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Abstract. Issuances in the USD 260 Bn global market of per-
petual risky debt are often motivated by capital requirements for
financial institutions. We analyze callable risky perpetual debt em-
phasizing an initial protection (’grace’) period before the debt may
be called. The total market value of debt including the call option
is expressed as a portfolio of perpetual debt and barrier options
with a time dependent barrier. We also analyze how an issuer’s
optimal bankruptcy decision is affected by the existence of the call
option by using closed-form approximations. The model quantifies
the increased coupon and the decreased initial bankruptcy level
caused by the embedded option. Examples indicate that our closed
form model produces reasonably precise coupon rates compared to
numerical solutions. The credit-spread produced by our model is
in a realistic order of magnitude compared to market data.
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1. Introduction

Perpetual debt securities seldom turn out to be particularly long-
lived - in spite of their ex ante infinite horizon. This contractual horizon
gives the securities a, using regulatory language, permanence, which is
crucial when banks and other financial institutions are allowed to in-
clude them as regulatory required risk capital. However, the contract-
ing parties, the issuing institution and the investors in the securities,
typically appreciate financing flexibility and may thus prefer a more
tractable finite horizon. These apparently conflicting objectives are re-
solved by embedding such perpetual securities, almost without excep-
tions, with an issuer’s call-option, facilitating a finite realized horizon
T .

In a companion paper, Chapter 3 of Mjøs (2007), we develop a closed
form valuation model for perpetual debt securities including this op-
tion. This model allows both for calibration of coupon rate and calcula-
tion of optimal bankruptcy asset level. In the current paper we analyze
how a finitely lived option embedded in the perpetual security impacts
coupon rates and bankruptcy in the period before the option expires.
Market practise indicates that issuers typically pay a fixed credit mar-
gin on top of a market reference interest rate, and are thus not directly
exposed to the nominal interest rate levels. Although we use a constant
interest rate model, our model produces a credit spread which reflects
the risk of bankruptcy due to the volatility of the cashflow(EBIT)-
process. This approach disregards potential correlation effects between
a company’s EBIT process and general interest rates dynamics.

Outstanding Tier Upper Non-
amount I Tier II financials’

Market (USD Bn) (%) (%) share(%)
U.S. dollar 82.8 75 17 8
Euro 105.6 43 16 41
Sterling 71.4 29 57 13
Total 259.8 50 28 23

Table 1. Global outstanding volumes of large perpetual debt
capital securities end-2005. Amounts and relative shares are calcu-
lated from Lehman Brothers’ index of debt- and debt-like risk cap-
ital securities. Percentages relate to share of each market. Source:
Lehman Brothers.

Table 1 provides an overview of the estimated volume of outstanding
large issues of perpetual debt securities as of end-2005 from Pomper
and Varma (2005). This table shows that the total issuance is evenly
spread across the main markets, but that there are large regional vari-
ations. The largest category, denoted ’Tier I’, refers to securities that



CALLABLE RISKY PERPETUAL DEBT 3

qualify as the highest quality risk capital for issuing financial insti-
tutions1. ’Upper Tier II’-capital is also perpetual but less risky and
within the subordinated debt-category for financial institutions. The
latter dominates the GBP Sterling market whilst utilities and other
non-financial issuers have a large share of the Euro-market. The glob-
ally accepted principles for capital adequacy and classification of risk
capital were specified by Bank for International Settlements (BIS) in
19882. National variations in regulations, tax and capital markets ex-
plain most of the differences.

Mapondera and Bossert (2005) include 50 large European banks in
their research universe and show that amongst those, the volume of new
perpetual securities equals 28% of the volume of newly issued senior
market debt for the years 2000 - 2005. This category is split between
Tier I capital, representing 20%-points and Upper Tier II capital cov-
ering the remaining 8%-points. The report also lists all individual new
issues of new perpetual securities by these banks during 2004/2005 and
all of them have a deferred issuer’s call option, typically exercisable 10
years from date of issue. King (2007) studies empirically the implicit
value of embedded options in various U.S. agency bonds, their levels
and relationship to maturity and interest rates. He finds that em-
bedded call options in bonds issued by Federal Home Loan Mortgage
Corporation on average represents 3.9 % of the bond values in the call
protection period of up to 10 years.

The embedded calls are contractually American in that they may
be exercised at any coupon-paying dates after time T , typically year
10. The coupon rate is also typically stepped-up by 75-150 bp at the
first call date. In this paper we model the call feature as a European
option. This assumption means that the call may only be exercised
at the first possible exercise date. Market practice indicates that all
issuers exercise them at the first possible date see, e.g., Ineke, Guil-
lard, and Mareels (2003) who state: ’To our knowledge, there has only
ever been one instance of an issuer not calling a bond and allowing it
to step-up and this was actually done unintentionally’. This practice
indicates that the additional value of the contractual American prop-
erty of further postponing the exercise date beyond time T has a low,
if any, value. In any case, European option values are lower bounds
for American option values. In practice these contracts are equipped
with additional features such as a coupon rate step-up to further incen-
tivize exercise at the earliest possible date. We are therefore tempted
to conclude that assuming a fixed exercise date for these options has
no severe effect on their values.

1In this context, financial institutions primarily represent banks and insurance
companies.

2See Committee on Banking Supervision (1988)
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The protection period of the call feature corresponds to the maturity
of the assumed European option.

We follow the approach by Black and Cox (1976) and Leland (1994),
including full information and efficient market assumptions. In line
with Goldstein, Ju, and Leland (2001) we assume that the issuing com-
pany’s assets produce a stream of cashflows that follows a geometric
Brownian motion. For a given capital structure, including an infinite
horizon debt contract, there exists a constant asset value level where it
is optimal for the company to go bankrupt. After introducing a finitely
lived option on the debt, this bankruptcy level is no longer indepen-
dent of the finite maturity of the option. The bankruptcy level after
expiration of the option equals the constant Black and Cox (1976)-level.

One could alternatively consider the situation where third parties
trade options on publicly traded debt. Naturally, the existence of such
options would neither directly influence the pricing of the bonds at
issue or in the marketplace nor the issuing company’s optimal choice
of bankruptcy level. We, however, consider a corporate setting where
the issuer’s call option is an integrated part of the bond(debt) con-
tract. That is, the option is written by the debtholders in favor of the
equityholders. We refer to such a call option as an embedded option.
The existence of this option will influence both the issue-at-par coupon
of the debt and the issuer’s bankruptcy considerations before the op-
tion’s expiration date. Intuition suggests that the coupon is increased
to compensate for the embedded option, whereas the optimal bank-
ruptcy level is decreased due to the option value - both compared to
the case with no option.

We apply pricing formulas for down-and-out barrier European op-
tions on infinite horizon continuous coupon paying debt. Down-and-
out barrier options are relevant since the debt options may only be
exercised at the future time T if the issuing company has not gone
bankrupt earlier. The asset-level which defines optimal bankruptcy
before the option expires is thus the barrier used in the barrier option
formulas.

For analytical tractability we assume that the shape of the time de-
pendent barrier is an increasing exponential function. This is a straight-
forward way to model a time dependent barrier and a natural first at-
tempt, but still an arbitrary choice. To investigate the significance of
time dependency, we test the effect of alternative bankruptcy barrier
assumptions. Our examples show that the effect of time dependency
on the coupon-rate is limited, but increasing in cashflow volatility and
time to expiration of the option. The changes in the value of barrier
options as time elapses are different from the similar effects on plain
vanilla options due to the barrier, here interpreted as the bankruptcy
level of the issuing firm.
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1.1. The debt payoff including the embedded option at expi-
ration time T . In this paper we denote the market value of total
company assets at time t by At and the market value of its’ debt at
time t by D(At).

Time T Asset Value
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Figure 1. Payoff from perpetual debt with and without em-
bedded option at time T as a function of asset level AT . See Table
2 in Section 5 for parameter values.

The payoff to debtholders when the option expires is illustrated in
Figure 13.

The payoff to debtholders is shown as a function of asset value AT for
debt with and without embedded option, assuming that the absolute
priority rule is followed. The leftmost part of the graph shows that in
bankruptcy, debtholders receive all assets, indicated by the 45-degree
line. Further to the right, the thicker/upper line indicates the payoff
to debt with embedded option whilst the thinner/lower line represents
payoff to regular perpetual debt. The optimal bankruptcy asset levels
(indicated in the figure) are different due to the different coupons. At

3This and the next graphical presentation use the same base case parameters as
in Table 2 in Section 5 of the paper: Time 0 EBIT (earnings before interest and tax)
δ0 = 3, asset level A0 = 100, par value of debt D = 70, expiration date of option
T = 10 years, volatility of EBIT and assets σ = 0.20, constant riskfree interest rate
r = 5% and drift of the EBIT(cashflow) process, µ = 2%. These parameters yield
issue-at-par coupon rates of 5.718 % for perpetual debt without option and 5.998
% for the equivalent with embedded option, solved analytically.
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time T the option does not impact optimal bankruptcy level anymore
and it is only the higher coupon that causes a higher optimal long-term
bankruptcy asset level.

The more interesting issue is for which levels of AT the option is
rationally exercised. Ceteris paribus, perpetual debt with a higher
coupon will be more valuable than debt with a lower coupon. By not
exercising the option at time T , the issuer is left with regular perpetual
debt with a higher coupon than at time T issued identical debt. The
explanation is that the coupons were fixed at time 0 and that a part
of the historical coupon was a compensation to debtholders for the
embedded, but at time T expired, option. The issuer is therefore willing
to exercise the option at lower levels of AT relative to the time 0 value
of A0 to avoid paying this relatively high coupon in the future. In the
example in Figure 1, where the exercise level of the option is par value
of the debt, (70), the indifference asset level is appr. 87, compared
to the time 0 asset level4 of 100. At this indifference level, when the
company is in a worse state than at time 0, the issue-at-par optimal
coupon for newly issued straight debt will exactly equal the original
coupon for debt with option.

1.2. Literature overview. The related literature may broadly be sep-
arated into research on debt-based derivatives on one hand and on
perpetual debt on the other hand.

Central to the classic literature on valuing bonds with embedded
derivatives are papers like Ingersoll (1977) and Brennan and Schwartz
(1977). Our paper differs from these primarily with regards to our ex-
plicit focus on the protection period of the embedded option, its impact
on bankruptcy risk, the revised formulation of the underlying security
in options on bonds and the use of barrier option methodology to reflect
default risk before expiry of the security. Kish and Livingston (1992)
test for determinants of calls included in corporate bond contracts.
Their findings are that the interest rate level, agency costs and bond
maturity significantly affect whether a bond comes with an embedded
call option. Sarkar (2001) is the closest precedent to our paper in his
focus on callable perpetual bonds modelled in the tradition of Leland
(1994). The main difference is that the calls are assumed to be Ameri-
can and immediately exercisable, i.e., without a protection period, and
a main part of the paper thus deals with the optimal timing of the ex-
ercise of the call. The paper does neither include analytical valuation
of the options nor optimal coupon- or bankruptcy levels. Bank (2004)
values call options on debt in a similar manner, but without calibrating

4Our analysis provides the calibrated coupon level for debt with embedded option
to ensure issue-at-par. The indifference level of AT is found by using this coupon in
the valuation expression for regular perpetual debt in expression (4) setting D(AT )
equal to the exercise level (par) and solve for AT .
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coupons nor taking into account the fact that debt-values are not log-
normally distributed. The paper also lacks a clear distinction between
infinite securities and finite options.

Jarrow and Turnbull (1995) model various derivatives on fixed ma-
turity debt securities, but do not include any analysis of the impact on
endogenous bankruptcy decisions. Acharya and Carpenter (2002) de-
velop valuation formulas for callable defaultable bonds with stochastic
interest rates and asset values without including a protection period.
Through decomposing the bonds into a riskfree bond less two options,
they explore how the call option impacts optimal default in line with
our results. They analyze fixed maturity bonds and the hedging as-
pects of callable bonds through the options’ impact on bond duration.
Toft and Prucyk (1997) develop modified equity option expressions
based on Leland (1994) for leveraged equity and various capital struc-
ture and bankruptcy assumptions. The infinite horizon property of
equity makes it comparable to our work although the specific issues
related to embedded options on debt are not covered directly. Rubin-
stein (1983) is related to our approach with the use of a modified asset
process, labelled a ’displaced diffusion process’, to modify the standard
Black-Scholes approach. Johnson and Stulz (1987) define the concept
of ’vulnerable options’ i.e. options where the counterparty may default
on the contract. Hull and White (1995) categorize risky derivative
contracts into classes by the counterparty default risk and the credit-
risk of the underlying asset, respectively. Options embedded into debt
contracts are in a class of vulnerable options on credit-risky underlying
assets and the two risks may not be separated. By using barrier options
one also include the risk of bankruptcy before the option matures.

In the perpetual debt pricing tradition, starting with Black and Cox
(1976), our paper is related to the paper by Emanuel (1983) which
develops a valuation of perpetual preferred stock, based on the option-
methodology of Black-Scholes. Preferred stock can be viewed as per-
petual debt for analytical purposes. Emanuel’s analysis allows unpaid
dividends to accumulate as arrearage due to the junior position of the
instrument, which is relevant for financial institutions, but beyond the
scope of our paper. He does not cover options on preferred stock as
such. Sarkar and Hong (2004) extend Sarkar (2001) and analyze the
impact from callability on the duration of perpetual bonds and find
that a call reduces the optimal bankruptcy level and thus extends the
duration of a bond. Their reduced optimal bankruptcy level matches
our intuition and results.

1.3. Contributions and outline of the paper. Our main contri-
butions are new valuation formulas for callable perpetual continuous
coupon paying debt including a protection period. Our analysis also
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quantifies the effects on optimal bankruptcy behavior during the pro-
tection period for an assumed exponential shape of the bankruptcy bar-
rier. Numerical examples indicate that our closed form model produces
correct coupon-rates compared to numerical solutions which have no
restrictions on the shape of the protection period bankruptcy barrier.

We apply the valuation model from Mjøs (2007) based on barrier
option formulas on perpetual debt contracts. Basically, this model
expands the results of Black and Cox (1976) to integrate an issuer’s
deferred call option into the valuation.

Compared to market data the credit spread produced by our model
is in a realistic order of magnitude.

The structure of the paper is as follows: In Section 2 we present the
model and some basic results. Section 3 contains the complete expres-
sions for perpetual debt with embedded options. Section 4 compares
the base case analytical solutions with a numerically solved binomial
tree, Section 5 tests the assumptions regarding the time dependency
in the bankruptcy barrier, Section 6 presents numerical sensitivities,
and Section 7 concludes the paper. Some proofs are included in an
appendix.

2. The model and basic results

We consider the standard Black-Scholes-Merton economy and impose
the usual perfect market assumptions:

• All assets are infinitely separable and continuously tradeable.
• No taxes, transaction cost, bankruptcy costs, agency costs or

short-sale restrictions.
• There exists a known constant riskless rate of return r.

2.1. The EBIT-based market value process. We study a limited
liability company with financial assets and a capital structure consist-
ing of two claims, infinite horizon continuously coupon paying debt
and common equity. In line with Goldstein, Ju, and Leland (2001), we
assume that the assets generate an EBIT (earnings before interest and
tax) cashflow denoted δt given by the stochastic differential equation

(1) dδt = µδtdt+ σδtdWt,

where µ and σ are constants representing the drift and volatility pa-
rameters respectively, and δ0 is the fixed initial cashflow level. Here
Wt is a standard Brownian motion under a fixed equivalent martingale
measure. The total time t market value Ât of the assumed perpetual
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EBIT stream from the assets equals

Ât = EQ
t

[∫ ∞
t

e−r(s−t)δsds

]
=

δt
r − µ

(2)

The market value of this EBIT stream is the solution to the stochastic
differential equation process

dÂt = (rÂt − δt)dt+ σÂtdWt

= µÂtdt+ σÂtdWt.(3)

The quantity Â is elsewhere in the literature referred to as the unlevered
value of the firm’s assets.

In this setting there is a level of Ât where it is optimal for the com-
pany to stop paying debt coupons and declare bankruptcy. In the
classic case this level is independent of time, i.e., constant.

2.2. The standard Black and Cox (1976) results. The time 0
market value of infinite horizon debt with continuous constant coupon
payment is

(4) D(A) =
cD

r
− (

cD

r
− Ā)(

A

Ā
)−β,

where c is the constant coupon rate, D is the par value of the debt-
claim and cD is the continuous coupon payment rate. The ratio (A

Ā
)−β

can be interpreted as the current market value of one monetary unit
paid upon bankruptcy, i.e., when the process At hits the bankruptcy
level Ā. Here

(5) β =
µ− 1

2
σ2 +

√
(µ− 1

2
σ2)2 + 2σ2r

σ2
.

Expression (4) for the market value of debt carries a nice intuition.
Observe that cD

r
is the current market value of infinite horizon default-

free debt. Upon bankruptcy the debtholder looses infinite coupon pay-
ments which at the time of bankruptcy have market value cD

r
. On the

other hand the debtholder receives the remaining assets with a value
equal to Ā. We can therefore interpret ( cD

r
− Ā) as the debtholder’s

net loss upon bankruptcy. The time 0 market value of this net loss,
( cD
r
− Ā)(A

Ā
)−β, therefore represents the reduction of the time 0 total

market value of debt due to default risk. In our model this is the only
source of risk in the debt.

The value of equity as the residual claim on the assets is in this
setting determined by

(6) E(A) = A−D(A) = A− cD

r
+ (

cD

r
− Ā)(

A

Ā
)−β
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In the classic case of no embedded options, i.e., with a constant bank-
ruptcy level, Black and Cox (1976) determine the optimal bankruptcy
level for a given capital structure (E, D) from the perspective of the
equityholders (found by differentiating expression (6) with respect to
Ā) as

(7) Ā =
β

β + 1

cD

r
.

2.3. The modified process. We price an embedded, finitely lived
option on infinite horizon debt. Due to the finite horizon of this option,
the optimal bankruptcy level of the issuer depends on remaining time to
expiration. In order to capture this aspect we apply a time-dependent
bankruptcy asset level Bt,

Bt = Beγt,

for a given time 0 level B and a constant γ. The time of bankruptcy
is given by the stopping time τ defined as

τ = inf{t ≥ 0, Ât = Bt}
where Ât is given in expression (2).

By modifying the asset process this stopping time can equivalently
be expressed as

τ = inf{t ≥ 0, At = B},
where At is

(8) dAt = (µ− γ)Atdt+ σAtdWt,

Compared to equation (2), the modified process has a a negative drift
adjustment of γ. Although γ determines the curvature of the bank-
ruptcy level, it can formally be interpreted as a constant dividend yield
on At. Again formally, this transformation allows us to analyze the sim-
pler setting of a constant bankruptcy level B, although no economic
fundamentals have been changed. The explanation for our choice of ex-
ponential bankruptcy level is thus only mathematical convenience, i.e.,
to facilitate this transformation. In Section 4, we numerically compare
our analytical approximation with the optimal barrier derived numer-
ically from a binomial tree. Some alternative specifications of time
dependent bankruptcy barriers are analyzed in Section 5.

3. Value of perpetual debt including embedded option

We analyze a company with a simple capital structure, equity and
one class of Black and Cox (1976)-debt including embedded option,
and with net loss J = cD

r
− Ā in case of bankruptcy.

In this section we assume that no further options are present after
time T . We are then back to the classic Black and Cox (1976)-setting
and the bankruptcy level from time T onwards is given by Ā in expres-
sion (7).
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Let Dc
T denote the time T payoff of perpetual debt including an em-

bedded option to repay debt at par value D, given no prior bankruptcy.
Also denote the time 0 value of cashflows before time T , i.e., coupon
and potential bankruptcy payments, by L0(A). The time 0 value of
debt including the embedded option Dc

0(A) equals the time 0 value of
the time T cashflow Dc

T plus L0(A), i.e.,

(9) Dc
0(A) = V0(Dc

T ) + L0(A),

where V0(·) represents the time 0 market value operator.

3.1. The time T payoff of debt with embedded option. We as-
sume that D > Ā, i.e., that the debt is risky in case of liquidation.
The time T payoff of perpetual debt including an embedded option as
a function of the market value of assets at time T , given by expression
(3), is

Dc
T (ÂT ) =


0 for τ < T,

ÂT for τ > T and ÂT < Ā,

D(ÂT ) for τ > T and Ā < ÂT < Ȧ,

D for τ > T and ÂT > Ȧ,

where

Ȧ = θĀ,

and

θ =

(
J

cD
r
−K

) 1
β

,

and D(ÂT ) is given by expression (4) and τ is the time of bankruptcy
as defined in Section 2. Here Ȧ represents the level of the market
value process for which the embedded option is at-the-money, see Mjøs
(2007).

If BT = Ā, i.e., the bankruptcy barrier is continuous at time T , case
2 above is redundant. There are strong arguments for a continuous
bankruptcy barrier at time T . The payoff-profile in Figure 1 shows that
the levels of AT for which the option is in-the-money are well above
the optimal bankruptcy level. The embedded option has therefore no
impact on the optimal bankruptcy decision immediately before time
T . Equivalently, the probabillity of non-negative option payoffs for
distressed firms with asset values approaching the bankruptcy level is
low.

In this paper we consider various approximations of the bankruptcy
level before time T . Some of them violate the continuity property
discussed above. We therefore have to include case 2 in the complete
description of the time T payoff.
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As indicated in the previous section, valuation takes place by using
the modified asset value process in expression (8). For consistent val-
uation we express the time T payoff of debt in terms of the modified
process AT .

Dc
T (AT ) =


0 for τ < T,

eγTAT for τ > T and AT < e−γT Ā,

D(eγTAT ) for τ > T and e−γT Ā < AT < e−γT Ȧ,

D for τ > T and AT > e−γT Ȧ,

The time T payoff Dc
T is depicted in Figure 1. This expression can be

rewritten as
(10)

Dc
T (AT ) =


0 for τ < T,

eγTAT for τ > T and AT < e−γT Ā,

D(eγTAT )− (D(eγTAT )−D, 0)+ for τ > T and AT > e−γT Ā,

This shows how Dc
T (AT ) equals D(eγTAT ) minus the payoff from a call -

option on the debt with exercise price par, in the case where τ > T
and AT > e−γT Ā.

3.2. Calculation of V0(Dc
T ). From expression (10) and standard fi-

nancial pricing theory, see, e.g., Duffie (2001), the time 0 market value
V0(Dc

T ) can be written as

V0(Dc
T ) = Vk(A) + Cdo

2 (A, 0)− Cdo
1 (A,D),(11)

where

Vk(A) = EQ[AT e
(γ−r)T1{τ > T}1{AT < e−γT Ā}],

Cdo
2 (A, 0) = EQ[(DT − 0)+e−rT1{τ > T}1{AT > e−γT Ā}],

Cdo
1 (A,D) = EQ[e−rT (DT −D)+1{τ > T}1{AT > e−γT Ā}].

Here Vk(A) represents the part of the total value due to a possible
discontinuity of the bankruptcy barrier at time T . Here Cdo

2 (A, 0) −
Cdo

1 (A,D) represents the time 0 market value of case 3 in expression
(10). We recognize Cdo

2 (A, 0) and Cdo
1 (A,D) as the market values of

barrier options with exercise prices 0 and D, respectively. Note, how-
ever, that these expressions contain an additional condition, AT >
e−γT Ā, compared to the standard barrier condition, τ > T .

Below we present the calculations of the three terms on the right
hand side in separate propositions.

Proposition 1.

Vk(A) = Ae(µ−r)T
(
N(g1)−N(g2) + (

A

B
)−

2(µ−γ)
σ2 −1[N(−g3)−N(−g4)]

)
,
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where g1, g2, g3, and g4 are given in Appendix A.

Proof. See Appendix A. �

Proposition 2.

Cdo
2 (A, 0) = C2(A, 0)− (

B

A
)(

2(µ−γ)
σ2 −1)C2(

B2

A
, 0),

where

C2(A, 0) =
cD

r
e−rTN(−f2)− J(

A

Ā
)−βN(−f1).

where J = cD
r
− Ā, and f1 and f2 are given in Appendix A.

Proof. See Appendix A. �

Proposition 3.

Cdo
1 (A,D) = CD

1 (A,D)− (
B

A
)(

2(µ−γ)
σ2 −1)CD

1 (
B2

A
,K),

where

CD
1 (A,D) = (

cD

r
−D)e−rTN(−d2)− J(

A

Ā
)−βN(−d1),

where d1 and d2 are given in Appendix A.

Proof. See Appendix A. �

3.3. Calculation of L0(A). We now turn to the calculation of the
time 0 value of cashflows before time T ,

Proposition 4.

L0(A) =
cD

r
− (

cD

r
−B)(

A

B
)−κ − Cdo

3 (A, 0),(12)

where

Cdo
3 (A, 0) = C3(A, 0)− (

B

A
)(

2(µ−γ)
σ2 −1)C3(

B2

A
, 0),

C3(A, 0) =
cD

r
e−rTN(−h2)− J̄(

A

B
)−κN(−h1).

and J̄ = cD
r
−B, and κ, h1 and h2 are given in Appendix A.

Proof. See Appendix A. �

3.4. The time 0 market value of perpetual debt with embedded
option.

Proposition 5. The time 0 value of infinite horizon continuous coupon-
paying debt claims including an embedded option to repay debt at par
value D at time T is

(13) Dc
0(A) = Vk(A) + Cdo

2 (A, 0)

−Cdo
1 (A,D) +

cD

r
− (

cD

r
−B)(

A

B
)−κ − Cdo

3 (A, 0).
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Our expression for Dc
0(A) can be interpreted as follows: The first

term represents the time 0 value of bankruptcy payoff if τ ≥ T , i.e.,
the firm has survived until time T , but eγTAT < Ā and bankruptcy
occurs at time T . The second term represents the time 0 market value
of a call option on debt at time T with exercise price 0. The third
term represents the short, embedded, call option on debt exercisable
at time T with a strike price equal to par value D. This possibility to
refinance in case of improved available terms at time T is exactly the
purpose of the embedded option included in the time 0 debt contract.
The last two terms represent the time 0 market value of all cashflows
before time T , modelled as the difference between immediately starting
perpetual debt and a forward starting perpetual debt expressed as a
barrier call option with exercise price 0 at time T . This combined
expression allows for calibrating both the ”issue-at-par” coupon rate
reflecting the embedded option and a time-dependent endogenously
calibrated issuer bankruptcy level before the option expires.

4. Base case parameter calibrations

In this section we calibrate coupon rates and calculate optimal bank-
ruptcy levels for realistic parameter values. In particular, we test
whether the closed form model produces correct coupon rates com-
pared to numerical solutions. The difference between these coupon
rates is a benchmark for the precision of our closed form approach.

In order to calibrate the protection period bankruptcy barrier param-
eters B and γ, we implement a binomial tree following the binomial
lattice methodology from Broadie and Kaya (2007). This approach
provides a coupon-rate, denoted by cn, which is independent of any
analytically assumed shape of the bankruptcy barrier.

The derived value of B, the initial bankruptcy level, is then used as
a parameter value in the closed form solution to calculate the coupon-
rate, here denoted by cc. We do this by adjusting the coupon-rate cc in
equation (13) to achieve Dc

0(A) = D, i.e., that the time 0 market value
of debt with embedded option is par.

In our numerical approach we apply the base case parameters in Ta-
ble 2 and run 100,000 steps per year for 10 years. The chosen level
of asset volatility and riskfree interest rate are common in similar il-
lustrations, see e.g., Leland (1994). The base case time to expiration
(protection period) of the option resembles the typical option maturi-
ties in publicly listed perpetual bonds issued by financial institutions.

Consistent with our assumed analytical shape of the bankruptcy bar-
rier Bt = Beγt we calculate γ = 1

T
ln(BT

B
), where B is calculated by

the binomial approach and BT is equal to the long-term bankruptcy
level, Ā. Observe that by this formulation γ only depends on the time
0 and time T values of the bankruptcy barrier and not on intermediary
values.
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δ0 3 Initial EBIT
µ 2 % Drift of EBIT
D 70 Face value of debt
T 10 Expiration date of option
σ 20% Volatility of EBIT
r 5 % Riskfree interest rate
A0 100 Total asset value at time 0

Table 2. Base case parameters, all rates are annualized.

We also test the assumed functional form Bt = Beγt by using Or-
dinary Least Squares (OLS) to estimate γ. The estimation is based
on the complete sequence of numerically calculated values of Bt and
regress ln(Bt) on ln(B) + γt.

Figure 2 shows the development of Bt as a function of elapsed time to
expiration from the binomial approach, the analytical approximation
and the OLS-regression. The latter is shown by the lower line. We
include two illustrations of the barriers to emphasize the limited impact
of the time-dependencies compared to the long-term bankruptcy level.
The appropriate choice of bankruptcy assumptions is further discussed
in the next section.

Alternative solutions: B γ cc/cn Ā
Analytical
- regular(B&C’76) Not applicable 5.718 % 49.04
- with option, B from model 4.91 0.250123 6.840 % 58.68
- with option, B from tree 50.15 0.0023026 5.998 % 51.437
Binomial
- with option 50.15 0.0023026 5.969 % 51.18

Table 3. Calibrated values of the coupon-rates and corre-
sponding bankruptcy levels using the base case parameters.

Table 3 compares the calibrated coupon-rates and bankruptcy barri-
ers for alternative approaches. Our model yields a low starting-level B
and high γ, compared to the binomial solution. We apply the starting
level of B from the binomial tree as an input-variable in our calcula-
tions. Given this approach, our model generates results that are close
to the binomial solution.

The results support our intuition that an embedded option increases
the closed form coupon cc (from 5.718 % to 5.998 %) even in a model
with only bankruptcy risk. This increase also changes the long-term
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Figure 2. Two plots with different scale of the y-axis to illus-
trate the magnitude of the time dependence. The numerically cal-
culated optimal (red line), and the analytically solved bankruptcy
asset level Bt (green line) as a function of elapsed time until expi-
ration of the call option embedded in perpetual debt. The lower
(purple) line represents an OLS-regression of the numerically cal-
culated Bt-values. See Table 2 for parameter values.

bankruptcy-levels Ā. As an overall assessment, we find that the coupon-
rates cc and cn are reasonably close (the difference is less than 5 ba-
sispoints). The OLS-approach yields γ = 0.00268, B = 49.73, and
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Figure 3. The top graph shows the market value of the
time T barrier options, i.e., excluding the value of any cash-
flows before time T , for various remaining times to matu-
rity. The lower graph shows the total market value of per-
petual debt, i.e., including the value of cashflows before ma-
turity from expression (13). See Table 2 for parameter val-
ues. In addition, we apply the parameter values B = 50.15,
γ = 0.0023026, and c = 5.998% from Table 3.

R2 = 87.5%. The high value of R2 supports the assumed linearity
of ln(Bt). The estimated γ′s from the two approaches are close (The
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ratio is 0.86.), and as expected, the OLS-approach underestimates the
starting point B.

Observe in Figure 2 that both the numerically calculated and the
modelled bankruptcy levels are below the constant long-run level Ā.
Additional analysis shows that for large values of T , the effect of the
option disappears and B approaches Ā.

The graphs in Figure 3 illustrate the sensitivites of the market val-
ues of hybrid capital, both excluding and including, respectively, in-
termediate cashflows before time T , for both the asset value level and
remaining maturity of the option. The lower graph depicts the valu-
ation formula (13) of Proposition 5. The upper graph illustrates the
same formula excluding the latter terms representing the market value
of intermediate payments L0(A) given in the valuation formula (12).

5. Relevance of the time-dependent bankruptcy barrier

An important assumption in our analysis is the exponential shape of
the time-dependent bankruptcy barrier before the expiration of the em-
bedded option. In this section, we compare the numerically calculated
coupon-rate cn to the closed-form coupon-rate cc for variations in ma-
turity and volatility to illustrate the effects of alternative assumptions
regarding time-dependency. We compare our base case bankruptcy
barrier to two alternatives profiles, a constant barrier and a constant
barrier with two levels, as illustrated in Figure 4. The numerical re-
sults produce the correct bankruptcy barrier before time T whilst our
analytical model necessarily represents an approximation.

We initially in Table 4 show the sensitivity of the time-dependency
growth parameter γ for changes in volatility and option maturity. The
values of γ are calculated from our binomial solutions as a benchmark
for the choice of analytical assumptions. We find that γ is positively
related to the value of our barrier-options, increasing in volatility σ and
decreasing in option maturity T . As γ increases with volatility, time
dependency becomes increasingly important.

γ - sensitivities Volatility(σ)
Maturity(T) 0.10 0.20 0.30

5 years 0.000134 0.004716 0.011182
10 years 0.000219 0.002303 0.003786
20 years 0.000080 0.000652 0.000912

Table 4. Numerical values of the time-dependency param-
eter γ using alternative parameters for maturity(T ) and an-
nual EBIT-volatility (σ). 10,000 steps per year.
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Time
T

Bankruptcy level

Case C: Two-step constant level
Case B: Constant level

Case A: Time dependent

Figure 4. Alternative bankruptcy barrier assumptions
with different degrees of time dependency for t < T .

In Table 5 we show the coupon-rate differences, cc − cn. The differ-
ences are reported in basispoints for maturities 5, 10 and 20 years, re-
spectively, for different values of σ and T and by alternative bankruptcy
barrier assumptions. This test illustrates the relevance and precision
of our assumed time-dependent bankruptcy barrier by comparing the
following alternatives:

• Case A: The base case time dependent approach with assumed
exponential barrier, B 6= Ā and γ 6= 0. B is found by solving a
binomial tree, as explained in Section 5.
• Case B: A constant barrier for all t, B = Ā and γ = 0. This

alternative disregards any impact the finite option may have on
the optimal bankruptcy level.
• Case C: A two-step constant barrier with different levels before

and after time T , B 6= Ā and γ = 0. This approach recognizes
that the bankruptcy level may be lower before time T because
of the option, but disregards any additional time dependencies.

The table shows that the coupon rate differences are relatively insen-
sitive to the choice of barrier. When analyzing the longest maturities,
10 and 20 years, both alternatives with constant barriers (Cases B and
C) produce comparably good results. Assuming a 5 year horizon, Case
B with one, constant barrier performs best. The overall result is that
in applications where one may test different combinations of σ and T ,
Case B with one, constant barrier is the preferable choice. This alter-
native also has the additional benefit of not requiring sny choice of B
as input parameter, as well as computational simplicity. Our base case
(Case A), performs equally well except for the shortest maturity and
highest volatility. For long maturity (20 years) all barrier alternatives
produce reasonably correct coupon rates.
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∆ Coupon-rates, (cc − cn), bp
Volatility (σ) 0.10 0.20 0.30

Maturity: 5 years
Case A -0.1 2.8 21.3
Case B -0.1 -0.2 -0.4
Case C N.A. 27.9 27.0

Maturity: 10 years
Case A -0.1 2.9 8.9
Case B -0.1 -0.2 -0.9
Case C N.A. -0.2 -0.9

Maturity: 20 years
Case A 0.1 1.0 2.7
Case B 0.0 -0.2 -0.3
Case C 0.0 -0.1 0.0

Table 5. Differences in basispoints between the closed form
calibrated coupon rates cc and the numerical solution cn us-
ing alternative parameters for annual EBIT-volatility (σ) and
alternative approaches for bankruptcy barriers denoted Cases
A, B and C and described in the text. cn is calculated using
10,000 steps per year.

Our conclusion may seem somewhat counterintuitive, but is that the
effects of time-dependency are negligible for realistic parameter values.
However, the fact that we assume 70 % debt financing to magnify the
effects strengthen the conclusion.

In our discussions of sensitivities in Section 6 we apply the assump-
tion of one constant bankruptcy barrier, Case B.

6. Sensitivities and market reference

Table 6 shows the sensitivity of the analytically calculated coupon-
rate cc for alternative combinations of EBIT-volatility and time until
the option expires. Here cc is strongly increasing in volatility, in ac-
cordance with the classical result for option values. Contrary to the
standard effect of maturity on plain vanilla option values, the barrier
option specifications in our setting decreases value by longer maturities
reflecting the risk of bankruptcy.

Table 7 shows the sensitivity of the long-term optimal bankruptcy
level Ā following from the coupon-rates in Table 6. The main difference
in the sensitivities is that Ā decreases both for increases in volatility
and in option maturity.
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Coupon-rates (%) Volatility(σ)
Maturity(T) 0.10 0.20 0.30

5 years 5.103 6.056 7.730
10 years 5.095 5.967 7.457
20 years 5.080 5.849 7.185

Table 6. Analytically calculated values of the coupon rate
cn for callable perpetual debt with embedded option expiring
after T years using alternative parameters for maturity(T )
and annual EBIT-volatility (σ). Assumed constant bank-
ruptcy level.

Bankruptcy level Ā Volatility(σ)
Maturity(T) 0.10 0.20 0.30

5 years 59.53 51.92 48.51
10 years 59.44 51.17 46.80
20 years 59.27 50.16 45.09

Table 7. Analytical values of the longterm bankruptcy as-
set level Ā for callable perpetual debt with embedded op-
tion after T years using cn and alternative parameters for
maturity(T ) and annual EBIT-volatility (σ). Assumed con-
stant bankruptcy level.

As a market reference, Figure 5 shows the yield spreads of Iboxx-
indices5 of UK Tier 1 perpetual debt securities including embedded
option compared to UK banks’ senior debt, both relative to UK gov-
ernment bonds(Gilts) reported weekly for the period December 2004
- November 2007. The perpetual debt yield-spread produced by our
stylized model is of the same magnitude as the observed yield-spreads
in the latter part of the period, except for the most recent months.
The higher risk of these securities is exemplified both by the standard
deviation of this annualized spread being 32 basispoints compared to
15 basispoints for senior debt, and the relatively larger credit spreads
towards the end of the period. The latter relates to the credit-crisis
beginning in Summer 2007. Both reflect that Tier 1 securities are more
risk-exposed than senior bonds, as expected.

5Index yields are sourced from Iboxx via Datastream.
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UK Bank credit spreads vs. Gilts 12/2004 - 11/2007
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Figure 5. The graph shows the redemption yield spread of
the Iboxx- indices for UK banks’ senior debt and UK banks’
Tier I capital after deducting the yield on the UK Gilts index
for maturities 5 - 15 years. Weekly observations for the pe-
riod December 2004 until November 2007. Source: Iboxx(via
Datastream).

7. Concluding remarks and further research

We show how a European embedded option in perpetual debt im-
pacts both the value of debt and the issuer’s rational economic be-
havior with regards to bankruptcy. Specifically, the embedded option
impacts the bankruptcy decision, level of debt coupons, and the opti-
mal exercise of the option. We show that for realistic parameter values
and assumed constant bankruptcy level our model produces correct
coupon-rates for alternative volatilities and option maturities. Per-
haps surprisingly, the model, with its stylized assumptions and only
incorporating bankruptcy risk, produces coupon spreads that appear
to be in a realistic order of magnitude compared to observed market
spreads.

The equityholders pay for the embedded option through a higher
fixed coupon on the perpetual debt, compared to regular perpetual
debt. The equityholders choice of optimal bankruptcy-level is im-
pacted by the debt with embedded option in two ways; an increased
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coupon and the existence of a potentially valuable option. The in-
creased coupon raises the optimal long-term bankruptcy-level, whilst
the embedded option lowers it.

The market values of perpetual debt with and without option are
different after expiration in the situation when the option has not been
exercised. A higher coupon in the first case reflects the historical cost
of the expired option and is a major motivation for the exercise of
such options. This higher coupon rate causes exercises also in signifi-
cantly worse future states compared to the situation at time of issue.
It is common in the marketplace to contractually agree that coupons
are even ’stepped-up’ post-expiry of the option to further incentivice
exercise.

The model can be extended along a number of dimensions such as
introducing frictions (taxes, bankruptcy costs), different liquidation
priorities (hybrid/preferred stock), coupon rate step-up, contractually
omitted coupon payments, and American type options.
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Appendix A. Proofs

Proofs of the valuation formulas from Section 3.

A.1. Proof of Propostition 1.

Vk(A) = EQ[e(γ−r)TAT1{τ > T}1{AT < e−γT Ā}]
= Ae(µ−r)T Q̄(1{τ > T}1{AT < e−γT Ā})

= Ae(µ−r)T
(
N(g1)−N(g2) + (

A

B
)−

2(µ−γ)
σ2 −1[N(−g3)−N(−g4)]

)
,

where

g1 =
ln(A

B
) + (µ− γ + 1

2
σ2)T

σ
√
T

,

g2 =
ln( A

max(Ā,B)
) + (µ− γ + 1

2
σ2)T

σ
√
T

,

g3 =
ln(A

B
) + ln(max(Ā,B)

B
)− (µ− γ + 1

2
σ2)T

σ
√
T

,

g4 =
ln(A

B
)− (µ− γ + 1

2
σ2)T

σ
√
T

.

For the second equality we use the change of numeraire technique using

AT as numeraire. Formally, the Radon-Nikodym derivative is ∂Q̄
∂Q

=

exp(−1
2
σ2T + σWT ) and the dynamics of AT under Q̄ is dAt = (µ +

σ2)Atdt + σAtdWt. Finally, Q̄(1{τ > T}1{AT < e−γT Ā}) = N(g1) −
N(g2) + (A

B
)−

2(µ−γ)
σ2 −1[N(−g3)−N(−g4)].

A.2. Proof of Propostition 2. In this case the exercise price K =
0. This implies the parameter value θ < 1 in Mjøs (2007), and thus
Proposition 5 in Chapter 3 applies. In this paper λ = γ, M = Ā, κ = β,
and our notation C2(A, 0) = C0(A, 0)θ of Mjøs (2007). Furthermore,

f1 =
ln( Ā

A
)− (µ− 1

2
σ2 − σ2β)T

σ
√
T

,

and
f2 = f1 − σβ

√
T

A.3. Proof of Propostition 3. In this case the exercise price K =
D. This implies the parameter value θ > 1 in Mjøs (2007), and thus
Proposition 4 in Chapter 3 applies. In this paper λ = γ, M = Ā, κ = β,
and our notation C1(A,D) = CD

0 (A,D) of Mjøs (2007). Furthermore,

d1 =
ln( Ā

A
)− 1

β
(ln( cD

r
−K)− ln J)− (µ− 1

2
σ2 − σ2β)T

σ
√
T

,

d2 = d1 − σβ
√
T .
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A.4. Proof of Propostition 4.

L0(A)

(14) = EQ[

∫ τ∧T

0

cDe−rsds] + EQ[Be−rτ1{τ≤T}],

=
cD

r
− cD

r
e−rTQ(τ > T )− (

cD

r
−B)EQ[e−rτ1{τ ≤ T}],

=
cD

r
− cD

r
e−rTQ(τ > T )− (

cD

r
−B)EQ[e−rτ (1− 1{τ > T})],

=
cD

r
−(
cD

r
−B)(

A

B
)−κ−cD

r
e−rTQ(τ > T )+(

cD

r
−B)EQ[e−rτ1{τ > T})],

=
cD

r
−(
cD

r
−B)(

A

B
)−κ−cD

r
e−rTQ(τ > T )+(

cD

r
−B)EQ[e−rT (

AT
B

)−κ1{τ > T})],

=
cD

r
−(

cD

r
−B)(

A

B
)−κ−EQ[e−rT (

cD

r
−(

cD

r
−B)(

AT
B

)−κ)1{τ > T})],

=
cD

r
− (

cD

r
−B)(

A

B
)−κ − Cdo

2 (A, 0).

The first equality shows that L0(A) represents the time 0 market value
of coupons until time T or the time of bankruptcy, τ , whichever comes
first, plus the market value of any bankruptcy payoff before time T .
For the second equality we solve the integral on the right hand side.
For the fourth equality we use that EQ[e−rτ ] = (A

B
)−κ. For the fifth

equality we condition as follows:
EQ[e−rτ1{τ > T}] = EQ[e−rT1{τ > T}EQ[e−r(s−T )|FT ]] and use (a
conditional version of) the result in the previous line for the inner
expectation.

We recognize the expectation in the second last line as the market
value of a down-and-out barrier call option as analyzed in Mjøs (2007).
In this case the exercise price K = 0. This implies the parameter value
θ < 1 in Mjøs (2007), and thus Proposition 5 in Chapter 3 applies. In
this case λ = 0, M = B, and our notation C3(A, 0) = C0(A, 0)θ of Mjøs
(2007). Furthermore,

h1 =
ln(B

A
)− (µ− γ − 1

2
σ2 − σ2κ)T

σ
√
T

,

h2 = h1 − σκ
√
T ,

and

(15) κ =
µ− γ − 1

2
σ2 +

√
(µ− γ − 1

2
σ2)2 + 2σ2r

σ2
.
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