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Abstract 

Good approximations of eigenvalues exist for the regular square and hexagonal tessellations. To complement this situation, 
spatial scientists need good approximations of eigenvalues for irregular tessellations. Starting from known or approximated 
extreme eigenvalues, the remaining eigenvalues may be in turn approximated. One reason spatial scientists are interested in 
eigenvalues is because they are needed to calculate the Jacobian term in the autonormal probability model. If eigenvalues are not
needed for model fitting, good approximations are needed to give the interval within which the spatial parameter will lie. 
© 2015 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of Spatial Statistics 2015: Emerging Patterns committee. 

Keywords: Extreme eigenvalues; Spatial regression; Rayleigh quotient 

1. Introduction 

Spatial regression models are fitted in a wide range of disciplines, from political and regional science to 
epidemiology and ecology; simultaneous (SAR) and conditional (CAR) autoregressive models are among these. 
Testing for spatial autocorrelation, and the study of methods for specifying and fitting spatial regression models 
have been central topics in spatial analysis and quantitative geography for many decades, but have not lost their 
relevance and research interest. Problems can however arise when data sets become large because it is necessary to 
compute the log determinant of an n by n matrix when optimizing the log-likelihood function, where n is the number 
of observations. This matrix is , where  denotes the determinant of matrix  , I is the identity matrix,  is 
a spatial coefficient, and W is an n by n matrix of fixed positive finite spatial weights.
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For moderate n, the log determinant may be found using the eigenvalues of W numerically (Ord) [1]: 

where i are the eigenvalues of W. If the matrix is symmetric, the eigenvalues will have imaginary parts equal to 
zero, if asymmetric, some imaginary parts may be non-zero (The eigenvalues for an asymmetric matrix that has a 
symmetric similarity matrix counterpart are all real). For larger n, the log determinant may be found using LU or 
Cholesky decomposition, or by approximations; see Bivand et al. [2] for a recent review.  For large regular grids, the 
eigenvalues of W are known analytically for contiguity defined as non-zero shared boundary length (Ord; Griffith 
and Sone) [1, 3].  

The work on which we report here is part of an on-going initiative to approximate eigenvalues for irregular 
surface partitionings. Because approximations need to be rescaled using the extreme eigenvalues, attention has first 
been given to their calculation. This has the beneficial side effect of providing a review of methods of calculating 
such extreme eigenvalues for W configured in different ways. First we will report on methods for calculating 
extreme eigenvalues and then show how these have been implemented in R with examples and timings, before 
providing conclusions on this stage of our work. 

2. Extreme eigenvalues 

If n is small, the eigenproblem may be solved for the spatial weights matrix, removing the need for separate 
calculation of the extreme eigenvalues. Griffith [4] shows how extreme eigenvalues of a binary symmetric 
contiguity matrix C expressed as an undirected irreducible planar graph may be calculated. The largest eigenvalue is 
found using the Rayleigh quotient approach. 

Although the discussion is framed in terms of an undirected irredicible planar graph, it turns out that this 
approach to finding the largest eigenvalue is quite robust. See also discussion of use of Rayleigh quotient 
approaches in Nash [5,6]. Griffith [4] further describes an approach to finding the smallest eigenvalue of C. This is 
extended to the case of the smallest eigenvalue of W, the row-standardised spatial weights matrix based on C. Since 
the largest eigenvalue is known to be one by defintion, the lower bound remains to be approximated, except where a 
result given by Smirnov and Anselin [7] can be applied. 

If the data include observations with no neighbours, the graph is no longer irredicible, but the corresponding 
eigenvalues are zero, and may be ignored. If any subgraphs have two members, the corresponding matrix is cyclical 
in Smirnov and Anselin's terminology, and the smallest eigenvalue must be -1 by definition. If larger subgraphs, or 
the graph as a whole, are cyclical --- for every location i, no pair of its neighbours j, k are connected --- the same 
result holds. A classic case is that rook contiguity on a regular grid meets this condition. Obviously, when the 
weights matrix is block diagonal, the subsets result in a collection of smaller problems that may be solved one-by-
one. 

Lehoucq et al. [8] also provide methods implemented in ARPACK for finding extreme eigenvalues of large 
sparse matrices; it may however be the case that fine-tuning of the number of iterations is required. 

In discussion by Kelejian and Prucha [9] and developed in the Stata implementation presented by Drukker et al. 
[10], the largest eigenvalue of a general binary weights matrix is used to normalise the matrix, in a way reminiscent 
of treatments in spatial statistics. They suggest the use of a minmax approach, taking the minimum of maxima of 
row sums and column sums of the weights matrix as an approximation of the largest eigenvalue, but other 
approximations, such as that given by Griffith [4] seem superior. 
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3. Implementations 

The methods proposed in Griffith [4] have been implemented in the R package spdep based on Fortran code used 
in the original paper, and with some steps coded in C. We are now in the process of testing edge cases, such as the 
robustness of these methods when planarity cannot be established directly. We observe that ARPACK code in the 
rARPACK package is more robust than that in igraph, but that graph analysis tools in this package are useful in 
finding possible short-cuts when the weights matrix is row-standardised and there are multiple subgraphs (block 
diagonal weights matrix), where some of these blocks may be cyclical in the Smirnov-Anselin sense. The poster 
presented at the Spatial Statistics conference will demonstrate using example code, which will be available for 
download from http://spatial.nhh.no/misc/ss15/extremeEigenvalues.

Figure 1 shows the values taken by the log determinant between its bounds for two spatial weights matrices 
based on Queen contiguities for 1970 census tracts in Boston, used in the classic study of the influence of air 
pollution on house prices. It is given here as an indication only. 

Figure 1: Left panel shows values of the log determinant for values of the spatial coefficient within its bounds 
(vertical dashed orange lines) for binary weights; right panel shows values of the log determinant for values of the 
spatial coefficient within its bounds (vertical dashed orange lines) for row-standardised weights, 506 Boston census 
tracts.
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