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Abstract 

This paper investigates the impact of intermittent renewable generation on the distribution of 

electricity prices and their variability in Denmark and Germany. We exploit hourly data from 

2015 to 2020 and employ a novel panel quantile approach - the Quantiles via moments 

(MMQR) method. The combination of hourly-specific effects and the quantile approach allow 

us to estimate the renewable sources effect on various price quantiles while controlling for 

market dynamics. The results suggest that the merit-order effect occurs in both countries, with 

wind and solar generation having diverse effects on the electricity price distribution. Thus, 

policy makers should consider this diversifying effect to develop efficient renewable support 

schemes. We also explore non-linearities by including different demand levels in our model 

and investigate price variability. The outcomes indicate that wind generation increases 

(decreases) the occurrence of price fluctuations for low demand (high demand) in both 

countries. Meanwhile, in Germany, solar power stabilizes price fluctuations for high demand 

levels, stronger than wind. Market risk information could be useful for organizations in 

recognizing beneficial investment opportunities or hedging strategies. We finally aggregate the 

hourly observations into daily and compare the estimation outcomes. Hourly-related features 

seem to affect the merit-order effect and its robustness, and a panel approach shall be considered 

when investigating electricity markets.  

Keywords: electricity prices, panel quantile regression, renewable sources, merit-order effect, 

price variability 

1. Introduction 

Over the last decades, European (EU) initiatives encourage sustainable practices aiming at a 

climate-neutral continent by 2050. Electricity markets have been accentuated by these efforts 

and initiatives. Structural and operational changes, such as market integration, intend to reform 

electricity markets and improve their resilience. Electricity is sold in power exchange markets 

such as the European Energy Exchange (EEX). These markets include various economic 

characteristics that originate from the microstructure of power systems.  

Technological improvement has triggered new objectives and regulations in the EU energy 

sector, which has encouraged the continuous growth of renewable energy sources (RES). Wind 

and solar energy– two rapidly developed renewable energy sources - play a key part in the 

energy sector transformation towards the new green era.  The current EU climate action plan 

focuses on market decarbonization promoting a 55% greenhouse gas emissions reduction by 

2030 (European Commission, 2019). In addition, the new Green Deal introduced goals 
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regarding RES penetration to reduce emissions further, and initiate alternative flexible 

electricity usage. The new EU target for RES is set to 32% by 2030.  

The adoption of RES and their inclusion in the electricity grid poses many new challenges. The 

intermittent nature of RES, which depend highly on geographical attributes and weather 

conditions, incite technical issues in the electricity grid. Variable RES generation does not 

follow electricity demand patterns, which can create imbalances in electricity markets. 

Moreover, new regulatory frameworks are bound to create new challenges for power systems. 

For instance, the EU directives promote the phasing out from coal and nuclear power in the 

following years, and countries are required to modify their energy policies and comply to the 

new regulations. The excess changes that power systems have undergone, and the new energy 

transition schemes, have profound consequences for electricity markets and their 

microstructure. Market inefficiencies have arisen in the form of extreme price fluctuations and 

spikes (see Hagfors et al., 2016) making it essential to explore electricity price dynamics. 

A potential solution to market inefficiencies could be increased system flexibility, such as 

flexible consumption technologies. Real-option investments are needed to establish these 

flexible systems. Real options refer to tangible investment opportunities that are available to 

companies. Such investments in the power sector involve demand-response systems, power 

storage systems and alternative fuel generation technologies.  For instance, a demand-response 

system provides the opportunity to charge when RES supply is high and power demand low. 

On the other hand, the system can discharge when RES supply is low and power demand is 

high. In this way, power consumption is scaled up and down, depending on RES supply, making 

the power system more flexible and improving electricity supply security. However, real-option 

investments depend on long-term returns and investment risks, which are closely connected to 

power prices and their fluctuations (Black and Scholes, 1973; Cox et al., 1979). In particular, 

power storage companies could benefit from high electricity price variability by charging when 

prices are low and discharging when prices are high. It becomes obvious that RES penetration, 

electricity prices and real-option investments are strongly interconnected. Hence, it is important 

for market stability to explore how the structure and penetration of RES affect prices and, by 

extension, the value of real-option assets. 

In this article, a panel quantile approach with hourly-specific effects is applied both for the case 

of Denmark and Germany. Both countries are appealing cases due to their high renewable 

penetration and distinct power features. The panel framework involves two dimensions; the 

individual and time element, which are the hours and days, respectively. We investigate various 

electricity price quantiles and how RES can impact them and model the electricity price 

distribution in two settings, accounting for different demand levels. The electricity price 

distribution is defined by quantiles, specifically τ = 0.1,..,0.9. Each electricity price quantile is 

estimated using a vector of exogenous variables, and various indicators to control for short-

term dynamics and seasonal effects. The methodology allows us to investigate the RES impact 

on electricity price levels, but also the entire distribution, and account for hourly factors 

common across all hours and diverse between a specific hour. Finally, the price variability is 

evaluated through the scale estimate, which can provide crucial insights on market risk.   

The effect of RES has attracted a lot of attention in the electricity market literature. The effect 

has been explored in numerous countries with different institutional settings (Gelabert et al., 

2011; Clo et al., 2015; Gullì and Balbo, 2015; Lagarde and Lantz. 2018; Csereklyei et al., 2019; 
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Prol et al., 2020; Marshman et al., 2020). Cludius et al. (2014), Paraschiv et al. (2014) and 

Wurzburg et al. (2013) show that wind and solar power in Germany seem to relate negatively 

to electricity price levels, with their effect being independent on the market since solar is 

available during daylight while wind is generally higher during the night. Jonsson et al. (2010), 

focusing on the Scandinavian market of Denmark, employ a non-parametric approach to 

investigate the effect of wind energy forecasts on day-ahead prices. The results imply that 

higher wind penetration decreases electricity prices. On the other hand, Mauritzen (2013) 

applies a simple distributed lag model to explore the wind generation impact on trade, electricity 

prices and hydropower production in Denmark. He finds that Denmark stores excess wind 

power in hydro reservoirs in neighboring Norway and an extra unit of wind would result in a 

5% reduction of prices in Denmark. Thus, it has been shown, that variable renewable sources 

reduce electricity price levels, which is called in the literature as the merit-order effect. The 

electricity supply curve shifts due to increased low-cost RES penetration in the market, which 

leads to decreased prices. 

Renewable energy and its intermittent nature have changed another key feature of electricity 

prices, their variation. The early empirical studies concentrated on renewable sources and their 

effect on electricity prices but later extended to electricity price volatility. The important 

relation between renewable sources, the source type, and electricity price variability is 

empirically supported by a large body of the literature (Ketterer et al., 2014; Kyritsis et al., 

2017, Rintamäki et al., 2017). Kyritsis et al. (2017) apply a GARCH-in-Mean model to explore 

the impact of wind and solar power on electricity price volatility in Germany. They show that 

an increase in wind generation will result in higher price volatility. In contrast, an increase in 

solar power is shown to reduce price volatility. The RES effect on electricity price volatility for 

two distinct cases – Denmark and Germany - was investigated by Rintamäki et al. (2017). The 

results illustrate how market dynamics play a central role in RES penetration and their impact 

on price volatility. They show that renewable energy reduces price volatility in Denmark due 

to its connection with other Scandinavian countries, that have hydro storage capacity. On the 

other hand, wind power production is shown to increase electricity price volatility in Germany 

due to its off-peak hours effect. Finally, solar power appears to decrease price volatility since it 

mainly contributes during peak hours. 

The literature over the last years has used a wide range of datasets and established multiple 

settings to explore electricity prices. However, research has mainly focused on investigating 

daily electricity prices, ignoring the hourly-specific effect and the influence it has on power 

markets. Several papers have split daily electricity price data on peak-off peak† hours to stress 

out the diverse RES impact, within the day, on electricity prices and their movements (Paraschiv 

et al., 2014; Kyritsis et al., 2017, Rintamaki et al., 2017). Although the high dependence of RES 

on the hour within the day and its attributes have been highlighted, it has not been fully 

explored. Electricity produced by renewable sources is highly variable within a day due to the 

intermittent nature of renewables. In addition, different RES categories showcase different 

production patterns. For example, wind power is generally abundant during night hours while 

solar power is only available during sunlight hours. These market characteristics urge us to 

account for the hourly-specific effect and its embedded information on electricity prices. 

 
† Peak hours refer to the time period from 8am to 8pm while the rest refer to off-peak hours. 
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Although the merit-order effect has been illustrated by multiple studies and settings, literature 

on the repercussions of RES on the shape of electricity price distributions has been spare 

(Hagfors et al., 2016a; Bunn et al., 2016; Sapio, 2019; Maciejowska, 2020; Sirin and Yilmaz, 

2020; Apergis et al., 2019). Electricity prices are characterized by large fluctuations, spikes, 

and excess kurtosis, which have motivated studies regarding the tails of the electricity price 

distribution. Bunn et al. (2016) use quantile regression to evaluate the dependence of electricity 

price risks on fundamental market variables.  More recently, Maciejowska (2020) employs a 

semi-parametric approach to investigate the shape of the electricity price distribution. They 

examine the RES impact on the electricity price distribution and conclude that while wind has 

a stronger effect on lower quantiles, solar power’s influence is intensified for upper price 

quantiles. Furthermore, they analyze the electricity price variability, through which they 

demonstrate the diverse RES impact dynamics. Lastly, Apergis et al. (2020) explore the tail 

dependence of electricity prices through copulas in the Australian market. They divide the 

chosen time frame into pre-during-post carbon tax periods and conclude that tail dependence 

highly differs between the investigated periods. 

Denmark and Germany have been pioneers in the renewable energy field. In both countries, the 

power markets have also undergone important regulatory changes. Denmark, after the 1970s 

oil crisis, decided to establish a long-term energy plan to avoid energy shortage in the future. 

Through this plan, they have encouraged the development and use of energy efficient 

technologies such as wind turbines. Denmark aims currently at a 70% emission reduction and 

55% renewables share by 2030 (Danish Ministry of Climate, Energy and Utilities, 2019). In 

Denmark, RES receive various types of financial support such as tenders and premium tariffs 

(Danish Energy Agency, 2019). In Germany, the renewable energy field started to blossom in 

the 2000s. The German Renewable Energy Act has been the key mechanism to promote energy 

transition in the country. The energy action plan has been modified twice since its introduction 

to accommodate RES inclusion, reduce financial pressure to final consumers, promote 

competition, and eventually, improve cost efficiency in the market. Regarding the German 

market composition and energy plan, emissions are expected to decline by 55% while the RES 

share to rise to 65% by 2030 (IEA, 2020). 

This study aims to analyze the complex behavior of electricity prices and renewable energy 

penetration, as well as facilitate investment and regulatory decisions in the power sector. Our 

empirical findings contribute to the literature in various aspects. First, to account for the 

intraday time effect, we employ hourly data. The high frequency of the data offers a wider 

information range that allows us to control for various market characteristics. Few studies 

employ hourly data with most not acknowledging and accounting for the hourly-specific effect. 

Second, we investigate the distributional effect of RES on day-ahead electricity prices. By 

doing so, we can understand the RES role on power market inefficiencies, such as extreme 

prices, and recognize market systems and regulatory frameworks that can reduce uncertainty 

and promote long-term flexibility. Lastly, we explore two cases, Denmark and Germany, that 

although being close neighbors, their power markets carry distinct attributes and specific 

challenges. Germany, although in the heart of Europe, has limited access to flexible storage 

systems, while Denmark stores electricity in Norwegian hydro-reservoirs. 
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2. Data 

The data employed concern the period from January 1, 2015 to November 30, 2020 for 

Denmark and January 6, 2015 to November 30, 2020 for Germany, providing a very rich dataset 

with 2154 and 2149 days, respectively. Thus, the entire dataset includes 51696 hours for 

Denmark and 51576 hours for Germany. Hourly data for electricity day-ahead prices (€/MWh), 

forecasted loads, and forecasted wind power (GWh) in Denmark were obtained by Nordpool 

AS, the power market operator for the Nordic region. The hourly day-ahead prices, forecasted 

loads‡, wind and solar power forecasts in Germany were retrieved from EEX and the European 

Network of Transmission System Operators for Electricity§ that collects and shares information 

from Transmission System Operators (TSO) around Europe.  

A potential matter that should be mentioned, concerning the chosen underlying variables, is 

data exogeneity. Renewable energy is dispatched with regulatory priority and its production 

depends on weather or natural conditions. We, thus, can assume that wind and solar generation 

will be exogenous in our models. It is also believed that renewable energy is unlikely to be 

sensitive to price signals. RES producers have high motives, such as financial incentives, to 

maintain production levels even when electricity prices are extremely low (Mauritzen, 2013).  

The EU electricity system includes three key markets– the day-ahead, intraday, and balancing 

market - depending on power exchange frequency.  The day-ahead market (or spot market) 

clears supply and demand with a price for each of the 24 hours of the following day. Thus, the 

buyers and sellers in the market, place their bids in an hourly resolution for the following day. 

These bids are aggregated, and the system price is determined by the intersection between 

demand and supply. The last required generation technology to meet demand determines the 

price through a marginal price setting procedure (Huisman et al., 2015). Electricity prices can 

be affected by generation capacity, transmission constraints and meteorological factors (Nord 

Pool, n.d.). The intraday and balancing markets, in which the participants trade closer to the 

physical delivery time, aim to correct forecast errors, and eventually secure a balance between 

electricity supply and demand. Day-ahead prices have been the main field of investigation 

regarding RES influence on electricity prices. The liberalization of electricity markets increased 

trade interest in day-ahead markets, and although complementary markets (e.g., intraday) 

emerged through the years, the role of day-ahead markets remained prominent until today.  

 

 
‡ There were 48 hourly observations of forecasted loads in Germany missing, for which we used realized values. 
§ https://transparency.entsoe.eu/ 

Table 1 

Descriptive Statistics 

Variable Mean Min Max St. dev. Skewness Kurtosis 

Denmark       

Price  31.175 -58.8 200.04 15.04 0.345 4.99 

Wind  1.316 0 4.503 0.963 0.673 2.468 

Load 2.280 1.202 3.545 0.452 0.142 2.044 

Germany       

Price 34.51 -130.09 200.04 16.47 -0.272 8.897 

Wind 46.27 1.254 188.923 36.10 1.163 3.834 

Solar 18.19 0 129.914 27.58 1.541 4.391 

Load 219.42 115.29 345.633 37.99 -0.056 1.943 
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Table 1 presents the descriptive statistics for electricity prices, forecasted renewables and loads. 

In both countries, the per hour distribution of prices is leptokurtic, indicating the asymmetric 

effect of extreme prices for their distribution. In the German market, the kurtosis level is much 

higher than in the Danish case. We use the Pesaran (2015) CD statistic to test for cross-sectional 

dependence and second-generation unit root tests to examine the stationarity of the panel. Since 

our panel is balanced and long, in terms of time, we apply Breitung and Das’s (2005) panel unit 

root test which indicates that the series are stationary, and we can proceed with the analysis 

without further modifications to the data. The cross-sectional dependence and unit-root results 

are available in Appendix A.  

Another important illustration is the time-series evolution of electricity prices, RES and loads 

during the examined period. Figures 1 and 2 demonstrate the underlying variables in Denmark 

and Germany. The fact that electricity prices show great fluctuations that contain extreme 

positive and negative values is apparent and in line with the kurtosis of the distribution. It is 

also evident in the figures that wind and solar generation vary widely throughout the year. This 

is mainly attributed to their dependence weather conditions and hourly sunlight. Forecasted 

wind, solar and load follow a strong yearly seasonal pattern. While load and wind generation 

have higher values in winter and lower values in the summer, solar generation peaks during 

summer periods.  

Fig. 1. Fundamental variables in Denmark. 
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In Figure 3, we demonstrate individual boxplots for three electricity price levels (low, 

intermediate, and high) categorized by the hours of the day. The figures indicate that the 

electricity price distributions vary greatly, in both countries, during a day.  We also notice that 

Denmark shows a lower price variability than Germany. Denmark has established strong 

interconnections with other Scandinavian countries, which allows access to flexible storage 

systems, contributing to lower price fluctuations. Electricity prices exhibit extreme values, in 

both countries, for almost all hours, but in Germany we observe a higher frequency of negative 

electricity spikes. This shows how diverse electricity markets are, even within Europe, and how 

important market integration can be to establish efficient electricity markets. Finally, figure 3 

implies that the distribution of prices is linked to the hour itself. For instance, during the 

morning and afternoon hours, when industrial activities take place, higher electricity prices are 

observed. Therefore, it is obvious that the distributional effects of RES on electricity prices are 

linked to hourly-specific effects which our research accounts for.  

 

 

 

Fig. 2. Fundamental variables in Germany. 
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3. Methodology 

Electricity markets are characterized by distinct features that cause various methodological 

challenges for researchers. The need for a day-ahead market stems from electricity’s poor 

storage capabilities, as well as supply and demand variability. To formulate an efficient 

econometric model, key electricity price dynamics should be considered. As mentioned earlier, 

day-ahead prices are set simultaneously for the 24 hours of the following day. Therefore, the 

24 determined prices, resulting from submitted bids, correspond to the same information, and 

Fig. 3. Boxplots of three electricity price levels (low, intermediate, and high) for each hour of the 

day in a) Denmark, and b) Germany. 
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should be treated as a panel rather than a time series element (Huisman et al., 2007). As was 

initially proposed by Huismal et al. (2007), day-ahead prices should be treated in a panel 

framework rather than a time-series. They highlighted the need to consider the market 

microstructure characteristics in electricity research and include the cross-sectional hourly 

effect. More recently, the individual-specific effects were incorporated in their research by 

Keppler et al. (2016). They investigate the RES and market coupling impact on electricity price 

spreads between Germany and France. The hourly-specific effect can be deemed extremely 

important when exploring interconnections between markets since transmission capacities can 

be rather diverse across the hours of a day, and congestion can prevent market integration.  

In addition, by using daily data, we can overlook valuable information regarding important time 

variation. Therefore, a panel framework would be an appropriate setting for investigating the 

various links between electricity prices and fundamental variables. In the panel setting we 

establish a common dynamic across all hours and a varying factor for each hour. A panel 

framework for electricity prices has been established by previous research (Huisman et al., 

2007; Karakatsani and Bunn, 2008; Pena, 2012; Keppler et al., 2016; Pham, 2019) but to the 

best of our knowledge has not been applied in a quantile scope.  

Quantile regression was introduced by Koenker and Bassett (1978) and has been applied in 

various economic applications. It is used to estimate the predictive value of independent 

variables on the quantiles of the dependent variable and is especially robust to outliers. In this 

empirical investigation, a novel approach by Machado and Silva (2019), called Method of 

Moments Quantile Regression (MMQR), is employed. The MMQR method is particularly 

relevant when individual effects or endogenous variables are recognized in a panel. Machado 

and Silva (2019) have established an estimator that combines the location-scale functions and 

estimates the conditional quantile functions. Additionally, the MMQR does not allow the 

quantile estimates to cross which is an important condition in empirical research (He, 1997; 

Chernozhukov et al., 2010). Finally, the MMQR estimator allows the hourly-specific effects to 

impact the entire electricity price distribution. As an initial point of analysis, a linear 

specification for exploring the RES effect on the electricity price distribution is explored. Then, 

we further include non-linearities in the model to assess the stability of the variables across 

different demand levels. Taking into consideration the link between electricity prices and 

demand, we examine the RES effect on the shape of the electricity price distribution conditional 

on three demand levels.  

The conditional quantile estimation of the location-scale is described as follows: 

𝑄𝑝(𝜏) = (𝑎𝑖 + 𝛿𝑖𝑞(𝜏)) + 𝛽𝐿𝐿𝑖𝑡 + 𝛽𝑊𝑊𝑖𝑡 + 𝛽𝑆𝑆𝑖𝑡 + 

                                            +𝜃1𝑃𝑖,𝑡−1 + 𝜃2𝑃𝑖,𝑡−7 + 𝜑𝐶𝑖𝑡 + 𝑍′
𝑖𝑡𝛾𝑞(𝜏), 𝜏 ∈ (0,1)               (1)   

With Pr{𝛿𝑖 + 𝑍𝑖𝑡
′ 𝛾 > 0} = 1. Z is a k-vector of known differentiable (with probability 1) 

transformations of the components of X with element l given by 𝑍𝑙 = 𝛯𝑙(𝑋), 𝑙 = 1, . . . , 𝑘 . We 

denote i the hour group and t the day, with i =1….24, and T with t =1….T.  

Eq (1) connects the τth electricity price quantile with the vector of independent variables. The 

scalar coefficient 𝑎𝑖(𝜏) ≡ 𝛼𝑖 + 𝛿𝑖𝑞(𝜏) is called the quantile-τ fixed effect for individual i. We 

denote 𝐿𝑖𝑡 the forecasted load, 𝑆𝑖𝑡 the forecasted solar power generation, 𝑊𝑖𝑡 the forecasted 

wind generation and 𝐶𝑖𝑡  a set of binary indicators1 to consider the effect of weekends, holidays, 
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and seasonal parameters. We also use lagged prices to control for short-term price dynamics. 

According to Nickell (1981) dynamic models with fixed effects are biased by 1/𝑇. Hence, the 

bias due to the dynamic formulation is expected to be small and we highly doubt it will affect 

the estimates since our time dimension - both in Denmark and Germany - can be considered 

large. Lastly, in the case of Denmark, solar power is minimal, hence only wind generation is 

accounted for, regarding this empirical analysis.  

Electricity consumption and renewable sources are often shown to have a reverse effect on price 

levels; load often increases prices while renewable sources reduce them. Ketterer (2014) 

showed that wind and solar share; the forecasted wind/solar generation divided by the 

forecasted load, has a negative impact on electricity prices. In addition, Maciejowska (2020) 

demonstrated the diverse effect of RES on electricity prices depending on demand levels. High 

interaction between load and renewable generation would be expected with the possibility of 

the demand effect overriding the RES price reduction. Thus, we could expect a higher predictive 

power of the model by including the interaction between the renewable generation and different 

demand levels.  

The three demand levels were drawn by the unconditional distribution of loads. We include an 

indicator in our model: 𝐷1𝑖𝑡 = 1𝐿𝑖𝑡≤𝐿(𝜏𝐿) , 𝐷2𝑖𝑡 = 1𝐿(𝜏𝐿)<𝐿𝑖𝑡<𝐿(𝜏𝐻) and 𝐷3𝑖𝑡 = 1𝐿𝑖𝑡≤𝐿(𝜏𝐿) where 

the demand quantile thresholds are 𝜏𝐿 = 0.15 and 𝜏𝐻 = 0.85. These thresholds were selected 

in a manner that allows the inclusion of a sufficient number of observations for the estimation. 

Furthermore, these thresholds allow us to explore the electricity price distribution in connection 

to the demand level extremes. We also used different demand thresholds to test the robustness 

of our results and did not find any qualitative deviations between them. The robustness checks 

can be found in Appendix D. 

Equation (1) then becomes: 

𝑄𝑝(𝜏) = (𝑎𝑖 + 𝛿𝑖𝑞(𝜏)) + ∑ 𝛽𝑚
𝐿

3

𝑚=1

𝐿𝑚𝑖𝑡 + ∑ 𝛽𝑚
𝑊

3

𝑚=1

𝑊𝑚𝑖𝑡 + ∑ 𝛽𝑚
𝑆

3

𝑚=1

𝑆𝑚𝑖𝑡 + 

                           +𝜃1𝑃𝑖,𝑡−1 + 𝜃2𝑃𝑖,𝑡−7 + 𝜑𝐶𝑖𝑡 + 𝛧′
𝑖𝑡𝛾𝑞(𝜏)                         (2)       

where  𝐿𝑚𝑖𝑡 = 𝐷𝑚𝑖𝑡𝐿𝑖𝑡, 𝑊𝑚𝑖𝑡 = 𝐷𝑚𝑖𝑡𝑊𝑖𝑡 and 𝑆𝑚𝑖𝑡 = 𝐷𝑚𝑖𝑡𝑆𝑖𝑡.  

According to Angrist and Pischke (2008, p.227) bootstrapping standard errors can be useful in 

settings like quantile regression, that the asymptotic distributions are characterized by unknown 

densities. Thus, we use the bootstrap clustered by group standard errors to treat potential 

heteroskedasticity and serial correlation in the panel.  

4. Results 

4.1 Distributional impacts of RES on electricity prices 

The empirical estimates for model 1, eq (1), are presented in Table 2. All coefficients for wind and 

solar are negative and significant for all price quantiles at 1% level. Thus, a unit increase in wind 

or solar will reduce electricity prices in all quantiles. The findings clearly reflect the merit-order 

effect that has been explored extensively in the literature (e.g., Mauritzen, 2013; Cludius et al., 

2014). The merit-order effect originates by the low short-term marginal costs of RES.  Hence, RES  
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can replace conventional higher-cost power plants (coal, gas, etc.), shifting the supply curve and 

pulling electricity prices down. RES type-specific characteristics such as generation patterns and 

capacity levels, and their interchange with unique power system economics distinguish the effect 

of one renewable source to another on electricity prices. While wind generation can be considered 

as a rather stable-producing energy source, solar production occurs during sunlight hours which 

mainly include high demand periods. Maciejowska (2020) was the first to explicitly compare the 

influence of two RES on the electricity price distribution. She concluded that energy policies should 

consider the high interaction between different RES to maximize power stability.   

The results imply that although, there is a universal RES impact on electricity prices, this impact is 

heterogeneous depending on price levels and renewable energy source type. Our findings verify 

previous claims concerning the relationship between renewable sources and market fundamentals. 

In both Denmark and Germany, the estimates show that wind reduces electricity prices more on 

lower quantiles than in upper ones. The reason behind this result lies in the relationship between 

electricity prices and market-specific characteristics. During off-peak hours, demand is low and 

electricity prices are sometimes pressed down to zero or even below zero. The system inflexibility 

pressures conventional power plants to bid in negative prices when it is cost efficient, in short-time 

segments, than shutting down. An increase in wind production could further stress baseload 

producers to shut down, establishing a more prominent effect of wind during these times. 

Additionally, conventional plants will opt out of bidding in case production costs are much higher 

than costs induced by operational restrictions such as shut down costs. Then again, the relation of 

wind power and electricity prices is stronger in the case of lower quantiles – surging lower-level 

electricity prices. It is evident that while the direction of the wind coefficients is similar in both 

countries, the magnitudes are different since they have diverse power production systems such as 

generation mixes, and renewable production capacities.  

In Germany, solar has a slightly weaker effect on low prices than on high ones. Thus, solar 

generation seems to reduce the occurrence of extreme positive electricity prices and could be used 

as a tool to improve system balance. The market involves intense competition when demand is high 

resulting in high-cost technologies setting electricity prices. However, solar generation is mainly 

available during high-demand hours and can be a setting price technology during these periods. 

This results in solar having a stronger impact on electricity prices than other energy sources at these 

times. We also notice that wind overpowers solar for all electricity price quantiles. The underlying 

reason behind this could be that wind capacity and availability is more extensive than solar power. 

Maciejowska (2020) has shown, using aggregated daily data, that solar generation has a stronger 

impact than wind on upper price quantiles. The solar power generation patterns reveal a great 

dependence on the hour of the day. For instance, it has been shown that solar induces a higher merit-

order effect during peak hours when its production is high (Kyritsis et al., 2017). The addition of 

hourly fixed effects, combined with the distributional effect, has the potential to describe in 

more detail the renewables effect on electricity prices. Finally, the load seems, as expected, to 

increase electricity prices in all quantiles with a higher impact on upper quantiles.  

Table 3 presents the model estimates for electricity price averages and variability. While load 

increases electricity prices average, renewable sources seem to reduce it. All the estimates are 

statistically significant at 1% level except solar which is significant at 5% level. The wind 

coefficients suggest that an increase in forecasted wind will give a rise to price variability in 

Denmark and Germany. This result is in accordance with previous research for Germany, but 

not for Denmark. We would expect wind to reduce price variability in Denmark (Rintamäki et 

al., 2017) since they are well-connected to neighboring countries such as Norway and Sweden, 
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which grants Denmark access to flexible systems (hydro-reservoir) with high storage 

opportunities. Hence, one would expect that excess electricity from wind would be transferred 

to Norway and stored in its hydro-reservoirs, reducing the pressure in the market, and flatten 

the impact of wind. Instead, we notice that wind power increases price variability disregarding 

the favorable power market structure in Denmark. The positive wind estimates could be 

connected to the fact that wind exhibits a stronger impact on low price quantiles. An increase 

in forecasted wind could reduce already low prices further, displacing conventional energy 

producers and rendering the market inefficient even if they have access to hydro systems. We 

will further investigate this result in the following section where non-linearities are included in 

the model. 

 

 

 

 

 

 

 

 

On the other hand, Germany has limited access to flexible systems and the concentration of 

wind generation in the North (Paraschiv et al., 2014) often challenges the power system causing 

greater price fluctuations. In the case of solar power in Germany, the scale estimate is negative, 

which indicates that an increase in forecasted solar could result in lower electricity price 

variability. This could relate to the fact that solar has a more intense effect on upper electricity 

price quantiles. The solar scale coefficient, though negative, does not seem to hold statistical 

significance. Model 2 (eq. 2) could reveal more information about the relationship between 

solar power and price variability. Finally, load exhibits a significant positive impact on 

electricity price variability in both countries.  

4.2 Distributional impacts of RES on electricity prices conditional on demand 

Analyzing first the Danish distributional effect of wind, conditional on demand, the results of 

model 2 (Table 4) suggest that wind more strongly impacts upper price quantiles when demand 

is high and lower price quantiles for low and intermediate demand. Overall, the effect is more 

prominent for high demand levels and all the results are statistically significant at 1% level. 

This result is in line with our analysis in the previous section and provide a detailed illustration 

of the market effects. In higher demand quantiles, high-cost marginal technologies will bid 

more intensely in the market and increase competition. Thus, an increase in the forecasted wind 

will induce a sharp price dampening effect during these periods. The forecasted load estimates, 

contrarily, have a positive sign in all price quantiles which indicates that a rise in forecasted 

consumption will increase electricity prices. The effect, as expected from previous literature, is 

more prominent on higher demand levels. 

Table 3   

Baseline model 1 location and scale estimates. 

Baseline Model (1) Location Scale 

Denmark   

Wind -5.515*** 0.429*** 

Load 7.251*** 2.334*** 

Germany   

Wind -0.193*** 0.027*** 

Solar -0.133*** -0.001 

Load 0.196*** 0.014*** 
Notes: (i) Standard errors are computed with the bootstrap clustered approach. 

(ii) ***, **,* respectively denotes rejection of the null hypothesis of 
insignificant coefficient at 1%, 5% and 10% significance levels. 
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Also in Germany, wind generation has a stronger price reducing effect on lower electricity price 

quantiles when demand is low than when it is high. In the intermediate demand level, the impact 

is diminishing from lower to upper price quantiles. On the other hand, solar forecasts follow a 

similar pattern to wind, but the magnitude of the estimates is different. What is noteworthy, is 

that in all three demand levels, wind estimates exceed solar estimates. The equality hypotheses 

between the two RES estimates in all quantiles have been tested and found significant at 1% 

level. The results suggest that both renewable sources impact similarly the median of electricity 

prices but not the tails of the distribution. Therefore, the aggregated influence of both renewable 

sources can be particularly employed when investigating the median of electricity prices. 

Finally, forecasted loads increase electricity prices for all quantiles in all demand levels with 

the coefficients for the upper price - higher demand quantiles being the strongest. 

 

Moving forward to the electricity prices average and variability estimates in Denmark (Table 

5), the average electricity prices are shown to be reduced by forecasted wind for low, 

intermediate, and high demand levels. Wind significantly also impacts price variability for all 

demand levels. The wind estimates are positive for low and intermediate demand levels and 

negative for high demand. This ambiguous result indicates that price variability and wind 

generation depend strongly on electricity demand. Generally, during low electricity demand, 

wind power would suffice to cover electricity consumption, which combined with the 

renewable sources pressure on conventional power plants, could result in excess electricity 

supply in the market. Hence, an extra unit of forecasted wind could urge greater price 

fluctuations and marker uncertainty. On the contrary, when demand is high, the entrance of 

high-cost technologies in the market intensifies competition. During these times, an increase in 

wind power, a low-cost generator, would pull electricity prices down, reduce extreme 

fluctuations and enhance electricity security. The results also show that forecasted load 

increases electricity prices on average as well as their variability and may, thus, cause electricity 

price fluctuations including positive price spikes. 

Table 4 

The estimates of the demand level model 2. 

 Denmark    Germany      

τ Wind    Wind   Solar   

 𝛽1,𝐿
𝑤

 𝛽2,𝑀
𝑤  𝛽3,𝐻

𝑤   𝛽1,𝐿
𝑤

 𝛽2,𝑀
𝑤

 𝛽3,𝐻
𝑤

 𝛽1,𝐿
𝑆

 𝛽2,𝑀
𝑆

 𝛽3,𝐻
𝑆

 

0.1 -6.944*** -6.284*** -5.283***  -0.347*** -0.238*** -0.151*** -0.156*** -0.149*** -0.082*** 

0.2 -6.209*** -5.964*** -5.723***  -0.315*** -0.223*** -0.164*** -0.155*** -0.145*** -0.104*** 

0.3 -5.699*** -5.742*** -6.028***  -0.291*** -0.212*** -0.174*** -0.155*** -0.142*** -0.120*** 

0.4 -5.274*** -5.557*** -6.283***  -0.271*** -0.203*** -0.182*** -0.155*** -0.140*** -0.133*** 

0.5 -4.884*** -5.388*** -6.516***  -0.251*** -0.193*** -0.190*** -0.155*** -0.138*** -0.146*** 

0.6 -4.478*** -5.211*** -6.759***  -0.231*** -0.184*** -0.198*** -0.154*** -0.136*** -0.160*** 

0.7 -4.044*** -5.022*** -7.019***  -0.208*** -0.173*** -0.207*** -0.154*** -0.133*** -0.175*** 

0.8 -3.522*** -4.795*** -7.331***  -0.181*** -0.161*** -0.218*** -0.154*** -0.130*** -0.193*** 

0.9 -2.682*** -4.43*** -7.834***  -0.138*** -0.140*** -0.235*** -0.153*** -0.125*** -0.222*** 

Obs 51,696 51,696 51,696  51,576 51,576 51,576 51,576 51,576 51,576 

Notes: (i) Standard errors are computed with the bootstrap clustered approach. (ii) ***, **,* respectively denotes rejection of 

the null hypothesis of insignificant coefficient at 1%, 5% and 10% significance levels. 
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Wind and solar, carrying diverse characteristics, can influence differently electricity price 

variability in Germany. It is shown that wind increases price variability for low and intermediate 

loads, while solar increases price variability only for low demand levels. The wind estimates 

are statistically significant at 1% for all three demand levels while the solar estimate for low 

demand is insignificant, and the intermediate and high demand variables are significant at 10% 

and 1% respectively. More importantly, the results indicate that when demand is high the 

negative relation between solar generation and price variability is stronger compared to the 

equivalent effect of wind power. Solar availability and generation capacity characteristics 

compared to wind production patterns could relate to this. Additionally, geographical 

characteristics may also contribute to this result especially when the results are used for 

comparative analysis. In Germany, energy consumption is mainly concentrated in the southern 

part while wind power is mostly produced in the northern part (Paraschiv et al., 2014). Thus, 

transmission constraints and congestion across the country, could prevent wind generation from 

covering electricity demand, allowing solar power to impact electricity prices during these 

times. The graphical representations of the results are available in Appendix C. 

5. Aggregated data 

A large portion of the literature has employed aggregated daily data to investigate the RES 

effect on electricity price distributions. In this paper we use high-frequency data that allow us 

to control for hourly-specific effects which could impact the research outcomes. We would 

anticipate differences between the two methods and procedures; thus, it could be essential to 

examine the aggregated model as well. The data are transformed from hourly into daily 

observations and an autoregressive quantile regression (Koenker and Xiao, 2006) including the 

same set of variables, as in models 1 and 2, is applied. The empirical results can be found in 

Tables B4, B5, B6 and B7 in Appendix B. 

Table 5    

Model 2 (conditional on demand) location and scale estimates. 

Demand level Model (2)  Location Scale 

Denmark    

Wind 𝑊𝐿 -4.837*** 1.392*** 

 𝑊𝑀 -5.367*** 0.605*** 

 𝑊𝐻 -6.545*** -0.833*** 

Load 𝐿𝐿 7.277*** 1.671*** 

 𝐿𝑀 7.481*** 2.221*** 

 𝐿𝐻 7.986*** 3*** 

Germany    

Wind 𝑊𝐿 -0.245*** 0.066*** 

 𝑊𝑀 -0.19*** 0.031*** 

 𝑊𝐻 -0.192*** -0.026*** 

Solar 𝑆𝐿 -0.154*** 0.0008 

 𝑆𝑀 -0.137*** 0.007* 

 𝑆𝐻 -0.15*** -0.044*** 

Load 𝐿𝐿 0.204*** -0.007* 

 𝐿𝑀 0.19*** 0.002 

 𝐿𝐻 0.192*** 0.022*** 
Notes: (i) Standard errors are computed with the bootstrap clustered approach. (ii) ***, 

**,* respectively denotes rejection of the null hypothesis of insignificant coefficient at 
1%, 5% and 10% significance levels. 
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Figure 5 illustrates the baseline Method of Moments Quantile Regression (MMQR) and daily 

estimates for wind, solar and load in Germany. While the MMQR wind and solar coefficients 

follow approximately the same pattern as the daily estimates, the hourly results reveal strongest 

impacts than the aggregated in all price quantiles. Only in the case of solar power and for high 

electricity price quantiles the daily estimate exceeds the MMQR. Additionally, load exhibits a 

more prominent impact in the hourly resolution compared to the daily. What is noteworthy, is 

that solar estimates seem to show the highest divergence which prompts us to suspect that the 

hourly-specific effect can be crucial in the case of RES production-specific characteristics and 

their influence in the market. Figure 4 also shows the wind and load estimates in Denmark. We 

notice that the coefficients follow the same trend as in Germany, with the MMQR wind 

impacting stronger lower quantiles and daily wind influencing mostly low and upper price 

quantiles.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Baseline model 1 daily vs MMQR estimates in DK1. 

Fig. 5. Baseline model 1 daily vs MMQR estimates in DE. 
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Figure 6 demonstrates the non-linear MMQR model and daily estimates in Germany. It can be 

observed that the daily and MMQR wind estimates for low and intermediate demand exhibit 

approximately the same pattern. As for high demand levels, the daily wind estimates are 

stronger for upper and lower price quantiles while the MMQR approach indicates that the wind 

impact is monotonically decreasing, having a higher impact on lower price quantiles. On the 

other contrary, solar displays a highly diversified influence on electricity price quantiles. The 

daily coefficients show sharp fluctuations for all demand levels while the MMQR approach 

presents a smoother RES effect on the electricity price distribution. Especially for low demand, 

there is a striking contrast between the two results and their implications. In addition, the wind 

and solar MMQR coefficients show a higher negative impact than daily estimates for all 

demand levels and price quantiles. Finally, in the case of load, we notice great diversity between 

the hourly and daily estimates, with hourly-resolution results displaying much higher impacts 

than the daily aggregated. 

When the non-linear case of the daily and MMQR results in Denmark (Figure 7) is explored, it 

is observed that for low demand the two approaches outcomes follow a very similar pattern. 

For intermediate demand, the MMQR coefficient is increasing across quantiles while the daily 

result is strongest for low and upper quantiles. Furthermore, it is noted that in extreme positive 

price quantiles and for intermediate demand, the daily impact exceeds the MMQR. In the case 

of loads, the MMQR results show a smoother and stronger effect than the daily ones. Finally, 

both the daily wind and load results display again high fluctuations compared to the hourly 

estimates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Model 2 – conditional on demand daily vs MMQR estimates in Germany. 
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Individual hours and their specific characteristics can be highly significant in the case of 

renewable sources which depend on weather conditions and can display rapid and extreme 

variations. The analysis and comparison of aggregated time-series and hourly-panel results can 

verify, to some extent, this hypothesis. The diversity of the outcomes reveals that accounting 

for this hour-specific effect could be important for investigating the RES influence on electricity 

prices. Overall, the panel setting uncovers a higher distributional impact of renewable sources 

on electricity prices. It should be noted that in this section we do not compare the quality of the 

daily and panel estimates since the estimation methods are very different. We essentially 

attempt to illustrate the diversity between the aggregated and hourly coefficients and elaborate 

on the importance of using the electricity high-frequency data.  

6. Robustness check 

The robustness of the RES effect on the distribution of electricity prices and their variability is 

corroborated by altering model 2. Since the results depend highly on the chosen demand 

thresholds, new chosen thresholds are applied to verify the estimates. The new demand 

thresholds are set at 𝜏𝐿 = 0.2 and 𝜏𝐻 = 0.8. The use of high-frequency hourly data, while 

providing richer information, can create many challenges, especially in the case of solar power. 

Hourly solar data are zero when there is no sunlight. Hence, we believe that lower demand 

thresholds can bias the solar estimates by including an inadequate number of observations. The 

robustness check results can be found in Appendix D. 

In the renewable sources and electricity prices literature, another common way to verify the 

estimation results has been the addition of fuel prices (e.g., gas, coal) in regressions. 

Unfortunately, gas (or coal) prices are provided in daily resolutions and would need to be 

Fig. 7. Model 2 – conditional on demand daily vs MMQR estimates in Denmark. 
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extrapolated to be incorporated in this research. Furthermore, it has been shown that although 

fuel prices impact electricity prices, they do not affect the RES estimates on them (Gelabert et 

al., 2011; Cludius et al., 2014; Maciejowska, 2020; Sirin and Yilmaz, 2020). 

The results reported in Appendix D confirm the RES impacts obtained in previous sections. 

There are slight quantitative differences in the solar coefficients and variability effects in 

Germany, but this is to be expected due to the sensitivity of solar on the number of observations 

as explained earlier. Nevertheless, the final interpretation of the results is not affected by these 

minor differences.  

7. Conclusion 

The increasing variable renewable energy has become an important factor in power markets 

that affects market fundamentals, such as electricity prices. In this paper, a panel quantile 

approach is applied to investigate the distributional impact of RES on electricity prices. The 

analysis focuses on both the effect on electricity price levels and price variability. We apply 

two models, including a non-linear case through the interaction between RES and electricity 

demand, which draws a more accurate picture of the electricity market. We explore three 

demand levels – low, intermediate, and high - chosen by the unconditional quantile distribution 

of loads. 

The results confirm the merit-order effect from wind and solar. The findings show similar 

patterns concerning wind power in both Denmark and Germany. Wind power shows to have a 

stronger impact on the lower tail of the price distribution, a result connected to market 

dynamics. In Germany, the renewable energy source type seems to be important for the 

electricity market structure. In contrast to wind, solar power impacts stronger upper electricity 

price quantiles. Thus, the strong interaction between renewable source types could yield 

important benefits to governments and organizations, if recognized and managed accordingly. 

Moreover, wind and solar appear to influence the electricity price median in a similar manner, 

limiting potential gains from the RES type interplay in the market. Our findings complement 

results from previous studies such as Paraschiv et al. (2014), Rintamaki et al. (2017) and 

Maciejowska (2020).  

In this paper, the relationship between RES and price variability is also examined. The results 

show that wind increases price variability in both countries. While this result is already 

established in Germany (Paraschiv et al., 2014; Rintamaki et al., 2017), it comes as a surprise 

in Denmark. Rintamaki et al. (2017) has shown that the flexible electricity system structure in 

Denmark curtails the variability impact of wind on electricity prices. Our results imply that the 

strong wind influence on the low tail of electricity prices, and higher wind capacity could 

increase uncertainty-in the form of price variability-, although Denmark has one of the most 

flexible systems in Europe. When we investigate the RES impact on price variability, 

acknowledging potential non-linearities, we notice that the results insinuate extra information 

on the explored relationships. Wind power appears to increase electricity price variability for 

lower and intermediate demand levels, while reduces variability for high demand levels. In 

Germany, wind and solar seem to impact variability in a similar pattern, with solar having a 

stronger influence than wind for high demand.   

Finally, the difference between exploiting hourly data and aggregated daily data is explored. It 

is shown that the results are highly diversified in both countries, and between the different 
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renewable source type. The aggregated data appear to underestimate the RES impact on the 

electricity price distribution with the difference being more prominent on solar power. This 

suggests that solar is more sensitive on data aggregation which could emerge from the solar-

specific generation patterns – solar is only available during sunlight hours. The results illustrate 

that exploiting higher frequency electricity data, without aggregating them, could provide 

significantly different information in the market. Thus, a panel setting with hourly-specific 

effects should be further considered in future electricity research.  

The findings of this analysis are important for policy makers and practitioners since they 

illustrate the importance of renewable sources on the structure and operation of power markets. 

The results could be used by governments and organizations for different course of action. 

Understanding the fundamental variables that control electricity price fluctuations could help 

policy makers to strategically design energy plans that optimize variable renewable sources 

inclusion in electricity systems. For instance, regulators could consider the disproportionate 

impact of wind power on electricity prices and apply RES support schemes that could minimize 

these imbalances in the market. Another important aspect drawn by the results is the diverse 

impact of renewable source type (wind and solar) on electricity price levels and variability. This 

interaction is important to governments for regulating energy markets. They could allocate 

future RES infrastructure in strategic positions to improve electricity flow in the system or 

recognize the need to expand the electricity grid and establish stronger interconnections. 

Moreover, organizations could use the information on market uncertainty to discover future 

profit opportunities. In particular, real-option investors, such as power storage companies, could 

benefit from higher electricity price fluctuations. In such way, investments on flexible systems 

which are set to play a crucial role in market decarbonization and energy security in the 

following years, could be further employed  

Acknowledgements 

 

References 

Apergis, N., Gozgor, G., Lau, C.K.M. and Wang, S., 2019. Decoding the Australian electricity 

market: New evidence from three-regime hidden semi-Markov model. Energy Economics, 78, 

pp.129-142. https://doi.org/10.1016/j.eneco.2018.10.038 

Apergis, N., Gozgor, G., Lau, C.K.M. and Wang, S., 2020. Dependence structure in the 

Australian electricity markets: New evidence from regular vine copulae. Energy 

Economics, 90, p.104834. https://doi.org/10.1016/j.eneco.2020.104834 

Black, F. and Scholes, M., 2019. The pricing of options and corporate liabilities. In World 

Scientific Reference on Contingent Claims Analysis in Corporate Finance: Volume 1: 

Foundations of CCA and Equity Valuation (pp. 3-21). 

https://doi.org/10.1142/9789814759588_0001 

Breitung, J. and Das, S., 2005. Panel unit root tests under cross‐sectional dependence. Statistica 

Neerlandica, 59(4), pp.414-433. https://doi.org/10.1111/j.1467-9574.2005.00299.x 

Ciarreta, A., Pizarro-Irizar, C. and Zarraga, A., 2020. Renewable energy regulation and 

structural breaks: An empirical analysis of Spanish electricity price volatility. Energy 

Economics, 88, p.104749. https://doi.org/10.1016/j.eneco.2020.104749 

https://doi.org/10.1016/j.eneco.2018.10.038
https://doi.org/10.1016/j.eneco.2020.104834
https://doi.org/10.1142/9789814759588_0001
https://doi.org/10.1111/j.1467-9574.2005.00299.x
https://doi.org/10.1016/j.eneco.2020.104749


21 
 

Cludius, J., Hermann, H., Matthes, F.C. and Graichen, V., 2014. The merit order effect of wind 

and photovoltaic electricity generation in Germany 2008–2016: Estimation and distributional 

implications. Energy economics, 44, pp.302-313. https://doi.org/10.1016/j.eneco.2014.04.020 

Cox, J.C., Ross, S.A. and Rubinstein, M., 1979. Option pricing: A simplified approach. Journal 

of financial Economics, 7(3), pp.229-263. https://doi.org/10.1016/0304-405X(79)90015-1 

Csereklyei, Z., Qu, S. and Ancev, T., 2019. The effect of wind and solar power generation on 

wholesale electricity prices in Australia. Energy Policy, 131, pp.358-369. 

https://doi.org/10.1016/j.enpol.2019.04.007 

Danish Energy Agency, 2017. Memo on the Danish support scheme for electricity generation 

based on renewables and other environmentally benign electricity production. viewed 25 

April 2021, < 

https://ens.dk/sites/ens.dk/files/contents/service/file/memo_on_the_danish_support_scheme_f

or_electricity_generation_based_on_re.pdf > 

Danish Ministry of Climate, Energy and Utilities., 2019. Denmark’s Integrated National 

Energy and Climate Plan,  Danish Ministry of Climate, Energy and Utilities, viewed 25 April 

2021,<https://ens.dk/sites/ens.dk/files/EnergiKlimapolitik/denmarks_national_energy_and_cli

mate_plan.pdf > 

de Lagarde, C.M. and Lantz, F., 2018. How renewable production depresses electricity prices: 

Evidence from the German market. Energy Policy, 117, pp.263-277. 

https://doi.org/10.1016/j.enpol.2018.02.048 

European Commission, 2019. Clean energy The European Green Deal. European 

Commission. viewed 20 May 2021. DOI:10.2775/545860 

Gelabert, L., Labandeira, X. and Linares, P., 2011. An ex-post analysis of the effect of 

renewables and cogeneration on Spanish electricity prices. Energy economics, 33, pp.S59-S65. 

https://doi.org/10.1016/j.eneco.2011.07.027 

Gullì, F. and Balbo, A.L., 2015. The impact of intermittently renewable energy on Italian 

wholesale electricity prices: Additional benefits or additional costs?. Energy Policy, 83, 

pp.123-137. https://doi.org/10.1016/j.enpol.2015.04.001 

Hagfors, L.I., Bunn, D., Kristoffersen, E., Staver, T.T. and Westgaard, S., 2016a. Modeling the 

UK electricity price distributions using quantile regression. Energy, 102, pp.231-243. 

https://doi.org/10.1016/j.energy.2016.02.025 

Hagfors, L.I., Kamperud, H.H., Paraschiv, F., Prokopczuk, M., Sator, A. and Westgaard, S., 

2016. Prediction of extreme price occurrences in the German day-ahead electricity 

market. Quantitative finance, 16(12), pp.1929-1948. 

https://doi.org/10.1080/14697688.2016.1211794 

Huisman, R., Huurman, C. and Mahieu, R., 2007. Hourly electricity prices in day-ahead 

markets. Energy Economics, 29(2), pp.240-248. https://doi.org/10.1016/j.eneco.2006.08.005 

https://doi.org/10.1016/j.eneco.2014.04.020
https://doi.org/10.1016/0304-405X(79)90015-1
https://doi.org/10.1016/j.enpol.2019.04.007
https://ens.dk/sites/ens.dk/files/contents/service/file/memo_on_the_danish_support_scheme_for_electricity_generation_based_on_re.pdf
https://ens.dk/sites/ens.dk/files/contents/service/file/memo_on_the_danish_support_scheme_for_electricity_generation_based_on_re.pdf
https://ens.dk/sites/ens.dk/files/EnergiKlimapolitik/denmarks_national_energy_and_climate_plan.pdf
https://ens.dk/sites/ens.dk/files/EnergiKlimapolitik/denmarks_national_energy_and_climate_plan.pdf
https://doi.org/10.1016/j.enpol.2018.02.048
https://doi.org/10.1016/j.eneco.2011.07.027
https://doi.org/10.1016/j.enpol.2015.04.001
https://doi.org/10.1016/j.energy.2016.02.025
https://doi.org/10.1080/14697688.2016.1211794
https://doi.org/10.1016/j.eneco.2006.08.005


22 
 

Huisman, R., Michels, D. and Westgaard, S., 2014. Hydro reservoir levels and power price 

dynamics: empirical insight on the nonlinear influence of fuel and emission cost on Nord Pool 

day-ahead electricity prices. The Journal of Energy and Development, 40(1/2), pp.149-

187.  www.jstor.org/stable/24813098 

International Energy Agency, 2020. Germany 2020 Energy Policy Review. International 

Energy Agency. viewed 8 May 2021, < https://iea.blob.core.windows.net/assets/60434f12-

7891-4469-b3e4-1e82ff898212/Germany_2020_Energy_Policy_Review.pdf > 

Karakatsani, N.V. and Bunn, D.W., 2008. Forecasting electricity prices: The impact of 

fundamentals and time-varying coefficients. International Journal of Forecasting, 24(4), 

pp.764-785. https://doi.org/10.1016/j.ijforecast.2008.09.008 

Keppler, J.H., Phan, S. and Le Pen, Y., 2016. The impacts of variable renewable production 

and market coupling on the convergence of French and German electricity prices. The Energy 

Journal, 37(3). DOI: 10.5547/01956574.37.3.jkep 

Ketterer, J.C., 2014. The impact of wind power generation on the electricity price in 

Germany. Energy economics, 44, pp.270-280. https://doi.org/10.1016/j.eneco.2014.04.003 

Koenker, R. and Bassett Jr, G., 1978. Regression quantiles. Econometrica: journal of the 

Econometric Society, pp.33-50. https://doi.org/10.2307/1913643 

Koenker, R. and Xiao, Z., 2006. Quantile autoregression. Journal of the American statistical 

association, 101(475), pp.980-990. https://doi.org/10.1198/016214506000000672 

Kyritsis, E. and Andersson, J., 2019. Causality in quantiles and dynamic relations in energy 

markets:(De) tails matter. Energy Policy, 133, p.110933. 

https://doi.org/10.1016/j.enpol.2019.110933 

Kyritsis, E., Andersson, J. and Serletis, A., 2017. Electricity prices, large-scale renewable 

integration, and policy implications. Energy Policy, 101, pp.550-560. 

https://doi.org/10.1016/j.enpol.2016.11.014 

Machado, J.A. and Silva, J.S., 2019. Quantiles via moments. Journal of Econometrics, 213(1), 

pp.145-173. https://doi.org/10.1016/j.jeconom.2019.04.009 

Maciejowska, K., 2020. Assessing the impact of renewable energy sources on the electricity 

price level and variability–a quantile regression approach. Energy Economics, 85, p.104532. 

https://doi.org/10.1016/j.eneco.2019.104532 

Marshman, D., Brear, M., Jeppesen, M. and Ring, B., 2020. Performance of wholesale 

electricity markets with high wind penetration. Energy Economics, 89, p.104803. 

https://doi.org/10.1016/j.eneco.2020.104803 

Nord Pool SA, n.d., The power market, Nord Pool SA, viewed 10 April 2021, < 

https://www.nordpoolgroup.com/the-power-market/ > 

Paraschiv, F., Erni, D. and Pietsch, R., 2014. The impact of renewable energies on EEX day-

ahead electricity prices. Energy Policy, 73, pp.196-210. 

https://doi.org/10.1016/j.enpol.2014.05.004 

https://iea.blob.core.windows.net/assets/60434f12-7891-4469-b3e4-1e82ff898212/Germany_2020_Energy_Policy_Review.pdf
https://iea.blob.core.windows.net/assets/60434f12-7891-4469-b3e4-1e82ff898212/Germany_2020_Energy_Policy_Review.pdf
https://doi.org/10.1016/j.ijforecast.2008.09.008
https://doi.org/10.5547/01956574.37.3.jkep
https://doi.org/10.1016/j.eneco.2014.04.003
https://doi.org/10.2307/1913643
https://doi.org/10.1198/016214506000000672
https://doi.org/10.1016/j.enpol.2019.110933
https://doi.org/10.1016/j.enpol.2016.11.014
https://doi.org/10.1016/j.jeconom.2019.04.009
https://doi.org/10.1016/j.eneco.2019.104532
https://doi.org/10.1016/j.eneco.2020.104803
https://doi.org/10.1016/j.enpol.2014.05.004


23 
 

Peña, J.I., 2012. A note on panel hourly electricity prices. The Journal of Energy Markets, 5(4), 

p.81. 

Pesaran, M.H., 2015. Testing weak cross-sectional dependence in large panels. Econometric 

reviews, 34(6-10), pp.1089-1117. https://doi.org/10.1080/07474938.2014.956623 

Pham, T., 2019. Do German renewable energy resources affect prices and mitigate market 

power in the French electricity market?. Applied Economics, 51(54), pp.5829-5842. 

https://doi.org/10.1080/00036846.2019.1624919 

Prol, J.L., Steininger, K.W. and Zilberman, D., 2020. The cannibalization effect of wind and 

solar in the California wholesale electricity market. Energy Economics, 85, p.104552. 

https://doi.org/10.1016/j.eneco.2019.104552 

Rintamäki, T., Siddiqui, A.S. and Salo, A., 2017. Does renewable energy generation decrease 

the volatility of electricity prices? An analysis of Denmark and Germany. Energy 

Economics, 62, pp.270-282. https://doi.org/10.1016/j.eneco.2016.12.019 

Sapio, A., 2019. Greener, more integrated, and less volatile? A quantile regression analysis of 

Italian wholesale electricity prices. Energy Policy, 126, pp.452-469. 

https://doi.org/10.1016/j.enpol.2018.10.017 

Sirin, S.M. and Yilmaz, B.N., 2020. Variable renewable energy technologies in the Turkish 

electricity market: Quantile regression analysis of the merit-order effect. Energy Policy, 144, 

p.111660. https://doi.org/10.1016/j.enpol.2020.111660 

Würzburg, K., Labandeira, X. and Linares, P., 2013. Renewable generation and electricity 

prices: Taking stock and new evidence for Germany and Austria. Energy Economics, 40, 

pp.S159-S17C 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.1080/07474938.2014.956623
https://doi.org/10.1080/00036846.2019.1624919
https://doi.org/10.1016/j.eneco.2019.104552
https://doi.org/10.1016/j.eneco.2016.12.019
https://doi.org/10.1016/j.enpol.2018.10.017
https://doi.org/10.1016/j.enpol.2020.111660


24 
 

APPENDIX A 

 

Table A1         
Diagnostic tests for Denmark and Germany. 

 Denmark    Germany    

Variable Price Wind Load  Price Wind Solar Load 

Cross-sectional dependence         

CD-Pesaran (2004) 604.041*** 615.183*** 668.386***  575.403*** 672.018*** 378.329*** 685.906*** 

P-value <0.01 <0.01 <0.01  <0.01 <0.01 <0.01 <0.01 

         

Unit root         

Breitung and Das (2006) -6.803*** -4.636*** -2.081**  -5.4454*** -6.037*** -2.725*** -3.046*** 

P-value <0.01 <0.01 0.018  <0.01 <0.01 <0.01 <0.01 

Breitung and Das with trend  -5.886*** -8.015*** -1.481*  -5.1245*** -8.958*** -2.369*** -3.802*** 

P-value <0.01 <0.01 0.069  <0.01 <0.01 <0.01 <0.01 

Notes: i) p-values close to zero indicate data are correlated across panel groups, ii) the unit root hypothesis is rejected 

when the p-value is lower than the chosen significance level 

 

APPENDIX B 

 

 

  

Table B1                  

Model 1 estimates with standard errors. 

Variables Quantiles          

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Denmark          

Wind -6.159*** -5.935*** -5.782*** -5.653*** -5.534*** -5.409*** -5.273*** -5.110*** -4.848*** 

 (0.093) (0.086) (0.094) (0.107) (0.124) (0.143) (0.165) (0.194) (0.243) 

Load 3.756*** 4.971*** 5.803*** 6.506*** 7.154*** 7.833*** 8.571*** 9.458*** 10.88*** 

 (0.289) (0.232) (0.225) (0.238) (0.265) (0.308) (0.365) (0.431) (0.552) 

Observations 51,696 51,696 51,696 51,696 51,696 51,696 51,696 51,696 51,696 

Germany          

Wind -0.233*** -0.22*** -0.211*** -0.203*** -0.196*** -0.187*** -0.178*** -0.168*** -0.15*** 

 (0.006) (0.005) (0.005) (0.004) (0.004) (0.004) (0.004) (0.005) (0.005) 

Solar -0.131*** -0.132*** -0.132*** -0.133*** -0.133*** -0.1335*** -0.134*** -0.1345*** -0.135*** 

 (0.009) (0.008) (0.007) (0.006) (0.006) (0.006) (0.006) (0.006) (0.008) 

Load 0.175*** 0.182*** 0.187*** 0.19*** 0.195*** 0.199*** 0.204*** 0.209*** 0.218*** 

 (0.008) (0.007) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.007) 

Observations 51,576 51,576 51,576 51,576 51,576 51,576 51,576 51,576 51,576 

Notes: (i) Standard errors in parentheses computed with the bootstrap clustered approach. (ii) ***, **,* respectively denotes 

rejection of the null hypothesis of insignificant coefficient at 1%, 5% and 10% significance levels. 
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Table B2       

Model 2 estimates in Denmark with standard errors. 

τ Wind   Load   

 𝛽1,𝐿
𝑤

 𝛽2,𝑀
𝑤  𝛽3,𝐻

𝑤  𝛽1,𝐿
𝐿

 𝛽2,𝑀
𝐿

 𝛽3,𝐻
𝐿

 

0.1 -6.944*** -6.284*** -5.283*** 4.748*** 4.119*** 3.445*** 

 (0.220) (0.122) (0.248) (0.416) (0.364) (0.358) 

0.2 -6.209*** -5.964*** -5.723*** 5.630*** 5.291*** 5.029*** 

 (0.190) (0.108) (0.260) (0.357) (0.331) (0.344) 

0.3 -5.699*** -5.742*** -6.028*** 6.241*** 6.104*** 6.127*** 

 (0.173) (0.105) (0.269) (0.374) (0.350) (0.367) 

0.4 -5.274*** -5.557*** -6.283*** 6.752*** 6.782*** 7.043*** 

 (0.159) (0.105) (0.276) (0.423) (0.391) (0.401) 

0.5 -4.884*** -5.388*** -6.516*** 7.220*** 7.404*** 7.883*** 

 (0.150) (0.110) (0.284) (0.487) (0.443) (0.446) 

0.6 -4.478*** -5.211*** -6.759*** 7.708*** 8.053*** 8.759*** 

 (0.142) (0.117) (0.294) (0.570) (0.511) (0.505) 

0.7 -4.044*** -5.022*** -7.019*** 8.228*** 8.745*** 9.694*** 

 (0.139) (0.127) (0.305) (0.668) (0.591) (0.575) 

0.8 -3.522*** -4.795*** -7.331*** 8.854*** 9.577*** 10.82*** 

 (0.136) (0.143) (0.318) (0.784) (0.683) (0.654) 

0.9 -2.682*** -4.43*** -7.834*** 9.862*** 10.917*** 12.63*** 

 (0.149) (0.172) (0.344) (0.986) (0.845) (0.796) 

Obs 51,696 51,696 51,696 51,696 51,696 51,696 

Notes: (i) Standard errors in parentheses computed with the bootstrap clustered approach. (ii) ***, **,* 

respectively denotes rejection of the null hypothesis of insignificant coefficient at 1%, 5% and 10% significance 
levels. 

Table B3 

Model 2 estimates in Germany with standard errors. 

τ Wind   Solar   Load   

 𝛽1,𝐿
𝑤

 𝛽2,𝑀
𝑤

 𝛽3,𝐻
𝑤

 𝛽1,𝐿
𝑆

 𝛽2,𝑀
𝑆

 𝛽3,𝐻
𝑆

 𝛽1,𝐿
𝐿

 𝛽2,𝑀
𝐿

 𝛽3,𝐻
𝐿

 

0.1 -0.347*** -0.238*** -0.151*** -0.156*** -0.149*** -0.082*** 0.215*** 0.187*** 0.158*** 

 (0.012) (0.011) (0.003) (0.031) (0.012) (0.011) (0.011) (0.011) (0.008) 

0.2 -0.315*** -0.223*** -0.164*** -0.155*** -0.145*** -0.104*** 0.211*** 0.188*** 0.169*** 

 (0.011) (0.009) (0.003) (0.026) (0.010) (0.009) (0.010) (0.010) (0.007) 

0.3 -0.291*** -0.212*** -0.174*** -0.155*** -0.142*** -0.120*** 0.209*** 0.189*** 0.176*** 

 (0.011) (0.009) (0.002) (0.023) (0.009) (0.008) (0.010) (0.009) (0.007) 

0.4 -0.271*** -0.203*** -0.182*** -0.155*** -0.140*** -0.133*** 0.207*** 0.190*** 0.183*** 

 (0.010) (0.008) (0.002) (0.021) (0.008) (0.007) (0.009) (0.008) (0.007) 

0.5 -0.251*** -0.193*** -0.190*** -0.155*** -0.138*** -0.146*** 0.205*** 0.191*** 0.190*** 

 (0.009) (0.007) (0.002) (0.019) (0.007) (0.007) (0.009) (0.008) (0.007) 

0.6 -0.231*** -0.184*** -0.198*** -0.154*** -0.136*** -0.160*** 0.203*** 0.191*** 0.196*** 

 (0.009) (0.007) (0.003) (0.018) (0.006) (0.007) (0.008) (0.007) (0.006) 

0.7 -0.208*** -0.173*** -0.207*** -0.154*** -0.133*** -0.175*** 0.201*** 0.192*** 0.204*** 

 (0.008) (0.006) (0.003) (0.018) (0.006) (0.008) (0.008) (0.007) (0.006) 

0.8 -0.181*** -0.161*** -0.218*** -0.154*** -0.130*** -0.193*** 0.198*** 0.193*** 0.213*** 

 (0.008) (0.005) (0.004) (0.018) (0.006) (0.010) (0.008) (0.006) (0.007) 

0.9 -0.138*** -0.140*** -0.235*** -0.153*** -0.125*** -0.222*** 0.194*** 0.195*** 0.227*** 

 (0.008) (0.004) (0.006) (0.022) (0.008) (0.013) (0.009) (0.007) (0.008) 

Obs 51,576 51,576 51,576 51,576 51,576 51,576 51,576 51,576 51,576 
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Notes: (i) Standard errors in parentheses computed with the bootstrap clustered approach. (ii) ***, **,* respectively denotes rejection of 

the null hypothesis of insignificant coefficient at 1%, 5% and 10% significance levels. 

Table B5                  

Daily estimates of the baseline model in Germany. 

Variables Quantiles         

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Wind -0.180*** -0.158*** -0.149*** -0.142*** -0.137*** -0.134*** -0.138*** -0.140*** -0.133*** 

 (0.009) (0.007) (0.006) (0.007) (0.006) (0.006) (0.007) (0.009) (0.014) 

Solar -0.040* -0.063*** -0.077*** -0.081*** -0.091*** -0.099*** -0.098*** -0.121*** -0.160*** 

 (0.022) (0.017) (0.019) (0.017) (0.017) (0.014) (0.016) (0.021) (0.030) 

Load 0.099*** 0.103*** 0.109*** 0.109*** 0.108*** 0.114*** 0.129*** 0.133*** 0.113*** 

 (0.019) (0.015) (0.014) (0.014) (0.014) (0.014) (0.015) (0.020) (0.029) 

Constant -8.965** -8.994** -9.351*** -7.807** -6.119* -5.883* -7.059** -4.321 4.807 

 (4.249) (3.524) (3.489) (3.272) (3.248) (3.064) (3.407) (4.492) (7.109) 

Observations 2,149 2,149 2,149 2,149 2,149 2,149 2,149 2,149 2,149 
Notes: (i) Standard errors in parentheses computed with the bootstrapped approach. (ii) ***, **,* respectively denotes rejection of the null hypothesis 
of insignificant coefficient at 1%, 5% and 10% significance levels. 

Table B4                  

Daily estimates of the baseline model in Denmark. 

Variables Quantiles         

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Wind -5.641*** -4.770*** -4.302*** -4.177*** -4.092*** -4.215*** -4.433*** -4.452*** -4.676*** 

 (0.364) (0.264) (0.222) (0.204) (0.198) (0.242) (0.230) (0.231) (0.337) 

Load 4.067*** 3.465*** 3.959*** 4.603*** 4.602*** 6.153*** 6.093*** 6.404*** 9.683*** 

 (1.092) (0.790) (0.856) (0.776) (0.797) (0.699) (0.731) (0.959) (1.423) 

Constant -1.607 -0.521 -0.750 -0.504 0.615 -1.183 1.083 2.722 -1.449 

 (2.578) (1.722) (1.893) (1.817) (1.748) (1.619) (1.815) (2.172) (3.504) 

Observations 2,154 2,154 2,154 2,154 2,154 2,154 2,154 2,154 2,154 
Notes: (i) Standard errors in parentheses computed with the bootstrap clustered approach. (ii) ***, **,* respectively denotes rejection of the null 

hypothesis of insignificant coefficient at 1%, 5% and 10% significance levels. 
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Table B6 

Daily estimates of model 2 in Denmark. 

τ Wind   Load   

 𝛽1,𝐿
𝑤  𝛽2,𝑀

𝑤  𝛽3,𝐻
𝑤  𝛽1,𝐿

𝐿  𝛽2,𝑀
𝐿  𝛽3,𝐻

𝐿  

0.1 -5.787*** -6.092*** -5.137*** 3.588 3.427* 3.341** 

 (0.927) (0.412) (0.634) (2.361) (1.836) (1.697) 

0.2 -4.862*** -4.767*** -4.555*** 3.518** 3.247** 3.224*** 

 (0.778) (0.280) (0.487) (1.616) (1.355) (1.207) 

0.3 -3.979*** -4.331*** -4.984*** 4.118*** 4.079*** 4.682*** 

 (0.377) (0.269) (0.509) (1.263) (1.094) (1.026) 

0.4 -3.659*** -4.135*** -4.474*** 2.822** 3.398*** 3.894*** 

 (0.476) (0.260) (0.503) (1.426) (1.305) (1.175) 

0.5 -3.366*** -4.181*** -4.673*** 2.891* 3.643*** 4.357*** 

 (0.573) (0.226) (0.473) (1.481) (1.332) (1.230) 

0.6 -2.877*** -4.197*** -5.105*** 3.981*** 4.847*** 5.772*** 

 (0.546) (0.264) (0.415) (1.467) (1.294) (1.120) 

0.7 -2.986*** -4.398*** -5.533*** 4.471*** 5.488*** 6.414*** 

 (0.696) (0.238) (0.523) (1.288) (1.131) (1.012) 

0.8 -2.143*** -4.513*** -6.610*** 4.799*** 5.892*** 7.499*** 

 (0.744) (0.241) (0.654) (1.589) (1.313) (1.221) 

0.9 -2.092*** -4.798*** -6.427*** 7.396*** 9.026*** 10.575*** 

 (0.593) (0.345) (0.728) (2.115) (1.805) (1.679) 

Obs. 2,154 2,154 2,154 2,154 2,154 2,154 
Notes: (i) Standard errors in parentheses computed with the bootstrapped approach. (ii) ***, 

**,* respectively denotes rejection of the null hypothesis of insignificant coefficient at 1%, 

5% and 10% significance levels. 

 

Table B7          

Daily estimates of model 2 in Germany. 

τ Wind   Solar   Load   

 𝛽1,𝐿
𝑤  𝛽2,𝑀

𝑤  𝛽3,𝐻
𝑤  𝛽1,𝐿

𝑆  𝛽2,𝑀
𝑆  𝛽3,𝐻

𝑆  𝛽1,𝐿
𝐿  𝛽2,𝑀

𝐿  𝛽3,𝐻
𝐿  

0.1 -0.312*** -0.168*** -0.125*** -0.235*** -0.034 0.004 0.120*** 0.076*** 0.067*** 

 (0.029) (0.010) (0.017) (0.083) (0.027) (0.121) (0.026) (0.022) (0.023) 

0.2 -0.271*** -0.150*** -0.141*** -0.144* -0.053*** -0.077 0.108*** 0.082*** 0.083*** 

 (0.032) (0.009) (0.016) (0.075) (0.017) (0.089) (0.023) (0.019) (0.020) 

0.3 -0.241*** -0.141*** -0.137*** -0.126*** -0.069*** -0.179 0.111*** 0.088*** 0.095*** 

 (0.024) (0.007) (0.014) (0.048) (0.019) (0.111) (0.020) (0.017) (0.017) 

0.4 -0.226*** -0.133*** -0.131*** -0.134*** -0.061*** -0.150 0.110*** 0.088*** 0.095*** 

 (0.021) (0.007) (0.013) (0.041) (0.018) (0.091) (0.020) (0.017) (0.017) 

0.5 -0.197*** -0.131*** -0.130*** -0.177*** -0.075*** -0.159* 0.111*** 0.091*** 0.097*** 

 (0.021) (0.007) (0.011) (0.041) (0.019) (0.089) (0.020) (0.017) (0.016) 

0.6 -0.190*** -0.128*** -0.131*** -0.161*** -0.082*** -0.153 0.106*** 0.092*** 0.098*** 

 (0.020) (0.008) (0.011) (0.048) (0.021) (0.102) (0.023) (0.019) (0.018) 

0.7 -0.171*** -0.128*** -0.144*** -0.186*** -0.064*** -0.299** 0.141*** 0.122*** 0.138*** 

 (0.023) (0.008) (0.015) (0.047) (0.020) (0.143) (0.026) (0.021) (0.020) 

0.8 -0.175*** -0.133*** -0.166*** -0.221*** -0.074*** -0.340** 0.150*** 0.127*** 0.149*** 

 (0.026) (0.013) (0.017) (0.054) (0.023) (0.143) (0.028) (0.025) (0.023) 

0.9 -0.131** -0.122*** -0.173*** -0.181* -0.121*** -0.701*** 0.083** 0.080** 0.125*** 

 (0.055) (0.014) (0.029) (0.095) (0.034) (0.222) (0.041) (0.032) (0.033) 

Obs. 2,149 2,149 2,149 2,149 2,149 2,149 2,149 2,149 2,149 
Notes: (i) Standard errors in parentheses computed with the bootstrapped approach. (ii) ***, **,* respectively denotes rejection of the 
null hypothesis of insignificant coefficient at 1%, 5% and 10% significance levels. 
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Fig. C1. Baseline model estimates in Denmark.  τ = 0.1, 0.2, …, 0.9 with 95% confidence intervals. 

Fig. C2. Baseline model estimates in Germany.  τ = 0.1, 0.2, …, 0.9 with 95% confidence intervals. 
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Fig. C3. Conditional on demand estimates-model 2 in Denmark.  τ = 0.1, 0.2, …, 0.9 with 95% 

confidence intervals. 

Fig. C4. Conditional on demand estimates-model 2 in Germany.  τ = 0.1, 0.2, …, 0.9 with 95% 

confidence intervals. 
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