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Abstract

We study a rational expectations’ competitive equilibrium in a
production economy, i.e., a system of prices at which firms’ profit
maximizing production decisions and individuals’ preferred affordable
consumption choices equate supply and demand in every market. We
derive the equilibrium price of the firm and the equilibrium short
term interest rate, the optimal per capita consumption in society, as
well as the risk premium on equity. First a simple linear production
technology with constant coefficients is studied, then a more general
technology, and finally a general production economy with recursive
utility is analyzed by the use of the stochastic maximum principle.
While the two first models can not explain the empirics well using
conventional preferences, the latter model is found to be much more
promising in this regard. Wa also demonstrate a simple proof for the
ICAPM.

KEYWORDS: Equity risk premium, production economy, recur-
sive utility, CAPM, CCAPM, ICAPM
JEL-Code: G10, G12, D9, D51, D53, D90, E21

1 Introduction

The paper analyzes risk premiums and the interest rate in a production
economy. As is well-known, rational expectations, a cornerstone of modern
economics and finance, has been under attack for quite some time. Authors
ask: Are prices too volatile relative to the information arriving in the market?

∗The Norwegian School of Economics, 5045 Bergen, Norway.
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Is the mean premium on equities over the risk-less rate too large? Is the real
interest rate too low? Is the market’s risk aversion too high?

Mehra and Prescott (1985) gave rise to these questions in their well-
known paper, using a variation of Lucas’s (1978) pure exchange economy
with a Kydland and Prescott (1982) ”calibration” exercise. They chose the
parameters of the endowment process to match the sample mean, variance
and the annual growth rate of per capita consumption in the years 1889-1978.
The puzzle is that they were unable to find a plausible parameter pair of the
utility discount rate and the relative risk aversion to match the sample mean
of the annual real rate of interest and of the equity premium over the 90-year
period.

The puzzle has been verified by many others, e.g., Hansen and Singleton
(1983), Ferson (1983), Grossman, Melino, and Shiller (1987). Many theories
have been suggested during the years to explain the puzzle, but to date there
does not seem to be any consensus that the puzzles have been fully resolved
by any single of the proposed explanations 1.

We utilize a continuous-time setting, to take the full advantage of the
analytic power of infinite dimensional analysis. A survey of work in the
intersection between macroeconomics and finance in a discrete time setting
is given in Cochrane (2005). Our model describes a production economy,
where firms produce a single perishable consumption good, which can be
used for consumption as well as for investment in production technologies.
Prices are derived at which firms’ profit maximizing production decisions
and individuals’ preferred affordable consumption choices equate supply and
demand.

The firms’ optimal production decisions are taken as given by the con-
sumers, who observe what the firms’ shares sell for. Actual dividends paid
to the shareholders are irrelevant, as the firms’ investment decisions are now
fixed, in accordance with the Miller and Modigliani (1961) result. By na-
tional accounting, in equilibrium the representative agent holds one share of
the firms, and consumes the aggregate output from the firms.

1Constantinides (1990) introduced habit persistence in the preferences of the agents.
Also Campbell and Cochrane (1999) and Haug (2001) used habit formation. Rietz (1988)
introduced financial catastrophes, Barro (2005) developed this further, Aase (1993a-b)
extended the standard model to allow for semimartingales containing jumps, Weil (1992)
introduced non-diversifiable background risk, Heaton and Lucas (1996) introduce transac-
tion costs, and Jouini and Napp (2006) consider pessimism and doubt with heterogeneous
beliefs. There is a rather long list of other approaches aimed to solve the puzzles, among
them are borrowing constraints (Constantinides et al. (2001)), taxes (Mc Grattan and
Prescott (2003)), loss aversion (Benartzi and Thaler (1995)), survivorship bias (Brown,
Goetzmann and Ross (1995)), and heavy tails and parameter uncertainty (Weitzmann
(2007)).
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The original goal of this paper was to shed some light on the asset pricing
problems by including production. For this purpose we found it useful to start
our approach with a neoclassical growth model in a continuous-time setting,
along the lines of Cox, Ingersoll and Ross (1985a), and Duffie (2001).

The two first models considered use the conventional Eu-preferences by
adding expected utility period for period, and discounting utility. We explore
the possibilities of this model in explaining empirical facts. A two-factor
model is derived for risk premiums, which seems promising. However, we
proceed to formally prove that the consumption based capital asset pricing
model holds also in the production model, which more or less settles this
issue. The conventional model does not explain well empirical facts.

Expanding the set of technologies in a pure exchange economy to admit
capital accumulation as in Brock (1979) or Donaldson and Mehra (1984)
does not increase the set of joint equilibrium processes on consumption and
asset prices. This is argued in Mehra and Prescott (2007)), and is consistent
with our result. Therefore the resolution the asset pricing puzzles seems
unrealistic in the conventional model.

As a consequence we turn to stochastic differential utility in continuous
time. Here we analyze the resulting model using the stochastic maximum
principle. This model gives a more convincing explanation of the data than
the conventional model.

The version of recursive utility that we consider dates back to Epstein
and Zin (1989-91), who developed a framework for generalized expected util-
ity, which allows for the separation of risk aversion from the intertemporal
elasticity of substitution in consumption. Weil (1989) claimed that recur-
sive utility does not solve the puzzle. While he obtained a risk premium
of the same order as the conventional model, his risk-free rate was around
20−25 per cent, which was much even higher than what Mehra and Prescott
obtained. He termed this ”the risk-free rate puzzle”.

In Aase (2013) it is shown that by employing the market portfolio as a
proxy for the wealth portfolio, the agent becomes rather impatient (δ around
10 per cent). With a lower growth rate on the wealth portfolio the model
fits the data rather convincingly. By attempting to fit the recursive model
with a low value for the impatience rate and reasonable values for the other
parameters, in a situation where the market portfolio is used as a proxy for
wealth, this can give large values for the risk free interest rate, which explains
the results of Weil (1989).

Recursive utility use the foundational work by Kreps and Porteus (1978)
and Chew and Epstein (1991) of utility adapted to a dynamic context. A
fundamental problem with the conventional model is that in a temporal con-
text derived utility does not satisfy the substitution axiom, in which case
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additivity in probability of utility is lost (e.g., Mossin (1969)). Then it does
not help to add up expected utility across time.

In a continuous-time setting, Duffie and Epstein (1992a-b) and Duffie
and Skiadas (1994) elaborate the foundational work by Kreps and Porteus
(1978) in dynamic models. Duffie and Epstein (1992a), is the continuous-time
analogue of the model by Epstein and Zin (1989-91).

Aase (2014a-b) develop this model further and computes both risk pre-
miums and the equilibrium interest rate in a pure exchange economy, using
the stochastic maximum principle, and also include jumps in the continuous-
time model. These models are calibrated to the data of Mehra and Prescsott
(1985), and provide reasonable values for the parameters of the utility func-
tion. In addition this model framework is likely to give many other insights
that are difficult, or impossible, to obtain using the conventional model.

The paper is organized as follows: A neoclassical growth model is intro-
duced in Section 2, and reinterpreted as a production economy. Equilibrium
in this latter economy is defined, and established in Section 3. Section 4
calibrates the equilibrium to the historical data, and makes the connection
to the standard exchange economy. Section 5 attempts a generalization, and
a discussion appears in Section 6. Section 7 introduces stochastic differential
utility in the production setting, and Section 8 gives an alternative applica-
tion of the stochastic maximum principle. Here we give a short derivation of
the ICAPM of Merton (1973). Section 9 concludes.

2 The first model

2.1 A growth model

As a motivation, consider first the following variant of the neoclassical growth
model under certainty. Below we shall extend this model to include uncer-
tainty, which is the situation we are interested in. An economy is developing
over time in which K = Kt denotes the capital stock, c = ct consumption
and Z = Zt net national product at time t, and where Z = µ(K) denotes
the production function. For each t we have the national accounting identity

dKt

dt
= µ(Kt)− ct

which means that production, µ(Kt), is divided between consumption, ct,
and investment, dKt/dt. The problem is to find the optimal investment, or
equivalently, the optimal consumption, that solves

sup
c∈C

U(c) (1)
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where C is the choice set, and U the central planner’s utility function.
Uncertainty is introduced next via a probability space (Ω,F ,Ft, P ), where

Ω is the set of states, F is the set of events on which the probability measure
P is defined, and Ft is the set of possible events that may occur by time t,
often referred to as the ”information available” at time t. On this probability
space is defined a standard Brownian motion B, that is assumed to generate
the information filtration Ft. The dynamics of capital stock process K is
assumed to follow a process of the form

dKt = (µ(Kt, lt)− ct)dt+ σ(Kt, lt)dBt; K0 > 0,

where l is a vector of state variables, satisfying its own dynamic equation.
In a Solow variant (no uncertainty) l is labor, and µ is a Cobb-Douglas type
function. Cox, Ingersoll and Ross (1985b) specified l to be a mean reverting
diffusion process, a square root process, to capture cycles in the equilibrium
interest rate. In this case µ(Kt, lt) = µKKtlt and σ(Kt, lt) = σKKtlt. As we
are not primarily concerned with these issues in the following, we choose a
linear production technology, and set l ≡ 1. Our model for the capital stock
is

dKt = (µKKt − ct)dt+ σKKtdBt; K0 > 0, (2)

where µK and σK are strictly positive scalars. 2

The objective is to maximize utility subject to the dynamic constraints
(2) when the utility function U is time additive expected utility. The felicity
index is separable with a constant coefficient of relative risk aversion γ > 0,
γ 6= 1, and an impatience rate δ ≥ 0, i.e., u(c, t) = 1

1−γ c
(1−γ)e−δt. With an

infinite time horizon, the objective (1) can be written

sup
c∈C

E
[ ∫ ∞

0

u(ct, t) dt
]
. (3)

The first order conditions for this problem is given by the Bellman equa-
tion, which takes the form (x = Kt)

sup
c∈R+

(
DcJ(x)− δJ(x) +

c1−γ

1− γ

)
= 0 (4)

for all x > 0 where J(·) is the indirect utility function and

DcJ(x) = Jx(x)(µKx− c) +
1

2
Jxx(x)σ2

Kx
2.

2The model (2) could, perhaps, be considered as an extension of Domar’s growth model
to include uncertainty.
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The solution is given by

c(t) = θK(t) for all t, (5)

where the constant θ is

θ =
1− γ
γ

(γ
2
σ2
K +

δ

1− γ
− µK

)
. (6)

The detailed derivations are carried out in Appendix 1. For θ > 0 the
necessary transversality condition

lim
T→∞

E{e−δT |J(Kc
T )|} = 0 (7)

is satisfied for all initial values of the capital stock K0 > 0 and for all admis-
sible c ∈ C, see Duffie (2001), p 213. For the parameter ranges of interest, it
can readily be verified that θ ∈ (0, 1). Accordingly the optimal consumption
is a certain fraction of the capital stock. Notice that

var(ct) = θ2var(Kc
t ) < var(Kc

t ) (8)

for all t, so the variance of the consumption at each time t is smaller that the
variance of the capital stock at t. The implication of (5) is that the capital
stock Kc(t) is lognormally distributed along the optimal consumption path,
with dynamics

dKc(t) = Kc(t)(µK − θ)dt+Kc(t)σKdB(t), (9)

The conditional expected investment rate Et(”dK
c(t)/dt”) = Kc(t)(µK − θ)

for all t, where Et signifies conditional expectation given the information set
Ft at time t.

A direct consequence of (5) is that the volatility of the consumption
growth rate σc = σK , a fact we return to in Section 4.

Because consumption goods and capital are interchangeable, the produc-
tion technology may be interpreted in the context of either the model by Cox,
Ingersoll and Ross (1985) (real investment opportunities)) or the models by
Hayashi (1982) and Abel and Eberly (1994) (profit maximizing representa-
tive firm). In the latter investment of the firm is It = Kt − ct, and capital
accumulation is given by

dKt = (It − (1− µK)Kt)dt+ σKKtdBt.

Hence, the model is equivalent to an adaptation of the model in Hayashi
(1982) and Abel and Eberly (1994) in the sense that capital depreciation
(1− µK)Ktdt− σKKtdBt is risky.
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2.2 The production/exchange economy

We now reinterpret the description in Section 2.1 as a single firm that depletes
its capital stock Kt at rate δt ∈ Y , where Y is the production set, and that
maximizes its share price St. The economy is populated with one agent
having preferences specified by (1) and (3), and endowment one share of the
firm.

Thus δ is the optimal real output of the firm controlling the capital stock
production process and maximizing its share price, provided δt = ct for all t,
where ct is given in (5).

The consumer ignores what the firm is trying to do and merely observes
that the firm’s common share sells for St and each share pays the dividend
process δ that the firm determines. The consumer is free to purchase any
number of these shares, or to short-sell them, and can also borrow or lend at
a short-rate process r. The price process of the riskfree asset is θt, satisfying
dθt = rtθtdt. These are the only two securities available. The riskfree asset
is supposed to be in zero net supply.

Let Wt be the consumer’s wealth at time t, and nt = (nSt , n
θ
t ) the number

of stocks held in the risky asset and the riskfree asset, respectively, at time
t. The agent’s optimal consumption and investment strategy (ct, nt) satisfies

sup
(c,n)∈A

E
(∫ ∞

0

1

1− γ
c1−γt e−δt dt

)
where the set A signifies the set of permissible consumption processes c and
trading strategies n that finances c. We use the following notation for the
valuation functional: Π(c) is the value of the consumption stream c ∈ C,
where Π(·) is defined by

Π(c) =
1

π0
E
{∫ ∞

0

πtctdt
}
.

The state prices π strictly supports the allocation (c, δ) provided

U(c̃) > U(c)⇒ Π(c̃) > Π(c) (10)

for all c̃ ∈ C, and
Π(δ) ≥ Π(δ̃) (11)

for all δ̃ ∈ Y . Here the consumption choice set C is equal to the production
set Y .

Also (c, δ) is budget constrained by π if

Π(c) ≤ Π(nSδ + nθr). (12)
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Here (10) and (12) are the optimality conditions for the agent, given the state
prices π. Condition (11) is market value maximization by the firm, given π.
Because of strict monotonicity of the utility function, the budget constraint
(12) holds with equality.

3 Equilibrium

Consider the economy E = [(S, θ), π, δ, r, (c, n)]. A triple (c, δ, π) is an equilib-
rium for E provided (c, δ) is a feasible allocation that is budget constrained
and strictly supported by π.

In a representative agent economy this means that the optimal consump-
tion ct = δt for all t ≥ 0, and that the optimal strategy for the agent is
to hold one share of the firm and no shares of the riskfree security for each
t ≥ 0.

In order to find an equilibrium for this economy, we start with the state
price, which is given by the marginal utility at the optimal output, or πt =
u′(δt, t), where δt = θK

(δ)
t for any t. The state price πt = e−δt(θK

(δ)
t )−γ, a

geometric Brownian motion process, satisfies the dynamics

dπt = −πt
(
γ(µK − θ) + δ − 1

2
γ(γ + 1)σ2

K

)
dt− γπtσKdBt. (13)

This representation is instrumental in finding the equilibrium short term
interest rate, as we do next.

3.1 The interest rate

Our candidate for the equilibrium riskfree rate is rt = −µπ(t)
πt

, where µπ(t) is
the drift term in (13). It follows that

rt = δ + γµK −
1

2
γ(1 + γ)σ2

K − γθ for all t, (14)

i.e., the equilibrium interest rate is a constant. Recall the expression for the
interest rate in a pure exchange economy

rext = δ + γµc −
1

2
γ(1 + γ)σ2

c , (15)

where the parameter µc is the conditional expected growth rate in aggregate
consumption and σc is the corresponding volatility parameter. In the latter
model aggregate consumption is exogenous, while in our model consumption
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is endogenous. For these two models to be internally consistent, it must be
the case that σc = σK .

We return to a comparison with the standard exchange economy in Sec-
tion 4.2.

A closer examination of the expression (14) reveals that it can be written

r = µK − γσ2
K , (16)

i.e., as the marginal product of capital adjusted for uncertainty. A closer
examination shows that rex = r (see Section 4.2).

If the conditional expected growth rate of the capital stock increases,
the equilibrium interest rate will increase, which is the income effect. Faced
with better prospects for the future, our consumer would like to consume
more now, and hence borrow. Since this is impossible, the interest rate must
increase to make the agent just indifferent to status quo.

(Equation (16) says that the interest rate equals the expected stock return
minus the equity premium, as will become clear from the next section.)

3.2 The price of the firm’s stock

We now turn to the candidate for the price process for the firm’s shares.
Given a dividend stream δt from the firm and state prices πt, the price S at
time t equals

St =
1

πt
Et

(∫ ∞
t

πsδs ds
)
. (17)

By carrying out this computation, first we obtain by Fubini’s theorem that

St = θK
(δ)
t

∫ ∞
t

e−δ(s−t)Et{exp
(
(1− γ)(µK − θ −

1

2
σ2
K)(s− t)

+(1− γ)σK(Bs −Bt)
)
}ds.

Next, by the moment generating function of the normal distribution we get

St = θK
(δ)
t

∫ ∞
t

e[(1−γ)(µK−θ)−
1
2
γ(1−γ)σ2

K−δ](s−t) ds =
θ

α
K

(δ)
t ,

where

α = −[(1− γ)(µK − θ)−
1

2
γ(1− γ)σ2

K − δ].

Finally it can be verified that α = θ, so the spot price is St = K
(δ)
t for all

t. As we have shown that K
(δ)
t is lognormal when δ = c, and c is given by

(5), it follows that our candidate price process St is a geometric Brownian
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motion process, where the conditional expected return on the capital gains
are (µS − θ) = (µK − θ), and the associated volatility σS = σK . This means,
for example, that the securities market model is dynamically complete.

In the production model of Section 2 there are no adjustment costs, in
which case it is konwn that Tobin’s marginal Q is constant and equal to 1.
This is consistent with St = Kt.

Recall when there are dividends, we adjust the price process for dividends
and obtain the gains process Gt , sometimes called the adjusted price process,
defined by

Gt = St +

∫ t

0

δsds (18)

Using the above results the gains process is

dGt = (µK − θ)Stdt+ δtdt+ σSStdBt,

or, since δt = θSt we obtain

dGt = µSStdt+ σSStdBt. (19)

The cumulative-return process Rt for this security is defined by dGt = StdRt,
so that

dRt = µSdt+ σSdBt. (20)

The process Rt takes into account both the capital gains and the dividends
over the small time interval (t, t + dt]. This expression shows that R is a
Brownian motion with drift. Because of this relation, we sometimes write
µR instead of µS, and similarly σR instead of σS.

3.3 The optimal consumption and portfolio problem

Having a candidate for the price process of the firm’s stock, we can now re-
formulate the consumer’s optimal consumption and portfolio choice problem.
The problem is to solve

sup
(c,ϕ)

E
(∫ ∞

0

1

1− γ
c1−γt e−δt dt

)
subject to the dynamic budget constraint

dWt =
(
Wt

(
ϕt(µS − rt) + rt

)
− ct

)
dt+WtϕtσSdBt, W0 = S0, (21)

where Wt is the agent’s wealth at time t, and ϕt =
nSt Gt
Wt

is the fraction of
wealth held in the risky asset at time t.
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In formulating the budget constraint (21) we have made use of the dy-
namics of the price process Gt that adjusts for dividends. This problem is
now well suited for dynamic programming, and the Bellman equation is

sup
c,ϕ

{
Dc,ϕJ(w)− δJ(w) +

c(1−γ)

1− γ

}
= 0, w > 0, (22)

where (w = Wt)

Dc,ϕJ(w) = Jw(w)
(
ϕ(µS − r)w + rw − c) +

1

2
w2ϕ2σ2Jww(w).

The first order condition in ϕ is

Jw(w)(µS − r)w + w2ϕσ2Jww(w) = 0 for all w > 0,

which gives in terms of the dynamics of G that

ϕt =
(
− Jw(Wt)

Jww(Wt)Wt

) µS − r
σ2
S

, (23)

Here ϕ is proportional to the the relative risk tolerance of the agent’s indi-
rect utility, increases with the risk premium (µS − r), and decreases as the
volatility parameter σS increases, ceteris paribus.

Next we find the first order condition for optimization in the consumption
variable c. From the Bellman equation it is seen to be

−Jw(w) + c−γ = 0,

which implies that

c =
(
Jw(w)

)− 1
γ , or ct =

(
Jw(Wt)

)− 1
γ

in terms of the random wealth process Wt. Notice how the consumption
choice problem is separated from the investment problem. In Appendix 2 it
is shown that the solution is

ct = ηWt (24)

where the constant η is

η =
[1− γ

γ

( δ

1− γ
− r − 1

2

1

γ

(µS − r)2

σ2
S

)]
. (25)

The agent optimally consumes a constant proportion of current wealth.
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Returning to the optimal investment policy, it is seen to be

ϕt =
1

γ

µS − r
σ2
S

, (26)

i.e., the relative risk tolerance of the indirect utility function is the same as
the relative risk tolerance of the felicity index. The optimal investment ratio
is of the same form as the classical solution in the no-dividend case, known to
follow when the price process is lognormal (e.g., Mossin (1968), Samuleson
(1969), Merton (1971)3). The result is the same as when the price S is
cum-dividends.

Since we have only one consumer in our model, he is interpreted as the
representative agent in the context of equilibrium. For the above to be an
equilibrium, it must be the case that the price St of the firm and the interest
rate rt are both set at each time t such that the agent’s fraction of wealth in
the risky asset is always equal to 1, or ϕt = 1 for all t. From (26) it follows
that in equilibrium it must be the case that

µS − r = γσ2
S. (27)

The above investment strategy is only feasible if the dividends δ from the firm
equals the optimal consumption c derived in (24). This is indeed the case:
By comparing c to the optimal consumption in (5), derived in the centralized
economy of Section 2.1, we can show that equating these two expressions is
equivalent to the equilibrium relation (27). In other words

δt = θKt = ηWt = ct for all t⇔ µS − r = γσ2
S. (28)

Thus taking the output from the single firm δt to be equal to the optimal
consumption ct in the centralized economy of Section 2.1, we have shown that
this is also equal to the optimal consumption of the representative agent,
denoted ct as well, in the decentralized economy, provided that (27) holds.

Returning to (27) and recalling that our candidate for the riskfree rate is

r = γ(µK − θ) + δ − 1

2
γ(1 + γ)σ2

K ,

it follows that

µS = γ(µK + σ2
S − θ) + δ − 1

2
γ(1 + γ)σ2

K

3Notice that these references do not deal with equilibrium; the prices of the risky assets
are given exogenously.
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Inserting for θ from (6) we obtain that µS = µK , which is consistent with
our earlier conjecture for the stock price.

Notice that the wealth of the representative agent can always be found
by a prospective point of view as

Wt =
1

πt
Et

(∫ ∞
t

πsδs ds
)
,

which by (82) means that Wt = St for all t.
What remains to be verified for an equilibrium to be satisfied is profit

maximization at the state prices πt. To this end, recall that the securities
market is dynamically complete. This means that the dynamic optimization
problem in Section 2.1 is equivalent to the following ”static” problem

sup
δ̃

U(δ̃) subject to Π(δ̃) ≤ w,

where w = S0 · 1 = K0, and Π(δ̃) = 1
π0
E{
∫∞
0
δ̃tπtdt}. Since we have shown

that the solution δ to this problem satisfies Π(δ) = S0, the problem can be
written

sup
δ̃

U(δ̃) subject to Π(δ̃) ≤ Π(δ),

or,
U(δ̃) ≤ U(δ)⇔ Π(δ̃) ≤ Π(δ) for any δ̃ ∈ Y ,

which shows that the requirement (11) holds, i.e., the optimal output δ from
the firm maximizes profits at prices π.

4 Comparisons and calibrations

In this section we first relate our results to the corresponding results of the
pure exchange economy, that is most commonly employed in the precent
setting. Then we calibrate our model to the data used by Mehra and Prescott
(1985), and as expected, we recover the equity premium puzzle. In doing so,
we interpret our firm as the US production economy, and the risk premium
of the risky asset as the equity premium.

4.1 The connection to the CCAPM

One result of our analysis is that the optimal consumption ct = θKt, which
means that the optimal consumption has the dynamics

dct = (µK − θ)ctdt+ σKctdBt, (29)
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or the growth rate in consumption can be expressed as follows

dct
ct

= (µK − θ)dt+ σKdBt. (30)

We define the growth rate of the per capita real consumption by C, or dct =
ctdCt, so that

dCt = µCdt+ σCdBt,

where µC = µc, σC = σc. Recall the corresponding expression for the
cumulative-return process Rt of the firm in (20). Using this, the consumption
based CAPM has the following form

µR − r = γσR,C (31)

in the pure exchange economy - where σR = σS. Here σR,C is the covariance
rate between R and C. From the equation for the consumption growth in
(30), we see that the risk premium in (31) can be written

µR − r = γσS,K . (32)

Note that this is consistent with our result (27), since σS = σK because

St = K
(δ)
t , diffusion invariance, so the instantaneous correlation coefficient is

unity, and the equality µR = µS.
The linear relationship ct = θSt between consumption and equity has

as a consequence that (8) holds, or var(ct) = θ2var(St) < var(St), since
θ ∈ (0, 1). Thus very different levels of variances of equity and consumption
are allowed. However, as we have demonstrated, the linear relationship leads
to the same percentage-wise changes in consumption and equity, so the values
for parameters σR and σC are the same. As we shall see, this is not consistent
with the data.

4.2 A numerical calibration exercise

In Table 1 we present the key summary statistics of the data in Mehra and
Prescott (1985), of the real annual return data related to the S&P-500, de-
noted by M , as well as for the annualized consumption data, denoted c, and
the government bills, denoted b 4.

Since our development is in continuous time, we have carried out stan-
dard adjustments for continuous-time compounding, from discrete-time com-
pounding. This gives, e.g., the estimate κ̂Mc = .4033 for the instantaneous
correlation coefficient κ(t)5.

4There are of course newer data by now, but these retain the same basic features. If
our model can explain the data in Table 1, it can explain any of the newer sets as well.

5The full data set was provided by Professor Rajnish Mehra.
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Expectation Standard dev. Covariances

Consumption growth 1.81% 3.55% σ̂Mc = .002268
Return S&P-500 6.78% 15.84% σ̂Mb = .001477
Government bills 0.80% 5.74% σ̂cb = −.000149
Equity premium 5.98% 15.95%

Table 1: Key US-data for the time period 1889-1978. Continuous-time com-
pounding.

Using these summary data for the volatility of equity and the market
portfolio M , we have an estimate of 0.1584 for the parameter σS. Taking
the CCAPM (31) as the starting point, from the data of Table 1 we ob-
tain an estimate of the relative risk aversion γ̂ = 26.37, which is considered
implausible. This is the equity premium puzzle.

From the expression (32) it may appear that we can get a reasonable risk
aversion in isolation when using .1584 as an estimate of σR and σK , but the
model also tells us that σC = σR = σK , and using the estimate .0355 for σC
the result is not plausible, in fact much worse than above. This is another
way of expressing this puzzle.

Returning to the equilibrium interest rate, when aggregate consumption
is taken as exogenously given, and, moreover, is lognormal as in (29), the
equilibrium interest rate for our CRRA consumer is known to have the form

rt = δ + γµc −
1

2
γ(1 + γ)σ2

c (33)

in the canonical model, as was remarked in (15). Since the growth rate in
aggregate consumption is µc = (µK − θ) and the volatility of the growth rate
of consumption is σc = σK , it follows that (33) can be written

rt = δ + γ(µK − θ)−
1

2
γ(1 + γ)σ2

K ,

which is seen to be the the same as our expression (14) for the equilibrium
short term interest rate in the production economy. Accordingly our results
are consistent with those of the standard pure exchange economy. Using
(33), with the above value of γ and the estimate of σc in Table 1, we obtain
an estimate of the impatience rate δ̂ = −.015.

4.3 Summary for the linear model

The simple linear production and exchange economy considered does not
solve the puzzles, but yields some insights that will be of value in later
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sections. In all the major aspects this production model is at the same level
of complexity as the standard Lucas (1978)-model, so we should expect the
same level of explanatory power from either of these two approaches.

The consumers’ investment problems can be separated from the optimal
consumption choices, and as a consequence the consumers’ behavior in the
financial market can be explained from financial market data alone, so long
as national accounting is satisfied (the budget constraint must hold).

As in Sargent and Hansen (1999), we could imagine that investors some-
how do not thrust the model (since it is so simple), and this added uncertainty
leads them to require a higher compensation for risk bearing. These authors
analyze this type of problem in a model of habit formation. Instead, we
consider recursive utility in Section 7, where this type of construction is not
needed to explain the observed equity premium.

In order to address this issue of σC = σR in the simple model, we next turn
to a more general model. In particular we consider from now a d-dimensional,
standard Brownian motion, where d > 1, so that covariance rates can be writ-
ten as inner products, i.e., σC,R(t) =

∑d
i=1 σC,i(t)σR,i(t) where the individual

terms are not constants, but adapted stochastic (ergodic) processes satisfying
standard conditions. We start with the Markovian case.

5 The general set up

The model we precent here is in the same spirit as the one of sections 2 and
3, and will have the advantage that it overcomes the weakness of the linear
model, since it allows σC 6= σR.

First, there exists one production good, which is also the consumption
good. This good may be consumed or invested in two technologies. One is
risk-free, the other consists of the capital stock K satisfying the dynamics

dKt = (KtµK(Kt, lt)− ct)dt+KtσK(Kt, lt)dBt, (34)

where l is a state variable satisfying its own dynamics

dlt = ltµl(lt)dt+ ltσl(lt)dBt. (35)

The term µK may be nonlinear. We also allow the various drift and diffusion
terms to be functions, not merely constants as in the first section. Thus we
depart from the convenient log-normality universe of the first section.

If we interpret l as labor, it is clear that the utility function u must
depend upon leisure, so that u = u(ct, lt) at time t, where the utility function
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is decreasing in its second variable. At first the agent is not allowed to use
the risk-free technology. The problem of the agent is then the following

max
(c,l)∈C

E
{∫ ∞

0

u(ct, lt)e
−δtdt

}
(36)

subject to the wealth dynamics

dWt = (WtµK(Wt, lt)− ct)dt+WtσK(Wt, lt)dBt.

The Brownian motion may be augmented by one independent component
corresponding the the factor l. It is here assumed that the agent invests
everything in the production technology. The Bellman equation for this
problem is

sup
c,l

{
DcJ(w, l)− δJ(w, l) + u(c, l)

}
,

where

DcJ(w, l) =Jw(w, l)(µK(w, l)w − c) + Jl(w, l)lµl(l)+

1

2
Jww(w, l)w2σK(w, l)σKw, (l) +

1

2
Jl,,l(w, l)l

2σl(l)σl(l)+

Jwl(w, l)wσK(w, l)σl(l)l.

(37)

Assuming an interior soultion, the first order condition in the consumption
variable c is,

−Jw(w, l) + uc(c, l) = 0. (38)

Further, assuming that the marginal utility uc is invertible in its first variable,
and that the indirect utility function J is well defined and sufficiently smooth,
the optimal consumption is given by

c∗(t) = u−1c
(
Jw(Wt, lt), lt

)
. (39)

5.1 The equilibrium real interest rate

As in CIR (1985a), we may first introduce riskless borrowing and lending,
and second a securities market. Considering the first, in equilibrium the
representative agent is just indifferent to holding the riskfree asset, so the
short term equilibrium interest rate r is determined from the constraint that
the agent invests everything in the risky technology.

The equilibrium interest r may either be less or greater that µK , the
expected return on optimally invested wealth. Although investment in the
production process exposes an individual to uncertainty about the output
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received, it may also allow him to hedge against the risk of less favorable
changes in technology. An individual investing only in locally riskless lending
would be unprotected against this latter risk. This is, for example, the case
with the individual in the first part of the paper, when the riskless rate is

r = µK − γσ2
K ,

which does not take into account the covariance between wealth and the
capital stock. In general, either effect may dominate.

As noted in the first part, the spot rate can be determined from the state
price deflator π as follows

rt = −µπ(t)/πt, (40)

where the state price deflator is πt = uc(c
∗(t), l∗t )e

−δt = Jw(Wt, lt)e
−δt. In

terms of the dynamics for the quantity Jw(Wt, lt), by Ito’s formula we then
get the following dynamics of π

dπt = µπ(t)dt+ e−δt
(
Jww(Wt, lt)WtσK(lt) + Jwl(Wt, lt)ltσl(lt)

)
dBt (41)

where the drift term µπ is the following

µπ(t) =− δπt + e−δt
(
Jww(Wt, lt)(WtµK(Wt, lt)− c∗(t))

+ Jwl(Wt, lt)(ltµl(lt) +
1

2
Jwww(Wt, lt)W

2
t σK(Wt, lt)σK(lt)

+ Jwwl(Wt, lt)WtltσK(Wt, lt)σl(lt)

+
1

2
Jwll(Wt, lt)l

2
tσl(lt)σl(lt)

)
.

(42)

From this it follows that the equilibrium short rate is

rt =δ +
(−JwwWt

Jw

)(
µK(Wt, lt)−

u−1c (Jw, l)

Wt

)
+
(−Jwllt

Jw

)
µl(lt)

+
1

2

(−JwwwW 2
t

Jw
σK(Wt, lt)σK(Wt, lt)

)
+

1

2

(−Jwlll2t
Jw

σl(lt)σl(lt)
)

+
(−JwwlWtlt

Jw
σK(Wt, lt)σl(lt)

)
,

(43)

for all t ≥ 0. This may be compared to equation (14) for the corresponding
linear technology, which is

rt = δ + γ(µK − θ)−
1

2
γ(1 + γ)σ2

K .

In the above the term u−1
c (Jw,l)
Wt

=
c∗t
Wt

= θ = the consumption to wealth ratio
in the linear model, the next term has no counterpart in this model, the
fourth term on the right hand side of (43) corresponds to last term above,
while the last two terms have no counterparts in the simpler model.
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5.2 The price of the firm’s stock

Next we introduce a securities market. The setting and notation are the
same as in Section 3.3. The equilibrium price process of the firm is denoted
by St and is given by equation (82) with the state price π satisfying the
dynamic equation (41), and the dividends δ(t) = c∗(t), the latter given in
(39). The gains process Gt, the price process adjusted for dividends, has the
representation

dGt = µG(St, lt)dt+ σG(St, lt)dBt,

where the wealth Wt depends on the optimal dividends and labor given in
(39). Defining the cumulative-return process R of this security by dGt =
StdRt, we may write

dRt = µR(St, lt)dt+ σR(St, lt)dBt,

where µR(St, lt) = 1
St
µG(St, lt) and σR(St, lt) = 1

St
σG(St, lt), assuming St > 0

a.s. for all t. Furthermore µR(St, lt) = µK(Kt, lt), σR(St, lt) = σK(Kt, lt) and
S = K.

Finally we let the agent trade freely in the capital market consisting of
the firm’s shares and the riskfree asset.

5.3 The optimal consumption and portfolio problem

The consumer/investor is initially endowed with one share of the firm, and
solves the problem

sup
c,l,ϕ

E
{∫ ∞

0

e−δtu(ct, lt)dt
}
,

subject to the dynamic wealth constraint

dWt =
(
Wt

[
ϕt
(
µR(St, lt)− rt

)
+ rt

]
− ct

)
dt+WtϕtσR(St, lt)dBt,

where W0 = S0. Here the wealth Wt depends on the optimal consumption c
and labor l. The associated Bellman equation is

sup
c,l,ϕ

{
Dc,ϕJ(w, l)− δJ(w, l) + u(c, l)

}
= 0, w > 0,

where

Dc,ϕJ(w, l) =Jw(w, l)
(
ϕ(µR(w, l)− rt)w + rtw − c

)
+ Jk(w, l)lµl

+
1

2
Jww(w, l)w2ϕ2σR(w, l)σR(w, l) +

1

2
Jl,l(w, l)l

2σlσl

+Jwl(w, l)wlϕσR(w, l)σl.
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The first order condition in ϕ is

Jww(w, l)w2σR(w, l)σR(w, l)ϕ+ Jw(w, l)(µR(w, l)− rt)w
+ Jwl(w, k)wlσR(w, l)σl(l) = 0.

This gives for the optimal demand of the risky asset

Wtϕt =
(
− Jw(Wt, lt)

Jww(Wt, lt)

)(µR(Wt, lt, t)− rt
σR(t)σR(t)

)
+
(
− Jwl(Wt, lt)lt
Jww(Wt, lt)

)( σR(t)σl(t)

σR(t)σR(t)

)
. (44)

The demand function is seen to have two components: The first one is the
usual demand function for a risky asset, similar to the one encountered by a
single-period mean-variance maximizer. This is what an investor can relate
to when he only has access to the financial market. For the linear model this
is the only term that appears in the demand function, as can be seen from
(23). In this respect the time continuous model with the linear production
technology has much in common with the widely taught, one-period mean-
variance model.

The last term reflects the investor’s demand for the risky asset to hedge
against unfavorable shifts in the investment opportunity set, here represented
by the variable l. This term is the hedging demand, available when the in-
vestor also uses information about the production (labor) part of the econ-
omy. For the linear model of the first part, this hedging component is not
present. The special issue here is that labor, or leisure, is a decision variable
determined by the agent according to his or her preferences. This deter-
mination we have left out in the above derivation, just assuming that lt is
optimally set at each time t.

5.4 The risk premium

The representative agent is initially endowed with one share of the firm, in
which case the market clearing condition is ϕt = 1 a.s. for all t, so the
risk free asset is in zero net supply. From the expression (44) we get the
equilibrium risk premium

µR(t)− rt =
(
− Jww(Wt, lt)Wt

Jw(Wt, lt)

)
σR(t)σR(t)

+
(
− Jwl(Wt, lt)lt

Jw(Wt, lt)

)
σR(t)σl(t). (45)
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Comparing with the simple model of the first part, we see from (27) that
the second term on the right-hand side in the above expression is missing.
For investors who only focus on the stock market, this may appear to give a
reasonable risk premium. However, it does not fit the data, since the model
also implies that σc = σR. The second term on the right hand side appears
in our framework because of the inclusion of the ”state variable” l.

Considering the expression in (45), could it be, for example, that the
first term on the right hand side is approximately equal to the relative risk
aversion γ, times the variance rate of the return, and that the last term is
small compared to the first term, such that µR − r ≈ γσ2

R? If this were the
case, this model would give a reasonable equity premium. That this is not
so, will be explained in the next section.

As a preparation of this, we first seek an interpretation of the terms of
the risk premium in (45). In doing so, we find the dynamics of the quantity
e−δtuc(c

∗
t , lt), and compare this to the dynamics of the state price deflator πt

given in (41). By diffusion invariance and the envelope theorem, it follows
that

ucc(c
∗
t , lt)c

∗
W = Jww(Wt, lt) and ucc(c

∗
t , lt)c

∗
l = Jwl(Wt, lt)

where c∗W is the partial derivative of c∗ with respect to wealth, and c∗l is the
partial derivative of c∗ with respect to the state variable l. Using this, the
risk premium can be represented in the following convenient form

µR(St, lt)− rt =
(
− ucc(c

∗
t , lt)c

∗
t

uc(c∗t , lt)

)(
elW (c∗t )σR(St, lt)σR(St, lt)

+ ell(c
∗
t )σR(St, lt)σl(lt)

)
, (46)

where elW (c∗t ) =
c∗WWt

c∗t
, and ell(c

∗
t ) =

c∗l lt
c∗t

are the partial consumption elastic-

ities with respect to wealth and leisure, respectively.
Similarly, the equilibrium demand for the risky asset is given by

ϕt =
(
− uc(c

∗
t , lt)

ucc(c∗t , lt)c
∗
t

) 1

elW (c∗t )

µR − r
σRσR

− ell(c
∗
t )

elW (c∗t )

σRσl
σRσR

. (47)

The first term is seen to be the classical one in standard finance in the case
when elW (c∗t ) = 1, that is known to be the only term in the pure demand
theory (Mossin (1968), Samuelson (1969), Merton (1971)). The last term is
the hedging demand related to l.

The fraction
ell(c

∗
t )

elW (c∗t )
is a marginal substitution ratio between l and W .
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Using the above elasticities, the short term interest rate in (43) can be
written

rt = δ +
(
− ucc(c

∗
t , lt)c

∗
t

uc(c∗t , lt)

){(
elW (c∗t ) + ell(c

∗
t )
)
µl(lt)

− elW (c∗t )
u−1c (JW , lt)

Wt

}
+ · · · (48)

where we have omitted the higher order terms.
As with the linear model, since we do not have any adjustment costs,

Tobin’s marginal Q is again be constant and equal to 1, and the stock price
simply equals the capital stock, which we have employed above. This sim-
plifies the risk premium to contain only one factor. What this factor looks
like, will be derived next.

5.5 The consumption based capital asset pricing model

Returning to the risk premium in (46), we want to explore in what sense it
is different from the risk premium obtained in the linear production model.
For example, if elW (c∗t ) = elK(c∗t ) ≈ 1

2
, these two risk premiums would yield

approximately the same numerical results, provided σR = σK . Recall that
we now operate with a nonlinear production technology, so, in particular it
is no longer true that the optimal consumption is proportional to wealth. It
turns out that also in the model of this section, the risk premium can be
expressed as

µR(t)− rt =
(
− ucc(c

∗
t , lt)c

∗
t

uc(c∗t , lt)

)
σC(t)σR(t), (49)

i.e., the CCAPM holds true also here. The simplest way to demonstrate
this is to find the dynamics of c∗t using the representation in (39), which is
c∗(t) = u−1c

(
Jw(Wt, lt), lt

)
. By Itô’s lemma we get

dc∗t = µc∗(t)dt+
(Jww(Wt, lt)

ucc(c∗t , lt)

)
σWdBt +

(Jwl(Wt, lt)

ucc(c∗t , lt)

)
ltσldBt

+
∂

∂l
u−1c (Jw(Wt, lt), lt)ltσldBt, (50)

where the function u−1c ( · , l) inverts uc( · , l), meaning that u−1c (uc(x, l), l) = x
for all (x, l). From the first order condition in consumption given in (38) we
have that Jw(Wt, lt) = uc(ct, lt). This implies that

∂

∂l
u−1c (uc(c

∗
t , lt), lt) = 0 for all values of c∗t and lt a.s.
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From this the volatility σC(t) of the consumption growths is

σC(t) =
(Jww(Wt, lt)

ucc(c∗t , lt)c
∗
t

)
σW +

(Jwk(Wt, lt)lt
ucc(c∗t , lt)c

∗
t

)
σl.

Accordingly is(
− ucc(c

∗
t , lt)c

∗
t

uc(c∗t , lt)

)
σC(t)σR(t) =

(
− Jww(Wt, lt)Wt

Jw(Wt, lt)

)
σRσR

+
(
− Jwk(Wt, lt)lt

Jw(Wt, lt)

)
σRσl = µR(t)− rt, (51)

where we have used the first order conditions in (38) once more, and the
expression for the risk premium in (45) accounts for the last equality. That
is, the CCAPM holds in this particular form.

Similarly, using the connection πt = uc(c
∗
t , lt)e

−δt between the state price
and the marginal utility of consumption, it follows from the relation rt =
−µπ(t)/π(t) that the spot interest rate of this section can be written

rt = δ +
(
− ucc(c

∗
t , lt)c

∗
t

uc(c∗t , lt)

)
µC(t)

− 1

2

(
− uccc(c

∗
t , lt)c

∗
t

ucc(c∗t , lt)

)(
− ucc(c

∗
t , lt)c

∗
t

uc(c∗t , lt)

)
σC(t) · σC(t), (52)

which reduces to (33) under the assumptions of Section 3. Thus this model
is fairly robust.

As mentioned, Mehra and Prescott (2008)) explain that expanding the
set of technologies in a pure exchange economy to admit capital accumulation
and production does not increase the set of joint equilibrium processes on
consumption and asset prices. The results of this section are in accordance
with this general observation, and can be considered as a formal proof of this
result.

With a relative risk aversion of γ = 3 and a subjective rate of δ = 0.01
for the representative consumer, the present model demands a risk premium
of 0.68% and a short term interest rate of around 5.7% for the consumption
and equity moment estimates in Table 1, i.e., far from the estimates in Table
1, which are 5.98% and .80% respectively.

6 Discussion of the conventional model

The result of the last section shows that the ”real” economy matters also
in the agent’s portfolio choice problem: By merely using the local mean-
variance theory, consistent with the market based CAPM, the agent will
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seemingly look at the financial market in isolation, and with a relative risk
aversion close to two, an equity risk premium of around six percent seem to
emerge from the observed market volatility of equity. In its turn this leads
to an equilibrium short rate of around one per cent, both numbers consistent
with the estimates in Table 1. However, the model tells us that this is
not consistent: It is the consumption-based CAPM that is valid when the
representative agent has the conventional preferences represented by additive
and separable von Neumann-Morgenstern expected utility, and this leads to
the asset pricing puzzles discussed in this paper. This model also gives a
much too large value for the risk-free interest rate. This clearly points in the
direction of a new approach.

Platen and Heath (2006) propose a “benchmark approach” to the pricing
of risky assets, in which the deflated price processes Stπt are supermartin-
gales instead of martingales as in in the standard theory. In particular,
Platen (2011) presents a graph of the density process ξt = πt ·exp(

∫ t
0
r(u)du)

related to the S&P500-index during the period from 1920 to 2010. With-
out giving any formal statistical analysis, it seems like this filtered estimate
falls with time, supporting a supermartingale interpretation for ξ. This may
indicate that there is no equivalent martingale measure, which in its turn
implies ”well-behaved” arbitrage (e.g., Duffie (2001)). Abstracting from the
no-arbitrage issue, this gives an indication of a smaller interest rate rt than
predicted by the formula (52), but also a smaller equity premium than pre-
dicted by the formula (49). In order for a larger equity premium to follow,
the density process must instead be a submartingale, showing how difficult
it is to explain both these puzzles at once. Thus, a martingale interpretation
of the density process seems like a happy compromise after all, since this is
the only object that is both a supermartingale and a submartingale.

Kimball et.al. (2008) indicate a value of the relative risk aversion around
8, based on responses to hypothetical income gambles in the Health and
Retirement Study, a large-scale survey in the USA. With the data in Table
1, this gives a low equity premium, and a risk-free rate that is much too
large. Due to heterogeneity they also obtain an estimate of the relative
risk tolerance of .206 (which is not 1/γ due to Jensen’s inequality in their
model). Using this expression in the formula for the risk-free interest rate and
thus interpreting this in the “best way possible”, we only obtain a moderate
improvement in the interest rate.

Turning to recursive utility, we demonstrate in the last section of the
paper how the main issues discussed above can be resolved.
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7 Recursive utility

7.1 The production economy

In this section we give a brief outline of the theory of risk premiums when
the agent has recursive utility. We also derive the equilibrium interest rate.
This is built on the treatment in Aase (2014a). We will, among other things,
use the stochastic maximum principle, which we now short sketch: We are
given a stochastic control problem for a system of coupled forward-backward
stochastic differential equations (FBSDEs): The forward system is{

dXt = µX(t,Xt, Vt, Zt, ut)dt+ σX(t,Xt, Vt, Zt, ut)dBt

X0 = x ∈ R
(53)

Here ut is a control variable, which in our case is (ct, lt). The backward SDE is
given by the recursive utility specification (see Duffie and Epstein (1992a,b)){

dVt = −g(Vt, Xt, Zt, ut)) dt+ Zt dBt

VT = 0,
(54)

where T is the finite horizon. The backward equation is dictated by the
performance functional (= utility function) such that U(c) = V0, which for
recursive utility takes the form

U(u) = E
(∫ T

0

f̃(Xt, Vt, Zt, ut) dt
)
, (55)

for u ∈ A whereA is a set of admissible Ft-predictable controls. The problem
is find u∗ ∈ A such that

sup
u∈A

U(u) = U(u∗). (56)

For recursive utility Vt is future utility at each time t, and U(c) = V0. The
function f̃(Xt, Vt, Zt, ut) = f(ct, lt, Vt) − 1

2
A(Vt)Z

′
tZt, where f corresponds

to a felicity index and A penalizes for risk aversion (recall the Arrow-Pratt
approximation to the certainty equivalent of a mean zero random variable).
The pair (f, A) is called an aggregator. The important novelty here is that
consumption substitution in a deterministic model is contained in the f -term,
separated from risk aversion measured by the A-term. This separation turns
out to be important in a temporal context, meaning in models where the
consumer consumes more than once, and there is uncertainty between points
in time where consumption takes place (see e.g., Mossin (1969)).
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Below we use the following specification for f and A:

f(c, v) =
δ

1− ρ
c1−ρ − v1−ρ

v−ρ
and A(v) =

γ

v
. (57)

The function f is of a CES type, in which case the choice of functions fall in
the Kreps and Porteus (1978)-family. The only new parameter here relative
to the first part of the paper is ρ, called the time preference. It measures the
agents’s aversion to consumption variations across time in a deterministic
model. The elasticity of intertemporal substitution in consumption is ψ =
1/ρ, referred to as the EIS-parameter. In the conventional model ρ = γ, here
we allow γ to be different from ρ. The parameters δ and γ have the same
interpretations as in the first part of the paper, so that γ measures the agents
aversion at each time to variations in consumption the next period due to
the different states of the world than may occur. Clearly γ and ρ are related
to different properties of an individual’s attitudes.

The Hamiltonian for the system is given by

H(t) := H(Xt, Vt, Zt, Yt, pt, qt, ut) = f̃(Xt, Vt, Zt, ut) + g(Vt, Xt, Zt, ut)Yt

µX(t,Xt, Vt, Zt, ut)pt + σX(t,Xt, Vt, Zt, ut)qt. (58)

where the adjoint variables are Yt, pt, and qt (see, for example, Pontryagin
(1972), Bismut (1978), Kushner (1972), Bensoussan (1983), Øksendal and
Sulem (2013), or Peng (1990)).6

The associated forward/backward systems for the adjoint processes Yt, pt,
and qt are {

dYt = ∂H
∂v

(t) dt+ ∂H
∂z

(t) dBt

Y0 = 1,
(59)

and {
dpt = −∂H

∂x
(t) dt+ qt dBt

pT = 0,
(60)

Under certain conditions (see e.g., Øksendal and Sulem (2014)) the ut that
maximizes H(t) for each t solves problem (56).

7.2 The pure exchange economy

For recursive utility it will be convenient to first consider the pure exchange
economy. We return to including labor later. We then reformulate the prob-
lem from one that is tailor made for dynamic programming, to one in which

6In the Hamiltonian we have omitted Tobin’s Q, since it is equal to 1 in equilibrium for
the same reason as before (the shadow price of one unit of investment is worth one unit
of account).
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the stochastic maximum principle is more appropriate. Instead of maxi-
mizing utility subject to a dynamic constraint on wealth Wt, as in (36), a
slightly more general formulation is the following: The representative agent’s
problem is to solve

supc∈LU(c)

subject to the budget constraint

E
{∫ T

0

ctπtdt
}
≤ E

{∫ T

0

etπtdt
}
.

Here future utility at time t, Vt = V c
t and (Vt, Zt) is the solution of the

backward stochastic differential equation (BSDE){
dVt = −f̃(ct, Vt, Z(t)) dt+ Z(t) dBt

VT = 0.
(61)

so that the function g of the drift term of equation (54) is given by g = f̃ for
recursive utility.

Existence and uniqueness of solutions of this BSDE is treated in the
general literature on this subject, see e.g., Theorem 2.5 in Øksendal and
Sulem (2013), or Hu and Peng (1995). For the particular quadratic BSDE
(61) existence and uniqueness follows from Duffie and Lions (1992).

Since U(c) = V0, for α > 0 we define the Lagrangian

L(c;α) = V0 − αE
(∫ T

0

πt(ct − et)dt
)
.

In order to find the first order condition for the representative consumer’s
problem, we use Kuhn-Tucker and the stochastic maximum principle. Sup-
pose for each α > 0 we can find an optimal c

(α)
t such that

sup
c
L(c;α) = L(c(α);α)

without constraints. Next, suppose we can find α∗ such that the budget
constraint is satisfied with equality

E
{∫ T

0

c
(α∗)
t πtdt

}
= E

{∫ T

0

etπtdt
}
.

Then the optimal consumption c∗t is given by

c∗ := c(α
∗).
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To see this, notice that for all c we have

V0(c
(α∗)) = V0(c

(α∗))− α∗E
(∫ T

0

πt(c
(α∗)
t − et) dt

)
=

L(c(α
∗), α∗) ≥ L(c, α∗) = V0(c)− α∗E

(∫ T

0

πt(ct − et) dt
)
≥ V0(c).

In other words, the representative agent’s original problem is solved by
maximizing the Lagrangian without constraints, and to solve this problem
we propose to use the stochastic maximum principle. The Hamiltonian for
this problem is

H(c, v, z, y) = −απt(ct − et) + yt f̃(ct, vt, zt), (62)

where yt is the adjoint variable. The conditions for an optimal solution to
the stochastic maximum principle are the same as those related to the BSDE
(61) (see Duffie and Lions (1992)). The FBSDE system consists of

dX(t) = 0; X(0) = 0

and {
dYt = Y (t)

(
∂f̃
∂v

(ct, Vt, Z(t)) dt+ ∂f̃
∂z

(ct, Vt, Z(t)) dBt

)
Y0 = 1.

(63)

is the adjoint equation, which follows from (59).
If c∗ is optimal we therefore have

Yt = exp
(∫ t

0

{∂f̃
∂v

(c∗s, Vs, Z(s))− 1

2

(∂f̃
∂z

(c∗s, Vs, Z(s))
)2}

ds

+

∫ t

0

∂f̃

∂z
(s, c∗s, Vs, Z(s)) dB(s)

)
a.s. (64)

απt = Y (t)
∂f̃

∂c
(c∗t , V (t), Z(t)) a.s. for all t ∈ [0, T ]. (65)

Notice that the state price deflator πt at time t depends, through the adjoint
variable Yt, on the entire optimal paths (cs, Vs, Zs) for 0 ≤ s ≤ t.

When γ = ρ then Yt = e−δt for the aggregator of the conventional model,
so the state price deflator is a Markov process, the utility is additive and
dynamic programming may be appropriate.

For the representative agent equilibrium the optimal consumption process
is the given aggregate consumption c in society, and for this consumption
process the utility Vt at time t is optimal.
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Starting from the first order condition (65), and differentiating this equa-
tion along the optimal path, by Ito’s lemma the dynamic equation for the
adjoint variable πt is

dπt = fc(ct, Vt) dYt + Yt dfc(ct, Vt) + dYtdfc(ct, Vt). (66)

where fc signifies the partial derivative with respect to c. The variable π can
be interpreted as the state price deflator, i.e., as Arrow-Debreu state prices
in units of probability. Thus ”marginal utility equals price” takes the form of
πt = Ytfc(t, ct, Vt) for each time t ∈ [0, T ] as of time 0, so the adjoint variable
Yt is part of the agent’s marginal utility at time t, the shadow price on one
”utilon”.

7.3 The equity premium and the interest rate

Denoting the dynamics of the state price deflator by

dπt = µπ(t) dt+ σπ(t) dBt, (67)

from (66) and (57) we obtain the drift and the diffusion terms of πt as

µπ(t) = πt
(
− δ − ρµc(t) +

1

2
ρ(ρ+ 1)σ′c(t)σc(t)

+ ρ(γ − ρ)σ′c(t)σV (t) +
1

2
(γ − ρ)(1− ρ)σ′V (t)σV (t)

)
(68)

and
σπ(t) = −πt

(
ρσc(t) + (γ − ρ)σV (t)

)
(69)

respectively.
Notice in particular that πt is not a Markov process since µπ(t) and

σπ(t) depend on πt, and the latter variable depends on consumption and
utility from time zero to time t, as can be seen from the FOC (88), and the
expression for the adjoint variable Y in (64).

The risk premium of any risky security with return process R is given by

µR(t)− rt = − 1

πt
σπ(t)σR(t). (70)

It follows immediately from (69) and (70) that the formula for the risk pre-
mium of any risky security R is

µR(t)− rt = ρ σc(t)σR(t) + (γ − ρ)σV (t)σR(t). (71)
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This is a basic result for risk premiums. When γ 6= ρ there is an additional
term in the risk premium, compared to the conventional model. Unlike
the situation in (45), where we also encountered two factors, these will not
collapse to the consumption based CAPM unless σV (t) is zero. From the
theory of FBSDE we know that a unique non-zero solution (V, σV ) exists.

It remains to determine the characteristics of ”prices” from the primitives
of the model, which we indicate below. Here this involves determining σM(t)
from σV (t) and ρ (preferences), and σc(t) (aggregate consumption). As before
the equilibrium short-term, real interest rate rt is given by the formula

rt = −µπ(t)

πt
. (72)

In order to find an expression for rt in terms of the primitives of the model,
we do as before and use (68). This gives the following formula

rt = δ + ρµc(t)−
1

2
ρ(ρ+ 1)σ′c(t)σc(t)−

ρ(γ − ρ)σcV (t)− 1

2
(γ − ρ)(1− ρ)σ′V (t)σV (t). (73)

This is a basic result for the equilibrium short rate. The potential for these
two relationships to solve the puzzles should be apparent. We do not need
to assume that the various moments appearing in these two expressions are
constants. Thus we do not have the problem encountered in the first model
of the paper. We return to a discussion below.

7.4 The determination of the volatility process σW (t)
from the primitives of the economy

We proceed to connect the volatility volatility of the growth rate of the
wealth portfolio σW (t) to primitives of the model, which involve the term
σV (t) = Zt/Vt. In doing so, the latter term is linked to observable quantities
in the market that can, at least in principle, be estimated from market data.

To this end, we use that the utility function U is homogeneous of degree
one in consumption, together with market clearing in the financial market.
Recall that the wealth of the agent at any time t is given by

Wt =
1

πt
Et

(∫ T

t

πsc
∗
s ds
)
, (74)

where c∗ is optimal consumption. By the first order condition the gradient
5U(c∗; c∗) of U at c∗ in the direction of c∗ is a linear functional, and hence,
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by the Riesz representation theorem, it is given by

5U(c∗; c∗) = E
(∫ T

0

πtc
∗
t dt
)

= W0π0 (75)

where W0 is the wealth of the representative agent at time zero, and the last
equality follows from (74) for t = 0 7. By homogeneity of U it follows that
5U(c∗; c∗) = U(c∗) = π0W0.

Let Vt = V (c∗t ) denote future utility at the optimal consumption for our
representation at any time t ∈ (0, T ]. Since also Vt is homogeneous of degree
one and continuously differentiable, by Riesz’ representation theorem and the
dominated convergence theorem, the same type of basic relationship holds
here for the associated directional derivatives at time t, i.e.,

5Vt(c∗; c∗) = Et

(∫ T

t

π(t)
s c∗s ds

)
= Vt

where π
(t)
s for s ≥ t is its Riesz representation, here the state price deflator

at time s ≥ t, conditional on time t information.
In the conventional, additive Eu-model, where Yt = e−δt, πs is the state

price at time s as of time 0, and π
(t)
s = πs/Yt, s ≥ t, is the state price at time

s as of time t.
In the same manner it follows, e.g., by results in Skiadas (2009a), that

the the same relationship holds also here.
The financial market of this section has the same structure as in the two

previous sections, except we do not need any Markov structure. Assuming
all assets, including labor income, to be represented in the market portfolio
(some interpreted as ”shadow” assets), in equilibrium it is then the case that
ϕ′t ·σ(t) = σW (t), and σW (t) is the volatility of the growth rate of the wealth
portfolio. It follows that

VtYt = πtWt. (76)

Using Ito’s lemma on both sides of this equality, and considering only the
variance rates, we obtain

σW (t) = (1− ρ)σV (t) + ρσc(t). (77)

This is where wealth is determined in terms of the primitives of the model,
which are the preferences, here represented by σV (t) and ρ, and aggregate

7Notice this has nothing to do with ”normalizing” recursive utility, but is just the part
of first order conditions for directional derivatives. Recall it is the directional derivative
of the Lagrangian, not of U , that is zero in all feasible directions.
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consumption, here σc(t). The volatility of the market portfolio is a linear
sum of the volatility of future utility and the volatility of the growth rate of
aggregate consumption.

This relationship can now be used to express σV (t) in terms of the other
two volatilities as

σV (t) =
1

1− ρ
(σW (t)− ρσc(t)). (78)

Inserting the expression (78) into (71) and (73) we obtain the risk premi-
ums as

µR(t)− rt =
ρ(1− γ)

1− ρ
σ′c(t)σR(t) +

γ − ρ
1− ρ

σ′W (t)σR(t), (79)

and the short rate as

rt = δ + ρµc(t)−
1

2

ρ(1− γρ)

1− ρ
σc(t)

′σc(t) +
1

2

ρ− γ
1− ρ

σ′W (t)σW (t) (80)

respectively.
The same expression for the risk premium was derived by Duffie and

Epstein (1992a) based on an ordinally equivalent utility function with aggre-
gator (h, 0), where h is related to f . Their derivation was based on dynamic
programming, assuming the volatilities involved to be constants. The ex-
pression for the real interest rate was derived in Aase (2014a).

7.5 Calibrations of the recursive model

This model calibrates to the data summarized in Table 1 much more con-
vincingly than the conventional Eu-model.

As an illustration, consider the value of δ = .03. Calibrating the two
above equations to the data, assuming the market portfolio is a proxy for
the wealth portfolio, gives two nonlinear equations in two unknowns, γ and
ρ. The solution is γ = 1.74 and ρ = 0.48.

The above calibration seems fairly reasonable. Recalling the background
for the data however, we can not really expect that a single agent can convinc-
ingly explain these data in isolation. In the period considered, for example,
only a small fraction (8-9%) of the population owned stock.

A heterogeneous model with two agents, one who do not invest in stocks,
would be more appropriate in the present setting, see e.g., Guvenen (2009)
using a discrete time model, and Aase (2014b) in a continuous-time setting.

In this paper we have by and large assumed that the market portfolio can
be used as a proxy for the wealth portfolio. Suppose we can view exogenous
income streams as dividends of some shadow asset, in which case our model is
valid if the market portfolio is expanded to include the new asset. However, if
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the latter is not traded, then the return to the wealth portfolio is not readily
observable or estimable from available data. Still we should be able to get a
pretty good impression of how the two models compare.

As an example, assume σW (t) = .10, the correlation coefficient κW,R =
.80, and κc,W = .40. In this situation, when δ = .02 we obtain γ = 2.11 and
ρ = .74, which seem rather plausible (see e.g., Aase (2013) where the Epstein-
Zin discrete-time model is calibrated to the US-data under similar assump-
tions, or Aase (2014a) where the continuous-time model of the Duffie-Epstein
type is calibrated. The continuous-time model including jump dynamics is
developed and calibrated in Aase (2015).)

Consider now the CAPM: As observed in the first part of the paper,
the CAPM in the setting of the conventional model did not fit the data
summarized in Table 1. With recursive utility this turns out to be different.
When ρ = 0 we have perfect substitutability of consumption across time. In
this case the model reduces to

µR(t)− rt = γ σW,R(t), rt = δ − γ

2
σ′W (t)σW (t). (81)

Recall the original CAPM developed by Mossin (1966). It is a one-period
model, but the present specialization is based on a dynamic and consistent
framework with recursive utility. In the one-period model the interest rate
has no particular meaning, since there is no consumption transfers across time
for the individuals in the model. Here we have an interest rate determined
in equilibrium.

The risk premium given above is that of the ordinary CAPM-type, while
the interest rate is of course new. This version of the model corresponds to
”neutrality” of consumption transfers. Also, from the expression for the in-
terest rate we notice that the short rate decreases in the presence of increasing
market uncertainty. Solving these two non-linear equations consistent with
the data of Table 1, again assuming the market portfolio as a proxy for the
wealth portfolio, we obtain γ = 2.38 and δ = .038. In the conventional model
this simply gives risk neutrality, i.e., γ = ρ = 0, so this model gives a risk
premium of zero, and a short rate of r = δ.

There is a large empirical literature on testing the CAPM, starting with
Fama and MacBeth (1973), implicitly assuming the model is valid period
by period. This is of course wrong. This literature takes as a criterion the
model’s explanatory power related to future returns, given this model has
been applied in the past. The results from this rather long literature does
not seem convincing for the CAPM.

However, recent research indicates a much better performance for this
model (see e.g., Berk (1997), and Berk and Binsbergen (2012)).
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8 Including labor

The problem is the same as in the previous section, but now we include labor
with dynamic equation

dlt = ltµl(t) + ltσl(t)dBt

where µl(t) and σl(t) are not functions of lt. Using the stochastic maximum
principle, interpreting lt as the Xt process, the performance functional is

L(c;α) = V0 − αE
(∫ T

0

πt(ct − et)dt
)
.

The Hamiltonian for this problem is

H(ct, vt, zt, lt, yt, pt, qt) = −απt(ct− et) +Ytf̃(ct, vt, zt, lt) + ltµl(t)pt + ltσl(t)qt

The new equation is now

dpt = −∂H
∂l

(t) + qtdBt,

pT = 0, corresponding to (60), where

∂H

∂l
(t) = Yt

∂f

∂l
(ct, Vt, lt) + ptµl(t) + qtσl(t).

Since we have assumed that labor is also a decision variable, by the maximum
principle the first order condition in l is given by

Yt
∂f

∂l
(ct, Vt, lt) + ptµl(t) + qtσl(t) = 0

for all 0 ≤ t ≤ T . As before the first order condition in consumption is
απt = f̃cYt, where both f̃ and the adjoint variable Yt depend on labor lt.

As a consequence, the drift of the adjoint variable pt, interpreted as wages,
is zero, so that

dpt = qtdBt

implying that, with a standard integrability constraint on the volatility pro-
cess qt, wages in real terms is a martingale. By the first order condition in l
q may be written

qt = −
(
Yt
∂f

∂l
(ct, Vt, lt) + ptµl(t)

)(
σl(t)σ

′
l(t)
)−1

σl(t).
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Recalling from (45) that the risk premium has included a term signifying
the covariance rate between the risky asset under consideration and labor,
an analogue of this fact may be seen to follow from the present approach
by observing that the endowment process et must include labor, so that the
value of the current endowment et can be written as πtet = ptlt +πte

−
t where

e−t is the part of the endowment process that does not include labor.
In the Lucas (fruit-) economy ct = et in every period, which implies

that the volatility of aggregate consumption can be written in terms of the
volatilities of l, π, p and e−. In particular is

dct = det =
pt
πt
dlt + ltd

(pt
πt

)
+ de−t

Thus the volatility of aggregate consumption can be written

σc(t) =
pt
πt
σl(t) + lt

( 1

πt

)
qt +

pt
πt

(
− 1

πt
σπ(t)

)
+ σ−e (t)

using Ito’s lemma. Recalling that
(
− 1

πt
σπ(t)

)
σR(t) = µR(t)−rt for any risky

asset with volatility σR(t) and return rate µR(t), we obtain that

µR(t)− rt =
πt
pt

(
σc(t)σR(t)− σ−e (t)σR(t)

)
− lt
pt
qtσR(t)− σl(t)σR(t)

where qt is expressed in terms of σl(t) as above. To obtain further simplifi-
cations and insights, the felicity function f must be specified.

We leave this subject for now, and demonstrate how the intertempo-
ral capital asset pricing model (ICAPM) may readily be derived using our
present methodology.

8.1 The ICAPM

We may derive the intertemporal capital asset pricing model using the stochas-
tic maximum principle. Generally one can not assumed that all income is
investment income. Let us first treat labor income as dividends of some
shadow asset, in which case our model is valid if the market portfolio is ex-
panded to include the new asset. In reality the latter is not traded, which
we here ignore. Referring to the model of the first part of the paper, we then
have two underlying processes (S, l) with dynamics(

dSt
dlt

)
=

(
StµS(t)
ltµl(t)

)
dt+

(
StσS,1(t), StσS,2(t)
ltσl,1(t), ltσl,2(t)

)(
dB1(t)
dB2(t)

)
(82)

i.e., the diffusion terms σS(t) and σl(t) are both of dimension 1 × 2. These
processes are not assumed to be Markov processes. The state variable l as
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in (35). As in Section 5.3 there is a utility function to be maximized subject
to a wealth constraint, here referred to as a forward stochastic differential
equation (FSDE){

dWt = (Wt[ϕ
′
t(ν(t) + rt]− ct)dt+Wtϕ

′
tσ(t)dBt

W0 = w.
(83)

Here ν(t) is the vector of expected rates of return of the risky assets and labor
income in (82) in excess of the riskless instantaneous return rt, and σ(t) is
the 2 × 2 matrix of diffusion coefficients of the two stochastic processes,
normalized by their respective values, so that σ(t)′σ(t) is an instantaneous
covariance matrix. Prime means transpose of a vector. The state process
Xt = Wt, i.e., defined by the wealth process W , in the setup for the stochastic
maximum principle in Section 7.1

The backward equation is the as before and given by (54), so we still use
recursive utility, where

U(ct) = E
(∫ T

0

f̃(ct, Vt, Zt) dt
)
. (84)

The objective is to find equilibrium risk premiums, where c is the deci-
sion variables and V and Z are parts of the primitives of the model. The
Hamiltonian of the system is given by

H(Wt, Vt, Zt, Ỹt, πt, qt, ct) = f̃(ct, Vt, Zt)Ỹt

(Wt[ϕ
′
t(ν(t) + rt]− ct)πt +Wtϕ

′
tσ(t)qt. (85)

where the adjoint variables are Ỹt, πt, and qt. Here Ỹt = Yt + 1, where Yt is
the same as in Section 7.

The associated forward/backward systems for the adjoint processes Ỹt, πt
and qt are {

dỸt = ∂H
∂v

(t) dt+ ∂H
∂z

(t) dBt

Ỹ0 = ỹ0 > 0,
(86)

and {
dπt = −∂H

∂w
(t) dt+ qt dBt

πT = 0.
(87)

The first order condition in consumption c is ∂H
∂c

= 0, which means that

πt = Ỹt
∂

∂c
f(ct, Vt, lt), (88)
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and the equation for the adjoint variable Ỹ is{
dỸt = Ỹ (t)

(
∂f̃
∂v

(t, c̃t, Vt, lt, Z(t)) dt+ ∂f̃
∂z

(t, c̃t, Vt, lt, Z(t)) dBt

)
Ỹ0 = ỹ0.

(89)

Hence the dynamics of Ỹ is the same as the dynamics of Y of the last sections.
This gives the same results as before regarding the recursive utility-based risk
premiums and the real rate.

The equation for the state-price deflator πt is

dπt = −
(
[ϕ′(t)ν(t) + rt]πt + ϕ′(t)σtqt

)
dt+ qtdBt

The first order condition in the portfolio weights ϕ is ∂H
∂ϕ

= 0, which
implies that

νtπt = −σtqt. (90)

In equilibrium the agent holds the asset, and receives the income from labor,
so the optimal ϕ∗t = (1, 1). Using this we obtain

dπt = −rtπtdt+ qtdBt,

which has the right drift term (rt = −µπ(t)/πt). Notice that this approach
takes the equilibrium short rate rt as given. From the condition (90) we get

−qt/πt =
(
σ′(t)σ(t)

)−1
σ′(t)ν(t) (91)

assuming the matrix (σ′(t)σ(t)) is invertible. Since −(σπ(t)/πt)σR(t) =
µR(t) − rt for any risky asset R with return rate µR(t) and volatility σR(t),
we then have the following

µR(t)− rt =
(
σ′(t)σ(t)

)−1
σ′(t)ν(t)σR(t). (92)

Splitting up into components, this can be written

µR(t)− r =
(
σ′(t)σ(t)

)−1((
σS,1(t)σR,1(t) + σS,2(t)σR,2(t)

)
(µS − rt)

+
(
σl,1(t)σR,1(t) + σl,2(t)σR,2(t)

)
(µl − rt)

)
or

µR(t)− rt = βS(t)(µS − rt) + βl(t)(µl − rt) (93)

where
βS(t) =

(
σ′(t)σ(t)

)−1
σ′S(t)σR(t)
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and
βl(t) =

(
σ′(t)σ(t)

)−1
σ′l(t)σR(t)

which gives us a two factor model as before, but here with the coefficients
represented by the familiar ”betas”.

The ICAPM can now be obtained as follows: Interpret the labor com-
ponent as another risky asset, call them S1 and S2, and omit labor from
the analysis. Going back to equation (90), multiply both sides by the opti-
mal ϕ∗(t) in this situation, which corresponds to the value weighted market
portfolio. Then

ϕ∗(t)νtπt = −ϕ∗(t)σtqt
This reduces to (µM(t)− rt)π(t) = −σM(t)qt where M refers tro the market
portfolio. In equilibrium the agent holds precisely the value weighted market
portfolio, so that ϕ∗(t)σ(t) = σM(t) and ϕ∗(t)ν(t) = µM(t)−rt. This results
in

µR(t)− rt = βR(t)(µM − rt) (94)

where
βR(t) =

(
σ′M(t)σM(t)

)−1
σ′MσR(t).

This is the ICAPM. Our derivation shows that this model is valid also when
the underlying processes are not of the Markov type.

This model is considerably more difficult to derive using the dynamic
programming approach, which lies behind the original development of Merton
(1973).8 This model is in other words also true for recursive utility, but has
a very different flavor from the version in (81), which is a full equilibrium
model with an associated equilibrium interest rate. The latter can be used
to tell us something about the people that populate the economy, a property
which the model (94) lacks.

9 Conclusions

We have presented three different, but related production economies, one
more elaborate than the other, which when viewed together, may shed some
light on the the equity premium and the real interest rate of the last century.
The standard mean-variance investment analysis is a guide that most in-
vestors understand; the elegant trade-off between expected return and ’risk’.
As we have pointed out, this strategy is too simplistic when the ’real’ economy
is taken into account; the approach is not consistent with market clearing.

8It is hard to find the exact derivation of this result in Merton’s papers, since the papers
tend to cross-refer to each other.
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Even in the generality of the resulting production model, the classical ap-
proach with agents having additive and separable von-Neumann-Morgenstern
expected utility functions leads to the CCAPM, which is unable to fit the
data of Prescott and Mehra (1985), and other similar data sets from around
the world.

Using stochastic differentiable utility in a production economy instead,
the calibrations of the resulting model is demonstrated to be much more
promising. Here we use a version based on the Kreps-Porteus class of util-
ity functions. This model calibrates well to market and consumption data,
with two ’factors’ in the expression for the risk premiums. Our analysis also
indicates that the one-factor CAPM model in a dynamic setting, with an
associated equilibrium interest rate, may fit the data surprisingly well con-
sidering the model’s simplicity. The basic usefulness of the CAPM is also
supported by recent empirical literature.

We use the stochastic maximum principle when analyzing recursive util-
ity. With this technique we derive both new results, and prove old ones, in
particular a short proof for the ICAMP.

Appendix 1

Solution of the Bellman equation in the centralized econ-
omy

The conjectured solution of the Bellman equation (4) of Section 2.1 is (x =
Kt)

J(x) = A
1

1− γ
x1−γ, Jx(x) = Ax−γ, Jxx(x) = −γAx−γ−1,

where A is some constant. Maximization in the Bellman equation gives

−Jx(x) + c−γ = 0,

which implies that

c =
(
Jx(x)

)− 1
γ ,

or, in terms of the underlying random process, here the capital stock K, the
optimal consumption takes the form

ct = A−
1
γKt for all t.
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Inserting this conjecture into the Bellman equation reveals that our guess is
successful in that the equation separates:

x−γ+1
(
A(µK − A−

1
γ )− γ

2
Aσ2

K −
δA

1− γ
+

1

1− γ
(A−

1
γ )1−γ

)
= 0

for all x > 0. Accordingly the constant A must satisfy the equation

γ

1− γ
A

γ−1
γ + A

(
µK −

γ

2
σ2
K −

δ

1− γ
)

= 0.

One solution is A = 0, which gives infinite consumption, and is thus not
feasible. Dividing through by A we get

A =
[1− γ

γ

(γ
2
σ2
K +

δ

1− γ
− µK

)]−γ
.

It follows that the optimal consumption is given by (5) as ct = A−
1
γKt = θKt,

where θ is given in (6).
An application of The Verification Theorem reveals that our conjectured

solution solves the problem.
As for the transversality condition, we have to verify that

lim
T→∞

E{e−δT |J(Kc
T )|} = 0

As a consequence of what we just have shown, the capital stock K
(c)
t satisfies

the following dynamics along the optimal consumption path:

dK
(c)
t = K

(c)
t (µK − θ)dt+K

(c)
t σKdBt

which means that

(K
(c)
T )(1−γ) = K

(1−γ)
0 exp

{
(1− γ)

(
µK − θ −

1

2
σ2
K

)
T + (1− γ)σKBT

}
.

Using the moment generating function of the normal probability distribution,
we obtain that

E
(
(K

(c)
T )(1−γ)

)
= K

(1−γ)
0 e[(1−γ)(µK−θ)−

1
2
γ(1−γ)σ2

K ]T .

From this it follows that the transversality condition is satisfied provided

(1− γ)(µK − θ)−
1

2
γ(1− γ)σ2

K − δ < 0.

Denoting by

α = −[(1− γ)(µK − θ)−
1

2
γ(1− γ)σ2

K − δ],

it can be checked that α = θ. In other words, the transversality condition is
satisfied if −α < 0, which is equivalent to θ > 0, as claimed in Section 2.1.
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Appendix 2

Solution of the Bellman equation in the decentralized
economy

The conjectured solution of the Bellman equation (22) of Section 3.3 is (w =
Wt)

J(w) = B
1

1− γ
w1−γ, Jw(w) = Bw−γ, Jww(w) = −γBw−γ−1,

where B is some constant. Using (23) this conjecture immediately leads to

ϕ =
1

γ

µS − r
σ2
S

,

which is (26). Next we find the first order condition for optimization in the
variable c. From the Bellman equation it is seen to be

−Jw(w) + c−γ = 0,

which implies that

c =
(
Jw(w)

)− 1
γ .

By our conjecture this means that in terms of the underlying stochastic
process, here the agent’s wealth, the optimal consumption takes the form

ct = B−
1
γWt for all t.

Inserting our candidate optimal portfolio rule and optimal consumption into
the Bellman equation, we get the following

w−γ+1
[
B
(1

γ

(µS − r)2

σ2
S

+ r −B−
1
γ
)
− 1

2
B

1

γ

(µS − r)2

σ2
S

− δB

1− γ
+

1

1− γ
(B−

1
γ )(1−γ)

]
= 0.

Notice that this equation separates, indicating that our conjecture is promis-
ing. Since the constant B > 0, it is determined as

B =
[1− γ

γ

( δ

1− γ
− r − 1

2

1

γ

(µS − r)2

σ2
S

)]−γ
.

From this the optimal consumption is

ct = (Jw(Wt))
− 1
γ = (BW−γ

t )−
1
γ =

[1− γ
γ

( δ

1− γ
− r − 1

2

1

γ

(µS − r)2

σ2
S

)]
Wt,
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which is the solution (24) - (25) given is Section 3.3. Again we use The
Verification Theorem to confirm that our conjectured solution solves the
problem.

Finally, the transversality condition must be checked, and it holds pro-
vided η > 0, where the equilibrium restriction µS−r = γσ2

S has been utilized.
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