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Abstract1 

Interpretation of historic grain price data may be hazardous owing to systematic grain quality 

variation – both cross sectionally and over varying time horizons (intra-year, inter-year, long 

run). We use the English wheat market, 1750-1914, as an example to quantify this issue. First, 

we show that bushel weight approximates grain quality. Then we show that cross sectional and 

intra-year variation are substantial and problematic, generating erroneous inference regarding 

market integration. Long run variation is significant, due to sharply declining international 

quality differentials, and this impacts estimated cost of living changes. By contrast, inter-year 

variation is smaller and controlled for more easily. 
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1. Introduction  

We describe and quantify grain quality variation and discuss the consequences for interpreting 

price and quantity data. Grain prices constitute a widely available historical source, used to 

discuss such varied questions as cognitive ability (Baten, Crayen and Voth, 2014) and interest 

rates (McCloskey and Nash, 1984), as well as more obvious questions such as standard of 

living (Phelps Brown and Hopkins, 1956), market integration (Shiue and Keller, 2007) and 

elasticity of demand (Fogel, 1992). Grain remains the most important product in the world 

economy – without it, we would be unable to meet global population nutrition requirements. 

This was more obviously true in earlier generations, when grain occupied a large share of 

household expenditure and calorific intake in even rich economies (Feinstein, 1998, 365), and 

when the possibility of famine still haunted some European economies (the widespread “year 

without a summer” of 1816, Irish and Scottish famines in 1847, Finland in 1866-8 and Russia 

in 1891-2). We consider quality variation of several grains but concentrate on wheat, the 

primary Western European food grain for the last two hundred years (Collins, 1993). 

Quality variation matters for both market participants and economic historians interpreting 

data. We focus mainly on interpretation, to gauge the sensitivity of modern economic studies 

to quality variation. Nearly all pre-1914 price and quantity data are characterized by 

unobserved quality variation, effectively a form of measurement error. The relevance of this to 

statistical analysis depends partly upon measurement error magnitude, which we quantify, and 

partly upon data usage.  

English grain merchants could determine quality by inspection, both at time of purchase and at 

delivery. Velkar (2012) documents how increasing mid-nineteenth century international trade 

resulted in creation of organizations such as the London Corn Trade Association and the 

Chicago Board of Trade to enable international grain traders to establish quality remotely. 

Reliable long distance transmission of quality information was crucial, given increasing trade 

distances and increasing importance for modern milling techniques of knowing wheat quality. 

However, wheat quality information remained problematic for some imports even in the late 

nineteenth century – notably Indian, as evidenced by the Secretary of State of India’s enquiry 

of 1885-90 (BPP, 1894, c.7440 and c.7441). 

Quality variation is frequently acknowledged in economic history but rarely 

addressed. Olmstead and Rhode (2003) offer a study of post-1920 US cotton quality 

improvements. Cotton has an obvious quality metric – staple length (although this is not the 
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only aspect of cotton quality, as they discuss). But they really focus on governmental and 

economic institutions facilitating rising quality, very different to our focus on actual quality 

measurement and implications of quality variation for price variation. Olmstead and Rhode 

(2002) offers an exhaustive study of US wheat seed variety (“cultivar”) changes, 1840-1940. 

The thrust is that changing cultivars both enabled wheat production to spread to harsher US 

climates and maintained yields in the face of crop pests. Again, this is rather different to our 

focus on how cultivar affected yield quality, rather than quantity. 

Brunt and Cannon (2013) argue that substantial and systematic wheat quality variation makes 

price movement interpretation difficult – especially pre-1914, when grain quality was not 

closely regulated. This is important, given the many historical wheat price series available and 

the many studies basing historical inference on them (examples noted above). We should 

quantify the four quality variation features that Brunt and Cannon highlight: variation across 

localities; variation through the year; variation from one year to the next; and trends in quality. 

The following sections address all these issues. We begin in the next section by defining more 

carefully what we mean by grain quality and describing how it might vary. 

Overall, we find substantial spatial and long run quality variation. There was little systematic 

intra-year quality variation for wheat (rather more for barley and oats); but random variation is 

highly problematic. There was measurable, but modest, inter-year variation in quality. 

2. Grain quality 

We focus on England, but begin with a quality benchmark based on historical data where 

quality is best measured – late nineteenth century USA. The Chicago Board of Trade developed 

a wheat grading system to facilitate exports, culminating in the 1916 US Grain Standards Act 

(Hill, 1990). Long distance trade (Chicago to New York, thence Europe) necessitated explicit 

grain quality measures because homogeneity and transparency facilitate trade between distant 

markets (Henry and Kettlewell, 1996). Each wheat type was subdivided into six grades (Grade 

1 at the top, down to Grade 5, to “Sample Grade” at the bottom). Grades were based on bushel 

weight, moisture content, percentage of damaged kernels, purity, cleanliness and condition 

(Ball et al., 1921). 

US price data for this period are for constant quality, and are sometimes available for several 

grades. Despite some variation, Grade 2 wheat traded at about a 5% discount to Grade 1 wheat, 

and a 12% premium to Grade 3. Information on proportions of each grade shipped from 
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Chicago to New York show it varied greatly year-on-year: only 1% of wheat shipped in 1879 

was Grade 1, compared to 11% in 1878 (Chicago Board of Trade annual reports – details in 

appendix A1). Using prices and proportions of each quality, we construct an average-quality 

index to quantify annual quality volatility over 31 years (1875 to 1912, with seven years 

missing). 

To fix concepts and notation, consider the following price model. At each point in time, 

observed average market price is 
t

P (for average quality across all wheat traded at time t). 

Define 
t

P   as the market price if average quality at time t were actually equal to the expected 

quality (i.e. the quality average across the whole time sample): notice that 
t

P   changes over 

time due to shifts in supply and demand. Then  

(1) ln ln
t t t t t t

P P H P P       

where ln
t t

H   represents price effects of quality differences – measurable on American 

data because we observe prices and quantities of different qualities. For US wheat, standard 

deviation of 
t
  (log of quality index) was 0.034 (i.e. 3.4%), with no discernible trend.2 Putting 

this into context, measured price volatility – standard deviation of ln
t

P   – of constant-

quality US wheat for 1871-96 was 14.6%. Thus annual quality volatility was around one 

quarter of the magnitude of (constant-quality) price volatility.  

Explicit quality data are unavailable for England, or elsewhere, pre-1914. An alternative 

method uses prices whose variation is unlikely due to anything other than quality variation, 

such as contemporaneous prices in the same market. Figure 1 illustrates Bristol prices used to 

calculate the 1790 London Gazette Corn Returns average.3 Seven weeks saw no trade; seven 

2 For consistency, we use standard deviation of the log of a variable as our measure of volatility (very similar to 

the coefficient of variation) throughout. 

3 Data from Bristol Record Office, ref 04531(1): Bristol corn inspector’s notes and calculations bound into a single 

volume for 1790 only (other years have only very occasional notes). Bristol wheat price was not published in 1790 
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saw only one trade; the rest saw more than one, with different trades typically at different 

prices. For example, in week ending 2 January 1790 there were seven trades at prices ranging 

from 51/0 per quarter to 61/4 (weighted average of 56/0): about half total trade was a single 

transaction at 58/4. Since Bristol’s cornmarket opened only once per week, these prices are 

near-contemporaneous and price variation is almost certainly due to quality variation. 

Estimating quality variation using standard error of weighted mean price, average quality 

variation is 1.86% of average price. As with US data above, compare this to standard deviation 

of weekly price changes, at 6.21%: the ratio of standard deviations for these weekly data is 

0.30, compared to the US ratio for annual data of 0.25. 

Figure 1 here. 

How can we measure quality variation, absent explicit quality data or contemporaneous prices? 

An important source of pre-1914 grain price variation derives from prices being quoted by 

volume in most countries; many quantitative studies are based on volumetric prices (Keller and 

Shiue, 2014). Mass is a superior measurement basis because grain mass primarily determines 

the flour mass produced. Since flour is (and always has been) sold by mass – and since grain 

value is determined by flour value produced – it makes sense to value grain on the basis of its 

mass.4 

Velkar (2012) notes that weighing large amounts of grain was more difficult and costly than 

establishing volume, pre-1914; hence trading grain by mass was much less popular. The 1834 

Returns from Corn Inspectors (BPP 1834, 105) reveal that, of 148 monitored markets, 90 used 

volume alone; 28 used mass alone; about ten used both; and the remainder are difficult to 

classify (see appendix A2). However market participants measured grain quantity, data were 

published in the London Gazette based on volume: a proposal by the Select Committee on the 

Sale of Corn (BPP 1834, 517) that official returns should include information on both volume 

because only county averages were then published.  Bristol weekly wheat price standard deviation was 5.9% from 

the 1820s onwards (when town-level data were published), just slightly lower than 1790’s 6.2%. 

4 Flour was often sold by the “sack” in England. Although appearing a volumetric measure, English flour sacks 

had a standard weight of 240lbs, so were really a mass measure. 
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sold and density was never implemented. The Select Committee’s primary conclusion was that 

there was significant density variation and this primarily determined grain quality variation. 

Although most corn inspectors did not provide detailed comments, eighteen inspectors 

explicitly linked quality to density in the 1834 report.5 Thus grain density is the main focus of 

our discussion in this section. 

We model cross sectional quality variation using the following decomposition: 

(3) 
   

ln ln ln lnV VP P B P P B        
 shillings     shillings per    quality  lb per
per bushel quality-adjusted adjustment bushel

             lb

   

where VP  is price by volume; B  is grain density;   is any remaining quality not 

incorporated into density; and P   is the price by mass with constant quality. Variations in P   

arise from supply and demand changes. 

Federico (2008) proposes variance (or standard deviation) of log-prices as the best market 

integration measure. From equation (3) 

(4) 
 

var ln var ln var ln var ln

2 cov ln , ln cov ln , ln cov , ln

VP P B

P P B B



 



 

                      
                 

 

Measuring market integration by the arbitrage condition that like goods should have the same 

price (in markets i  and j , * *
i j

P P ), the Law of One Price should be evaluated using

var lnP  
   :  in practice nearly all empirical studies are based on var ln VP 

   . Note the sigma 

measure effect in equation (2): parameters may be biased in regression analysis because 

5 Explicit linkage of measurement problems to density and quality are found the Sheffield corn inspector’s 

comment that “the weight per load is often mentioned by the seller in confirmation of the quality of the corn; 

frequently the small farmers have not the means of ascertaining the weight at home, and then recourse is 

sometimes had to the scales at the weighhouse in the market.” (BPP 1834 (105, p.252), Returns from corn 

inspectors, 12) 
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unobserved quality is a form of measurement error and leads to attenuation bias (details in 

appendix A2). 

Many corn inspector returns from 1834 contain bushel weights, summarized in table 1, which 

offer two quality variation measures. Eighteen inspectors provide bushel weight ranges – 

typically 6% of average bushel weight: this is how much bushel weights varied within a 

locality. This number is only indicative, since it is unclear precisely what inspectors meant by 

this range (variation from different farmers at a point in time, or variation in average bushel 

weight from year to year?). Forty-six inspectors reported average or typical bushel weight for 

their area: coefficient of variation for this market cross section is 2.8%. 

Table 1 here.  

Table 2 shows the relationship between inspectors’ reported average bushel weights and 

London Gazette average bushel prices. Attenuation bias pushes estimated elasticity of price 

with respect to bushel weight below unity, albeit not statistically significantly so; this is 

unsurprising, as the bushel weight data are rather low quality and we cannot control for other 

quality factors. 

Table 2 here.  

Inclusion of regional or county dummies has little effect on estimated coefficients, although 

estimates are less precise. Estimated elasticities are consistent with contemporaries’ analysis. 

In 1834, Richard Page gave the example of high-quality wheat (61.25 lbs/bushel) being worth 

11% more than low-quality (57.25 lbs/bushel). Two-thirds of the price differential derived 

simply from differential grain weights. Sellers could overfill sacks of low-quality grain to make 

them weigh the same as sacks of heavier grain; this would cost 8% of the value of the low-

quality bushel. A 3% price difference would remain, arising from the fact that the low-quality 

grain gave less valuable flour (Page’s evidence in British Government, “Select committee,” 

BPP 1834, 348). A decade later, two experimenters (Hillyard, 1840; Barclay, 1845) cultivated 

different wheat cultivars and measured bushel weights. They then asked local corn factors what 

price they would fetch. Differences between the most and least expensive samples suggests 

elasticities of 0.53 and 0.84 respectively (appendix A5). These results all suggest bushel weight 

correlates with quality and elasticities are consistent in cross sectional data at around two-

thirds. 
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How important is this for price analysis? The unadjusted r-squared for the first regression in 

table 2 is 0.153, suggesting that ln ln 0.43B P          st.dev. st.dev.  (appendix A4 has more 

details and calculations). So quality variation may have been slightly greater in 1830s England 

than in the US at the end of the century (which we estimated above as about one quarter).  

Density is the primary – but not sole – quality indicator. Wheat type (red/white, hard/soft, 

winter/spring) was an important determinant and affected price. Jago (1886, 233) notes spring 

wheat contains more starch than winter wheat. “Hard” wheat contains more gluten, necessary 

for good bread but not biscuit. This raises two questions. Would density be a sufficient statistic 

to enable dealers to judge quality? To what extent is density important for quality per se, and 

to what extent correlated with other quality characteristics? 

Evidence that density was a sufficient statistic comes from the 1834 Select Committee (BPP 

1834, 517). Layton Cooke, Chairman of the Committee of Agriculture in the London Society 

of Arts, stated: 

“A considerable dealer in corn called upon me this morning ... : I stated to him that 

there was an idea of adding weight to measure [volume]; he said, then if that is the case, 

then skill would be of no value; anyone might buy corn as well as ourselves.” 

Were other quality characteristics correlated with density? Jago (1896) provides an 1881 cross 

section of English and imported wheats. In table 3, we regress price per bushel on bushel weight 

alone, and then on bushel weight and other quality determinants (full results in appendix A5). 

Variables are logged, so parameter estimates are elasticities and comparable to table 2. 

Table 3 here.  

Bushel weight was evidently correlated with other quality determinants, since additional 

explanators (gluten, impurities) reduce the estimated density coefficient. Elasticity of price to 

density is much higher in table 3 than our previous estimates, presumably because wheats from 

different countries varied more than wheats within England. 

Eighteenth century English commentators talked about grain characteristics (density, 

cleanliness, soundness of kernels) and their price effects. A fundamental part of grain trading 

was sampling grain parcels for these characteristics to determine market price. High impurities, 

for example, made grain unsalable even in the eighteenth century (Ellis, 1744). Nathaniel 

Palmer (1834) speaks of wheat being “too hot” (starting to ferment) from being stored damp, 
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and then being brought “into condition” by turning and aerating. In 1814-33, the volume lost 

by 690,000 quarters of stored wheat coming into condition averaged 2% (appendix A5). Absent 

systematic evidence on these grain quality dimensions, we can say only that wet harvests would 

result in more grain that was “too hot” being brought into granaries.6 It is impossible to trace 

quality and condition across space and time. 

So return to the primary quality determinant – bushel weight – about which we can say 

something well founded and rigorous. Table 4 reports “average” or “representative” bushel 

weights for wheat, barley and oats (additional grains in appendix A4.C). These are generally 

based on an official source – such as the Corn Returns Act, or the trade and navigation accounts. 

There is an upward trend, especially marked for wheat and barley; bushel weight increased by 

perhaps 7% between 1791 and 1902. 

Table 4 here.  

Now consider the variance around these averages. Table 5 provides evidence on both within-

harvest and between-harvest variation. Wheat bushels in an average year weighed around 59 

pounds (consistent with the Corn Returns Act), good years being around two pounds heavier 

and bad years around two pounds lighter. Within-year quality variation was larger, with high 

or low quality wheats weighing perhaps five pounds more or less than average. 

Table 5 here.  

We charted long run bushel weights changes, year-to-year differences and within-year 

variation. How much flour  – and what type – did each pound of wheat produce? Flour content 

ultimately defines grain quality. Variations in flour quantity, or quality, may explain grain 

quality variation not due to bushel weight. Although varying slightly in the details, English 

flour was generally assigned to one of five or six categories. “Household” was best quality, 

used for baking white bread commonly eaten in London. “Seconds” was mixed with 

Household, or used by bakers who sold bread below the maximum price. “Thirds” were 

6  Henry and Kettlewell (1996, 430-1) offer a modern analysis. Jago (236-37) notes that damp wheat was 

disadvantageous for two reasons: it effectively meant purchasing water; it was subject to mustiness. 
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shipped out of London, used for brown bread in the provinces. “Fourths” (sometimes divided 

into “Fine middlings” and “Coarse middlings”) went to Liverpool or Newcastle for ships’ 

biscuit. Pollards and bran were not used for human consumption (Bennett and Elton, 1898). 

Component proportions varied significantly across parcels of wheat, greatly affecting value. 

Thomas Dimsdale, corn factor, was asked by a Parliamentary Committee: “What proportion 

do you reckon that a sack of flour compares to a quarter of wheat, generally speaking?” He 

answered:7 

“It depends so entirely upon the quality of the wheat, that I should mislead your 

Lordships by giving an answer. Flour, if good, will make more loaves per sack than if 

indifferent.” 

Table 6 quantifies quality variation, reporting how much flour (of each type) derived from 

bushels of different weights. 

Table 6 here.  

The 1841 data are based on flour output of 13 grain samples. Although small, the sample 

permits regression analysis (appendix A5). Regressing log of flour extraction rate on log of 

bushel weight reveals 1% increases in bushel weight raise the proportion of flour by 1.4% (t-

statistic=2.29, r-squared=0.26). 

Table 3 extraction rates are high compared to other sources. Sir T. H. Elliott’s 1903 Cabinet 

Memorandum, quoted by El-Husseini (2002), suggests flour extraction rates of 72%; Petersen 

(1995) suggests 70-75%; Feinstein used 75% (personal communication). Although our rates 

are higher than other authors’, the sources we found are consistent with one another and 

generate a plausible pattern. Panels B and C show heavier bushels contained higher proportions 

of farinaceous material. Heavier bushels also have larger mass (by definition), so two effects 

pushed up high quality bushels’ flour content – larger mass, and higher farinaceous proportion. 

This correlation is useful because bushel weight captures not only variation in grain mass, but 

also variation in flour mass – the fundamental determinant of bushel value – and makes bushel 

7 British Parliamentary Papers (1826-7), “Report”, 674. 
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weight closer to being a sufficient statistic for quality variation. The outlier is Panel A, having 

light bushels but high extraction rates. Those data are drawn from London’s Albion Mill, 

England’s first steam-powered mill; perhaps the powerful, new machinery was better able to 

separate farinaceous material from bran, pollard and waste – hence having higher extraction 

rates. It is also consistent with figures from the Parliamentary enquiries around that time: 

Samuel Kingsford, miller, gives typical flour extractions rate of 81.25% (British Government, 

“Report”, BPP 1813-14, 292). Fire destroyed the Albion Mill in 1791, but the nineteenth 

century switch to steam milling possibly pushed up flour extraction rates. 

Consider how grain quality affected price. Table 7 reports 1834 evidence from Stead. Prices 

per pound of grain are similar for grains of all qualities: first quality sells for around 5% more 

per pound than third quality, in both good and bad years (consistent with heavier bushels having 

proportionately more flour). Obviously, bushels weighing 10% more would sell for 10% more: 

more grain mass generates more flour mass. But bushels weighing 10% more actually sold for 

15% more, owing to higher proportions of farinaceous material. Hence price per pound of grain 

was 5% higher for heavier bushels. This evidence suggests that probably two-thirds of grain 

quality variation arose from density variation.  

Table 7 here.  

3. Cross-sectional quality variation 

Many factors generate grain quality variation across England. For example, storage conditions 

affect grain weight (through moisture content) and condition. But cultivar was probably the 

most important systematic grain quality variation determinant. Cultivar could vary due to 

supply or demand. Consider supply. Some cultivars suit certain climate and soil conditions 

better than others: thus cultivars grown in the drier east differ from those in the wetter west, for 

example. Also, there was a possible trade-off between grain and straw production: farmers 

located further from grain markets, producing relatively more animals, had relatively higher 

values for straw and might rationally choose lower-yielding cultivars. Finally, we assume 

nowadays innovations spread rapidly: less obviously true in the eighteenth century, superior 

cultivars might take years to diffuse. Parliamentary enquiries reveal significant systematic 

wheat supply quality variation. John Coupland, corn factor, was asked: “As a corn factor, if 

you knew that the price of wheat in the Lincoln market was 60 shillings, would you, in giving 

an order for foreign corn, calculate upon an importing price of 60 shillings or above it?” He 

answered (British Parliamentary Papers 1826-7, “Report”, 738): 
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“I certainly should not expect to receive 60 shillings for what I imported. I should 

conceive that the average of the Lincoln market is much above the average of the 

country. The wheats in the Lincoln market are much better than the average quality; 

they are better by several shillings than the average quality.” 

Now consider demand. Different places value seed characteristics differently: high-yielding 

cultivars are valued in potential food shortage areas, but high quality cultivars where people 

consume fancy baked goods (London). John Hodgson, Liverpool corn merchant, was asked: 

“Were those [two] wheats of nearly the same quality?” And he replied (British Parliamentary 

Papers 1826-7, “Report”, 753): 

 

“There is considerable difference in the quality; the quality of wheat imported into 

Liverpool is generally much inferior to the qualities imported into London; the wheats 

in question were 6 shillings to 8 shillings inferior to the quality of that which is sent to 

London; the consumption of Liverpool being generally of an inferior description of 

wheat; to place Liverpool and London qualities on a par, fully 6 shillings [20%] must 

be added to the Liverpool prices.” 

This impacts the market integration literature because systematic quality variation prevents 

prices equalizing across markets. 

Remarkably few historians have analyzed cultivar effects in English agriculture. Walton (1999) 

offers a largely descriptive treatment of changes over time. Anecdotal evidence reveals 

different cultivars being grown across regions, but systematic evidence is unavailable. An 

author may state Rivet is popularly grown in Lincolnshire, being better suited to the climate 

and soil. But we do not know all farmers there were growing it; or whether cultivation extended 

throughout Lincolnshire; or whether its use was exclusive to Lincolnshire. On the contrary, 

farmers often sowed several cultivars to suit different conditions around the farm (Ellis, 1744, 

33-4; Trowell, 1750, 9); this also provided weather insurance and staggered harvest dates, 

spreading labour demand at peak time. Such heterogeneity makes it difficult to quantify 

cultivar effects on yield differentials between Lincolnshire and elsewhere. However, presenting 

the available data puts bounds on the problem: how much could yields have varied around 

England from cultivar differences? 
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Rothamsted experimental farm undertook cultivar experiments, 1871-81, to quantify yield 

differentials and test whether newer cultivars gave higher yields than traditional ones. This 

agenda is key because must consider how traditional cultivars impacted regional yields and 

quality in the eighteenth and early nineteenth centuries. Absent contemporary experiments, our 

best approach is to examine later experiments based on the same seed stock. This measure is 

imperfect because quality of a given cultivar may have improved. Eighteenth century farmers 

employed “in-breeding” – taking the best kernels from their current crop, and sowing only 

those, to propagate strains with desirable attributes. In 1601, Maxey lauded high yields from 

“well-dunged land sown with choicely picked seed”. In 1788, Marshall recommended using 

the best ears as special seed stock. The Romans used “mass selection” of the best ears, whilst 

“pedigree selection” (in-breeding) was used in the nineteenth century; Percival (1934, 43, 75, 

83-4) discusses these points. Possible quality improvement makes it hazardous to take 

nineteenth century cultivar data and project it back to the eighteenth century. However, we 

pursue this approach because no systematic eighteenth century data exist (i.e. we have little 

alternative) and we are careful to adduce corroborating qualitative evidence. 

The Journal of the Royal Agricultural Society of England (JRASE) contains cultivar data from 

around 1841. The Society’s motto – Science with practice – was implemented from the outset 

by organization of cultivar trials across England. Members sought to establish the best 

cultivars, and thereafter raise average yields by popularizing them. The Society’s trials were 

less systematic than Rothamsted trials, taking place on private, working farms. This reveals 

how cultivars performed in a range of realistic farming conditions (unlike Rothamsted trials); 

but trial heterogeneity makes it difficult to assess whether results were driven by farming 

practices or cultivar characteristics. Different farms had different soils, climate, manures, crop 

rotations and sowing practices (drilling, dibbling or broadcasting; sowing thickly or thinly; and 

early or late in the season). Large samples might balance out such variations but most trials 

involved few cultivars and we typically have only a few trial observations for each cultivar. 

We analyze data from the seven largest trials (each testing 5-17 cultivars). 

Eighteenth century information derives from Ellis – a well-informed practical farmer, 

agricultural writer and seedsman who gives considerable detail on numerous cultivars of wheat 

and other crops. The evidence is not quantitative but permits us to trace the history of different 

cultivars and get qualitative descriptions – such as Red Lammas being considered superior for 

bread making in 1750, just as in 1850. Appendix A4.F reports yields and bushel weights for all 
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identifiable cultivars in 1750, 1841, 1871 and 1914. Here we summarize the most striking 

features.  

Rivet, said to be the oldest English wheat still cultivated in the late nineteenth century, gave 

heavy yields on strong land but had coarse straw and low quality grain. Walton (1999, 49) 

notes Rivet’s exceptionally low gluten content, making it inferior for bread. Rothamsted results 

confirm Rivet’s high yields, giving 21% more bushels/acre than Nursery Red, one of the lowest 

yielding cultivars. But Rivet’s quality was indeed low, bushels weighing 7% less. So – 

controlling for bushel weight – Rivet was only 14% more productive. Overall, yield and quality 

are strongly and significantly inversely correlated across the Rothamsted sample (-0.6, p=0.01). 

Farmers could choose high yields and low quality, or vice versa, but not have both; 

contemporaries noted this (Percival, 1934). It may explain persistence of so many cultivars: 

one cultivar was not superior, it simply offered a different quantity-quality trade-off. Pooling 

the two largest JRASE trials, the yield-bushel weight correlation is -0.4 (p=0.08, N=21). These 

two trials were carried out in different years – one in wet Gloucestershire, the other in dry 

Lincolnshire – so we find it remarkable that results are so similar to Rothamsted. 

Now consider yield levels. Average yield across all cultivars was 42.5 bushels/acre, 1871-8. 

The average for the three known eighteenth century cultivars (Rivet, Red Lammas, Golden 

Drop) was 46.7 bushels/acre. New seed cultivars generated no obvious yield increase, 1750-

1871. We cannot be certain because post-1750 disappearances – White Cone, Red Pirkey and 

so on – perhaps gave lower yields, so the overall average could be raised by discontinuing 

unproductive cultivars. We can only be sure the upper tail of the distribution was unchanged. 

Table 8 below compares Rothamsted and JRASE data, reporting all cultivars that we can match. 

Yields are predictably different (Rothamsted averaging 17% higher, and a correlation between 

the two yield samples of 0.5, p=0.32). But bushel weights are almost identical (Rothamsted 

averaging 0.2% higher, and a correlation between the two sets of bushel weights of 0.7, 

p=0.15). Take two cultivar data sets, 30 years and hundreds of miles apart. You cannot easily 

predict yield levels – but you can predict yield rankings well, and bushel weights with 

extraordinary precision. Bushel weights in 1914 were also similar to 1871. This characteristic 

is very robust. 

Table 8 here.  
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Such persistent quality variation affects attempts to quantify market integration. The market 

integration literature presumes Law of One Price (LOOP) holds when transport costs are zero. 

But LOOP will never hold: if Kent-Lincolnshire transport costs were zero, wheat would not 

trade at the same price because quality differed. How large was English cross sectional quality 

variation? Take average wheat prices for 1886-1914 for each county – long enough to smooth 

out random fluctuations, and so truly capturing equilibrium county prices. The coefficient of 

price variation is 2%. The coefficient of quality variation, c.1871, is also 2% (appendix A4). 

So quality variation could explain observed price variation. We matched seven cultivars to 

particular counties, based on qualitative literature: Cumberland (Fenton), Essex (Essex 

Brown), Gloucestershire (Bristol Red), Middlesex (London Red), Northumberland 

(Hopetown), Somersetshire (Bristol Red), Surrey (Surrey White). The quality-price correlation 

is 0.6 (p=0.16). Again, the evidence is weak – owing to few observations – but is consistent 

with quality determining long run price variation across English counties. 

International comparisons are particularly problematic. Persson (2004) and Hynes et al. (2012) 

tackle this by restricting their analysis to a particular product (such as “Manitoba No. 2 Red 

Wheat”); but this is feasible only for the late nineteenth century Atlantic trade, not for earlier 

periods or less developed markets, where products were less tightly defined. Estimates of price 

dispersion (favoured in Federico, 2008) are especially problematic. We have considered quality 

variation across England only – a small and relatively homogenous locality. The quality 

problem increases for larger regions (India, China) and international markets; it may also be 

larger for other commodities (perhaps rice?); and geographical quality trends can generate price 

convergence unrelated to market integration, as in the next section. 

 

4. Long-run quality variation  

English and foreign wheats differed in quality. Table 9 reports international imported bushel 

weights; the dramatic shift in English wheat import provenance necessitates changing 

geographical focus between 1825 (panel A) and 1900 (panel B). Note the widespread bushel 

weight increase, 1825-1900, and marked convergence (i.e. wheat became more homogenized). 

Table 9 here.  

How did bushel weight affect market values? Johnson (1902, 2) states explicitly grain parcels 

are entered into trader’s ledgers pro-rated. A trader accepts 100 bushels weighing 62lbs/bu, 
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rather than the normal 63lbs/bu. This enters the ledger as a stock of 98.4 bushels (=100×62/63), 

while the bushel price is reflated by 63/62. This implies the elasticity of price to bushel weight 

was 1 (bushels 10% lighter were worth 10% less and vice versa). Weeks (1871) suggests this 

was standard accounting practice by 1871, at the latest. This supports evidence above regarding 

high and low quality wheat within England (a one-to-one relationship between bushel weight 

and market value).  

Consider earlier years. Using total values and grain import quantities, we can calculate 

weighted average prices of foreign grains traded in England. All these prices are net of freight 

charges and import duties (i.e. these are the prices you pay at Mark Lane), so price variation 

can reflect only quality variation. Data were reported in bushels to 1863 – useful because 

English Corn Returns data are on the same basis and directly comparable – and reproduced in 

table 10, column 2. North American wheat quality equalled English; German was slightly 

better; western European was slightly worse; southeastern Europe and eastern Mediterranean 

– especially Egypt – were significantly lower quality. 

Table 10 here.  

Post-1863 trade accounts claim to report quantities in hundredweights, which is almost 

certainly false. Grain was traded in England in bushels, not hundredweight. So conversion of 

imported grain from bushels to hundredweights requires data on lbs/bu for each parcel – 

information unavailable to the Government. Also, most quality variation arises from bushel 

weight variation: reporting prices per hundredweight, rather than per bushel, would eliminate 

most price variation. Post-1863 variation is actually the same as 1855-63 variation (compare 

table 10, columns 2 and 4); correlation between the two cross sections of country average prices 

is 0.89 (p<0.01). How did the Government generate the hundredweight data? We are not told 

but can infer it. An 1887 account reports imports back to 1866 in quarters, and notes they have 

been converted from hundredweights at 4.5 hundredweight/quarter (63lbs/bushel) (British 

Government, “Wheat and flour imports”, BPP 1887, 300). Taking hundredweight data for each 

country, and converting it back into bushels at 63lbs/bushel, we get the prices reported in table 

10, column 4. Prices are slightly lower in 1864-74 than 1855-63, but differentials are extremely 

similar. Egypt is exceptional, as its quality converged to the Eastern Mediterranean average. 

This conversion saga has several implications. First, suppose the Government were correct that 

imports averaged 63lbs/bu. Total import estimates, expressed in hundredweight from 1864 

onwards, would be correct. But individual country figures would be wrong: accurate country 
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figures require country-specific bushel weights. Second, reversing the Government’s 

calculation enables inference of number of bushels imported from each country, and then prices 

per bushel (since we know total import value from each country). We can thereby chart quality 

changes over time. Third, weighting the prices by trade volumes enables us to calculate changes 

in the average consumption price of wheat in England.  

Figure 2 charts international wheat quality changes by plotting price ratios of European wheats 

to English wheat. Ratios exceeding one imply foreign wheats were higher quality than English 

wheat.  

Figure 2 here.  

All series are flat (trendless compared to English wheat). Danish and French wheats were 

consistently slightly lower quality; German and Spanish wheats were consistently slightly 

higher. Danzig furnished much of the German wheat sent to London, and was renowned for 

high quality (Claude Scott, corn factor, in British Government, “Minutes”, BPP 1795, 26; John 

Lander, Maltese Government Agent, in British Government, “Report”, BPP 1826-7, 649, and 

John Birkett, corn factor, 657-8, 660; Capper, Port, 230-1). Double-checking the half-dozen 

very low values reveals no errors, but those prices typically pertain to small quantities; they 

could be small loads of very low quality grain (perhaps damaged in transit), or maybe data 

recording errors at the customs house. There is some suggestion that English wheat quality fell 

after 1885 (Biffen, “Mendel’s laws”, 4-5; Percival, Wheat, 70-1). If so, quality of other 

European wheats was falling at a similar rate. Indeed, this is plausible because western 

European nations bought English seed (Humphries and Biffen, 1907-8, 2-3). 

Figure 3 charts New World wheat quality. There is clear upward movement, from a price 

relative of 1 to 1.1; a discrete step around 1878 moves all the series up together. Australian 

wheat was significantly higher quality than others; Indian wheat started out lower but 

converged by 1914. 

Figure 3 here.  

Figure 4 is most dynamic, with a strong upward trend from 0.8 to 1.1, 1855-1914. Egyptian 

wheat started lowest but gained most; Persian wheat was highest. Eastern Mediterranean wheat 

was long known in England for low quality (John Wilson, corn factor, in British Government, 

“Report”, BPP 1813-14, 273; John Lander, Maltese Government Agent, in British 

Government, “Report”, BPP 1826-7, 652). A key problem was poor threshing technique 
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(livestock treading); it added impurities to grain, which was not then cleaned and went out of 

condition faster (S. Bosanquet, Governor of the Turkey Company, in British Government, 

“Minutes”, BPP 1795, 26; George Baldwin of Alexandria, in British Government, “Minutes”, 

BPP 1795, 183; Thomas Dimsdale, corn factor, in British Government, “Report”, BPP 1826-

7, 666, 676; and John Schneider, Russia merchant, in British Government, “Report”, BPP 

1826-7, 730.) There was likely improvement in processing in the late nineteenth century eastern 

Mediterranean, which increased quality and market value in London. Agriculture expansion to 

virgin soils in the Great Plains likely raised average American grain quality (in both North 

America and Argentina). By contrast, western and central European soils – cultivated for 1 000 

years and already well-managed in 1855 –saw no quality improvement to 1914. 

Figure 4 here. 

Our second exercise is constructing the weighted average price of grain actually consumed in 

England (combining foreign and domestic product); this is the “consumption price” of wheat. 

The trade accounts, following the hundredweight/bushel conversions discussed above, enable 

this. Figure 5 charts consumption price, together with weighted average English price from the 

Corn Returns. English prices tracked import prices closely, as expected in a well-functioning 

market. It seems there would be no substantive difference using consumption or English prices 

for cost of living indices. Such obvious inference is sadly incorrect. Consider price 

differentials, instead of levels. The English price premium (right scale of figure 5) declines 

markedly, 1839-1914. Foreign prices rising faster, and their increasing market share, means 

the consumption price rose significantly faster than the English price – 0.1% per annum (t-

statistic=7.11, r-squared=41%). This is a lot in a consumer price index over 65 years. Thus it 

is important to use price series close to the item of interest when constructing the index; 

Feinstein’s index (using bread prices) is likely more accurate than Clark’s index (using English 

wheat prices). 

Figure 5 here. 

We documented substantial quality differentials between English and foreign wheats (New 

World wheats were better, eastern Mediterranean wheats worse). We charted significant quality 

changes over time (many wheats improved quality, relative to England, especially Egyptian 

and eastern Mediterranean). The falling standard deviation of log prices in table 10 (0.117 to 

0.092) may look like improved market integration, but is due entirely to quality convergence. 
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Also, rising foreign prices and market shares means the consumption price of wheat (per 

bushel) rose significantly faster than implied by the Corn Returns. 

5. Measurement error effects in time series models 

If quality variation generates invalid inference of market integration using coefficient of price 

variation, are we safer using time series methods commonly used? No. Most modern time-

series studies use a cointegrating VAR framework of the form 

(5) cov
1

: , 0,
t t t t s

t s 


         p p     . 

where t
p  is a vector of log-prices for constant-quality wheat, as defined in equation (1). With 

cointegrated prices, market efficiency (speed of return to equilibrium) is measured by estimates 

of  (the “loadings”). These can be estimated alongside estimates of   (Johansen procedure) 

or by imposing price homogeneity (OLS).8 

Estimates of long-run relationships are unaffected by measurement error. But here we quantify 

measurement error effects on causality direction and estimated market efficiency (speed of 

adjustment) when observed volumetric prices V
t

p  are affected by measurement error of form 

(6) V
t t t

 p p  . 

For simplicity, consider the case with two prices, A and B, and price homogeneity so that 

 1 1  , and remaining assumptions about disturbances and errors are: 

8 Two further issues are not discussed here. One can test for market integration (price cointegration) using the 

Johansen trace test; one can estimate the cointegrating relationship summarized by vector   Hassler and Kuzin 

(2009) show the cointegrating vector can be estimated consistently and the Johansen test continues to be reliable 

(probability of making a type I error is unaffected) provided sufficiently many lagged price differences are 

included in the VAR to remove serial correlation in residuals. Second, Nielsen (forthcoming) introduces a 

technique to measure the speed of adjustment when there is measurement error. 
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    

 

                 
                 I     

; 

There is long run price homogeneity, some correlation between disturbances to the true price 

series (invariably observed in real data), and classical measurement error in both price series. 

Disturbances and measurement errors are assumed Normally distributed. We considered a 

variety of parameter values for equation (5) and the measurement error, but report results  here 

based on: 

 (8)  
0 2

, ; 0, 4, 2,
2

   


   

 

                             

  

Consider two possible loadings configurations. First, “asymmetric loadings”: price A Granger-

causes price B (only price B adjusts to remove disequilibrium); so Uxbridge adjusts to London, 

for example. Second, “symmetric loadings”: both prices adjust the same amount to remove 

disequilibrium; so Alnwick and Berwick adjust towards each other. We choose values of   to 

determine shock half life. We analyze four possibilities for measurement error magnitude 

(whose standard deviation is compared to standard deviation of disturbances to the underlying 

price). Earlier, we compared measurement error standard deviation to that of observed prices, 

Sh/Sp: we report this relationship in table 11 when half life is two. This is lower than the ratio 

    because the measurement error induces a negative moving average error in equation 

(7). Our results above suggest relevant simulations are when     is between a quarter and 

a half. 

Table 11 here.  

Figures 6-8 summarize measurement error effects on estimation by plotting median impulse 

response functions when half life is two time periods and sample size is 200.  Top-left curves, 

calculated with no measurement error, are very close to the true impulse response functions 

(slightly wrong because a sample size of 200 is not quite enough to remove all small-sample 

bias). Figures 6-7 show measurement error effects with asymmetric loadings (Uxbridge-

London). Shocks to A should be permanent, but some of the effect dissipates with measurement 

error; and, although shocks to B should completely disappear, a small part of the shock appears 

permanent. Bias is largest for shocks to the exogenous price. Figure 8 shows the effect for 
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symmetric loadings (no need to produce two sets of graphs here, as loadings symmetry implies 

identical impulse response functions). The bias here is small, even with large measurement 

errors. 

These simulations show measurement error must be larger than we observe in our data to 

generate large biases in estimating market responses – except if one market dominates another, 

when estimation results erroneously suggest bi-directional causality.  

Figure 6 here.  

Figure 7 here. 

Figure 8 here.  

But convergence speeds are greatly over-estimated when unobserved quality variation 

generates price variation measurement error. In figures 2-4 above, compare top-left graphs (no 

measurement error) and bottom-left (measurement error as large as we observe in English 

data). Estimated shock half life falls erroneously from two weeks to one. 

Table 12 reports measurement error effects on processes with different half lives, comparing 

true and estimated values. Half lives are always biased down (even with no measurement error) 

but bias increases both in the measurement error and the true half life. The reason is that 

apparent convergence to equilibrium is very fast when measurement error is significant: when 

1    , typically less than half the disequilibrium remains after only one period, regardless 

of true half life. 

Table 12 here.  

So the longer the estimated half life, the larger the bias. Many analyses suggest half lives of 

several months, even half a year (Persson, 2000). Our Monte Carlo simulations suggest the true 

half life is only half as long. 

 

6. Year-on-year quality variation  

Inter-year grain quality variation is potentially important. We demonstrate positive correlation 

between yield/acre (quantity) and quality. So true grain quantity – tonnes of grain or flour – 

was greater than the bushel measure in good years, and lower in bad years. How does this bias, 

for example, estimated elasticity of demand? 
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Rothamsted furnishes two data sets to help us. Cultivar trials, 1871-81, provide yields and 

bushel weights (graphed in appendix A5.A); so do continuous wheat experiments started in 

1844 (Lawes and Gilbert, 1864; 1884) (graphed in appendix A5.B). The latter are extremely 

detailed, reporting dressed corn average bushel weight, as well as total dressed corn weight and 

total offal weight. We analyze two time series, 1844-83: the plot manured with yard dung, and 

the plot remaining unmanured. We chose these plots as best reflecting actual conditions on 

working farms, where – to 1860, at least – most land received yard dung or nothing. Table 13 

reports results for the manured plot and pooled regressions for both plots (the unmanured plot 

is presented separately in appendix A5). Since neither slope coefficients nor intercepts differ 

significantly between manured and unmanured plots, the pooled regression is our best estimate. 

We estimate all regressions for the whole period and for a sub-sample omitting 1853, 1879 and 

1880 (years with particular problems and low yields).  

Panel A reveals positive and statistically significant time series yield-bushel weight correlation. 

Omitting exceptionally bad outlier years results in lower estimated elasticities of about 4% in 

typical years. Panel B reports results for different cultivars. Walton (1999) suggested a negative 

yield-bushel weight correlation across cultivars; we find a large negative elasticity (-0.11) using 

the largest possible balanced panel (1873-78), although it is statistically insignificant. Overall, 

the relationship is positive. This need not suggest some cultivars dominated others: some may 

be better adapted to alternative soil types, or produce more straw. The within-group estimator 

reveals similar results to the time series analysis: there is a positive elasticity of 5%, rising to 

11% if exceptionally bad years are included. 

Table 13 here.  

Suppose elasticity of density to yield was 10%. What does this imply about bushel weight 

fluctuations? National agricultural returns report average English wheat yields of 30.7 bushels, 

1885-1914, with a standard deviation of 2.6 (8.5%). Thus a harvest two standard deviations 

above average would see yields 17% above average, implying bushel weight increase of 1.7% 

(=0.17×0.10), or 1lb if bushels averaged 60lbs. This is somewhat below eighteenth century 

estimates, reported in tables 4 and 6, when commentators suggested bushels weighed 2lbs 

above average in good harvests and 2lbs less in bad. Of course, eighteenth century yield 

volatility may have been higher. Widespread mid-nineteenth century clay pipe drainage 

installation may have reduced volatility (Phillips, 1989); pipe drainage removed excess water 

more effectively and led to smaller crop losses in wet years, lowering yield volatility after the 
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1830s. In any case, our 10% estimated elasticity of density (quality) to yield (quantity) is more 

likely too low than too high. 

Now estimate wheat demand elasticity adjusting for year-on-year quality variation. We find 

elasticity estimates 10-15% higher than estimates based on unadjusted quality. Barquín (2005) 

provides an exhaustive study of European wheat demand elasticities from the late mediaeval 

period to 1914. He incorporates all previous estimates, such as Fogel’s and Persson’s, and 

suggests a late nineteenth century English elasticity around 0.43, or 0.68-0.78 for other 

countries (Barquín 2005, 260-1). So year-on-year quality variation adjustment would push 

estimates to 0.5 for England and 0.8-0.9 for other countries. This is about the same magnitude 

as adjustments for carryover and seeding rate biases, which Barquín makes. But those two 

biases offset each other, whereas quality variation pushes estimated elasticities decisively 

downwards.  

 

7. Intra-year quality variation 

Several studies analyze intra-year grain price patterns (McCloskey and Nash, 1987; Clark, 

1999; Brunt and Cannon, 1999). Theoretically, grain price paths should be saw-toothed: 

starting from a post-harvest minimum, rising gradually through the year, dropping abruptly at 

the next harvest. Why? Those holding grain through the year must be compensated for it – 

receiving appreciation on their stocks to offset storage cost (granary rental), storage losses (to 

vermin) and opportunity cost (return from investing the capital elsewhere). This 

conceptualization has been used to justify inference of local rates of return on capital – steeper 

grain price rises through the year imply higher local interest rates. What if we incorporate 

quality variation into the analysis? 

The best grain was never marketed but retained – or sold privately – for seed (Ellis, 1744, 339-

40); Trowell, 1750, 9; John Porter, Office of the Committee of Privy Council for Trade, in 

British Government, “Minutes”, BPP 1795, 186). Winter (1798, 131) states seed grain 

commanded a 10% premium. England never suffered a famine requiring farmers to sell their 

seed corn for milling, so we never see it in the official markets. The worst grain (offal, or tail 

corn) comprised smaller kernels, perhaps broken and contaminated with non-wheat seeds 

(Ellis, 1745, 129). Offal was typically consumed on-farm. But if the harvest turned out lower 

(or demand higher) than farmers expected then offal coming onto market later in the year could 
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put downward pressure on (rising) prices because those bushels would be lower quality. Then 

we would systematically underestimate price increases in high-priced years. 

Brunt and Cannon (2013, 324) suggest offal constituted 6.5% of the harvest, and 10% of output 

was retained on-farm in 1801 to feed farm families. Thus we expect zero offal to come to 

market. But 1851 on-farm consumption amounted to perhaps only 5.3% of total consumption, 

given changes in agricultural population (British Government, Census, vol. 1). By 1845 – the 

eve of free trade, when grain imports were perhaps 10% of consumption – 5.3% of consumption 

amounted to around 5.8% of domestic output. Thus on-farm consumption probably still 

absorbed all offal, especially since some was used for fattening livestock (Walton, 1999). 

What effect would offal have on market prices? Barclay’s (1845, 192-3) price quotations for 

dressed grain and offal, for five different wheat cultivars, reveals offal selling for an average 

14.7% discount. If only offal were marketed in the final month before the harvest (an extreme 

assumption) then prices would drop 14.7% – approximately equal to the average intra-year 

price increase (Brunt and Cannon, 2012). Thus the unwary might estimate zero annual rates of 

return on grain holding, whereas it was truly 15%. This is not problematic with English data 

because significant offal probably never came to market. Also, Brunt and Cannon avoid price 

data from late in the harvest year, when they are most likely to be contaminated. But bias could 

arise in other countries and circumstances, such as famines. 

Intra-year quality variation certainly impacts barley. Brewers bought best quality malting 

barley soon after harvest, when the market was most active (Brunt and Cannon, 2013). Trading 

fell sharply later and most activity was in lower quality (non-malting) barley; price impact was 

large. Price courants report malting barley (several cultivars) and other barley. For example, 

Tuesday editions of the Courier and Evening Gazette list prices of many types of grain and 

seed, including barley, fine barley, malting barley and fine malting barley; in 1799 they traded 

around 38, 41, 45.5 and 49 d/bu respectively. The Morning Chronicle’s “Corn Exchange 

Report” in 1841 has grinding and malting barley at around 22.5 and 29 sh/qu respectively. With 

malting barley commanding a 20% premium, trading all malting barley in the autumn – and all 

grinding barley in spring – generates a 20% price decline. This is offset by intra-year price 

appreciation acting as a holding return. But without good data on the malting mark-up and the 

monthly share of malting barley in total trade, we cannot separate these two effects. Thus barley 

prices are useless for inferring holding returns. 
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Oats may mirror barley. Horses consumed oats; so did humans (particularly in northern 

England and Scotland) as porridge and oat bread. High quality oats went for human 

consumption (Nathan Palmer in British Government, “Select committee”, BPP 1834, 258); so, 

perversely, high quality parts of the harvest traded systematically in low-income areas (whereas 

one might expect it would go to richer areas, like London). It is likely there was systematic oat 

quality variation through the year – human supplies secured first (at high prices) and horse oats 

later (at lower prices). It seems sensible to treat intra-year oat price movements with some 

caution. 

 

8. Conclusion.  

We examined wheat quality variation across England and over time (intra-year, inter-year and 

long run), and international quality differentials. Quality differentials arise primarily from 

bushel weight differentials – useful because they are quantifiable. Contemporaries could assess 

quality variation by inspection, so market prices captured them.  

Inter-year quality variation was relatively small. Quality and yields being positively correlated 

annually, variation in quality-adjusted wheat output was around 15% higher than unadjusted 

variation. One can control for this in time series analyses – such as estimating demand elasticity 

– given available quality data. This would increase estimated demand elasticities by 15%, 

compared to previous estimates. 

There was marked cross sectional quality variation inversely correlated with local yields 

(places generating high volumes produced low quality). The long run stability of this pattern 

in England – the same counties grew the same cultivars for centuries – suggests it was an 

equilibrium. Some localities optimally chose high quality (near London, where quality fetched 

a premium); other localities optimally chose high volume (Lincolnshire, where they made 

ship’s biscuit). Cross sectional quality variation implies the Law of One Price would never hold 

strictly – prices never fully converging even with zero transport costs. Market integration 

measurement using coefficients of price variation are problematic; the wider the net is drawn 

(international versus national versus local), the more quality variation we will see, and the 

further we are pushed from the Law of One Price (irrespective of transport costs). Moreover, 

international data show the size of this effect changed over time – marked international quality 

24 

 



differentials in 1825 and 1855 vanished by 1914 – which generates spurious evidence of market 

integration. 

Unfortunately, transient random quality shocks through the year bias market integration 

measurement using error correction models because price responses to quality shocks are 

confounded with responses to price shocks. Wheat quality volatility was sufficiently high that 

half lives have likely been overestimated by 100% in the literature. 

Systematic intra-year quality variation was likely not problematic for English wheat. But barley 

quality declined markedly through the year, pushing prices down 20% between one harvest 

and the next. Oat quality likely declined through the year, too. So English wheat prices offer a 

safe basis for inferring rates of return on grain, but barley and oat prices do not. In other 

countries or time periods, systematic variation in intra-year wheat quality cannot be discounted 

a priori and must be considered when analyzing price variation. 

Further research quantifying grain quality variation over space and time (using price courants, 

the agricultural census, government price data) would greatly increase precision and reliability 

of estimates of demand elasticity and market integration. 
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Figures and Tables 

Figure 1. Bristol weekly wheat prices, 1790. 

 
Table 1: Summary of information from Corn Inspectors in 1834 

 Average, usual or 
mid-range bushel 
weight 

Range (maximum - 
minimum) of bushel 
weights 

Range of bushel 
weights relative to 
average 

No of observations 46 18 18 

Average 62.10 3.95 0.06 

Minimum 58.63 0.50 0.01 

Maximum 67.50 8.00 0.13 
Source: authors’ calculations from BPP (1834), 105; details in appendix A2. 
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Table 2: Relationship between price and bushel weight. 

Dependent variable:  
ln(average price per bushel) 

(1) (2) (3) 

ln(bushel weight) 0.6108* 0.6528+ 0.5527 
 (0.2564) (0.3515) (0.3504) 
Region FEs    
County FEs    
N 40 40 40 
Adjusted r² 0.1287 0.1129 0.4775 

Notes. Regressions include a constant. SEs in parentheses, clustered at county level in specifications (1) and (2). 
Dependent variable is average log price, 1828-42, where markets are dropped if more than 5% of prices are 
missing (details in appendix). + p < 0.10, * p < 0.05. 
 

Table 3. Relationship of price to bushel weight and other qualities. 

 ln(price/bushel) ln(price/bushel) 
ln(bushel weight) 2.0806** 

(0.4205) 
1.0974+ 
(0.4650) 

ln(impurities)  -0.0079+ 
(0.0037) 

ln(gluten)  0.0042+ 
(0.0019) 

ln(flour)  0.0001 
(0.0040) 

N 10 10 
Adjusted r2 0.7229 0.8763 

Regressions also include a constant. Standard errors in parentheses + p < 0.10, * p < 0.05, ** p < 0.01 
 

Table 4: Bushel weights of British grain (lbs/Imperial bushel). 

 Corn Returns Act 
1791 

Dodd 
1856 

Corn Returns Bill 
1881 

Brunt and Cannon 
1839-1915 

Johnson 
1902 

Wheat 59 60 60 60.75 63 

Barley 51 48 50 50 56 

Oats 39 40 38 38.8 42 
Notes and sources. See appendix A4.C. 
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Table 5. Variations in the weight of an English bushel of wheat. 

Evidence of Richard Page 

 High quality  Low quality 

Good year 66  52 

Bad year 60  48 

Evidence of Patrick Stead 

 High quality Second quality Third quality 

Good year 64 62 59 

Bad year 60 57 55 

Evidence of Colonel Charles Pasley 

Average 65  55 
Notes. Evidence to Select Committee on the Sale of Corn, BPP (1834), 354, 95-6 and 277. Colonel Pasley, Royal 
Engineers, conducted a series of experiments in grain crops measurement methods. He also gives bushel weight 
variation for other crops: rye (51-58lbs); barley (46-51); oats (36-44); peas (61-69); beans (61-68). 
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Table 6. Flour produced by wheat of various bushel weights. 

Bushel 
weight 

Flour content by category (%, by weight)    

lbs/bu House- 
holds 

Second 
quality 

Third 
quality 

Fine 
middlings 

Coarse 
middlings 

Flour 
total 

Pollard, 
bran 

Waste 

Panel A. c. 1788 

58 54.5 16.3 6.8 4.0 0.0 81.6 17.1 1.3 

Panel B. c. 1795 

62 64.5 6.7 0.0 4.4 3.0 78.6 19.4 2.0 

60 65.4 6.5 0.0 4.4 2.9 79.2 18.8 2.1 

58 61.6 6.0 0.0 4.7 3.9 76.2 21.1 2.6 

56 0.0 61.8 4.5 4.2 4.0 74.5 22.8 2.7 

54 0.0 54.5 6.0 6.5 6.5 73.5 23.7 2.8 

Panel C. c. 1841 

64      82.1   

63      81.3   

62      79.9   

61      76.7   

Panel D. c. 1856 

63 77.78 2.0 1.6 81.4 16.5 2.2 
Notes. Calculations in appendix A4.D. Panel A based on Albion Mill data (Bennett and Elton, History of corn 
milling, vol. 3, 290); Panel B from evidence of Robert Ardlie, Appendix 6 of British Government, “Fourth report”; 
Panel C on Miles, “Report… Cambridge”, 391-5 and Le Couteur, “On the pure and improved varieties”, 113-23; 
Panel D from Dodd, Food, 184-5. 
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Table 7. Relationship between wheat bushel weights (lbs) and wheat prices (d) 

 First quality grain Second quality grain Third quality grain 

Good harvest    

Bushel weight 64 62 59 

Price (d/bu) 480 456 420 

Price (d/lb) 7.50 7.35 7.12 

Bad harvest    

Bushel weight 60 57 55 

Price (d/bu) 960 888 840 

Price (d/lb) 16.00 15.58 15.27 
Source. Evidence of Patrick Stead, British Government, “Select committee,” BPP 1834, 95-6. 
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Table 8. Yields of wheat cultivars in bu/acre (bushel weights in brackets). 

Cultivar c. 1841 c. 1871 c. 1914 

Club Wheat 
[Square Head] 

 49.2 
(61.1) 

38.7 
(61.7) 

Red Rostock 
[Russian Red] 

 45.4 
(59.9) 

36.6 
(59.5) 

Red Chaff  39.0 
(61.5) 

37.4 
(60.4) 

White Chiddam 22.5 
(62.7) 

37.1 
(62.0) 

 

Golden Drop 27.6 
(61.3) 

46.8 
(62.5) 

 

Old Red Lammas 30.5 
(63.2) 

39.6 
(62.6) 

 

White Chaff 44.9 
(59.8) 

48.9 
(61.0) 

 

Bole’s Prolific 49.8 
(61.3) 

44.0 
(61.5) 

 

Bristol Red 45.6 
(62.0) 

42.1 
(61.3) 

 

MEAN 36.8 
(61.7) 

43.1 
(61.8) 

 

Notes and sources. We matched all possible cultivars, based on sources cited in table 4; 1841 estimates based on 
very small N – Old Red Lammas has four observations, other cultivars only two! 
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Table 9. Imported wheat bushel weights (lbs), c. 1825 and c. 1900. 

Panel A: c. 1825 

Britain Ireland Saarbrücke Holstein Danzig Odessa Taganrog 

60.75 60 56 57.5 63 59 70 

Panel B: c. 1900 

Britain Australia Argentina India Russia USA  

63 63 62 62 62.5 63  
Notes. Panel A: British Government, “Report”, BPP 1826-7, 683 (Odessa), 700 (Holstein, Danzig), 725 
(Taganrog); Brunt and Cannon (2004, 35-6) (Britain); British Government, “Report”, BPP 1821, 307 (Ireland), 
371 (Saarbrücke). Panel B: Johnson (1902, 5,20,22). 
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Table 10. Averages prices of wheat traded in England, 1855-74 (d/bu). 

 Mean price, 
1855-63 

Import share, 
1855-63 

Mean price, 
1864-74 

Import share, 
1864-74 

English 85.14  81.77  

American 85.33 23.01 81.44 23.76 

Canadian 83.12 4.44 79.66 4.51 

Chilean   84.35 2.26 

Australian   96.33** 1.01 

Prussian 88.98** 14.06 86.66** 9.54 

Mecklenburgian 87.65 1.98   

Danish 79.98** 3.93 77.64* 1.05 

Belgian 84.22 0.55   

Dutch 83.81 0.56   

French 80.52 5.46 76.12* 2.62 

Austrian Italy 85.28 1.13   

Russian 73.37** 14.08 74.48** 24.66 

Romanian 70.55** 1.28 70.91** 0.97 

Turkish 72.19** 1.51 71.16** 1.86 

Egyptian 57.79** 7.06 70.93** 2.36 

Total  79.02  74.60 
Notes and sources. British Government, “Annual trade and navigation accounts of the United Kingdom”, various 
years. Data begin only in 1855 and format changes from 1864 onwards, as discussed below. We include all 
countries exporting to England every year (or nearly so) – important because volatility is high, so including 
occasional exporters could generate erratic results. German prices for Prussia from 1870 onwards. Import share 
is share of total quantity imported from all sources, 1855-63 and 1864-74. * and  ** means prices significantly 
different from English at 5% and 1% levels (matched pairs two-tailed t-test). 
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Figure 2. European/English wheat price relatives (all traded in London). 

 

 

Figure 3. New World/English wheat price relatives (all traded in London). 

 

 

  

39 

 



Figure 4. Eastern Mediterranean/English wheat price relatives (traded in London). 

 

 

 
Figure 5. Prices of English wheat, wheat consumed in England and differentials. 

 

40 

 



  

Table 11. Ratio of quality variation to price variation. 

    0 0.25 0.50 1.00 

p   0 0.23 0.40 0.58 
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Figure 6. Asymmetric loadings: estimated effect of shock to price A 

 

Figure 7. Asymmetric loadings: estimated effect of shock to price B 
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Figure 8. Symmetric loadings: estimated effect of shock to one price 

 

Table 12. Effect of measurement error on half life estimates. 

True Half Life Estimated half life as proportion of true half life 

 0   1 4     1 2     1     

1 98% 89% 75% 61% 
2 97% 83% 49% 36% 
3 95% 80% 49% 25% 
4 93% 78% 48% 20% 
5 90% 77% 47% 16% 

     
10 79% 67% 43% 9% 

 

  

0.5

1.0

2 4 6 8 10

No error: sh = 0 

0.5

1.0

2 4 6 8 10

sh = se / 4 

0.5

1.0

2 4 6 8 10

sh = se / 2 

0.5

1.0

2 4 6 8 10

sh = se  

43 

 



Table 13. Relationship between ln(bushelweight) and ln(yield). 

Panel A. Time series data for two plots 
 (1) manured 

1844-83 
(2) manured 
sub-sample 

(3) pooled 
1844-83 

(4) pooled 
sub-sample 

ln(yield) 0.0838* 0.0365 0.0559*** 0.0366*** 
 (0.0362) (0.0354) (0.0139) (0.0062) 
N 40 25 80 50 
r2 0.177 0.0330 0.261 0.182 
Panel B. Panel data for different cultivars 
 (5) between-

group estimator 
1871-81 

(6) between-
group estimator 

1871-78 

(7) within-group 
estimator 
1871-81 

(8) within-group 
estimator 
1871-78 

ln(yield) 0.0985** -0.0342 0.114*** 0.0532*** 
 (0.0315) (0.0279) (0.0088) (0.0084) 
N 239 171 239 171 
r2 0.289 0.0613 0.604 0.121 

Notes. Regressions include unreported constants; robust standard errors in parentheses: regression (3) and (4) 
standard errors clustered by year. * p < 0.05, ** p < 0.01, *** p < 0.001 
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Appendices. 
 

A1. Creating a US harvest quality index 

The Chicago Board of Trade laid down explicit guidelines for grading wheat, and it is worth 

considering the grading rubric. Grade 1 winter wheat had to be “sound, plump and well 

cleaned”; Grade 2 had to be “sound and reasonably clean”; Grade 3 was “not clean or plump 

enough for Grade 2, but weighing not less than 54lbs per measured bushel”; Grade 4 included 

wheat that was “damp, musty, or from any cause so badly damaged as to render it unfit for No. 

3”; and “No grade” was inferior to that (Chicago Board of Trade Annual Report 1888, 94; 

essentially the same regulations were printed in every annual report). The guideline wording 

varied slightly from one wheat type to another, but was essentially the same for all types. 

Wording also changed slightly over time; for example, “No Grade” was initially known as 

“Rejected” and later became “Standard Grade”; we refer to it throughout as “No Grade”. 

Note further the legal wheat bushel weight in most of the US was 60lbs (Chicago Board of 

Trade Annual Report 1888, 124), implying Grade 1 and 2 wheats weighed at least that much. 

It is specifically stipulated Grade 3 wheats (and, most likely, Grade 4 wheats) must weigh 54lbs 

minimum. So Grade 3 and 4 wheats should trade at a 10% discount to Grades 1 and 2, simply 

because Grade 3 was less dense by around 10% (=6/60) and generated at least 10% less flour. 

Consider price differentials for different qualities of the same wheat type. The Chicago Board 

produced weekly price quotations for various qualities of wheat in store. We do not have data 

on all types in all years – only a snapshot for each year, where the snapshots capture slightly 

different things each time – so our data are illustrative rather than definitive. However, they are 

quite informative. Take the 1876 data for Spring Wheat (Chicago Board of Trade Annual 

Report 1876, 81). Grade 1 traded at a 5% premium over Grade 2; Grade 3 at a 12% discount to 

Grade 2; and No Grade at a 25% discount to Grade 2. Since a Grade 3 bushel weighed around 

10% less than a Grade 2 bushel, a 12% discount seems reasonable. In 1885 (Chicago Board of 

Trade Annual Report 1885, 113), Grade 4 Spring Wheat traded at a 29% discount to Grade 2. 

We need to estimate US harvest quality time series volatility. Chicago Board of Trade data 

permit this, providing data on total wheat rail cars numbers inspected annually, disaggregated 

by type and grade. First, create shares of each wheat (by type and grade). Since the price cross 

section in a given year reflects quality variation, we can weight each grain type and grade by 

its relative price. In years with relatively plentiful high quality types and grades, our price-



weighted quality index will be high, and vice versa. But relative prices in a given year are 

influenced by relative availability of different types and grades: for example, prices of high 

qualities are relatively lower in years with relatively much high quality grain (a kind of 

simultaneity bias). We can avoid this problem using a fixed basket of price weights (rather like 

a Laspeyres index). This is the approach that we follow. 

As noted above, we have nothing like an exhaustive set of prices for all wheats (all five qualities 

of every type). So we first aggregate across all types, by grade, to get an overall quality 

distribution for each year (Grade 1 down to No Grade). We then take illustrative relative prices 

of Spring Wheat in 1876/85 and apply them to annual wheat grade distributions. This generates 

an annual harvest quality index, from which we calculate time series volatility. Note this is an 

underestimate of volatility because we abstract from type fluctuations within each grade: some 

years have more high-value Red Winter in Grade 3, and less low-value Hard Winter, and so 

on. By assuming identical price relatives for all Grade 3 types, we assume away this source of 

volatility. 

The quality index coefficient of variation is 3.3%, 1875-1912 (the years for which we found 

data), similar to England around the same time. Figure A1.1 charts the index: if all wheat were 

second-quality then the index would equal 100. 

Figure A1.1 US wheat average quality index (Grade 2 = 100) 

 

 
A2. Implications of unobserved quality 

Here we characterize the consequences of unobserved quality (interpreted as a form of 

measurement error). The main text decomposes price per volumetric measure as: 

1 

 



(A.1) 

   

 shillings     shillings per    quality  lb per
per bushel quality-adjusted adjustment bushel

             lb

  ln ln ln lnV VP P B P P B        

 

where VP  is price by volume (typically measured in shillings per bushel in our data); B  is 

grain density (typically the bushel weight in our data);   is any remaining quality adjustment 

orthogonal to density; and P   is price of constant-quality grain by mass. Since   is a residual, 

A.1 is true by definition. Variations in P   are due to supply and demand changes (attenuated 

by inter-period storage and inter-market trade). 

Consequences of A.1 depend on the precise question asked; here we consider several 

possibilities. 

A2.1 Different prices in the same market at the same point in time. 

Any variation in a data set comprising prices in the same market at the same time must be due 

to market failure or quality variation. Suppose it is the latter. Note that P   is a constant (there 

is only one market), so var ln cov ln , ln ln 0P P B             . Equation A.1 can be written 

more precisely as: 

(A.2) ln ln ln lnV
i i i

P P B    

where different prices are sub-scripted with i. Price variation is due to variation in i
B  and i

 . 

Regressing ln V
i

P  on ln
i

B  yields an unbiased unit parameter estimate only if 

cov ln , ln 0B      (when the unobserved regression disturbance is simply ln
i
 ). The r-

squared from such a regression depends on bushel weight variance and the relationship between 

bushel weight and the remaining quality denoted in i
 . 

A2.2 Different prices in different markets at the same point in time 

Take a price cross-section from different markets (measured at the same time), so that A.1 can 

be written more precisely as: 

(A.3) ln ln ln lnV
i i i i

P P B    
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Unless the Law of One Price (LOOP) is satisfied perfectly, var ln 0P      . Regressing 

observed volumetric price on bushel weight, the disturbance is ln ln
i i

P   ; whether or not 

the expected estimate of the bushel weight coefficient is unity depends on covariance of 

bushelweight with this disturbance. 

However, there is a further complication. Section A2.1 considered the possibility of having 

actual prices of individual trades (similar to data illustrated in figure 1). But researchers 

typically compare prices in different markets using data on average prices in those markets; so 

A.1 is specified more correctly as: 

(A.4) ln ln ln lnV
j jj j

P P B    

where a bar over a variable indicates an average within a market and sub-script j refers to the 

market (rather than an individual price). A consequence is that the r-squared from regression 

estimates of A.4 may be higher or lower than A.2, because we are unable to say which of the 

two disturbances has a higher variance. 

A2.3 Difference prices in the same market at different points in time 

Data constraints preclude us from regressing price on bushel weight over time. Such 

regressions would be subject to similar issues to those discussed in the previous sub-section. 

Time series data are more commonly used to estimate demand curves or price relationships 

between different markets. Suppose we had annual data on average prices so the precise way 

of writing A.1 were: 

(A.5) ln ln ln lnV
t t t t

P P B    

where t denotes year. Inter-year variation is one of the biggest in historical prices due to harvest 

volatility: good harvests result in higher yields and lower underlying prices ln
t

P  . The yield-

price relationship depends partly on elasticity of demand; combined with the section 6 result 

that bushel weight depends on yield, it follows cov ln , ln 0
t t

P B     . Not only is there 

measurement error, but it need not be “classical measurement error”. For example, if observed 

price ln V
t

P  were used as an explanatory variable, then the resulting regression disturbance 

3 

 



would be correlated with the unobserved price ln
t

P  , creating a different bias from when the 

disturbance is correlated only with observed price. 

A3. Summary of returns from Corn Inspectors 

The 148 England and Wales Corn Inspectors in 1834 were asked to give information on 

markets they monitored. (Notionally, 150 markets were monitored but two markets – Windsor 

and Beccles – had no inspector at that time). Corn Inspectors’ replies were published in BPP 

(1834), vol. 105, 251-317. We entered data described in table A2.  

 
Table A2. Data entered from the Corn Inspectors’ 1834 report. 

Town/market name (with the 1834 return spelling, and an alternative for ease of comparison) 

The unit reported as being used for trade 

Whether or not Winchester measure was still in use 

Summary or quote of the text where we think it interesting 

Name of the inspector 

Average or customary price; where inspectors give a price range, the mid-point of the range 

Upper and lower prices, the subsequent range, the range relative to the average price 

 

Data are available in an Excel spreadsheet and Stata data file (with accompanying “do” file). 

A4. Calculating relative standard deviations from regression analysis 

Unadjusted r-squared is 0.153 in the first table 2 regression (adjusted r-squareds are reported 

in the table to facilitate comparison of regressions with different numbers of explanators). 

Ignore theta in equation (3), so that: 

(A.7) ln ln lnVP P B   

Regression r-squared can be interpreted as:  

(A.8) 2
var ln var ln

var ln var ln var lnV

B B
R

P P B

          
               
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where lnP   is the unobserved disturbance, and where cov ln , ln 0P B      (by 

construction) in an OLS regression. It follows: 

 
2

2

ln 0.1534
0.4257

1 0.15341ln

i

i

B R

RP 

      
    

st.dev.

st.dev.
 

These figures so far assume regression 1 in table 2 is the correct regression. The regression 3 

partial r-squared is 0.079, suggesting a ratio of 0.293 instead of 0.426. Arguably, the third 

regression is superior because it controls more factors (county fixed effects). But there may 

be county-level quality variations orthogonal to bushel weight: for example, as discussed in 

section 3, Lincolnshire may grows Rivet more than other counties and Rivet is known to 

contain less gluten. 

We have ignored quality variation not captured by bushel weight. Recall:  

(A.9)  
var ln var ln var ln var ln

2 cov ln , ln cov ln , ln cov , ln

VP P B

P P B B



 



 

                      
                 
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A5. Grain quality and bushel weight 

The accompanying Stata file contains the regression analysis underlying table 2. Table A5.1 

details elasticity estimates from Barclay (1845) and Hillyard (1840). 

Table A5.1. Relationship between price and bushel weight from trials 

Price per bushel (d) Bushel weight 

 Barclay Hillyard 

65  84 

64.75   84 

64.5 97.5   

64.25     

64   81 

63.75   81 

63.5 94.5   

63.25     

63 95.25   

62.75     

62.5   78 

62.25     

62 93   
Notes and sources. Barclay (1845, pp.192-3); Hillyard (1840, pp. 65-6). Elasticities calculated for the text are 
ln(97.5/93)/ln(64.5/62) and ln(84/78)/ln(65/62.5). 
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Table A5.2. Complete analysis of McDougall data 
 (1) (2) (3) (4) (5) (6) (7) (8) 

 lpw lpw lpw lpw lpb lpb lpb lpb 

Bushel  

weight 

0.010 

(0.008) 

0.0178+ 

(0.007) 

0.015 

(0.009) 

0.002 

(0.008) 

0.027º 

(0.009) 

0.035º 

(0.007) 

0.032º 

(0.009) 

0.018 

(0.008) 

Indian   -0.071 

(0.033) 

   -0.071 

(0.032) 

 

Impurities   -0.006 

(0.005) 

-0.008 

(0.004) 

  -0.006 

(0.005) 

-0.008 

(0.004) 

Gluten   0.002 

(0.003) 

0.004 

(0.002) 

  0.002 

(0.003) 

0.004 

(0.002) 

Flour   -0.004 

(0.005) 

0.000 

(0.004) 

  -0.004 

(0.005) 

0.000 

(0.004) 

Constant 3.222* 

(0.522) 

2.801* 

(0.427) 

3.251* 

(0.584) 

3.738* 

(0.426) 

0.119 

(0.523) 

-0.310 

(0.430) 

0.157 

(0.580) 

0.639 

(0.425) 

N 14 10 14 10 14 10 14 10 

Adj. r2 3.67 37.41 59.06 72.50 40.58 71.45 75.14 87.67 

Standard errors in parentheses. + p < 0.05, º p < 0.01, * p < 0.001 
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Table A5.3. Nathaniel Palmer’s wheat storage account. 

Year 
Wheat in store 
(quarters.) 

Annual 
losses 

Losses (%) 
[Palmer] 

Losses (%) 
[Brunt-Cannon] 

 (i) (ii) (iii) (iv) = (ii) ÷ (i) 

1814 19133 194.125 1.1 1.0 

1815 53115 747.500 1.3 1.4 

1816 73882 1766.000 2.3 2.4 

1817 46036 593.125 1.3 1.3 

1818 49100 816.750 1.5 1.7 

1819 56357 1182.250 2.0 2.1 

1820 11811 306.500 2.4 2.6 

1821 10117 297.500 2.7 2.9 

1822 12882 225.250 1.5 1.7 

1823 15621 336.000 2.1 2.2 

1824 13502 309.875 2.2 2.3 

1825 33958 830.500 2.3 2.4 

1826 31797 841.375 2.5 2.6 

1827 21181 489.500 2.2 2.3 

1828 32959 618.875 1.7 1.9 

1829 78758 1426.875 1.7 1.8 

1830 44259 866.375 1.7 2.0 

1831 41086 1006.750 2.3 2.5 

1832* 31430 750.125 2.3 2.4 

1833* 14079 293.250 2.0 2.1 

Total 691063 13898.500 2.0**  

 Simple average 2.1% 
  Weighted average 2.0% 

* If there be deducted 
from the years: 

1832 4551.875 272.100 

1833 2060.750 392.500 

Total 6612.625 392.625 

Hot Canadian shipments, the average loss % for the two years will be: 1832, 1¾; 
1833, 1⅜; thus reducing the 20 years' average to 1 qr. 7 bus. 2 pks. 5 qts. per cent 

Sources and notes. Columns (i)-(iii) from British Government, “Report,” BPP (1834), 259. The original table 
measures losses in quarters and bushels, whereas we express them in quarters. Column (iv) - authors’ calculations 
based on columns (i) and (ii), differing slightly from Palmer’s calculations. ** the precise average given is 2 
quarters 0 bushels 0 pecks. 2 quarters ≈ 2.016% 

8 

 



Table A5.4. Bushel weights of British grain (lbs/Imperial bushel). 

Notes. To 12th July 1827, the Winchester bushel was the most generally accepted measure; thereafter, use of the 
Imperial bushel – larger by the ratio of 32/31 (i.e. 3.2%) – was imposed by law. This table reports Imperial bushel 
weights to maintain consistency. But here we additional report official Winchester bushel weights, as laid down 
in the 1791 Corn Returns Act, to facilitate comparison across contemporary sources: wheat (57), barley (49), oats 
(38), rye (55). Naturally, we rebase any time series quantities or prices to Imperial bushels. Corn Returns Act data 
are from William Jacob, Comptroller of Corn Returns: British Government, “Select committee on the sale of 
corn,” BPP (1834), vol. 7, 411, adopted also in Solar, Growth, 221; 1856 data from Dodd, Food, 184-5; 1881 data 
from the Corn Returns Bill BPP (1881, bill 17), which was primarily concerned with tithes and never passed; 
1839-1915 data from Brunt and Cannon, “Irish grain trade”, 35-6; 1902 data from Johnson, “Grain”, 2. 
 

  

 Corn Returns Act 
1791 

Dodd 
1856 

Corn Returns Bill 
1881 

Brunt and Cannon 
1839-1915 

Johnson 
1902 

Wheat 59 60 60 60.75 63 

Barley 51 48 50 50 56 

Oats 39 40 38 38.8 42 

Rye 57 54  60  

Maize    59.75 60 

Peas 64 60  63  

Beans 63 60    

Wheatmeal 49   50  

Barleymeal 48     

Ryemeal 53     

Beanmeal 48     

Oatmeal 22     
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Table A5.5. Flour produced by wheat of various bushel weights. 

lbs/bu lbs or 
% 

House-
holds 

Second 
quality 

Third 
quality 

Fine 
middlings 

Coarse 
middlings 

Flour 
total 

Pollards, 
bran 

Waste 

Panel A. c. 1788 

58 2320 1265.4 378.0 157.6 92.4 0.0 1893.4 395.6 30.0 

58 100 54.5 16.3 6.8 4.0 0.0 81.6 17.1 1.3 

Panel B. c. 1795 

62 496 320.0 33.0 0.0 22.0 15.0 390.0 96.0 10.0 

60 480 314.0 31.0 0.0 21.0 14.0 380.0 90.0 10.0 

58 464 286.0 28.0 0.0 22.0 18.0 354.0 98.0 12.0 

56 448 0.0 277.0 20.0 19.0 18.0 334.0 102.0 12.0 

54 432 0.0 235.5 26.0 28.0 28.0 317.5 102.5 12.0 

          

62 100 64.5 6.7 0.0 4.4 3.0 78.6 19.4 2.0 

60 100 65.4 6.5 0.0 4.4 2.9 79.2 18.8 2.1 

58 100 61.6 6.0 0.0 4.7 3.9 76.2 21.1 2.6 

56 100 0.0 61.8 4.5 4.2 4.0 74.5 22.8 2.7 

54 100 0.0 54.5 6.0 6.5 6.5 73.5 23.7 2.8 

Panel C. c. 1841 

64 512      420.3   

63 504      409.6   

62 496      396.1   

61 488      374.3   

          

64 100      82.1   

63 100      81.3   

62 100      79.9   

61 100      76.7   

Panel D. c. 1856 

63 504 392.000 10.0 8.0 410.0 83.0 11.0 

63 100 77.78 2.0 1.6 81.4 16.5 2.2 
Notes. Panel A based on Albion Mill data – Bennett and Elton, History of corn milling, vol. 3, 290; Panel B from 
Mr. Robert Ardlie, Appendix 6 of British Government, “Fourth report”; Panel C from Miles, “Report… 
Cambridge”, 391-5 and Le Couteur, “On the pure and improved varieties”, 113-23; Panel D from Dodd, Food, 
184-5. 
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Table A5.6 Yields (bu/acre) and densities (lbs/bu) of different wheat cultivars. 

Name of wheat c. 1750 c. 1841 c. 1871-78 c. 1914-19 
  Yield Density Yield Density Yield Density 
White Lammas High yielding 37.0 61.6     
Red Lammas Finest flour 30.5 63.2 39.6 62.7   
Yellow Lammas High yielding; 

soft; liked by 
bakers 

      

Pickey ?       
Dame ?       
Smyrna/Turkey 
[Turkey Red] 

?     37.3 62.9 

White Cone ?       
Red Pirkey ?       
Yellow Pirkey ?       
White Pirkey ?       
Pirkey ?       
White-Brown ?       
Dugdale Coarse, hardy; 

sown mostly 
in north; going 
out of fashion 

      

Spring Wheat ?       
White Wheat ?       
Rivet    53.6 58.7   
White Chaff  
[Square Head’s master] 

 44.9 
 

59.8 48.8 
 

61.0   

Club Wheat  
[Square Head] 

   49.2 
 

61.1 38.7 
 

61.7 

Golden Drop  27.6 61.3 46.8 62.3   
Bole’s Prolific 
[Pilgrim’s Prolific] 

 49.8 
 

61.3 44.0 
 

61.4   

Hardcastle    44.6 61.3   
Red Rostock  
[Russian Red] 

   45.4 
 

59.9 36.6 
 

59.5 

Red Langham    41.6 61.7   
Bristol Red  45.6 62.0 42.1 61.3   
Red Wonder    42.3 61.3   
Red Chaff    39.0 61.5 37.4 60.4 
Browick    41.7 61.0   
Casey’s White    42.1 60.6   
Nursery Red    39.1 63.0   
Woolly Ear    41.3 61.3   
Golden Rough Chaff    40.4 62.0   
Chubb Wheat    41.2 60.8   
Original Red    36.6 59.3   
Victoria White    40.4 61.7   
White Chiddam  22.5 62.7 37.1 62.0   
Hunter’s White    37.8 60.6   
Egyptian Mummy  45.0 62.0     
Essex Brown  40.0 64.0     
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Name of wheat c. 1750 c. 1841 c. 1871-78 c. 1914-19 
  Yield Density Yield Density Yield Density 
Silver Drop  32.6 63.0     
Surrey White  36.0 64.0     
Red Straw White  35.7 58.5     
Brittany 
[Breedon] 

 30.9 59.8     

Spalding’s  45.5 62.0     
London Red  39.8 63.3     
Red Cluster  47.8 63.0     
Syer’s  46.5 61.0     
Soothy’s  50.3 56.0     
Piper’s Thickset  39.3 61.0     
Alfriston White  32.0 60.3     
Clover’s  40.6 63.4     
Snowdrop White  39.0 63.0     
Whittington White  36.0 62.0     
Hopetown  41.4 60.4     
Golden Swan  32.8 63.7     
Red Champion  27.6 62.3     
Britannia  40.3 62.0     
Red Marigold  50.9 62.8     
Creeping Red  35.9 62.3     
Glory in the West  32.1 61.8     
Dantzig  30.2 61.3     
Salmon Brown  37.8 60.3     
Fenton  47.3 61.0     

Notes and sources: Varieties in italic are white wheats (have white kernels); varieties in bold italic are red wheats; 
the colour of other varieties is not known. Note some varieties have “Red” in the name but were definitely “white 
wheats” – such as Red Chaff. Names [in square brackets] are later names for the same wheat. A question mark ? 
indicates this cultivar was in recorded use, but nothing else is known. 1750 evidence from Ellis, Agriculture, 3-4, 
33, 134; Ellis, Chiltern and Vale farming, 198, 207-9; Trowell, Farmer’s instructor, 9; c. 1841 from Burrell, “On 
some varieties”, 147; Handley, “Report”, 397-8; Hillyard, “On the productiveness”, 65-6; Loft, “On different 
varieties”, 281-3; Miles, “Report… Cambridge”, 391-5; Miles, “Report… Southampton”, 566-72; and Shelley, 
“Reports”, 584-5; c. 1871 from Lawes, Memoranda, 86-7, and is the 1871-8 average. The Rothamsted seed trial 
continued after 1878 but Lawes stated results were unreliable owing to technical cultivation problems; hence we 
drop them. 1914-19 evidence from Schafer, Gaines and Barbee, Wheat production, 19, 21. 
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A6. Additional information on the bushel weight-yield relationship 

Figure A6.1 graphs data underlying year-on-year yield-bushel weight relationship estimates, 

drawn from Lawes’ and Gilbert’s post-1843 Rothamsted perpetual wheat experiments. We use 

the plot receiving 14 tons/acre/year of dung and the unmanured plot, and the 1871-81 cultivar 

trials. 

 
Figure A6.1. Scatterplot of the Rothamsted wheat cultivar trial data. 

 
Notes. Scatter plot of Lawes and Gilbert wheat cultivar data set, Rivett’s highlighted because Walton (1999) 
comments it was particularly affected by wireworm in 1879. These data are used for panel estimation (bottom 
half of table 10). 
 
  

56
58

60
62

64
66

B
us

he
lw

ei
gh

t

30 40 50 60 70
Yield

All varieties except Rivett's
Rivett's

13 

 



Figure A6.2. Yields on Rothamstead experimental plots. 

 

Note the unmanured plot yield trending slightly downward (the soil became exhausted as it 

never received fertilizer); 1853 is problematic, but yields were low beforehand. Wireworm 

affected 1879 and 1880. Hence we also consider the sub-sample 1854-1878. Main text 

regressions use the manured plot and both plots pooled: for comparison, unmanured plot 

regressions are shown below. 

Table A6.1 Regression of bushel weight on yield (all in natural logarithms). 

 (1) (2) (3) (4) (5) (6) 
 unmanured 

all 
unmanured 
subsample 

manured 
all 

manured 
subsample 

pooled 
all 

pooled 
subsample 

Yield 0.098* 0.028 0.084* 0.037 0.056*** 0.037*** 
 (0.039) (0.032) (0.036) (0.035) (0.014) (0.006) 
       
Constant 3.810*** 3.993*** 3.808*** 3.974*** 3.911*** 3.973*** 
 (0.105) (0.079) (0.128) (0.126) (0.046) (0.022) 
N 40 25 40 25 80 50 
r2 0.270 0.026 0.177 0.033 0.261 0.182 

 

  

0
10

20
30

40

1840 1850 1860 1870 1880
year

Un-manured yield Manured yield

45
50

55
60

65

1840 1850 1860 1870 1880
year

Un-manured density Manured density

14 

 



A7. Details of the Monte Carlo simulations and additional results 

Monte Carlo simulations are based on a cointegrating VAR of the form: 

(A.10) cov
1

: , 0,
t t t t s

t s 


         p p     . 

where t
p  is a vector of log-prices for constant-quality wheat, defined in equation (1), 

combined with measurement error of the form: 

(A.11) V
t t t

 p p  . 

where  V
t

p  is observed price. For simplicity, consider the case with just two prices, A and B, 

and price homogeneity so that  1 1  . Kuzin and Hassler show that, even with 

measurement error,   is still estimated consistently and tests for the rank of   are 

unaffected so long as sufficiently many extra lags of p  are included to remove serial 

correlation. To see why loadings estimators will be inconsistent, substitute (A.11) into (A.10) 

to obtain: 

(A.12)   1 1
V V
t t t t t      p p I       . 

Both the Johansen procedure and OLS estimator are inconsistent because the disturbance in 

this regression – i.e. the term in brackets – is serially correlated and the regression contains a 

lagged dependent variable. 

Remaining assumptions about disturbances and errors in the Monte Carlo are: 

(A.13) 
corr ; var var

E var cov

2

2
1

, 0.5

; ; ,

A B A B
t t t t

t t t t





    

 

                 
                 I     

 

Thus there is some correlation between the two disturbances to the true price series (invariably 

observed in real data) and disturbances have the same variance for both prices. Quality 

variation is modelled as classical measurement error in both price series. Both disturbances and 

measurement errors are assumed Normally distributed. We considered a variety of parameter 

values for equation (A.11). In particular, we considered four measurement error possibilities: 

no measurement error, then measurement error with a standard deviation of a quarter, half or 

equal to the disturbance: 
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(A.14)  0, 4, 2,        

The “half life” is the time taken for half of a (true) disturbance to die away (i.e. to move halfway 

back to equilibrium). The relationship of half life to loadings is: 

(A.15) 
 

 
 

 1 2

ln 0.5 ln 0.5

ln 1 ln 1
HL

 
 

  
 

where: 

(A.16) 1 2 1 2
0; 0; 0 1         

For any desired half life, we choose parameters satisfying: 

(A.17)  11 2
0.5 1

HL
     

For example, for a half life of two, the asymmetric and symmetric versions of the model are 

respectively: 

(A.18) 
 
 

1 1
2 2

1 1 1
22 2

0 1
,

1 1

                     

   

Each Monte Carlo simulation had 20,000 replications. We considered sample sizes of 50, 100 

and 200. Figures A7.1 and A7.2A compare sample size effects on dynamic response, graphing 

median impulse response functions for the error correction: sample size makes little difference 

in either case. 
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Figure A7.1. Effect of sample size on impulse response functions: asymmetric loadings 

 

 
Figure A7.2 Effect of sample size on impulse response functions: symmetric loadings 
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any parameter estimates from equation A.13 would be biased, making the ratio ˆ
    is 

unreliable. Using our Monte Carlo simulations, we estimate the relationship between     

and p  . Table 9 reports this ratio for a half life of two and sample size of 200. Table A7.1 

provides analogous figures for other sample sizes and both short and long half lives. 

Table A7.1 Monte Carlo estimates of p   

    0 0.25 0.50 1.00 
Sample size = 50     
Half life = 1 0.000 0.231 0.403 0.579 
Half life = 10 0.000 0.238 0.413 0.586 
Sample size = 100     
Half life = 1 0.000 0.229 0.400 0.574 
Half life = 10 0.000 0.236 0.410 0.581 
Sample size = 200     
Half life = 1 0.000 0.228 0.399 0.572 
Half life = 10 0.000 0.236 0.409 0.579 

  

The final Monte Carlo results here are connected to variance of the parameter estimates. The 

main text includes information only on the median impulse response. Tables A7.1 to A7.3 

summarize variation in impulse response functions (instead of underlying parameter estimates) 

by reporting the range of the 95% confidence interval. Note this is approximately 

symmetrically distributed around the median (or mean): one measure of variation is width of 

the 95% confidence interval. 

Table A7.1 reports impulse response for ten periods after a period 0 shock. With no 

measurement error and a sample size of 200, after one period the impulse response is about a 

half (not reported) and the range of the 95% confidence interval is 0.32 to 0.66. Width of this 

range (one period post-shock) is 0.34 to 0.35, regardless of measurement error magnitude. In 

later time periods the range gets gradually smaller as the shock effect dies away: the magnitudes 

are fairly similar. With a sample size of 50, the range is about twice as large (unsurprisingly – 

with the sample size only a quarter of the previous experiment, the range increases by, very 

approximately, the square root of four). 

Effects are more complicated with larger half lives. The fact the half life is larger means there 

is a slightly larger bias (from the standard results for auto-regressive processes with serial 
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correlation and a lagged dependent variable) and confidence intervals are also wider. However, 

presence of measurement error biases downwards both half lives and range of estimates.  

The effect is not large with a half life of two. Suppose measurement error standard deviation is 

a quarter of true price disturbance standard deviation. True value of the 95% confidence 

interval is 0.26 (n = 200) or 0.53 (n = 50) but measurement error makes it appear 0.23 or 0.48 

respectively. If measurement error is larger, the effect for t = 1 is to increase the confidence 

interval, but by t = 10 the interval is almost halved. So with measurement error, the precision 

of the estimates may be overestimated.  
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Table A7.2 Variation in impulse response functions when true half life equals unity 

    0 0.25 0.50 1.00 

t 97.5% 2.5% Interval 97.5% 2.5% Interval 97.5% 2.5% Interval 97.5% 2.5% Interval 
Sample size = 200           

0 1 1  1 1  1 1  1 1  
1 0.66 0.32 0.34 0.61 0.27 0.34 0.51 0.17 0.34 0.36 0.00 0.35 
2 0.42 0.05 0.37 0.40 0.03 0.37 0.34 -0.01 0.36 0.26 -0.09 0.35 
3 0.30 -0.08 0.38 0.29 -0.09 0.37 0.26 -0.11 0.36 0.22 -0.14 0.36 
4 0.24 -0.13 0.37 0.23 -0.14 0.37 0.21 -0.14 0.35 0.19 -0.16 0.34 
5 0.17 -0.14 0.31 0.16 -0.14 0.30 0.15 -0.14 0.29 0.14 -0.14 0.28 
6 0.14 -0.12 0.26 0.13 -0.11 0.24 0.11 -0.09 0.20 0.07 -0.06 0.13 
7 0.10 -0.09 0.20 0.09 -0.09 0.18 0.07 -0.07 0.14 0.05 -0.05 0.10 
8 0.08 -0.07 0.14 0.07 -0.06 0.13 0.06 -0.05 0.10 0.04 -0.03 0.07 
9 0.05 -0.05 0.10 0.05 -0.04 0.09 0.04 -0.04 0.08 0.03 -0.03 0.06 

10 0.05 -0.03 0.07 0.04 -0.02 0.07 0.04 -0.01 0.05 0.03 -0.01 0.04 
Sample size = 50           

0 1 1  1 1  1 1  1 1  
1 0.84 0.07 0.76 0.78 0.01 0.77 0.70 -0.08 0.78 0.57 -0.25 0.81 
2 0.61 -0.21 0.82 0.59 -0.23 0.82 0.54 -0.26 0.80 0.47 -0.34 0.81 
3 0.49 -0.33 0.82 0.47 -0.33 0.80 0.45 -0.34 0.79 0.40 -0.36 0.76 
4 0.42 -0.37 0.79 0.41 -0.36 0.77 0.39 -0.36 0.74 0.36 -0.36 0.73 
5 0.30 -0.34 0.63 0.29 -0.33 0.62 0.27 -0.32 0.59 0.27 -0.32 0.59 
6 0.26 -0.28 0.54 0.25 -0.27 0.51 0.23 -0.23 0.46 0.21 -0.19 0.40 
7 0.21 -0.24 0.45 0.20 -0.23 0.43 0.18 -0.21 0.39 0.17 -0.18 0.35 
8 0.20 -0.19 0.38 0.19 -0.17 0.36 0.17 -0.16 0.33 0.16 -0.13 0.29 
9 0.17 -0.17 0.33 0.16 -0.16 0.31 0.14 -0.14 0.28 0.13 -0.12 0.25 

10 0.16 -0.12 0.28 0.15 -0.11 0.26 0.14 -0.09 0.23 0.13 -0.07 0.20 
 



Table A7.3 Variation in impulse response functions when true half life equals two 

    0 0.25 0.50 1.00 

t 97.5% 2.5% Interval 97.5% 2.5% Interval 97.5% 2.5% Interval 97.5% 2.5% Interval 
Sample size = 200           

0 1 1  1 1  1 1  1 1  
1 0.91 0.57 0.34 0.83 0.49 0.34 0.69 0.35 0.35 0.49 0.13 0.36 
2 0.76 0.34 0.42 0.69 0.28 0.41 0.58 0.19 0.39 0.42 0.04 0.37 
3 0.63 0.17 0.46 0.58 0.14 0.44 0.49 0.08 0.41 0.36 -0.02 0.38 
4 0.53 0.06 0.47 0.49 0.04 0.45 0.42 0.00 0.42 0.31 -0.06 0.37 
5 0.41 0.00 0.41 0.37 -0.01 0.38 0.30 -0.03 0.33 0.22 -0.06 0.29 
6 0.34 -0.05 0.39 0.31 -0.05 0.36 0.26 -0.05 0.30 0.17 -0.04 0.21 
7 0.29 -0.08 0.36 0.26 -0.07 0.33 0.21 -0.06 0.27 0.14 -0.04 0.19 
8 0.25 -0.08 0.33 0.23 -0.07 0.30 0.18 -0.06 0.24 0.12 -0.04 0.16 
9 0.21 -0.09 0.30 0.19 -0.08 0.27 0.15 -0.06 0.21 0.10 -0.03 0.13 

10 0.18 -0.08 0.26 0.17 -0.06 0.23 0.13 -0.04 0.18 0.09 -0.01 0.10 
Sample size = 50           

0 1 1  1 1  1 1  1 1  
1 1.08 0.31 0.77 1.00 0.23 0.77 0.88 0.09 0.79 0.70 -0.13 0.83 
2 0.95 0.02 0.93 0.90 -0.02 0.92 0.78 -0.10 0.88 0.61 -0.23 0.84 
3 0.84 -0.17 1.01 0.79 -0.18 0.97 0.69 -0.22 0.91 0.55 -0.28 0.83 
4 0.75 -0.26 1.01 0.71 -0.27 0.97 0.61 -0.28 0.89 0.49 -0.31 0.80 
5 0.58 -0.30 0.88 0.53 -0.29 0.81 0.43 -0.28 0.70 0.33 -0.28 0.61 
6 0.50 -0.30 0.79 0.45 -0.28 0.73 0.39 -0.24 0.63 0.29 -0.19 0.48 
7 0.42 -0.31 0.73 0.39 -0.28 0.67 0.33 -0.24 0.57 0.24 -0.19 0.43 
8 0.38 -0.28 0.66 0.35 -0.25 0.60 0.29 -0.21 0.50 0.22 -0.15 0.37 
9 0.33 -0.27 0.60 0.30 -0.25 0.54 0.25 -0.20 0.45 0.17 -0.15 0.32 

10 0.29 -0.24 0.53 0.27 -0.21 0.48 0.23 -0.16 0.39 0.17 -0.09 0.26 
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Table A7.4 Variation in impulse response functions when true half life equals ten 

    0 0.25 0.50 1.00 

t 97.5% 2.5% Interval 97.5% 2.5% Interval 97.5% 2.5% Interval 97.5% 2.5% Interval 
Sample size = 200           

0 1 1  1 1  1 1  1 1  
1 1.09 0.75 0.34 1.00 0.66 0.34 0.84 0.49 0.35 0.62 0.26 0.36 
2 1.08 0.62 0.46 0.98 0.54 0.44 0.83 0.40 0.43 0.60 0.21 0.40 
3 1.05 0.51 0.54 0.96 0.44 0.52 0.80 0.33 0.48 0.58 0.16 0.42 
4 1.03 0.41 0.61 0.93 0.36 0.57 0.78 0.26 0.51 0.56 0.13 0.43 
5 0.96 0.36 0.60 0.86 0.32 0.54 0.69 0.25 0.44 0.47 0.15 0.32 
6 0.90 0.30 0.60 0.81 0.27 0.54 0.65 0.20 0.45 0.44 0.12 0.32 
7 0.84 0.24 0.60 0.76 0.21 0.55 0.61 0.16 0.45 0.41 0.09 0.33 
8 0.80 0.19 0.61 0.72 0.16 0.56 0.58 0.13 0.45 0.40 0.07 0.32 
9 0.75 0.14 0.61 0.68 0.12 0.56 0.55 0.09 0.45 0.37 0.05 0.32 

10 0.71 0.10 0.61 0.64 0.09 0.55 0.52 0.07 0.45 0.36 0.04 0.31 
Sample size = 50           

0 1 1  1 1  1 1  1 1  
1 1.25 0.47 0.77 1.16 0.37 0.79 1.02 0.21 0.81 0.82 -0.03 0.85 
2 1.27 0.23 1.04 1.17 0.17 1.00 1.02 0.06 0.96 0.79 -0.11 0.90 
3 1.27 0.05 1.22 1.17 0.02 1.15 1.01 -0.06 1.07 0.77 -0.16 0.93 
4 1.26 -0.07 1.33 1.16 -0.09 1.26 0.98 -0.14 1.12 0.74 -0.20 0.94 
5 1.17 -0.13 1.30 1.06 -0.14 1.19 0.85 -0.14 0.99 0.57 -0.17 0.74 
6 1.10 -0.17 1.27 0.99 -0.17 1.16 0.81 -0.15 0.96 0.56 -0.13 0.69 
7 1.03 -0.22 1.24 0.92 -0.21 1.12 0.74 -0.18 0.92 0.51 -0.14 0.65 
8 0.98 -0.23 1.21 0.88 -0.21 1.09 0.72 -0.17 0.89 0.49 -0.12 0.61 
9 0.92 -0.26 1.17 0.82 -0.23 1.05 0.67 -0.19 0.86 0.46 -0.12 0.58 

10 0.88 -0.26 1.14 0.79 -0.22 1.02 0.65 -0.16 0.82 0.45 -0.09 0.53 
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