fundamental
expected return, the blue line is the expected return on the market and the yellow line is the
expected return on the portfolio of put options. The +’s represents average risk-free rate.

fundamental relationship between the market’s risk and risk premium. In contrast, the risk premium on

the fundamental market increases by about 80 percent when return risk goes from the bottom to the top

quintile.

It is also interesting to note that despite the presence of the insurance, market variance exhibits

substantial spread, from an average annualized variance of 0.02 in the bottom quintile to about 0.08 in

the top quintile. For comparison, the fundamental market variance is about 0.02 and 0.09 in the bottom

and top quintiles respectively. In other words, the policy significantly weakens the risk-return relationship,

without causing a large reduction in variance spreads.

To understand the weakened relationship between risk and return, note that the market return is a

weighted average of the fundamental return and policy return. There are therefore two channels that

affects how the market risk premium is related to variance. First, for given weights, the market risk

premium follow the pattern of its constituent parts, the “direct” channel. Second, the weights used to

average over the constituent parts might change with variance. To the extent that expected returns on

the fundamental market and the policy differ, we get an additional “composition effect”.

From Figure 1, we observe that there is a negative relationship between the expected return on the

policy, the yellow line, and the market variance. In the low variance quintile, the expected return on the
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portfolio of policy claims is about 5%, while it is about -2% in the high variance quintile. Interestingly,

the policy carries a positive risk premium, about 2%, on average when market risk is low.

The government policy consists of a collection of put options that are already issued and an implicit

promise of the issuance of additional put options in the future. In Panel (a) of Figure 2, I plot the average

prices of a full unit of all the policy claims conditioning on current market variance. Note that the actual

policy consists of 0.05 units of each claim. Thus, to figure out how important each claim is to the overall

market capitalization, we must multiply each price by 0.05.

Each point along the x-axis represents a separate claim expiring x periods in the future. The claims

expiring less than 12 months in the future (left of the vertical line) are the put options that have already

been issued. The claims to the right of the vertical line are the implicit claims to future options. Further-

more, each curve represents a given quintile of market return variance. To make the interpretation easy

(and make the prices stationary), the prices have been normalized by the current fundamental market

value.

Comparing the curves in Panel (a) of Figure 2, we observe the well-known fact that option values tend

to increase with variance. Since all the prices are normalized by fundamental market capitalization, the

increase in policy prices implies that the composition of the market is tilted more towards the policy when

variance increases. As the expected return on the policy is lower than on the fundamental market for all

variance brackets, the “composition” effect further weakens the relationship between risk and return on

the market.

In summary, the weak risk-return trade-off on the market is explained both by the policy return being

negatively related to variance (direct effect) and that the weight of the policy is increasing in variance

(composition effect).

3.2 Policy Composition and Risk Premium

From Panel (a) in Figure 2 we also get the impression that claims have different sensitivities to market

variance. In Panel (b), I have therefore plotted the ratio of policy prices from Panel (a) in market variance

quintiles 2, 3, 4, and 5 to the corresponding prices in the low quintile. The y-axis therefore represents

how many times more valuable a claim is in a given variance quintile compared to what it would be worth

if market variance was in the bottom quintile.

We observe that the issued options, left of the vertical line, generally become much more valuable

with increasing variance. For instance, when market variance is in the second highest quintile, the issued

put options are typically more than twice as valuable as they would have been if market variance was

low. Looking at the highest quintile, the ratio is even more extreme - several of the issued options are

more than five times as valuable.

The prices of claims to future options, right of the vertical line, are much less responsive to current
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(a)

(b)

Figure 2: Panel (a) plots average prices of put options relative to fundamental market value.
The average is conditioned on the market return variance, e.g. the blue line represents the
average relative put price when the market return variance is in the bottom quintile. The
x-axis is the time to maturity for the option. In panel (b), each line in plot (a) is divided by
the relative put price when return variance is in the bottom quintile (the blue line).
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variance. Thus, rising market risk is associated with short-term policy claims becoming more valuable,

while long-term policy claims are unaffected. Increasing market risk therefore essentially causes the policy

itself to become more “short-term”.

Figure 3 plots annualized expected returns for policy claims with different time-to-maturity (x-axis).

The vertical line is located at the duration of the options (12 months). The claims to the left of the

vertical line are therefore the options already issued. Similarly, the claims to the right are future options

not yet issued. Panel (a) shows the unconditional mean returns, while Panel (b) condition on market

variance quintiles.

From Panel (a), we see that the issued options carry large negative risk premiums. The risk-premiums

on these options gradually increase with time-to-maturity. The reason for the gradual increase is that

the policy uses the forward-looking geometric average fundamental market price as the strike price. This

policy implies that the (log) strike on the option expiring in 12 months moves almost one-for-one with

next period cash-flow shock, while the responsiveness of near-term strikes are much lower.

From Theorem 1, we expect the claims expiring in the distant future to have a larger risk premium than

the fundamental market. Panel (a) confirms this prediction - claims to future options have a slightly higher

unconditional risk premium than the fundamental market. As a consequence, the difference between the

expected return on the insured and uninsured market is smaller unconditionally than what might be

expected.

From panel (b), we see that the expected returns on claims expiring more than 12 months into the

future are increasing in market variance. Although harder to see from Figure 3, my numerical results

indicate the opposite holds for the already issued options - expected returns are typically lower when

risk is high. This result is intuitive because the near term options act as an insurance as they increase in

value when the fundamental market falls. The expected return on an insurance should generally be lower

when risk increases.

The strike price on options that will be issued in the future will be determined by the future fundamen-

tal market level and thus reflect all that happens to that level between now and expiration. Since today’s

value of future put options increase with increasing strike price, this induces a risk exposure similar to

that of the fundamental market. Thus, as the fundamental market demands a higher risk compensation,

so does the claims to future options.
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(a)

(b)

Figure 3: Panel (a) plots annualized expected returns on the put options (blue line) against
the time-to-maturity. Also plotted is the insured market (red line) and the fundamental
(uninsured) market (dashed yellow line) and the mean risk free rate (dashed purple line). The
vertical line represents the option ”duration”. Panel (b) shows expected put option returns
conditional on market return variance.
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3.3 Sorting on Market Variance vs Fundamental Variance

Since the options are on the fundamental market, it is really the fundamental market return variance

that affects the option values. Consider therefore the following decomposition of market return variance

Vt(R∗t+1) = ω2
0,tVt(Rd,t+1) + ω2

I,tVt(RXI,t+1) + ω2
U,tVt(RXU,t+1) + 2ω0,tωI,tCovt(Rd,t+1, R

X
I,t+1)

+ 2ω0,tωI,tCovt(Rd,t+1, R
X
U,t+1) + 2ωI,tωU,tCovt(R

X
I,t+1, R

X
U,t+1) (20)

where ω0,t, ωI,t, and ωU,t are the weights of the fundamental market, currently issued options, and claims

to future options in the market portfolio and Rd,t+1, RXI,t+1 and RXU,t+1 are the corresponding (portfolio)

returns.

Typically, the variance terms on the right-hand side is positively related to the variance on the fun-

damental market Vt(Rd,t+1). Given the discussion in the previous section and Theorem 1, we expect the

covariance between the fundamental market and future claims, Covt(Rd,t+1, R
X
U,t+1), to be positive and

increasing in Vt(Rd,t+1). However, since the issued options behave like insurances, Covt(Rd,t+1, R
X
I,t+1)

and Covt(R
X
I,t+1, R

X
U,t+1) should both be negative, and their magnitudes also grow with Vt(Rd,t+1). With

partial insurance, and given portfolio weights ωt, the net effect of increasing fundamental return variance

on the market return variance Vt(R∗t+1) is still positive. As a consequence, Vt(Rd,t+1) and Vt(R∗t+1)

should be highly correlated 6.

The conditional market return variance is also affected by the portfolio weights ωt. Our discussion so

far indicates that the fundamental market share ω0,t falls with increasing fundamental return variance

while the weight on currently issued options ωI,t increases. The weight ωU,t on future claims remains

relatively constant.

Note that return variance is not the only determinant of these portfolio weights. Importantly, they

are also history dependent. If the fundamental market fell significantly over the last period, ωI,t is higher

this period, i.e. the market is more insured. For a given fundamental return variance, higher ωI,t lowers

Vt(R∗t+1). Market variance is therefore high when fundamental variance is high and issued options are

less valuable than expected given fundamental variance.

The link between fundamental return variance and market variance could be of particular interest in

periods of economic turmoil. These periods are typically associated with a high degree of uncertainty

and falling stock markets. In this case, the market variance would initially rise with the increase in

uncertainty. However, as the fundamental market falls, the policy becomes more valuable, dampening

the market return risk. Thus, the risk on the market might fall without a fall in fundamental uncertainty.

How large the difference between fundamental risk and market risk is, depends on how much the

government insures. For instance, if the government increases the number of options it issues every

6In unreported numerical results i generally find the two variance series to be highly correlated.
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(a)

(b)

Figure 4: Panel (a) plots average prices of put options relative to fundamental market value.
The average is conditioned on the fundamental market return variance, e.g. the blue line
represents the average relative put price when the market return variance is in the bottom
quintile. The x-axis is the time to maturity for the claim. In panel (b), each line in plot (a) is
divided by the average relative put price when fundamental return variance is in the bottom
quintile (the blue line)
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period, the difference in risk will be larger, and the history dependence in the portfolio weights becomes

a more important factor.

Figure 4 sorts on fundamental market return variance, but are otherwise identical to Figure 4. We

see the patterns are generally similar, but the magnitudes differ. In particular, we see that the ratios,

Panel (b), in Figure 4 are more extreme than those in Figure 2. The contrast is particularly stark for

the options expiring less than 4 months in the future. For instance, Panel (b) in Figure 2, these options

are less valuable in the second variance quintile than in the first quintile. For comparison, in Figure

4 the same options are between 2 and 5 times as valuable in the second quintile. In other words, the

fundamental market variance is more strongly related to the prices on currently issued options than the

insured market variance is.

Intuitively, there are two (main) determinants of current market variance: (1) the variance of the

fundamental market, and (2) the value of issued options. Increasing the fundamental risk tends to

increase the market risk, while increasing the value of issued options has the opposite effect. As a result,

the correlation between market variance and value of issued options will be negative when conditioning

on the level of fundamental variance. It is therefore not surprising that issued options are generally more

valuable in the high variance quintiles when sorted on the fundamental market variance Vt(Rd,t+1) (as

in Figure 4) compared to a sort on the market variance Vt(R∗t+1) (Figure 2).

The difference between sorts on fundamental risk and market risk also has implications for plots like

Figure 1. If we had plotted expected returns against fundamental return variance, the risk-return trade-off

for the market is typically even weaker, while that for the fundamental market is stronger. Furthermore,

plotting expected returns against fundamental risk means the risk-return relationship monotonically weak-

ens as we increase the number of options issued every period. However, when plotting against market

variance, we can find a non-monotonic relationship. The reason is that with more insurance, sorts on

market variance is increasingly a sort on (relatively) low prices for issued options.

3.4 Time-Series of Expected Returns

At first glance, one might expect the flat risk-return trade-off implies that there’s very little variation

over time in expected market returns. Figure 5 shows that this first glance deceives - the expected market

return (blue line) varies significantly over time.

The expected market return is strongly positively correlated with the expected return on the funda-

mental market (red line), with a correlation coefficient of 0.65. Thus, the risk premium on the market

does tend to rise when systematic risk increases, albeit by less than the fundamental market.

Somewhat puzzling, the risk-premium on the market are at times higher than that of the fundamental

market. The explanation is that the risk-premiums on long-dated claims are higher than that of the

fundamental market. Thus, when the current insurance is negligible, the effect of the policy is dominated
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Figure 5: This figure plots a time-series of annualized conditional expected returns on the
insured market (blue line) and the fundamental market (red line) calculated from simulations.
The purple line is 1− 12 ∗ σ2

d,t.

by claims to future insurance that actually increases the market risk and risk premium. Under the current

policy and parameters, this is not a frequent occurrence however.

We can also see that the expected market return is strongly correlated with the the inverse of idiosyn-

cratic risk, 1 − 12σ2
d,t, represented by the yellow line. In other words, the market return is significantly

negatively correlated with idiosyncratic risk, with a correlation coefficient of -0.37. The cause of the neg-

ative correlation is reminiscent of the finding in Bruno and Haug (2018). Higher idiosyncratic volatility

causes issued options to become more valuable relative to the fundamental market. As a consequence,

market returns are more correlated with option returns, and thereby less correlated (in absolute value)

with the pricing kernel.

4 Conclusion

Counter-cyclical monetary and fiscal policy can plausibly explain the weak risk-return trade-off uncovered

in the literature. Since such policies pays off when times are particularly bad, they offer a form of partial

insurance to investors. If negative news are associated with a greater stimulus than the contraction

following positive news, the policy is akin to a put option. Put options typically earn negative risk

premiums and become more valuable when risk is high, thereby weakening, or possibly even reversing,
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the risk-return relationship.

If investors expect similar policies to be in place for the foreseeable future, they would rationally

price in their expected future impact already today. Interestingly, investors price future policies very

differently from current policies. In particular, future policies generally earn risk-premiums comparable,

or even higher than, the market itself. The intuition is that in the long run, the stimulus offered by fiscal

authorities or central banks must be positively related to the overall size of the economy. Otherwise, the

stimulus either becomes irrelevant or the entire economy.

The positive risk premium associated with future policies means that the risk premium on the partly

insured market can be close to that of the un-insured market unconditionally, yet behave very differently

conditionally. For instance, the policy induces a negative correlation between expected return on the

insured market and un-priced cash-flow risk, whereas the expected return on the un-insured market is

unrelated to such risk.
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A Appendix A - Recursive Utility SDF - Epstein and Zin

(1991)

The value function is given by

Vt ≡ max
Ct,ωt

{
C

1− 1
ψ

t + βEt(V 1−γ
t+1 )

1− 1
ψ

1−γ
} 1

1− 1
ψ (21)

where β is the discount factor of future utility, ψ is the inter-temporal rate of substitution and γ is the

coefficient of relative risk aversion. Furthermore, the budget constraint is

Wt+1 = (Wt − Ct)ω>t Rt+1 ≡ (Wt − Ct)Rω,t+1 (22)

The derivative of the right-hand side of (1) w.r.t. consumption is

∂

∂Ct
:
V

1
ψ
t

1− 1
ψ

{(
1− 1

ψ

)
C
− 1
ψ

t +
1− 1

ψ

1− γ βEt(V
1−γ
t+1 )

γ− 1
ψ

1−γ (1− γ)Et
(
V −γt+1

∂Vt+1

∂Wt+1

∂Wt+1

∂Ct

)}
= V

1
ψ
t

{
C
− 1
ψ

t + βEt(V 1−γ
t+1 )

γ− 1
ψ

1−γ Et
(
V −γt+1

∂Vt+1

∂Wt+1

∂Wt+1

∂Ct

)}
(23)

Note that the budget constraint implies

∂Wt+1

∂Ct
= −Rω,t+1 (24)

The first-order condition for consumption therefore implies

C
− 1
ψ

t = βEt(V 1−γ
t+1 )

γ− 1
ψ

1−γ Et
(
V −γt+1

∂Vt+1

∂Wt+1
Rω,t+1

)
(25)

Let us now consider the derivative of the value function w.r.t. current wealth

∂Vt
∂Wt

=
V

1
ψ
t

1− 1
ψ

{(
1− 1

ψ

)
C
− 1
ψ

t

∂Ct
∂Wt

+
1− 1

ψ

1− γ βEt(V
1−γ
t+1 )

γ− 1
ψ

1−γ (1− γ)Et
(
V −γt+1

∂Vt+1

∂Wt+1

[∂Wt+1

∂Wt
+
∂Wt+1

∂Ct

∂Ct
∂Wt

])}
= V

1
ψ
t

{[
C
− 1
ψ

t + βEt(V 1−γ
t+1 )

γ− 1
ψ

1−γ Et
(
V −γt+1

∂Vt+1

∂Wt+1

∂Wt+1

∂Ct

)] ∂Ct
∂Wt

+ βEt(V 1−γ
t+1 )

γ− 1
ψ

1−γ Et
(
V −γt+1

∂Vt+1

∂Wt+1

∂Wt+1

∂Wt

)}
= βEt(V 1−γ

t+1 )
γ− 1

ψ
1−γ Et

(
V −γt+1

∂Vt+1

∂Wt+1

∂Wt+1

∂Wt

)
V

1
ψ
t (26)
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where the last equality follows from the first-order condition for consumption. Since the budget constraint

implies
∂Wt+1

∂Wt
= Rω,t+1, we get

∂Vt
∂Wt

= βEt(V 1−γ
t+1 )

γ− 1
ψ

1−γ Et
(
V −γt+1

∂Vt+1

∂Wt+1
Rω,t+1

)
V

1
ψ−1
t

= C
− 1
ψ

t V
1
ψ
t (27)

Substituting the last expression into (25) yields

1 = βEt(V 1−γ
t+1 )

γ− 1
ψ

1−γ Et
(
V

1
ψ
−γ

t+1

[Ct+1

Ct

]− 1
ψ
Rω,t+1

)
= βEt

([
Vt+1

Et(V 1−γ
t+1 )

1
1−γ

] 1
ψ
−γ[Ct+1

Ct

]− 1
ψ
Rω,t+1

)
(28)

Thus,

Mt+1 = β

[
Vt+1

Et(V 1−γ
t+1 )

1
1−γ

] 1
ψ
−γ[Ct+1

Ct

]− 1
ψ

(29)

is a valid SDF for the portfolio return Rω,t+1. Note that this SDF reduces to the standard CRRA

expected utility SDF when γ = 1
ψ

. When the risk aversion is different from the inverse intertemporal

rate of substitution, the SDF has an additional factor which is a function of the value function itself. The

denominator in the brackets involving the value function, is the time t certainty equivalent of the value

function. To see that this SDF is indeed a valid SDF for all assets in the economy, consider the first-order

condition for the optimal portfolio weights ωt. Let us rewrite the budget constraint as

Wt+1 = (Wt − Ct)(R0,t+1 + ω̄>t R
e
t+1) (30)

and take the derivative of the right hand side of (21) w.r.t. ω̄t and set it equal 0

∂
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:
V

1
ψ
t

1− 1
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e
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By the homogeneity of (21), the value function must be linear in wealth each time t. Thus, we can write

Vt = φtWt (32)

where φt does not depend on wealth. Thus, ∂Vt
∂Wt

= φt. Using this in (25) we get

C
− 1
ψ

t = βEt(φ1−γ
t+1 W

1−γ
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γ− 1
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1−γ Et
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1
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1
ψ ξ

1− 1
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t+1 R
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1
1−γ . Rearranging yields

ξ
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ψ
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(
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ψ
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ψ ξ
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ψ
t (37)

Substitute (37) into (21) to obtain
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To arrive at an expression for the SDF, use (36), (37), and (38) in (29) to obtain

Mt+1 = β

[
φt+1Wt+1

(Wt − Ct)ξt

] 1
ψ
−γ[Ct+1
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]− 1
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where θ ≡ 1−γ
1− 1

ψ

.
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B Appendix B - Log-linearization

Let zt ≡ log
(
Dt
Pt

)
be the log dividend-price ratio. Following Campbell and Shiller (1988), the log return

on any asset can be written

rt+1 = log
(Pt+1 +Dt+1

Pt

)
= log

([ Pt+1

Dt+1
+ 1
]Dt
Pt

Dt+1

Dt

)
= log

( Pt+1

Dt+1

Dt
Pt

+
Dt
Pt

)
+ log

(Dt+1

Dt

)
= log

(
exp
{
log
[ Pt+1

Dt+1

]
+ log

[Dt
Pt

]}
+ exp

{
log
[Dt
Pt

]})
+ log

(Dt+1

Dt

)
= log

(
ezt−zt+1 + ezt

)
+ ∆dt+1 (41)

Consider a first order Taylor approximation to the function h(zt, zt+1) ≡ log
(
ezt−zt+1 + ezt

)
around

z ≡ E(zt)

h(zt, zt+1) ≈ h(z, z) +
∂h

∂zt
(z, z)(zt − z) +

∂h

∂zt+1
(z, z)(zt+1 − z)

= log(1 + ez) + (zt − z)−
1

1 + ez
(zt+1 − z)

≡ κ0 + zt − κ1zt+1 (42)

where κ0 ≡ log(1 + ez)− ez

1+ez
z and κ1 ≡ 1

1+ez
. The log return can therefore be approximated as

rt+1 ≈ κ0 + zt − κ1zt+1 + ∆dt+1 (43)
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C Appendix C - MGF Inverse Gaussian

The moment generating function (MGF) for ηi ∼ IG((1− ϕi)σ2
i , λi) is

Mηi(s) ≡ E(esηi) = exp
{ λi

(1− ϕi)σ2
i

(
1−

√
1− 2(1− ϕi)2σ4

i s

λi

)}
(44)

D Appendix D - Model Solution with log-linearization

D.1 SDF and Consumption Claim

Recall that the assumed exogenous processes guarding the evolution of the economy is

∆ct+1 = µc + xt+1 −
τ

2
σ2
t −

τx
2
σ2
x,t + σtεt+1, εt+1 ∼ N(0, 1)

∆dt+1 = µd + %∆ct+1 −
τd
2
σ2
d,t + σd,tεd,t+1, εd,t+1 ∼ N(0, 1)

xt+1 = ρxxt + σx,tεx,t+1, εx,t+1 ∼ N(0, 1)

σ2
t+1 = ϕσ2

t + ηt+1, ηt+1 ∼ IG((1− ϕ)σ2, λ)

σ2
d,t+1 = ϕdσ

2
d,t + ηd,t+1, ηd,t+1 ∼ IG((1− ϕd)σ2

d, λd)

σ2
x,t+1 = ϕxσ

2
x,t + ηx,t+1, ηx,t+1 ∼ IG((1− ϕx)σ2

x, λx)

and the log pricing kernel can be expressed

mt+1 = θlog(β)− θ

ψ
∆ct+1 + (θ − 1)rc,t+1 (45)

Furthermore, the return on the consumption portfolio can be approximated as

rc,t+1 = κc,0 + zc,t − κc,1zc,t+1 + ∆ct+1 (46)

Let us guess that

zc,t = Ac +Ac,xxt +Ac,σ2σ2
t +Ac,σ2

x
σ2
x,t (47)
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Then

mt,t+1 = θlog(β)− θ

ψ
∆ct+1 + (θ − 1)(κc,0 + zc,t − κc,1zc,t+1 + ∆ct+1)

= θlog(β) + (θ − 1)κc,0 −
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θ

ψ
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)
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)
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(

(θ − 1)(1− κc,1ϕ)Ac,σ2 +
τγ

2

)
σ2
t

+
(

(θ − 1)(1− κc,1ϕx)Ac,σ2
x

+
τxγ

2

)
σ2
x,t

− γσtεt+1 −
(
γ + (θ − 1)κc,1Ac,x

)
σx,tεx,t+1 − (θ − 1)κc,1

(
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x
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x
σ2
x,t − Γm,εσtεt+1 − Γm,εxσx,tεx,t+1 − Γm,ηηt+1 − Γm,ηxηx,t+1

where the third equality used 1 + θ
ψ
− θ = γ. Similarly, the return on the consumption portfolio can be

written

rc,t+1 = κc,0 + zc,t − κc,1zc,t+1 + ∆ct+1

=
(
κc,0 + (1− κc,1)Ac + µc

)
+
(
ρx + (1− κc,1ρx)Ac,x

)
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(
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(
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x
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)
σ2
x,t + σtεt+1 + (1− κc,1Ac,x)σx,tεx,t+1 − κc,1(Ac,σ2ηt+1 +Ac,σ2

x
ηx,t+1)

≡ Γrc + Γrc,xxt + Γrc,σ2σ2
t + Γrc,σ2

x
σ2
x,t + Γrc,εσtεt+1 + Γrc,εxσx,tεx,t+1 + Γrc,ηηt+1 + Γrc,ηxηx,t+1
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Where

Γm ≡ θlog(β) + (θ − 1)κc,0 − γµc + (θ − 1)(1− κc,1)Ac

Γm,x ≡ (θ − 1)(1− κc,1ρx)Ac,x − γρx

Γm,σ2 ≡ (θ − 1)(1− κc,1ϕ)Ac,σ2 +
τγ

2

Γm,σ2
x
≡ (θ − 1)(1− κc,1ϕx)Ac,σ2

x
+
τxγ

2

Γm,ε ≡ γ

Γm,εx ≡ γ + (θ − 1)κc,1Ac,x

Γm,η ≡ (θ − 1)κc,1Ac,σ2

Γm,ηx ≡ (θ − 1)κc,1Ac,σ2
x

and

Γrc ≡ κc,0 + (1− κc,1)Ac + µc

Γrc,x ≡ ρx + (1− κc,1ρx)Ac,x

Γrc,σ2 ≡ (1− κc,1ϕ)Ac,σ2 − τ

2

Γrc,σ2
x
≡ (1− κc,1ϕx)Ac,σ2

x
− τx

2

Γrc,ε ≡ 1

Γrc,εx ≡ 1− κc,1Ac,x

Γrc,η ≡ −κc,1Ac,σ2

Γrc,ηx ≡ −κc,1Ac,σ2
x

It is therefore clear that

mt+1 + rc,t+1 = Γmrc + Γmrc,xxt + Γmrc,σ2σ2
t + Γmrc,σ2

x
σ2
x,t

+ Γmrc,εσtεt+1 + Γmrc,εxσx,tεx,t+1 + Γmrc,ηηt+1 + Γmrc,ηxηx,t+1
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with

Γmrc ≡ Γrc + Γm

= θlog(β)− (γ − 1)µc + θκc,0 + θ(1− κc,1)Ac

Γmrc,x ≡ Γrc,x + Γm,x

= θ(1− κc,1ρx)Ac,x − (γ − 1)ρx

Γmrc,σ2 ≡ Γrc,σ2 + Γm,σ2

= θ(1− κc,1ϕ)Ac,σ2 +
τ

2

( θ
ψ
− θ
)

Γmrc,σ2
x
≡ Γrc,σ2

x
+ Γm,σ2

x

= θ(1− κc,1ϕx)Ac,σ2
x

+
τx
2

( θ
ψ
− θ
)

Γmrc,ε ≡ Γrc,ε − Γm,ε

= −(γ − 1)

Γmrc,εx ≡ Γrc,εx − Γm,εx

= −θκc,1Ac,x − (γ − 1)

Γmrc,η ≡ Γrc,η − Γm,η

= −θκc,1Ac,σ2

Γmrc,ηx ≡ Γrc,ηx − Γm,ηx

= −θκc,1Ac,σ2
x

Note that all these coefficients equals 0 if γ = 1. mt+1 + rc,t+1 is not conditionally normal as seen

from time t. It is however, conditionally normal based on the information set that contains both time t
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information and the realization of ηt+1, ηx,t+1. Thus

Et(emt+1+rc,t+1) = Et
(
Et(emt+1+rc,t+1 |ηt+1, ηx,t+1)

)
= Et

(
e

Γmrc+Γmrc,xxt+(Γ
mrc,σ2+
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2
)σ2
t+(Γ
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x

+
Γ2
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2
)σ2
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2
)σ2
t+(Γ
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x

+
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2
)σ2
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where Bmrc ≡ eΓmrcMη(Γmrc,η)Mηx(Γmrc,ηx) is a constant (due to η.,t+1 i.i.d. across time). The pricing

condition

1 = Et(emt+1+rc,t+1)⇔

0 = log(Bmrc) + Γmrc,xxt +
(
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mrc,ε

2

)
σ2
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(
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x
+
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mrc,εx

2

)
σ2
x,t (48)

This expression can only be satisfied for all t if

0 = log(Bmrc)

0 = Γmrc,x

0 = Γmrc,σ2 +
Γ2
mrc,ε

2

0 = Γmrc,σ2
x

+
Γ2
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2
(49)

We therefore get

0 = θ(1− κc,1ρx)Ac,x − (γ − 1)ρx ⇔

Ac,x = −
1− 1

ψ

1− κc,1ρx
ρx (50)

0 = θ(1− κc,1ϕ)Ac,σ2 +
τ

2
(γ − 1) +

(γ − 1)2

2
⇔

Ac,σ2 =
1

2

(
τ − 1 + γ

) 1− 1
ψ

1− κc,1ϕ

0 = θ(1− κc,1ϕx)Ac,σ2
x

+
τx
2

(γ − 1) +
1

2

(
γ − 1 + θκc,1Ac,x

)2

⇔

Ac,σ2
x

=
1

2

(
τx +

( 1

1− κc,1ρx

)2

(γ − 1)
) 1− 1

ψ

1− κc,1ϕx
(51)

Note that all these expressions would be the same if the variances were conditionally normal instead

of Inverse Gaussian (the only expression that would be different is that for Bmrc). Ac is determined by
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the condition log(Bmrc) = 0

0 = logBmrc ⇔ Γmrc = −logMη(Γmrc,η)− logMηx(Γmrc,ηx)⇔

Ac = −θlogβ − (γ − 1)µc + θκc,0 + logMη(Γmrc,η) + logMηx(Γmrc,ηx)

θ(1− κc,1)

= −
logβ + κc,0 +

(
1− 1

ψ

)
µc +

(
logMη(Γmrc,η) + logMηx(Γmrc,ηx)

)
1− 1

ψ

1−γ

1− κc,1
(52)

which depends on the distribution of ηi because its moment generating function enters the expres-

sion. Note that if ψ = 1, the expression simplifies to Ac = − logβ+κc,0
1−κc,1

and if γ = 1, we have Ac =

−
logβ+κc,0+

(
1− 1

ψ

)
µc

1−κc,1
since Γmrc,η = Γmrc,ηx = 0. Furthermore, the constants κc,0, κc,1 are functions of

the endogenous expected dividend-price ratio zc, which is determined by solving the following non-linear

equation for zc

0 = Ac(zc) +Aσ2(zc)σ
2 +Aσ2

x
(zc)σ

2
x − zc (53)

The sign on Ac,x is determined by ψ. If ψ > 1, Ac,x < 0. Thus, the log dividend-price ratio is

decreasing in xt. The sign on Ac,σ2 is slightly more complicated. If ψ > 1, the sign is given by τ − 1 + γ.

In particular, when τ = 1, i.e. σ2
t does not predict consumption growth in levels, Ac,σ2 > 0. If τ = 0, i.e.

σ2
t does not predict log consumption growth, Ac,σ2 > 0 if γ > 1. As a result, the log dividend-price ratio

is increasing in σ2
t for all γ ≥ 1 as long as τ ≥ 0. Similarly, the sign on Ac,σ2

x
is positive if ψ > 1, γ > 1

and τx ≥ 0. A dividend-price ratio that is increasing in risk makes intuitive sense, as higher risk causes

prices to fall for a given expected cash-flow.

To gain some understanding as to what is considered bad states of the world by this model, it is
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helpful to revisit the expressions for Γm,i.

Γm,x = −
1
ψ
− γ

1− 1
ψ

(1− κc,1ρx)
1− 1

ψ

1− κc,1ρx
ρx − γρx

= − 1

ψ
ρx (54)

Γm,σ2 =

1
ψ
− γ

1− 1
ψ

(1− κc,1ϕ)
1

2

(
τ − 1 + γ

) 1− 1
ψ

1− κc,1ϕ
+
τ

2
γ

=
1

2

( τ
ψ

+
[ 1

ψ
− γ
]
(γ − 1)

)
(55)

Γm,σ2
x

=

1
ψ
− γ

1− 1
ψ

(1− κc,1ϕx)
1

2

(
τx +

( 1

1− κc,1ρx

)2

(γ − 1)
) 1− 1

ψ

1− κc,1ϕx
+
τx
2
γ

=
1

2

(τx
ψ

+
[ 1

ψ
− γ
] γ − 1

(1− κc,1ρx)2

)
(56)

Γm,ε = γ (57)

Γm,εx = γ +

1
ψ
− γ

1− 1
ψ

κc,1

1
ψ
− 1

1− κc,1ρx
ρx

=
γ − κc,1ρx

ψ

1− κc,1ρx
(58)

Γm,η =

1
ψ
− γ

1− 1
ψ

κc,1
1

2

(
τ − 1 + γ

) 1− 1
ψ

1− κc,1ϕ

= −1

2
(τ − 1 + γ)κc,1

γ − 1
ψ

1− κc,1ϕ
(59)

Γm,ηx =

1
ψ
− γ

1− 1
ψ

κc,1
1

2

(
τx +

( 1

1− κc,1ρx

)2

(γ − 1)
) 1− 1

ψ

1− κc,1ϕx

= −1

2

(
τx +

γ − 1

(1− κc,1ρx)2

)
κc,1

γ − 1
ψ

1− κc,1ϕx
(60)

Suppose γ > 1, ψ ≥ 1 and τ, τx = 0. Then Γm,η, Γm,ηx < 0, which implies mt+1 (marginal utility)

is increasing in shocks to variance. In this case, assets that pay off more when shocks to variance are

positive, will tend to carry a lower (negative) risk premium. Similarly, Γm,ε, Γm,εx > 0, and as a result

mt+1 (marginal utility) is decreasing in shocks to short and long run consumption (as expected).

D.2 Fundamental Stock Market Portfolio

Now, let us turn our attention to the fundamental market portfolio. Use the log linearization technique

for the return on the market to get

rd,t+1 ≈ κd,0 + zd,t − κd,1zd,t+1 + ∆dd,t+1 (61)
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and assume zd,t = Ad +Ad,xxt +Ad,σ2σ2
t +Ad,σ2

x
σ2
x,t +Ad,σ2

d
σ2
d,t. We then have

rd,t+1 = κd,0 +Ad +Ad,xxt +Ad,σ2σ2
t +Ad,σ2

x
σ2
x,t +Ad,σ2

d
σ2
d,t

− κd,1
(
Ad +Ad,xxt+1 +Ad,σ2σ2

t+1 +Ad,σ2
x
σ2
x,t+1 +Ad,σ2

d
σ2
d,t+1

)
+ µd + %

(
µc + xt+1 −

τ

2
σ2
t −

τx
2
σ2
x,t + σtεt+1

)
− τd

2
σ2
d,t + σd,tεd,t+1

= κd,0 +Ad +Ad,xxt +Ad,σ2σ2
t +Ad,σ2

x
σ2
x,t +Ad,σ2

d
σ2
d,t

− κd,1
(
Ad +Ad,x(ρxxt + σx,tεx,t+1) +Ad,σ2(ϕσ2

t + ηt+1) +Ad,σ2
x
(ϕxσ

2
x,t + ηx,t+1)

+Ad,σ2
d
(ϕdσ

2
d,t + ηd,t+1)

)
+ µd + %

(
µc + (ρxxt + σx,tεx,t+1)− τ

2
σ2
t −

τx
2
σ2
x,t + σtεt+1

)
− τd

2
σ2
d,t + σd,tεd,t+1

=
(
κd,0 + (1− κd,1)Ad + µd + %µc

)
+
(

(1− κd,1ρx)Ad,x + %ρx
)
xt

+
(

(1− κd,1ϕ)Ad,σ2 − %τ
2

)
σ2
t

+
(

(1− κd,1ϕx)Ad,σ2
x
− %τx

2

)
σ2
x,t

+
(

(1− κd,1ϕd)Ad,σ2
d
− τd

2

)
σ2
d,t

+ %σtεt+1 + (%− κd,1Ad,x)σx,tεx,t+1 + σd,tεd,t+1 − κd,1Ad,σ2ηt+1 − κd,1Ad,σ2
x
ηx,t+1 − κd,1Ad,σ2

d
ηd,t+1

≡ Γrd + Γrd,xxt + Γrd,σ2σ2
t + Γrd,σxσ

2
x,t + Γrd,σ2

d
σ2
d,t

+ Γrd,εσtεt+1 + Γrd,εxσx,tεx,t+1 + Γrd,εdσd,tεd,t+1 + Γrd,ηηt+1 + Γrd,ηxηx,t+1 + Γrd,ηdηd,t+1 (62)
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where

Γrd ≡ κd,0 + (1− κd,1)Ad + µd + %µc (63)

Γrd,x ≡ (1− κd,1ρx)Ad,x + %ρx (64)

Γrd,σ2 ≡ (1− κd,1ϕ)Ad,σ2 − %τ

2
(65)

Γrd,σ2
x
≡ (1− κd,1ϕx)Ad,σ2

x
− %τx

2
(66)

Γrd,σ2
d
≡ (1− κd,1ϕd)Ad,σ2

d
− τd

2
(67)

Γrd,ε ≡ % (68)

Γrd,εx ≡ %− κd,1Ad,x (69)

Γrd,εd ≡ 1 (70)

Γrd,η ≡ −κd,1Ad,σ2 (71)

Γrd,ηx ≡ −κd,1Ad,σ2
x

(72)

Γrd,ηd ≡ −κd,1Ad,σ2
d

(73)

As a result,

mt+1 + rd,t+1 = (Γm + Γrd) + (Γm,x + Γrd,x)xt + (Γm,σ2 + Γrd,σ2)σ2
t + (Γm,σ2

x
+ Γrd,σ2

x
)σ2
x,t + Γrd,σ2

d
σ2
d,t

+ (Γrd,ε − Γm,ε)σtεt+1 + (Γrd,εx − Γm,εx)σx,tεx,t+1 + Γrd,εdσd,tεd,t+1 + (Γrd,η − Γm,η)ηt+1

+ (Γrd,ηx − Γm,ηx)ηx,t+1 + Γrd,ηdηd,t+1

≡ Γmrd + Γmrd,xxt + Γmrd,σ2σ2
t + Γmrd,σ2

x
σ2
x,t + Γrd,σ2

d
σ2
d,t + Γmrd,εσtεt+1

+ Γmrd,εxσx,tεx,t+1 + Γrd,εdσd,tεd,t+1 + Γmrd,ηηt+1 + Γmrd,ηxηx,t+1 + Γrd,ηdηd,t+1 (74)

It is clear from the pricing condition that

0 = log(Bmrd) + Γmrd,xxt + (Γmrd,σ2 +
Γ2
mrd,ε

2
)σ2
t + (Γmrd,σ2

x
+

Γ2
mrd,εx

2
)σ2
x,t + (Γrd,σ2

d
+

Γ2
rd,εd

2
)σ2
d,t

(75)

where Bmrd ≡ e
ΓmrdMη(Γmrd,η)Mηx(Γmrd,ηx)Mηd(Γrd,ηd). In order for the pricing condition to hold for

all realizations of the state variables, the coefficients multiplying the state variables must each be equal
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to 0. Thus

0 = Γmrd,x ⇔ Γrd,x = −Γm,x ⇔

Ad,x = −Γm,x + %ρx
1− κd,1ρx

(76)

0 = Γmrd,σ2 +
Γ2
mrd,ε

2
⇔ Γrd,σ2 = −Γm,σ2 −

Γ2
mrd,ε

2
⇔

Ad,σ2 = −
Γm,σ2

1− κd,1ϕ
− 1

2

(%− γ)2 − %τ
1− κd,1ϕ

(77)

0 = Γmrd,σ2
x

+
Γ2
mrd,εx

2
⇔ Γrd,σ2

x
= −Γm,σ2

x
−

Γ2
mrd,εx

2
⇔

Ad,σ2
x

= −
Γm,σ2

x

1− κd,1ϕx
− 1

2

(
%− κd,1Ad,x −

γ−
κc,1ρx
ψ

1−κc,1ρx

)2

− %τx
1− κd,1ϕx

(78)

0 = Γrd,σ2
d

+
Γ2
rd,εd

2
⇔

Ad,σ2
d

=
1

2

τd − 1

1− κd,1ϕd
(79)

Notice that the condition for Ad,σ2
d

states that expected return (not log-returns) on the market portfolio

is not predicted by the idiosyncratic variance. Furthermore, if τd = 1, the dividend-price ratio is not a

function of the idiosyncratic variance. This makes sense as dividend growth (not log-dividend growth) is

not predictable by the idiosyncratic variance in this case. Since expected return is also unrelated to the

idiosyncratic variance, the dividend-price ratio must be unrelated as well. If τd > 1, future dividends are

expected to fall, resulting in a fall in stock market price and an increasing dividend-price ratio.

Finally, we get Ad from

0 = log(Bmrd)⇔ Γmrd = −logMη(Γmrd,η)− logMηx(Γmrd,ηx)− logMηd(Γrd,ηd)⇔

Γrd = −Γm − logMη(Γmrd,η)− logMηx(Γmrd,ηx)− logMηd(Γrd,ηd)⇔

Ad = −Γm + κd,0 + µd + %µc + logMη(Γmrd,η) + logMηx(Γmrd,ηx) + logMηd(Γrd,ηd)

1− κd,1
(80)

As in the previous section, κd,0, κd,1 are functions of the endogenous expected dividend-price ratio

zd, which is the solution to the following non-linear equation

0 = Ad(zd) +Ad,σ2(zd)σ
2 +Ad,σ2

x
(zd)σ

2
x +Ad,σ2

d
(zd)σ

2
d − zd (81)
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D.3 Risk free rate and conditional expected fundamental market return

The risk-free rate is given by

Rf,t = Et(emt+1)−1 ⇔ rf,t = −log(Et(emt+1)) (82)

We have

Et(emt+1) = Bme
Γm,xxt+(Γ

m,σ2+
Γ2
m,ε
2

)σ2
t+(Γ

m,σ2
x

+
Γ2
m,εx

2
)σ2
x,t

where

Bm ≡ eΓmMη(−Γm,η)Mηx(−Γm,ηx)

= eΓmexp
{ λ

(1− ϕ)σ2

(
1−

√
1 +

2(1− ϕ)2σ4Γm,η
λ

)}
exp
{ λx

(1− ϕx)σ2
x

(
1−

√
1 +

2(1− ϕx)2σ4
xΓm,ηx

λx

)}
(83)

The log risk free rate is therefore

rf,t = −log(Bm)− Γm,xxt −
(

Γm,σ2 +
Γ2
m,ε

2

)
σ2
t −

(
Γm,σ2

x
+

Γ2
m,εx

2

)
σ2
x,t

= −log(Bm) +
1

ψ
ρxxt −

1

2

( τ
ψ

+
[ 1

ψ
− γ
]
(γ − 1) + γ2

)
σ2
t

− 1

2

(τx
ψ

+
[ 1

ψ
− γ
] γ − 1

(1− κc,1ϕx)2
+
[γ − κc,1ρx

ψ

1− κc,1ρx

]2)
σ2
x,t

(84)

The risk free rate is thus increasing in expected consumption growth through xt, − τ−1
2
σ2
t and

− τx−1
2
σ2
x,t. Note that if τi < 1, there is a positive effect of increasing σi,t on the expected consump-

tion growth, which would in turn increase the interest rate. The total effect on the interest rate from an

increase in variance depends both on the expected consumption growth effect and the precautionary sav-

ings effect - higher variance implies more precautionary savings, resulting in lower interest rates. If τi ≥ 1,

i.e. expected consumption growth decreases in variance, the interest rate falls with higher variance.

Et(Rd,t+1) = Et(erd,t+1) = Brde
Γrd,xxt+(Γ

rd,σ
2+

Γ2
rd,ε

2
)σ2
t+(Γ

rd,σ
2
x

+
Γ2
rd,εx

2
)σ2
x,t (85)
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where

Brd ≡ e
ΓrdMη(Γrd,η)Mηx(Γrd,ηx)Mηd(Γrd,ηd)

= eΓrd exp
{ λ

(1− ϕ)σ2

(
1−

√
1− 2(1− ϕ)2σ4Γrd,η

λ

)}
exp
{ λx

(1− ϕx)σ2
x

(
1−

√
1− 2(1− ϕx)2σ4

xΓrd,ηx
λx

)}
× exp

{ λd
(1− ϕd)σ2

d

(
1−

√
1−

2(1− ϕd)2σ4
dΓrd,ηd

λd

)}
= e−Γmexp

{ λ

(1− ϕ)σ2

(√
1− 2(1− ϕ)2σ4Γmrd,η

λ
−
√

1− 2(1− ϕ)2σ4Γrd,η
λ

)}
× exp

{ λx
(1− ϕx)σ2

x

(√
1− 2(1− ϕx)2σ4

xΓmrd,ηx
λx

−
√

1− 2(1− ϕx)2σ4
xΓrd,ηx

λx

)}
(86)

where the last equality follows from 80. As expected, the expected return on the fundamental market

portfolio does not depend on idiosyncratic risk. The log risk premium can therefore be written

logEt(Rd,t+1)− rf,t = log(Brd) + log(Bm) + (Γm,x + Γrd,x)xt +
(

Γm,σ2 + Γrd,σ2 +
Γ2
m,ε + Γ2

rd,ε

2

)
σ2
t

+
(

Γm,σ2
x

+ Γrd,σ2
x

+
Γ2
m,εx + Γ2

rd,εx

2

)
σ2
x,t

= log(Brd) + log(Bm) + Γmrd,xxt +
(

Γmrd,σ2 +
Γ2
mrd,ε + 2Γm,εΓrd,ε

2

)
σ2
t

+
(

Γmrd,σ2
x

+
Γ2
mrd,εx + 2Γm,εxΓrd,εx

2

)
σ2
x,t

= log(Brd) + log(Bm) + Γm,εΓrd,εσ
2
t + Γm,εxΓrd,εxσ

2
x,t

= α+ γ%σ2
t +

γ − κc,1ρx
ψ

1− κc,1ρx
(%− κd,1Ad,x)σ2

x,t (87)

where

α ≡ log(Brd) + log(Bm)

=
λ

(1− ϕ)σ2

(
1 +

√
1− 2(1− ϕ)2σ4Γmrd,η

λ
−
√

1− 2(1− ϕ)2σ4Γrd,η
λ

−
√

1 +
2(1− ϕ)2σ4Γm,η

λ

)

+
λx

(1− ϕx)σ2
x

(
1 +

√
1− 2(1− ϕx)2σ4

xΓmrd,ηx
λx

−
√

1− 2(1− ϕx)2σ4
xΓrd,ηx

λx
−
√

1 +
2(1− ϕx)2σ4

xΓm,ηx
λx

)
(88)

Using the expression for Γm,x, we can write Ad,x as

Ad,x = −Γm,x + %ρx
1− κd,1ρx

= −
− 1
ψ
ρx + %ρx

1− κd,1ρx
= −

%− 1
ψ

1− κd,1ρx
ρx (89)

(90)
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The expression for the log risk premium then becomes

logEt(Rd,t+1)− rf,t = α+ γ%σ2
t +

γ − κc,1ρx
ψ

1− κc,1ρx
%− κd,1ρx

ψ

1− κd,1ρx
σ2
x,t (91)

Consider the conditional variance of log returns

Vt(rd,t+1) = δ2
rd + Γ2

r,εσ
2
t + Γ2

r,εxσ
2
x,t + Γ2

r,εdσ
2
d,t

= δ2
rd + %2σ2

t + (%− κd,1Ad,x)2σ2
x,t + σ2

d,t

= δ2
rd + %2σ2

t +
(%− κd,1ρx

ψ

1− κd,1ρx

)2

σ2
x,t + σ2

d,t (92)

Regressing logEt(Rt+1)− rf,t on Vt(rd,t+1)

logEt(Rd,t+1)− rf,t = φ0 + φ1Vt(rd,t+1) + ut+1 (93)

where

φ1 =
Cov

(
log(Et(Rd,t+1))− rf,t,Vt(rd,t+1)

)
V
(
Vt(rd,t+1)

)

=
Cov

(
γ%σ2

t +
γ−

κc,1ρx
ψ

1−κc,1ρx

%−
κd,1ρx
ψ

1−κd,1ρx
σ2
x,t, %

2σ2
t +

(
%−

κd,1ρx
ψ

1−κd,1ρx

)2

σ2
x,t

)
V
(
%2σ2

t +
[
%−

κd,1ρx
ψ

1−κd,1ρx

]2
σ2
x,t + σ2

d,t

)

=
γ%3V(σ2

t ) +
γ−

κc,1ρx
ψ

1−κc,1ρx

(
%−

κd,1ρx
ψ

1−κd,1ρx

)3

V(σ2
x,t)

%4V(σ2
t ) +

(
%−

κd,1ρx
ψ

1−κd,1ρx

)4

V(σ2
x,t) + V(σ2

d,t)

(94)

We see that this regression coefficient is clearly positive if %, γ, ψ > 1 as κc,1, κd,1, ρx ∈ (0, 1). Note that

the regression coefficient will be positive even if some of the parameters do not satisfy the restrictions

given here, as the first term in the numerator of φ1 is clearly positive. We also see that increasing V(σ2
d,t),

the variance of the idosyncratic variance, lowers the magnitude of the regression coefficient, but does not

alter its sign.
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E Appendix E - Policy Pricing

In this appendix, we will find a partial analytical price for the governemnt policy. This will allow us to

solve the rest via simulation without too much difficulty. It will prove useful to define the objects Ft as

the information set at time t generated by {εs, εx,s, εd,s, ηs, ηx,s, ηd,s}ts=−∞ and Ht as the information set

generated by {ηs, ηx,s, ηd,s}ts=−∞. Note the latter is a coarser (smaller) information set containing only

information generated by the shocks to variance. I will use the following notation: Et(X) ≡ E(X|Ft) and

Et(X|Hs) ≡ E(X|Ft,Hs), i.e. an expectation with a time subscript refers to the conditional expectation

w.r.t. the full information set and use the explicit conditioning when taking conditional expectations

w.r.t. the full information set augmented by the realization of variance shocks. Similarly, a function

of the full information set at time t can be denoted as f(Ft), a function only of the variance shocks

f(Ht), and a function of the εi shocks up to time t and variance shocks up to time T will be denoted as

f(Ft,HT ).

The following definitions will prove useful. For any random variable X let

X̂T |T−s ≡ ET−s(XT |HT ) (95)

X̃T |T−s ≡ XT − X̂T,T−s (96)

I will furthermore use the notation X̂ for variables that are related to projections on the information set

H and X̃ for variables that are related to the shock around this projection.

To begin with let the payout at time T to an option be given by

XT = eqT (s)(KT (s)− PT −DT )+ = eqTi (s)(KT (s)− PT−1RT )+

= PT−1e
qT (s)(e−gT (s) −RT )+ (97)

I.e. this is a put option whose strike price is known at time T , but possibly dependent on things that

happen between T − s and T where s ≥ 0. The (possibly stochastic) number gT (s) is defined as

gT (s) ≡ log
( PT−1

KT (s)

)
(98)

which is known at time T .
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E.1 Policy Representation

We will assume the following general structure for (qT (s), gT (s))

qT (s) = q̄0 +

s∑
j=0

(
q̄x,jxT−j + q̄σ2,jσ

2
T−j + q̄σ2

x,j
σ2
x,T−j + q̄σ2

d
,jσ

2
d,T−j + q̄ε,jσT−j−1εT−j

+ q̄εx,jσx,T−j−1εx,T−j + q̄εd,jσd,T−j−1εd,T−j + q̄η,jηT−j + q̄ηx,jηx,T−j + q̄ηd,jηd,T−j
)

(99)

gT (s) = ḡ0 +

s∑
j=0

(
ḡx,jxT−j + ḡσ2,jσ

2
T−j + ḡσ2

x,j
σ2
x,T−j + ḡσ2

d
,jσ

2
d,T−j + ḡε,jσT−j−1εT−j

+ ḡεx,jσx,T−j−1εx,T−j + ḡεd,jσd,T−j−1εd,T−j + ḡη,jηT−j + ḡηx,jηx,T−j + ḡηd,jηd,T−j
)

(100)

Let h ≡ T − t and q̄.,j = ḡ.,j = 0 ∀j > s. If h ≤ s we can divide (qT (s), gT (s)) into history and future.

First, gT (s)

gT (s) = ḡ0 +

h−1∑
j=0

(
ḡx,jxT−j + ḡσ2,jσ

2
T−j + ḡσ2

x,j
σ2
x,T−j + ḡσ2

d
,jσ

2
d,T−j + ḡε,jσT−j−1εT−j

+ ḡεx,jσx,T−j−1εx,T−j + ḡεd,jσd,T−j−1εd,T−j + ḡη,jηT−j + ḡηx,jηx,T−j + ḡηd,jηd,T−j
)

+

s∑
j=h

(
ḡx,jxT−j + ḡσ2,jσ

2
T−j + ḡσ2

x,j
σ2
x,T−j + ḡσ2

d
,jσ

2
d,T−j + ḡε,jσT−j−1εT−j

+ ḡεx,jσx,T−j−1εx,T−j + ḡεd,jσd,T−j−1εd,T−j + ḡη,jηT−j + ḡηx,jηx,T−j + ḡηd,jηd,T−j
)

= ḡ0 +Wg,h,t +

h−1∑
j=0

(
ḡx,jxT−j + ḡσ2,jσ

2
T−j + ḡσ2

x,j
σ2
x,T−j + ḡσ2

d
,jσ

2
d,T−j + ḡε,jσT−j−1εT−j

+ ḡεx,jσx,T−j−1εx,T−j + ḡεd,jσd,T−j−1εd,T−j + ḡη,jηT−j + ḡηx,jηx,T−j + ḡηd,jηd,T−j
)

(101)

where

Wg,h,t ≡
s∑

j=h

(
ḡx,jxT−j + ḡσ2,jσ

2
T−j + ḡσ2

x,j
σ2
x,T−j + ḡσ2

d
,jσ

2
d,T−j + ḡε,jσT−j−1εT−j

+ ḡεx,jσx,T−j−1εx,T−j + ḡεd,jσd,T−j−1εd,T−j + ḡη,jηT−j + ḡηx,jηx,T−j + ḡηd,jηd,T−j
)

(102)

Use the convention that Wg,h,t = 0 when h > s. We can then rewrite gT (s) for general h as follows

gT (s) = g0 +Wg,h,t + gx,h−1xt + gσ2,h−1σ
2
t + gσ2

x,h−1σ
2
x,t + gσ2

d
,h−1σ

2
d,t +

h−1∑
j=0

(
gε,jσT−j−1εT−j

+ gεx,jσx,T−j−1εx,T−j + gεd,jσd,T−j−1εd,T−j + gη,jηT−j + gηx,jηx,T−j + gηd,jηd,T−j
)

(103)
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where

g0 ≡ ḡ0

gx,j ≡
j∑
l=0

ḡx,lρ
j−l
x

gσ2,j ≡
j∑
l=0

ḡσ2,lϕ
j−l

gσ2
x,j
≡

j∑
l=0

ḡσ2
x,l
ϕj−lx

gσ2
d
,j ≡

j∑
l=0

ḡσ2
d
,lϕ

j−l
d

gε,j ≡ ḡε,j

gεx,j ≡ gx,j + ḡεx,j

gεd,j ≡ ḡεd,j

gη,j ≡ gσ2,j + ḡη,j

gηx,j ≡ gσ2,j + ḡηx,j

gηd,j ≡ gσ2,j + ḡηd,j

We can then divide gT (s) into the following two parts

ĝT |t(s) = g0 +Wg,h,t + gx,h−1xt + gσ2,h−1σ
2
t + gσ2

x,h−1σ
2
x,t + gσ2

d
,h−1σ

2
d,t

+

h−1∑
j=0

(
gη,jηT−j + gηx,jηx,T−j + gηd,jηd,T−j

)
(104)

and

g̃T |t(s) =

h−1∑
j=0

(
gε,jσT−j−1εT−j + gεx,jσx,T−j−1εx,T−j + gεd,jσd,T−j−1εd,T−j

)
(105)

Note that we can qT (s) in exactly the same way. Thus,

qT (s) = q0 +Wq,h,t + qx,h−1xt + qσ2,h−1σ
2
t + qσ2

x,h−1σ
2
x,t + qσ2

d
,h−1σ

2
d,t +

h−1∑
j=0

(
qε,jσT−j−1εT−j

+ qεx,jσx,T−j−1εx,T−j + qεd,jσd,T−j−1εd,T−j + qη,jηT−j + qηx,jηx,T−j + qηd,jηd,T−j
)

(106)
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where

Wq,h,t ≡
s∑

j=h

(
q̄x,jxT−j + q̄σ2,jσ

2
T−j + q̄σ2

x,j
σ2
x,T−j + q̄σ2

d
,jσ

2
d,T−j + q̄ε,jσT−j−1εT−j

+ q̄εx,jσx,T−j−1εx,T−j + q̄εd,jσd,T−j−1εd,T−j + q̄η,jηT−j + q̄ηx,jηx,T−j + q̄ηd,jηd,T−j
)

(107)

and

q0 ≡ ḡ0

qx,j ≡
j∑
l=0

ḡx,lρ
j−l
x

qσ2,j ≡
j∑
l=0

ḡσ2,lϕ
j−l

qσ2
x,j
≡

j∑
l=0

ḡσ2
x,l
ϕj−lx

qσ2
d
,j ≡

j∑
l=0

ḡσ2
d
,lϕ

j−l
d

qε,j ≡ q̄ε,j

qεx,j ≡ qx,j + q̄εx,j

qεd,j ≡ q̄εd,j

qη,j ≡ qσ2,j + q̄η,j

qηx,j ≡ qσ2
x,j

+ q̄ηx,j

qηd,j ≡ qσ2
d
,j + q̄ηd,j

We can also divide qT (s) into two parts

q̂T |t(s) = q0 +Wq,h,t + gq,h−1xt + qσ2,h−1σ
2
t + qσ2

x,h−1σ
2
x,t + qσ2

d
,h−1σ

2
d,t

+

h−1∑
j=0

(
qη,jηT−j + qηx,jηx,T−j + qηd,jηd,T−j

)
(108)

and

q̃T |t(s) =

h−1∑
j=0

(
qε,jσT−j−1εT−j + qεx,jσx,T−j−1εx,T−j + qεd,jσd,T−j−1εd,T−j

)
(109)
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E.2 Intermediary Expressions

Let

yt,T ≡
h∑
j=1

mt+j + pT−1 − pt + qT (s)− gT (s)

= m̂pT |t + q̂T |t(s)− ĝT |t(s) +

h−1∑
j=0

Lε,jσT−j−1εT−j + Lεx,jσx,T−j−1εx,T−j + Lεd,jσd,T−j−1εd,T−j

(110)

where

m̂pT |t ≡ Et
( ∆T∑
j=1

mt+j + pT−1 − pt
∣∣∣HT)

Lε,0 ≡ qε,0 − gε,0 − Γm,ε

Lεx,0 ≡ qεx,0 − gεx,0 − Γm,εx

Lεd,0 ≡ qεd,0 − gεd,0

Lε,j ≡ %+ qε,j − gε,j − Γm,ε

Lεx,j ≡ (%+ Γm,x)
1− ρjx
1− ρx

−Axρj−1
x + qεx,j − gεx,j − Γm,εx

Lεd,j ≡ 1 + qεd,j − gεd,j − Γm,εd

Furthermore, let

gT (s) + rd,T = ĝT |t(s) + r̂d,T |t +

h−1∑
j=0

Kε,jσT−j−1εT−j +Kεx,jσx,T−j−1εx,T−j +Kεd,jσd,T−j−1εd,T−j

(111)

where

Kε,0 ≡ Γrd,ε + gε,0

Kεx,0 ≡ Γrd,εx + gεx,0

Kεd,0 ≡ Γrd,εd + gεd,0

Kε,j ≡ gε,j

Kεx,j ≡ gεx,j + Γrd,xρ
j−1
x

Kεd,j ≡ gεd,j
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We can then write the claim payoff multiplied with the h-period pricing kernel as follows

Mt,TXT = Mt,TPT−1e
qT (s)−gT (s)

(
1− egT (s)+rd,T

)+

= Pte
yt,T

(
1− egT (s)+rd,T

)+

= Pte
m̂pT |t+q̂T |t(s)−ĝT |t(s)+

∑h−1
j=0 Lε,jσT−j−1εT−j+Lεx,jσx,T−j−1εx,T−j+Lεd,jσd,T−j−1εd,T−j

×
(

1− eĝT |t(s)+r̂d,T |t+
∑h−1
j=0 Kε,jσT−j−1εT−j+Kεx,jσx,T−j−1εx,T−j+Kεd,jσd,T−j−1εd,T−j

)+

(112)

E.3 Proof of Proposition 3

Proof. The time t price of the claim that expires at time T = t+ h is

PXt = Et(Mt,TXT ) = Et
(
Et(Mt,TXT |HT )

)
(113)

Assume at least one of Kε,l, Kεx,l, or Kεd,l is different from 0 for some l < h. Denote one such K·,l as

Kεi,j . Assume first that Kεi,j > 0. Using equation (112), we see that the policy pays off iff

0 ≥ r̂d,T |t + ĝT |t(s) +

h−1∑
j=0

Kε,jσT−1−jεT−j +Kεx,jσx,T−1−jεx,T−j +Kεd,jσd,T−1−jεd,T−j

εi,T−l ≤ −
r̂d,T |t + ĝT |t(s) +

∑h−1
j=0 K̄ε,jσT−1−jεT−j + K̄εx,jσx,T−1−jεx,T−j + K̄εd,jσd,T−1−jεd,T−j

Kεi,lσi,T−1−j
≡ aT

(114)

with K̄εk,j ≡ Kεk,j except for k = i and j = l where K̄εi,l ≡ 0. Similarly, if Kεi,l < 0 we have

εi,T−l ≥ aT (115)

Note that aT is not a function of εi,T−l in either case.

Using equation (112) and the conditions in (114) and (115) we get

Et(Mt,TXT |HT ) = PtEt

[
em̂pT |t+q̂T |t(s)−ĝT |t(s)+

∑h−1
j=0 Lε,jσT−j−1εT−j+Lεx,jσx,T−j−1εx,T−j+Lεd,jσd,T−j−1εd,T−j

×
(

1− eĝT |t(s)+r̂d,T |t+
∑h−1
j=0 Kε,jσT−j−1εT−j+Kεx,jσx,T−j−1εx,T−j+Kεd,jσd,T−j−1εd,T−j

)
Iεi,T−l≤aT

∣∣∣∣∣HT
]

(116)

Et(Mt,TXT |HT ) = PtEt

[
em̂pT |t+q̂T |t(s)−ĝT |t(s)+

∑h−1
j=0 Lε,jσT−j−1εT−j+Lεx,jσx,T−j−1εx,T−j+Lεd,jσd,T−j−1εd,T−j

×
(

1− eĝT |t(s)+r̂d,T |t+
∑h−1
j=0 Kε,jσT−j−1εT−j+Kεx,jσx,T−j−1εx,T−j+Kεd,jσd,T−j−1εd,T−j

)
Iεi,T−l≥aT

∣∣∣∣∣HT
]

(117)
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Using the integration results in equations (134) and (136) in Appendix F gives us

Et(Mt,TXT |HT ) = Pt

[
e
m̂pT |t+q̂T |t(s)−ĝT |t(s)+ 1

2

∑h−1
j=0 L

2
ε,jσ

2
T−j−1+L2

εx,j
σ2
x,T−j−1+L2

εd,j
σ2
d,T−j−1

Φ

(
−
ĝT |t(s) + r̂d,T |t +

∑h−1
j=0 Lε,jKε,jσ

2
T−j−1 + Lεx,jKεx,jσ

2
x,T−j−1 + Lεd,jKεd,jσ

2
d,T−j−1√∑h−1

j=0 K
2
ε,jσ

2
T−j−1 +K2

εx,j
σ2
x,T−j−1 +K2

εd,j
σ2
d,T−j−1

)

− em̂pT |t+q̂T |t(s)+r̂d,T |t+
1
2

∑h−1
j=0 (Lε,j+Kε,j)

2σ2
T−j−1+(Lεx,j+Kεx,j)

2σ2
x,T−j−1+(Lεd,j

+Kεd,j
)2σ2

d,T−j−1

Φ

(
−
ĝT |t(s) + r̂d,T |t +

∑h−1
j=0 (Lε,j +Kε,j)Kε,jσ

2
T−j−1 + (Lεx,j +Kεx,j)Kεx,jσ

2
x,T−j−1 + (Lεd,j +Kεd,j)Kεd,jσ

2
d,T−j−1√∑h−1

j=0 K
2
ε,jσ

2
T−j−1 +K2

εx,j
σ2
x,T−j−1 +K2

εd,j
σ2
d,T−j−1

)]

(118)

Defining

ζy,t,T−1 ≡ Vt
(
yt,T

∣∣HT ) =

h−1∑
j=0

L2
ε,jσ

2
T−1−j + L2

εx,jσ
2
x,T−1−j + L2

εd,jσ
2
d,T−1−j (119)

ζrd+g,t,T−1 ≡ Vt
(
rd,T + gT (s)

∣∣HT ) =

h−1∑
j=0

K2
ε,jσ

2
T−1−j +K2

εx,jσ
2
x,T−1−j +K2

εd,jσ
2
d,T−1−j (120)

ζy,rd+g,t,T−1 ≡ Covt
(
yt,T , rd,T + gT (s)

∣∣HT )
=

h−1∑
j=0

Lε,jKε,jσ
2
T−1−j + Lεx,jKεx,jσ

2
x,T−1−j + Lεd,jKεd,jσ

2
d,T−1−j (121)

and taking the expectation conditional on Ft gives us the result

PXh,t = PtEt

[
em̂pT |t+q̂T |t(s)−ĝT |t(s)+

ζy,t,T−1
2

(
Φ
(
−
ĝT−1|t(s) + r̂d,T |t + ζy,rd+g,t,T−1√

ζrd+g,t,T−1

)
− eĝT |t(s)+r̂d,T |t+ζy,rd+g,t,T−1+

ζrd+g,t,T−1

2 Φ
(
−
ĝT |t(s) + r̂d,T |t + ζrd+g,t,T−1√

ζrd+g,t,T−1

−
√
ζrd+g,t,T−1

))]
(122)

�

E.4 Proof of Corollary 2

Proof. Assume Kε,l = Kεx,l = Kεd,l = 0 for all l < h. Using equation (112), we see that the policy pays

off iff

0 ≥ r̂d,T |t + ĝT |t(s) (123)
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Using equations (112) and (123), the time t price of the claim that expires at time T = t+ h is

PXt = Et(Mt,TXT ) = Et
(
Et(Mt,TXT |HT )

)
= PtEt

[
Et

(
em̂pT |t+q̂T |t(s)−ĝT |t(s)+

∑h−1
j=0 Lε,jσT−j−1εT−j+Lεx,jσx,T−j−1εx,T−j+Lεd,jσd,T−j−1εd,T−j

×
(

1− eĝT |t(s)+r̂d,T |t
)
I0≥r̂d,T |t+ĝT |t(s)

∣∣∣∣∣HT
)]

= PtEt

[
Et

(
em̂pT |t+q̂T |t(s)−ĝT |t(s)+

∑h−1
j=0 Lε,jσT−j−1εT−j+Lεx,jσx,T−j−1εx,T−j+Lεd,jσd,T−j−1εd,T−j

∣∣∣∣∣HT
)

×
(

1− eĝT |t(s)+r̂d,T |t
)
I0≥r̂d,T |t+ĝT |t(s)

]

= PtEt

[
e
m̂pT |t+q̂T |t(s)−ĝT |t(s)+ 1

2

∑h−1
j=0 L

2
ε,jσ

2
T−j−1+L2

εx,j
σ2
x,T−j−1+L2

εd,j
σ2
d,T−j−1

×
(

1− eĝT |t(s)+r̂d,T |t
)
I0≥r̂d,T |t+ĝT |t(s)

]
(124)

�

F Integration results

The following integration result will be useful

∫ ∞
−∞

Φ(a+Bε)φ(ε)dε = Φ
( a√

1 +B2

)
(125)

As a result

∫ ∞
−∞

ec+LεΦ(a+Kε)φ(ε)dε = ec
∫ ∞
−∞

1√
2π
eLε−

ε2

2 Φ(a+Bε)dε

= ec+
L2

2

∫ ∞
−∞

1√
2π
e−

(ε−L)2

2 Φ(a+Bε)dε

= ec+
L2

2

∫ ∞
−∞

1√
2π
e−

y2

2 Φ
(
a+B(y + L)

)
dy

= ec+
L2

2

∫ ∞
−∞

Φ
(
(a+BL) +By

)
φ(y)dy

= ec+
L2

2 Φ
( a+BL√

1 +B2

)
(126)

Let

cn ≡ c+

n∑
j=1

Ljεj (127)

an ≡ a+
n∑
j=1

Bjεj (128)
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We can then generalize to multiple integrals

∫ ∞
−∞

. . .

∫ ∞
−∞

ec+
∑n
j=1 LjεjΦ

(
a+

n∑
j=1

Bjεj
)
φ(εn) . . . φ(ε1)dεn . . . dε1

=

∫ ∞
−∞

. . .

∫ ∞
−∞

(∫ ∞
−∞

ecn−1+LnεnΦ
(
an−1 +Bnεn

)
φ(εn)dεn

)
φ(εn−1) . . . φ(ε1)dεn−1 . . . dε1

=

∫ ∞
−∞

. . .

∫ ∞
−∞

ecn−1+
L2
n
2 Φ

(an−1 +BnLn√
1 +K2

n

)
φ(εn−1) . . . φ(ε1)dεn−1 . . . dε1

= e
L2
n
2

∫ ∞
−∞

. . .

∫ ∞
−∞(∫ ∞

−∞
ecn−2+Ln−1εn−1Φ

(an−2 +BnLn√
1 +B2

n

+
Bn−1√
1 +B2

n

εn−1

)
φ(εn−1)dεn−1

)
φ(εn−2) . . . φ(ε1)dεn−2 . . . dε1

= e
L2
n
2

∫ ∞
−∞

. . .

∫ ∞
−∞

ecn−2+
L2
n−1
2 Φ

( an−2+BnLn+Bn−1Ln−1√
1+B2

n√
1 +

(
Bn−1√
1+B2

n

)2

)
φ(εn−2) . . . φ(ε1)dεn−2 . . . dε1

= e
L2
n+L2

n−1
2

∫ ∞
−∞

. . .

∫ ∞
−∞

ecn−2Φ

(
an−2 +BnLn +Bn−1Ln−1√

1 +B2
n +B2

n−1

)
φ(εn−2) . . . φ(ε1)dεn−2 . . . dε1

...

= ec+
1
2

∑n
j=1 L

2
jΦ

(
a+

∑n
j=1 BjLj√

1 +
∑n
j=1 B

2
j

)
(129)

The final result we will need in order to solve for the option price is

∫ a

−∞
ec+Lεφ(ε)dε = ec

∫ a

−∞

1√
2π
eLε−

ε2

2 dε = ec+
L2

2

∫ a

−∞

1√
2π
e
−(ε−L)2

2 dε = ec+
L2

2

∫ a−L

−∞

1√
2π
e
−y2

2 dy

= ec+
L2

2 Φ(a− L) (130)

Using the last two results together, gives us

∫ ∞
−∞

. . .

∫ ∞
−∞

∫ an

−∞
ec+

∑n+1
j=1 Ljεjφ(εn+1)φ(εn) . . . φ(ε1)dεn+1dεn . . . dε1

=

∫ ∞
−∞

. . .

∫ ∞
−∞

e
∑n
j=1 Ljεj

(∫ an

−∞
ec+Ln+1εn+1φ(εn+1)dεn+1

)
φ(εn) . . . φ(ε1)dεn . . . dε1

=

∫ ∞
−∞

. . .

∫ ∞
−∞

e
∑n
j=1 Ljεj ec+

L2
n+1
2 Φ

(
(a− Ln+1) +

n∑
j=1

Bjεj
)
φ(εn) . . . φ(ε1)dεn . . . dε1

= ec+
1
2

∑n+1
j=1 L

2
jΦ

(
a− Ln+1 +

∑n
j=1 BjLj√

1 +
∑n
j=1 B

2
j

)
(131)
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Note that ec+
1
2

∑n+1
j=1 L

2
j = E(ec+

∑n+1
j=1 Ljεj ). Let

Bj ≡ −
Kj

Kn+1
(132)

a ≡ − â

Kn+1
(133)

Assume Kn+1 > 0. Then

∫ ∞
−∞

. . .

∫ ∞
−∞

∫ an

−∞
ec+

∑n+1
j=1 Ljεjφ(εn+1)φ(εn) . . . φ(ε1)dεn+1dεn . . . dε1

= ec+
1
2

∑n+1
j=1 L

2
jΦ

(
−

â
Kn+1

+ Ln+1 +
∑n
j=1

Kj
Kn+1

Lj√
1 +

∑n
j=1

(
Kj
Kn+1

)2

)

= ec+
1
2

∑n+1
j=1 L

2
jΦ

(
−
â+Kn+1Ln+1 +

∑n
j=1 KjLj√

K2
n+1 +

∑n
j=1 K

2
j

)

= ec+
1
2

∑n+1
j=1 L

2
jΦ

(
−
â+

∑n+1
j=1 KjLj√∑n+1
j=1 K

2
j

)
(134)

Suppose we instead have

∫ ∞
−∞

. . .

∫ ∞
−∞

∫ ∞
an

ec+
∑n+1
j=1 Ljεjφ(εn+1)φ(εn) . . . φ(ε1)dεn+1dεn . . . dε1

=

∫ ∞
−∞

. . .

∫ ∞
−∞

ec+
L2
n+1
2

+
∑n
j=1 Ljεj

(∫ ∞
(an−Ln+1)

φ(εn+1)dεn+1

)
φ(εn) . . . φ(ε1)dεn . . . dε1

=

∫ ∞
−∞

. . .

∫ ∞
−∞

ec+
L2
n+1
2

+
∑n
j=1 LjεjΦ

(
− (a− Ln+1)−

n∑
j=1

Bjεj
)
φ(εn) . . . φ(ε1)dεn . . . dε1

= ec+
1
2

∑n+1
j=1 L

2
jΦ

(
−
a− Ln+1 +

∑n
j=1 BjLj√

1 +
∑n
j=1 B

2
j

)
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Assume Kn+1 < 0. Then

∫ ∞
−∞

. . .

∫ ∞
−∞

∫ ∞
an

ec+
∑n+1
j=1 Ljεjφ(εn+1)φ(εn) . . . φ(ε1)dεn+1dεn . . . dε1

= ec+
1
2

∑n+1
j=1 L

2
jΦ

(
−
− â
Kn+1

− Ln+1 −
∑n
j=1

Kj
Kn+1

Lj√
1 +

∑n
j=1

(
Kj
Kn+1

)2

)

= ec+
1
2

∑n+1
j=1 L

2
jΦ

(
|Kn+1|

â
Kn+1

+ Ln+1 +
∑n
j=1

Kj
Kn+1

Lj√
K2
n+1 +

∑n
j=1 K

2
j

)

= ec+
1
2

∑n+1
j=1 L

2
jΦ

(
−
â+ Ln+1Kn+1 +

∑n
j=1 KjLj√

K2
n+1 +

∑n
j=1 K

2
j

)

= ec+
1
2

∑n+1
j=1 L

2
jΦ

(
−
a+

∑n+1
j=1 KjLj√∑n+1
j=1 K

2
j

)
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which is the same result as in (134).

G Proof of Theorem 1

Proof. of Theorem 1.

Assumption: s <∞.

Let Th = t+ h. From Proposition 3, the ratio of the claim price to the fundamental market price is

P̃Xh,t = Et

[
em̂pTh|t+q̂Th|t−ĝTh|t(s)+

ζy,t,Th−1

2

(
Φ
(
−
ĝTh−1|t(s) + r̂d,Th|t + ζy,rd+g,t,Th−1√

ζrd+g,t,Th−1

)
− eĝTh|t(s)+r̂d,Th|t+ζy,rd+g,t,Th−1+

ζrd+g,t,Th−1

2 Φ
(
−
ĝTh|t(s) + r̂d,Th|t + ζy,rd+g,t,Th−1√

ζrd+g,t,Th−1

−
√
ζrd+g,t,Th−1

))]

and

PXh,t = PtP̃
X
h,t

is the actual claim price. It is useful to write the log fundamental market price as

pt = −zd,t + dt = −zd,t + dt−1 + ∆dt

≡ %σtεt + (%−Ad,x)σx,t−1εx,t + ξp,t

≡ %σtεt + θpσx,t−1εx,t + ξp,t (137)

where zd,t is the log dividend price ratio on the fundamental market, dt is the log dividend and ξt is

independent of εt and εx,t. Then note

m̂pTh|t = Et
( h∑
j=1

mt+j + pt+h−1

∣∣∣Ht+h)− pt
= Et

( h∑
j=1

mt+j − zd,t+h−1 + dt +

h−1∑
j=1

∆dt+j

∣∣∣Ht+h)+ zd,t − dt

= Et
( h∑
j=1

mt+j − zd,t+h−1 +

h−1∑
j=1

∆dt+j

∣∣∣Ht+h)+ zd,t (138)

142



is independent of εt, but depends on xt (and thereby εx,t) directly through zd,t and indirectly through

the terms inside the expectation due to the persistence of x. We can write m̂pTh|t as follows

m̂pTh|t =
(

(1− ρh−1
x )Ad,x + Γm,x

h∑
j=1

ρj−1
x + %

h−1∑
j=1

ρjx

)
σx,t−1εx,t + ξm̂p,t

=
(

(1− ρh−1
x )Ad,x + Γm,x

1− ρhx
1− ρx

+ %
ρx − ρhx
1− ρx

)
σx,t−1εx,t + ξm̂p,t

≡ θm̂p,hσx,t−1εx,t + ξm̂p,t (139)

where ξm̂p,t is independent of εt and εx,t.

Statement 1.

Let h > s. First, note that PXi,t only depend on εt through Pt, as ζ·,t,Th−1 and r̂d,Th|t always independent

of εt and h > s implies q̂Th(s) and ĝTh(s) do not depend on εt. Thus

Covt−1

(
σt−1εt, log(PXh,t)

)
= Covt−1

(
σt−1εt, log(Pt) + log(P̃Xh,t)

)
= Covt−1

(
σt−1εt, log(Pt)

)
= Covt−1

(
σt−1εt, %σt−1εt + ξt

)
= %σ2

t−1 > 0 (140)

Statement 2.

Assumption: %ψ > 1

Let h > s. The second part of the theorem is a little more cumbersome as PXh,t depend on εt through

both Pt and P̃Xh,t because εx,t affects the state variable xt. Note that we can write the claim price as

PXh,t = e(θp+θm̂p,h+θq,h−θg,h)σx,t−1εx,t

(
Et
[
eu1,h,ThΦ

(
− (θg,h + θr,h)σx,t−1εx,t + vh,Th√

ζrd+g,t,Th−1

)]
− e(θg,h+θr,h)σx,t−1εx,tEt

[
eu2,h,ThΦ

(
− (θg,h + θr,h)σx,t−1εx,t + vh,Th√

ζrd+g,t,Th−1

−
√
ζrd+g,t,Th−1

)])
(141)

≡ e(θp+θm̂p,h+θq,h−θg,h)σx,t−1εx,tVh,t (142)

where u and v are independent of εx,t. Note that Vh,t is a smooth function εx,t. For h ≥ s, the coefficients

on σx,t−1εx,t satisfies

θq,h+1 = ρxθq,h (143)

θg,h+1 = ρxθg,h (144)

θr,h+1 = ρxθr,h (145)

The two first recursions follows from the policy specification - (qTh(s), gTh(s)) can at most directly

depend on xTh−s and εx,Th−s. If the policy specification gives (q̄x,j , ḡx,j) 6= 0 for some j = 0, 1, . . . , s,
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(qTh(s), gTh(s)) will depend on xt indirectly through xTh−j = ρh−jx xt + ex,Th−j . Thus, for h > s, any

policy dependence on xt, and thereby σx,t−1εx,t, must decrease exponentially with h. The final recursion

follows directly from rd,Th = Γrd,xxTh−1 + er,Th , where er,Th is independent of εx,Th−j ∀j = 1, . . .∞.

Thus, rTh depends indirectly on xt through the persistence of xt.

We can also write

θx,h ≡ θp + θm̂p,h = %−Ad,x + (1− ρh−1
x )Ad,x + Γm,x

1− ρhx
1− ρx

+ %
ρx − ρhx
1− ρx

=
(
%− ρx

ψ

)1− ρhx
1− ρx

+
%− 1

ψ

1− κd,1ρx
ρhx > 0 (146)

where I have used Γm,x = − 1
ψ
ρx and Ad,x = −

%− 1
ψ

1−κd,1ρx
ρx. It is clear that

θx,h+1 > θx,h (147)

θx,h →
%− ρx

ψ

1− ρx
as h→∞ (148)

|θy,h+1| = ρx|θy,h| for y = q, g, r (149)

θy,h → 0 as h→∞ (150)

The covariance of interest can then be written

Covt−1

(
σx,t−1εx,t, log(PXh,t)

)
= Covt−1

(
σx,t−1εx,t, θx,hσx,t−1εx,t + (θq,h − θg,h)σx,t−1εx,t + log(Vh,t)

)
= θx,hσ

2
x,t−1 + (θq,h − θg,h)σ2

x,t−1 + Covt−1

(
σx,t−1εx,t, log(Vh,t)

)
(151)

The first term is clearly positive and increasing in h. The last two terms could be either positive or

negative depending on the particular policy specification, but these terms can be made arbitrarily small

in magnitude by increasing h. Thus, there exists some number k s.t. for all h > k

Covt−1

(
σx,t−1εx,t, log(PXh,t)

)
> 0 (152)

Statement 3. From equation (151) we have

Covt−1

(
σx,t−1εx,t, log(PXh,t)

)
→

%− ρx
ψ

1− ρx
σ2
x,t−1 as h→∞ (153)

Furthermore,

Covt−1

(
σx,t−1εx,t, log(Pt)

)
= Covt−1

(
σx,t−1εx,t, −Axxt + %σx,t−1εx,t

)
= (%−Ax)σ2

x,t−1

=
[1 + (1− κd,1)ρx]%− ρx

ψ

1− κd,1ρx
σ2
x,t−1 (154)
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Note that

%− ρx
ψ

1− ρx
>

[1 + (1− κd,1)ρx]%− ρx
ψ

1− κd,1ρx
⇔ (1− κd,1ρx)

%− ρx
ψ

1− ρx
> [1 + (1− κd,1)ρx]%− ρx

ψ
⇔

%− ρx
ψ

1− ρx
+
ρx
ψ
− (1 + ρx)% > κd,1ρx

(%− ρx
ψ

1− ρx
− %
)
⇔

%− ρx
ψ

+
ρx
ψ

(1− ρx)− (1 + ρx)(1− ρx)% >
(
%− 1

ψ

)
ρ2
xκd,1 ⇔(

%− 1

ψ

)
ρ2
x >

(
%− 1

ψ

)
ρ2
xκd,1 ⇔ (155)

κd,1 < 1 (156)

Thus, the covariance Covt−1(σx,t−1εx,t, log(PXh,t)) > Covt−1(σx,t−1εx,t, log(Pt)) as h→∞ �
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Multi-Horizon HJ-Distance

Stig R. H. Lundeby

May 10, 2021

Abstract

I present a multi-period generalization of the standard HJ-distance. My distance metric uses the fact

that a pricing kernel should price payoffs at any horizon. Intuitively, the multi-period distance is small

if pricing errors are small for all horizons under consideration. I show that the multi-horizon perspective

can detect significant model mis-specification where an analogous 1-period HJ-distance might conclude

errors are small.
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1 Introduction

Most investment and savings decisions take a multi-horizon perspective with in- and out-flows at several

dates. A useful asset pricing model should therefore be able to price relevant payoffs at multiple horizons.

Comparing models only at a single frequency, e.g. monthly, might therefore lead us astray. Yet, most

empirical work only tests model implications for a given horizon at a time. In this paper, I develop a multi-

horizon distance metric for model comparisons that tests model implications at several horizons jointly.

A low multi-horizon distance indicates that the model performs well at all horizons under consideration.

As in Chernov et.al. (2021), I view payoffs at different horizons as separate test assets. Furthermore,

each horizon can be thought of as a separate collection of states in an expanded state space. Viewing

horizons as states allows me to employ the same machinery as in Hansen and Jagannathan (1997).

The multi-horizon metric is therefore a natural generalization of the metric developed in Hansen and

Jagannathan (1997) to a multi-period setting. In fact, it turns out that my distance metric is a weighted

average of HJ-distances for each horizon under consideration. As a consequence, the multi-period distance

metric is zero if and only if the HJ-distance is zero at all horizons.

As in Hansen and Jagannathan (1997), the metric developed in this paper does not reward model

variability. In typical GMM J-tests, the “numerator” is the model pricing errors and the “denominator”

is essentially the variance of pricing errors. As a consequence, we might fail to reject a model either

because the pricing errors are low, or because the pricing kernel is very variable. In my metric, the

“denominator” is a block-diagonal matrix, where each block is the second moment matrix of test assets

at a given horizon. The second-moment matrix of test asset payoffs is model-independent. Thus, high

pricing kernel variability does not in itself lower the distance.

The model-independent “denominator” also means that the metric is ideal for model comparisons.

If model (A) has a higher distance than model (B), model (A) has larger pricing errors than model

(B). The distance metric is therefore a direct measure of how large the errors in the model-implied

Euler equations are in economic terms, whereas the J-test can only conclude whether those errors are

statistically significant.

Pricing errors for a given model can in principle be due to pricing “levels” of payoffs wrong or because

the model mis-prices risk, i.e. excess returns. In some applications we might wish to distinguish between

these channels of mis-specification. I therefore decompose the distance metric into an excess return

distance and a level distance and show that the two components are orthogonal. In other word, the total

distance squared can be written as the sum of the component distances squared.

It turns out that the distance metric is closely related to the (standardized) expected utility gain for

a quadratic utility investor from exploiting the model-mis-specification. In particular, if we consider only

the pricing of excess returns, the utility gain of the investor is proportional to the squared excess return

distance metric. As a result, a larger excess return distance implies a greater utility gain from exploiting
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the mis-pricing of excess returns.

In a simple example economy, I show that the multi-period distance metric can reveal severe model

mis-specification in a model even in the case where the standard 1-period HJ-distance is 0. Furthermore,

the rankings of models often change when going from the single period metric to the multi-period metric,

indicating that the multi-horizon view indeed adds valuable information.

The rest of the paper is organized as follows. Section 2 presents useful terminology and definitions

that will be used throughout the paper. Section 3 defines the distance metric and presents some of its

general properties. In section 4, I investigate the relationship between the distance metric and the utility

loss experienced by an investor using a mis-specified model. Section 5 illustrates the use of the metric in

a simple example economy.

2 Pricing kernels and payoff spaces

We are interested in finding a measure of how close a model y is to the “truth”. Previous papers, most

notably Hansen and Jagannathan (1997) have already developed such a distance metric for the single

period case. However, as Chernov et.al (2021) shows, there is additional information in considering

multi-horizon returns jointly. Incorporating multiple horizons often lead to rejections of models that are

generally successful at a single horizon. Given that all models are at best approximations to the truth,

we might be more interested in knowing which model is closest to explaining the data. It therefore makes

sense to consider distance metrics that take into account model implications across horizons.

2.1 Candidate Model

Let y denote a candidate model for the pricing kernel in an economy. The model has some specified

functional form at the 1-period horizon. For instance, in the unconditional CAPM, yt,t+1 = a−bRem,t,t+1,

where a and b are positive constants and Rem,t,t+1 is the 1-period excess market return. Another example is

the standard CRRA expected utility kernel yt,t+1 = β
(
Ct+1

Ct

)−γ
, where Ct is the investor’s consumption

at date t, γ is his risk aversion and β measures his patience. The null-hypothesis is that y prices all

returns1 conditionally

Et(yt,t+1Ri,t,t+1) = 1, ∀i (1)

1Note that if the model prices all returns, it also prices all cash-flows assuming the Law of One Price holds.
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Since the econometrician does not have access to the full information set of the investor at time t, the

standard approach to testing (1) is by taking unconditional expectation

E(yt,t+1Ri,t,t+1) = 1, ∀i (2)

However, as noted in Chernov et.al (2021), the Law of One Price has the additional implication that

Et
(
yt,t+hRi,t,t+h

)
= 1, ∀i (3)

where Ri,t,t+h is the h-period return on asset i and yt,t+h ≡
∏h−1
j=0 yt+j,t+j+1 is the h-period pricing

kernel implied by y. If the model is well-specified, (3) should hold for all horizons h. To simplify the

notation, let y(h) denote the h-period discount factor and R(h) a vector of h-period returns. I will omit

the time-subscripts unless needed for clarity.

In general, we might be interested in pricing other payoffs than returns. It is therefore useful to define

pricing functionals for y at each horizon as follows

π
(h)
t,y

(
p(h)) ≡ Et

(
y(h)p(h)) ∀p(h) (4)

π
(h)
t,y (p(h)) is the hypothetical time t price y would assign to a (stochastic) payoff p(h) at t+ h. Note that

if y is misspecified, these hypothetical prices will generally differ from actual prices. Since we do not

have access to the information embedded in Et, we do not observe the hypothetical prices. However, if

we assume that payoffs and the pricing kernel are stationary, we can get an estimate of the average price

assigned to a payoff

π(h)
y

(
p(h)) ≡ E

(
y(h)p(h)) ∀p(h) (5)

The general idea of the multi-period distance metric presented in this paper, is to compare these aver-

age hypothetical prices to average observable market prices. We say that the model is well-specified if

π
(h)
y (p(h)) is close to average market prices for “all” payoffs and “all” horizons.

2.2 Payoff space

In order to be more precise about what “all” payoffs mean, we have to define a payoff space. When

looking at a single horizon, a natural way to define the payoff space, P(1), is to choose an N1 × 1 vector

of basis returns R
(1)
b and let the payoff-space be all linear combinations of these basis returns. Formally

P(1) ≡ {c>R(1)
b : c ∈ RN1} (6)
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Importantly, we accommodate conditioning information by allowing the basis returns to also contain

specified trading strategies. The choice of using a vector of returns as basis is not essential, but it has

the benefit that all payoffs will be stationary as long as returns are stationary. Furthermore, the market

prices for returns are particularly easy as they equal 1 at all times.

Given the single-period payoff space, it seems natural in the multi-period setting to consider any

payoffs attainable by creating portfolios of the basis returns R?b(1) and simply re-balance the portfolios

every period from t to t+ h, i.e.

P̂(h) ≡
{
c ·
( h∏
j=1

ω>R
(1)
b,t+j

)
: c ∈ R1, ω>1 = 1

}
(7)

However, this space is too “large” due to the non-linear (multiplicative) way ω enters. As a consequence,

(7) generally does not have a finite basis. To see this, consider a simple example where R(1) consists

of the risk free rate and market return. P̂(h) would then clearly contain the h-period risk free rate

and market return. However, it would also contain the h-period return on a portfolio investing half in

each, rebalancing every period for h periods. This h-period portfolio return will not be spanned by the

corresponding market and risk-free rate. In fact, there are infinitely many such portfolios. Thus, there is

no finite set of basis returns that would span P̂(h) even in this simple 2-asset case.

As in the single-period setting, it is necessary for empirical implementation to limit attention to payoff

spaces spanned by finitely many assets/strategies. I therefore take the simpler approach of specifying the

basis returns for each horizon separately and let the payoff space consist of all linear combinations of

basis returns. Formally, for each h, let R
(h)
b denote an Nh × 1 vector of basis returns. Then

P(h) ≡ {c>R(h)
b : c ∈ RNh} (8)

Note that we don’t require Nh = N1. Based on the discussion about P̂(h), we may want Nh ≥ N1 in

order to get multi-horizon payoff spaces that get closer to spanning P̂(h). The following lemma states

that if we choose basis returns at horizon h that are static strategies in returns in P(1), then P(h) is a

subspace of P̂(h).

Lemma 1. Suppose a basis for P(h) is R
(h)
b . If each row i in R

(h)
b can be written R

(h)
b,i,t,t+h =

∏h
j=1 ω

>
i Rt+j,

where R is an N × 1 vector of returns s.t. Rj ∈ P(1) ∀j = 1, . . . , N , and ωi is a corresponding vector of

portfolio weights. Then P(h) ⊂ P̂(h).

Proof. Since all payoffs in P(h) can be written as linear combinations of R
(h)
b , all we need to show is that

each row of R
(h)
b is in P̂(h). To show this, note Rj ∈ P(1) implies that Rj = ϕ>j R

(1)
b for some vector of

portfolio weights ϕj , where R
(1)
b is a vector of basis returns for P(1). By construction, P̂(h) contains every

element that can be written as
∏h
j=1 ω

>R
(1)
t+j . The result follows immediately. �
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2.2.1 Excess return space

It will prove useful to define the excess return space, Pe(h) associated with P(h)

Pe(h) ≡
{
c · ϕ>R(h)

b : c ∈ R and ϕ>1 = 0
}

(9)

The excess return space is therefore all zero cost payoffs that can be generated from P(h). The requirement

that ϕ sums to 0, implies that we can represent the excess return space in a slightly different way. Without

loss of generality, let R̄
(h)
b denote the last Nh − 1 rows of the vector of basis returns R

(h)
b for P(h). We

can then generate a basis vector of excess returns, R
e(h)
b , as follows

R
e(h)
b ≡ R̄(h)

b −R
(h)
b,11

The excess return space is then

Pe(h) =
{
c>R

e(h)
b : c ∈ RNh−1} (10)

2.3 Admissible pricing kernels

Let π
(h)
t (p) denote the observed time t price on an h-period ahead payoff and π(h)(p) its average. I

assume the pricing functionals π
(h)
t and π(h) are linear. For instance, the price of a payoff p = c>R(h)

is π
(h)
t (p) = c>π

(h)
t

(
R(h)

)
= c>1. We say that an h-period pricing kernel is admissible if it assigns the

correct average price to all payoffs in a payoff space. In particular,

M̂(h) ≡ {m : E(mp) = π(h)(p) for every p ∈ P̂(h)} (11)

M(h) ≡ {m : E(mp) = π(h)(p) for every p ∈ P(h)} (12)

M̂(h) andM(h) denotes the sets of valid pricing kernels for payoff space P̂(h) and P(h) respectively. Note

that if m prices all payoffs in P(h), it also prices all excess returns in Pe(h).

If the condition in Lemma 1 is satisfied, then the following lemma shows that M̂(h) is a subset of

M(h).

Lemma 2. If P(h) ⊂ P̂(h) then M̂(h) ⊂M(h).

Proof. Need to show that an arbitrary m ∈ M̂(h) is also in M(h). By definition, m ∈ M̂(h) ⇔ E(mp) =

π(h)(p) for every p ∈ P̂(h). By Lemma 1 P(h) ⊂ P̂(h) ⇔ (p ∈ P̂(h) ⇒ p ∈ P(h)). Thus, m ∈ M̂(h) ⇒

E(mp) = π(h)(p) for every p ∈ P(h) ⇔ m ∈M(h). �

Notice that definitions (11) and (12) only requires that admissible pricing kernels price payoffs at a

given horizon h. Another natural way to define the sets of admissible pricing kernels would be to require
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that admissible discount factors prices all payoffs at “all” horizons. Let H ≡ {1, h2, . . . , hH} denote the

collection of horizons we are interested in. I assume that all horizons are natural numbers. Then the

following sets of discount factors prices all payoffs correctly for every horizon in H.

ˆ̄M(1) ≡
{
m(1) : E(m(h)p(h)) = π(h)(p(h)) for every p(h) ∈ P̂(h) and every h ∈ H,

where m
(h)
t,t+h ≡

h∏
j=1

m
(1)
t+j .

}
(13)

M̄(1) ≡
{
m(1) : E(m(h)p(h)) = π(h)(p(h)) for every p(h) ∈ P(h) and every h ∈ H,

where m
(h)
t,t+h ≡

h∏
j=1

m
(1)
t+j .

}
(14)

In general it is often difficult to characterize a single element in either of these sets. However, Lemma

3 tells us that the sets in (13) and (14) are smaller than the sets in (11) and (12).

Lemma 3. Consider arbitrary m̂(1) ∈ ˆ̄M(1) and m(1) ∈ M̄(1). Define m̂
(h)
t,t+h ≡

∏h
j=1 m̂

(1)
t+j and m

(h)
t,t+h ≡∏h

j=1 m
(1)
t+j for every h ∈ H. Then

1. m̂(h) ∈ M̂(h) for every h ∈ H

2. m(h) ∈M(h) for every h ∈ H

Proof. The results follow directly from the definitions of ˆ̄M(1) and M̄(1). �

2.4 Viewing dates as states

In order to define the distance metric, it is useful to think of each horizon as separate (collections of)

states. To that end, let ΩP denote the physical state-space and define the pseudo state-space

Ω ≡ H× ΩP = {(h, ω) : h ∈ H and ω ∈ ΩP }

where × denotes the Cartesian product. For any h-horizon payoff p(h), we can define a payoff p on Ω as

follows

p(j, ω) ≡


p(h)(ω) if j = h

0 otherwise

(15)

and in particular, the h-horizon vector of basis returns becomes

R̃
(h)
b (j, ω) ≡


R

(h)
b (ω) if j = h

0 otherwise
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In words, R̃
(h)
b pays of R

(h)
b at horizon h and 0 at all other horizons. We can then collect basis returns

for all horizons into a single vector R̃b ≡ (R̃
(1)>
b , R̃

(h2)>
b , . . . , R̃

(hH )>
b )>, which has N =

∑
h∈HNh rows.

From R̃b, we can generate all the payoffs in P(1), . . ., P(hH ). Note that payoffs p on Ω derived from

p(h) ∈ P(h), can be represented as linear combinations of R̃b. Thus, R̃b is a basis for our multi-horizon

payoff space

P ≡ {c>R̃b : c ∈ RN} (16)

The multi-horizon excess return space can be defined the same way. That is,

R̃
e(h)
b (j, ω) ≡


R
e(h)
b (ω) if j = h

0 otherwise

and R̃eb ≡ (R̃
e(1)>
b , R̃

e(h2)>
b , . . . , R̃

e(hH )>
b )>. The multi-horizon excess return space is then

Pe ≡ {c>R̃eb : c ∈ RN−H} (17)

The sets of admissible pricing kernels defined on Ω becomes

M≡ {m : m(h, ·) ∈M(h) ∀ h ∈ H} (18)

M̂ ≡ {m : m(h, ·) ∈ M̂(h) ∀ h ∈ H} (19)

M̄ ≡
{
m : m(h, ω) = m(h)(ω) ∀ h ∈ H, where m

(h)
t,t+h =

h∏
j=1

m
(1)
t+j and m(1) ∈ M̄(1)

}
(20)

The first two sets simply require that an admissible pricing kernel must be admissible at every horizon.

The third set places the additional requirement that an admissible pricing kernel m must be multiplicative,

i.e. m in states associated with horizon h > 1 must be the product of m in states associated with the

1-period horizon.

We can extend the physical probability measure P to Ω as follows

Q(h×A) = θhP(A), ∀h ∈ H and ∀A ⊂ ΩP

where θh > 0 and
∑
h∈H θh = 1. Let Êθ,H denote the expectation operator implied by the measure Q.

For any random variable X defined on Ω, we then have

Êθ,H(X) =
∑
h∈H

θhE(X(h, ω)) (21)

where E denotes the physical expectation operator. The expectation operator Êθ,H naturally leads us to
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consider the norm

||x||θ,H ≡ Êθ,H(x2)
1
2 (22)

Clearly, the norm depends on both the choice of “probabilities” θ, and on what horizons H we con-

sider. Although it might seem strange to assign a probability to a horizon (which hopefully occurs with

probability 1), what I am actually doing is to introduce a weighting scheme so that the norm does not

mechanically grow by adding more horizons. One natural choice for θ would be to just equal-weight the

horizons. However, section 4 gives a utility-based justification for deviating from equal weighting.

3 Multi-horizon distance metric

Having defined a norm, we can define multi-period analogues to the HJ-distance. For a candidate discount

factor y, let

δθ,H,y ≡ min
m∈M

||y −m||θ,H (23)

δ̂θ,H,y ≡ min
m∈M̂

||y −m||θ,H (24)

δ̄θ,H,y ≡ min
m∈M̄

||y −m||θ,H (25)

The first metric measures the distance between y and a set of pricing kernels that price all payoffs in

P(h) for every horizon. The second metric requires admissible pricing kernels to price any multi-period

payoff that can be generated by creating portfolios of 1-period returns. For the first two metrics, there is

no requirement that m is multiplicative at different horizons. The third metric is the distance between y

and the closest pricing kernel that is multiplicative and prices payoffs at all horizons. In the rest of the

paper, I will refer to the first metric given in (23) as the distance metric.

The following proposition shows that the squared multi-period distance metric is a weighted average

of squared standard HJ-distances at each horizon

Proposition 1. Let δθ,H,y be given by (23), then δ2
θ,H,y =

∑
h∈H θhδ

2
y,h where δy,h is the standard

HJ-distance for horizon h and payoff-space P(h).

155



Proof. The minimization problem in (23) is equivalent to

δ2
θ,H,y = min

m∈M
||y −m||2θ,H = min

m∈M

∑
h∈H

θhE
(
(y(h) −m(h))2)

=
∑
h∈H

θh min
m(h)∈M(h)

E
(
(y(h) −m(h))2)

=
∑
h∈H

θhδ
2
y,h (26)

The second equality uses the definitions of the norm (22) and the pseudo-expectation (21). �

An interesting question is whether we can say anything about δ̂θ,H,y and δ̄θ,H,y. The following theorem

shows that δθ,H,y is a lower bound for these alternative metrics.

Theorem 1. Let δ̂θ,H,y and δ̄θ,H,y be defined as in (24) and (25) respectively. Then

1. δ̄θ,H,y ≥ δθ,H,y

2. If the basis returns for P(h) are h-period portfolio returns in the basis assets of P(1) for every h ∈ H,

then δ̂θ,H,y ≥ δθ,H,y

Proof. Lemma 3 implies 1. Lemma 1 and 2 implies 2. �

Using the proposed metric allows us to use the same machinery as in Hansen and Jagannathan (1997).

The remaining part of this sub-section therefore follows Hansen and Jagannathan (1997) closely. Let

π̂y(p) ≡
∑
h∈H

θhπ
(h)
y (p(h)) (27)

π̂(p) ≡
∑
h∈H

θhπ
(h)(p(h)) (28)

where π
(h)
y (p(h)) is the price assigned by model y to the payoff p(h), and π(h)(p(h)) is the actual price of

payoff p(h).2 Thus, π̂(p) is the actual price of a cash-flow that pays θhp
(h) at every horizon h ∈ H, and

π̂y(p) is the corresponding price assigned by model y. From the definition of the pseudo-expectation, we

can write (27) and (28) as

π̂y(p) = Êθ,H(yp) ∀p ∈ P

π̂(p) = Êθ,H(mp) ∀m ∈M and ∀p ∈ P

We can also define a pricing error functional as

π̃y(p) ≡ π̂y(p)− π̂(p) ∀p ∈ P (29)

2Note that the structure of P implies that the price of a payoff equals its average. P only includes constant linear combinations
of returns. Returns have constant price 1. Thus, the price on a payoff is a constant times 1.
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In particular, applying the pricing error functional to an h-period return gives us π̃y(R̃(h)) = θh
(
π

(h)
y (R(h))−

π(h)(R(h))
)

. By the Riesz representation theorem, there exists a unique p̃ ∈ P s.t.

Êθ,H(p̃p) = π̃y(p) ∀p ∈ P (30)

I will therefore refer to p̃ as the mis-pricing payoff.

It follows that

Êθ,H
(
(y −m− p̃)p

)
= 0 ∀m ∈M and ∀p ∈ P

In other words, y −m− p̃ is orthogonal to P for any m ∈M, which leads us to consider

y −m = p̃+ εm

where Êθ,H(εmp) = 0 for any payoff p ∈ P. The mis-pricing payoff p̃ is therefore a least-squares projection

of y−m on P. The representation allows us to arrive at the following lower bound for the distance between

y and any admissible pricing kernel m

||y −m||2θ,H = Êθ,H
(
(y −m)2) = Êθ,H

(
(p̃+ εm)2) = Êθ,H

(
p̃2 + 2p̃εm + ε2

m

)
= Êθ,H

(
p̃2 + ε2

m

)
≥ Êθ,H

(
p̃2) = ||p̃||2θ,H (31)

where the last equality uses Êθ,H(εmp) = 0 for any p ∈ P and that p̃ ∈ P. Since the inequality in (31)

applies for any m ∈M, it also places a lower bound on the distance metric

δθ,H,y ≡ min
m∈M

||y −m||θ,H ≥ ||p̃||θ,H (32)

Furthermore, since (y − p̃) ∈M, we also get an upper bound on the distance metric

δθ,H,y ≡ min
m∈M

||y −m||θ,H ≤ ||y − (y − p̃)||θ,H = ||p̃||θ,H (33)

Using both (32) and (33) leads us to conclude

δθ,H,y = ||p̃||θ,H

It is also worth noting that δθ,H,y has the interpretation as the maximum mis-pricing per unit-norm

payoff since by the Cauchy-Schwarz inequality

|Êθ,H(p̃p)|2 ≤ Êθ,H(p̃2)Êθ,H(p2) = ||p̃||2θ,H · ||p||2θ,H
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Using (30), then taking the square-root on both sides, and rearranging gives us

|π̃y(p)|
||p||θ,H

≤ ||p̃||θ,H (34)

The weak inequality in (34) is satisfied with equality for p̃.

max
p∈P, ||p||θ,H=1

|π̃y(p)| = ||p̃||θ,H

In other words, p̃ is also the maximally mis-priced payoff.

3.1 Representing p̃ and δθ,H,y

Since R̃b is a basis for P, any payoff p ∈ P can be written c>R̃b. Consider the vector of pseudo pricing

errors on the base assets

α̃ ≡ π̃y(R̃b)

We wish to represent p̃ = c̃>R̃b. Since by the definition of p̃, α̃ = Êθ,H(p̃R̃b), we get

c̃ = Êθ,H(R̃bR̃
>
b )−1α̃ =



E
(
R

(1)
b R

(1)>
b

)−1
α(1)

E
(
R

(h2)
b R

(h2)>
b

)−1
α(h2)

...

E
(
R

(hH )
b R

(hH )>
b

)−1
α(hH )


where α(h) ≡ E(y(h)R

(h)
b )−1 are vectors of actual pricing errors. Importantly, c̃, and by extension p̃, does

not depend on the pseudo-probabilities θ. In fact, p̃ can be thought of as an asset that pays single-horizon

mis-pricing payoffs p̃(h) at every horizon h

p̃(h) = α(h)>E
(
R

(h)
b R

(h)>
b

)−1
R

(h)
b

p̃ =
∑
h∈H

p̃(h)

The multi-period distance metric can be computed as

δθ,H,y = ||p̃||θ,H =

√
α̃>Êθ,H(R̃bR̃>b )−1α̃

=

√∑
h∈H

θhα(h)>E
(
R

(h)
b R

(h)>
b

)−1
α(h)
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3.2 Decomposing the distance metric

The distance metric δθ,H,y does not distinguish between mis-pricing “levels” of returns and risk. For

instance, if all returns have identical mis-pricing, the candidate model y prices excess returns (risk)

correctly. On the other hand, if the cross-sectional weighted average mis-pricing of returns is 0, there is

no mis-pricing in levels.

To investigate the two channels of mis-specification, note that the (pseudo) pricing errors associated

with h-period excess returns is

α̃e(h) ≡ Êθ,H(yR̃
e(h)
b ) = α̃

(h)
−1 − α̃

(h)
1 1

where α̃
(h)
−1 is the last Nh−1 rows of the vector of pricing errors associated with the h-period basis returns,

and α̃
(h)
1 is the first row of the same vector. Stack the excess return pricing errors for every horizon into

a single vector α̃e ≡ (α̃e(1)>, . . . , α̃e(hH )>)>.

Clearly, there exists an excess return p̃e ∈ Pe that gives the same pricing errors as y for all excess

returns

Êθ,H(p̃epe) = π̃y(pe), ∀ pe ∈ Pe

To show this, note that all we need to show is that there exists an excess return p̃e = c>R̃eb such that

α̃e = Êθ,H(p̃eR̃eb)

It is easy to see that

p̃e = α̃e>Êθ,H(R̃ebR̃
e>
b )−1R̃e (35)

does the job. Furthermore, me ≡ y − p̃e is an admissible pricing kernel for the excess returns. We will

use this fact to define an excess return distance metric

δeθ,H,y ≡ ||y −me||θ,H = ||p̃e||θ,H =

√
α̃e>Êθ,H(R̃ebR̃

e>
b )−1α̃e (36)

In general, me will not price other payoffs in P. However, all returns at a given horizon h will have

identical pricing errors when using me. We can therefore think about the distance between me and

m∗ ≡ y − p̃ as the level distance. Let

p̃L ≡ p̃− p̃e (37)
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Then, the level distance can be defined as

δLθ,H,y ≡ ||me −m∗||θ,H = ||p̃L||θ,H (38)

The following proposition states that the decomposition of p̃ into p̃e and p̃L is orthogonal

Proposition 2. Let p̃, p̃e, and p̃L be given by equations (30), (35), and (37) respectively. Then,

1. The level payoff p̃L is orthogonal to all excess returns. In particular,

Êθ,H(p̃Lp̃e) = 0

2. The level and excess return distances are orthogonal

δ2
θ,H,y = (δLθ,H,y)2 + (δeθ,H,y)2

Proof. For the first statement, note that p̃L + p̃e = p̃, and that m∗ = y − p̃ prices all payoffs in P. In

particular, m∗ prices all excess returns. Thus,

Êθ,H(m∗pe) = 0 ∀ pe ∈ Pe

By construction, me = y − p̃e also prices all excess returns. Thus,

0 = Êθ,H([me −m∗]pe) = Êθ,H(p̃Lpe) ∀pe ∈ Pe

Since p̃e ∈ Pe, the result follows.

For the second statement we have

δ2
θ,H,y = Êθ,H(p̃2) = Êθ,H([p̃L + p̃e]2) = Êθ,H([p̃L]2) + Êθ,H([p̃e]2) + 2Êθ,H(p̃Lp̃e)

= (δLθ,H,y)2 + (δeθ,H,y)2

where the last equality uses equations (38) and (36) and that p̃L is orthogonal to p̃e. �

4 Quadratic utility and multi-horizon distance metric

In this section we are interested in getting an economic assessment of the error made by an investor who

uses a pricing model y for his investment decisions. To keep things simple, consider a quadratic utility
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investor who maximizes expected utility

max
c0,{ch}

u(c0) + E
∑
h∈H

βhu(ch) (39)

u(ch) = − (cbh − ch)2

2

where cbh denotes the potentially stochastic consumption bliss point. The maximization is subject to the

constraint that the date 0 value of his consumption stream equals his wealth. The utility function in

(39) is normalized to have u′′(c) = −1. Thus, any utility change can be thought of as utility change

normalized by the absolute value of the second derivative. Utility changes normalized in this way have

the benefit that they are invariant to positive affine (preference preserving) transformations of u.

The investor’s intertemporal marginal rate of substitution (IMRS) is

MI
0,h(c0, ch) = βh

cbh − ch
cb0 − c0

(40)

Risk averse investors who maximize expected utility wish to smooth consumption across states and dates.

Proposition 3 tells us that there is a close connection between the norm defined by (22) and the utility

maximization problem in (39). In fact, given optimal date 0 consumption, the optimal future consumption

plan minimize the norm of the investor’s IMRS/pricing kernel

Proposition 3. Let S ≡
∑
h∈H β

−h and θh ≡ β−h

S
. Then the optimization problem in (39) can be

written

max
c0

{
u(c0)− 1

2
(cb0 − c0)2Smin

c̃
||MI(c0, c̃)||2θ,H

}

where c̃ takes the value ch in h-states and MI is given by (40).

Proof. Note that we can substitute equation (40) into (39) to obtain

max
c0,{ch}

u(c0)− 1

2
(cb0 − c0)2 E

∑
h∈H

β−hMI
0,h(c0, ch)2

= max
c0,{ch}

u(c0)− 1

2
(cb0 − c0)2S E

∑
h∈H

β−h

S
MI

0,h(c0, ch)2

= max
c0,{ch}

u(c0)− 1

2
(cb0 − c0)2S E

∑
h∈H

θhM
I
0,h(c0, ch)2

= max
c0,{c̃}

u(c0)− 1

2
(cb0 − c0)2S Êθ,H

(
MI(c0, c̃)

2
)

where the last equality follows from the definition of Êθ,H. The result then follows immediately from the

definition of the norm. �
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In order to assess a candidate model, suppose the investor initially believes y is a valid discount factor

for every h in H. In the current section, the implication is that the investor should seek to equate his

IMRS to y at all horizons and in all states, i.e.

MI
0,h(c0, ch) = y

(h)
0,h ∀h ∈ H

which implies the following consumption stream

cyh = cbh − β−h(cb0 − cy0)y
(h)
0,h (41)

assuming cy attainable. In what follows, I will assume cbh ∈ P(h) and y(h) ∈ P(h) for all h ∈ H, which is

a sufficient condition for cy to be attainable. The expected utility from using model y is then

Uy ≡ u(cy0)− 1

2
(cb0 − cy0)2S ||y||2θ,H

If the candidate SDF y is indeed an admissible pricing kernel, cy is his optimal consumption plan and Uy

the maximum attainable utility.

4.1 Return Mis-pricing

Suppose the investor learns that the candidate pricing kernel unconditionally mis-prices a set of (basis)

returns that he can trade

E
(
y(h)R

(h)
b

)
= 1 + α(h) (42)

where αh denotes the vector of pricing errors. It then follows that there exists a set of trades at date zero

that only requires knowledge about the unconditional distribution of returns and the candidate SDF y to

improve his expected utility unconditionally.

Proposition 4. There exists an admissible pricing kernel m∗ s.t. the consumption stream implied by m∗

is attainable, and

1. The utility gain normalized by |u′′| for a quadratic utility investor from using the pricing kernel m∗

instead of the mis-specified model y is

Um∗ − Uy
−u′′(c0)

=
1

2
a−2S

(
δ2
θ,H,y −

S

1 + S||m∗||2 π̂(p̃)2
)

where a ≡ −u′′(cy0 )

u′(cy0 )
is the coefficient of absolute risk aversion evaluated at his initial consumption

under model y.
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2. The pricing kernel m∗ minimizes the distance to y

m∗ = arg min
m∈M

||y −m||

Proof. Part 1. Let m∗ = y − p̃. By construction of p̃, m∗ ∈M. Furthermore, since y ∈ P and p̃ ∈ P, we

have m∗ ∈ P as well. It then follows that the consumption stream

cm
∗

h = cbh − (cb0 − cy0 −∆c0)β−h
(
y(h) − p̃(h)

)
= cyh −∆c0β

−hy(h) + (cb0 − cy0 −∆c0)β−hp̃(h)

is attainable. The cost of the change in future consumption is

π(cm∗ − cy) = ∆c0Sπ̂(y − p̃) + (cb0 − cy0)Sπ̂(p̃)

In order to satisfy the investor’s budget constraint, the date 0 consumption must adjust s.t. ∆c0+π(cm∗−

cy) = 0. Thus

∆c0 = − (cb0 − cy0)Sπ̂(p̃)

1 + Sπ̂(y − p̃)

The resulting utility (normalized by |u′′|) is

Um∗ = − (cb0 − cy0 −∆c0)2

2

(
1 + S ||y − p̃||2

)
= − (cb0 − cy0)2

2

(
1 +

Sπ̂(p̃)

1 + Sπ̂(y − p̃)

)2(
1 + S ||y − p̃||2

)

Taking the difference Um∗ − Uy yields the result.

The proof of the second part is trivial. We have

||y −m∗|| = ||y − (y − p̃)|| = ||p̃|| = δθ,H,y

By definition, δθ,H,y is the minimum distance between y and any admissible pricing kernel. �

Proposition 4 tells us that the normalized utility gain is linear and increasing in the multi-period

distance metric. Furthermore, the utility gain is lower if the investor is more risk averse. This makes

sense as a more risk averse investor generally would take smaller positions to offset the mis-specification.

We also see that the utility gain is related to π̂(p̃), which is the price of the payoff that pays θhp̃
(h) at

every horizon h ∈ H. This term comes about due to inter-temporal shifts in consumption. In particular, as

returns are mis-priced, date 0 consumption is not optimal either. The extent to which date 0 consumption

needs to change depends on the price of p̃. In the special case that p̃ is an excess return so that π̂(p̃) = 0,
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date 0 consumption remains the same. Note that in tat special case, going from model y to m∗ only shifts

consumption across states and not inter-temporally. Furthermore, the normalized utility gain becomes

Um∗ − Uy
−u′′(c0)

=
1

2
a−2Sδ2

θ,H,y

The normalized utility gain does not have a familiar economic interpretation. The following corollary

therefore provides an equivalent increase in date 0 consumption to gauge the importance of model mis-

specification.

Corollary 1. If 1 ≥ Sδ2
θ,H,y − S

1+S||y−p̃||2
θ,H

Sπ̂(p̃)2, there exists an equivalent increase in date 0 con-

sumption s.t. u(cy0 + ce) + E
∑
h∈H β

hu(cyh) = Um∗ . The equivalent consumption increase is given by

ce

cy0
=

1−
√

1− Sδ2
θ,H,y + S

1+S||y−p̃||2
θ,H

Sπ̂(p̃)2

γ

where γ ≡ −u
′′(cy0 )c

y
0

u′(cy0 )
is the coefficient of relative risk aversion.

The condition that 1 ≥ Sδ2
θ,H,y− S

1+S||y−p̃||2
θ,H

Sπ̂(p̃)2 is due to utility derived from date 0 consumption

is bounded above by u(cb0). Consuming more beyond the bliss point lowers utility. Thus, there exists

an equivalent consumption increase at date 0 only if the misspecification of y is not so large that the

consumer cannot realize all the potential utility gain at a single date. Due to the blisspoints, the consumer

would need several dates to absorb the gain if it is large. As S grows with the number of horizons, the

condition is less likely to be satisfied if the number of horizons is large.

4.2 Excess Return Mis-pricing

Suppose the investor instead considers the pricing of excess returns. In particular, let R̄
(h)
b denote the

last Nh − 1 rows of R
(h)
b and R

(h)
b,1 be the first row. We can then generate a vector of excess returns

R
e,(h)
b = R̄

(h)
b −R

(h)
b,11. The prices assigned to these excess returns by y(h) is then

E
(
y(h)R

e,(h)
b

)
= ᾱ(h) − α(h)

1 1 ≡ αe(h) (43)

It then follows that there exists a set of trades with price 0 at date 0 that improves the investor’s expected

utility. Proposition 5 states that the normalized utility gain from these trades are proportional to the

multi-period excess return distance metric

Proposition 5. Consider a quadratic utility investor who consumes at dates 0 and H. Assume his IMRS,

MI , equals y at all h ∈ H. If E(y(h)Re,(h)) 6= 0 for some h ∈ H, then:

1. There exists an excess return pricing kernel me s.t. the consumption stream implied by me is

attainable. Furthermore, the trades required to attain the implied consumption stream costs 0 at
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date 0.

2. The distance between y and me is δeθ,H,y.

3. The utility gain normalized by |u′′| for a quadratic utility investor from using the excess return

pricing kernel me instead of the mis-specified model y is

Ume − Uy
−u′′(c0)

=
1

2
a−2S(δeθ,H,y)2

where S ≡
∑
h∈H β

−h, θh ≡ β−h

S
, and a ≡ −u

′′(cy0 )

u′(cy0 )
is the coefficient of absolute risk aversion

evaluated at cy0.

4. If 1 ≥ S (δeθ,H,y)2, there exists an equivalent increase in date 0 consumption, ce0, that gives the

same utility as going from the model implied consumption cyh to ce∗h for all h ∈ H. ce0 is given by

ce0

cy0
=

1−
√

1− S (δeθ,H,y)2

γ

where γ ≡ − c
y
0u
′′(cy0 )

u′(cy0 )
is the coefficient of relative risk aversion evaluated at cy0.

Proof. Part 1. An admissible pricing kernel for excess returns is me = y− p̃e, where p̃e ∈ Pe. The implied

consumption stream is

cm
e

h = cbh − β−h(cb0 − cy0)(y(h) − p̃e(h))

= cyh + (cb0 − cy0)Sθhp̃
e(h)

Since p̃e(h) is an excess return, it is tradeable and costs 0 at date 0. As a consequence, the investor’s

budget constraint is satisfied without adjusting date 0 consumption.

Part 2. The distance between y and me = y − p̃e is

||y −me||θ,H = ||p̃e||θ,H = δeθ,H,y

Part 3. The expected utility from using me is

Ume ≡ u(cy0)− 1

2
(cb0 − cy0)2S ||me||2θ,H

= u(cy0)− 1

2
(cb0 − cy0)2S ||y − p̃e||2θ,H

= u(cy0)− 1

2
(cb0 − cy0)2S

(
||y||2θ,H + ||p̃e||2θ,H − 2Êθ,H(yp̃e)

)
= u(cy0)− 1

2
(cb0 − cy0)2S

(
||y||2θ,H − ||p̃e||2θ,H

)

Taking the difference between Ume and Uy yields the result.
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Part 4. The increase in date 0 consumption ce0, keeping future consumption at cyh, that yields the

same utility gain is (if it exists) given by

u(cy0 + ce0)− u(cy0)

−u′′(cy0)
=

1

2
a−2S(δeθ,H,y)2 ⇔

0 =
ce2

0

2
− a−1 ce0 +

1

2
a−2S(δeθ,H,y)2

The solutions are given by

ce0 = a−1 ±
√
a−2 − a−2S(δeθ,H,y)2 =

1±
√

1− S(δeθ,H,y)2

a

Note that the negative root is the solution we are interested in as the positive root gives a consumption

that overshoots the bliss point. The equivalent date 0 consumption is well-defined if 1 ≥ S(δeθ,H,y)2,

which is the stated assumption. Dividing both sides by cy0 and using γ = a · cy0 gives the result. �

Proposition 5 tells us that the normalized utility gain from exploiting the mis-pricing of risk is pro-

portional to the excess return distance metric. Normalizing the utility gain by −u′′ gives us a measure

of utility change that is invariant preference-preserving transformations of u. Furthermore, the theorem

tells us that as long as the model mis-specification is not too large, there exists an increase in date 0

consumption, keeping all future consumption fixed, that delivers the same utility gain as exploiting the

mis-pricing. The requirement that the mis-specification not be too large, is caused by the peculiar form

of the utility - increasing date 0 consumption beyond the bliss point does not deliver extra utility.

Corollary 2. Iff 1 > S (δeθ,H,y)2, then:

1. ce0
c
y
0

is strictly increasing in the distance metric δeθ,H,y

2. ce0
c
y
0

is strictly decreasing in the coefficient of relative risk aversion γ

Proof. For part 1, note that S ≡
∑
h∈H β

−h > 0. The result then follows immediately from Proposition

5. For the second part, note 1 > S (δeθ,H,y)2 and S > 0 implies
√

1− S (δeθ,H,y)2 ∈ (0, 1) and thus

1−
√

1− S (δeθ,H,y)2 > 0. Since the numerator does not depend on γ, the result follows immediately. �

5 A model economy

In this section I will assume the base assets for P(h) are the h period returns on N assets. Let rt+1 denote

an N × 1 vector of log-returns on the base assets and rf,t be the risk-free rate

rt+1 = rf,t + µet −
1

2
diag(σν,tσ

>
ν,t)−

1

2
diag(σε,tσ

>
ε,t) + σν,tνt+1 + σε,tεt+1 (44)
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where diag(X) denotes a matrix whose diagonal entries equals that of X and the off-diagonal entries are

zero. I assume that ν and ε are independent standard normal random variables. Furthermore, I assume

that ν and ε are K × 1 and N × 1 vectors respectively. Let ri,t+1, σi,ν,t and σi,ε,t denote the i-th rows

of the corresponding vector/matrix. Then diag(σν,tσ
>
ν,t)i,i = σi,ν,tσ

>
i,ν,t and diag(σε,tσ

>
ε,t)i,i = σi,ε,tσ

>
i,ε,t

are the conditional variances of ri,t+1 associated with the ν and ε shocks respectively.

Suppose market prices are determined by the true log pricing kernel given by

mt+1 = −rf,t −
λ>t λt

2
− λ>t νt+1

where λt is a K × 1 vector of risk-prices. Note that mt+1 prices the risk-free rate by construction. Since

it also prices risky returns, we have that

µet = σν,tλt (45)

Letting R(h) and M (h) denote the h-period returns and SDF, it follows from the law of iterated expecta-

tions that

1 = Et(MhR(h)), ∀h

Now suppose we have a candidate discount factor of the following form

yt+1 = −rf,t −
ξ>ν,tξν,t

2
−
ξ>ε,tξε,t

2
− ξ>ν,tνt+1 − ξ>ε,tεt+1 (46)

which also prices the risk-free rate by construction. However, yt+1 is potentially mis-specified along two

dimensions. First, it might have the wrong risk-prices for the priced shocks ν, i.e. ξν,t 6= λt. Second, it

might falsely assign a non-zero price of risk to the ε shocks, i.e. ξε,t 6= 0. A special case of the candidate

discount factor is yt+1 = at − ω>rt+1.

Let us first consider the conditional price assigned by y to 1-period returns.

qy,t(R
(1)) ≡ Et(eyt+1+rt+1) = eµ

e
t−σν,tξν,t−σε,tξε,t

= eσν,t(λt−ξν,t)−σε,tξε,t (47)

Clearly, qy,t(Rt+1) is in general not equal 1.

In order to price multi-horizon returns and take unconditional expectations, we must impose more

structure. I will therefore consider a simple example economy, with three different candidate models y.
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5.1 Example Economy 1

To keep things simple, let σν,t = σν , σε,t = σε and rf,t = rf . Let the risk prices follow an AR(1) with

independent standard normal shocks, i.e.

λk,t+1 = (1− ϕk)λk + ϕkλk,t + %kηk,t+1

where ϕk ∈ (−1, 1). Without loss of generality, we assume λk > 0.

Some further notation will prove useful. Throughout, I will for a matrix X, take X(k) to mean the

k-th column of X. Furthermore, Xk raises every element of X to the power of k. A fraction with an

L×M matrix A in the numerator and an L× 1 vector in the denominator divides each row of A by the

corresponding row of v. Similarly, ◦ denotes element-wise multiplication. If v is an L × 1 vector and A

an L×M matrix, (v ◦ A)i,j ≡ (A ◦ v)i,j ≡ Ai,jvi, i = 1, . . . , L, j = 1, . . . ,M . Similarly, if v is an 1×M

vector and A an L×M matrix, (v ◦A)i,j ≡ (A◦v)i,j ≡ Ai,jvj , i = 1, . . . , L, j = 1, . . . ,M . Finally, for two

L×M matrices A and B, (A ◦B)i,j ≡ (B ◦ A)i,j ≡ Ai,jBi,j , i = 1, . . . , L, j = 1, . . . ,M . The covariance

matrix of λt can then be written

Σλ,k,k = diag
( %2

1− ϕ2

)

The conditional and unconditional second moment matrices of 1-period returns is

Et(R(1)R(1)>) = exp
{

2rf + σνλt1
> + 1λ>t σ

>
ν + 2σνσ

>
ν + 2σεσ

>
ε

}
E(R(1)R(1)>) = exp

{
2rf + σνλ1

> + 1λ>σ>ν + 2σνσ
>
ν + 2σεσ

>
ε + 2σνΣλσ

>
ν

}
≡ A ◦ exp{2σνΣλσ

>
ν }

In the multi-period case, the conditional second moment is

Et(R(h)R(h)>) = Ah ◦ exp
{

2σνΣ(h)
η σ>ν + σν

(1− ϕh

1− ϕ ◦ (λt − λ)
)
1> + 1

(1− ϕh

1− ϕ ◦ (λt − λ)
)>
σ>ν

}

where Σ
(h)
η is the conditional covariance matrix of

∑h−1
i=0 λt+i, which can be expressed analytically as

follows

Σ(h)
η ≡ diag

(( %

1− ϕ

)2

◦
(
h− 1− 2

ϕ− ϕh

1− ϕ +
ϕ2 − ϕ2h

1− ϕ2

))

Note that Σ
(1)
η = 0. Thus

E(Rt,t+hR
>
t,t+h) = Ah ◦ exp

{
2σνΣ(h)

η σ>ν + 2σνΣ
(h)
λ σ>ν

}
(48)
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Σ
(h)
λ is the covariance matrix of Et

∑h−1
i=0 λt+i, which equals

Σ
(h)
λ ≡

(1− ϕh

1− ϕ

)2

◦ Σλ

Thus, letting h = 1, Σ
(1)
λ = Σλ as expected. Let us now turn our attention towards the candidate pricing

kernels. Note that Σ
(h)
λ + Σ

(h)
η = V(

∑h−1
i=0 λt+i) is the unconditional covariance matrix of

∑h−1
i=0 λt+i.

Candidate Model 1

Let sub-script v−K denote the first K − 1 rows of v. Consider the model

y1,t+1 = −rf,t −
λ>−K,tλ−K,t

2
− λ>−K,tν−K,t+1 (49)

which prices risks associated with the K − 1 first ν-shocks correctly, but falsely claims that νK-shocks

carries zero risk-price. Note that in this case ξε,t = 0. Using (49) in (47) gives

qy1,t(R
(1)) = eσν(K)λK,t

Clearly, the extent of conditional mis-pricing depends on how costly it is to bear νK risk and how exposed

the assets are to this risk, i.e. how “big” σν(K) is.

Since λK,t ∼ N(λK ,
%2K

1−ϕ2
K

) the average price assigned by y1 to 1-period returns is

qy1(R(1)) = eσν(K)λK+ 1
2
σν(K)2Σλ,K,K

For the average prices assigned by y1, it also matters how variable the K-th risk price is - a more

variable risk-price implies that y1 assigns a higher price to assets with a non-zero exposure. As expected,

y1 considers any asset with positive loading on νK undervalued. Or equivalently, y1 overvalues assets

exposed to νK . The intuition is straightforward - investors require compensation for bearing νK risk, but

y1 assumes no such compensation is required and therefore value exposed assets higher.

The conditional price assigned to multi-horizon returns by y1 is

qy1,t(R
(h)) = exp

{
hσν(K)λK + σν(K)

1− ϕhK
1− ϕK

(λK,t − λK) +
1

2
σν(K)2Σ

(h)
η,K,K

}
(50)

The terms in (50) have straightforward interpretations. First, σν(2)λ2 is the average log-risk premium

coming from compensation to νK risk. The average compensation scales up linearly with horizon. The

second term, σν(K)(λK,t−λK) is the extra compensation coming from the current risk price being higher

or lower than average. Since the risk price revert back towards its mean in the long run, the term scales

up less than linearly with horizon. The final term is the conditional variance of
∑h−1
s=0 σν(2)λ2,t+s.
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Taking the unconditional expectation of (50) gives us the following average price

qy1(R(h)) = exp
{
hσν(K)λK +

1

2
σν(K)2Σ

(h)
λ,K,K +

1

2
σν(K)2Σ

(h)
η,K,K

}
(51)

Candidate Model 2

The second candidate model correctly identifies all the priced shocks, but mistakenly assumes the corre-

sponding risk-prices are constant, i.e.

y2,t+1 = −rf −
ξ>ν ξν

2
− ξ>ν νt+1

y2 therefore prices 1-period returns as follows

qy2,t(R
(1)) = eσν(λt−ξν)

qy2(R(1)) = eσν(λ−ξν)+ 1
2
σ2
νΣλ1

If ξν = λ, i.e. the assumed risk price equals the mean risk price, assets with non-zero exposure to ν

will be overvalued by y2. Alternatively, setting ξν sufficiently larger than λ will cause the returns to be

undervalued. In the special case K = N , i.e. there are the same number of priced and un-priced shocks,

y2 could price the 1-period return perfectly (on average) if ξν = λ + 1
2
σ−1
ν σ2

νΣλ. However, even in this

case, the multi-period returns would be mis-priced

qy2,t(R
(h)) = exp

{
hσν(λ− ξν) + σν

(1− ϕh

1− ϕ ◦ (λt − λ)
)

+
1

2
σ2
νΣ(h)

η 1
}

qy2(R(h)) = exp
{
hσν(λ− ξν) +

1

2
σ2
ν

(
Σ

(h)
λ + Σ(h)

η

)
1
}

(52)

we see that even if the 1-period return is undervalued by y2, the multi-period return may be overvalued

if the price of risk is sufficiently persistent and variable.

Candidate Model 3

The final candidate model I will consider is

y3,t+1 = −rf −
ξ>ε ξε

2
− ξ>ε εt+1 (53)

In other words, the candidate model wrongly assumes ε is priced, while failing to recognize that ν is

priced. Despite appearances, we could easily fail to reject this model if we only considered 1-period
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returns. To see why, note that the prices assigned by y3 is now

qy3,t(R
(1)) = eσνλt−σεξε

qy3(R(1)) = eσνλ+ 1
2
σ2
νΣλ1−σεξε (54)

Thus, assuming σε is of full rank, we can price 1-period returns perfectly on average if we choose

ξε = σ−1
ε

(
σνλ+

1

2
σ2
νΣλ1

)
(55)

Rewriting (55) as

ξε = (σ>ε σε)
−1σ>ε

(
σνλ+

1

2
σ2
νΣλ1

)

we see that ξε are regression coefficients resulting from regressing log expected 1-period excess returns

logE
(
R
Rf

)
= σνλ + 1

2
σ2
νΣλ1 on the columns of σε. Since we assumed σε was invertible, the columns

are linearly independent. The regression therefore has as many independent explanatory variables as

observations of the dependent variable, resulting in a perfect fit. Using the risk-prices in (55) gives us the

following 1-period prices

qy3,t(R
(1)) = eσν(λt−λ)− 1

2
σ2
νΣλ1

qy3(R(1)) = 1

With general ξε, the multi-period prices becomes

qy3,t(R
(h)) = exp

{
h(σνλ− σεξε) + σν

(1− ϕh

1− ϕ ◦ (λt − λ)
)

+
1

2
σ2
νΣ(h)

η 1
}

qy3(R(h)) = exp
{
h(σνλ− σεξε) +

1

2
σ2
ν

(
Σ

(h)
λ + Σ(h)

η

)
1
}

(56)

which in the special case of ξε given by (55) becomes

qy3,t(Rt,t+h) = exp
{
− h

2
σ2
νΣλ1 + σν

(1− ϕh

1− ϕ ◦ (λt − λ)
)

+
1

2
σ2
νΣ(h)

η 1
}

qy3(Rt,t+h) = exp
{
− h

2
σ2
νΣλ1 +

1

2
σ2
ν

(
Σ

(h)
λ + Σ(h)

η

)
1
}

As can be seen from (56), estimating the candidate pricing kernel to have zero pricing error for 1-period

returns might lead to high pricing errors at longer horizons. In fact, (56) suggests that

ξ̂ε = σ−1
ε

[
σνλ+

1

2h
σ2
ν

(
Σ

(h)
λ + Σ(h)

η

)
1
]

(57)
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is an equally sensible choice for ξε as this causes h-period returns to be priced correctly on average. The

two are different to the extent that Σλ is different from
Σ

(h)
λ

+Σ
(h)
η

h
. Clearly, ξ̂ε can then be interpreted

as the coefficients resulting from regressing σνλ + 1
2h
σ2
ν

(
Σ

(h)
λ + Σ

(h)
η

)
1 on σε. Since logE

(
R(h)

Rf

) 1
h

=

σνλ + 1
2h
σ2
ν

(
Σ

(h)
λ + Σ

(h)
η

)
1, it can be interpreted as the average log expected excess return on R(h)

measured per period. Thus, if the expected h-period returns are higher than expected 1-period returns

(per period), ξ̂ε will tend to be bigger in magnitude than ξε

There is a striking similarity between the expressions in (56) and (52). In fact, for a given set of test

assets, we can choose ξε in y3 s.t. y2 and y3 have identical pricing implications for all horizons. However,

the two SDFs would price new assets very differently. To see this, note that we can think of ˜εt+1 ≡ ξ>ε εt+1

as a single factor. A new asset would have some exposure to ε̃ that typically does not line up with its

exposure to ν. In general, we would therefore expect the external validity of y2 to be greater than that

of y3.

5.2 Example Economy 2

The equivalence of pricing implications for y2 and y3 is caused by the simplifying assumption that σν,t

and σε,t are constant. It might therefore be of some interest to investigate the pricing implications if we

relaxed those assumptions. Let us therefore consider an identical economy and candidate models as in

sub-section 5.1 except that

σε,t+1 = σεzt

zt+1 = 1 + b(zt − 1) + dut+1

where ut+1 is a standard normal shock and b ∈ (−1, 1) denotes the persistence of zt. In other words,

conditional volatility for every asset-shock pair i, j is the corresponding mean volatility scaled by zt.

While this might not be the most realistic volatility process, the main point is to illustrate the effect of

time-varying volatility on pricing.

The second moment matrix of h-period returns is in this case (see Appendix B for details)

E(Rt,t+hR
>
t,t+h) = Âh ◦ exp

{
2σνΣ(h)

η σ>ν + 2σνΣ
(h)
λ σ>ν + 2Σ(h)

ε

}
(58)

where

Â ≡ exp
{

2rf + σνλ1
> + 1λ>σ>ν + 2σνσ

>
ν

}

The prices assigned by candidate models y1 and y2 are the same as in the previous section. For y3,
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the 1-period prices are now

qy3,t(R
(1)) = eσνλt−σεξεzt

qy3(R(1)) = eσνλ+ 1
2
σ2
νΣλ1−σεξε+ 1

2
(σεξε)2σ2

z

where σ2
z ≡ d2

1−b2 is the variance of zt. The corresponding multi-period prices are

qy3,t(R
(h)) = exp

{
h(σνλ− σεξε) + σν

(1− ϕh

1− ϕ ◦ (λt − λ)
)

+
1

2
σ2
νΣ(h)

η 1

− σεξε
1− bh

1− b (zt − 1) +
1

2
(σεξε)

2σ(h)2
u

}
qy3(R(h)) = exp

{
h(σνλ− σεξε) +

1

2
σ2
ν

(
Σ

(h)
λ + Σ(h)

η

)
1 +

1

2
(σεξε)

2
(
σ(h)2
z + σ(h)2

u

)}
(59)

where

σ(h)
u ≡

√
h− 1− 2

b− bh
1− b +

b2 − b2h
1− b2

d

1− b

σ(h)
z ≡ 1− bh

1− b σz

We can interpret σ
(h)2
u as the conditional variance of

∑h−1
i=0 zt+i and σ

(h)2
z as the variance of Et

∑h−1
i=0 zt+i.

σ
(h)2
z + σ

(h)2
u is then the unconditional variance of

∑h−1
i=0 zt+i. From (59) we see that stochastic volatility

for the unpriced shocks introduces another source for mis-pricing. For this reason, the pricing implications

of y2 and y3 are no longer equivalent. The size of the additional mis-pricing depends on both how volatile

and persistent idiosyncratic volatility is.

5.3 Numerical Results

In this section I report numerical results for for the multi-period distance metrics associated with example

economies 1 and 2. I assume the true log pricing kernel m is a two-factor model, and that factor 1 with

a mean risk price of λ1 = 1√
12

, compared to λ2 = 0.05√
12

, is by far the most important on average.

Furthermore, the risk-prices are assumed to be fairly volatile - the standard deviation of λ1,t is equal to

the mean λ1, and the standard deviation of λ2,t is equal to 10 times its mean λ2. Since the volatility of

factor 2 risk price is very high, it is an important pricing factor at some points in time. The number of

test assets at every horizon is 50. Each asset’s loading on each risk source is drawn independently from

a uniform distribution.

The first candidate model captures the main source of priced risk perfectly, but it overlooks a source

of priced risk that is unimportant on average. Candidate model 2 on the other hand, includes both risk-

sources, but fails to capture the volatility of the prices of risk. In candidate model 2, we have to choose

the model-implied price of risk parameters ξν . In this section, I assume ξν = λ, i.e. the model-implied
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risk-price is correct on average. From an intuitive standpoint, the types of mis-specification captured in

these models seem very plausible in empirical models.

The third candidate model can be thought of as a data-mining exercise - we have N free parameters

and N assets. I consider two versions of this model. The first chooses parameters, assuming constant

idiosyncratic volatility, to price 1-period returns unconditionally and the second prices 12-period returns

unconditionally. Note that these models are completely uncorrelated with the true log-pricing kernel m.

However, by design the covariance between asset returns and these candidate models (in levels) line up

perfectly with the covariance of asset returns and em at the relevant horizon. As a consequence, these

models would typically perform badly if we attempted to price a return that is not in the span of the

original N assets.

Figure 1 plots the standard HJ-distance for each candidate model against horizon. Panel (a) gives the

results for Example Economy 1 with constant idiosyncratic volatility, while Panel (b) shows the results

for Example Economy 2 where idiosyncratic volatility is time-varying.

From Panel (a) we see that all models, except the version of model 3 that prices 12 month returns,

perform well when looking at 1-period returns. In this case, the HJ-distance is around 1% for candidate

model 1 or below for the two other models. It is also interesting to note that if we where to rank models

on the basis of 1-period HJ-distance, version 1 of model 3 would be ranked best, followed by model 2, and

then model 1. Given that model 3 is the least related to the actual pricing kernel among the candidates,

this might be somewhat undesirable.

The version of candidate model 3 that prices 1-period returns unconditionally, gives a 1-period HJ-

distance of 0 as expected. However, the HJ-distance grows quickly with horizon peaking right below 0.09

at the 40 month horizon. In other words, the maximally mis-priced payoff has a pricing error of 9% of

its norm.

Candidate model 2 does slightly worse than version 1 of model 3 at every horizon. It is therefore clear

that the multi-horizon distance metric cannot reverse the ranking between model 2 and 3 in this case.

In the case of candidate model 1, the picture is slightly different. It starts off being ranked below

model 2 and version 1 of model 3, but the HJ-distance grows more slowly with horizon causing it to be

ranked above both of these models for horizons exceeding 12 months. As a consequence, the multi-period

distance metric will rank model 1 above models 2 and version 1 of 3 provided enough weight is placed on

longer horizons.

The picture is quite different for the version of the third candidate model that prices 12-month returns.

The HJ-distance at the 1 month horizon is quite large at about 0.035, which falls to 0 at the 12 month

horizon as expected. For longer horizons, the distance metric grows, peaking right below 0.06 for the

50-60 month horizons. Interestingly, the HJ-distances for this model is below the three other candidates

for all horizons exceeding 6 months.
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(a)

(b)

Figure 1: This figure plots the HJ-distance for each model vs investment horizon. Panel (a) assumes the constant
idiosyncratic volatility economy of subsection 5.1, whereas Panel (b) shows the results for the stochastic idiosyncratic
volatility economy of subsection 5.2.
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The overall picture from Panel (a) is that the two versions of model 3 performs better than might

be expected given that they are uncorrelated with the true pricing kernel. However, as already noted,

there is a certain equivalence between candidate models 2 and 3 when volatility is constant. The reason

is that both models assume constant risk prices. With constant volatilities, one can always choose the

N risk-price parameters in model 3 to match the risk-premiums implied by model 2. With stochastic

idiosyncratic volatility, the implied risk premium from model 3 is time-varying, whereas that of model 2

is constant. As a consequence, the equivalence breaks down.

From Panel (b), we see that idiosyncratic volatility changes the rankings and HJ-distance of models

quite drastically, particularly at longer horizons. At the 1-period horizon, the metrics are almost identical

to those in Panel (a). However, at horizons exceeding 15 months both versions of model 3 performs

significantly worse than models 1 and 2. Furthermore, model 1 is now the best performing according to

the HJ-distance for all horizons greater than 15 months.

It is worth noting that stochastic idiosyncratic volatility generally lowers HJ-distances for model 1

and 2. The reason is straightforward. Idiosyncratic volatility does not affect the pricing errors of basis

returns for model 1 and 2. However, it does affect the second-moment matrix of returns, which is in the

denominator of the HJ-distance. Positively auto-correlated volatility cause the second moment matrix to

grow more with horizon than in the constant volatility case, causing the HJ-distance to fall.

For the two versions of model 3, the pricing errors are generally larger when idiosyncratic volatility is

stochastic. Thus, the effect on the HJ-distance is ambiguous and generally depend on what horizon we

are looking at.

6 Conclusion

In this paper I propose a distance metric to compare candidate pricing kernels in a multi-horizon setting.

The metric measures the distance between a misspecified candidate pricing kernel and the “closest” kernels

that prices the test assets correctly. Viewing horizons as collections of states makes the problem analogous

to that in Hansen and Jagannathan (1997). As such, my metric is a natural generalization of the standard

HJ-distance to a multi-period setting. Indeed, the distance metric can be written as a weighted average

of standard HJ-distances across the horizons under consideration. Thus, the multi-period distance is low

only if the HJ-distance is low at every horizon.

The multi-period distance metric is closely related to the utility loss of a quadratic utility investor

from using a misspecified model. In particular, if the model mis-prices excess returns, the utility gain

from exploiting the misspecification is proportional to the excess return distance squared.
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A Moment Generating Function

Let v be an H × 1 vector of normally distributed random variables with 0 mean and covariance matrix

Γ. Furthermore, let τ1 denote an H × 1 vector and τ2 denote an H ×H matrix. Assume

det(I − 2τ2Γ) > 0

and define

A ≡ Γ
(
I − 2τ2Γ

)−1

(60)

The following moment generating function will prove useful

E
(
eτ
>
1 v+v>τ2v

)
= (2π)−

H
2 det(Γ)−

1
2

∫ ∞
−∞

eτ
>
1 v+v>τ2v− 1

2
v>Γ−1vdv

= e
1
2
τ>1 Aτ1(2π)−

H
2 det(Γ)−

1
2

∫ ∞
−∞

e−
1
2

(v−Aτ1)>A−1(v−Aτ1)dv

= e
1
2
τ>1 Aτ1(2π)−

H
2 det(Γ)−

1
2

∫ ∞
−∞

e−
1
2
x>I−1x det(A)

1
2 dx

= e
1
2
τ>1 Aτ1 det(Γ)−

1
2 det(A)

1
2

∫ ∞
−∞

(2π)−
H
2 det(I)−

1
2 e−

1
2
x>I−1xdx

= e
1
2
τ>1 Aτ1 det(A−1Γ)−

1
2

Thus

E
(
eτ
>
1 v+v>τ2v

)
= e

1
2
τ>1 Aτ1 det(A−1Γ)−

1
2

= det(I − 2τ2Γ)−
1
2 e

1
2
τ>1 (I−2τ2Γ)−1Γτ1 (61)

B Example Economy 2

Let H denote the maximum horizon. Recall the assumed idiosyncratic volatility process

σε,t = σεzt

Σε,t ≡ σε,tσ>ε,t = σεσ
>
ε z

2
t ≡ Σεz

2
t

where zt is a stochastic scalar following an AR(1)

zt+1 = z + bz̃t + dut+1

where ut+1 is i.i.d. standard normal.
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Then

zt+h = z + bhz̃t +

h∑
j=1

bh−jdut+j

Thus, letting ẑt,h ≡ z + bhz̃t

z2
t+h = ẑ2

t,h + 2ẑt,h

h∑
j=1

bh−jdut+j +
( h∑
j=1

bh−jdut+j
)2

= ẑ2
t,h + 2ẑt,hvs + v2

h

where

vh ≡
h∑
j=1

bh−jdut+j

Note that vh is normally distributed with variance κ2
h ≡

∑h
j=1 b

2(h−j)d2 = b2−b2h
1−b2 d2. Let v ≡ (v1, . . . , vH−1)′.

The covariance matrix Γ of v is then given by

Γl,k ≡ Cov(vl, vk) = Cov
( l∑
j=1

bl−jdut+j ,

k∑
j=1

bk−jdut+j
)

= bl−kCov
( k∑
j=1

bk−jdut+j ,

k∑
j=1

bk−jdut+j
)

= bl−kκ2
k, l ≥ k

Γl,k ≡ Cov(vl, vk) = bk−lκ2
l , l ≤ k

Finally, note that

h−1∑
l=0

ẑ2
t,l =

h−1∑
l=0

(
z2 + 2zz̃tb

l + z̃2
t b

2l
)

= hz2 + 2
1− bh

1− b zz̃t +
1− b2h

1− b2 z̃
2
t

We are interested in

B
(h)
t ≡ Etexp

{ h−1∑
l=0

2Σε,t
}

= Etexp
{ h−1∑
l=0

2Σεz
2
t+l

}
= Etexp

{
2Σε

h−1∑
l=0

(
ẑ2
t,l + 2ẑt,lvl + v2

l

)}

where we use the notation that v0 = 0. It is useful to define

τ i,j1,t,l = 4ẑt,lΣε,i,j , l = 1, . . . , H − 1

τ i,j2,l,l = 2Σε,i,j , l = 1, . . . , H − 1

τ i,j2,l,k = 0, ∀ l 6= k
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We can then find the i, j-th element of B(h) by applying the moment generating function in (61), using

only the first h − 1 elements of τ i,j1,t (note the dependence on time t information through ẑt,l) and the

first h− 1 columns and rows of τ i,j2 , which I will denote as τ
i,j(h)
1,t and τ

i,j(h)
2 respectively. Similarly, the

covariance matrix is the first h−1 columns and rows of Γ, which I will denote by Γ(h). We can then write

B
(h)
t,i,j = exp

{
2Σε,i,j

h−1∑
l=0

ẑ2
t,l

}
× Etexp

{
τ
i,j(h)>
1,t v(h) + v(h)>τ

i,j(h)
2 v(h)

}
= exp

{
2Σε,i,j

(
hz2 + 2

1− bh

1− b zz̃t +
1− b2h

1− b2 z̃
2
t

)}
× det(I − 2τ

i,j(h)
2 Γ(h))−

1
2 e

1
2
τ
i,j(h)>
1,t Ai,j(h)τ

i,j(h)
1,t

= det(I − 2τ
i,j(h)
2 Γ(h))−

1
2 × exp

{
2Σε,i,j

(
hz2 + 2

1− bh

1− b zz̃t +
1− b2h

1− b2 z̃
2
t

)
+

1

2

h−1∑
l=1

h−1∑
k=1

4(z + blz̃t)Σε,i,jA
i,j(h)
l,k 4(z + bkz̃t)Σε,i,j

}
= det(I − 2τ

i,j(h)
2 Γ(h))−

1
2 × exp

{
2Σε,i,j

(
hz2 + 2

1− bh

1− b zz̃t +
1− b2h

1− b2 z̃
2
t

)
+ 8Σ2

ε,i,j

h−1∑
l=1

h−1∑
k=1

(z + blz̃t)(z + bkz̃t)A
i,j(h)
l,k

}

= det(I − 2τ
i,j(h)
2 Γ(h))−

1
2 × exp

{
2Σε,i,j

(
h+ 4Σε,i,j

h−1∑
l=1

h−1∑
k=1

A
i,j(h)
l,k

)
z2

+ 2Σε,i,j
(

2
1− bh

1− b zz̃t +
1− b2h

1− b2 z̃
2
t

)
+ 8Σ2

ε,i,j

h−1∑
l=1

h−1∑
k=1

(bl + bk)A
i,j(h)
l,k zz̃t + 8Σ2

ε,i,j

h−1∑
l=1

h−1∑
k=1

bl+kA
i,j(h)
l,k z̃2

t

}

It is therefore clear that

B
(h)
t,i,j = det(I − 2τ

i,j(h)
2 Γ(h))−

1
2 × exp

{
2Σε,i,j

(
h+ 4Σε,i,j1

>Ai,j(h)1
)
z2

+ 4Σε,i,j
(1− bh

1− b + 2Σε,i,j

h−1∑
l=1

h−1∑
k=1

(bl + bk)A
i,j(h)
l,k

)
zz̃t

+ 2Σε,i,j
(1− b2h

1− b2 + 4Σε,i,j

h−1∑
l=1

h−1∑
k=1

bl+kA
i,j(h)
l,k

)
z̃2
t

}
(62)

Note that Ai,j(h) is a matrix of constants given by equation (60). Furthermore, z̃ is normally distributed

unconditionally, with mean 0 and variance σ2
z = d2

1−b2 . We can therefore obtain the unconditional expec-

tation of B
(h)
t by applying the moment generating function in (61) to (62), letting

τ̂
i,j(h)
1 = 4Σε,i,j

(1− bh

1− b + 2Σε,i,j

h−1∑
l=1

h−1∑
k=1

(bl + bk)A
i,j(h)
l,k

)
z

τ̂
i,j(h)
2 = 2Σε,i,j

(1− b2h

1− b2 + 4Σε,i,j

h−1∑
l=1

h−1∑
k=1

bl+kA
i,j(h)
l,k

)
Γ̂ =

d2

1− b2
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which are all constants. Therefore

B
(h)
i,j ≡ E(B

(h)
t,i,j) = det(I − 2τ

i,j(h)
2 Γ(h))−

1
2 × exp

{
2Σε,i,j

(
h+ 4Σε,i,j1

>Ai,j(h)1
)
z2
}
× Eeτ̂

i,j(h)
1 z̃t+τ̂

i,j(h)
2 z̃2t

= det(I − 2τ
i,j(h)
2 Γ(h))−

1
2 (1− 2τ̂

i,j(h)
2 Γ̂)−

1
2 × exp

{
2Σε,i,j

(
h+ 4Σε,i,j1

>Ai,j(h)1
)
z2 +

(τ̂
i,j(h)
1 )2Γ̂

2(1− 2τ̂
i,j(h)
2 Γ̂)

}
(63)

Let us define

Σ
(h)
ε,i,j ≡ Σε,i,j

(
h+ 4Σε,i,j1

>Ai,j(h)1
)
z2 +

(τ̂
i,j(h)
1 )2Γ̂

4(1− 2τ̂
i,j(h)
2 Γ̂)

− 1

4
log
(

det(I − 2τ
i,j(h)
2 Γ(h))

)
− 1

4
log
(
1− 2τ̂

i,j(h)
2 Γ̂

)
(64)

Note that for h = 1, (64) simplifies to

Σ
(1)
ε,i,j = Σε,i,jz

2 +
4Σ2

ε,i,jz
2Γ̂

1− 4Σε,i,jΓ̂
− 1

4
log
(
1− 4Σε,i,jΓ̂

)
(65)

The first term is the average covariance matrix of ε. The last two terms accounts for the stochasticity of

Σε,t. If Σε,i,j is “small”, we can approximate (65) as

Σ
(1)
ε,i,j ≈ Σε,i,j(z

2 + Γ̂)

Recall that Γ̂ is the variance of zt. Thus, the covariance is “bigger” than the average covariance matrix by

the amount ΣεΓ̂. Note that to the extent that the approximation is accurate, each term of the covariance

matrix is adjusted by the same factor. This does not generally hold at longer horizons.

Finally, we can write

Bh = exp{2Σ(h)
ε }
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