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Part I

Overview
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1
Introduction

1.1 Background

This dissertation attempts to contribute in two different fields: corporate fi-

nance and time-series econometrics. At the beginning of my PhD I started to

work in the field of corporate finance and the third essay of this dissertation

comes from that time. Later I became more interested in time-series econo-

metrics, particularly volatility modelling. This interest resulted in essays 1

and 2 in this dissertation and several more essays which are not completed

yet. Since my main interest during my PhD studies was volatility, I provide

3



an introduction only into the field of volatility. Since there are many good

review articles dealing with this topic (e.g. Poon and Granger (2003)), the

introduction is very brief.

1.2 Basics

Volatility as a measure of uncertainty is one of the most important variables

in economics and finance. The reason why volatility matters so much is

that economic agents are typically risk averse and future is never certain.

Volatility of different variables plays always a crucial role in any model,

whether it is a micro model describing the behavior of individuals or a

macro DSGE model describing the whole economy.

In addition to the general importance of volatility in economics, volatility

plays even a larger role in finance. In context of finance volatility typically

refers to volatility of the prices of financial assets. Volatility of asset prices

is crucial particularly in risk management, asset allocation, portfolio man-

agement and derivative pricing.

In pricing of derivative securities, whose trading volume increased man-

ifold in recent years, volatility is the most important variable. To price an

option, we need to know volatility of the underlying asset. Particularly in

case of options volatility is important to such an extent that options are now

commonly quoted in terms of volatility, not in terms of prices. Moreover, it

is possible to buy contracts on volatility itself (specified thoroughly in the

contract), or even derivatives on the volatility as an underlying asset.

First Basle Accord in 1996 basically made volatility forecasting compul-

sory for banks and many other financial institutions around the world, as

they need to fullfil capital requirements given by the value-at-risk (VaR)

methodology. VaR is defined as a minimum expected loss with a 1% (or

4



5%) confidence level. VaR estimates are easily available given the volatil-

ity forecast, the estimate of the mean return and the normal distribution

assumption. In the VaR methodology the volatility is important not only

directly, but indirectly through the assumption about the distribution of

asset returns. Before we explain this more in detail, we introduce some of

the basic concepts.

Volatility in finance refers typically either to the standard deviation or

the variance of returns. We keep this convention and when we talk about

volatility, we have in mind variance of returns. Volatility can be computed

in the following way:

σ̂2 =
1

N − 1

N∑
t=1

(rt − r)2 (1.1)

where

rt = log (Pt)− log (Pt−1) (1.2)

and r is the mean return. However, we should keep in mind that volatility

itself cannot be interpreted directly as risk. Vvolatility becomes a measure

of risk only once it is associated with some distribution, e.g. normal of

Student’s t distribution.

The main problem associated with the equation (1.1) is that this way we

can calculate only the average volatility over the studied period of time. If

volatility changes from one day to another then the usefulness of volatility

calculated in this way is limited. One of the best documented stylized facts

in finance is the fact that volatility changes over time.

1.3 Time-varying volatility

The distribution of the daily stock returns is bell-shaped with an approxi-

mately zero mean. It resembles the normal distribution. However, as has
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already been documented by Mandelbrot (1963), they have fat (heavy) tails

to such an extent that the normality of stock returns is generally always

strongly rejected.

Clark (1973) came up with the Mixture-of-Distributions-Hypothesis (MDH)

which postulates that the distribution of returns is normal but with a ran-

dom variance. In the original formulation in Clark (1973), the variance is

assumed to be lognormally distributed. This assumption does not hold.

Volatility exhibits clustering as was noticed by researchers later. Starting

with the work of Engle (1982) and Bollerslev (1986) the Auto Regressive

Conditional Heteroskedasticity (ARCH) and Generalized ARCH classes of

models have been developed to capture the time evolution of volatility.

Engle’s (1982) ARCH(p) model has the following form:

σ2t = ω +

p∑
i=1

αir
2
t−i (1.3)

where rt is a return in day t, σ2t is an estimate of volatility in day t and

ω and αi’s are positive constants. The GARCH(p,q) model of Bollerslev

(1986) has the following form:

σ2t = ω +

p∑
i=1

αir
2
t−i +

q∑
j=1

βiσ
2
t−j (1.4)

where the βi’s are positive constants. The GARCH model has become more

popular because with just a few parameters it can fit the data better than

a more parametrized ARCH model. Afterwards, GARCH models were ex-

tended to capture the leverage effect. The leverage effect is an empirically

observed fact that volatility increases after negative returns. (One of the

possible explanations of the leverage effect is based on the fact that equity

is a residual claim on the value of the company). GARCH models were de-

6



veloped further to incorporate long memory in volatility, regime switching

and other effects.

An alternative way to capture the properties of stock returns is to use

stochastic volatility models instead of GARCH models. Stochastic volatility

models were first introduced by Taylor (1973). The main difference be-

tween stochastic volatility models and GARCH models is the following one.

Innovations to volatility in GARCH models are given by returns, whereas

innovations to volatility in stochastic volatility models might be completely

unrelated to returns.1

Therefore stochastic volatility models can be considered more general

than GARCH models. However, GARCH models still remain the most

widely used volatility models. The reason for this is the fact that GARCH

models can be estimated easily via the maximum likelihood, whereas the es-

timation of stochastic volatility models must be done using more complicated

techniques (e.g. Kalman filter, quasi-maximum likelihood, the generalized

method of moments through simulations, Monte Carlo simulations).

1.4 Conditional distribution of stock returns

The ARCH/GARCH models are able to explain heavy tails in stock returns

only partially. These models are still unable to account for all of the mass in

the tails of the distributions, leaving the conditional distribution of returns

far from normal. To better account for the deviations from the normality

in the conditional distributions of returns, alternative conditional distri-

butions with heavy tails (e.g. the t-distribution of Bollerslev (1987), the

General Error Distribution (GED) of Nelson (1991) and more recently, the

1However, these two are in most models correlated, as this correlation produces the
leverage effect, which is observed in the data.
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Normal Inverse Gaussian (NIG) distribution of Barndorff-Nielsen (1997))

were suggested for stock returns.

However, the idea of the normality of conditional stock returns was not

forgotten. The emergence of the high frequency data allowed to calculate

the realized variance, a very precise estimate of the true variance. Using

the realized variance, several authors (e.g. Andersen, Bollerslev, Diebold,

Labys (2000), Andersen, Bollerslev, Diebold, Ebens (2001), Forsberg and

Bollerslev (2002) and Thamakos and Wang (2003)) showed on different data

sets that the conditional distribution of asset returns (i.e. the distribution of

asset returns divided by their standard deviations) is indeed approximately

normal. Even though the asymmetry of stock returns is a well documented

fact (see e.g. Longin and Solnik (2000), Ang and Chen (2002)) it can be

considered a second-order effect.

The finding that most of the departure from normality is caused by time-

varying volatility not only allows us to understand financial markets better

but this insight allows us to develop better volatility models. If we have a

model which predicts volatility perfectly then the conditional distribution

of stock returns will be approximately normal. If volatility is forecasted

imperfectly then the conditional distribution of returns will exhibit heavy

tails. Since no model can predict future volatility perfectly heavy-tailed

distributions will still be needed in volatility forecasting. However, the more

precise is the volatility model the closer will be the distribution of returns

to the normal distribution.

1.5 Implied volatility

There are two other volatility concepts which should be mentioned: the

implied volatility and the realized variance. Implied volatility is volatility

8



implied by option prices. It is necessarily forward looking; it captures the

expectations of market participants about future volatility. Therefore, it

is generally quite useful in volatility forecasting. However, we must keep

in mind that a test of the forecasting power of the implied volatility is

necessarily a joint test of the option market efficiency and the correct option

pricing model.

Black-Scholes (1973) option pricing formula assumes that the growth

rate of stock follows a Brownian motion with drift

dS

S
= µdt+ σdBt. (1.5)

Further assumptions include: constant volatility, no transaction costs, per-

fectly divisible securities, no arbitrage, a constant risk-free rate and no div-

idends. Given these assumptions, the Black-scholes option pricing formula

for the European option at time t is a function of the price of the underlying

security St, the maturity of the option T , volatility σ of the underlying asset

from time t to T , the risk-free interest rate r and the strike price X:

C = f (St, X, σ, r, t− T ) (1.6)

Therefore once the market has produced the price of the option, the rela-

tionship (1.6) can be inverted and we can infer volatility which was the input

into this formula. Since the underlying asset can have only one volatility,

options of the same time to maturity but different strike prices should im-

ply the same volatility. However, this is typically not the case. Plots of

implied volatility against the strike price are usually not flat, but instead

create a nonlinear shape (volatility smile, volatility skew or something else).

Several explanations have been suggested to explain this phenomenon (dis-
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tributional assumptions, stochastic volatility, liquidity, bid-ask spread, tick

size, investors’ risk preferences,...).

Due to the above mentioned effects implied volatility is usually calculated

from at-the-money options (for example the best known implied volatility

index VIX is calculated by combining just-in-the-money and just-out-of-the-

money options, both put and call options). Implied volatility is typically

very useful as it provides information beyond the historical prices, but it

is available only for the financial instruments which are used as underlying

assets for options, and those options must have sufficient liquidity.

1.6 Realized variance

The realized variance is the estimate of volatility calculated from the high-

frequency data. If log-returns (pt = log (Pt)) are generated by a Brownian

motion, for simplicity with a zero drift

dpt = σtdBt (1.7)

then the volatility of one-period returns rt = pt+1 − pt can be calculated as

the integrated volatility
∫ 1
0 σ

2
t+τdτ . However, in practical applications we

cannot observe the variable σ2t+τ . Moreover, no variable can be observed

continuously. As a consequence, the integrated volatility is replaced by the

realized variance. If we divide the time interval from time t to time t+1 into

M subintervals and denote the corresponding returns as rm,m+1, then the

realized variance is calculated as the sum of squared returns
M−1∑
0
r2m,m+1. In

other words, to calculate the realized variance for a given day, first divide

the day into many short intervals, calculate returns over those intervals,

square these returns and sum these squares up. Theoretically, the shorter
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are the intervals, the more precise is the final estimate. However, due to

market microstructure effects (mostly the bid-ask spread), very short time

intervals cannot be chosen. Intervals of the length of 5 to 30 minutes are

typically used. Alternatively, more sophisticated estimators could be used

instead (e.g. Zhang, Mykland and Ait-Sahalia (2005))

The realized variance provides quite precise estimates of volatility during

a particular day. The largest limitation of the realized variance is the data

availability. The high-frequency data are typically costly to obtain and work

with. Moreover, for longer time horizons (i.e. further into the past) high-

frequency data not available at all.

1.7 Range-based volatility estimators

Standard GARCH or stochastic volatility models are based on daily returns.

However, the closing price of the day is typically not the only quantity

available. Denote the price at the beginning of the day (i.e. at the time

t = 0) O (open), the price in the end of the day (i.e. at the time t = 1)

C (close), the highest price of the day H, and the lowest price of the day

L. These prices are usually widely available too. Then we can calculate the

open-to-close, the open-to-high and the open-to-low returns as

c = ln(C)− ln(O) (1.8)

h = ln(H)− ln(O) (1.9)

l = ln(L)− ln(O) (1.10)
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When we want to estimate the (unobservable) volatility σ2 from the observed

variables c, h and l, we can obviously use a simple volatility estimator

σ̂2s = c2 (1.11)

However, this simple estimator is very noisy and therefore it is desirable to

have a better one. Fortunately, the high and low prices not only provide

additional information about volatility but it is also intuitively clear that the

difference between the high and low price tells us much more about volatility

than the close price. This intuition was formalized by Parkinson (1980), who

proposed a new volatility estimator based on the range (= h− l):

σ̂2P =
(h− l)2

4 ln 2
(1.12)

Since this estimator is based solely on the quantity h− l Garman and Klass

(1980) realized that an estimator which utilizes all the available information

c, h and l will be necessarily more precise. They recommend to use the

following volatility estimator:

σ̂2GK = 0.5 (h− l)2 − (2 ln 2− 1) c2 (1.13)

This estimator can be simply interpreted as the optimal (i.e. giving the

smallest variance) combination of the simple and the Parkinson volatility

estimator. Other range-based estimators are Meilijson (2009) and Rogers

and Satchell (1991) estimators. The Rogers and Satchell (1991) estimator

allows for an arbitrary drift, but provides less precision than the other esti-

mators. The Meilijson (2009) estimator is a slightly improved version of the

Garman-Klass volatility estimator. All of the studied estimators except for
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the Rogers-Satchell are derived under the assumption of zero drift. However,

for most of the financial assets, the mean daily return is much smaller than

its standard deviation and can therefore be neglected. Obviously, this is not

true for longer time horizons (e.g. when we use yearly data), but is a very

good approximation for daily data in basically any practical application.

Range and range-based volatility estimators provide a convenient way

to improve volatility models. Literature has started to grow in this field

recently. Alizadeh, Brandt and Diebold (2002) estimate a stochastic volatil-

ity model. Brandt and Jones (2006) estimate EGARCH and FIEGARCH

models based on log range. Chou (2005) uses range in standard deviation

GARCH. Good overview of range volatility models and their applications in

Finance can be found in Chou, Chou and Liu (2010).

1.8 Summaries

1.8.1 Properties of range-based volatility estimators

accepted for publication in the International Review of Financial Analysis

In this first essay I study the properties of various range-based volatility

estimators. One of the reasons for this essay was that there was some confu-

sion about some of their properties. We study the properties of range-based

volatility estimators and clarify some problems in the existing literature. We

find that for most purposes the Garman-Klass (1980) volatility estimator is

the best. Moreover, we show that this estimator is precise enough to obtain

results similar to the realized variance. More specifically, we show that the

returns standardized by standard deviations obtained from this estimator

are approximately normally distributed.

I used the knowledge obtained during the work on this essay in other
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essays, particularly in the second essay in this dissertation and other essays

which are not part of this dissertation.

1.8.2 Rethinking the GARCH

The goal of this essay was to create a more precise but at the same time

an easy-to-implement volatility model which can be easily used by anyone.

This was accomplished by incorporating information on range into standard

GARCH(1,1) model. The empirical analysis based on 30 stocks, 6 stock

indices and simulated data confirms that the Range GARCH model performs

significantly better than the standard GARCH(1,1) model regarding both

the in-sample fit and the out-of-sample forecasting performance.

1.8.3 Tax-Adjusted Discount Rates: A General Formula un-

der Constant Leverage Ratios

with Kjell G. Nyborg

accepted for publication in the European Financial Management

In this paper we derive a general formula how to calculate a discount rate

for discounting of the expected cash flow of the company when we take into

account personal taxes. If there are no personal taxes the well-known con-

cept of Weighted Average Capital Costs provides an answer. However, the

situation become less clear once personal taxes are not neglected. Cooper

and Nyborg (2008) derive a tax-adjusted discount rate formula under in-

vestor taxes (and a constant proportion leverage policy). However, their

analysis assumes a zero recovery in default and a particular bankruptcy

code. We extend their work to allow for differences in bankruptcy codes

(which affect the taxes) and for an arbitrary recovery rate in default.

The general formula we derive is a generalization of Cooper and Nyborg
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(2008). However, the formula collapses to that of Cooper and Nyborg under

continuous rebalancing. This means that there is no recovery rate in the

final formula. However, we explain that this does not mean that the discount

rate is independent of the anticipated recovery rate. Instead, the anticipated

recovery rate is already reflected in the yield of the bond.
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Abstract

Volatility is not directly observable and must be estimated. Estimator based

on daily close data is imprecise. Range-based volatility estimators provide

significantly more precision, but still remain noisy volatility estimates, some-

thing that is sometimes forgotten when these estimators are used in further

calculations.

First, we analyze properties of these estimators and find that the best

estimator is the Garman-Klass (1980) estimator. Second, we correct some

mistakes in existing literature. Third, the use of the Garman-Klass estima-

tor allows us to obtain an interesting result: returns normalized by their

standard deviations are approximately normally distributed. This result,

which is in line with results obtained from high frequency data, but has

never previously been recognized in low frequency (daily) data, is important

for building simpler and more precise volatility models.

Key words: volatility, high, low, range

JEL Classification: C58, G17, G32 1

1I would like to thank to Jonas Andersson, Milan Bašta, Ove Rein Hetland, Lukáš
Lafférs, Michal Zdeněk and anonymous referees for helpful comments.
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2.1 Introduction

Asset volatility, a measure of risk, plays a crucial role in many areas of

finance and economics. Therefore, volatility modelling and forecasting be-

come one of the most developed parts of financial econometrics. However,

since the volatility is not directly observable, the first problem which must be

dealt with before modelling or forecasting is always a volatility measurement

(or, more precisely, estimation).

Consider stock price over several days. From a statistician’s point of

view, daily relative changes of stock price (stock returns) are almost random.

Moreover, even though daily stock returns are typically of a magnitude of 1%

or 2%, they are approximately equally often positive and negative, making

average daily return very close to zero. The most natural measure for huw

much stock price changes is the variance of the stock returns. Variance can

be easily calculated and it is a natural measure of the volatility. However,

this way we can get only an average volatility over an investigated time

period. This might not be sufficient, because volatility changes from one

day to another. When we have daily closing prices and we need to estimate

volatility on a daily basis, the only estimate we have is squared (demeaned)

daily return. This estimate is very noisy, but since it is very often the

only one we have, it is commonly used. In fact, we can look at most of

the volatility models (e.g. GARCH class of models or stochastic volatility

models) in such a way that daily volatility is first estimated as squared

returns and consequently processed by applying time series techniques.

When not only daily closing prices, but intraday high frequency data are

available too, we can estimate daily volatility more precisely. However, high

frequency data are in many cases not available at all or available only over a

shorter time horizon and costly to obtain and work with. Moreover, due to
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market microstructure effects the volatility estimation from high frequency

data is rather a complex issue (see Dacorogna et al. 2001).

However, closing prices are not the only easily available daily data. For

the most of financial assets, daily open, high and low prices are available too.

Range, the difference between high and low prices is a natural candidate for

the volatility estimation. The assumption that the stock return follows a

Brownian motion with zero drift during the day allows Parkinson (1980)

to formalize this intuition and derive a volatility estimator for the diffusion

parameter of the Brownian motion. This estimator based on the range (the

difference between high and low prices) is much less noisy than squared

returns. Garman and Klass (1980) subsequently introduce estimator based

on open, high, low and close prices, which is even less noisy. Even though

these estimators have existed for more than 30 years, they have been rarely

used in the past by both academics and practitioners. However, recently the

literature using the range-based volatility estimators started to grow (e.g.

Alizadeh, Brandt and Diebold (2002), Brandt and Diebold (2006), Brandt

and Jones (2006), Chou (2005), Chou (2006), Chou and Liu (2010)). For an

overview see Chou, Chou and Liu (2010).

Despite increased interest in the range-based estimators, their properties

are sometimes somewhat imprecisely understood. One particular problem

is that despite the increased accuracy of these estimators in comparison

to squared returns, these estimators still only provide a noisy estimate of

volatility. However, in some manipulations (e.g. division) people treat these

estimators as if they were exact values of the volatility. This can in turns

lead to flawed conclusions, as we show later in the paper. Therefore we

study these properties.

Our contributions are the following. First, when the underlying assump-
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tions of the range-based estimators hold, all of them are unbiased. However,

taking the square root of these estimators leads to biased estimators of

standard deviation. We study this bias. Second, for a given true variance,

distribution of the estimated variance depends on the particular estimator.

We study these distributions. Third, we show how the range-based volatility

estimators should be modified in the presence of opening jumps (stock price

at the beginning of the day typically differs from the closing stock price from

the previous day).

Fourth, the property we focus on is the distribution of returns stan-

dardized by standard deviations. A question of interest is how this is af-

fected when the standard deviations are estimated from range-based volatil-

ity estimators. The question whether the returns divided by their standard

deviations are normally distributed has important implications for many

fields in finance. Normality of returns standardized by their standard de-

viations holds promise for simple-to-implement and yet precise models in

financial risk management. Using volatility estimated from high frequency

data, Andersen, Bollerslev, Diebold and Labys (2000), Andersen, Bollerslev,

Diebold, Ebens (2001), Forsberg and Bollerslev (2002) and Thamakos and

Wang (2003) show that standardized returns are indeed Gaussian. Contrary,

returns scaled by standard deviations estimated from GARCH type of mod-

els (which are based on daily returns) are not Gaussian, they have heavy

tails. This well-known fact is the reason why heavy-tailed distributions (e.g.

t-distribution) were introduced into the GARCH models. We show that

when properly used, range-based volatility estimators are precise enough to

replicate basically the same results as those of Andersen et al. (2001) ob-

tained from high frequency data. To our best knowledge, this has not been

previously recognized in the daily data. Therefore volatility models built
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upon high and low data might provide accuracy similar to models based

upon high frequency data and still keep the benefits of the models based on

low frequency data (much smaller data requirements and simplicity).

The rest of the paper is organized in the following way. In Section 2, we

describe existing range-based volatility estimators. In Section 3, we analyze

properties of range-based volatility estimators, mention some caveats related

to them and correct some mistakes in the existing literature. In Section 4 we

empirically study the distribution of returns normalized by their standard

deviations (estimated from range-based volatility estimators) on 30 stock,

the components of the Dow Jones Industrial Average. Section 5 concludes.

2.2 Overview

Assume that price P follows a geometric Brownian motion such that log-

price p = ln(P ) follows a Brownian motion with zero drift and diffusion

σ.

dpt = σdBt (2.1)

Diffusion parameter σ is assumed to be constant during one particular day,

but can change from one day to another. We use one day as a unit of time.

This normalization means that the diffusion parameter in (2.1) coincides

with the daily standard deviation of returns and we do not need to distin-

guish between these two quantities. Denote the price at the beginning of the

day (i.e. at the time t = 0) O (open), the price in the end of the day (i.e.

at the time t = 1) C (close), the highest price of the day H, and the lowest

price of the day L. Then we can calculate open-to-close, open-to-high and

open-to-low returns as

c = ln(C)− ln(O) (2.2)
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h = ln(H)− ln(O) (2.3)

l = ln(L)− ln(O) (2.4)

Daily return c is obviously a random variable drawn from a normal distri-

bution with zero mean and variance (volatility) σ2

c ∼ N(0, σ2) (2.5)

Our goal is to estimate (unobservable) volatility σ2 from observed variables

c, h and l. Since we know that c2 is an unbiased estimator of σ2,

E
(
c2
)

= σ2 (2.6)

we have the first volatility estimator (subscript s stands for ”simple”)

σ̂2s = c2 (2.7)

Since this simple estimator is very noisy, it is desirable to have a better one.

It is intuitively clear that the difference between high and low prices tells us

much more about volatility than close price. High and low prices provide

additional information about volatility. The distribution of the range d ≡

h− l (the difference between the highest and the lowest value) of Brownian

motion is known (Feller (1951)). Define P (x) to be the probability that

d ≤ x during the day. Then

P (x) =

∞∑
n=1

(−1)n+1 n

{
Erfc

(
(n+ 1)x√

2σ

)
− 2Erfc

(
nx√
2σ

)
+ Erfc

(
(n− 1)x√

2σ

)}
(2.8)
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where

Erfc(x) = 1− Erf(x) (2.9)

and Erf(x) is the error function. Using this distribution Parkinson (1980)

calculates (for p ≥ 1)

E (dp) =
4√
π

Γ

(
p+ 1

2

)(
1− 4

2p

)
ζ (p− 1)

(
2σ2
)

(2.10)

where Γ (x) is the gamma function and ζ (x) is the Riemann zeta function.

Particularly for p = 1

E (d) =
√

8πσ (2.11)

and for p = 2

E
(
d2
)

= 4 ln (2)σ2 (2.12)

Based on formula (2.12), he proposes a new volatility estimator:

σ̂2P =
(h− l)2

4 ln 2
(2.13)

Garman and Klass (1980) realize that this estimator is based solely on

quantity h − l and therefore an estimator which utilizes all the available

information c, h and l will be necessarily more precise. Since search for the

minimum variance estimator based on c, h and l is an infinite dimensional

problem, they restrict this problem to analytica estimators, i.e. estimators

which can be expressed as an analytical function of c, h and l. They find

that the minimum variance analytical estimator is given by the formula

̂σ2GKprecise = 0.511 (h− l)2 − 0.019 (c(h+ l)− 2hl)− 0.383c2 (2.14)

The second term (cross-products) is very small and therefore they recom-
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mend neglecting it and using more practical estimator:

σ̂2GK = 0.5 (h− l)2 − (2 ln 2− 1) c2 (2.15)

We follow their advice and further on when we talk about Garman-Klass

volatility estimator (GK), we refer to (2.15). This estimator has additional

advantage over (2.14) - it can be simply explained as an optimal (smallest

variance) combination of simple and Parkinson volatility estimator.

Meilijson (2009) derives another estimator, outside the class of analytical

estimators, which has even smaller variance than GK. This estimator is

constructed as follows.

σ̂2M = 0.274σ21 + 0.16σ2s + 0.365σ23 + 0.2σ24 (2.16)

where

σ21 = 2
[(
h′ − c′

)2
+ l′
]

(2.17)

σ23 = 2
(
h′ − c′ − l′

)
c′ (2.18)

σ24 = − (h′ − c′) l′

2 ln 2− 5/4
(2.19)

where c′ = c, h′ = h, l′ = l if c > 0 and c′ = −c, h′ = −l, l′ = −h if c < 0.2

Rogers and Satchell (1991) derive an estimator which allows for arbitrary

drift.

σ̂2RS = h(h− c) + l(l − c) (2.20)

There are two other estimators which we should mention. Kunitomo

(1992) derives a drift-independent estimator, which is more precise than

all the previously mentioned estimators. However ”high” and ”low” prices

2This estimator is not analytical, because it uses different formula for days when c > 0
than for days when c < 0.
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used in his estimator are not the highest and lowest price of the day. The

”high” and ”low” used in this estimator are the highest and the lowest price

relative to the trend line given by open and high prices. These ”high and

”low” prices are unknown unless we have tick-by-tick data and therefore the

use of this estimator is very limited.

Yang and Zhang (2000) derive another drift-independent estimator. How-

ever, their estimator can be used only for estimation of average volatility

over multiple days and therefore we do not study it in our paper.

Efficiency of a volatility estimator σ̂2 is defined as

Eff(σ̂2) ≡
var

(
σ2s
)

var
(
σ̂2
) (2.21)

Simple volatility estimator has by definition efficiency 1, Parkinson volatility

estimator has efficiency 4.9, Garman-Klass 7.4 and Meilijson 7.7. Rogers,

Satchell has efficiency 6.0 for the zero drift and larger than 2 for any drift.

Remember that all of the studied estimators except for Rogers, Satchell

are derived under the assumption of zero drift. However, for most of the

financial assets, mean daily return is much smaller than its standard devi-

ation and can therefore be neglected. Obviously, this is not true for longer

time horizons (e.g. when we use yearly data), but this is a very good ap-

proximation for daily data in basically any practical application.

Further assumptions behind these estimators are continuous sampling,

no bid-ask spread and constant volatility. If prices are observed only infre-

quently, then the observed high will be below the true high and observed

low will be above the true low, as was recognized already by Garman and

Klass (1980). Bid-ask spread has the opposite effect: observed high price

is likely to happen at ask, observed low price is likely to happen at the low
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price and therefore the difference between high and low contains in addition

bid-ask spread. These effects work in the opposite direction and therefore

they will at least partially cancel out. More importantly, for liquid stocks

both these effects are very small. In this paper we maintain the assump-

tion of constant volatility within the day. This approach is common even in

stochastic volatility literature (e.g. Alizadeh, Brandt and Diebold 2002) and

assessing the effect of departing from this assumption is beyond the scope

of this paper. However, this is an interesting avenue for further research.

2.3 Properties of range-based volatility estimators

The previous section provided an overview of range-based volatility estima-

tors including their efficiency. Here we study their other properties. Our

main focus is not their empirical performance, as this question has been

studied before (e.g. Bali and Weinbaum (2005)). We study the performance

of these estimators when all the assumptions of these estimators hold per-

fectly. This is more important than it seems to be, because this allows us to

distinguish between the case when these estimators do not work (assump-

tions behind them do not hold) and the case when these estimators work,

but we are misinterpreting the results. This point can be illustrated in the

following example. Imagine that we want to study the distribution of returns

standardized by their standard deviations. We estimate these standard de-

viations as a square root of the Parkinson volatility estimator (2.13) and find

that standardized returns are not normally distributed. Should we conclude

that true standardized returns are not normally distributed or should we

conclude that the Parkinson volatility estimator is not appropriate for this

purpose? We answer this and other related questions.

To do so, we ran 500000 simulations, one simulation representing one
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trading day. During every trading day log-price p follows a Brownian mo-

tion with zero drift and daily diffusion σ = 1. We approximate continuous

Brownian motion by n = 100000 discrete intraday returns, each drawn from

N(0, 1/
√
n).3 We save high, low and close log-prices h, l, c for every trading

day4.

2.3.1 Bias in σ

All the previously mentioned estimators are unbiased estimators of σ2. There-

fore, square root of any of these estimators will be a biased estimator of σ.

This is direct consequence of well known fact that for a random variable

x the quantities E(x2) and E(x)2 are generally different. However, as I

document later, using
√
σ̂2 as σ̂, as an estimator of σ, is not uncommon.

Moreover, in many cases the objects of our interests are standard deviations,

not variances. Therefore, it is important to understand the size of the error

introduced by using
√
σ̂2 instead of σ̂ and potentially correct for this bias.

Size of this bias depends on the particular estimator.

As can be easily proved, an unbiased estimator σ̂s of the standard devi-

ation σ based on

√
σ̂2s is

σ̂s =

√
σ̂2s ×

√
π

2
= |c| ×

√
π/2 (2.22)

Using the results (2.11) and (2.13) we can easily find that an estimator of

3Such a high n allows us to have almost perfectly continuous Brownian motion and
having so many trading days allow us to know the distributions of range based volatility
estimators with very high precision. Simulating these data took one months on an ordinary
computer (Intel Core 2 Duo P8600 2.4 GHz, 2 GB RAM).

Note that we do not derive analytical formulas for the distributions of range-based
volatility estimators. Since these formulas would not bring additional insights into the
questions we study, their derivation is behind the scope of this paper.

4Open log-price is normalized to zero.
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standard deviation based on range is

σ̂P =
h− l

2
×
√
π

2
=

√
σ̂2P ×

√
π ln 2

2
(2.23)

Similarly, when we want to evaluate the bias introduced by using
√
σ̂2 in-

stead of σ̂ for the rest of volatility estimators, we want to find constants

cGK , cM and cRS such that

σ̂GK =

√
σ̂2GK × cGK (2.24)

σ̂M =

√
σ̂2M × cM (2.25)

σ̂RS =

√
σ̂2RS × cRS (2.26)

From simulated high, low and close log-prices h, l, c we estimate volatility

according to (2.7), (2.13), (2.15), (2.16), (2.20) and calculate mean of the

square root of these volatility estimates. We find that cs = 1.253, cP =

1.043 (what is in accordance with theoretical values
√
π/2 = 1.253 and√

π ln 2/2 = 1.043) and cGK = 1.034, cM = 1.033 and cRS = 1.043. We see

that the square root of the simple volatility estimator is a severely biased

estimator of standard deviation (bias is 25%), whereas bias in the square

root of range-based volatility estimators is rather small (3% - 4%).

Even though it seems obvious that
√
σ̂2 is not an unbiased estimator of

σ, it is quite common even among researchers to use
√
σ̂2 as an estimator

of σ. I document this in two examples.

Bali and Weinbaum (2005) empirically compare range-based volatility

estimators. The criteria they use are: mean squared error

MSE (σestimated) = E
[
(σestimated − σtrue)2

]
(2.27)
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mean absolute deviation

MAD (σestimated) = E [|σestimated − σtrue|] (2.28)

and proportional bias

Prop.Bias (σestimated) = E [(σestimated − σtrue)/σtrue] (2.29)

For daily returns they find:

”The traditional estimator [(2.7) in our paper] is significantly

biased in all four data sets. [...] it was found that squared returns

do not provide unbiased estimates of the ex post realized volatil-

ity. Of particular interest, across the four data sets, extreme-

value volatility estimators are almost always significantly less

biased than the traditional estimator.”

This conclusion sounds surprising only until we realize that in their calcu-

lations σestimated ≡
√
σ̂2, which, as just shown, is not an unbiased estimator

of σ. Actually, it is severely biased for a simple volatility estimator. Gener-

ally, if our interest is unbiased estimate of the standard deviation, we should

use formulas (2.22)-(2.26).

A similar problem is in Bollen, Inder (2002). In testing for the bias in

the estimators of σ, they correctly adjust

√
σ̂2s using formula (2.22), but

they do not adjust

√
σ̂2P and

√
σ̂2GK by constants cP and cGK .

2.3.2 Distributional properties of range-based estimators

Daily volatility estimates are typically further used in volatility models.

Ease of the estimation of these models depends not only on the efficiency of
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the used volatility estimator, but on its distributional properties too (Broto,

Ruiz (2004)). When the estimates of relevant volatility measure (whether

it is σ2, σ or lnσ2) have approximately normal distribution, the volatility

models can be estimated more easily.5 We study the distributions of σ̂2,
√
σ̂2

and ln σ̂2, because these are the quantities modelled by volatility models.

Most of the GARCH models try to capture time evolution of σ2, EGARCH

and stochastic volatility models are based on time evolution of lnσ2 and

some GARCH models model time evolution of σ.

Under the assumption of Brownian motion, the distribution of absolute

value of return and the distribution of range are known (Karatzas and Shreve

(1991), Feller (1951)). Using their result, Alizadeh, Brandt, Diebold (2002)

derive the distribution of log absolute return and log range. Distribution

of σ̂2,
√
σ̂2 and ln σ̂2 is unknown for the rest of the range-based volatility

estimators. Therefore we study these distributions. To do this, we use

numerical evaluation of h, l and c data, which are simulated according to

the process (2.1) (.6

First we study the distribution of σ̂2 for different estimators. These dis-

tributions are plotted in Figure 2.1. Since all these estimators are unbiased

estimators of σ2, all have the same mean (in our case one). Variance of these

estimators is given by their efficiency. From the inspection of Figure 2.1, we

can observe that the density function of σ̂2 is approximately lognormal for

range-based estimators. On the other hand, distribution of squared returns,

which is χ2 distribution with one degree of freedom, is very dispersed and

5E.g. Gaussian quasi-maximum likelihood estimation, which plays an important role
in estimation of stochastic volatility models, depends crucially on the near-normality of
log-volatility.

6The fact that we do not search for analytical formula is not limiting at all. The
analytical form of density function for the simplest range-based volatility estimator, range
itself, is so complicated (it is an infinite series) that in the end even skewness and kurtosis
must be calculated numerically.
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Figure 2.1: Distribution of variances estimated as squared returns and from
Parkinson, Garman-Klass, Meilijson and Rogers-Satchell formulas.

reaches maximum at zero. Therefore, for most of the purposes, distribu-

tional properties of range-based estimators are more appropriate for further

use than the squared returns. For the range, this was already noted by

Alizadeh, Brandt, Diebold (2002). However, this is true for all the range-

based volatility estimators. The differences in distributions among different

range-based estimators are actually rather small.

The distributions of
√
σ̂2 are plotted in Figure 2.2. These distributions

have less weight on the tails than the distributions of σ̂2. This is not surpris-

ing, since the square root function transforms small values (values smaller

then one) into larger values (values closer towards one) and it transforms

large values (values larger than one) into smaller values (values closer to

one). Again, the distributions of
√
σ̂2 for range range-based estimators

have better properties than the distribution of the absolute returns. To dis-
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Figure 2.2: Distribution of square root of volatility estimated as squared
returns and from Parkinson, Garman-Klass, Meilijson and Rogers-Satchell
formulas.

tinguish the difference between different range-based volatility estimators,

we calculate the summary statistics and present them in Table 2.1.

No matter whether we rank these distributions according to their mean

(which should be preferably close to 1) or according to their standard devi-

ations (which should be the smallest possible), ranking is the same as in the

previous case: the best is Meilijson volatility estimator, then Garman-Klass,

next Roger-Satchell, next Parkinson and the last is the absolute returns.

In many practical applications, the mean squared error (MSE) of an

estimator θ̂

MSE
(
θ̂
)

= E
[
(θ̂ − θ)2

]
(2.30)

is the most important criterion for the evaluation of the estimators, since

MSE quantifies the difference between values implied by an estimator and
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Table 2.1: The summary statistics for the square root of the volatility esti-
mated as absolute returns and as a square root of the Parkinson, Garman-
Klass, Meilijson and Rogers-Satchell formulas.

mean std skewness kurtosis

|r| 0.80 0.60 1.00 3.87√
σ̂2P 0.96 0.29 0.97 4.24√
σ̂2GK 0.97 0.24 0.60 3.40√
σ̂2M 0.97 0.24 0.54 3.28√
σ̂2RS 0.96 0.28 0.46 3.44

the true values of the quantity being estimated. The MSE is equal to the

sum of the variance and the squared bias of the estimator

MSE
(
θ̂
)

= V ar
(
θ̂
)

+
(
Bias(θ̂, θ)

)2
(2.31)

and therefore in our case (when estimator with smallest variance has smallest

bias) is the ranking according to MSE identical with the ranking according

to bias or variance.

In the end, we investigate the distribution of ln σ̂2 (see Figure 2.3). As

we can see, the logarithm of the squared returns is highly nonnormally

distributed, but the logarithms of the range-based volatility estimators have

distributions similar to the normal distribution. To see the difference among

various range-based estimators, we again calculate their summary statistics

(see Table 2.2).

Note that the true volatility is normalized to one. Normality of the

estimator is desirable for practical reasons and therefore the ideal estimator

should have mean and skewness equal to zero, kurtosis close to three and

standard deviation as small as possible. We see that from the five studied

estimators the Garman-Klass and Meilijson volatility estimators, in addition
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Figure 2.3: Distribution of the logarithm of volatility estimated as squared
returns and from the Parkinson, Garman-Klass, Meilijson and Rogers-
Satchell formulas.

Table 2.2: Summary statistics for logarithm of volatility estimated as a
logarithm of squared returns and as a logarithm of Parkinson, Garman-
Klass, Meilijson and Rogers- Satchell volatility estimators.

mean std skewness kurtosis

ln
(
r2
)

−1.27 2.22 −1.53 6.98

ln
(
σ̂2P

)
−0.17 0.57 0.17 2.77

ln
(
σ̂2GK

)
−0.13 0.51 −0.09 2.86

ln
(
σ̂2M

)
−0.13 0.50 −0.14 2.86

ln
(
σ̂2RS

)
−0.17 0.61 −0.71 5.41
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to being most efficient, have best distributional properties.

2.3.3 Normality of normalized returns

As was empirically shown by Andersen, Bollerslev, Diebold, Labys (2000),

Andersen, Bollerslev, Diebold, Ebens (2001), Forsberg and Bollerslev (2002)

and Thamakos and Wang (2003) on different data sets, standardized returns

(returns divided by their standard deviations) are approximately normally

distributed. In other words, daily returns can be written as

ri = σizi (2.32)

where zi ∼ N (0, 1). This finding has important practical implications too.

If returns (conditional on the true volatility) are indeed Gaussian and heavy

tails in their distributions are caused simply by changing volatility, then

what we need the most is a thorough understanding of the time evolution of

volatility, possibly including the factors which influence it. Even though the

volatility models are used primarily to capture time evolution of volatility,

we can expect that the better our volatility models, the less heavy-tailed

distribution will be needed for modelling of the stock returns. This insight

can contribute to improved understanding of volatility models, which is in

turn crucial for risk management, derivative pricing, portfolio management

etc.

Intuitively, normality of the standardized returns follows from the Cen-

tral Limit Theorem: since daily returns are just a sum of high-frequency

returns, daily returns will be drawn from normal distribution.7

Since both this intuition and the empirical evidence of the normality of

returns standardized by their standard deviations is convincing, it is ap-

7given the limited time-dependence and some conditions on existence of moments.

42



pealing to require that one of the properties of a ”good” volatility estima-

tor should be that returns standardized by standard deviations obtained

from this estimator will be normally distributed (see e.g. Bollen and In-

der (2002)). However, this intuition is not correct. As I now show, returns

standardized by some estimate of the true volatility do not need to, and gen-

erally will not, have the same properties as returns standardized by the true

volatility. Therefore we need to understand whether the range-based volatil-

ity estimators are suitable for standardization of the returns. There are two

problems associated with these volatility estimators: they are noisy and

their estimates might be (and typically are) correlated with returns. These

two problems might cause returns standardized by the estimated standard

deviations not to be normal, even when the returns standardized by their

true standard deviations are normally distributed.

Noise in volatility estimators

We want to know the effect of noise in volatility estimates σ̂i on the dis-

tribution of returns normalized by these estimates (ẑi = ri/σ̂i) when true

normalized returns zi = ri/σi are normally distributed. Without loss of

generality, we set σi = 1 and generate one million observations of ri, i ∈

{1, ..., 1000000}, all of them are iid N(0,1). Next we generate σ̂i,n in such

a way that σ̂ is unbiased estimator of σ, i.e. E (σ̂i,n) = 1 and n repre-

sents the level of noise in σ̂i,n. There is no noise for n = 0 and therefore

σ̂i,0 = σi = 1. To generate σ̂i,n for i > 0 we must decide upon distribution

of σ̂i,n. Since we know from the previous section that range-based volatility

estimates are approximately lognormally distributed, we draw estimates of

the standard deviations from lognormal distributions. We set the parame-

ters µ and s2 of lognormal distribution in such a way that E (σ̂i,n) = 1 and
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Var(σ̂i,n) = n, particularly µ = −1
2 ln (1 + n), s2 = ln (1 + n). For every n,

we generate one million observations of σ̂i,n. Next we calculate normalized

returns ẑi,n = ri/σ̂i,n. Their summary statistics is in the Table 2.3.

Table 2.3: Summary statistics for a random variable obtained as ratio of
normal random variable with zero mean and variance one and lognormal
random variable with constant mean equal to one and variance increasing
from 0 to 0.8.
n = V ar (σ̂i) mean(ẑi,n) std(ẑi,n) skewness(ẑi,n) kurtosis(ẑi,n)

0.0 0.0001 1.00 0.00 3.00

0.2 0.0003 1.32 0.02 6.22

0.4 0.0013 1.66 −0.01 11.80

0.6 −0.0007 2.03 0.03 19.76

0.8 0.0025 2.43 0.01 34.60

Obviously, ẑi,0, which is by definition equal to ri, has zero mean, stan-

dard deviation equal to 1, skewness equal to 0 and kurtosis equal to 3. We

see that normalization by σ̂, a noisy estimate of σ, does not change E(ẑ)

and skewness of ẑ. This is natural, because ri is distributed symmetrically

around zero. On the other hand, adding noise increases standard devia-

tion and kurtosis of ẑ. When we divide normally distributed random vari-

able ri by random variable σ̂i, we are effectively adding noise to ri, making

its distribution flatter and more dispersed with more extreme observations.

Therefore, standard deviation increases. Since kurtosis is influenced mostly

by extreme observations, it increases too.

Bias introduced by normalization of range-based volatility estima-

tors

Previous analysis suggests that the more noisy volatility estimator we use for

the normalization of the returns, the higher the kurtosis of the normalized

returns will be. Therefore we could expect to find the highest kurtosis when

using the Parkinson volatility estimator (2.13). As we will see later, this is
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Figure 2.4: Distribution of normalized returns. ”true” is the distribution of
the stock returns normalized by the true standard deviations. This distribu-
tion is by assumption N(0,1). PARK, GK, M and RS refer to distributions
of the same returns after normalization by volatility estimated using the
Parkinson, Garman-Klass, Meilijson and Rogers-Sanchell volatility estima-
tors.

not the case. Returns and estimated standard deviations were independent

in the previous section, but this is not the case when we use range-based

estimators.

Let us denote σPARK ≡
√
σ̂2PARK , σGK ≡

√
σ̂2RS , σM ≡

√
σ̂2M and

σRS,t ≡
√
σ̂2RS . We study the distributions of ẑPARK,i ≡ ri/σPARK,i,

ẑGK,i ≡ ri/σGK,i, ẑM,i ≡ ri/σM,i, ẑRS,t ≡ ri/σRS,i. Histograms for these

distributions are shown in Figure 2.4 and corresponding summary statistics

are in Table 2.4.

The true mean and skewness of these distributions are zero, because re-

turns are symmetrically distributed around zero, triplets (h, l, c) and (−l,−h,−c)

are equally likely and all the studied estimators are symmetric in the sense
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Table 2.4: Summary statistics for returns nomalized by different volatility
estimates: ẑPARK,i ≡ ri/σPARK,i, ẑGK,i ≡ ri/σGK,i, ẑM,i ≡ ri/σM,i, ẑRS,t ≡
ri/σRS,i.

mean std skewness kurtosis

ztrue,i 0.00 1.00 0.00 3.00

ẑP,i 0.00 0.88 −0.00 1.79

ẑGK,i 0.00 1.01 0.00 2.61

ẑM,i 0.00 1.02 0.00 2.36

ẑRS,i 0.01 1.35 1.62 123.96

that they produce the same estimates for the log price following the Brown-

ian motion B(t) and for the log price following Brownian motion −B(t), par-

ticularly σ̂PARK (h, l, c) = σ̂PARK (−l,−h, c), σ̂GK (h, l, c) = σ̂GK (−l,−h, c),

σ̂M (h, l, c) = σ̂M (−l,−h, c) and σ̂RD (h, l, c) = σ̂RS (−l,−h, c).

However, it seems from Table 2.4 that distribution of ẑRS,i is skewed.

There is another surprising fact about ẑRS,i. It has very heavy tails. The

reason for this is that the formula (2.20) is derived without the assumption

of zero drift. Therefore, when stock price performs one-way movement, this

is attributed to the drift term and volatility is estimated to be zero. (If

movement is mostly in one direction, estimated volatility will be nonzero,

but very small). Moreover, this is exactly the situation when stock returns

are unusually high. Dividing the largest returns by the smallest estimated

standard deviations causes a lot of extreme observations and therefore very

heavy tails. Due to these extreme observations the skewness of the simulated

sample is different from the skewness of the population, which is zero. This

illustrates that the generality (drift independence) of the Rogers and Satchell

(1991) volatility estimator actually works against this estimator in cases

when the drift is zero.

When we use the Parkinson volatility estimator for the standardization of

the stock returns, we get exactly the opposite result. Kurtosis is now much
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smaller than for the normal distribution. This is in line with empirical

finding of Bollen and Inder (2002). However, this result should not be

interpreted that this estimator is not working properly. Remember that we

got the result of the kurtosis being significantly smaller than 3 under ideal

conditions, when the Parkinson estimator works perfectly (in the sense that

it works exactly as it is supposed to work). Remember that this estimator is

based on the range. Even though the range, which is based on high and low

prices, seems to be independent of return, which is based on the open and

close prices, the opposite is the case. Always when return is high, range will

be relatively high too, because range is always at least as large as absolute

value of the return. |r| /σPARK will never be larger than
√

4 ln 2, because

|r|
σPARK

=
|r|
h−l√
4 ln 2

=
√

4 ln 2
|r|
h− l

≤
√

4 ln 2 (2.33)

The correlation between |r| and σPARK is 0.79, what supports our argument.

Another problem is that the distribution of ẑP,i is bimodal.

As we can see from the histogram, distribution of ẑM,i does not have any

tails either. This is because the Meilijson volatility estimator suffers from

the same type of problem as the Parkinson volatility estimator, just to a

much smaller extent.

The Garman-Klass volatility estimator combines the Parkinson volatil-

ity estimator with simple squared return. Even though both, the Parkinson

estimator and squared return are highly correlated with size of the return,

the overall effect partially cancels out, because these two quantities are sub-

tracted. Correlation between |r| and σGK is indeed only 0.36. ẑGK,i has

approximately normal distribution, as the effect of noise and the effect of

correlation with returns to large extent cancels out.
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We conclude this subsection with the appeal that we should be aware

of the assumptions behind the formulas we use. As range-based volatility

estimators were derived to be as precise volatility estimators as possible,

they work well for this purpose. However, there is no reason why all of these

estimators should work properly when used for the standardization of the

returns. We conclude that from the studied estimators the only estimator

appropriate for standardization of returns is the Garman-Klass volatility

estimator. We use this estimator later in the empirical part.

2.3.4 Jump component

So far in this paper, returns and volatilities were related to the trading day,

i.e. the period from the open to the close of the market. However, most

of the assets are not traded continuously for 24 hours a day. Therefore,

opening price is not necessarily equal to the closing price from the previous

day. We are interested in daily returns

ri = ln(Ci)− ln(Ci−1) (2.34)

simply because for the purposes of risk management we need to know the

total risk over the whole day, not just the risk of the trading part of the

day. If we do not adjust range-based estimators for the presence of opening

jumps, they will of course underestimate the true volatility. The Parkinson

volatility estimator adjusted for the presence of opening jumps is

σ̂2P =
(h− l)2

4 ln 2
+ j2 (2.35)
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where ji = ln(Oi) − ln(Ci−1) is the opening jump. The jump-adjusted

Garman-Klass volatility estimator is:

σ̂2GK = 0.5 (h− l)2 − (2 ln 2− 1) c2 + j2 (2.36)

Other estimators should be adjusted in the same way. Unfortunately, includ-

ing opening jump will increase variance of the estimator when opening jumps

are significant part of daily returns.8 However, this is the only way how to

get unbiased estimator without imposing some additional assumptions. If

we knew what part of the overall daily volatility opening jumps account for,

we could find optimal weights for the jump volatility component and for

the volatility within the trading day to minimize the overall variance of the

composite estimator. This is done in Hansen and Lunde (2005), who study

how to combine opening jump and realized volatility estimated from high

frequency data into the most efficient estimator of the whole day volatility.

However, the relation of opening jump and the trading day volatility can

be obtained only from data. Moreover, there is no obvious reason why the

relationship from the past should hold in the future. Simply adding jump

component makes range-based estimators unbiased without imposing any

additional assumption.9

Adjustment for an opening jump is not as obvious as it seems to be and

even researchers quite often make mistakes when dealing with this issue.

The most common mistake is that the range-based volatility estimators are

not adjusted for the presence of opening jumps at all (see e.g. Parkinson

volatility estimator in Bollen, Inder (2002)). A less common mistake, but

with worse consequences is an incorrect adjustment for the opening jumps.

8Jump volatility is estimated with smaller precision than volatility within trading day.
9These assumptions could be based on past data, but they would still be just assump-

tions.
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E.g. Bollen and Inder (2002) and Fiess and MacDonald (2002) refer to the

following formula

σ2GKwrong,i = 0.5 (lnHi − lnLi)
2 − (2 ln 2− 1) (lnCi − lnCi−1)

2 (2.37)

as Garman-Klass formula. This ”Garman-Klass volatility estimator” will

on average be even smaller than a Garman-Klass estimator not adjusted for

jumps. Moreover, it sometimes produces negative estimates for volatility

(variance σ2).

2.4 Normalized returns - empirics

Andersen, Bollerslev, Diebold, and Ebens (2001) find that ”although the

unconditional daily return distributions are leptokurtic, the daily returns

normalized by the realized standard deviations are close to normal.” Their

conclusion is based on standard deviations obtained these from high fre-

quency data. We study whether (and to what extend) this result is obtain-

able when standard deviations are estimated from daily data only.

We study stocks which were the components of the Dow Jow Industrial

Average on January 1, 2009, namely AA, AXP, BA, BAC, C, CAT, CVX,

DD, DIS, GE, GM, HD, HPQ, IBM, INTC, JNJ, JPM, CAG10, KO, MCD,

MMM, MRK, SFT, PFE, PG, T, UTX, VZ and WMT. We use daily open,

high, low and close prices. The data covers years 1992 to 2008. Stock prices

are adjusted for stock splits and similar events. We have 4171 daily obser-

vations for every stock. These data were obtained from the CRSP database.

We study DJI components to make our results as highly comparable as pos-

10Since historical data for KFT (component of DJI) are not available for the complete
period, we use its biggest competitor CAG instead.
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sible with the results of Andersen, Bollerslev, Diebold, and Ebens (2001).

For brevity, we study only two estimators: the Garman-Klass estima-

tor (2.15) and the Parkinson estimator (2.13). We use the Garman-Klass

volatility estimator because our previous analysis shows that it is the most

appropriate one. We use the Parkinson volatility estimator to demonstrate

that even though this estimator is the most commonly used range-based

estimator, it should not be used for normalization of returns. Moreover, we

study the effect of including or excluding a jump component into range-based

volatility estimators.

First of all, we need to distinguish the daily returns and the trading

day returns. By the daily returns we mean close-to-close returns, calcu-

lated according to formula (2.34). By the trading day returns we mean

returns during the trading hours, i.e. open-to-close returns, calculated ac-

cording to formula (2.2). We estimate volatilities accordingly: volatility of

the trading day returns from (2.13) and (2.15) and the volatility of the daily

returns using (2.35) and (2.36). Next we calculate standardized returns. We

calculate standardized returns in three different ways: trading day returns

standardized by trading day standard deviations (square root of trading

day volatility), daily returns standardized by daily standard deviation and

daily returns standardized by trading day standard deviation. Why do we

investigate daily returns standardized by trading day standard deviations

too? Theoretically, this does not make much sense because the return and

the standard deviations are related to different time intervals. However, it

is still quite common (see e.g. Andersen, Bollerslev, Diebold, and Ebens

(2001)), because people are typically interested in daily returns, but the

daily volatility cannot be estimated as precisely as trading day volatility.

The volatility of the trading part of the day can be estimated very precisely
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from the high frequency data, whereas estimation of the daily volatility is

always less precise because of the necessity of including the opening jump

component. Therefore, trading day volatility is commonly used as a proxy

for daily volatility. This approximation is satisfactory as long as the opening

jump is small in comparison to trading day volatility, which is typically the

case.

Now we calculate summary statistics for the different standardized re-

turns as well as returns themselves. Results for the standard deviations are

presented in Table 2.5 and results for the kurtosis are presented in Table

2.6. We do not put similar tables for mean and kurtosis into this paper,

because these results are less interesting and can be summarized in one sen-

tance: Mean returns are always very close to zero, independent of which

standardization we used. Skewness is always very close to zero too.

The results for standard deviations and kurtosis are generally in line with

the predictions from our simulations too. First let us discuss the standard

deviations of the standardized returns. As Table 2.5 documents, normaliza-

tion by standard deviations obtained from the Parkinson volatility estimator

results in standard deviation smaller than one, approximately around 0.9

whereas normalization by standard deviation obtained from the Garman-

Klass volatility estimator results in standard deviations larger than one,

around 1.05. Normalization by standard deviations estimated from GARCH

model is approximately 1.1. This is expected as well, because division by a

noisy random variable increases the standard deviation.

Results for the kurtosis of standardized returns (see Table 2.6) are in

line with the predictions from our simulations too. Return distributions

have heavy tails (kurtosis significantly larger than 3). Second, the daily

returns normalized by the standard deviations calculated from Garman-
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Table 2.5: Standard deviations of the stock returns. rtd is an open-to-
close return, rd is a close-to-close return. σ̂GK,td (σ̂P,td) is square root of
Garman-Klass (Parkinson) volatility estimate without opening jump com-
ponent. σ̂GK,d (σ̂P,d) is square root of Garman-Klass (Parkinson) volatility
estimate including opening jump component. σ̂garch is standard deviation
estimated from GARCH(1,1) model based on daily returns.

trading day returns daily returns
rtd

rtd
σ̂GK,td

rtd
σ̂P,td

rd
rd

σ̂GK,d
rd
σ̂P,d

rd
σ̂GK,td

rd
σ̂P,td

rd
σ̂garch

AA 0.02 1.14 0.94 0.02 1.11 0.96 1.00 1.28 1.12
AXP 0.02 1.11 0.92 0.02 1.07 0.94 1.00 1.26 1.11
BA 0.02 1.04 0.89 0.02 1.02 0.92 1.00 1.20 1.10

BAC 0.02 1.12 0.93 0.02 1.08 0.94 1.00 1.26 1.12
C 0.02 1.11 0.91 0.03 1.05 0.92 1.01 1.26 1.12

CAT 0.02 1.10 0.92 0.02 1.08 0.95 1.00 1.28 1.13
CVX 0.01 1.11 0.92 0.02 1.08 0.95 1.00 1.25 1.09
DD 0.02 1.07 0.90 0.02 1.02 0.91 1.00 1.18 1.06
DIS 0.02 1.03 0.88 0.02 0.99 0.90 1.00 1.18 1.09
GE 0.02 1.07 0.91 0.02 1.03 0.93 1.00 1.20 1.09
GM 0.02 1.10 0.92 0.03 1.08 0.95 1.00 1.27 1.13
HD 0.02 1.06 0.90 0.02 1.02 0.92 1.00 1.20 1.10

HPQ 0.02 1.08 0.91 0.03 1.04 0.92 1.00 1.23 1.11
IBM 0.02 1.07 0.91 0.02 1.04 0.93 1.00 1.25 1.13

INTC 0.02 1.08 0.92 0.03 1.06 0.95 1.00 1.31 1.19
JNJ 0.01 1.06 0.89 0.02 1.00 0.90 1.00 1.17 1.06
JPM 0.02 1.06 0.90 0.02 1.03 0.92 1.00 1.22 1.10
CAG 0.01 1.09 0.89 0.02 0.98 0.87 1.00 1.15 1.01
KO 0.01 1.03 0.88 0.02 0.99 0.89 1.00 1.15 1.04

MCD 0.02 1.04 0.89 0.02 0.99 0.89 1.00 1.15 1.05
MMM 0.01 1.05 0.89 0.02 1.02 0.90 1.00 1.16 1.04
MRK 0.02 1.05 0.89 0.02 1.01 0.91 1.00 1.20 1.09
MSFT 0.02 1.04 0.90 0.02 1.03 0.93 1.00 1.24 1.14
PFE 0.02 1.08 0.91 0.02 1.04 0.92 1.00 1.22 1.10
PG 0.01 1.07 0.90 0.02 1.01 0.90 1.00 1.17 1.05
T 0.02 1.09 0.91 0.02 1.05 0.92 1.00 1.20 1.06

UTX 0.02 1.08 0.91 0.02 1.05 0.93 1.00 1.22 1.09
VZ 0.02 1.08 0.91 0.02 1.04 0.92 1.00 1.21 1.08

WMT 0.02 1.04 0.88 0.02 1.01 0.90 1.00 1.20 1.08
XOM 0.01 1.08 0.91 0.02 1.06 0.94 1.00 1.22 1.08

mean 0.02 1.07 0.90 0.02 1.04 0.92 1.00 1.22 1.09
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Table 2.6: Kurtosis of the stock returns. rtd is an open-to-close return, rd
is a close-to-close return. σ̂GK,td (σ̂P,td) is square root of Garman-Klass
(Parkinson) volatility estimate without opening jump component. σ̂GK,d
(σ̂P,d) is square root of Garman-Klass (Parkinson) volatility estimate in-
cluding opening jump component. σ̂garch is standard deviation estimated
from GARCH(1,1) model based on daily returns.

trading day returns daily returns
rtd

rtd
σ̂GK,td

rtd
σ̂P,td

rd
rd

σ̂GK,d
rd
σ̂P,d

rd
σ̂GK,td

rd
σ̂P,td

rd
σ̂garch

AA 9.63 2.84 1.76 11.63 2.73 1.87 3.48 2.56 4.62
AXP 8.46 3.03 1.81 9.62 2.84 1.91 4.10 2.70 5.00
BA 6.42 2.99 1.81 10.76 2.75 1.91 3.12 2.62 6.82

BAC 19.47 2.87 1.78 26.81 2.78 1.91 3.50 2.85 8.69
C 34.05 3.12 1.82 38.79 2.95 1.96 3.62 2.70 6.70

CAT 5.71 2.93 1.80 7.31 2.78 1.90 3.88 2.78 6.97
CVX 11.28 2.99 1.80 13.44 2.80 1.90 3.89 2.43 3.77
DD 7.07 2.98 1.81 7.53 2.84 1.95 3.54 2.63 5.23
DIS 6.75 2.93 1.81 11.04 2.76 1.94 4.23 3.78 9.88
GE 10.29 2.80 1.77 10.07 2.71 1.93 3.20 2.68 4.95
GM 43.27 2.93 1.82 26.30 2.74 1.89 3.73 2.80 7.41
HD 6.43 2.93 1.80 19.21 2.70 1.90 3.23 2.73 10.84

HPQ 7.63 2.92 1.80 9.29 2.77 1.93 3.30 2.81 9.73
IBM 6.87 2.82 1.78 9.44 2.75 1.91 3.74 3.90 8.17

INTC 6.45 2.62 1.76 8.59 2.57 1.87 3.89 4.56 6.86
JNJ 5.70 3.02 1.83 10.56 2.88 1.97 3.17 2.63 4.98
JPM 14.60 3.00 1.83 12.05 2.80 1.96 3.46 2.79 4.89
CAG 8.64 3.54 1.93 16.43 3.37 2.08 4.42 2.78 10.33
KO 7.81 3.12 1.86 8.56 2.94 1.98 3.41 2.57 6.66

MCD 8.56 3.05 1.84 7.48 2.84 1.95 3.14 2.48 5.26
MMM 6.86 3.08 1.84 7.60 3.01 1.99 3.59 2.68 8.72
MRK 6.64 2.96 1.82 24.22 2.78 1.92 4.35 4.83 42.92
MSFT 5.22 2.63 1.78 8.61 2.55 1.91 5.81 9.43 9.24
PFE 5.36 2.83 1.78 6.17 2.74 1.90 3.40 2.86 6.57
PG 8.22 2.96 1.83 75.61 2.89 1.97 3.46 3.11 17.85
T 6.23 3.00 1.81 7.40 2.90 1.96 3.32 2.42 4.29

UTX 9.11 3.01 1.79 32.55 2.81 1.91 3.83 3.01 28.66
VZ 6.89 2.98 1.79 7.80 2.88 1.93 4.67 2.61 4.52

WMT 6.59 3.19 1.86 5.98 2.99 1.97 3.72 3.19 4.41
XOM 11.30 2.91 1.77 12.62 2.81 1.91 3.21 2.44 4.11

mean 10.25 2.97 1.81 15.45 2.82 1.93 3.71 3.15 8.97
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Klass formula are close to normal (kurtosis is close to 3). Third, the daily

returns normalized by the standard deviations calculated from Parkinson

formula have no tails (kurtosis is significantly smaller than 3). Fourth,

normalization of daily returns by standard deviation estimated for trading

day only, will cause upward bias in kurtosis. This is a consequence of the

standardization by an incorrect standard deviation - sometimes (particularly

in a situation when the opening jump is large), returns are divided by too

small standard deviation, which will cause too many large observations for

normalized returns.

The last column of Table 2.6 reports kurtosis of returns normalized by

standard deviations estimated from GARCH(1,1) model with mean return

fixed to zero. As we can see, these normalized returns are not Gaussian, they

have fat tails. This is consistent with the fact that GARCH models with fat-

tailed conditional distribution of returns fit data better than GARCH models

with conditionally normally distributed returns. However, as is clear from

this paper, this is the case simply because GARCH models always condition

return distribution on the estimated volatility, which is only a noisy proxy of

the true volatility. Therefore, even when distribution of returns conditional

on the true volatility is Gaussian, distribution of returns conditional on

estimated volatility will have heavy tails. This result has an important

implication for volatility modelling: the more precisely we can estimate the

volatility, the closer will be the conditional distribution of returns to the

normal distribution.

2.5 Conclusion

Range-based volatility estimators provide significant increase in accuracy

compared to simple squared returns. Even though efficiency of these esti-
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mators is known, there is some confusion about other properties of these

estimators. We study these properties. Our main focus is the properties of

returns standardized by their standard deviations.

First, we correct some mistakes in existing literature. Second, we study

different properties of range-based volatility estimators and find that for

most purposes, the best volatility estimators is the Garman-Klass volatility

estimator. The Meilijson volatility estimator improves its efficiency slightly,

but it is based on a significantly more complicated formula. However, per-

formance of all the range-based volatility estimators is similar in most cases

except for the case when we want to use them for standardization of the

returns.

Returns standardized by their standard deviations are known to be nor-

mally distributed. This fact is important for the volatility modelling. This

result was possible to obtain only when the standard deviations were esti-

mated from the high frequency data. When the standard deviations were

obtained from volatility models based on daily data, returns standardized by

these standard deviations are not Gaussian anymore, they have heavy tails.

Using simulations we show that even when returns themselves are normally

distributed, returns standardized by (imprecisely) estimated volatility are

not normally distributed; their distribution has heavy tails. In other words:

the fact that standard volatility models show that even conditional distribu-

tion of returns has heavy tails does not mean that returns are not normally

distributed. It means that these models cannot estimate volatility precisely

enough and the noise in the volatility estimates causes the heavy tails.

It is not obvious whether range-based volatility estimators can be used

for the standardization of the returns. Using simulations we find that for

the purpose of returns standardization there are large differences between
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these estimators and we find that the Garman-Klass volatility estimator is

the only one appropriate for this purpose. Putting all the results together,

we rate the Garman-Klass volatility estimator as the best volatility estima-

tor based on daily (open, high, low and close) data. We test this estimator

empirically and we find that we can indeed obtain basically the same results

from daily data as Andersen, Bollerslev, Diebold, and Ebens (2001) ob-

tained from high-frequency (transaction) data. This is important, because

the high-frequency data are very often not available or available only for a

shorter time period and their processing is complicated. Since returns scaled

by standard deviations estimated from GARCH type of models (based on

daily returns) are not Gaussian (they have fat tails), our results show that

the GARCH type of models cannot capture the volatility precisely enough.

Therefore, in the absence of high-frequency data, further development of

volatility models based on open, high, low and close prices is recommended.

57



58



Bibliography

[1] Alizadeh, S., Brandt, M. W., & Diebold, F. X. (2002). Range-based

estimation of stochastic volatility models. Journal of Finance, 57, 1047–

1091.

[2] Andersen T. G., Bollerslev T., Diebold F.X., & Labys, P. (2000). Ex-

change rate returns standardized by realized volatility are nearly Gaus-

sian. Multinational Finance Journal, 4, 159–179.

[3] Andersen, T. G., Bollerslev, T. Diebold F.X. & Ebens, H. (2001). The

distribution of realized stock return volatility. Journal of Financial Eco-

nomics, 61, 43–76.

[4] Bali, T. G., & Weinbaum, D. (2005). A comparative study of alter-

native extreme-value volatility estimators. Journal of Futures Markets,

25, 873–892.

[5] Bernard Bollen, B., & Inder, B. (2002). Estimating daily volatility in

financial markets, Journal of Empirical Finance, 9, 551–562.

[6] Brandt, M. W., & Diebold, F. X. 2006. A no-arbitrage approach to

range based estimation of return covariances and correlations. Journal

of Business, 79, 61–74.

59



[7] Brandt, M. W., & Jones., Ch. S. (2006). Volatility forecasting with

Range-Based EGARCH models. Journal of Business and Economic

Statistics, 24 (4), 470–486.

[8] Broto, C. & Ruiz, E. (2004), Estimation methods for stochastic volatil-

ity models: a survey. Journal of Economic Surveys, 18, 613–649.

[9] Chou, R. Y. (2005) Forecasting financial volatilities with extreme val-

ues: the conditional autoregressive range (CARR) model. Journal of

Money, Credit and Banking, 37 (3), 561–582.

[10] Chou, R. Y., 2006. Modeling the asymmetry of stock movements using

price ranges. Advances in Econometrics, 20, 231–258.

[11] Chou, R. Y., Chou, H., & Liu, N. (2010). Range volatility models and

their applications in finance. Handbook of Quantitative Finance and

Risk Management, Chapter 83, Springer.

[12] Chou, R. Y., & Liu, N. (2010). The economic value of volatility timing

using a range-based volatility model. Journal of Economic Dynamics &

Control, 34, 2288–2301.

[13] Dacorogna, M. M., Gencay, R., Müller, U. A., Olsen, R. B., & Pictet,

O. V. (2001). An Introduction to High-Frequency Finance. San Diego:

Academic Press.

[14] Feller, W. (1951). The asymptotic distribution of the range of sums of

independent random variables. The Annals of Mathematical Statistics,

22, 427–432.

[15] Fiess, N. M., & MacDonald, R. (2002). Towards the fundamentals of

technical analysis: analysing the information content of High, Low and

Close proces. Economic Modelling, 19, 354–374.

60



[16] Forsberg, L., & Bollerslev, T. (2002). Bridging the gap between the

distribution of realized (ECU) volatility and ARCH modelling (of the

Euro): the GARCH-NIG model. Journal of Applied Econometrics, 17,

535–548.

[17] Garman, M. B., & Klass, M. J. (1980). On the Estimation of Security

Price Volatilities from Historical Data. The Journal of Business, 53 (1),

67–7

[18] Hansen, P. R., & Lunde, A. (2005). A realized variance for the whole

day based on intermittent high-frequency data. Journal of Financial

Econometrics, 3, 525–554.

[19] Karatzas, I., & Shreve, S. E. (1991). Brownian Motion and Stochastic

Calculus. New York: Springer-Verlag.

[20] Kunitomo, N. (1992). Improving the Parkinson method of estimating

security price volatilities. Journal of Business, 65, 295–302.

[21] Meilijson, I., (2009), The Garman–Klass volatil-

ity estimator revisited, working paper available at:

http://arxiv.org/PS cache/arxiv/pdf/0807/0807.3492v2.pdf

[22] Parkinson, M. (1980). The extreme value method for estimating the

variance of the rate of return. Journal of Business, 53, 61–65.

[23] Rogers, L. C. G., & Satchell, S. E. (1991). Estimating variance from

high, low and closing prices. Annals of Applied Probability, 1, 504–12.

[24] Thomakos, D. D., Wang, T., (2003), Realized volatility in the futures

markets. Journal of Empirical Finance, 10, 321–353.

61



[25] Yang, D., & Zhang, Q. (2000). Drift-independent volatility estimation

based on high, low, open, and close prices. Journal of Business, 73,

477–491.

62



3
Rethinking the GARCH

63



Abstract

Based on the view that GARCH volatility models should not be considered

as data-generating processes for volatility but as filters we suggest a simple

and general way to improve them using high and low prices. We illustrate

this on the GARCH(1,1) model and empirical analysis confirms our idea.

A modified GARCH(1,1) model performs significantly better than the stan-

dard GARCH(1,1) model regarding both in-sample fit and out-of-sample

forecasting ability.

Key words: volatility, GARCH, range, high, low 1

1I would like to thank to Jonas Andersson, Stein Erik Fleten, Milan Bašta, Lukáš
Lafférs and participants at NHH and NTNU seminars for helpful comments.
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3.1 Introduction

The most fundamental variables of finance and economics are changes of

asset prices (returns) and their variances. As was observed a long time

ago, even though returns of most financial assets are to a large extent un-

predictable, their variances display high temporal dependency and are pre-

dictable. Starting with the work of Engle (1982) and Bollerslev (1986), the

ARCH and GARCH classes of models have become such standard tools to

for volatility estimation and prediction that they can be found in many

undergraduate time series textbooks. Some of the widely used extensions

are EGARCH of Nelson (1991), GJR-GARCH of Glosten, Jagannathan and

Runkle (1993), FIEGARCH of Bollerslev and Mikkelsen (1996) and many

others. See e.g. Andersen et al. (2006) and Engle and Patton (2001) for

surveys and further references.

Starting with the work of Taylor (1986), a new class of volatility models

emerged - stochastic volatility models. For an overview see e.g. Ghysels

et al. (1996) and Shepard (1996). Since stochastic volatility models are

naturally formulated in continuous time, they are strongly connected with

standard continuous time finance. They proved to be useful particularly in

option pricing (see Hull and White (1987), Melino and Turnbull (1990)). The

direct comparison with GARCH type of models is inconclusive (Kim et al.

(1998)). The main reason why stochastic volatility models did not become as

popular as GARCH models is the practical one - stochastic volatility models

are much more difficult to estimate (see e.g. Broto and Ruiz (2004)).

The main difference between stochastic volatility and GARCH models

is the following. Stochastic volatility models assume that volatility evolves

over time as some stochastic proces and returns are drawn from a distribu-

tion parametrized by this volatility. Past returns have no direct effect on
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the future volatility.2 In GARCH models, returns are generated the same

way as in the stochastic volatility models. The only stochastic element in

the volatility equation are past returns and therefore past returns determine

future volatility. In other words, returns are stochastic, but once the re-

turn was realized, future volatility is determined. If we consider GARCH

models and stochastic volatility models as data generating processes, they

are obviously mutually exclusive. However, important insight from Nelson

(1990, 1992) tells us that even when a GARCH model is misspecified (it is

not a true data generating process for the volatility), it can work quite well.

We can think of the GARCH model as a filter through which we pass the

data to produce an estimate of the conditional volatility. In his own words

(Nelson and Foster 1994):

”Likely reason for the empirical success of ARCH: when both observable

variables and conditional variances change ”slowly” relative to the sampling

interval (in particular, when the data generating process is well approxi-

mated by a diffusion and the data are observed at high frequencies) then

broad classes of ARCH models, even when misspecified, provide continuous-

record consistent estimates of the conditional variances. That is, as the

observable variables are recorded at finer and finer intervals, the conditional

variance estimates produced by the (misspecified) ARCH model converge in

probability to the true conditional variances.”

Our work is based on a similar intuition. The GARCH model can fit the

data quite well even when the volatility itself is not generated by the process

specified by the GARCH model. In GARCH type of models, demeaned3

2Abstracting from leverage effect, which can be possibly incorporated into the stochas-
tic volatility models.

3For most of the assets, mean daily return is much smaller than its standard deviation
and therefore can be considered equal to zero. From now on we assume that it is indeed
zero. This assumption not only makes further analysis simpler, but it actually helps
to estimate volatility more precisely. In the words of Poon and Granger (2003): ”The
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squared returns serve as a way to calculate an innovation to the volatility.

Rewriting GARCH models in terms of observed variables (returns) only

shows that the GARCH model in fact calculates volatility as a weighted

moving average of past squared returns. If volatility is changing slowly

over the time, the GARCH model will work simply because squared returns

are daily volatility estimates and the GARCH model essentially calculates

volatility as some kind of weighted moving average of the past volatilities.

This intuition has interesting implications. Most importantly, replace-

ment of the squared returns by more precise volatility estimates will produce

better GARCH models, both in terms of in-sample fit and out-of-sample

forecasting performance. Additionally, coefficients of GARCH models based

on more precise volatility estimates than squared returns will be changed in

such a way that they will put more weight on more recent observations. We

test both these implications.

To test our idea, we estimate a GARCH(1,1) model using both squared

returns and a more precise volatility proxy, in particular the Parkinson

(1980) volatility estimator based on range (the difference between high and

low). The results confirm our expectations.

In this way our work becomes closely related to Alizadeh, Brandt, Diebold

(2002), Chou (2005), Brandt and Jones (2006) who use range-based volatil-

ity measures to estimate volatility models. Alizadeh et al. (2002) estimate

a stochastic volatility model. Brandt and Jones (2006) estimate EGARCH

and FIEGARCH models based on log range. Chou (2005) uses range in

standard deviation GARCH. These papers employ range-based volatility

proxies in different volatility models. However, standard GARCH models

statistical properties of sample mean make it a very inaccurate estimate of the true mean,
especially for small samples, taking deviations around zero instead of the sample mean
typically increases volatility forecast accuracy.”
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are estimated to fit the conditional distribution of returns, whereas previ-

ously mentioned models are estimated to fit the conditional distribution of

range (log-range). This in turn means that only our model can be estimated

using standard econometric software without any programming.

Our contribution is threefold. First, we construct a range-based GARCH

model (RGARCH), which is a simple modification of the standard widely

used GARCH(1,1) model, but still outperforms it significantly. Second, our

paper should be viewed as an illustration of how the existing GARCH mod-

els can be easily improved by using more precise volatility proxies. Even

though this paper devotes most of the space to illustrate that the RGARCH

models outperforms the standard GARCH(1,1) model, our main goal is not

to convince the reader that our model is the best one. On the contrary, since

leverage effect is a well-documented phenomenon, the asymmetric RGARCH

model is very likely to outperform our model. We leave this to further re-

search. Third, we confirm that GARCH models should indeed be considered

just filtering devices, not data generating processes.

The rest of the paper is organized in the following way: Section 2 pro-

vides a basic introduction to volatility modelling and an overview of existing

range-based volatility estimators. Section 3 decribes the data, methodology

and results. Finally, Section 4 concludes.

3.2 Theoretical background

3.2.1 GARCH models

Let Pt be the price of a speculative asset at the end of day t. Define return

rt as

rt = log (Pt)− log (Pt−1) (3.1)
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Daily returns are known to be basically unpredictable and their expected

value is very close to zero. On the other hand, variance of daily returns

changes significantly over time. We assume that daily returns are drawn

from normal distribution with a zero mean and time-varying variance

rt ∼ N
(
0, σ2t

)
(3.2)

Both assumptions, zero mean and normal distribution, are not necessary

and can be abandoned without any difficulty. For the sake of exposition,

we maintain these assumptions throughout the whole paper. This allows

us to focus on the modelling of conditional variance (volatility) only. The

first model to capture the time variation of volatility is Engle’s (1982) Auto

Regressive Conditional Heteroskedasticity (ARCH) model. The ARCH(p)

has the form:

σ2t = ω +

p∑
i=1

αir
2
t−i (3.3)

where rt is a return in day t, σ2t is an estimate of the volatility in day t and ω

and αi’s are positive constants.The Generalized ARCH model was afterwards

introduced by Bollerslev (1986). The GARCH(p,q) has the following form:

σ2t = ω +

p∑
i=1

αir
2
t−i +

q∑
j=1

βiσ
2
t−j (3.4)

where the βi’s are positive constants. The GARCH model has become more

popular, because with just a few parameters it can fit data better than

a more parametrized ARCH model. Particularly popular is its simplest
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version, the GARCH(1,1) model4:

σ2t = ω + αr2t−1 + βσ2t−1 (3.5)

Estimation of the GARCH(1,1) typically yields the following results. ω

is very small (e.g. 0.0006), α + β is close to one, but smaller than one.

Moreover, most of the weight is on the β coefficient, e.g. α = 0.04, β = 0.95.

In other words, the estimated GARCH(1,1) model is usually very close to its

reduced form, the Exponential Weighted Moving Average (EMWA) model

σ2t = αr2t−1 + (1− α)σ2t−1 (3.6)

The EMWA mode has one obvious disadvantage: time series of volatility

generated by the process (3.6) would not be stationary, whereas observed

volatility time series are stationary. However, this is not a problem if we

consider EMWA just as a filtering device. EMWA model is useful particu-

larly for didactic purposes. In this model the new volatility estimate is esti-

mated as a weighted average of the most recently observed volatility proxy

(squared returns) and the last estimate of the volatility. Loosely speaking,

we gradually update our belief about the volatility as new information (noisy

volatility proxy) becomes available. If the new information indicates that

the volatility was larger than our previous belief about it, we update our

belief upwards and vice versa. The coefficient α tells us how much weight

we put on the new information. If we use less noisy volatility proxy instead

of squared returns, optimal α should be larger and the performance of the

model should be better.

4Even though the GARCH(1,1) is a very simple model, it still works surprisingly well
in comparison with much more complex volatility models (see Hansen and Lunde (2005)).
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The same intuition applies to GARCH models too. This naturally leads

to the proposal of the modified GARCH(1,1)

σ2t = ω + α ̂σ2proxy,t−1 + βσ2t−1 (3.7)

where ̂σ2proxy,t−1 is the less noisy volatility proxy.

Next we need to decide upon what should be used as a better (less

noisy) volatility proxy. Generally, the better the proxy we use, the better

should the model work. Therefore, the natural candidate would be realized

volatility. This would lead to models related to Shephard and Shephard

(2009). However, despite the atractiveness of the realized variance we do

not use it as a volatility proxy. Realized variance must be calculated from

high frequency data and these data are in many cases not available at all

or available only over shorter time horizons and costly to obtain and work

with. Moreover, due to market microstructure effects the volatility esti-

mation from high frequency data is a rather complex issue (see Dacorogna

et al. (2001)). Contrary to high frequency data, high (H) and low (L)

prices, which are usually widely available, can be used to estimate volatility

(Parkinson (1980)):

σ̂2P =
[ln(H/L)]2

4 ln 2
(3.8)

This estimator is based on the assumption that, during the day, the loga-

rithm of the price follows a Brownian motion with a zero drift. This assump-

tion typically holds quite well in the data. Parkinson’s volatility estimator is

the most used volatility estimator (see e.g. Alizadeh, Brandt, Diebold (2002)

or Brandt and Jones (2006)). An alternative volatility proxy we could use

is Garman-Klass (1980) volatility estimator, which utilizes additional open
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(O) and close (C) data:

σ̂2GK = 0.5 [ln(H/L)]2 − (2 ln 2− 1) [ln(C/O)]2 (3.9)

Under ideal conditiona (Brownian motion with zero drift) this estimator is

less noisy than the Parkinson volatility estimator5, because it utilizes open

and close prices too. However, in this paper we use Parkinson’s volatility

estimator (σ2proxy = σ2P ). We have done all the calculations for the Garman-

Klass volatility estimator too and found out that for this particular purpose

usage of Garman-Klass estimator does not improve the results, the results

are practically the same as for the Parkinson volatility estimator. Moreover,

for the same data sets where high and low prices are available, open price is

sometimes not available.

In this paper we therefore study the following model

σ2t = ω + ασ̂2P,t−1 + βσ2t−1 (3.10)

which we denote as RGARCH(1,1) (range GARCH) model. This model can

obviously be extended to the RGARCH(p,q) model

σ2t = ω +

p∑
i=1

αiσ̂2P,t−i +

q∑
j=1

βiσ
2
t−j (3.11)

Since it is generally known that GARCH(p,q) of order higher than (1,1) is

seldom useful, we study the RGARCH model only in its simplest version

(3.10), i.e. the RGARCH(1,1) model. Most of the paper is devoted to the

comparison of the standard GARCH(1,1) model (3.5) and the RGARCH(1,1)

model (3.10). Since we do not study GARCH and RGARCH models of

5For comparison of range-based volatility estimators see Molnar (2011).
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higher orders, we sometimes refer to GARCH(1,1) and RGACH(1,1) models

simply as GARCH and RGARCH models.

Our hypotheses are the following:

Hypothesis 1

RGARCH(1,1) outperforms the standard GARCH(1,1) model, both in sense

of the in sample fit and out of sample forecasting performance.

Additionaly, as previously explained, we expect that the estimated coef-

ficients of the GARCH models will be changed in such a way that more

weight will be put on the recent observation(s) of the volatility proxy. This

leads us to the second hypothesis.

Hypothesis 2

If we modify GARCH(1,1) to the RGARCH(1,1) model, we expect α to in-

crease and β to decrease.

To test hypothesis 1, we compare the modified GARCH(1,1) model (3.7)

not only with GARCH(1,1) model (3.5), but with other GARCH models

commonly used. Models we compare to our RGARCH are the following

ones:

The GJR-GARCH of Glosten, Jaganathan and Runkle (1993):

σ2t = ω + αr2t−1 + βσ2t−1 + γr2t−1It−1 (3.12)

where It = 1 if rt < 0 and zero otherwise,
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The Exponantial GARCH (EGARCH) of Nelson (1991):

log
(
σ2t
)

= ω + α

∣∣∣∣ rt−1σt−1

∣∣∣∣+ β log
(
σ2t−1

)
+ γ

rt−1
σt−1

(3.13)

The standard deviation GARCH of Taylor (1986) and Schwert (1989),

denoted in this paper as stdG, both in its symmetric version:

σt = ω + αrt−1 + βσt−1 (3.14)

and in the asymmetric version, similar to (3.12), taking into account the

leverage effect (astdG):

σt = ω + αrt−1 + βσt−1 + γrt−1It−1 (3.15)

The last model we use is the component GARCH (cGARCH).

σ2t −mt = ω + α
(
r2t−1 −mt

)
+ β

(
σ2t−1 −mt

)
(3.16)

mt = ω + ρ (mt − ω) + φ
(
r2t−1 − σ2t−1

)
(3.17)

The intuition for the component GARCH is the following. The standard

GARCH(1,1) model, which can be rewritten as

σ2t = ω + α
(
r2t−1 − ω

)
+ β

(
σ2t−1 − ω

)
(3.18)

exhibits mean reversion around ω, which is constant. The component GARCH

allows mean reversion around the time varying level mt.
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3.2.2 Estimation

All the GARCH models, including the models (3.5), (3.12) - (3.15) in our

paper are estimated via Maximum Likelihood. Since the RGARCH model

changes only the specification of the variance equation (equation (3.10) in-

stead of (3.10)), we do not need to derive new likelihood function for esti-

mation of this model. This in turns mean that our model can be estimated

without any programming in widely available econometric packages which

allow to include exogeneous variables in the variance equation, e.g. Eviews,

R or OxMetrics. We simply specify that we want to estimate GARCH(0,1)

model with exogeneous variable σ̂2P,t−1.

As mentioned earlier, we assume returns to be normally distributed

with zero mean (equation (3.2)) and variance evolving according to a given

GARCH model. However, there are alternative distributions for residuals

to consider (e.g. Student’s t-distribution, GED distribution,...). We did the

calculations for alternative distributions too, but we found that comparison

of the standard GARCH model vs. RGARCH model is unaffected by the

assumption of the residuals’ distribution as long as the return distribution

is the same for both models. For the sake of brevity, we report only the

results for the GARCH models with normally distributed residuals.

Two most closely related models are The Conditional Autoregressive

Range model (CARR) of Chou (2005) and Range-Based EGARCH model

(REGARCH) of Brandt and Jones (2006). Common feature of these mod-

els with the standard GARCH models is the variance equation. The vari-

ance equation for RGARCH model is created by modification of GARCH

(3.5), the variance equation of the CARR model is modification of GJR-

GARCH (3.12) and the variance equation of REGARCH is a modification

of EGARCH (3.13).
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However, CARR and REGARCH are otherwise significantly different

from RGARCH and other GARCH models. Standard GARCH models as

well as RGARCH model are estimated by fitting the conditional distribution

of returns (equation(3.2). On contrary, estimation of the CARR and the

REGARCH models is based on range. Denote

Dt = ln (Ht/Lt) (3.19)

as range. The REGARCH model is estimated by fitting conditional distri-

bution of log-range

ln (Dt) ∼ N(0.43 + ln (σt) , 0.292) (3.20)

and the CARR model is estimated by fitting conditional distribution of range

Dt = λtεt (3.21)

where λt is conditional distribution of range (varying according to equation

similar to (3.12)) and εt is distributed according to either exponential or

Weibull distribution.

In other words, these models are not estimated to capture the conditional

distribution of the returns, but the conditional distribution of range instead.

This can sometimes lead to problems.6 Moreover, since these estimations

are not implemented in econometric softwares, CARR and RGARCH models

must be programmed first.

On contrary, RGARCH model combines the ease of estimation of the

6Brandt and Jones: ”The most consistend and perhaps least surprising result in Table
2 [of their paper] is that the range-based models explain ranges better, whereas the return-
based models explain squared returns better.”
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standard GARCH models with the precision of the range-based models.

Now we evaluate the performance of the RGARCH model (3.10). To

do so, we mainly compare it with the standard GARCH(1,1) model (3.5),

because these two models are very closely related and their direct comparison

is very intuitive. We do this comparison for both in-sample fit and out-of-

sample forecasting performace. The analysis of the in-sample fit will give

us some insights about how these models work. The forecasting ability is

typically the most important feature of a volatility model and therefore when

evaluating the overal usefulness of the RGARCH model, we should focus on

its forecasting ability.

3.2.3 In-sample comparison

We start the in-sample comparison between RGARCH(1,1) and standard

GARCH(1,1) models by an estimation of equations (3.5) and (3.10). This

allows us to see whether the coefficients change according to our Hypotresis

2. To evaluate which model is better fit for the data, we use Akaike Infor-

mation Criterion (AIC). However, as we are comparing models with equal

number of parameters, any information criterion would neccesary produce

the same results. We believe that in our particular case, when we are com-

paring two very closely related models (conditional distribution of returns

is the same, models differ in specification of variance equation only), AIC is

a sensible criterion.

Additional, we estimate the combined GARCH(1,1) model

σ2t = ω + α1r
2
t−1 + α2σ̂2P,t−1 + βσ2t−1 (3.22)

too. This allows us to better understand which volatility proxy: squared re-
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turns r2t−1 or the Parkinson volatility proxy σ̂2P,t−1, is more relevant variable

in the variance equation.

3.2.4 Out-of-sample forecasting evaluation

To evaluate forecasting performance of two competing models, we first create

forecasts from these models and afterwards evaluate which of these forecasts

is on average closer to the true volatility.

To do this, we must first decide how to create the forecasts, particularly

how much data to use for the forecasting. If we use too little data, the

model will be estimated imprecisely and the forecasting will not be very

good. On the other hand, if we use too much data, we can estimate the

model precisely, but when the dynamics of the true volatility changes, our

model will adapt to this change too slowly. To avoid this problem, we use

rolling window forecasting7 with four different window sizes: 300, 400, 500

and 600 trading days. These numbers are obviously somehow arbitrary, but

we are focused on the comparison of different volatility models, not on the

search for the optimal forecasting window. Due to space limitations, we

restrict our attention to one-day-ahead forecasts.

Next we must first decide on what to use as a true volatility. The most

common and the most natural candidate for the true volatility are squared

daily returns. Squared daily returns are so widely used due to the data

availability. What makes them natural candidates is the fact that the main

reason for the existence of volatility models is to capture the volatility of

daily returns. Since there is too much noise in the squared daily returns, it

is desirable to use more precise volatility proxy as a benchmark. Therefore

7By rolling window forecasting with window size 100 we mean that we use the first
100 observations to forecast volatility on the 101, then we use observations 2 to 101 to
forecast volatility for day 102 and so on.
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we use the Parkinson volatility estimator and Realized Variance too. Due to

space limitations, we do not report results when the Parkinson volatility es-

timator is used as a benchmark, though the results are even more convincing

than for squared returns. Conversely, whenever the data on Realized Vari-

ance is available, we use it as a benchmark.

To evaluate which forecast is closer to the true value, we must next de-

cide on the loss function. We use the Mean Squared Error (MSE) as a loss

function. For the sake of exposition, we report Root Mean Squared Error

(RMSE) instead of MSE in all the tables. MSE is not only the most common

loss function, but it has many other convenient properties, particularly the

robustness. Since we are using imperfect volatility proxies, a choice of ar-

bitrary loss function (e.g. Mean Absolute Error or Mean Percentage Error)

could lead to problems, particularly to the inconsistent ranking of different

models (see Hansen and Lunde (2006) and Patton (2011)).

Next we want to know whether the MSE from two different models are

statistically different. We adopt the Diebold-Mariano (1996) test for this

purpose. The Diebold-Mariano test statistic (DM) is computed in the fol-

lowing way: denote two competing forecasts as σ̂21,t and σ̂22,t and the true

volatility as σ2true,t. In our case σ̂21,t = ̂σ2RGARCH,t and σ̂22,t is the competing

model; in the majority of this paper it is the GARCH(1,1) model. First we

construct the vector of differences in squared errors

dt =
(
σ̂21,t − σ

2
true,t

)2
−
(
σ̂22,t − σ

2
true,t

)2
(3.23)

Next we construct the Diebold-Mariano test statistic

DM =
d√
V̂
(
d
) (3.24)
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where d denotes the sample mean of dt and V̂
(
d
)

is variance of the sample

mean. DM is assumed to have standard normal distribution. Later in the

results we denote by asterisk * (**) cases when the DM test statistics lies

below 5-percentile (1-percentile), i.e. the cases where we can reject at 5%

(1%) confidence level the hypothesis that the competing model has smaller

MSE than the RGARCH(1,1) model.8

3.2.5 Opening jump

In the previous discussion we assumed that all the models are estimated on

the close-to-close returns defined by equation (3.1). This is typically the case

for the standard GARCH models. On the other hand, common approach

in the literature dealing with high frequency data is to model open-to-close

returns

rt = log (Pt)− log (Ot) (3.25)

The reason for this is that volatility for the trading period (from open to close

of the market) can be estimated quite precizely, whereas this precision is not

available for estimation of the period over the night, which is summarized

in opening jump. As Parkinson volatility estimator (3.8) estimates open-

to-close volatility only, we must deal with the same problem. There are

basically three ways how to solve this problem.

First, we could add opening jump component to the Parkinson volatility

estimator. We do not do this for the same reason why this is seldom done

in the realized variance literature: this would decrease the precision of the

estimated volatility.

Second, we could ignore the fact that Parkinson volatility estimator es-

timates the volatility only for the open-to-close period and still estimate

8In our data the DM test statistic never lies above 95-percentile.

80



our model on close-to-close returns. In this case we must be careful with

interpretation of the α coefficient in the RGARCH model. As long as open-

ing jumps are present, the Parkinson volatility estimator underestimates

volatility of daily returns:

E
(
σ̂2P

)
< E

(
r2
)

= σ2 (3.26)

As a result, estimated coefficient α will be larger to balance this bias in σ̂2P .

This intuition can explain one surprising result which will be documented

later in the empirical part. The modified GARCH(1,1) model (3.7) typically

yield coefficients α and β such that α + β > 1, even though estimation

of the standard GARCH(1,1) model yields coefficients α and β such that

α + β < 1. However, as we just explained, these α coefficients are not

directly comparable in presence of opening jumps. We illustrate this on a

simple example. If we specify GARCH(1,1) in the following form

σ2t = ω + α
r2t−1

2
+ βσ2t−1

then the estimated coefficient α will be exactly twice as large as when we

estimate equation (3.5). Therefore, if the RGARCH model is estimated on

the close-to-close returns, the coefficient α does not have the same interpre-

taion as in standard GARCH models. Even though we expect α to increase

and β to decrease, we must focus on the β coefficient only, because this

coefficient will change only because we now use a less noisy volatility proxy,

whereas change in coefficient α is caused by both high precision and bias

of the Parkinson volatility estimator. We present the results for RGARCH

model estimated on close-to-close returns in the Appendix.

Our final choice is to estimate the RGACH model on the open-to-close
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returns. In this case the interpretation of the coefficient α remains the same

as in the standard GARCH models. Moreover, the dynamics of the opening

jumps is arguably different from the volatility of the trading part of the day.

We are aware that the variable of interest is in many cases volatility

of the close-to-close returns. Therefore we compare RAGRCH estimated on

open-to-close returns not only to the GARCH models estimated on the open-

to-close returns, but to the GARCH models estimated on the close-to-close

returns too.

3.3 Data and results

To show the generality of our idea we study a wide class of assets, particu-

larly 30 individual stocks, 6 stock indices and simulated data. Due to space

limitations, our analysis cannot be as detailed as it would be if we studied a

single asset. We believe that the analysis of the main features of the problem

on the broad data set is more convincing than very detailed analysis based

on a small data set. We use daily data, particularly the highest, lowest,

opening and the closing price of the day.

3.3.1 Stocks

To show the generality of our results, we decided to use larger sample instead

of just one time series. Due to the space limitation of this paper, we limit

the sample size to 30 stocks. Therefore we study the components9 of the

Dow Jow Industrial Average, namely the stocks with tickers AA, AXP, BA,

BAC, C, CAT, CVX, DD, DIS, GE, GM, HD, HPQ, IBM, INTC, JNJ, JPM,

9Components of stock indices change over time. These stocks were DJI components on
January 1, 2009.
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CAG10, KO, MCD, MMM, MRK, SFT, PFE, PG, T, UTX, VZ and WMT.

Data were obtained from the CRSP database and consist of 4423 daily ob-

servations of high, low and close prices from June 15, 1992 to December 31,

2010.

In-sample analysis

Table 3.1 presents estimated coefficients for the equations (3.5) and its

modified version (3.7) together with values of Akaike Information Criterion

(AIC)11.

For every single stock, the coefficients in the modified GARCH(1,1) have

changed in exactly the same way as we expected. Additionaly, according to

AIC, modified GARCH(1,1) is superior to its standard counterpart for every

single stock in our sample.

Next we estimate equation (3.22). Results of this estimation (reported in

Table 3.2 together with respective p-values) show that whereas coefficients

α2 is always significant both statistically and economically, the coefficient α1

is insignificant in most of the cases. Even when it is statistically significant,

it is rather small. This confirms that σ2P is a better volatility proxy than r2

and when we have the first one available, the inclusion of the second one can

improve the model only marginally. Note that the coefficient α1 is negative

in most cases. Even though this seems to be a problem, exactly opposite is

the case. Optimal volatility estimate (3.9) combines the Parkinson volatility

estimator with squared returns in such a way that squared returns have

negative weight.

10Since historical data for KFT (component of DJI) are not available for the complete
period, we use its biggest competitor CAG instead.

11Any information criterion (e.g. Bayes Information Criterion) would neccesarily pro-
duce the same results, because we are comparing models with an equal number of param-
eters.

83



Table 3.1: Estimated coefficients of the GARCH(1,1) model σ2t = ω+αr2t−1+

βσ2t−1 and the RGARCH(1,1) model σ2t = ω + ασ̂2P,t−1 + βσ2t−1, reported
together with the values of Akaike Information Criterion (AIC) of the re-
spective equations.

Ticker GARCH(1,1) RGARCH(1,1)
ω α β AIC ω α β AIC

AA 1.61E-06 0.036 0.960 -5.121 4.21E-06 0.066 0.926 -5.131
AXP 1.61E-06 0.071 0.927 -5.320 2.26E-06 0.160 0.842 -5.348
BA 2.67E-06 0.057 0.934 -5.497 5.20E-06 0.148 0.830 -5.520

BAC 1.69E-06 0.080 0.917 -5.508 1.77E-06 0.197 0.816 -5.529
CAT 2.78E-06 0.045 0.947 -5.303 1.11E-05 0.145 0.826 -5.325

CSCO 2.98E-06 0.078 0.921 -4.756 4.04E-06 0.184 0.814 -4.787
CVX 3.29E-06 0.066 0.917 -5.838 5.20E-06 0.134 0.840 -5.854
DD 1.04E-06 0.038 0.959 -5.551 2.53E-06 0.088 0.901 -5.573
DIS 2.57E-06 0.053 0.939 -5.460 5.51E-06 0.107 0.867 -5.494
GE 8.38E-07 0.062 0.937 -5.742 2.54E-06 0.180 0.811 -5.765
HD 2.82E-06 0.053 0.939 -5.313 7.22E-06 0.121 0.852 -5.334

HPQ 2.15E-06 0.035 0.961 -4.997 3.06E-06 0.054 0.941 -5.008
IBM 8.21E-07 0.054 0.946 -5.552 6.67E-07 0.153 0.860 -5.574

INTC 2.60E-06 0.054 0.942 -4.943 4.52E-06 0.142 0.855 -4.966
JNJ 1.28E-06 0.069 0.926 -6.021 1.47E-06 0.170 0.824 -6.044
JPM 1.82E-06 0.080 0.919 -5.273 1.86E-06 0.158 0.841 -5.307
CAG 1.80E-06 0.057 0.936 -5.815 5.68E-06 0.238 0.740 -5.843
KO 5.68E-07 0.044 0.954 -5.965 6.22E-07 0.114 0.883 -5.980

MCD 1.84E-06 0.046 0.947 -5.654 2.28E-06 0.091 0.898 -5.673
MMM 1.57E-06 0.033 0.959 -5.890 8.19E-06 0.136 0.814 -5.911
MRK 6.02E-06 0.058 0.920 -5.513 1.17E-05 0.124 0.826 -5.533
MSFT 1.05E-06 0.062 0.937 -5.392 6.69E-07 0.195 0.809 -5.408
PFE 1.80E-06 0.046 0.948 -5.509 6.52E-06 0.177 0.805 -5.520
PG 1.69E-06 0.057 0.934 -5.953 4.79E-06 0.213 0.764 -5.989
T 1.27E-06 0.057 0.940 -5.621 2.36E-06 0.109 0.881 -5.629

TRV 3.95E-06 0.074 0.913 -5.544 9.41E-06 0.198 0.782 -5.586
UTX 2.44E-06 0.074 0.918 -5.700 5.05E-06 0.198 0.788 -5.723
VZ 1.46E-06 0.052 0.943 -5.695 4.34E-06 0.159 0.826 -5.704

WMT 1.39E-06 0.058 0.939 -5.617 1.91E-06 0.127 0.861 -5.638
XOM 2.70E-06 0.074 0.912 -5.922 5.32E-06 0.164 0.807 -5.949
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Table 3.2: Estimated coefficients and p-values for the combined

GARCH(1,1) model σ2t = ω + α1r
2
t−1 + α2σ̂2P,t−1 + βσ2t−1.

Ticker combined GARCH(1,1)
ω p-value α1 p-value β p-value α2 p-value

AA 4.37E-06 0.000 -0.002 0.811 0.925 0.000 0.069 0.000
AXP 2.33E-06 0.004 -0.041 0.003 0.827 0.000 0.218 0.000
BA 6.07E-06 0.000 -0.028 0.013 0.810 0.000 0.191 0.000

BAC 1.76E-06 0.002 0.007 0.546 0.819 0.000 0.187 0.000
CAT 1.47E-05 0.000 -0.052 0.000 0.783 0.000 0.231 0.000

CSCO 3.82E-06 0.015 -0.025 0.058 0.812 0.000 0.211 0.000
CVX 5.67E-06 0.000 -0.018 0.135 0.829 0.000 0.161 0.000
DD 2.78E-06 0.000 -0.025 0.002 0.896 0.000 0.117 0.000
DIS 5.88E-06 0.000 -0.034 0.001 0.864 0.000 0.140 0.000
GE 2.56E-06 0.000 -0.005 0.704 0.809 0.000 0.186 0.000
HD 8.19E-06 0.000 -0.018 0.095 0.837 0.000 0.150 0.000

HPQ 3.01E-06 0.000 0.001 0.849 0.941 0.000 0.053 0.000
IBM 6.69E-07 0.353 -0.010 0.178 0.853 0.000 0.171 0.000

INTC 4.90E-06 0.012 -0.032 0.006 0.842 0.000 0.187 0.000
JNJ 1.47E-06 0.000 0.005 0.598 0.826 0.000 0.162 0.000
JPM 1.90E-06 0.017 -0.030 0.013 0.829 0.000 0.200 0.000
CAG 6.83E-06 0.000 -0.042 0.002 0.699 0.000 0.315 0.000
KO 6.15E-07 0.046 -0.002 0.773 0.882 0.000 0.117 0.000

MCD 4.61E-06 0.000 -0.041 0.000 0.841 0.000 0.178 0.000
MMM 9.43E-06 0.000 -0.092 0.000 0.790 0.000 0.242 0.000
MRK 1.41E-05 0.000 -0.029 0.009 0.796 0.000 0.173 0.000
MSFT 5.69E-07 0.534 -0.018 0.240 0.798 0.000 0.224 0.000
PFE 6.28E-06 0.000 0.007 0.496 0.813 0.000 0.163 0.000
PG 5.18E-06 0.000 -0.061 0.000 0.733 0.000 0.303 0.000
T 1.95E-06 0.001 0.026 0.000 0.894 0.000 0.072 0.000

TRV 1.03E-05 0.000 -0.041 0.000 0.768 0.000 0.252 0.000
UTX 5.49E-06 0.000 -0.020 0.107 0.773 0.000 0.232 0.000
VZ 3.96E-06 0.000 0.018 0.009 0.840 0.000 0.129 0.000

WMT 1.97E-06 0.003 -0.010 0.338 0.855 0.000 0.142 0.000
XOM 5.75E-06 0.000 -0.030 0.021 0.794 0.000 0.204 0.000
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Out-of-sample forecasting performance

As seen in the previous subsection, the modified GARCH(1,1) outperforms

its standard counterpart in the in-sample fit of the data. The next obvious

question is the comparison of the predictive ability of these models. To

answer this question, we compare one-day ahead forecasts of the models

(3.5) and (3.7) with squared returns as a benchmark. Results are presented

in the Table 3.3.

As we can see from Table 3.3, the RGARCH(1,1) model clearly outper-

forms GARCH(1,1). All the cases (stock-estimation window pairs) when the

difference is statistically significant favour the RGARCH model. Note that

the reason why the difference is often insignificant is not because the models

are indistinguishable, but because squared returns (a very noisy volatil-

ity proxy) make the distinction between any two volatility models difficult.

In fact the RGARCH model provides larger improvement to GARCH(1,1)

model than any of the studied GARCH models.

The next obvious question is how our RGARCH performs relative to

other more complicated GARCH models. Even though a detailed answer

to this question is behyond the scope of this paper, we provide some basic

comparison. We now compare the RGARCH model (3.10) not only with

the basic GARCH model (3.5), but with its other versions (3.12)-(3.16) too.

We chose an estimation window equal to 400. A shorter estimation window

would favour the RGARCH model even more. A too long estimation win-

dow is not desirable, because, as Table 3.3 documents, volatility forecasting

becomes less precise when we use a too long estimation window.

As we can see from Table 3.4, the comparison of the RGARCH model

with other GARCH models is very similar to previous comparison. The

RGARCH model typically outperforms other GARCH models. When we
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Table 3.3: Comparison of the forecasting performance of the GARCH(1,1)
model σ2t = ω + αr2t−1 + βσ2t−1 and the RGARCH(1,1) model σ2t = ω +

ασ̂2P,t−1 + βσ2t−1. Numbers in this table are 1000×RMSE of the one-day-
ahead rolling window forecast reported for different window sizes w. An
asterisk * (**) indicates when the difference is significant at the 5% (1%)
level.

Ticker GARCH(1,1) RGARCH(1,1)
w=300 w=400 w=500 w=600 w=300 w=400 w=500 w=600

AA 1.277 1.296 1.309 1.322 1.268 1.281 1.291 1.305
AXP 1.167 1.177 1.189 1.202 1.179 1.199 1.203 1.215
BA 0.656 0.657 0.657 0.662 0.649 0.650 0.651 0.657

BAC 2.594 2.621 2.646 2.673 2.791 2.824 2.701 2.761
CAT 0.710 0.717 0.722 0.731 0.694* 0.701 0.710 0.719

CSCO 1.749 1.761 1.781 1.806 1.700 1.708* 1.736* 1.747*
CVX 0.643 0.648 0.657 0.662 0.634 0.635 0.642 0.647
DD 0.675 0.679 0.686 0.692 0.660* 0.665** 0.671** 0.677**
DIS 0.684 0.688 0.696 0.703 0.665* 0.669* 0.678* 0.682*
GE 0.869 0.870 0.879 0.888 0.882 0.865 0.862 0.871
HD 0.794 0.801 0.809 0.815 0.789 0.800 0.800 0.844

HPQ 1.050 1.058 1.070 1.083 1.043 1.057 1.063 1.077
IBM 0.631 0.635 0.641 0.648 0.624* 0.629* 0.637 0.643

INTC 1.194 1.195 1.205 1.218 1.161* 1.169* 1.180* 1.193*
JNJ 0.359 0.358 0.356 0.357 0.350* 0.349* 0.350 0.351
JPM 1.757 1.787 1.805 1.817 1.711 1.724* 1.736** 1.758**
CAG 0.534 0.537 0.538 0.543 0.514 0.531 0.536 0.542
KO 0.496 0.495 0.497 0.500 0.488 0.488 0.491 0.496

MCD 0.670 0.670 0.676 0.678 0.665 0.667 0.682 0.694
MMM 0.446 0.446 0.451 0.455 0.444 0.445 0.449 0.452
MRK 0.642 0.649 0.653 0.660 0.632* 0.636** 0.639* 0.649**
MSFT 0.676 0.683 0.688 0.696 0.676 0.673* 0.675** 0.684**
PFE 0.540 0.546 0.545 0.553 0.546 0.547 0.552 0.555
PG 0.505 0.508 0.509 0.510 0.493* 0.493** 0.498 0.498
T 0.612 0.614 0.619 0.626 0.597 0.601* 0.608* 0.613*

TRV 1.161 1.169 1.177 1.190 1.180 1.178 1.185 1.188
UTX 0.689 0.698 0.701 0.710 0.681* 0.686** 0.695* 0.702**
VZ 0.570 0.573 0.577 0.583 0.561** 0.563** 0.569* 0.575**

WMT 0.625 0.628 0.633 0.640 0.612 0.618 0.619 0.628
XOM 0.610 0.612 0.614 0.621 0.588** 0.590** 0.597* 0.604*
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Table 3.4: Comparison of the forecasting performance of the RGARCH(1,1)

model σ2t = ω+ασ̂2P,t−1+βσ2t−1and several different GARCH models. Num-
bers in this table are 1000×RMSE of the one-day-ahead rolling window
forecast with forecasting window equal to 400.

ticker RGARCH GARCH GJR EGARCH stdG astdG cGARCH

AA 1.281 1.296 1.286 1.277 1.294 1.270 1.309
AXP 1.199 1.177 1.189 1.174 1.173 1.178 1.177
BA 0.648 0.655 0.647 0.659 0.655 0.650 0.650

BAC 2.825 2.623 2.654 2.549 2.631 2.595 2.550
CAT 0.705 0.720 0.716 0.718 0.722* 0.716 0.723*

CSCO 1.881 1.928** 1.963 1.895 1.909* 1.888 1.937*
CVX 0.633 0.646* 0.628 0.630 0.653 0.632 0.662**
DD 0.663 0.678** 0.676* 0.683** 0.678** 0.680** 0.678**
DIS 0.668 0.688* 0.685 0.688 0.690 0.689 0.690*
GE 0.863 0.869 0.862 0.855 0.866 0.863 0.887
HD 0.803 0.804 0.799 0.799 0.807 0.799 0.803

HPQ 1.057 1.058 1.056 1.059 1.058 1.056 1.071*
IBM 0.639 0.645 0.633 0.635 0.642 0.633* 0.650*

INTC 1.170 1.196* 1.160 1.158 1.175 1.156 1.207*
JNJ 0.347 0.355* 0.351 0.351 0.353 0.351 0.355*
JPM 1.724 1.786* 1.711 1.715 1.782* 1.730 1.761
CAG 0.531 0.537 0.536 0.533 0.530 0.532 0.529
KO 0.485 0.492 0.505 0.492 0.487 0.488 0.491

MCD 0.669 0.672 0.695 0.824 0.663 0.663 0.668
MMM 0.442 0.443 0.444 0.441 0.442 0.442 0.447
MRK 0.635 0.648** 0.652** 0.648* 0.647* 0.647* 0.653**
MSFT 0.674 0.684* 0.675 0.676 0.686* 0.677 0.686*
PFE 0.562 0.561 0.567 0.555 0.556 0.554 0.560
PG 0.492 0.507** 0.507** 0.503* 0.503* 0.502* 0.508**
T 0.601 0.613* 0.607 0.611 0.613 0.609 0.613

TRV 1.176 1.167 1.174 1.173 1.176 1.175 1.171
UTX 0.685 0.697** 0.697 0.695 0.697** 0.691 0.703
VZ 0.562 0.571** 0.569 0.569 0.570** 0.566 0.574*

WMT 0.621 0.632 0.625 0.629 0.626 0.624 0.633
XOM 0.588 0.609** 0.595 0.594 0.613 0.600 0.618**
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consider only the cases where the difference is statistically significant, the

RGACH model always outperforms all other studied GARCH models. More-

over, the comparison of the RGARCH model with other GARCH models

shows that the RGARCH model typically either performs better than any

of the competing GARCH models or worse than all of them. Therefore

comparison of the RGARCH model with the basic GARCH(1,1) model can

to some extend serve as an evaluation of the overall performance of the

RGARCH model.

The results summarized in Tables 3.3 and 3.4 show the superior perfor-

mance of the RGARCH model. However, the improvement in the RGARCH

model in comparison to the basic GARCH(1,1) model seems to be rather

small at the first glance. Even though the RGARCH model outperforms the

basic GARCH(1,1) model in most cases, the average improvement of the

RMSE reported in Table 3.3 is just approximately 1%. This could give us a

first impression that the improvement of the RGARCH(1,1) model over the

GARCH(1,1) model is rather small.

However, this first impression is misleading. There is a problem with this

standard evaluation procedure, where we compare the forecasted volatilility

with the squared returns. Even though the squared returns are unbiased

estimates of the volatility, they are very noisy. There are two ways to deal

with this problem. The most natural solution to this problem is to use

the true volatility as a benchmark, or, if unavailable, some other less noisy

volatility proxy. This is what we do in the following subsections. However,

due to the data availability constraint, we cannot do this for the 30 stocks

we just studied. Therefore before we proceed to to next subsection dealing

with stock indices (for which the realized variances are available) data, we

suggest an alternative measure for the comparison of the basic GARCH(1,1)
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model and the RGARCH(1,1) model.

Comparison of the volatility forecasts from two different models, forecast

1 (σ21,1, σ
2
2,1, σ

2
3,1,..., σ

2
n,1) and forecast 2 (σ21,2, σ

2
2,2, σ

2
3,2,..., σ

2
n,2) when we

observe only returns r1, r2, r2,...,rn is problematic for two reasons. First,

the comparison of the forecasted volatility with squared returns will always

penalize the volatility forecast when the squared return is different from the

forecasted volatility, even if the volatility was perfectly forecasted. Second,

when we have two models and one of them forecasts volatility to be σ2 = 0.12

on the day when the stock return is r = 1 and the second model forecasts

volatility to be σ2 = 32 on the day when stock return is r =
√

10, then MSE

(RMSE) will slightly favour the first model (
(
0.12 − 12

)2
<
(
10− 32

)2
, even

though the probability of the return r = 1 being drawn from the distribution

N
(
0, 0.12

)
is more than 1040-times smaller than probability of the return

r =
√

10 being drawn from the distribution N
(
0, 32

)
.

An alternative way to compare different volatility forecasts is to not

compare squared returns with volatility directly, but to compare the likeli-

hood that the return was drawn from the distribution parametrized by the

given volatility. This approach is not perfect either, because the calculated

probability depends on the specification of the distribution of the stock re-

turns. However, in our case, when we are comparing two models with the

same specification of the conditional distribution of returns, N
(
0, σ2t,1

)
and

N
(
0, σ2t,2

)
, which differ only in the specification of the variance equation,

this is not a problem. Therefore we now compare the basic GARCH(1,1)

model with the RGARCH model in terms of the value of the log-likelihood

function. The log-likelihood is calculated simply according to the following

formula:

LLF = −n
2

ln (2π)− 1

2

n∑
t=1

ln
(
σ2t
)
− 1

2

n∑
t=1

r2t
σ2t

(3.27)
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where σ2t is the volatility forecasted from the studied volatility model (using

past information only).

Table 3.5 confirms our previous comparison between the RGARCH model

and the standard GARCH model. The RGARCH model outperforms the

standard GARCH(1,1) model for basically every single stock and for every

estimation window (in 119 of 120 stock-estimation window couples).

3.3.2 Stock indices

In addition to the individual stocks of the Dow Jones Industrial Average

stock index we decided to compare the performance of the RGARCH model

to the standard GARCH model on the major world indices (French CAC

40, German DAX, Japanese Nikkei 225, Britain’s FTSE 100 and American

DJI and NASDAQ 100). There are two reasons for this. First, volatility

dynamics is generally different for individual stocks and for the whole stock

markets. Second, estimates of realized variance, which is a proxy for the

true variance, are publicly available for these indices12. Open, high, low

and close prices are downloaded from finance.yahoo.com. Data covers the

period January 3, 1993 - April 27, 2009 for open, high and low prices and

the period January 3, 1996 - April 27, 2009 for the realized variance. Due

to small differences in trading days in different markets, the number of

observations varies accordingly.

For the in-sample analysis we use the data ranging from January 3, 1993

to April 27, 2009. Volatility forecast is always performed for the volatilities

forecasted for the period January 3, 1996 - April 27, 2009. However, esti-

mates of realized variance are not available for some trading days. These

days are included in the volatility forecast comparison when squared returns

12Heber, Gerd, Asger Lunde, Neil Shephard and Kevin K. Sheppard (2009) ”Oxford-
Man Institute’s Realized Library”, Oxford-Man Institute, University of Oxford
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Table 3.5: Comparison of forecasting performance GARCH(1,1) model σ2t =

ω+αr2t−1 + βσ2t−1 and the RGARCH(1,1) model σ2t = ω+ασ̂2P,t−1 + βσ2t−1.
Numbers in this table are the LLF of the returns rt beind drawn from

the distributions N
(

0, σ̂2t

)
, where σ̂2t is a one-day-ahead rolling window

volatility forecast reported for different window sizes w.
Ticker GARCH(1,1) RGARCH(1,1)

w=300 w=400 w=500 w=600 w=300 w=400 w=500 w=600

AA 9803 9580 9267 9020 9873 9597 9320 9032
AXP 10377 10166 9881 9595 10502 10242 9969 9688
BA 10434 10225 9809 9660 10500 10258 9993 9708

BAC 10687 10451 10154 9875 10783 10527 10236 9949
CAT 10105 9916 9631 9342 10202 9950 9675 9385

CSCO 9309 9080 8825 8528 9478 9237 8955 8646
CVX 11371 11017 10853 10576 11440 11145 10882 10599
DD 10853 10593 10321 10050 10916 10641 10377 10095
DIS 10535 10298 10024 9747 10681 10411 10142 9859
GE 11086 10860 10567 10258 11176 10902 10617 10325
HD 10266 10024 9729 9479 10372 10084 9809 9542

HPQ 9587 9255 9076 8792 9715 9415 9174 8869
IBM 10813 10575 10247 9972 10986 10716 10378 10130

INTC 9420 9208 8937 8665 9484 9278 9001 8735
JNJ 12013 11776 11492 11230 12063 11126 11522 11264
JPM 10158 10014 9730 9464 10345 10113 9830 9554
CAG 11421 11192 10939 10681 11563 11301 10994 10722
KO 11682 11454 11155 10924 11782 11517 11250 10980

MCD 11058 10846 10564 10288 11129 10871 10596 10320
MMM 11238 11105 10819 10542 11377 11153 10878 10599
MRK 10131 9775 9632 9294 10348 10120 9813 9570
MSFT 10234 10038 9724 9478 10396 10171 9867 9611
PFE 10741 10499 10222 9959 10827 10564 10269 10004
PG 11512 11236 10962 10709 11571 11369 11081 10777
T 10948 10704 10459 10172 11002 10744 10473 10206

TRV 10801 10614 10312 10069 10899 10678 10395 10111
UTX 11013 10790 10477 10179 11054 10840 10556 10269
VZ 11132 10892 10605 10329 11198 10930 10645 10361

WMT 11004 10778 10510 10109 11130 10860 10558 10276
XOM 11464 11223 10947 10657 11567 11294 11014 10729
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are used as a benchmark, but excluded when the benchmark is realized vari-

ance.

In-sample analysis

Table 3.6 presents estimated coefficients for the equations (3.5) with its mod-

ified version (3.10) together with the values of Akaike Information Criterion

(AIC). The results are again in line with those in Table 3.1. RGARCH

model performs better than the standard GARCH model for every index.

Coefficients in the RGARCH are changed in an expected way - coefficient α

is increased and coefficient β is decreased for all the indices.

Table 3.6: Estimated coefficients of the GARCH(1,1) model σ2t = ω+αr2t−1+

βσ2t−1 and it modified version RGARCH(1,1) σ2t = ω + ασ̂2P,t−1 + βσ2t−1,
reported together with the values of Akaike Information Criterion (AIC) of
the respective equations for the simulated data.

Index GARCH(1,1) RGARCH(1,1)
ω α β AIC ω α β AIC

CAC40 1.03E-06 0.075 0.920 -6.327 1.80E-06 0.182 0.821 -6.352
DAX 6.16E-07 0.088 0.911 -6.417 1.28E-06 0.174 0.842 -6.446
DJI 9.39E-07 0.083 0.910 -6.674 -1.77E-06 0.128 0.717 -6.645

FTSE 7.64E-07 0.085 0.910 -6.581 1.47E-06 0.188 0.837 -6.598
NASDAQ 9.43E-07 0.056 0.942 -5.534 4.30E-07 0.135 0.893 -5.561
NIKKEI 3.20E-06 0.093 0.890 -6.084 1.64E-06 0.179 0.854 -6.113

Now we estimate the combined GARCH model (3.22)

Table 3.7: Estimated coefficients and p-values for the combined

GARCH(1,1) model σ2t = ω + α1r
2
t−1 + α2σ̂2P,t−1 + βσ2t−1.

Index combined GARCH(1,1)
ω p-value α1 p-value β p-value α2 p-value

CAC40 1.93E-06 0.000294 -0.064 7.02E-05 0.789 0 0.286 0
DAX 1.61E-06 4.00E-15 -0.064 2.74E-05 0.815 0 0.276 0
DJI 5.69E-07 0.003 0.080 0 0.896 0 0.008 1.45E-04

FTSE 1.51E-06 1.33E-05 -0.005 0.723 0.834 0 0.198 5.06E-11
Nasdaq -3.07E-07 0.553 -0.050 2.97E-05 0.891 0 0.204 0
Nikkei 1.11E-06 0.031043 -0.088 1.72E-10 0.837 0 0.319 0
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As we can see, the results are completely consistent with those in Table

3.2.

Out–of-sample forecasting performance

Now we compare the forecasting performance of the RGARCH model and

standard GARCH model against both squared returns and realized variance

used as a benchmark. Results are in Table 3.8.

Table 3.8: Comparison of forecasting performance of the GARCH(1,1) model
σ2t = ω + αr2t−1 + βσ2t−1 and its modified version RGARCH(1,1) σ2t = ω +

ασ̂2P,t−1 + βσ2t−1. Numbers in this table are 1000×RMSE of the one-day-
ahead rolling window forecasts reported for different window sizes w and
different benchmarks (squared returns r2 and the true volatility σtrue2) for
the simulated data.

Index bnch GARCH(1,1) RGARCH(1,1)
w=300 400 500 600 w=300 w=400 w=500 w=600

CAC40 r2 0.335 0.339 0.342 0.346 0.331 0.335 0.338 0.342
RV 0.185 0.181 0.179 0.180 0.172** 0.169** 0.167** 0.167**

DAX r2 0.474 0.477 0.481 0.488 0.446** 0.454** 0.461* 0.469*
RV 0.252 0.242 0.236 0.235 0.212** 0.208** 0.207** 0.207**

DJI r2 0.353 0.355 0.362 0.367 0.336 0.341 0.347 0.350
RV 0.174 0.172 0.176 0.179 0.142** 0.142** 0.141** 0.139**

FTSE r2 0.376 0.382 0.385 0.390 0.364* 0.368** 0.372** 0.377**
RV 0.201 0.226 0.212 0.209 0.196 0.202* 0.189* 0.186*

Nasdaq r2 0.931 0.939 0.949 0.963 0.908** 0.917** 0.929** 0.942**
RV 0.464 0.452 0.440 0.446 0.431* 0.423* 0.426 0.432

Nikkei r2 0.467 0.475 0.478 0.478 0.456* 0.461 0.467 0.470
RV 0.237 0.283 0.269 0.249 0.196** 0.188** 0.177** 0.173**

This table is the strongest evidence for the superiority of the RGARCH

model over the standard GARCH model. For every single index and for

every single estimation window size, the RGARCH model outperforms the

standard GARCH model, whether we use as a benchmark either squared

returns or realized variance. Average improvement in the RMSE is 4% for

the squared returns and 10% for the realized variance.

94



3.3.3 Simulated data

In reality, we can never know for sure what the true volatility was, but when

we simulate the data, then we know the true volatility exactly. Simulation

therefore provides a convinient tool to study different volatility models. On

the other hand, the issue with simulation is always how close are simulated

data to the real world. In order to convince the reader that the simulated

data we chose are close to reality, we do not decide on the simulation by

ourselves. We borrow the credibility of Alizadeh, Brand and Diebold (2002)

and simulate the data in the following way. First we simulate the volatility

process

lnσt = lnσ + ρH (lnσt−1 − lnσ) + µεt−1 (3.28)

with parameters ln (σ) = −2.5, ρH = 0.985 and µ = 0.75/
√

257 = 0.048. Af-

terwards we simulate for every day t = 1, 2, ..., 100000 a Brownian motion13

with zero drift term and diffusion term equal to σt. We save the highest, the

lowest and the final value of this Brownian motion. Both equation (3.28) and

the parameter values are taken from Alizadeh, Brand and Diebold (2002),

who found that the volatility dynamics (3.28) is broadly consitent with lit-

erature on stochastic volatility. Note that there are no opening jumps in

this these simulated data.

Note that the volatility process (3.28) does not favour directly either

of the competing models (3.5) and (3.10). Volatility gradually evolves over

the time, and neither past returns nor past high or low prices influence the

future volatility in any way.

13We use 100000 discrete steps for the approximation of the continuous Brownian mo-
tion.
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In-sample analysis

Table 3.9 presents estimated coefficients for the standard GARCH model

(3.5) and the RGARCH model (3.10) together with the values of Akaike

Information Criterion (AIC). As expected, the RGARCH model performs

better than the standard GARCH model.

Table 3.9: Estimated coefficients of GARCH(1,1) model σ2t = ω + αr2t−1 +

βσ2t−1 and the RGARCH(1,1) model σ2t = ω + ασ̂2P,t−1 + βσ2t−1, reported
together with the values of Akaike Information Criterion (AIC) of the re-
spective equations for the simulated data.

GARCH(1,1) RGARCH(1,1)

ω α β AIC ω α β AIC

1.73E-04 0.044 0.933 -2.112 1.61E-04 0.122 0.857 -2.133

Coefficients in the RGARCH are changed in exactly the same way as

in the previous section - coefficient α is increased and coefficient β is de-

creased. Moreover, since there are no jumps in the simulated data, the

Parkinson volatility estimator is an unbiased estimator of a daily volatility

and therefore all the coefficients ω, α and β can be interpreted in the same

way as in standard GARCH models. Note that α+β is smaller than one for

both models (implying stationarity) and α + β is the same (0.98) for both

models. This means that both models imply the same volatility persistance,

which is very natural, since both are estimated on the same data set.

Now we estimate the combined GARCH model (3.22)

Table 3.10: Estimated coefficients and p-values for the combined

GARCH(1,1) model σ2t = ω + α1r
2
t−1 + α2σ̂2P,t−1 + βσ2t−1 for the simulated

data.
combined GARCH(1,1)

ω p-value α1 p-value β p-value α2 p-value

1.53E-04 0 -0.057 0 0.834 0 0.204 0

As we can see, the results are generally consistent with those in Table
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3.2. The main difference is that the negative coefficient α1 is now clearly

significant. As Garman and Klass (1980) showed, the optimal volatility

forecast based on open, high, low and close price is (3.9). It is a weighted

average of the Parkinson volatility estimator (3.8) and squared open-to-close

returns, where squared returns have negative weight. This is the reason why

coefficient α1 is negative. Note that the ration between the coefficients α1

and α2 is very close to the ratio predicted from the Garman-Klass formula.

As previously mentioned, we use the Parkinson volatility estimator (3.8)

instead of Garman and Klass (3.9) volatility estimator because of the data

concerns (open prices are sometimes not available). Another reason is that

for the purpose of volatility modelling, the Garman and Klass volatility esti-

mator brings only a small improvement over the Parkinson estimator even in

the ideal case. This can be seen from the coefficient β, which decreases from

0.933 (for the standard GARCH) to 0.857 (for RGARCH), but afterwards

only a little bit to 0.834 (for the combined GARCH, which is basically the

same as GARCH based on the Garman and Klass volatility estimator).

Out–of-sample forecasting performance

Now we compare the forecasting performance of the RGARCH model and

the standard GARCH model on the simulated data. Results are shown in

Table 3.11.

These results are the main reason why we used simulated data too. Now

we know exactly what the true volatility is and we can use it as a benchmark.

Additionally, simulation allows us to have much larger data sample (100000

observations of the simulated data vs. 4423 observations of the real data),

what in turns mean that we can draw conclusions with certainty.

First note that the results obtained from the simulated data are consis-
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Table 3.11: Comparison of the forecasting performance of the GARCH(1,1)
model σ2t = ω + αr2t−1 + βσ2t−1 and it modified version RGARCH(1,1) σ2t =

ω+ασ̂2P,t−1 +βσ2t−1. Numbers in this table are 1000×RMSE of the one-day-
ahead rolling window forecasts reported for different window sizes w and
different benchmarks squared returns (r2) and the true volatility (σ2true) for
the simulated data. The differences in MSE are significant at any significance
level.
bnch GARCH(1,1) RGARCH(1,1) σ2true

w=300 400 500 600 300 400 500 600

r2 11.76 11.72 11.69 11.66 11.64 11.60 11.56 11.54 11.34
σ2true 2.95 2.88 2.80 2.72 2.47 2.30 2.20 2.12 0

tent with results in Table 3.3. Table 3.3 shows that the RGARCH model

outperforms the standard GARCH model most of the time. Since the sim-

ulated data are much larger, we basically got rid of the noise and now we

can see exactly how much better the RGARCH performs. The improvement

seems to be small, just around 1% decrease in RMSE, when we use squared

returns as a benchmark. However, use of the true volatility as a benchmark

shows that the real improvement of the RGARCH in comparison to the

standard GARCH model is much larger, around 20%.

In fact, the mean squared error (MSE) between the forecasted volatility

(σ̂2) and squared returns (r2) can be rewritten in the following way:

MSE
(
σ̂2, r2

)
= MSE

(
σ̂2, σ2true

)
+MSE

(
σ2true, r

2
)

(3.29)

where r2 is squared return and σ2true is the true volatility. When squared

returns are used as a benchmark, then the second term typically dominates

and it is therefore difficult to choose between competing volatility models

based on the MSE (RMSE).
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3.4 Summary

The goal of this paper was to show a simple, effective and general way to

incorporate range (the difference between highest and the lowest price of the

day) into the standard GARCH volatility models. We illustrated our idea on

the GARCH(1,1) model, which we modify and create a Range GARCH(1,1)

model. Empirical tests performed on 30 stocks, 6 stock indices and simu-

lated data show that the RGARCH model strongly outperforms the standard

GARCH model, both in the in-sample fit and in the out-of-sample forecast-

ing. The main intuition behind this result is that replacing squared returns

by less noisy volatility proxy has two advantages. First, putting more pri-

cise volatility proxy into a given model obviously helps. Second, when the

model is estimated, more weight than before will be attributed to the most

recent volatility estimate, because this estimate is now less noisy. As a conse-

quence, this model can adjust more quickly to the changes of volatility. This

is particularly relevant, because volatility forecasting is most important in

situations when volatility changes the most. RGARCH model outperforms

the standard GARCH model (and basically any of the studied GARCH

models). The main advantage of our model is that it provides both high

precision of range as a volatility proxy with simplicity and ease of estima-

tion of the standard GARCH model. This model offers significantly increase

precision in volatility modelling at almost no costs: additional required data

(high and low prices) are typically widely available and the model itself can

be easily estimated using standard econometric sofware, e.g. Eviews, R or

OxMetrics. Therefore we encourage both academics and practitioners to use

the RGARCH model instead of the standard GARCH model whenever high

and low data are available.
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3.5 Appendix

All the estimations in previous parts of the paper were based on the open-to-

close returns, which means that all the previous results are about volatility

of the trading part of the day. However, this appendix (Table 3.12 - Table

3.19) documents that all the conclusions remain basically the same when our

interest is daily (close-to-close) volatility. All the results confirm superiority

of the RGARCH model. The RGARCH model is compared with standard

GARCH models (mostly GARCH(1,1) model) when both are estimated on

daily data and benchmark is squared daily (close-to-close) returns.
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Table 3.12: Estimated coefficients of the GARCH(1,1) model σ2t = ω +

αr2t−1 + βσ2t−1 and the RGARCH(1,1) model σ2t = ω + ασ̂2P,t−1 + βσ2t−1
(both estimated on the close-to-close returns), reported together with the
values of Akaike Information Criterion (AIC) of the respective equations.

Ticker GARCH(1,1) RGARCH(1,1)
ω α β AIC ω α β AIC

AA 2.81E-06 0.039 0.956 -4.864 2.29E-06 0.075 0.941 -4.880
AXP 2.41E-06 0.075 0.923 -5.080 1.38E-06 0.227 0.829 -5.119
BA 3.03E-06 0.052 0.942 -5.166 4.90E-06 0.212 0.835 -5.184

BAC 2.21E-06 0.062 0.933 -5.244 3.21E-06 0.245 0.818 -5.274
CAT 3.08E-06 0.026 0.967 -4.990 2.08E-05 0.190 0.813 -5.021

CSCO 6.27E-06 0.061 0.933 -4.465 8.99E-06 0.227 0.817 -4.515
CVX 3.97E-06 0.061 0.922 -5.616 5.10E-06 0.141 0.866 -5.632
DD 1.30E-06 0.037 0.960 -5.351 8.71E-07 0.091 0.923 -5.373
DIS 3.56E-06 0.056 0.938 -5.140 3.61E-06 0.189 0.848 -5.202
GE 7.74E-07 0.046 0.952 -5.521 7.70E-07 0.156 0.874 -5.549
HD 1.51E-06 0.044 0.955 -5.022 5.25E-06 0.230 0.819 -5.043

HPQ 2.19E-06 0.020 0.976 -4.669 1.25E-06 0.058 0.957 -4.703
IBM 2.31E-06 0.061 0.937 -5.225 3.98E-06 0.380 0.742 -5.272

INTC 5.30E-06 0.046 0.947 -4.588 8.54E-06 0.207 0.848 -4.614
JNJ 1.47E-06 0.081 0.916 -5.829 9.42E-07 0.161 0.866 -5.840
JPM 1.37E-06 0.061 0.939 -5.015 -8.62E-08 0.126 0.905 -5.052
CAG 5.98E-07 0.031 0.968 -5.614 1.73E-05 0.452 0.571 -5.647
KO 1.07E-06 0.050 0.946 -5.750 -4.18E-07 0.157 0.878 -5.771

MCD 2.27E-06 0.046 0.947 -5.468 1.99E-06 0.086 0.920 -5.487
MMM 2.94E-06 0.029 0.958 -5.613 1.71E-05 0.243 0.735 -5.650
MRK 2.86E-05 0.047 0.876 -5.118 4.20E-05 0.271 0.690 -5.164
MSFT 6.44E-06 0.067 0.921 -5.011 1.01E-05 0.362 0.724 -5.066
PFE 4.65E-06 0.055 0.932 -5.257 1.18E-05 0.242 0.782 -5.271
PG 8.65E-07 0.041 0.957 -5.715 -5.96E-07 0.080 0.941 -5.750
T 1.64E-06 0.059 0.937 -5.411 1.91E-06 0.126 0.892 -5.421

TRV 4.97E-06 0.070 0.916 -5.385 9.58E-06 0.198 0.811 -5.433
UTX 4.72E-06 0.101 0.894 -5.407 3.75E-06 0.350 0.743 -5.454
VZ 2.09E-06 0.059 0.935 -5.494 4.07E-06 0.180 0.843 -5.500

WMT 1.28E-06 0.043 0.954 -5.389 1.92E-06 0.121 0.892 -5.410
XOM 2.38E-06 0.058 0.932 -5.706 4.19E-06 0.175 0.841 -5.737
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Table 3.13: Estimated coefficients and p-values for the combined

GARCH(1,1) model σ2t = ω + α1r
2
t−1 + α2σ̂2P,t−1 + βσ2t−1 estimated on the

close-to-close returns.
Ticker combined GARCH(1,1)

ω p-value α1 p-value β p-value α2 p-value

AA 2.29E-06 0.001 0.000 0.936 0.941 0 0.075 1.6E-13
AXP 1.38E-06 0.083 0.000 0.949 0.830 0 0.227 0
BA 4.74E-06 0.000 0.002 0.788 0.838 0 0.205 0

BAC 3.17E-06 0.000 -0.003 0.657 0.817 0 0.251 0
CAT 2.06E-05 0.000 -0.010 0.015 0.815 0 0.202 0

CSCO 8.18E-06 0.000 -0.014 0.002 0.828 0 0.232 0
CVX 5.11E-06 0.000 -0.001 0.956 0.866 0 0.142 1.5E-13
DD 7.39E-07 0.160 -0.010 0.075 0.923 0 0.104 0
DIS 3.19E-06 0.003 -0.013 0.000 0.852 0 0.203 0
GE 6.16E-07 0.165 -0.011 0.009 0.876 0 0.168 0
HD 5.47E-06 0.000 0.008 0.321 0.821 0 0.216 0

HPQ 1.03E-06 0.004 -0.005 0.000 0.958 0 0.064 0
IBM 3.97E-06 0.000 0.000 0.963 0.742 0 0.379 0

INTC 8.54E-06 0.000 0.000 0.957 0.848 0 0.206 0
JNJ 1.07E-06 0.001 0.038 0.000 0.873 0 0.105 0
JPM -2.95E-07 0.584 -0.010 0.070 0.907 0 0.137 0
CAG 1.77E-05 0.000 -0.016 0.003 0.563 0 0.478 0
KO -1.55E-07 0.662 0.018 0.001 0.873 0 0.141 0

MCD 1.95E-06 0.001 0.004 0.496 0.921 0 0.080 2.2E-16
MMM 1.54E-05 0.000 -0.019 0.000 0.755 0 0.249 0
MRK 4.21E-05 0.000 -0.001 0.687 0.689 0 0.274 0
MSFT 1.00E-05 0.000 -0.010 0.006 0.725 0 0.374 0
PFE 1.04E-05 0.000 0.026 0.001 0.807 0 0.182 0
PG -5.93E-07 0.000 0.000 0.989 0.941 0 0.080 0
T 1.83E-06 0.003 0.030 0.000 0.895 0 0.086 3.1E-12

TRV 9.60E-06 0.000 -0.001 0.814 0.811 0 0.200 0
UTX 3.67E-06 0.008 -0.011 0.221 0.741 0 0.367 0
VZ 3.16E-06 0.000 0.037 0.000 0.874 0 0.098 0

WMT 1.92E-06 0.001 0.000 0.957 0.892 0 0.122 0
XOM 4.41E-06 0.000 -0.040 0.000 0.828 0 0.240 0
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Table 3.14: Comparison of the forecasting performance of the GARCH(1,1)
model σ2t = ω + αr2t−1 + βσ2t−1 and the RGARCH(1,1) model σ2t =

ω + ασ̂2P,t−1 + βσ2t−1(both estimated on the close-to-close returns with
squared close-to-close returns as a benchmark). Numbers in this table are
1000×RMSE of the one-day-ahead rolling window forecast reported for dif-
ferent window sizes w. An asterisk * (**) indicates when the difference is
significant at the 5% (1%) level.

Ticker GARCH(1,1) RGARCH(1,1)
w=300 400 500 600 300 400 500 600

AA 1.892 1.915 1.937 1.968 1.837 1.874 1.893 1.924
AXP 1.728 1.733 1.763 1.786 1.711 1.736 1.747 1.768
BA 1.247 1.254 1.262 1.280 1.235 1.240 1.248* 1.263*

BAC 4.561 4.572 4.615 4.652 4.435 4.454 4.351 4.432
CAT 1.135 1.142 1.152 1.170 1.098* 1.111* 1.123* 1.147*

CSCO 2.003 2.027 2.047 2.077 1.988 2.003 2.008 2.037
CVX 0.883 0.888 0.899 0.909 0.850** 0.859* 0.876* 0.885*
DD 0.855 0.864 0.874 0.883 0.836* 0.845* 0.857* 0.871*
DIS 1.311 1.328 1.341 1.358 1.307 1.310 1.328 1.342
GE 1.137 1.153 1.168 1.183 1.276 1.227 1.138 1.181
HD 2.709 2.158 2.204 2.228 2.938 2.698 2.519 2.500

HPQ 1.800 1.814 1.825 1.853 1.775* 1.792** 1.812* 1.840**
IBM 1.099 1.109 1.122 1.134 1.095 1.107 1.120 1.133

INTC 1.998 2.007 2.026 2.050 1.951* 1.969* 1.992* 2.016*
JNJ 0.690 0.691 0.696 0.699 0.665** 0.669** 0.678* 0.681*
JPM 2.443 2.471 2.508 2.510 2.284** 2.317** 2.352** 2.386**
CAG 0.967 0.977 0.989 0.999 0.970 0.979 0.991 1.016
KO 0.655 0.661 0.664 0.671 0.647 0.649* 0.655* 0.655**

MCD 0.735 0.737 0.744 0.751 0.730 0.735 0.741 0.746
MMM 0.621 0.624 0.629 0.637 0.613 0.612 0.615 0.624*
MRK 1.811 1.830 1.839 1.863 1.792 1.808* 1.833 1.845*
MSFT 1.338 1.347 1.363 1.375 1.308* 1.310** 1.332** 1.345*
PFE 0.795 0.800 0.811 0.818 0.800 0.800 0.812 0.816
PG 2.337 2.447 2.444 2.466 2.297 2.317** 2.343** 2.371**
T 0.851 0.857 0.865 0.874 0.830 0.838 0.848 0.854

TRV 1.479 1.493 1.512 1.526 1.428* 1.440** 1.453** 1.468**
UTX 1.871 1.880 1.905 1.929 1.862 1.875 1.900 1.922
VZ 0.788 0.794 0.801 0.809 0.772** 0.779** 0.789* 0.794*

WMT 0.735 0.742 0.745 0.754 0.723* 0.730* 0.736 0.744
XOM 0.801 0.804 0.815 0.824 0.753* 0.761* 0.781* 0.791*
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Table 3.15: Comparison of the forecasting performance of the RGARCH(1,1)

model σ2t = ω + ασ̂2P,t−1 + βσ2t−1and several different GARCH models, all
of them estimated on the close-to-close returns with squared close-to-close
returns as a benchmark. Numbers in this table are 1000×RMSE of the one-
day-ahead rolling window forecast with forecasting window equal to 400.
Empty spaces refers to cases when the used software (Eviews 7.2) could not
calculate RMSE.

ticker RGARCH GARCH GJR EGARCH stdG astdG cGARCH

AA 1.874 1.915 1.871 1.882 1.916 1.862 1.926
AXP 1.738 1.735 1.732 1.731 1.733 1.729 1.743
BA 1.240 1.254 1.265 1.258 1.250 1.245 1.260

BAC 4.454 4.572 4.556 4.459 4.545 4.458 4.571*
CAT 1.112 1.144* 1.140* 1.141* 1.143* 1.134 1.143*

CSCO 2.254 2.288 2.247 2.236 2.267 2.234 2.309*
CVX 0.857 0.887* 0.854 0.863 0.907** 0.864 0.900**
DD 0.845 0.865* 0.863 0.863 0.865** 0.858 0.871**
DIS 1.310 1.328 1.337* 1.317 1.322 1.317 1.330*
GE 1.226 1.152 1.169 1.143 1.154 1.135 1.172
HD 2.699 2.159 2.441 19.615 2.111 2.117 2.420

HPQ 1.800 1.823** 1.812* 1.813* 1.814** 1.800 1.830**
IBM 1.143 1.145 1.150 1.135 1.137 1.127 1.156

INTC 1.972 2.010** 2.068** 1.987 1.999** 1.988 2.034**
JNJ 0.668 0.690** 0.693* 0.678 0.681* 0.673 0.693*
JPM 2.317 2.471** 2.395 2.367 2.445* 2.365 2.451*
CAG 0.980 0.978 0.985 0.980 0.981 0.981 0.981
KO 0.647 0.658* 0.662 0.651 0.656* 0.652 0.663**

MCD 0.738 0.740 0.752 0.744 0.736 0.733 0.744
MMM 0.609 0.621 0.621 0.626 0.618 0.618 0.629
MRK 0.778 0.793** 0.790* 0.790* 0.785 0.799**
MSFT 1.312 1.349** 1.346** 1.342** 1.342** 1.341* 1.365**
PFE 0.804 0.804 0.806 0.803 0.802 0.799 0.807
PG 2.317 2.447** 2.519** 2.318 8.394 12.721 2.353**
T 0.838 0.857 0.853 0.855 0.860 0.853 0.857

TRV 1.439 1.492** 1.476* 1.483* 1.496* 1.485* 1.487
UTX 1.876 1.881 2.470* 1.920 2.031* 1.905* 2.326
VZ 0.778 0.793** 0.790* 0.791* 0.785 0.799**

WMT 0.735 0.745* 0.745 0.745* 0.740 0.749*
XOM 0.759 0.803* 0.779 0.821* 0.798 0.827**
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Table 3.16: Comparison of forecasting performance GARCH(1,1) model

σ2t = ω + αr2t−1 + βσ2t−1 and the RGARCH(1,1) model σ2t = ω + ασ̂2P,t−1 +

βσ2t−1. Numbers in this table are the LLF of the returns rt beind drawn

from the distributions N
(

0, σ̂2t

)
, where σ̂2t is a one-day-ahead rolling win-

dow volatility forecast reported for different window sizes w.
Ticker GARCH(1,1) RGARCH(1,1)

w=300 w=400 w=500 w=600 w=300 w=400 w=500 w=600

AA 9803 9580 9267 9020 9873 9597 9320 9032
AXP 10377 10166 9881 9595 10502 10242 9969 9688
BA 10434 10225 9809 9660 10500 10258 9993 9708

BAC 10687 10451 10154 9875 10783 10527 10236 9949
CAT 10105 9916 9631 9342 10202 9950 9675 9385

CSCO 9309 9080 8825 8528 9478 9237 8955 8646
CVX 11371 11017 10853 10576 11440 11145 10882 10599
DD 10853 10593 10321 10050 10916 10641 10377 10095
DIS 10535 10298 10024 9747 10681 10411 10142 9859
GE 11086 10860 10567 10258 11176 10902 10617 10325
HD 10266 10024 9729 9479 10372 10084 9809 9542

HPQ 9587 9255 9076 8792 9715 9415 9174 8869
IBM 10813 10575 10247 9972 10986 10716 10378 10130

INTC 9420 9208 8937 8665 9484 9278 9001 8735
JNJ 12013 11776 11492 11230 12063 11126 11522 11264
JPM 10158 10014 9730 9464 10345 10113 9830 9554
CAG 11421 11192 10939 10681 11563 11301 10994 10722
KO 11682 11454 11155 10924 11782 11517 11250 10980

MCD 11058 10846 10564 10288 11129 10871 10596 10320
MMM 11238 11105 10819 10542 11377 11153 10878 10599
MRK 10131 9775 9632 9294 10348 10120 9813 9570
MSFT 10234 10038 9724 9478 10396 10171 9867 9611
PFE 10741 10499 10222 9959 10827 10564 10269 10004
PG 11512 11236 10962 10709 11571 11369 11081 10777
T 10948 10704 10459 10172 11002 10744 10473 10206

TRV 10801 10614 10312 10069 10899 10678 10395 10111
UTX 11013 10790 10477 10179 11054 10840 10556 10269
VZ 11132 10892 10605 10329 11198 10930 10645 10361

WMT 11004 10778 10510 10109 11130 10860 10558 10276
XOM 11464 11223 10947 10657 11567 11294 11014 10729
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Table 3.17: Estimated coefficients of the GARCH(1,1) model σ2t = ω +

αr2t−1 + βσ2t−1 and it modified version RGARCH(1,1) σ2t = ω + ασ̂2P,t−1 +

βσ2t−1, both of them estimated on the close-to-close returns, reported to-
gether with the values of Akaike Information Criterion (AIC) of the respec-
tive equations for various stock indices.

Index GARCH(1,1) RGARCH(1,1)
ω α β AIC ω α β AIC

CAC40 1.49E-06 0.072 0.922 -5.965 2.98E-06 0.251 0.823 -5.995
DAX 2.19E-06 0.088 0.902 -5.946 9.88E-06 0.207 0.808 -5.954
DJI 1.34E-06 0.084 0.909 -6.323 -1.51E-06 0.140 0.761 -6.341

FTSE 8.90E-07 0.080 0.914 -6.495 1.93E-06 0.183 0.846 -6.515
Nasdaq 4.23E-05 0.044 0.880 -4.796 1.25E-05 0.032 0.959 -4.827
Nikkei 4.40E-06 0.089 0.893 -5.758 3.64E-06 0.267 0.837 -5.780

Table 3.18: Estimated coefficients and p-values for the combined

GARCH(1,1) model σ2t = ω + α1r
2
t−1 + α2σ̂2P,t−1 + βσ2t−1 estimated on the

close-to-close returns for various stock indices.
Index combined GARCH(1,1)

ω p-value α1 p-value β p-value α2 p-value

CAC40 3.26E-06 5.22E-06 -0.017 0.09 0.813 0 0.290 0
DAX 5.00E-06 3.40E-13 0.051 0 0.854 0 0.104 0
DJI -3.09E-07 0.438 0.041 0 0.823 0 0.077 0

FTSE 1.95E-06 1.14E-06 -0.001 0.93 0.846 0 0.184 0
Nasdaq 4.63E-04 0.014 -0.002 0.36 0.575 0.001 -0.006 0.561
Nikkei 3.63E-06 2.40E-06 0.002 0.84 0.837 0 0.262 0
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Table 3.19: Comparison of forecasting performance of the GARCH(1,1)
model σ2t = ω + αr2t−1 + βσ2t−1 and its modified version RGARCH(1,1)

σ2t = ω + ασ̂2P,t−1 + βσ2t−1 (both them estimated on the close-to-close re-
turns). As a benchmark is used both squared close-to-close returns and
realized variance. Numbers in this table are 1000×RMSE of the one-day-
ahead rolling window forecasts reported for different window sizes w and
different benchmarks (squared returns r2 and the true volatility σtrue2) for
various stock indices.

Index bnch GARCH(1,1) RGARCH(1,1)
300 400 500 600 w=300 w=400 w=500 w=600

CAC r2 0.609 0.607 0.603 0.602 0.583** 0.582** 0.581** 0.581**
RV 0.257 0.257 0.242 0.241 0.233* 0.227** 0.217** 0.218**

DAX r2 0.642 0.636 0.633 0.633 0.622 0.623 0.621 0.620
RV 0.272 0.259 0.249 0.250 0.263 0.263 0.260 0.258

DJI r2 0.501 0.507 0.504 0.513 0.482* 0.486 0.483 0.493
RV 0.199 0.207 0.202 0.209 0.171** 0.167** 0.164** 0.165**

FTSE r2 0.480 0.482 0.479 0.478 0.466* 0.465** 0.463** 0.463**
RV 0.205 0.230 0.216 0.213 0.202 0.207** 0.195** 0.192**

Nasdaq r2 1.390 1.290 1.232 1.206 1.253 1.202** 1.165** 1.145**
RV 0.549 0.674 0.678 0.657 0.517 0.578* 0.567** 0.550**

Nikkei r2 0.699 0.702 0.695 0.689 0.683* 0.678** 0.675* 0.669*
RV 0.356 0.394 0.366 0.351 0.363 0.365* 0.345* 0.326*
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Abstract

Cooper and Nyborg (2008) derive a tax-adjusted discount rate formula un-

der a constant proportion leverage policy, investor taxes and risky debt.

However, their analysis assumes zero recovery in default. We extend their

framework to allow for positive recovery rates. We also allow for differences

in bankruptcy codes with respect to the order of priority of interest payments

versus repayment of principal in default, which may have tax consequences.

The general formula we derive differs from that of Cooper and Nyborg when

recovery rates in default are anticipated to be positive. However, under con-

tinuous rebalancing, the formula collapses to that of Cooper and Nyborg.

We provide an explanation for why the effect of the anticipated recovery

rate is not directly visible in the general continuous rebalancing formula,

even though this formula is derived under the assumption of partial default.

The errors from using the continuous approximation formula are sensitive to

the anticipated recovery in default, yet small. The “cost of debt” in the tax

adjusted discount rate formula is the debt’s yield rather than its expected

rate of return. 1

1We would like to thank Ian Cooper and an anonymous referee for comments.
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4.1 Introduction

In most tax systems, there is a tax advantage to debt arising from the tax

deductibility of interest payments. Estimating the value to the resulting

debt tax shield is thus an important part of company and project valuation.

One approach to incorporating the debt tax shield into valuation is to use

tax-adjusted discount rates, whereby unlevered after tax cash flows are dis-

counted at a rate that takes account of the tax shield. The appropriate tax

adjusted discount rate depends on the debt policy being pursued Taggart

(1991). In this paper, we derive a general formula under a constant debt to

value policy. Our analysis allows for personal taxes, risky debt, and partial

default. Moreover, in default we allow for different regimes with respect to

whether interest or principal payments have priority. Allowing for partial

default is important since, in practice, complete default is rare.

Our analysis extends the framework developed by Cooper and Nyborg

(2008), which itself is an extension of the seminal contribution of Miles and

Ezzel (1980). While the Miles-Ezzell (ME) formula for tax-adjusted discount

rates does not take into account the effects of personal taxes, as was pointed

out by Miller (1977), personal taxes can greatly affect the tax advantage to

debt. Cooper and Nyborg’s analysis allows for both personal taxes and risky

debt.2 However, their formula is based on an assumption of zero recovery in

default. We extend their framework to allow for positive recovery rates. This

changes the tax-adjusted discount rate formula when the quantity of debt

is rebalanced only infrequently (once a year, for example). However, under

2Taggart (1991) extends the ME formula to allow for personal taxes, but allows only
for riskfree debt. Sick (1990) shows that the same formula is valid even if the debt is
risky, under the assumption that default gives rise to a tax liability. Cooper and Nyborg
(2008) show that the tax adjusted discount rate formula is substantially different from
that derived by Sick under the Miles and Ezzell assumption that default does not give rise
to a tax liability. They also discuss the respective merits of this assumption versus that
of Sick. We use the ME assumption.
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continuous rebalancing, the formula collapses to that of Cooper and Nyborg.

We provide an explanation for why the effect of the anticipated recovery rate

is not directly visible in the general continuous rebalancing formula, even

though this formula is derived under the assumption of partial default.

A notable feature of the results in Cooper and Nyborg (2008) is that the

“cost of debt” in the tax adjusted discount rate formula is the debt’s yield

rather than its expected rate of return. Intuitively, this reflects that it is the

interest payment and not the expected rate of return that is tax deductible,

and the interest payment per dollar of debt equals the yield (in their setup).

This result also holds in our more general setting. In addition, our general

formula when rebalancing is not continuous also contains an adjustment for

the anticipated loss in default.

The rest of this paper is organized as follows. Section 2 describes the

setup, including the modelling of partial default and its tax implications.

Section 3 contains the analysis and Section 4 concludes.

4.2 The model

The model follows Cooper and Nyborg (2008), except that we allow for

partial default.

4.2.1 Basics

The debt to value ratio, L ∈ [0, 1), is constant over time. The firm’s expected

pre-tax cash flow at time t is Ct and the corporate tax rate is TC . The tax

adjusted (or levered) discount rate, RL, is fundamentally related to the

unlevered discount rate RU by
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VUt =
T∑

i=t+1

Ci (1− TC)

(1 +RU )i
(4.1)

and

VLt =

T∑
i=t+1

Ci (1− TC)

(1 +RL)i
, (4.2)

where VUt denotes the value of the unlevered firm at time t and VLt denotes

the value of the levered firm at time t, t = 1, ..., T .

The representative investor has a tax rate TPE on equity income and

capital gains and TPD on interest income. The tax saving per dollar of

interest, TS , is given by

TS = (1− TPD)− (1− TC) (1− TPE) . (4.3)

Following Taggart (1991) and Cooper and Nyborg (2008), define

T ∗ = TS/ (1− TPD) (4.4)

and

RFE (1− TPE) = RF (1− TPD) . (4.5)

RF is the rate of return on a riskfree bond. Thus, RFE can be interpreted

as a riskfree equity rate. We have

1− T ∗ =
(1− TC) (1− TPE)

1− TPD
(4.6)

and

RFE = RF
1− TPD
1− TPE

= RF
1− TC
1− T ∗

. (4.7)

The tax adjusted discount rate is found by first studying the relationship
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between the value of the levered and unlevered firm at T − 1, where T is

the terminal date of the project. At T − 1 the unlevered value is given

by (4.1), with T − 1 in place of t. The after-tax cash-flow to investors

is CT (1− TC) (1− TPE) + VUT−1TPE , where the second term is the tax

deduction associated with tax on capital gains (only the difference between

the final price and the purchase price is taxed).3

The value of the levered firm is the value of the unlevered firm plus

additional tax effects. One effect comes from the tax deductibility of interest

payments.4 A second effect is that the tax saving at the personal level

associated with capital gains taxation is now VLT−1TPE . Hence, we have

VLT−1 = VUT−1 + PV (tax saving) +
(VLT−1 − VUT−1)TPE

1 +RF (1− TPD)
. (4.8)

As in Cooperand Nyborg (2008), the term (VLT−1 − VUT−1)TPE is dis-

counted by RF (1− TPD) because it is riskless. The term PV (tax saving)

is the present value of tax savings from the tax deductibility of interest pay-

ments. To value this, and subsequently derive the expression for the tax

adjusted discount rate, we need to consider the recovery rate in default.

4.2.2 Partial Default

Let YD denote the yield on risky debt. This is constant over time. Cooper

and Nyborg (2008) use a binomial model whereby the debt is either paid

back in full or defaults completely. That is, the return to $1 of risky debt at

any date is 1+YD in case of solvency and 0 in case of default. In contrast, in

our model of partial default we assume that in default the payoff to $1 in the

3Following Cooperand Nyborg (2008), we assume for simplicity that capital gains tax
arises every period and that capital losses can be offset by gains elsewhere.

4See, e.g., Arzac and Glosten (2005) and Cooper and Nyborg (2006) for recent discus-
sions on the valuation of tax shields.
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bond is (1 + α) < 1 + YD. In other words, the recovery rate is 1+α
1+YD

.5 Note

that if α is negative, there are not sufficient funds to repay the principal in

full. Cooper and Nyborg’s model is the special case that α = −1.

Thus, taking date T as an example: if there is no default, the tax saving is

YDLVLT−1TS .6 If there is default, the tax saving depends on the bankruptcy

code, as outlined below.

To calculate taxes and tax savings, we must decompose the payoff to the

bond into principal and coupon payments. This is done in Table 4.1. We

allow for different rules with respect to whether the principal or coupons are

paid first in bankruptcy

Table 4.1: Bond payoff decomposition.

Solvent Default
Interest paid first Principal paid first

Total 1 + Yd 1 + α 1 + α
Principal 1 max [1 + α− Yd, 0] min [1, 1 + α]

Interest (coupon) Yd min [Yd, 1 + α] max [α, 0]

Let us denote by δYD the part of the bond payment in default considered

by the tax code as an interest payment. Thus, the tax saving is YDTS in

solvency and δYDTS in case of default. Using Table 4.1 we see that7

δ =

 min
[
1, 1+αYD

]
if interest is paid first

max
[
α
YD
, 0
]

if principal is paid first.
(4.9)

5Note that α can be both positive and negative. α ∈ [−1, 0) represents the situation
that the payment to the bondholders is smaller than the principal. α ∈ [0, RF ) represents
the situation that the payment to the bondholders is larger than or equal to the principal.
α cannot be aboveRF , since this would imply that the return on risky debt would dominate
the risk-free rate in every possible state of the world.

6LVLT−1 is value of the debt at debt T − 1 and YDLVLT−1 is the interest payment at
date T .

7We assume that if δYD > 0, then there are taxable earnings of at least this amount.
Note that, in practice, the interest payment, δYD, should be consistent with the listed
interest expense on the firm’s income statement.
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Based on the principle that repayment of capital should not be taxed, the

case that the principal is repaid first is arguably the most relevant one in

practice.

4.3 Analysis

4.3.1 The value of the tax shield

To value the payoff YDLVLT−1TS in case of solvency and δYDLVLT−1TS in

case of bankruptcy we create a portfolio from the riskless asset and the risky

bond that replicates these payoffs. The payoffs to the riskless asset and the

risky bond are summarized in Table 4.2.

Table 4.2: Payoff to the riskless asset and to the risky bond.

No Personal Taxes Personal taxes
Solvent Default Solvent Default

Riskless Asset 1 +RF 1 +RF 1 +RF (1− TPD) 1 +RF (1− TPD)
Risky Bond 1 + YD 1 + α 1 + YD(1− TPD) 1 + α− αTX

Note: αTX is derived below. See equation 4.10.

The payoffs after investor taxes in solvency are modified by multiplying

the interest payment by (1− TPD). To get the post-tax payoff to the risky

bond in case of default, we sum the direct payoff (1 + α) and the tax effect

αTX . αTX depends on the tax rates TPE , TPD and on δ. Table 4.3 calculates

this tax effect.8

Table 4.3: Bond in default.
Total payoff 1 + α

Interest δYD
Principal 1 + α− δYD

Capital loss −α+ δYD
Personal tax effect (−α+ δYD)TPE − δYDTPD

8When αTX > 0, investors are paying taxes, when αTX < 0, investors gets a tax-
deductible loss. We assume that investors can utilize this tax loss.
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Therefore

−αTX = (−α+ δYD)TPE − δYDTPD. (4.10)

We can replicate the tax shield, which has payoff TSYD in case of sol-

vency and δTSYD in default, by investing in the riskless asset and the risky

bond. Denote the amount invested in the riskless asset by a and the amount

invested in the risky bond by b. Thus, (a, b) is the solution to the following

system of equations:

a [1 +RF (1− TPD)] + b [1 + YD (1− TPD)] = TSYD (4.11)

and

a [1 +RF (1− TPD)] + b [1 + α (1− TX)] = δTSYD. (4.12)

Since the price of both the riskless asset and the risky bond are normalized

to 1, the value of the tax shield is9

a+ b =
−α (1− TX) + [δYD + (1− δ)RF ] (1− TPD)

[1 +RF (1− TPD)] [YD (1− TPD)− α (1− TX)]
TSYD. (4.13)

Therefore

PV (tax saving) =
−α (1− TX) + [δYD + (1− δ)RF ] (1− TPD)

[1 +RF (1− TPD)] [YD (1− TPD)− α (1− TX)]
TSYDLV LT−1.

(4.14)

4.3.2 The tax adjusted discount rate

Combining (4.8) and (4.14), we have

VLT−1= V UT−1+Y D LV LT−1TS
−α (1− TX) + [δYD + (1− δ)RF ] (1− TPD)

[1 +RF (1− TPD)] [YD (1− TPD)− α (1− TX)]
+

(VLT−1 − VUT−1)TPE
1 +RF (1− TPD)

.

(4.15)

9a = δYD(1−TPD)−(1−δ)−α(1−TX )
[1+RF (1−TPD)][YD(1−TPD)−α(1−TX )]

TSYD; b = 1−δ
YD(1−TPD)−α(1−TX )

TSYD.
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This can be rewritten using (4.3)-(4.7) as

VLT−1= V UT−1+
LVLT−1T

∗YD (1− TC)

(1− T ∗) (1 +RFE)

[δYD + (1− δ)RF ] (1− TPD)− α (1− TX)

YD (1− TPD)− α (1− TX)
.

(4.16)

By (4.1) and (4.2),

VUT−1 = VLT−1
1 +RL
1 +RU

. (4.17)

Thus, we obtain the relationship between RL and RU :

RL= RU− (1 +RU )
LYDT

∗ (1− TC)

(1− T ∗) (1 +RFE)

[δYD + (1− δ)RF ] (1− TPD)− α (1− TX)

YD (1− TPD)− α (1− TX)
.

(4.18)

Substituting (4.10) into (4.18) yields

RL= RU−
LYDT

∗ (1− TC)

1− T ∗
1 +RU

1 +RFE

(1− δ)RF (1− TPD) + δYD (1− TPE)− α (1− TPE)

YD (1− TPD + δ (TPD − TPE))− α (1− TPE)
,

(4.19)

where δ is given by (4.9).

While we have derived RL by analyzing the model at time T − 1, the

same inductive argument as in Cooperand Nyborg (2008) can be used to

establish that RL as given by (4.19) holds at any date t. Thus, this is our

general tax adjusted discount rate, that takes account of risky debt, personal

taxes, and partial default.

The formula for the tax adjusted discount rate derived by Cooper and

Nyborg (2008) is:

RL = RU −
LYDT

∗ (1− TC)

1− T ∗
1 +RU

1 +RFE

1 +RF
1 + YD

. (C&N 12)

As pointed out above, Cooper and Nyborg’s model corresponds to the special
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case that α = −1 and therefore also δ = 0. However, substituting these

values into (4.19) yields:

RL= RU−
LYDT

∗ (1− TC)

1− T ∗
1 +RU

1 +RFE

(1− TPE) +RF (1− TPD)

(1− TPE) + YD (1− TPD)
, (4.20)

which is slightly different from (C&N 12). The reason for this difference

comes from the tax treatment of capital losses. In the case of complete

default, the investor suffers a capital loss of 1 per dollar invested in the bond.

This loss is tax deductible and therefore the total payoff to the investor is

1×TPE , assuming a capital gains of TPE . In contrast, Cooper and Nyborg’s

formula is derived under the assumption that the total payoff to the investor

here is 1× TPD.10

4.3.3 Continuous rebalancing

The rates of return in the analysis above may be interpreted as annual

returns, with rebalancing of the debt to the target leverage ratio carried out

once a year. In this subsection, we derive the general expression for the tax

adjusted discount rate under continuous rebalancing of the debt.

We start by dividing the year into n equal periods, with rebalancing

happening at the end of each period. The annually compounded rates RU

and RF are not affected by the frequency of rebalancing. Let

rU,n = (1 +Ru)
1
n − 1 (4.21)

be the unlevered discount rate over a period of length 1/n. Define rF,n and

10While we differ in this detail, both we and Cooper and Nyborg assume elsewhere that
capital gains are taxed at TPE . In particular, Cooper and Nyborg (2008) use a capital
gains tax of TPE in their equation (A2), as do we in the corresponding expression in this
paper. Thus, (4.20) is arguably the more correct tax adjusted discount rate formula under
complete default in the Cooper and Nyborg model.
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rFE,n analogously.

We assume that the binomial process for the risky debt holds over each

period of length 1/n, with the per period yield being denoted by yD,n =

(1 + YD)1/n − 1.

For simplicity, we assume that the pre-tax payoff to the risky bond in

default, 1 +α, is unaffected by the length of a period. However, as a period

becomes arbitrarily small, the per period yield on the bond also becomes

small. Thus, to ensure a recovery rate below 1 for arbitrarily short periods,

we assume that 1 + α < 1, i.e., α < 0. This also means that when the

principal is viewed as being paid first in bankruptcy, δ = 0. We consider this

the most relevant case as it is consistent with the principle that repayment

of capital is not taxed. In the case that interest is paid first in bankruptcy,

δ may depend on n. Clearly, it is 0 if 1 + α = 0. If 1 + α > 0, there is

n′ such that for all n > n′, 1 + α > yD,n, since yD,n is decreasing in n and

converges to zero. Thus, for sufficiently large n, δ will be equal to 1 if the tax

code treats interest as being paid first in bankruptcy. In short, our model

collapses to either having δ = 0 or δ = 1.

Thus, using (4.19), the tax adjusted discount rate over a period of length

1/n is

rL,n = rU,n−
LyD,nT

∗ (1− TC)

1− T ∗
1 + rU,n

1 + rFE,n

(1− δ) rF,n (1− TPD) + δyD,n (1− TPE)− α (1− TPE)

yD,n (1− TPD + δ (TPD − TPE))− α (1− TPE)
.

(4.22)

Denote the third fraction on the right hand side by A. Multiplying both

sides by n, we have

nrL,n = nrU,n − nyD,n
LT ∗ (1− TC)

1− T ∗

(
1 + rU,n

1 + rFE,n

)
×A. (4.23)
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Now define RU,n = nrU,n, RL,n = nrL,nYD,n = nyD,n. These are the

annualized rates corresponding to rU,n, rL,n, and yD,n, respectively. By

definition, R̂U = limn→∞RU,n is the continuously compounded rate that

corresponds to RU . ŶD = limn→∞ YD,n is the continuously compounded

rate corresponding to YD. R̂L = limn→∞RL,n is the tax adjusted discount

rate under continuous rebalancing. R̂U , ŶD, and R̂L are continuously com-

pounded rates stated on a standard per annum basis.

Using these definitions in (4.23), we have

lim
n→∞

RL,n = lim
n→∞

{
RU,n − YD,n

LT ∗ (1− TC)

1− T ∗

(
1 + rU,n

1 + rFE,n

)
×A

}
(4.24)

which reduces to11

R̂L = R̂U − ŶDLT ∗
1− TC
1− T ∗

. (4.25)

Equation (4.25) thus provides us with the (continuously compounded) tax

adjusted discount rate under continuous rebalancing.

This is exactly the same formula as derived by Cooper and Nyborg

(2008), starting from (C&N 12). That partial default does not alter the

formula for the tax adjusted discount rate under continuous rebalancing is

surprising.

To see the intuition for this, recall that in the continuous rebalancing

model, we either have δ = 0 or δ = 1. If δ = 1, equation (4.22) reduces to

rL,n = rU,n −
LyD,nT

∗ (1− TC)

1− T ∗
1 + rU,n

1 + rFE,n
. (4.26)

As seen, α has dropped out. This is intuitive, since δ = 1 means that the

interest tax shield is unaffected by the recovery in default.

11Since each of the last two terms converge to 1.
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If δ = 0, the term A in (4.23) becomes

rF,n(1− TPD)− α(1− TPE)

yD,n(1− TPD)− α(1− TPE)
. (4.27)

This clearly converges to 1, implying that α drops out of the analysis. More

intuitively, when δ = 0, the recovery rate only affects the capital loss in

default and this gets squeezed towards zero over an arbitrarily short time

horizon since the implied probability of default must converge to zero.

To see this, note that in the basic discrete rebalancing model, it must be

true that

(1− p) (1 + YD) + p (1 + α) = 1 +RF , (4.28)

where p is the risk-neutral probability of default. When we rebalance more

frequently, to keep our model arbitrage-free, the risk-neutral probability of

default must adjust according to

pn =
yD,n − rF,n
yD,n − α

. (4.29)

Thus, the probability of default in a small interval approaches zero in the

limit.

The continuous rebalancing tax adjusted discount rate formula itself is

intuitive, especially when rewritten in the following form [using (4.3) and

(4.6)]:

R̂L = R̂U −
ŶDLTS
1− TPE

. (4.30)

This shows clearly that the tax adjusted discount rate is the unlevered dis-

count rate less the tax saving per dollar of firm value. The “raw” tax saving,

ŶDLTS , is grossed up by 1− TPE , reflecting that R̂L is a discount rate that

is applied to after-corporate-tax, but before-personal-tax, unlevered cash

126



flows, as seen in (4.2).

4.3.4 How accurate is the continuous approximation? Ex-

ample

Table 4.4 provides a numerical example of the error arising from using the

continuous approximation formula (4.25) rather than (4.19). The table

shows values of RL calculated from (4.19) for different values of α. The

corresponding value of RL estimated from (4.25) with the same parameter

values as in the table is 6.56%. We see that the continuous approxima-

tion formula (4.25) works well given the chosen parameter values, except

for when α is close to zero and the bankruptcy code treats the principal as

being paid first.12

Table 4.4: Values of RL using (4.19) for different values of α.
Parameter values are: RU = 8%, RF = 4%, TC = 40%, TPD = 40%, TPE = 40%,

L = 60%, YD = 6%. RL,princ and RL,int refer to tax systems where the principal

and interest, respectively, are viewed as being paid in default. (4.25) yields RL =

6.56% if one were to use it with the same annually compounded rates and the same

values for the other parameters.

α 0 -0.1 -0.3 -0.5 -0.7 -0.9 -1

RL,princ 7.00 % 6.69 % 6.59 % 6.56 % 6.54 % 6.54 % 6.53 %
RL,int 6.50 % 6.50 % 6.50 % 6.50 % 6.50 % 6.50 % 6.53 %

4.4 Summary

We have provided a general formula for tax adjusted discount rates under a

constant leverage ratio debt policy. The formula allows for personal taxes,

12Note that if we were to use continuously compounded rates in (4.25) – i.e. R̂U = 7.70%
and ŶD = 5.83%, we would get R̂L = 6.30%. Annually compounded, this is equivalent
to 6.50%, which is exactly the same as RL,int in the table in all cases except for when
α = −1.
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risky debt, and partial default. It also handles different rules with respect

to the order of priority of interest payments versus repayment of principal

in default. In doing this, we have expanded on the analysis of Cooper and

Nyborg (2008), who assumed complete default (zero recovery in default).

This is important because recovery rates in practice typically are signifi-

cantly larger than zero. Our general formula differs from that of Cooper

and Nyborg because recovery rates affect the tax adjusted discount rate.

We have also shown that the effect of nonzero recovery rates can be quite

small, and if debt rebalancing is continuous, the effect disappears altogether.

Our analysis thus shows that Cooper and Nyborg’s tax adjusted discount

rate formula under continuous rebalancing holds under more general condi-

tions than those under which it was originally derived. We have provided an

intuition for why this is so. The usefulness of the continuous approximation

formula is that it is easy to use and does not require estimates of recovery

rates in default. In the context of a numerical example, we have illustrated

that the errors from using it are quite small, even for large recovery rates.
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