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Abstract 

Climate change is affecting the shipping industry in Paraná River in Argentina. Lower levels 

of precipitation cause the water levels to decrease, which limits the amount of cargo a ship can 

load. Accurate predictions of water level in shallow rivers are therefore crucial in reducing the 

risk of under- or overestimating the cargo during trades. 

This thesis aims to create a predictive model for the maximum allowable draft for vessels to 

pass through Paraná River, using historical levels of precipitation and precipitation forecasts. 

The maximum allowable draft levels are obtained using reported draft from official AIS data. 

In the process, we have studied the seasonal pattern of precipitation and tested different types 

of moving averages to calculate the precipitation variable. Further on, we investigated 

different statistical methods, including generalized additive models and linear and multiple 

regression models. Using the generalized additive model, the precipitation variable explained 

~40% of the variance in maximum allowable draft. A time-based cross-validation method was 

utilized to predict future maximum draft levels, based upon precipitation forecasts. Finally, 

the modelling accuracy using AIS data is compared to the modelling accuracy of using 

monthly reported water levels in Paraná River. 

The result suggests that the high-frequency AIS reported draft can perform better than monthly 

reported water levels, and therefore provide a better estimation basis for pricing of cargoes. 

The model provides estimated water level margins 1-12 weeks ahead of time and may be used 

by shipping companies to improve cargo estimation and reduce risk. 
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1. ,QWURGXFWLRQ 

Argentina produces 5% of the total world grain, according to the U.S. Department of 

Agriculture (2021). During the last year, world prices of various grains and especially wheat 

have risen. This is due to the climate-related issues, such as low precipitation levels and 

drought (Wei, et. al., 2019). For example, drought has during the past 1-2 years lowered 

$XVWUDOLD¶V� VXSSO\� RI� JUDLQ�� ZKLFK� KDV� LQFUHDVHG� WKH� GHPDQG� RI� $UJHQWLQLDQ� JUDLQ� �8�6��

Department of Agriculture, 2021).  

This master thesis will concentrate on the Paraná River in Argentina. The 1,477-km waterway 

is essential for the growth of the Argentinian economy as it links the Atlantic Ocean with 

major ports inland. The river transports approximately 80% of national exports, and 81% of 

the volume of agricultural exports (Portal oficial del Estado argentine, n.d.a). However, the 

river is currently facing conditions of extreme drought. This has reduced the water level in the 

river to record low levels, forcing grain exporters to load less cargo than ordered. This 

influences the pricing of cargoes due to lower supply than demand, which then makes the 

voyage cost sensitive to water levels. 

Due to such factors and their consequences, Western Bulk has requested a tool that can reduce 

the risk of uncertainties in Paraná River, where they have a high volume of trades. Currently, 

shipping companies receive daily or weekly reports from local pilot companies on river 

conditions, as a basis for estimation of cargo load. In this master thesis, we aim to create a 

prediction model that can be used to forecast the maximum allowable draft for vessels to pass 

through the river. The prediction of maximum allowable draft should reduce the risk of under- 

or overestimating the cargo during trades, but at the same time portray good enough margins 

to not run aground. This model needs to be able to predict water levels from 2 weeks to 3 

months ahead in order to be useful for the company. 

In our approach to predict the maximum allowable draft, we will use the reported draft from 

all ships in the area from official Automatic Identification System (AIS) data. Since 2002, all 

new ships and seagoing vessels with a gross tonnage of over 300 tons, including passenger 

ships, have been obliged to install an Automatic Identification System (Wu, et. al., 2020. The 

system contains high-frequency data of reported draft and can provide an alternative approach 

of receiving information of the water levels.  
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The contributions of this thesis are twofold: Firstly, we investigate whether AIS data is a good 

data source to measure the constrained water levels. Secondly, this thesis provides an 

alternative source to predictions of water levels. This thesis is structured as follows: Section 2 

covers the theoretical aspects of the thesis. Section 3 studies the existing literature around AIS 

data and water level prediction. Section 4 presents our data sources, assumptions, and data 

transformation. Section 5 presents our final model results, accuracy measures and a profit 

estimation example. Finally, section 6 summarizes our findings and limitations to our research. 
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2. /LWHUDWXUH�UHYLHZ 

In accordance with technological development, the Automatic Identification S\VWHP¶V�

substantial information on vessels has grown in popularity over the last years. Many recent 

studies have focused on how AIS data can be utilized to increase profits, by either creating 

new opportunities or reducing uncertainties. There are several articles that discuss how AIS 

data is used for estimation or forecasting, however, little research has measured river depth by 

using a combination of reported draft from AIS data and weather data. 

2.1 AIS as a data source 

As mentioned, AIS is a large database of digitalized vessel data, created to strengthen safety 

and control in maritime traffic. However, several input variables in the system must be entered 

manually by the crew, such as draft. This creates a base for human error. Research by Harati-

Mokhtari et. al. (2007) defines the errors as ³)URQWOLQH�2SHUDWRU� IDLOXUH´� which means the 

crew can forget, are inattentive or can omit actions to enter the data. The study finds that 17% 

of AIS reported draft are either not available or contain zeros. Furthermore, it was observed 

that 14% of the reported draft was greater than the length of the vessels. Thus, 69.5% of the 

data remains. However, they were unable to verify whether the rest of the data was inaccurate 

or not, which indicates that the data can be imprecise (Harati-Mokhtari, et. al., 2007). 

On the other hand, this issue was also discussed by Jia et. al. (2019), in trying to use AIS 

reported draft as a basis for estimating cargo payload. The research compared the data with 

other sources, such as port agent reports, which may be more precise in terms of manually 

recorded vessel information. However, the reports are less appealing in comparison to AIS 

data in terms of availability, scope, and timeliness. As a result of the discussion, the AIS 

reported draft was determined to be useful, even though it contained errors (Jia, et. al., 2019).  

As we want to create a tool that can influence the profitability of a ship voyage, it can be 

interesting to consider various variables in the AIS data that could have a significant impact. 

A study by (Wu, et. al., 2020) explores eleven months of AIS data to estimate the voyage 

duration in the HESC channel, as it affects the profitability of a ship voyage. The study 

discovered that neither the time of day nor month had significant influence on the travel time. 

However, the result showed that the draft in particular had a significant impact on the voyage 

duration (Wu, et. al., 2020). Thus, it seems that calculating draft using a high-frequency source 
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of data, such as AIS, can contribute to the calculation of cargo trades in shallow waters such 

as Paraná River. 

2.2 Predication of water levels 

The water level on a ship voyage can be a critical feature for shipping companies that pass 

through shallow waters to reach their destination. If it is too shallow, the ship will not be able 

to load optimally or even pass the water level barrier, resulting in wrongful pricing of cargo 

trades. Therefore, critically shallow points in rivers and channels are crucial to observe, but 

difficult to predict due to factors such as lack of data. However, several studies have attempted 

to estimate water levels in rivers and channels using complex predictive methods and different 

types of variables. 

In a similar study, Lejeune (2020) used Long Short-Term Memory (LSTM) to forecast next-

day water levels at Kaub, a critical point in the Rhine River in Germany. The dataset included 

15 different independent variables, where 12 of them were weather-related. There were 3 

precipitation variables that represented the average amount of rain in 3 influential geographical 

areas. The remaining variables were water flow connected to the different areas and the 

associated minimum, maximum, and median values of temperature. The fitted model obtained 

a root mean squared error (RMSE) of 6.2 centimeters after fitting, in other words, an average 

prediction error of 6.2 cm in water level (Lejeune, 2020). This result is very precise and shows 

that the chosen variables can explain a high percentage of the variance in water levels. 

However, as the time frame of the forecast is day-to-day, the performance measures should 

not be compared directly with long-term models, such as ours. 

There are also studies that attempt to predict water levels with other variables than weather-

related variables. Bazartseren et. al. (2003) aimed to find a short-term prediction of water 

levels in two different rivers in Germany, by avoiding the use of historical or future values of 

precipitation depth. The study rather focused on measuring the change in water levels 

upstream, and the approximate travel time it takes for the change to reach the mouth of the 

river. To accomplish this, he used artificial neural networks and neuro-fuzzy systems. 

Bazartseren et. al. (2003) suggests this method only when precipitation depth data and 

forecasts are scarce or not available. 
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However, none of the studies described above focuses on utilizing weather data to predict 

water levels, indirectly by using AIS reported draft. The goal of this research is to create a 

robust long-term model, based on a large scale of available, high-frequency data, that can be 

used to derive a future draft constraint. A model such as this would enable shipping companies 

to accomplish more accurate cargo pricing.  
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3. 7KHRU\ 

In this section, we will explain time series applied to our data and how the final model can be 

trained by using a time-based cross-validation. Secondly, we intend to explain how different 

simple and interpretable prediction methods, such as linear and multiple regression and 

generalized additive models, can be applied to the predictive model. Finally, we explain how 

various accuracy measures can be used and compare them to find the best prediction model. 

3.1 Time series and cross-validation 

3.1.1 Time series 

As both weather variables and water levels fluctuate over time, we use time series to observe 

changes. A time series is defined as a series of data that occur in successive time order. The 

objective of using time series is to discover statistical features and find a suitable statistical 

model of the raw data, to estimate future values of the series. There are four different 

components of variations in time series: seasonal variation, trend, cyclical variation, and 

irregular fluctuations. An important feature in using time series for our data set is to remove 

seasonal fluctuations to find trends. This makes it easier to view the relationship between the 

variables (Chatfield, 2000). Due to these conditions, we would like to focus on these three 

components, described below:  

(1) Seasonal variation. The type of variation that occurs in annual periods for different 

series, for a specific time of the year. This variation can be observed in a series 

measured weekly, monthly, or quarterly (Chatfield, 2000).  

(2) Trend. We can observe a trend when a series shows a steady decline or incline of 

observations over several time periods. The perception of the trend will often be 

determined by the duration of the time series, as there is no fully satisfying mathematic 

definition (Chatfield, 2000).  

(3) Irregular fluctuations. This is often described as any variation left after removing 

seasonality, trend, and cyclical variation. Variation of such type could often be 

completely random and is therefore impossible to forecast (Chatfield, 2000).  

As mentioned, we would like to find the trend in the data. A moving average can act as a 

filtering and smoothing of the data, by removing random variation. They are commonly used 
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to identify the trend direction of a stock but can also be used as a trend-following or lagging 

indicator for instance for precipitation, as it is based on past data (Fernando, 2021). A moving 

average can also estimate and remove seasonality patterns to reveal trends, by setting the 

length of the moving average equal to the length of the seasonal pattern. As revealed in section 

4.1.3, the weather variables reveal a yearly seasonality pattern. In addition, the impact of 

random or short-term changes in precipitation will be mitigated over a longer time frame. In 

other words, the higher the moving average time frame, the less sensitive it will be to changes, 

such as longer periods of low rainfall or high concentration of rain. By using a moving average 

on the independent weather variables, we can account for the annual seasonality and its effect 

on water levels. 

3.1.2 Time-based cross-validation 

The data set is divided into a training and test set, which will be used to evaluate the forecasting 

model. We will use a time-based splitting to consider the time-related characteristics in the 

data, making the time-based cross-validation method useful. This form of model validation 

requires the training of the data to be earlier in time than the testing of the data. In other words, 

the test set cannot go back in time and the training set can never include future observations. 

In our model, the test set will always contain a default number of observations, while the 

training set will increase in size as the time-series moves forward. Both the training and test 

set are therefore based on a rolling forecasting window (Herman-Saffar, 2020). How this 

applies to our model is further discussed in 5.1.1. 

3.2 Regression models 

3.2.1 Linear and multiple regression model 

Linear regression models estimate the relationship between a dependent and independent 

variable and are often used for prediction and forecasting. The formula is structured as follows: 

ܻ ൌ ߚ   ଵܺଵߚ

where ܻ ଵ is the dependent variable, and ܺଵ is the independent variable (Yale University, 1993). 

The sign before the ߚଵ signifies whether the relationship between the variables is positive or 

negative, and ߚ indicates where the regression line crosses the y-axis.  
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Multiple regression is an extension of linear regression, including multiple independent 

variables. The objective is to use significant independent variables, with known values, 

predicting the unknown value of the single dependent value (Wang, et. al., 2020).  The formula 

is defined as: 

ܻ ൌ ߚ  ଵߚ ܺଵ ǥ ߚ ܺ  ߳ 

where ߚ are the slope coefficients for each independent variable, and ߳ HTXDOV�WKH�PRGHO¶V�

error term (Hayes, 2021). 

3.2.2 Generalized Additive Model (GAM) 

Hastie & Tibshirani (1986) created the generalized additive model (GAM), which is a model 

that does not assume any specific form of relationship between the dependent and independent 

variables. Unlike traditional generalized linear models (GLM), GAM does not require a 

relationship to be a simple weighted sum. Instead, it assumes the relationship is a sum of 

arbitrary functions of each variable (Shafi, 2021). The model can be structured as: 

݃ሺߤሻ ൌ ߠܣ  ଵ݂ሺݔଵሻ  ଶ݂ሺݔଶሻ  ଷ݂ሺݔଷǡ  ସሻݔ

where ݃ሺߤሻ is defined as the expected value of the response variable ܻ, and ܻ̱ܨܧሺߤǡ ߶ሻ, 

meaning that the model has an exponential family distribution by an average of ߤ and a scale 

parameter ߶. The first vector, ܣ, denotes the explanatory variables for strictly parametric 

components, the corresponding parameter vector is ߠ, and the smooth functions of the 

covariates ݔ is defined as ݂ (Hastie & Tibshirani, 1986). 

The model uses flexible functions called splines, and the sum of these splines form the curve 

of a GAM. This makes the model able to form a non-linear relationship. A GAM model can 

fit a large number of splines in order to fit the curve, however, one must be aware of the danger 

of overfitting the problem. If the curve is overfitted, it will not perform well with forecasting 

(Shafi, 2021). 

3.3 Evalution indices 

The evaluation of a prediction model is an important part in its development as it determines 

which model is most accurate and reliable (González-Sopeña, et. al, 2021). To examine the 
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relative performance of the chosen model, prediction values are compared to actual values. 

Four different measures are used to assess the forecast accuracy: ܴଶ, mean squared error 

(MSE), root mean squared error (RMSE), and mean absolute percentage error (MAPE). It is 

advantageous to examine different measures when comparing the models in order to obtain a 

more nuanced basis for model evaluation. 

3.3.1 R2 

The parameter ܴଶ is often known DV�WKH�³FRHIILFLHQW�RI�GHWHUPLQDWLRQ´, as it represents how 

much of the variance in the dependent model that is explained by the independent variables. 

The function consists of the sum of squares of regression (SSR) to the total sum of squares 

(SST). In other words, it takes the portion of variation explained by the regression, to the total 

variation in the dependent variable (Naghshpour, 2016). 

ܴଶ ൌ
ܴܵܵ
ܵܵܶ 

The ܴଶ output ranges between zero and one, where higher values indicate higher explanatory 

power of the model, keeping other things equal.  

However, in some cases, a higher ܴଶ does not always imply a better fit. ܴଶ has one flaw: it 

does not account for the number of variables used to calculate it. Hence ܴଶ�rises as the number 

of variables in the model increases. Even if certain factors do not contribute to the explanation 

of a variable, it can contribute to increasing the measure value (Naghshpour, 2016).  

3.3.2 MSE and RMSE 

The mean squared error (MSE) and root mean squared error (RMSE) are defined as: 

ܧܵܯ� ൌ
ͳ
ܰσ൫ ܻ െ పܻ൯

ଶ
 

ܧܵܯܴ ൌ ඨͳ
ܰσ൫ ܻ െ పܻ൯

ଶ
 

MSE subtracts the observed value from the predicted value, squares it, and finally calculates 

the mean. In other words, it measures the prediction error by the model. RMSE measures the 

average of the squares of the errors. By squaring the root, the function penalizes large values 
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more than small. This is desirable in our thesis as high differences between prediction and 

actual value is critical, as wrong measures could result in a higher economic cost for the 

shipping company (Chai & Draxler, 2014). The lower the MSE and RMSE value, the more 

accurate the model performance is.  

3.3.3 MAPE 

Another way to illustrate the accuracy of the model, is to use the mean absolute percentage 

error (MAPE).  

ܧܲܣܯ ൌ
ͳ
ܰ
ቤ ܻ െ పܻ

ܻ
ቤ

ே

ୀଵ

 

This can be calculated by subtracting the actual value from the predicted value and dividing it 

by the predicted value. Then, the absolute value is taken of the result, and divided by the 

number of observations. MAPE is commonly used in regression problems, as the result is 

intuitive in terms of relative error. The accuracy measure has been suggested to be well-suited 

for forecasting applications, particularly when large amounts of data is available. The smaller 

the mean absolute percentage error, the better the forecast (De Myttenaere, et. al., 2016). 

The combination of these four measures creates an accuracy basis for model evaluation. 

3.4 Correlation 

Correlation is a measure of dependency between variables, or whether past values are related 

with present values within same variable. Test of correlation can assess the credibility of 

variables in the same model by finding what influences change the variables, making it useful 

when choosing the composition of variables in a model.  

3.4.1 ACF 

The autocorrelation function (ACF) is a measure of how data in a time series are related, on 

average, to the prior data points (Song & Esogbue, 2006). The function makes a plot with ݇ 

numbers of lags, visualizing a series of correlation in the data that changes over time. An 

autocorrelation function at lag k, expressed as ߩ, can be structed as follows: 
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ߩ ൌ
ȯ
ȯ

 

where 

ȯ ൌ ሺݒܿ ܻǡ ܻା�ሻ 

for any ݅ 

ȯ denotes the variance of the stochastic process. We can use the ACF plot to tentatively 

identify seasonal variation by detecting whether past data are related to present data. The 

relationship can be identified by looking at the spikes at each lag ݇ to decide whether they are 

significant. A spike is significant if it extends the visualized significant limit on the graph 

(Song & Esogbue, 2006).  

3.4.2 Pearson correlation test 

The Pearson correlation test measures a linear dependence between two continuous variables 

and can only be used when the variables are normally distributed. The test is known as the 

most common method for measuring the relationship between two variables. The correlation 

coefficient, often denoted as r, can be calculated for two quantities ܺ and ܻ on each of ܰ 

individuals as 

ܺ ൌ
ͳ
ܰ ܺ

ே

ୀଵ

 

ܻ ൌ
ͳ
ܰ ܻ

ே

ୀଵ

 

ݎ ൌ
σ ሼ൫ ܺ െ ܺ൯൫ ܻ െ ܻ൯ሽே
ୀଵ

ට�σ ൫ ܺ െ ܺ൯
ଶ
�ே

ୀଵ ට�σ ൫ ܻ െ ܻ൯
ଶ
�ே

ୀଵ

 

The Pearson correlation coefficient is also known to provide information on the intensity of 

correlation, as well as if the relationship is positive or negative. If the correlation coefficient 

is zero, there is no correlation. There is perfect correlation if the coefficient is one (Puth, et. 

al., 2014).  
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4. 'DWD�DQG�PHWKRGV 

In this section, we will start by presenting our data sources and assumptions. Then, the final 

selection of input variables from the different sources is shown. At last, pre-processing and 

transformation of the data is explained. 

4.1 Data sources and assumptions 

The first section is structured into four separate parts, depending on the data source. Our 

sources of data are reported water levels from Western Bulk, AIS data, external weather data 

and weather forecasts.  

4.1.1 Reported draft 

Western Bulk has provided draft statistics from January 2009 to August 2021 obtained through 

a Paraná pilot company. The data shows the minimum depths in the river from San Lorenzo 

to San Pedro for the 15th of each month, i.e. monthly draft data. Statistics for previous years 

are not available, due to the fact that there was no digitization of the information in the official 

authorities or pilot companies. 

The data has 152 observations (months) of reported water levels. Although this is a good place 

to start for prediction, water levels in both rivers and lakes may fluctuate naturally in the short 

term, seasonally and long term (Gibb, 2015). In a similar research study, Lejeune (2020) used 

20 years of daily data to predict water levels in the Rhine River. In order to find any potential 

water level fluctuations or cycles in the Paraná River, it would be interesting to look at a higher 

resolution data set, as it is likely this could generate a better outcome. In this research, we want 

to look at the possibility of using reported draft from AIS data along with weather data from 

external sources to predict future water levels. 

Descriptive statistics 
Figure 1 illustrates the fluctuation in river water levels in the Paraná River over time. River 

levels were at their highest in 2016, and at their lowest in 2009 and 2021. Depth seems to 

change throughout the year. The red trend line is calculated using a two-sided 12-month 

moving average, where each side is 6 consecutive months. We can see that the water levels 
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have been decreasing the past few years, in accordance with on-going drought in the Paraná 

River. 

 

4.1.2 AIS data 

In order to achieve a higher resolution of water levels over time, we have retrieved AIS data 

from Vesseltracker.com. AIS provides information about a ships route, such as unique 

identification number, position, destination, course, speed, draft, and much more.  

The idea is to extract the reported draft from every ship sailing in the defined fairway and find 

the maximum reported value for each week. The maximum value will be the maximum 

reported draft any ship has had in order to pass the water level barrier. The maximum value 

will signify two things: 

Figure 1: Data points for monthly river levels in the Paraná River (2009-
2021), including a two sided 12-month moving average trend component 
(in red). 
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(1) When the river water levels are low, the safety margins for the ships will be small and 

the risks higher for ship grounding. The value will therefore provide a picture of the 

maximum recommended draft by the pilot companies. 

(2) When the river water levels are high, the safety margins will be greater, and it will be 

safer to pass through the water level barrier. Therefore, the reported draft by each ship 

will not be representative of the actual water level, solely the maximum draft reached 

for each time frame.  

The goal is to create a thorough and trustworthy function to calculate draft over time, with a 

prediction time frame of 2 weeks to 3 months ahead. However, one must have in mind the 

economic aspect of our model and the attitude of other shipping companies, which will affect 

the maximum reported draft each week. 

� Some loads have a high stowage factor so it will be fully loaded per cubic meter before 

it is limited in depth. In other words, the ship is not necessarily fully loaded up to the 

maximum allowable draft in the river. If all ships during a week have a high stowage 

factor, the maximum draft reported will not represent the actual allowable draft level, 

but instead the maximum draft reached the relevant week. 

� Sometimes the market is such that the larger ships (Supramax / Ultramax 50-63,000 

dwt) get lower market rates than the smaller ones (Handysize 28-40,000 dwt). This 

means that it may pay off to bring in larger ships to load a smaller cargo. Then, the 

ship is not loaded to maximum load capacity, and may not maximize the draft 

restrictions. 

� Vessels occasionally go upriver to load at a terminal before sailing to a port outside 

the area, to make a "top-off" of cargo. This is usually Necochea or Bahia Blanca, where 

there are no depth restrictions. There it is possible to load the ships all the way up to 

maximum capacity. Again, if all ships during a week do not load up to maximum draft 

that is allowed in the river, the maximum reported draft they report will not be 

representative for the actual water level.  

If some shipping companies have an incentive to not load up to maximum draft in the river, 

either by having larger ships than necessary, larger stowage factor, or an opportunity to top-
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off at a location downriver of the shallowest points, it may lead to the reported draft the 

relevant week to be misleading. 

Data assumptions 
The data provided contains dates from 01.01.2013 to 31.12.2020. The area we are interested 

in gathering information about, is the mouth of the sailing fairway up to San Lorenzo port 

terminals. This is the area Western Bulk sends their ships to load and transport grain, along 

with many other shipping companies.  Therefore, we have filtered the AIS data to only include 

an area of a specific set of coordinates: longitude = (-60.89, -58.56); latitude = (-34.32, -

32.57). The defined area is portrayed in Figure 2.  

Using AIS data does not come without potential sources of error. The data registered by each 

ship can be uncertain or erratic. The system can easily be turned off, manipulated, spoofed, 

etc. In areas with heavy traffic, the signal of the ship may disappear. AIS data is not 

standardized, and each captain may have their own way of registering information on their 

whereabouts. This makes the AIS system prone to human error. 

In order to account for some of the human errors and faulty components of the AIS system, 

we have taken the following assumptions:  

Figure 2: Map of defined area of the river. 
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(1) Some captains do not update their draft level continuously or after loading the cargo 

into the ship. This can affect our model in the sense that the water level is presented as 

lower than it actually is after loading the ship. To account for this, we register all drafts 

reported in AIS from the ship leaves the terminal upriver until their next destination. 

Then, we find the maximum reported draft on the ship voyage.  

(2) Some dates or weeks have very few or no observations, which either cause holes in the 

data or lead to a wrong output of the data. For example, if a smaller ship with a lower 

maximum draft limit than the typical Supramax or Handysize is the only observation, 

the reported draft would be misleading relative to the actual water level. To account 

for this, we are looking at the maximum draft on a weekly level, as it is not guaranteed 

that daily data would be sufficient. If outliers (relatively low or high reported levels) 

are detected, these are adjusted accordingly.  

 

(3) In addition, any draft levels in the defined area that are below 8 and above 14 meters 

are considered faulty observations and are therefore filtered out of the data. This 

margin is based on the minimum and maximum values of the benchmark data. This 

will remove any observations of ships with a design draft that will never reach the 

constraint even at low river water levels. 

(4) All ships that sail across the water level barrier are included, regardless of whether they 

are going upriver with an empty cargo, their stowage factor, ship size or incentives to 

top-off at other destinations. The maximum draft variable will filter out all vessels that 

are going upriver with mainly empty cargoes.  

Data transformation 
From 2013 to 2020, the AIS data consisted of 399.6 GB, which was filtered in order to obtain 

a final data set consisting of 394.6 MB and 2 411 541 observations, containing data on 3953 

unique vessels. In order to download the data into RStudio, we used an application called 

SQLite. This program permits a single database connection to access several files 

simultaneously, as well as it handles large data amounts. The data was limited by first 

identifying vessels that have appeared in the defined area of the river at any point during the 

period. As previously stated, draft may not be adjusted or reported after cargo loading or 

unloading. To adjust for this inaccuracy, the unique IMO number of vessels in the relevant 

area was utilized as an indicator to extract solely the relevant vessels from the data set. Further 
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on, when a vessel departed the river, a binary algorithm marked the end of the voyage. All 

rows including NAs or reported draft of 0 were eliminated to filter out wrong information. 

The filtering through SQLite and RStudio leaves a complete data frame of the following 

observations, shown in Figure 3 to the left below as the black dots. In this map, we observe 

that there are some outlier observations that are registered outside of the Paraná River. These 

outliers may exist because a vessel has sailed through another river. Outlier data may alter or 

influence the outcome, which can make prediction models inaccurate. As we are only 

interested in the ships that are in the Paraná River, and no other rivers or lakes, we must filter 

out any outliers. We identified the outliers by creating a separate data set, and rounded the 

reported longitudes and latitudes by 0.01, followed by creating indexes for each position. 

Then, by using the indexes, we find the frequency of vessels per area. We assume that if there 

have been less than 10 ships in an area, the area is considered an outlier, and the related 

observations are therefore removed. There were 100 locations that had less than a total of ten 

vessels visited since the observations were started in 2013, resulting in 309 observations 

defined as outliers. Figure 3 to the right below shows the defined area with no outliers, as well 

as the other filtering actions mentioned above. 

After deleting the outliers, the maximum draft was found per IMO number, time frame, and 

destination. The correct maximum draft was now possible to calculate by only including 

relevant voyages, as well as including updated draft from crew who submitted the data at the 

end of a voyage in a location outside the relevant area. All coordinates that did not fall within 

Figure 3: The filtering through SQL and R and observations shown by the 
defined area in the map, with and without outliers. 
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the prescribed area were removed. At last, we have a data set where all week numbers from 

2013 to 2020 contain a maximum allowable draft.  

As mentioned, even if reported draft levels below 8 and above 14 are removed, there may be 

some faulty reports caused by human errors. 21 out of 415 weekly observations from AIS are 

considered outliers by an automatic time series function and are adjusted accordingly. The 

difference between reported draft in AIS with and without outliers are shown in Figure 4. The 

red trend line is calculated using a two-sided 52-week moving average, where each side is 26 

consecutive weeks.  

 

Figure 4: Data points for maximum draft reported per week in AIS 
(2013-2020), with and without adjusted potential outliers. Data points 
for draft over time, including a two sided 52-week moving average 
trend component (in red). 
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At last, the difference between the reported deepest draft per week from AIS and the reported 

draft levels from Western Bulk are presented in Figure 5. When the AIS levels are at their 

highest, there is usually a higher margin between the two variables, and when the AIS levels 

are at their lowest, the lines seem to overlap.  

 

 

 

 

 

Figure 5: Water levels from Western Bulk (in red) versus the deepest 
reported draft from AIS data (in black) from 2013 to 2020. 
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4.1.3 Weather data 

In our paper, we would like to research how weather variables affect water levels. Table 1 

summarizes the variables we have investigated and their data source. 

Table 1: The variables are extracted from Copernicus Climate Data Store 
(CDS). 

Data assumptions 
The weather variables include total precipitation and surface runoff. Total precipitation is the 

accumulated frozen and liquid water, rain, and snow, that falls on the surface to Earth. Surface 

runoff is when the precipitation or melting snow that is stored in the soil, drains out. The unit 

of the variables is the depth in meters the water would have if it were spread evenly over a 

model grid box. 

The data of the weather variables were collected for the region: longitude = (-65, -50); 

latitude = (-35, -20), on a 1-degree spatial resolution level. This region includes the mouth of 

the river, which is Río de la Plata, and the source of the river, the confluence of Paranaíba 

River and Río Grande. It also includes the western and eastern borders of the river. The defined 

area for the weather variables is shown in Figure 6. 

Dataset (Source) Temporal 

resolution 

(Resolution 

transformed 

to) 

Spatial 

resolution 

(Resolution 

transformed 

to) 

Temporal 

Coverage 

(Period 

extracted) 

Variables 

Used 

Units 

ERA5 hourly data on 

single levels from 

1979 to present 

1 hour  

(1 week) 

0.25° x 0.25°  

(1.00° x 1.00°) 

1979-01-01 ± 

Present 

(1993-01-01 ± 

2021-15-11) 

Total 

precipitation 

(tp) 

m 

Surface runoff 

(sro) 

m 
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We have used the original temporal resolution of hourly accumulations, limited to 1993-2021. 

However, as we want the data on a weekly level to fit the draft data from AIS, we have taken 

the mean hourly value across all coordinates, then across all weeks. In order to compare the 

results from AIS water levels with WB water levels, we create another data set on a monthly 

level to fit the draft data from Western Bulk, and take the mean hourly value across all 

coordinates, then across all months. 

Weather variables have been limited to the YDULDEOH¶V precipitation and surface runoff, due to 

data size limitations. However, one should have in mind that these variables could potentially 

be highly correlated with one another. We will check and discuss the correlations between our 

chosen weather variables in the next section.  

Data exploration and transformation 
As mentioned above, our weather variables are potentially highly correlated with one another, 

which could have an impact on the resulting prediction model. We would therefore like to 

check how large the correlation is.  

Figure 6: Map of defined area for the weather 
variables. 
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From Figure 7, we can see that weekly precipitation and runoff are highly correlated with a 

correlation value of R=0.91. This means that the relative change in weekly precipitation is 

more or likely the same as the relative change in weekly runoff. 

Exploring the weather variables can be useful to reveal seasonal patterns and show changes in 

these patterns over time. Since precipitation and runoff have the same movements, 

precipitation will be the focus in this part. All graphs are shown for runoff in appendix A. A 

useful way of showing a seasonal pattern in precipitation data is to illustrate the data points 

and mean for each month. Figure 8 presents a seasonal pattern in precipitation data, clearly 

showing a higher level of rain between October and February, and lower levels of rain between 

March and September. The lowest levels are observed in July and August, which could mean 

these months are more predisposed to lower water levels or drought. 

 

 

 

Figure 7: Correlation between weekly 
precipitation and runoff. 



 28 

We can observe the same pattern in the polar seasonal plot in Figure 9. Both plots illustrate a 

sharp decrease in precipitation during the drier months (March to August). These months are 

controlled at the lower levels of precipitation, with some extreme observations of rainfall some 

years.  

 

 

Figure 8: Seasonal pattern of monthly precipitation mean 
(from 1993 to 2021), where the red horizontal line represents 
the accumulated mean for each month. 
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An autocorrelation plot can prove these yearly trends, shown in Figure 10. We can see that the 

maximal autocorrelation occurs at a lag of 12, which makes sense as this is monthly data. The 

strongest correlated value for a particular month will be the same month in the previous year. 

Also, the stronger a trend is, the closer the values will be to one another in more recent 

observations, which explains why the significance for each 12th lag (i.e. year) sinks.  

 

 

 

 

 

 

 

Figure 9: Polar seasonal plot for monthly precipitation data (from 
1993 to 2021). 
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Further, as there is a yearly trend present in the precipitation data, we will introduce a 52-week 

simple moving average precipitation variable. This independent variable will remove annual 

seasonality patterns to reveal the trends in the data. Figure 11 show a 52-week simple moving 

average from 1993-2021. We can see that the precipitation index is currently at its lowest since 

1993, and the last period of lower relative levels of precipitation was between 2004 and 2009, 

which we do not have draft levels for. 

 

Figure 10: A compressed plot of the autocorrelation values 
for the first 25 lags. 
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4.1.4 Precipitation forecast 

In order to add forecasts for the weekly level of precipitation to the model, we have obtained 

data from The European Centre for Medium Range Weather Forecasts (ECMWF). Each 

forecast contains 25-51 realizations of weather, which act as a probability distribution. The 

distribution aims to represent the uncertainty in weather. These realizations are usually 

postprocessed to get representative outputs. To match the forecasted data with the observed 

data, one needs to correct the output of the seasonal forecast to put it on the same scale as the 

output of the ERA5 data. For example, ERA5 contains the amount of water that falls on an 

exact grid point, while the systems forecast return the volume of water that fell around the grid 

Figure 11: 52-week simple moving average of precipitation from 
1993-2021. 
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point. We obtained the forecasts with the correct scale to match the weather data and used the 

forecasts in predicting water levels. 

4.2 Final selection of input parameters 

Table 2 shows the selection of all variables that are used in each data source. 

Table 2: Selection of variables in each data source. 

 

 Parameter Units 

Draft reports  

 Month - 

 Year - 

 Minimum depths m 

AIS data 

 Imo number - 

 Timestamp position datetime 

 Destination - 

 Latitude degrees 

 Longitude degrees 

 Draft m 

Weather data 

 Total precipitation m 

 Surface runoff m 

 Time datetime 

 Latitude degrees 

 Longitude degrees 

Forecast data 

 received externally  
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4.3 Pre-processing and transformation 

In this section we will explain the relationship between AIS data and the monthly draft data 

provided by Western Bulk, and the relationship between AIS data and weather variables.  

4.3.1 Relationship between AIS data and monthly-data 

In order to check if the movements of the reported water levels from Western Bulk and the 

reported maximum draft from AIS are associated, we use the Pearson correlation test. From 

Figure 12, we can see that the correlation between the variables is positive at 0.59. As the 

correlation is far from 1, the variables are not perfectly correlated, meaning the relative change 

in water levels is not the same. The correlation is shown as a linear function in the figure. The 

relationship between the variables is shown using a LOESS smoothing function (in red). We 

can see a kink in the curve between reported water levels of 11 and 12. This makes sense as at 

very high-water levels, no ships of the size that travel through the river would be constrained 

by the draft. Hence, the observed maximum draft from AIS will no longer change with the 

actual water depth.  

 

Figure 12: Correlation (in grey) and relationship (in red) between 
reported water levels from Western Bulk and reported maximum 
drafts from AIS between 2013 to 2020. 
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4.3.2 Relationship between AIS data and weather variables 

Next, we would like to see if there is a relationship between weather data and reported 

maximum draft. According to the Pearson correlation test, there is no significant linear 

relationship between the weekly precipitation levels and maximum draft (ܴ ൌ ͲǤͲͺ͵). 

However, it is not given that maximum draft will increase at the exact moment of rainfall in 

one area.  

As mentioned in section 3.1.1, moving averages are useful to estimate long-term trends in 

data. As the autocorrelation output proves, there is a yearly seasonal cycle in precipitation. In 

order to account for seasonal fluctuations throughout the year, we use a 52-week moving 

average. A 52-week simple moving average (SMA) has the highest correlation (ܴ ൌ ͲǤ), 

while the 52-week exponential moving average (EMA), where the nearby observations are 

given more importance, has a slightly lower correlation (ܴ ൌ ͲǤͷͷ). If we look at the 

correlation between AIS reported maximum draft and runoff, the correlation is lower than with 

precipitation with an SMA (ܴ ൌ ͲǤͶͻ) and with an EMA (ܴ ൌ ͲǤͷʹ). All the correlations with 

the dependent variable are summarized in Table 3, and shown graphically in appendix B: 

Table 3: Pearson correlation test between potential independent weather 
variables and the dependent maximum reported draft variable. 

Further, we will use a linear regression model and a generalized additive model to explore the 

relationship between water levels and the 52-week moving averages of precipitation. It is a 

straightforward model with one feature. For simplicity, the visual graphs will be included for 

the 52-week simple moving average for precipitation, shown in Figure 13. 

Correlation Weekly 

Precipitation 

52-week 

SMA precip 

52-week 

EMA 

precip 

52-week 

SMA runoff 

52-week 

EMA 

runoff 

Maximum 

reported draft 

0.083 0.6 0.55 0.49 0.52 
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The linear regression model has an ܴଶ�value of 0.355, which means that the 52-week moving 

average of precipitation explains 35.5% of the variance in water levels. Compared to the linear 

regression model, the ܴଶ value of the generalized additive model is improved by 4.1%. Table 

4 is a result table for all the different models using AIS reported maximum draft as the 

dependent variable. The results are shown graphically in appendix C.  

Table 4: Result table with the relationship between 52-week simple and 
exponential moving averages of precipitation and runoff for AIS reported 
maximum draft. 

 

Result table using AIS reported maximum draft as the dependent variable 

  52-week SMA 52-week EMA 

  Precipitation Runoff Both Precipitation Runoff Both 

Model Linear 

R2 

0.355 0.237 0.415 0.3 0.274 0.301 

GAM 

R2 

0.396 0.407 0.493 0.407 0.447 0.491 

Figure 13: Relationship between 52-week moving 
average of precipitation for AIS reported water levels. 
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The same models are performed on water levels reported by Western Bulk, shown in appendix 

C. The weather data seem to perform slightly better on monthly data from Western Bulk, than 

reported maximum draft from AIS. 

The GAM model performs better than the linear model in all cases. The EMA performs 

slightly better than the SMA on both weather variables, however, we will continue to perform 

analyses using both approaches.  

Including both weather variables will increase the amount of variance that the model explains 

by 4.6%-9.7% and might make the prediction more accurate. However, as the GAMs R2 is 

still only 50%, we will not include runoff in the final model. Having correlated variables often 

leads to more complications, and as runoff is less correlated with water levels, it is natural to 

look further at precipitation. We want to make the final model as simple as possible and will 

therefore observe the relationship between precipitation and water levels further.  
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5. 5HVXOWV�DQG�GLVFXVVLRQ 

5.1 Results of model 

The following section will describe the concept of model training and how it applies to our 

model, followed by a description of the model and its results. Thereafter we analyze the 

prediction accuracy of the model. Lastly, the model is compared to a prediction model using 

monthly water level data from Western Bulk.  

5.1.1 Model training 

To evaluate our forecasting model, we have used a time-based cross-validation with a training 

set and a test set, as described in section 3.1.2. The training set will continuously gain one 

more week for each new time step, and the test set will continuously remove the subsequent 

week and add a new week 12 time steps ahead of the current time step. The model is trained 

starting on week 1 in 2016, leaving 4 years in the first training set. The training ends in week 

52 in 2020 as there is no longer any AIS reported draft data to make forecasts on or to compare 

accuracy measures to. The test set always contains 12 time steps (weeks), in a rolling window 

starting with weeks 2-13 in 2016. The training-test split is portrayed in the Figure 14. 

 

 

Figure 14: Train-test split for the first 3 time forecasts. 
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5.1.2 Model description and results 

The final model uses weekly levels of AIS data from 2013 and moving averages of weekly 

levels of precipitation from 1993, as explained in section 4. We have used the generalized 

additive model with only one variable. The dependent variable is the maximum allowable 

draft, and the independent variable is a smooth function of the 52-week moving average of 

weekly levels of precipitation. We have two ways of calculating the moving average: a simple 

moving average (SMA) or an exponential moving average (EMA) and will check the accuracy 

measures for both scenarios. 

The model predicts based on a data set of precipitation forecasts, whereas these are calculated 

as moving averages ahead of time, to match the independent variable. The model can predict 

up to 6 months ahead of time, which depends on how far ahead of time one has precipitation 

forecasts. As we have several realizations of weather forecasts, there are about 25 to 51 

scenarios for each time step forecast, which leaves a distribution of potential draft levels for 

the applicable time step.  

The forecast distribution can be portrayed using quantiles. Quantiles divides the range of 

distribution into subgroups. For example, by using interquartile range, you allow a distribution 

of the middle 50% of values. This range is less influenced by extreme values. If we assume a 

normal distribution, we can use a 90% prediction interval, which is defined by the 5th and 

95th quantiles of the forecast distribution. The forecast distribution has also been adjusted for 

standard deviation, using their respective quantiles. In Figure 15, the full distribution, the 90% 

distribution and the interquartile distribution is shown using the simple moving average. The 

figures illustrate that you are in week 35 in year 2020, predicting 12 time steps (weeks) ahead. 

The dark purple illustrates the forecast distribution, the lighter purple illustrates the standard 

deviation distribution, and the black line represents the observed points for maximum 

allowable draft. 
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In appendix D, the full distribution, the 90% distribution and the interquartile distribution is 

shown using the exponential moving average. 

 

 

 

Figure 15: Forecast from week 35 in year 2020, predicting 12 weeks ahead, 
using the simple moving average of precipitation. Forecast distribution (in 
dark purple), standard deviation distribution (in light purple) and observed 
levels for draft (black line). 



 40 

5.1.3 Prediction accuracy analysis 

After fitting the two models, we want to review the belonging prediction accuracy. In our 

analysis, we will utilize four different accuracy estimations on the selected models to choose 

the best model: R2, MSE, RMSE and MAPE, described in section 3.3. 

Table 5 shows the final result of the evaluation measures for the last available prediction. Both 

the model using the single moving average (SMA) variable and the model using the 

exponential moving average (EMA) variable have been reviewed on the measures. The goal 

is to find the best fitted and accurate prediction model. 

Table 5: Final values of accuracy measures (rounded) of AIS-based model. 

First, the table displays that the R2 for the EMA slightly outperforms the SMA by having the 

highest value. In other words, the EMA model explains 39.7% of the variance in maximum 

draft, which is around 0.8% more than the SMA model. However, we can see the MSE is 

respectively 0.077 and 0.321 for SMA and EMA. The closer to 0 the MSE is, the closer the 

predictions are to the real values. The RMSE displays how concentrated the data is around the 

line of best fit, whereas the SMA model on average has a prediction error of 0.265 meters, 

while the EMA model on average has a prediction error of 0.559 meters. Finally, the MAPE 

value is respectively 0.026 and 0.053, which means the average difference between the 

forecasted value and actual value is 2.6% and 5.3%. The results from the MSE, RMSE and 

MAPE measurers indicate that the SMA model outperforms the EMA model. 

Final values of accuracy measures for the AIS-based model 

Accuracy measure 52 SMA 52 EMA 

R2 0.389 0.397 

MSE 0.077 0.321 

RMSE -0.265 -0.559 

MAPE 0.026 0.053 
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As the model is trained from 2016 to 2020, we can see the development of the accuracy 

measures over time. Figure 16 shows the development for the model using the SMA variable, 

while the development for the model using the EMA variable is shown in appendix E. 

The training of the model began in 2016, in which the reported maximum drafts had been 

steadily increasing since 2013. Precipitation levels were also relatively high compared to 

previous levels since 1993. The further variation in the measure accuracy could be due to 

variables that this thesis has not evaluated. For example, some sections of the river have been 

dredged, which can clarify why the variance is not explained by the relationship between 

precipitation and water level (Portal oficial del Estado argentine, n.d.b). Another example is 

the study by Lejeune (2020), which included water flow from three different areas to explain 

the river level.  

 

 

 

Figure 16: Accuracy measures for the model using the 52-week simple 
moving average (SMA) variable based on AIS reported draft. 
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5.1.4 Model comparison 

Further, we will compare the AIS-based model with the model based on monthly reported 

draft data provided by Western bulk. Both models use the same forecast and historical data of 

precipitation over 12 weeks. However, the Western Bulk data contains monthly reported water 

levels, and not weekly reported maximum draft levels from vessels. The final values of the 

accuracy measures are displayed in Table 6.  

Table 6: Final values of accuracy measures (rounded) of monthly data-
based model. 

First, in considering the monthly data from Western Bulk, we can see that the accuracy 

measures of model with the EMA precipitation variable dominates all accuracy measures of 

the model with the SMA precipitation variable. Thus, we will compare the two best models 

based on different draft data: The EMA-based WB model and the SMA-based AIS model. The 

measures are slightly better for the WB model compared to the AIS model, while the MSE is 

better for the AIS model. As the measures only slightly differ, we can conclude that both 

models are useful in forecasting water levels. 

The monthly data has a training set starting from 2009-2016, while the weekly data has a 

training set starting from 2013-2016. In other words, the monthly data set has 4 more years of 

data to base its forecasts on. The monthly-based data can predict monthly future values, while 

Final values of accuracy measures (rounded) 

 Independent variable 

 Western Bulk (monthly) AIS (weekly) 

Accuracy 

measure 

52 SMA 52 EMA 52 SMA 52 EMA 

R^2 0.318 0.399 0.389 0.397  

MSE 0.499 0.228 0.077  0.321 

RMSE 0.502 -0.191 -0.265  -0.559 

MAPE -0.048 0.017 0.026 0.053 
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the weekly-based data can predict weekly future values. The monthly data contains the 

reported water levels of the 15th each month, meaning the model would predict water levels 

based on the same monthly value, using four different precipitation forecasts. Using weekly 

precipitation forecasts for all weeks in a month, to predict a monthly level, could train the 

model inaccurately. It would be optimal to gather weekly water levels earlier than 2009 to 

create a more accurate model and observe the relationship between precipitation and water 

levels further. However, the AIS-based model with its high-frequency provides good results 

of accuracy measures, indicating a useful prediction model.  

The development of the accuracy measures over time for the monthly-based model is shown 

in appendix F.  

5.2 Profit estimation example 

This section will investigate the sensitivity in the profit function when draft changes, to 

illustrate how crucial it is to have an accurate prediction model. To get a realistic example for 

the case study, Western Bulk provided us with representative numbers that can be used to 

calculate profit.  

The example is based on standard travel with an Ultramax (63k dwt) vessel, departing from 

San Lorenzo port to El Dhekelia in Egypt. This voyage has a duration of 41 days, with a time 

charter equivalent (TCE) of 40 000. The calculations are based on market rates and bunker 

prices from late November 2021, and the maximum draft is predicted to be 9.75 meters in the 

Paraná River. The selected draft allows the ship to have an intake of 38 500 mts.  

The total freight and profit change function for an intake of 38 500 mts and a total freight cost 

of $2 781 625 is given as follows:  

̈́ʹ ͺͳ ʹͷᇣᇧᇧᇤᇧᇧᇥ
்௧�ி௧

ൌ ̈́ʹǡʹͷᇣᇧᇤᇧᇥ
ி௧�ௌȀ௧

כ �����͵ͺ�ͷͲͲᇣᇧᇤᇧᇥ
ூ௧

 

݄݁݃݊ܽܥ�ݐ݂݅ݎܲ ൌ ൭ ̈́ʹǡʹͷᇣᇧᇤᇧᇥ
ி௧�ௌȀ௧

כ �����േ͵ͺ�ͷͲͲᇣᇧᇧᇤᇧᇧᇥ
ூ௧

൱ െ ̈́ʹ ͺͳ�ʹͷᇣᇧᇧᇤᇧᇧᇥ
்௧�ி௧

 

Table 7 summarizes the assumptions, where the prices are given in USD. 
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Table 7: Assumptions taken in the profit estimation example. 

Table 8 displays the numbers used in Figure 17, where both illustrate the relationship between 

draft, profit, and intake of cargo. 

 

 

 

 

 

 

 

 

Assumptions 

Load port San Lorenzo, Argentina 

Discharge port El Dekheila, Egypt 

 - VLSFO USD/pmt 575 

Duration (days) 41 

Vessel Ultramax (63k dwt) 

TCE 40 000 

Draft (m) 9,75 

Freight USD/pmt 72,25 

Total Freight 2 781 625  
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Table 8: Relationship between draft, profit, and intake of cargo, tablewise. 

 

Draft (m) Intake (mts) Profit Change 

8,5 31000 - 541 875 

8,75 32500 - 433 500 

9,00 34000 - 325 125 

9,25 35500 - 216 750 

9,50 37000 - 108 375 

9,75 38500 0   

10,00 40000 108 375 

10,25 41500 216 750 

10,50 43000 325 125 

Figure 17: Relationship between draft, profit, 
and intake of cargo, graphically. 
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By wrongly over- or underestimating 0.25 meters in draft, the profit can result in a range of േ 

$108 375. The calculation demonstrates the large impact draft has on :HVWHUQ� %XON¶V�

profitability, indicating the importance and need of an accurate prediction model.  
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6. &RQFOXVLRQ 

The purpose of this thesis is to reduce uncertainty in under- or overestimation of cargo in the 

Paraná River in Argentina, by predicting the allowable maximum draft for ships to pass the 

water level barrier. Accurate predictions can improve profitability of ships voyage. The study 

is based on reported draft from AIS (Vesseltracker), observed precipitation from Copernicus 

(CDS) and precipitation forecasts from ECMWF.  

The first part of the study focused on transforming the large amount of AIS data, to solely 

include relevant information related to Paraná River. A crucial limitation in the study is the 

FDVH� RI� ³)URQWOLQH� 2SHUDWRU� IDLOXUH´� LQ� $,6� UHSRUWHG� GUDIW�� )URP� RXU� DQG� RWKHU VWXGLHV¶�

experience, the manually reported AIS data are not always filled in, updated or reliable. To 

tackle this problem, we aggregated the data on a weekly level and removed potential errors in 

reported draft. However, the data transformation could have removed large amounts of 

valuable data, which could be crucial if the true value of maximum draft for a given week was 

removed.  

The second part of the study focused on exploring seasonality and trends in precipitation and 

surface runoff levels and transforming it to an appropriate independent variable to predict 

water levels. Both a simple and exponential 52-week moving average were explored, using 

Pearson correlation test, as well as the linear and GAM model. Solely precipitation, using a 

52-week simple moving average, was included in the final model, as it gave the highest 

correlation (ܴ ൌ ͲǤ), and explained ~40% of the variance in AIS reported draft levels using 

the GAM model. However, to find a model that explains a larger part of the variance, variables 

such as measurement of lag time from water levels upriver to downriver, frequency and 

measurement of dredging, flow velocity of nearby dams (Itaipu Dam and Yacyretá Dam), 

water flow and other hydrological variables should be considered and explored in order to 

improve the model. 

The third part of the study included transforming precipitation forecasts to match the 

independent variable as a moving average and predict water levels forward. Using 

precipitation forecasts accounted for the uncertainty in weather and created a distribution of 

potential water levels. 
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At last, to predict the allowable draft level, we have used the GAM model, as it performed 

better than linear regression. The final GAM model used a 52-week SMA to predict reported 

maximum draft levels from AIS. The accuracy measures ܴ ଶ, MSE, RMSE and MAPE resulted 

in respectively 0.389, 0.077, -0.265 and 0.026. A limitation in the model is the lack of use of 

penalties in the GAM model, which allows complexity of the model to increase (i.e. 

overfitting). Earlier studies have shown good results by using complex models such as ANN, 

as it catches non-linear relationships better compared to regression models (Bazartseren et. 

al., 2003). Further work should therefore investigate other methods of modelling to achieve 

more accurate predictions.  

We believe AIS reported draft to become more useful in a couple of years, as the use of it is 

increasing and longer timeframes in general of observations usually contribute to a higher 

accuracy in prediction models. However, the prediction model shows promising results, and 

using it with as a complementary model along with data points from the pilot company can be 

useful. 

Conclusively, further development of the model should include adding more variables, 

reviewing other potential modelling methods, and achieving a higher-frequency or longer 

time-frame data set for water levels. 
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Appendix A: Data exploration of the runoff variable 

 

Figure 19: Seasonal pattern of monthly runoff mean (from 1993 
to 2021), where the red horizontal line represents the 
accumulated mean for each month. 

Figure 18: Polar seasonal plot for monthly precipitation data 
(from 1993 to 2021). 
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Figure 21: A compressed plot of the autocorrelation values for 
the first 25 lags. 

Figure 20: 52-week simple moving average of runoff from 1993-
2021. 
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Appendix B: Correlation between weather variables and 
the maximum reported draft level 

 

 

 

 

 

 

Figure 22: Correlation between AIS level 
and weekly precipitation. 

Figure 24: Correlation between AIS 
water levels and 52-week simple 
moving average of precipitation. 

Figure 23: Correlation between AIS 
water levels and 52-week 
exponential moving average of 
precipitation. 
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Figure 25: Correlation between AIS 
water levels and 52-week simple 
moving average of precipitation. 

Figure 26: Correlation between AIS 
water levels and 52-week 
exponential moving average of 
precipitation. 
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Appendix C: Linear and GAM models for weekly-based 
model and monthly-based model. 

 

The result table from models performed on water levels reported by Western Bulk is shown 

in Table 9, and graphically in Figure 28. 

Figure 27: Relationship between 52-week simple and exponential moving 
average of precipitation and runoff for AIS reported water levels. 
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Table 9: Result table with the relationship between 52-week simple and 
exponential moving averages of precipitation and runoff for reported water 
levels from Western Bulk. 

 

Result table using monthly reported water levels as the dependent variable 

  SMA EMA 

  Precip Runoff Both Precip Runoff Both 

Model Linear R2 0.355 0.268 0.399 0.457 0.445 0.463 

GAM R2 0.377 0.337 0.402 0.453 0.5 0.51 

Figure 28: Relationship between 52-week simple and exponential moving 
average of precipitation and runoff for Western Bulks monthly reported 
water levels 
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Appendix D: Forecast model example, using EMA 

 

 

 

 

 

Figure 29: Forecast from week 35 in year 2020, 
predicting 12 weeks ahead, using the exponential 
moving average of precipitation. Forecast distribution 
(in dark purple), standard deviation distribution (in 
light purple) and observed levels for draft (black line). 
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Appendix E: Development of accuracy measures, using 
EMA based on AIS reported draft 

 

 

 

 

 

 

 

 

Figure 30: Accuracy measures for the model using the 52-week 
exponential moving average (EMA) variable based on AIS 
reported draft. 
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Appendix F: Development of the accuracy measures 
(monthly-based model) 

Figure 31: Accuracy measures for the model using the 52-week simple 
moving average (SMA) variable based on monthly reported water levels. 

 

Figure 32: Accuracy measures for the model using the 52-week exponential 
moving average (EMA) variable based on monthly reported water levels. 
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An example of the forecast model using the monthly reported water level data: 

Figure 33: Forecast from week 35 in year 2020, predicting 12 weeks 
ahead, using the exponential moving average of precipitation 

Figure 34: Forecast from week 35 in year 2020, predicting 12 weeks 
ahead, using the exponential moving average of precipitation 
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