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Abstract 

The portfolio selection problem is one of the most discussed topics in financial literature. Harry 

Markowitz (1952) is recognized as the first to formalize the risk-reward trade-off methodology 

used in portfolio selection. Through his mean-variance framework, he detailed the importance 

of diversification and laid the foundation for the modern portfolio theory we know today.  

 

This thesis explores a novel approach to portfolio allocation enabling the mean-variance 

framework and machine learning. We employ machine learning to predict the quarterly 

expected return and the associated covariance matrix for stocks trading on Oslo Stock 

Exchange. To construct the predictions, we deploy the renowned Extreme Gradient Boosting 

algorithm, also called XGBoost. We investigate the opportunity to use quarterly reports, 

macroeconomic and economic variables as predictors of quarterly stock returns and 

covariances. Furthermore, we apply these predictions in the mean-variance framework from 

Markowitz to construct quarterly portfolios.  

 

The results from the Thesis Model are disappointing. The objective of the quarterly portfolio 

optimization is to maximize the Sharpe ratio. Unfortunately, the Thesis Model is not able to 

construct portfolios that reliably aligned with this goal. Nevertheless, the model initially yields 

an impressive one-year return. However, under new conditions the performance change 

drastically. The statistical evaluation of the XGBoost prediction models entails that they both 

deliver highly inaccurate predictions, which propagates further through to the portfolio 

allocation process. Moreover, there is little evidence that the models can detect any patterns in 

the data beneficial for portfolio construction. In sum, the model struggles to foresee market 

developments, which accumulates into a model incapable of consistently performing with 

satisfying financial results.  
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1. Introduction 

Despite a raging pandemic, financial markets have never been more pertinent. All over the 

world, stock indexes reach new peaks, cryptocurrencies are prominently advancing, while 

social media platforms cause margin calls and demolish entire hedge funds. In a Norwegian 

context, Oslo Stock Exchange is at an all-time high, and private investors have never used the 

Norwegian equity market more frequently. Per July 2021, around 530 000 Norwegians were 

investing in the Norwegian stock market, and the current number is expected to be even higher 

(Aksjenorge, 2021). As such, it is fair to say that stock returns seldom have been more topical 

than they are today.  

 

Active investors in financial markets usually own several assets. They all desire to combine a 

portfolio of assets capable of consistently “Beating the Market”. In other words, active portfolio 

managers seek to compose a portfolio that delivers excess return against a benchmark index 

with a given amount of risk (Qian, Hua, & Sorensen, 2007). One of the most common 

frameworks in portfolio selection is the mean-variance model (MV), proposed by Harry 

Markowitz in 1952. The objective of the MV-model is to either maximize the Sharpe ratio, 

maximize the return for a preferred level of risk, or minimize the risk for a certain return. This 

framework aims to select the optimal allocation of weights for assets in a portfolio. The weight 

allocation is based on the expected returns of the assets and their associated volatility captured 

in the covariance matrix. Conclusively, estimates of expected returns and the covariance matrix 

are required to select the optimal portfolio following the MV-model (Markowitz, 1952).  

 

The first part of the Markovitz framework is expected returns. Estimation of expected returns 

is broadly addressed in literature (Green, Hand, & Zhang, 2013). Commonly, these estimations 

are predictions of some sort. Still, despite all the research, stock return prediction is not easy. 

The stock market is, in general, characterized as dynamic, unpredictable, non-stationary, and 

non-linear (Vijha, Chandolab, Tikkiwalb, & Kumarc, 2020). There are various factors to these 

dynamics. A non-comprehensive list of influencing factors includes political conditions, global 

and local economy, company-specific financial reports, macroeconomic factors, and the 

psychology of investors (Henrique, Amorim, & Kimura, 2019). Consequently, due to these 

dynamics, stock return prediction is established to be a risky and challenging task. However, 

the search for the “perfect” prediction model is a constant pursuit among investors and fund 

managers worldwide.  
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Although the execution is complex, the concept of stock return prediction is simple. In essence, 

it conceptualizes the thought of determining whether the value of a stock is about to increase or 

decrease. Despite the renowned Efficient Market Hypothesis (EMH) Fama (1970), the search 

for effective financial models has been part of finance for a long time. An uncomprehensive list 

of approaches deployed to solve this challenge includes the Single Index Model (Sharpe, 1963), 

Capital Asset Pricing Model (Mossin, 1966), historical average returns (Markowitz, 1952), 

stock price momentum models (Jegadeesh & Titman, 1993) and fundamental models (Graham, 

1949). All have their flaws and weaknesses emphasizing the complexity of stock price 

prediction.  

 

Nevertheless, creating financial models with predictive abilities is still highly attractive in 

academia (Henrique, Amorim, & Kimura, 2019). Though, the motivation is obvious. 

Academically, a model capable of predicting future returns above market indices would provide 

strong evidence contrary to the Efficient Market Hypothesis, one of the most famous economic 

theories there is. Financially, such a model would unchain the opportunity to gain significant 

short-term profits within financial markets before the new information is incorporated into the 

market. 

 

In broad terms, there are two approaches to stock price prediction: technical analysis and 

fundamental analysis (Henrique, Amorim, & Kimura, 2019). The foundation of technical 

analysis is that history tends to repeat itself and that this applies to financial markets and markets 

patterns (Achelis, 2000). The main principle of technical analysis is to identify and use patterns 

and indicators from historical prices to predict future prices (Kirkpatrick & Dahlquist, 2016). 

Furthermore, technical analysis relies on internal market information and assumes all predictive 

factors of stock price fluctuations to be hidden in the stock price (Chang, Liao, Lin, & Fan, 

2011). Hence, technicians argue that stock prices can be predicted using historical patterns and 

signals. However, assuming the EMH holds on at least a weak form for Norway and Oslo Stock 

Exchange, any prediction of future returns based on previous returns seems hollow for stocks 

on Oslo Stock Exchange or any stock exchange for that matter.   

 

The second approach to stock return prediction is fundamental analysis. Introduced by 

Benjamin Graham in 1949, fundamental analysis is still a widely used method to predict the 

future value of an asset. In essence, fundamental analysis is a qualitative approach where 

internal factors such as company-specific financial statements are combined with external, non-
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company-specific factors like the current market and macroeconomic situation (Graham, 1949). 

Together, these factors are used to determine the intrinsic value of a firm and identify mispriced 

securities (Hur, Manoj, & Yohanes, 2006). Thus, fundamentalists estimate the development in 

stock prices based on financial analyses of companies or industries.  

 

The traditional approach to fundamental analysis is to use publicly available data. Often, this 

involves the financial statements of companies, which are used to construct financial ratios. 

These ratios are then used to determine whether a company is undervalued or overvalued based 

on the historical development and industry peers. Moreover, the ratios can indicate potential 

growth opportunities and expose the financial health of a company. Nevertheless, there is more 

to fundamental analysis than just financial statements. For example, economic factors such as 

interest rates and general macroeconomic factors are important features in fundamental 

analysis. These additional factors aim to portray the general development in the economy, 

providing a more nuanced picture of the market, which is important when estimating stock 

returns.  

 

The second part of Markowitz optimization is volatility, represented by the covariance matrix 

of the associated assets. Covariance is an imperative concept in finance, especially in portfolio 

construction. Covariance is used to measure the state of instability between returns. A standard 

assumption in finance is that the covariances of stock returns are more stable than the returns 

themselves (Merton, 1980). This implies that the historical covariance could reasonably 

estimate future covariance. Furthermore, Merton (1980) argues that the impact of the expected 

returns is more significant than the impact of the covariance estimations. As such, changes in 

the estimated covariance matrix do not entail a considerable difference in the portfolio 

composition. In contrast, slight changes in the return estimates can cause significant changes in 

the portfolio composition (Awoye, 2016). Nevertheless, covariance is still an influential factor 

in MV portfolio selection.  

 

When predicting the covariance of stock returns, one common approach applies historical 

covariance as a proxy to estimate future covariance (Markowitz, 1952) (Markowitz, 1999). 

However, there is clear empirical evidence that the assumption of constant financial covariance 

is ambitious (Engel & Gizycki, 1999). Although the volatility of financial time series can be 

clustered and relatively stable in certain periods, extensive research shows that financial 

covariance varies over time (Engle, Ledoit, & Wolf, 2017). This phenomenon is known as 
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heteroscedasticity. One example is displayed in Figure 1, showing how the monthly returns on 

Oslo Stock Exchange Benchmark Index (OSEBX) have fluctuated from Q1 2000 to Q2 2021.  

 
Figure 1, Monthly returns for OSEBX 

When we study Figure 1 it is evident that the variance is far from constant. The apparent 

instability of the volatility exemplifies that the historical covariance approach, suggested by 

Markowitz, is deficient. Moreover, studies have recognized that past financial data influences 

future data (Engel R. , 1982). In statistical terms, this means that financial data is known to be 

autoregressive. Fortunately, there are models capable of capturing the mentioned characteristics 

with great precision. This highlights an interesting paradox. While predictions of first-order 

moments (stock returns) are especially challenging, predictions of the second-order moments 

(variance/correlation) are more reliable (Nelson & Foster, 1992). One of the most recognized 

methods to predict second-order movements is the ARCH/GRACH framework.  

 

Rober F. Engel (1982) introduced the Autoregressive Conditional Heteroscedasticity (ARCH) 

framework. ARCH models are able to resemble the volatility clustering observed in asset 

returns and have two important assumptions. First, ARCH assumes that the shock 𝑎𝑡 of an asset 

return is serially uncorrelated with nonconstant variances conditional on the past while having 

constant unconditional variances. Second, ARCH models assume the dependence of 𝑎𝑡 to be 

described by a quadratic function of lagged values (Tsay, 2005). Specifically, the shock is 

defined as: 

𝛼𝑡 = 𝜎𝑡𝜖𝑡  (1.1) 
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where 𝜖𝑡 is a sequence of random variables with a mean 0 and a variance 1 following the same 

distribution. Formally, we can write the ARCH(𝑝) as: 

𝜎𝑡
2 = 𝛼0 + 𝛼1𝑎𝑡−1

2 + ⋯ + 𝛼𝑝𝑎𝑡−𝑝
2 = 𝛼0 + ∑ 𝛼𝑖𝑎𝑡−1

2

𝑝

𝑖=1

(1.2) 

From basic statistics, it is evident that variance must be non-negative. Thus, ARCH requires the 

coefficients 𝛼0 > 0 and 𝛼𝑖 ≥ 0 for 𝑖 > 0 to guarantee that the unconditional variance of 𝑎𝑡 is 

finite (Tsay, 2005).  

 

Although the ARCH framework has interesting properties, it is not perfect. One apparent 

drawback of the ARCH framework is that it requires many parameters to estimate the return 

volatility of an asset effectively. Tim Bollerslev (1986) introduced the generalized 

autoregressive conditional heteroskedasticity (GARCH) framework to cope with this. The 

GARCH(𝑝, 𝑞) is shown in equation 1.3.  

𝑎𝑡 = 𝜎𝑡𝜖𝑡 (1.3) 

𝜎𝑡
2 = 𝛼0 + ∑ 𝛼𝑖𝑎𝑡−𝑖

2

𝑝

𝑖=1

+ ∑ 𝛽𝑗𝜎𝑡−𝑗
2

𝑞

𝑗=1

(1.4) 

where 𝛽𝑗 ≥ 0 and 𝛼1 + ⋯ + 𝛼𝑝 + 𝛽1 + ⋯ + 𝛽𝑞 < 1. As GARCH is an extension of ARCH, 

the differences are not huge. In summary, GARCH(𝑝, 𝑞) includes lagged conditional variances, 

whereas ARCH(𝑝) only consists of the conditional variance specified as a linear function of 

past sample variances (Bollerslev, 1986). As such, the GARCH framework corresponds to some 

adaptive learning mechanisms. Additionally, it enables modeling of conditional change in 

variance over time and changes in the time-dependent variance (Tsay, 2005).  

 

The introduction of the ARCH and GARCH frameworks revolutionized the estimation of time 

series volatility in finance and economics. These frameworks can efficiently model volatility of 

financial assets prices such as bonds, market indices, and stocks. Moreover, they enable 

forecasts of the entire distribution, not just the mean as in ordinary regression problems (Tsay, 

2005). Inspired by these capabilities, other varieties of the GARCH framework have been 

introduced. A popular approach is to apply multivariate GARCH models. Among these models, 

the Dynamic Conditional Correlation (DCC) GARCH model is one of the most recognized in 

the context of modeling financial time series (Engel & Sheppard, 2001) (Fiszeder & Orzeszko, 

2021). Nevertheless, although GARCH/ARCH framework provides evidence that we can 

forecast volatility efficiently, the task is not easy (Chan, Karceski, & Lakonishok, 1999). 
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Today, different variations of GARCH are widely used in volatility prediction. However, there 

exist alternative approaches to volatility prediction. Recent development in technology and 

methodology have brought up novel estimation techniques. These new techniques are 

applicable for both volatility and return predictions, and subsequently, portfolio optimization. 

Among these, Machine learning has become one of the most popular. The most apparent 

explanation is the ability of machine learning algorithms to handle the chaotic and non-linear 

nature of financial markets. Consequently, these algorithms can identify non-linear patterns and 

relations that previously were non-disclosable in the financial markets (Fiszeder & Orzeszko, 

2021) (Basaka, Kar, Saha, Khaidem, & Sudeepa, 2019). Hence, the application of machine 

learning in finance has increased drastically in the last couple of years, where the typical 

approach is to predict either volatility or returns.   

 

1.1 Scope of the Thesis 

This thesis investigates a novel approach to portfolio optimization using machine learning. 

Instead of estimating either the expected return or the volatility of considered assets, we aim to 

do both, using two separate models. We want to examine a machine learning approach to 

quarterly portfolio selection using predictions of quarterly expected returns for the considered 

stocks and the associated covariance matrices. Moreover, we rely our portfolio allocation on 

the MV model introduced by Markowitz. In other words, the construction criterium for our 

portfolio optimization is to maximize the Sharpe ratio. Further, most research on portfolio 

optimization and stock covariance prediction has focused on markets outside Europe, mainly 

in the US. Hence, there is little research on the Norwegian stock market. Thus, only stocks 

traded on Oslo Stock Exchange are considered throughout the thesis. 

 

Both prediction models will enable the concept of fundamental analysis. To predict stock 

returns, we investigate the use of financial ratios based on company-specific data from quarterly 

financial reports. In addition, non-company-specific data such as macroeconomic and economic 

indicators are included as predictors to capture the overall market movements. The same non-

company-specific data is also used in a separate model to predict the quarterly covariance 

between the stocks. Both models will apply the XGBoost algorithm proposed by Chen and 

Guestrin (2016). XGBoost is, in addition to the mentioned machine learning advantages, 

renowned for its efficacy, computational speed, model performance, and handling of missing 

values satisfactory (Nielsen, 2016).  
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1.2 Motivation   

The risk aspect is often neglected in the discussion of stock return prediction. Instead, the 

traditional focus is centered around predicting winners and losers. On the contrary, there is a 

well-known risk-reward trade-off between the return of an investment and the risk involved. 

Thus, portfolio selection without accounting for risk is not very accurate. The rational investor 

always wants to adjust the portfolio to the associated risk of the considered assets. 

Consequently, the idea of predicting financial returns without accounting for risk appears 

hollow. One of the best risk-reward trade-off measures in portfolio selection is the Sharpe ratio. 

Thus, we use the maximation of the Sharpe ratio as the selection criterium for our portfolios.  

 

Second, machine learning and financial time series are known to have matching characteristics.  

The chaotic and non-linear nature of financial markets aligns well with the capabilities of 

machine learning to handle and determine non-linear patterns. Moreover, literature shows 

evidence that machine learning has predictive capabilities for financial time series, both in terms 

of volatility and returns. However, there is modest research on the topic of machine learning in 

portfolio optimization. Therefore, an imperative feature to the motivation to this thesis is the 

unexplored area of portfolio optimization using machine learning predictions for both returns 

and volatility.  

 

Quarterly portfolio optimization using financial data is partly motivated by an unorthodox 

valuation method from the Norwegian portfolio manager Thomas Nielsen. He uses a self-

developed model that applies fundamental analysis to select the stocks in his portfolio 

consisting of Nordic companies (Bjergaard, 2020). Moreover, past literature suggests that 

fundamental analysis, as opposed to technical analysis, is suitable for long-term stock-price 

movement but not suitable for the short-term stock-price change (Khan, Alin, & Akter, 2011). 

Also, due to transaction costs and other barriers, most investors have a long-term horizon on 

their investments. Therefore, we do not consider a short-term approach predicting daily returns.  
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1.3 Document Structure  

The continuation of this thesis is divided into six parts. We will continue with some theoretical 

background on portfolio optimization and the selection approach for contextualization 

purposes. Then, we present a thorough literature review on the topic of return and covariance 

prediction using machine learning. Additionally, we assess the linearities in financial markets 

before discussing the assumptions in the Markowitz framework. Next, we introduce the 

financial and technical framework of the thesis in the methodology chapter. Following the 

methodology chapter is an introduction to the data we use and a run-through of the optimization 

model we apply. Finally, we present and discuss the results from the portfolio optimization 

before we submit some concluding remarks.  
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2.  Introduction to Portfolio Theory  

A portfolio might consist of only one type of asset or a combination of different assets like 

stocks, bonds, real estate, and more. Further, the number of combinations regarding weights of 

different assets in a portfolio is, in theory, infinite. Even in practice, the number of asset types 

and weights is close to countless, especially as the number of assets rises and short selling is 

allowed. As such, portfolio allocation is one of the greatest challenges in finance (Goldfarb & 

G. Iyengar, 2003).  

 

The challenge of portfolio selection has been carefully discussed in the academic literature. 

Most discussions rely on the work of Harry Markowitz, known as the father of modern portfolio 

theory. In his book, Portfolio Selection, Markowitz (1952) introduced the modern aspect of risk 

in portfolio theory. Before the publication, portfolio theory lacked (1) sufficient coverage of the 

effects of diversification when risks are correlated, (2) the distinguishment between efficient 

and inefficient portfolios, and (3) analyses of risk-return trade-offs for portfolios (Markowitz, 

1999). Markowitz covered these topics and established the modern portfolio theory we 

familiarize ourselves with today.  

 

Markowitz (1952) argues that any rational investor is risk-averse. This implies that an investor 

will only take on increased risk if compensated with a higher expected return. Hence, an optimal 

selection of assets-weights yields the highest feasible expected return for a given level of risk. 

Such a portfolio is called an efficient portfolio (Markowitz, 1952). Moreover, Markowitz 

(1952) argues that predictions of security returns follow the same probability postulations as 

random variables do.  

 

The fact that asset returns follow the same probability postulations as random variables do has 

two key takeaways. The first is regarding the expected return of the portfolio. The expected 

return of a portfolio is the weighted average of the expected returns of the individual securities 

in the portfolio. On this topic, one of the fundamental assumptions of Markowitz is that the 

returns are multivariate normal, meaning they are symmetric, have short tails, etc. The second 

takeaway is regarding the variance of the portfolio. The variance of a portfolio is, according to 

Markowitz, an explicit function of the standard deviation of the individual securities, the 

covariances between said securities, and their weights in the portfolio. Thus, an investor should 
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obtain a diversified portfolio by avoiding combining highly correlated securities in a portfolio 

(Markowitz, 1952).  

 

The expected return of a portfolio 𝑃, consisting of 𝑛 assets, can be formulated using the 

definition of the expected value. 

𝜇𝑃̂ = 𝑤1 ⋅ 𝜇̂1 + 𝑤2 ⋅ 𝜇̂2 … 𝑤𝑛 ⋅ 𝜇̂𝑛 = ∑ 𝜇̂𝑖𝑤𝑖

𝑛

𝑖=1

(2.1) 

 

where 𝑤𝑖  is the weight for security 𝑖 in the portfolio, and 𝑢̂𝑖 is the expected return. Subsequently, 

we can write the formula for the portfolio variance as follows 

 

 𝜎𝑃
2 = ∑ ∑ 𝑤𝑖𝑤𝑗𝜎𝑖𝜎𝑗𝜌𝑖𝑗

𝑛

𝑗=1

 

𝑛

𝑖=1

= ∑ ∑ 𝑤𝑖𝑤𝑗𝐶𝑜𝑣𝑖𝑗 

𝑛

𝑗=1

𝑛

𝑖=1

(2.2) 

 

where 𝜎𝑖 is the sample standard deviation of the returns for security 𝑖 and 𝜌𝑖𝑗  is the correlation 

of the returns between security 𝑖 and 𝑗.  

 

The portfolio variance formula implies that returns from different assets covariate. Thus, certain 

combinations of assets can drag the variance of a portfolio down. On the other hand, some 

assets covariates, causing the portfolio variance to increase. As such, different combinations of 

assets provide different portfolio variances. The process of choosing a combination of assets to 

lower the risk of a portfolio is called diversification (Rubinstein, 2002). Diversifying portfolios 

is the key to obtaining efficient portfolios with an optimal risk-return trade-off (Lohre, Opfer, 

& Orszag, 2011). Figure 2 exemplifies the value of diversification. The figure shows the 

expected return and expected volatility (standard deviation) for stocks A, B, and C. Creating 

portfolios consisting of the three securities makes it possible to generate a variety of expected 

returns and standard deviations. The portfolio compositions with the highest possible expected 

return for any given level of risk can be plotted as illustrated with the blue line. This line is 

called the efficient frontier and represents the optimal combination of assets for any possible 

level of risk (Markowitz, 1952). As shown in figure 2, a combination of the three stocks can 

achieve a more optimal risk-return trade-off than any individual stock.  
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Figure 2, Efficient Frontier (blue line) 

2.1 Sharpe ratio 

The Sharpe ratio was introduced in 1966 under the name reward-to-variability ratio by William 

Sharpe. He proposed a ratio to measure the risk-adjusted performance of a portfolio, where risk 

is represented by the standard deviation of the portfolio (Sharpe W. F., 1966). We can calculate 

the ratio is calculated the following approach 

 

𝑆𝑅 =
𝜇 − 𝑟𝑓

𝜎
(2.3) 

 

where 𝜇 is the return of the portfolio, 𝑟𝑓 is the risk-free rate with an equivalent time horizon, 

and 𝜎 is the risk of the portfolio denoted as the standard deviation of the portfolio returns, also 

called volatility (Eling & Schuhmacher, 2007).  

 

Comparing different investment strategies with various risks and returns is a non-trivial task. A 

strategy might have a higher expected return than other strategies. However, the same strategy 

might also have a higher expected risk. Hence, joint ratio calculating the risk-adjusted expected 

return makes comparing different investment strategies easier due to a common ground (Dowd, 

2000). This exemplifies how the Sharpe ratio can be used in an investment decision manner, 
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ex-ante. If the Sharpe ratio is used ex-ante, the variables in equation 2.3 are estimated (Sharpe 

W. F., 1966). Alternativity, the Sharpe ratio can be used as a performance measurement, ex-

post. In short, the ex-post Sharpe ratio uses actual returns and volatility to compute the Sharpe 

ratio of a desired period in the past. In other words, the ex-post Sharpe ratio is backward-looking 

and is often used for evaluation purposes. Calculating the ex-post Sharpe ratio enables us to 

compare the performance of different portfolios in terms of the risk-return trade-off (Eling & 

Schuhmacher, 2007). 

 

The Sharpe ratio varies across the efficient frontier. To locate the maximum Sharpe ratio 

graphically on the efficient frontier, using the capital allocation line (CAL) is necessary (Bodie, 

Kane, & Marcus, 2018). When finding the maximum Sharpe ratio, the CAL is created using the 

risk-free rate as intercept and the following tangency point on the efficient frontier. See figure 

3 for illustration, where the black line is the CAL, and the bright blue dot is the maximum 

Sharpe ratio point. The difference between the expected return on the allocation line and the 

risk-free rate is called the risk premium and is the premium an investor receives for taking on 

risk. The tangency point between the efficient frontier and the capital allocation line represents 

one specific portfolio with specific weights for the associated assets. This portfolio yields the 

highest Sharpe ratio of all the possible combinations  

 
Figure 3, Efficient frontier (blue line) with CAL (black line) and maximum Sharpe ratio point (bright blue dot) 

𝑟𝑓 
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2.2 Market efficiency 

Market efficiency is a vital concept in finance. The term efficiency portrays a capital market in 

which all relevant information is embedded in the price of a financial asset (Dimson & 

Mussavian, 1998). A capital market fuels growth and expansion through financing (Coşkun et 

al., 2017). Furthermore, the primary task of a capital market is to allocate ownership of the 

capital stock in the economy (Fama, 1970) (Fama, 1965). This task is exercised by providing a 

market for investors and companies to trade securities affiliated with company ownership. Such 

assets include, but are not limited to, shares, bonds, real estate, and more. For capital markets 

to function optimally, these markets need to consist of assets that are priced to reflect all 

available information at any given time fully. As such, a capital market is efficient if it manages 

to do so (Fama, 1970).  

 

Eugene Fama proposed in 1970 three levels of market efficiency. Weak form, also called 

random walk theory, portrays a market where all information about previous security prices is 

impounded in the current price of the security. Hence, excess returns cannot be obtained by 

analyzing characteristics of previous price development for a security, such as trend, 

seasonality, and variations. Semi-strong form depicts a market where security prices fully and 

fairly reflect all publicly available information. This includes accounting information, merger 

and accusation transactions, management structure, etc., in addition to all information 

mentioned in weak form efficiency. Lastly, Strong form of market efficiency states that the 

price of a security reveals all information affecting said price, public or inside regardless.  

 

In his initial paper on market efficiency, Fama (1970) argues strong evidence for at least a weak 

form of market efficiency in capital markets. Later research shows that this is partly true, and 

more so for developed than for emerging equity markets (Chan et al., 1997) (Mobarek & 

Fiorante, 2014). European developed equity markets such as Norway, Germany, Sweden, 

Portugal, Ireland, France, United Kingdom, Finland, Spain, and the Netherlands satisfy most of 

the requirements of a strict random walk regarding daily stock returns. The presence of a strict 

random walk regarding daily stock returns confirms the presence of weak market efficiency in 

the mentioned markets, including Norway (Worthington & Higgs, 2004).  
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3. Literature Review 

In essence, modern portfolio theory is conceptualized by risk and return. Thus, when we 

construct portfolios for investment purposes, it is imperative to consider the expected return 

and the expected risk associated with each portfolio. In the mean-variance framework, the 

expected return is the weighted aggregation of the expected returns, while the risk is embodied 

in the covariance between the considered assets. This chapter will present a thorough literature 

review on stock return prediction using fundamental analysis and covariance prediction in a 

machine learning context. Furthermore, we will elaborate on some of the fundamental 

assumptions in the mean-variance model by Markowitz. 

 

3.1 Fundamental Analysis and Stock Returns Prediction 

The concept of fundamental analysis dates back to Benjamin Graham. In essence, fundamental 

analysts believe that internal and external factors reflect the stock price of a company 

(Cavalcante, Brasileiro, Souza, Nobrega, & Oliveira, 2016). Graham argued there were three 

fundamental measures investors should notice: the size of the firm, the capitalization, and the 

price-earnings ratio (Graham, 1949). Using the work of Graham as a basis, fundamentalists 

apply a combination of financial ratios computed from financial statements and stock price, 

combined with other quantitative and qualitative tools to determine the value of the stock (Lam, 

2004).  

 

When evaluating the value of a firm, one of the most widespread methods used is to assess 

future cash flows. Another popular method is comparing the desired company to other 

comparable companies. Both these methods rely on the idea that financial data, combined with 

market data, carry essential information about the value of a firm (Hong & Wu, 2016). Stock 

returns are thus related to capital investment, earnings yield, growth opportunities, and changes 

in profitability, as well as changes to the discount rate used for discounting further cash flows 

(Chen & Zhang, 2007). The importance of financial data on longer-term stock returns has been 

empirically proven through extensive research (Hong & Wu, 2016).  

 

Ou and Penman (1998) use annual statements from the industrial, utility, and financial stocks 

trading on NYSE and AMEX from 1965-1972 to estimate yearly predictions for the period 

1973-1983. Muhammad (2018) uses on his side 115 non-financial companies trading on the 

Karachi Stock Exchange to study the relationship between fundamental data and stock returns. 
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Both studies show that fundamental analysis has predictive power regarding stock returns using 

historical accounting data from financial statements. Abarbanell and Bushee (1998) use data 

from NYSE from 1974-1993 and both the relative change and the absolute value of financial 

ratios to predict returns and select portfolios. The results of this approach were a portfolio that 

earned an average 12-month cumulative size-adjusted abnormal return of 13.2 percent, 

indicating that fundamental signals combined with absolute financial ratios from accounting 

data can be used to predict abnormal returns. Furthermore, Abarbanell and Bushee argue that 

their findings insinuate that abnormal stock returns can be achieved using fundamental analysis 

and fundamental signals (Abarbanell & Bushee, 1998) 

 

San and Hancock (2012) study the relationship between accounting data, macroeconomic data, 

and forecasted returns. Over the period 1990-2000, financial statements and macroeconomic 

data from 33 countries were analyzed, providing similar results as mentioned above. However, 

the paper discovers differences in the long- and short-term stock return predictions, highlighting 

the long-term effect of macroeconomic changes on stock prices. Contributing to this topic, 

Bertuah & Sakti (2019) argue that using a combination of financial performance and 

macroeconomic factors influences long-term stock returns. Moreover, studies show that 

macroeconomic factors correlate with stock returns, with varying impacts (Flannery, 

Protopapadakis, & Notes, 2002) (Tangjitprom, 2012). In recent decades, macroeconomics and 

economic factors have been significant variables for mid-to-long-term movements in stock 

prices. Industrial production, national output, long-term interest rates, exchange rates, and 

inflation have proven to be important factors and variables (Peiró, 2016) (Mahmood & Dinniah, 

2007).  

 

3.1.1 Stock Price Prediction Using Machine Learning 

Eakins & Stansell (2003) suggest that stock price forecasting using a neural network model and 

ratios from fundamental analysis yields outperforming returns. Using financial data for all 

stocks listed on Compustat from 1975 to 1996, filtering out small and highly volatile stocks, 

their model outperformed the S&P 500 index and Dow Jones Industrials by 5.7% and 5.6%, 

respectively, over the 20 years. Similarly, Huang, Capretz, & Ho (2019) utilized machine 

learning and neural networks to predict stock returns. Utilizing quarterly data from Q1 1996 to 

Q4 2017 for 70 stocks from the S&P 100 index, they construct monthly “Buy” and “Sell” 

portfolios using financial ratios. The period Q1 1996 to Q2 2013 was used as training data while 

testing the model on the remaining data. The results show that the model excellently separates 
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winners and losers, thus selecting portfolios outperforming the benchmark index in the test 

period.  

 

Namdari and Li (2018) compare technical and fundamental analysis in a machine learning 

context. They explore data consisting of 12 selected financial ratios and stock prices of 578 

technology companies on NASDAQ in the period 2012-06 to 2017-02. Two separate models 

were created to compare the two approaches to predict stock returns. The first model uses a 

fundamental approach utilizing the 12 financial ratios, while the second model uses technical 

signs from historical prices for the same companies. The results show that the model based on 

fundamental analysis outperforms the alternative model (Namdari & Li, 2018).  

 

3.2 Covariance Prediction  

Forecasting volatility has been interesting for researchers within finance for a long time 

(Trucíos, Zevallos, Hotta, & Santos, 2019). One of the most popular approaches to covariance 

prediction is multivariate GARCH models. However, studies show that the results of 

multivariate GARCH models perform poorly when handling large portfolios (Engle, Ledoit, & 

Wolf, 2017). Machine learning is an alternative to the common econometric approaches. 

Research shows that machine learning can outperform econometric models. The most 

prominent advantages of machine learning are offering a more generalized approach than 

standard statistical models (Altman, Bzdok, & Krzywinski, 2018) (Makridakis, Spiliotis, & 

Assimakopoulos, 2018).  

 

Prediction of covariance matrices is still challenging. First, one of the cornerstones of 

multivariate volatility modeling is that the predicted covariance matrices must be positive 

definite (Chiriac & Voev, 2011). Second, to limit computational challenges and limit the 

inflation of the number of estimated parameters, the model dynamics are often limited due to 

the imposition of parameter restrictions (Fiszeder & Orzeszko, 2021). To cope with these 

challenges, predicting Cholesky factors decomposed from covariance matrices is renowned for 

being one of the most recognized solutions (Andersen, Bollerslev, Diebold, & Labys, 2003) 

(Chiriac & Voev, 2011). 
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3.2.1 Covariance Prediction Using Machine Learning 

In the context of portfolio optimization, the literature on covariance prediction using machine 

learning is limited. Cai, Xianggao, Lai, and Lin (2013) and Bucci (2020) attempt to use a neural 

network approach to forecast covariance. Both papers utilize Cholesky decomposition of the 

covariance matrix to predict the covariances and obtain promising results. Based on the results 

from the two cited papers, Fiszeder, Orzeszko, & Witold (2021) apply Support Vector Machines 

to predict range-based covariance matrices of returns from the currency pairs EUR/USD, 

USD/JPY, and GBP/USD in the foreign exchange market. Once again, the Cholesky 

decomposition was used to ensure the positive definiteness of the predicted covariance 

matrices. The results show that machine learning can provide more accurate predictions than 

benchmark models like GARCH-X or DCC GARCH (Dynamic Conditional Correlation) 

(Fiszeder & Orzeszko, 2021). 

 

3.3 Non-linearity of Financial Time-series 

The empirical properties of financial time series are extensively discussed in economic 

literature. An incomplete list involves the autocorrelation of returns, volatility clustering, 

leverage effects, dependencies between assets, and distribution characteristics, such as fat tails, 

leptokurtosis, and asymmetry (Fiszeder & Orzeszko, 2021) (Tsay, 2005). Moreover, there is an 

empirical joint understanding that financial markets can be nonlinear. Examples include energy 

futures (Mariano, 2007), emerging stock markets (Kian-Ping, Brooks, & Hinich, 2008), 

currency markets (Sadique, 2011), and equity portfolios (Wey, 2018). Most machine learning 

algorithms do not presume linearities in the prediction and are thus known to perform well in 

predicting financial time series.  

 

3.4 Assumptions Made by Markowitz 

One of the most fundamental assumptions of the mean-variance model by Markowitz (1952) is 

that security returns follow a joint-Gaussian distribution. Following this assumption, asset 

returns are assumed to be multivariate normal distributed. Furthermore, the assumption 

implicates that mean security return and mean associated variance are reliable estimates for the 

future asset return and asset variance. However, empirical studies have exposed asymmetries 

in the distribution of financial returns (Sleire, et al., 2021). Asymmetric financial return 

distributions suffer from characteristics such as positive excess kurtosis and skewness (Blanca, 

Arnau, López-Montiel, Bono, & Bendayan, 2013). This means that substantial negative returns, 
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which occur in very bearish markets like a recession, are more strongly correlated than returns 

are in a bullish market. Such a mechanism diminishes the diversification effect when it is 

needed the most. Therefore, when utilizing historical returns samples to determine expected 

returns and the associated covariance matrix, the likelihood of estimation error increases (Low, 

Faff, & Aas, 2016).  

 

Markowitz excludes short selling of shares in his paper on modern portfolio theory (Markowitz, 

1952). As such, the weights in the portfolio must be non-negative. Short selling involves selling 

shares of a stock that are borrowed in anticipation of a decline in the price of said stock. If the 

price declines, the investor, who is short in said stock, purchases back the borrowed shares at a 

new lower price and returns the borrowed shares to the lender (Lee & Lee, 2020). Black, Jensen, 

and Scholes (1972) modify the mean-variance portfolio model from Markowitz, allowing for 

short-selling of shares and negative weights in the portfolio. Consequently, allowing the 

weights in the portfolio to be negative enables the portfolio to exploit stocks with both positive 

and negative returns. Further, a portfolio with the opportunity to short sell shares is also 

positioned to exploit covariances between the returns on a broader range (Black, Jensen, & 

Scholes, 1972). The relaxation of the short-selling constraint in the efficient frontier model from 

Markowitz allows for potentially higher Sharpe ratios. 
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4. Methodology 

Before we elaborate on the Thesis Model, we will introduce the most fundamental 

methodologies in this thesis. One of the most central aspects is machine learning.  

Consequently, we provide a systematic explanation of the theoretical framework on this topic. 

In detail, we present a thorough description of tree-based machine learning algorithms, 

including one of the most common tree-algorithms, XGBoost. Another imperative part of this 

thesis is portfolio optimization using matrix algebra. Accordingly, we present the details of the 

portfolio optimization framework and its structural prerequisites in the context of maximizing 

the Sharpe ratio. Finally, we present the bias-variance tradeoff and times series cross-validation 

theory.  

  

4.1 Machine Learning Algorithms  

Machine Learning (ML) methods are algorithms that can learn a specific task without being 

explicitly programmed. Coming from artificial intelligence, ML systems learn or improve on 

an automated task through experience (Jordan & Mitchell, 2015). More formally, Tom Michell 

(1997) provides a concise definition of machine learning algorithms, consisting of the factors 

experience, task, and performance.   

 

“A computer program is said to learn from experience 𝐸 with respect to some class of tasks 𝑇 

and performance measure 𝑃, if its performance at tasks in 𝑇, as measured by 𝑃, improves 

with experience 𝐸.” 

- Tom Michell (1997) 

 

4.1.1 The Task – T 

Machine learning tasks conceptualize the method of processing the data provided (Goodfellow, 

Bengio, & Courville, 2016). The adequate method depends on the specific question or problem 

and the available data in each instance. As such, the task of the machine learning algorithm is 

not the process of learning itself but rather the technique used for learning. There are numerous 

tasks associated with machine learning models. However, there are two common categories. 

These are classification and regression. In this thesis, we enable a regression approach to predict 

stock returns.  
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4.1.2 The Performance Measure – P  

There are several measures of performance to assess the capabilities of a machine learning 

algorithm (Goodfellow, Bengio, & Courville, 2016). These measures are used to evaluate the 

results from the machine learning algorithm. The measure of use varies with the task of 

learning. Regardless of the performance measure, it is essential to study how the machine 

learning algorithm performs on unseen data when determining its performance. Otherwise, the 

results will come out as biased. Hence, when evaluating the performance of the algorithm, it is 

imperative to use a test set of the data separate from the data used to train the algorithm 

(Goodfellow, Bengio, & Courville, 2016). We elaborate on the performance measures we use 

in this thesis in section 4.3.  

 

4.1.3 The Experience - E  

Put simply, experience involves how the learning process unfolds and how the algorithm 

experiences the data applied during the learning process. Typically, a machine-learning 

algorithm is classified according to three broad learning approaches: unsupervised learning, 

reinforced learning, and supervised learning (Goodfellow, Bengio, & Courville, 2016). See 

figure 4 for illustration. In this thesis, we apply supervised learning. Still, to complete the 

methodical framework, we present all three approaches.   

 
Figure 4, Machine learning experiences 
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Supervised Learning 

The most common machine learning algorithms enable supervised learning methods (Jordan & 

Mitchell, 2015). Supervised learning algorithms exploit a traditional data structure with a series 

of inputs or explanatory variables,  𝑥1, 𝑥2, 𝑥3 … 𝑥𝑛 and a sequence of corresponding outputs, or 

response variables, 𝑦1, 𝑦2, 𝑦3 … 𝑦𝑛. The algorithm is trained on a set of predictors (𝑥) with an 

associated response variable (𝑦). The concept of supervised learning is that the algorithm shall 

learn to extrapolate the response to data to be able to produce the correct output, given a new 

input (Ghahramani, 2004). The output is either a class label, classification, or a numeric 

regression (Goodfellow, Bengio, & Courville, 2016).  

 

Unsupervised Learning 

In the occurrence of unlabeled data where a response variable is missing, supervised learning 

algorithms are not applicable (Jordan & Mitchell, 2015). In the presence of such data, there are 

methods to analyze the structural property or clustering hidden in the collection of unlabeled 

data points (Sutton & Barto, 1998). This is described as unsupervised learning (Ghahramani, 

2004) (Goodfellow, Bengio, & Courville, 2016). In broad terms, unsupervised learning 

discovers patterns in data points with no pre-existing labels. (Hinton & Sejnowski, 1999). As 

such, unsupervised learning enables classification without a clear idea of the basis of the 

classification. Instead, the data points are organized into groups that are not previously defined, 

with the intention that the unsupervised learning algorithms discover these groups (Angarita-

Zapata, Alonso-Vicario, Masegosa, & Legarda, 2021). 

 

Reinforced Learning  

The third approach to the machine-learning paradigm is reinforcement learning (Jordan & 

Mitchell, 2015). In contrast to the former approaches, unsupervised learning algorithms do not 

experience a fixed dataset. These algorithms operate in an interactive environment where a 

feedback loop enables them to learn from their previous actions by trial and error through a 

reward/punishment structure. Instead of training the model to indicate the correct output for a 

given input, reinforced learning algorithms are trained to discover which actions return the 

highest reward. In essence, the goal of reinforced learning is not to determine hidden patterns 

in the data structure but rather to maximize the reward signal from its predictions (Sutton & 

Barto, 1998). 
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4.1.4 Decision Trees 

Some of the most prominent machine learning algorithms apply tree-based methods (Rokach 

& Maimon, 2014). A basic approach to tree models involves partitioning the predictor space 

into several simple regions. The segmentation is based on hierarchal splitting rules specified to 

each model. Accordingly, it is common to summarize the splitting rules in a tree structure. 

Hence, tree models are described as decision tree methods (James, Witten, Hastie, & Tibshirani, 

2013). Below, we present a general approach to the tree algorithm.  

 

Algorithm (1.1): Decision trees 

1 Consider the entire predictor space 

2 Choose the predictor 𝑋𝑗 and the cutpoint 𝑠 that splits 𝑋 into two pieces  

𝑅1(𝑗, 𝑠) = {𝑋|𝑋𝑗 < 𝑠} and 𝑅2(𝑗, 𝑠) = {𝑋|𝑋𝑗 ≥ 𝑠} 

by minimizing  

𝑅𝑆𝑆 = ∑(𝑦𝑖 − 𝑦̂𝑖

𝑛

𝑖=1

)2   

3 Repeat for each new region until the convergence criteriums are met  

 

Small decision trees are known to be easy to interpret. However, for large datasets, they do not 

provide effective prediction schemes (Yom-Tov, 2004). As the size of the datasets increase, 

decision trees become harder to interpret. Furthermore, another drawback of decision trees is 

their relative sensitivity to noise, especially if the training data size is small. Subsequently, 

decision trees often suffer from high variance, meaning that minor changes in the training data 

cause drastically different results. Consequently, decision trees tend to perform poorly on out-

of-sample predictions (Yom-Tov, 2004).  

 

4.1.5 Ensemble Methods 

There are ways to alienate the drawbacks of decision trees. By combining several decision trees, 

using ensemble methods, the variance and predictive performance of trees can substantially 

improve (James, Witten, Hastie, & Tibshirani, 2013). Ensemble methods combine predictions 

from different models to produce more reliable estimates. Many ensemble methods exist. 

However, there are mainly two methods recognized as the standard (Zhang & Ma, 2012). 
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One way to reduce the potential high variance problem of decision trees is bootstrapped 

aggregation, or bagging (James, Witten, Hastie, & Tibshirani, 2013). A general statistic 

approach assumes 𝑛 independent observations 𝑥1 … 𝑥𝑛 to have variance 𝜎2. As such, the 

variance of the mean becomes 
𝜎2

𝑛
, meaning that averaging observations reduces the variance. 

The same concept can be applied to statistical learning methods such as decision trees. 

However, instead of creating several training sets from the total population, the training set is 

bootstrapped into 𝐵 different training sets. Then, the decision tree is applied to each training set 

to obtain the predictions 𝑓∗𝑏 (𝑥). Lastly, after training the model on all 𝐵 training sets, the mean 

of the predictions is computed. We present a generalized objective function for bagging in 

equation 4.1.  

𝑓𝑏𝑎𝑔(𝑥) =
1

𝐵
∑ 𝑓𝑏(𝑥)

𝐵

𝑏=1

(4.1) 

Another ensemble method is boosting. Tree boosting is a popular and highly effective ensemble 

method (Chen & Guestrin, 2016). Similar to bagging, boosting is a general approach that can 

be applied to most statistical learning methods. However, whereas bagging relies on 

bootstrapped training data samples, boosting applies the concept of sequentially growing. This 

means that each tree is grown on an adapted training data set, modified based on the ability of 

previous trees to predict the different outcomes. Thus, when the model returns incorrect 

predictions, the misclassified samples are assigned larger weights for the next tree. Meanwhile, 

the samples that are correctly classified are assigned lower weights. Below we present a 

generalized boosting algorithm formulated by James, Witten, Hastie, & Tibshirani (2013).  
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Algorithm 1.2: Decision tree boosting 

1. Set 𝑓(𝑥) =  0 and 𝑟𝑖 = 𝑦𝑖, for ∀𝑖 ∈ 1 … 𝑁 

2. For ∀𝑏 ∈ 1 … 𝐵 

a. Fit a tree 𝑓𝑏  with 𝑑 splits (𝑑 + 1 terminal nodes) to the training data (𝑋, 𝑟) 

b. Update 𝑓 by adding a shrunken version of the new tree: 

𝑓(x) ← 𝑓(𝑥) + 𝜆𝑓(𝑥) 

c. Update the residuals  

𝑟𝑖 ← 𝑟𝑖 + 𝜆𝑓𝑏(𝑥𝑖) 

3. Ultimately, the output of the boosted model is,  

𝑓(x) =  ∑ 𝜆𝑓𝑏(𝑥)

𝐵

𝑏=1

 

𝐵 is the number of trees, 𝜆 is the shrinkage parameter controlling the learning rate of the 

algorithm, whereas 𝑑 is the number of splits.  

 

One extension of boosting is called gradient boosting. Gradient boosting follows the same 

approach of sequentially adding trees based on previous performance. However, instead of 

assigning weights based on the previous classification, gradient boosting adjusts the weights 

using gradients (Friedman J. , 2001). Hence, gradient boosting aims to minimize the loss 

function in the model by consecutively adding trees applying a Gradient Descent algorithm 

when adding the new trees (Friedman, Hastie, & Tibshirani, 2000). As such, the new trees are 

constructed to be maximally correlated with the negative gradient of the loss function, creating 

a more generalized approach, expanding the opportunity set of boosting.  

  

4.1.6 XGBoost 

One instance of gradient boosting is extreme gradient boosting, or XGBoost. The method was 

first introduced by Chen and Guestrin (2016) and has become one of the most popular 

approaches to machine learning. XGBoost is renowned for efficacy, computational speed, and 

model performance and is one of the best performing algorithms in supervised learning (Chen 

& Guestrin, 2016) (Osman, Ahmed, Chow, Huang, & El-Shafie, 2012). Moreover, XGBoost is 

a highly adaptive method that carefully accounts for the bias-variance tradeoff in almost every 

aspect of the learning process (Nielsen, 2016) 
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The main idea of XGBoost is to continuously add weak learners, in the form of new trees, with 

different weights to a set of regression trees. Each additional tree attempts to resemble the 

previous predictions residuals (Zhang, Bian, Qu, Tuo, & Wang, 2021). For the data set 

provided, with 𝑛 observations and 𝑚 features, XGBoost aims to predict the output: 

 

𝑦̂𝑖 =  𝜙(𝑥𝑖) =  ∑ 𝑓𝑘(𝑥𝑖),   𝑓𝑘 ∈ 𝐹

𝐾

𝑘=1

 (4.2) 

 

Here, 𝑦̂𝑖 express the predicted value. 𝐹 represents the space of regression trees in the model, 

while 𝐾 is the number of regression trees. Hence, 𝑓𝑘 corresponds to a tree regression with an 

independent tree structure and leaf weights. In the process of learning, XGBoost aspires to 

minimize the following regularized objective function:  

 

(𝑋) 𝑂𝑏𝑗(𝜙) =  ∑ 𝑙(𝑦̂𝑖
𝑡 , 𝑦𝑖)

𝑛

𝑖=1 

+ ∑ Ω(𝑓𝑘)

𝐾

𝑘=1

 (4.3) 

where Ω(𝑓𝑘) = 𝛾𝑇 +
1

2
𝜆‖𝑤‖2 (4.4) 

 

In the objective function, 𝑙(𝑦𝑖 , 𝑦̂𝑖
𝑡) represents the loss function measuring the difference 

between the prediction and the observed value 𝑦𝑖. This can be any loss function as long as it is 

second-order derivable (Chen & Guestrin, 2016). The second term in the objective function Ω, 

represents the regularization part of the algorithm and penalizes complexity in the model. As 

such, a lower value of Ω(𝑓𝑘), indicates a generalization ability.  

 

Although XGBoost resembles a standard gradient boosting algorithm, there are differences, 

some more prominent than others. One crucial distinction is the use, and computation, of 

second-order gradients. As mentioned in section 4.1.5, gradient boosting applies a Gradient 

Descent to minimize the loss function of the mode. In contrast, XGBoost uses the second-order 

derivative as an approximation. This provides more precise information about the direction of 

the gradients, and thus better prerequisites to obtain the minimum of the loss function (Chen & 

Guestrin, 2016). Another superiority of XGBoost is the advanced regularization captured by 

Ω(𝑓𝑘). XGBoost has a built-in L1 (Lasso Regression) and L2 (Ridge Regression) 

regularization, which improves model generalization while smoothing the final learned weights 
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to avoid over-fitting and to handle the bias-variance trade-off. We describe the trade-off in 

section 4.3.1. Lastly, XGBoost is sparsity aware, meaning it handles sparsities, or missing data, 

by only considering non-missing observations when making a prediction. Furthermore, the 

algorithm maintains a tree structure model. Thus, normalized data is not a requirement (Chen 

& Guestrin, 2016).  

 

4.2 Portfolio Optimization 

In this thesis, we construct portfolios by maximizing the expected Sharpe ratio. To do this, we 

apply a matrix multiplication method presented by Eric Zivot (2013). This method requires 

short selling shares to be allowed. As such, we allow short selling of shares in the portfolio 

optimization process. Below, we explain the mathematical formulations associated with the 

matrix multiplication method.  

 

From section 2, we know that the expected return of a portfolio 𝑃 with 𝑛 assets is 

𝜇𝑃̂ = 𝑤1 ⋅ 𝜇1̂ + 𝑤2 ⋅ 𝜇2̂ … 𝑤𝑛 ⋅ 𝜇𝑛̂ =  ∑ 𝑢𝑖𝑤𝑖

𝑛

𝑖=1

 (4.5) 

Moreover over, the variance of the same portfolio is 

 

 𝜎𝑃
2 = ∑ ∑ 𝑤𝑖𝑤𝑗𝐶𝑜𝑣𝑖𝑗 

𝑛

𝑗=1

𝑛

𝑖=1

= ∑ ∑ 𝑤𝑖𝑤𝑗𝜎𝑖𝜎𝑗𝜌𝑖𝑗

𝑛

𝑗=1

 

𝑛

𝑖=1

(4.6) 

 

When handling portfolios consisting of many assets, the algebra of embodying portfolio 

variances and expected returns becomes heavy. However, many of the computations can be 

significantly simplified by using matrix algebra (Zivot, 2013). The expected return of 𝑛 assets 

in a portfolio and the related weights can be rewritten as:  

𝜇𝑛 = (

𝑢1

⋮
𝑢𝑛

) , 𝑤𝑛 = (

𝑤1

⋮
𝑤𝑛

) (4.7) 

 

Furthermore, the covariance and variance of the 𝑛 assets in the portfolio can be illustrated by 

the 𝑛 ∗ 𝑛 matrix ∑ 

∑ = [

𝜎11 ⋯ 𝜎1𝑛

⋮ ⋱ ⋮
𝜎𝑛1 ⋯ 𝜎𝑛𝑛

] (4.8) 
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With these simplifications in mind, the expression of expected portfolio return and covariance 

can be reformulated to matrix notation as we illustrate below: 

 

𝜇𝑃̂ = ∑ 𝑢𝑖𝑤𝑖

𝑛

𝑖=1

= (𝜇1 ⋯ 𝜇𝑛) × (

𝑤1

⋮
𝑤𝑛

)  = 𝑢𝑇𝑤 (4.9) 

 

 𝜎𝑃
2 = ∑ ∑ 𝑤𝑖𝑤𝑗𝐶𝑜𝑣𝑖𝑗 

𝑛

𝑗=1

𝑛

𝑖=1

=  (𝑤1 ⋯ 𝑤𝑛) × [

𝜎11 ⋯ 𝜎1𝑛

⋮ ⋱ ⋮
𝜎𝑛1 ⋯ 𝜎𝑛𝑛

] × (

𝑤1

⋮
𝑤𝑛

) = 𝑤𝑇∑𝑤 (4.10) 

Subsequently, the maximation of the Sharpe ratio can be reformulated as a maximation problem 

where the ratio is maximized by determining the optimal composition of weights.  

 

𝑀𝑎𝑥
𝑤

 
𝑤′𝜇 − 𝑟𝑓

(𝑤′∑𝑤)
1
2

=
𝜇𝑃 − 𝑟𝑓

𝜎𝑃
, 𝑠. 𝑡 𝑤′1 = 1 (4.11) 

 

Further, solving the Sharpe ratio maximation problem has the following Lagrangian:  

𝐿(t, 𝜆) = (w′𝜇 − 𝑟𝑓)(w′∑w)− 
1
2 + 𝜆(w′1 − 1) (4.12)  

 

As such, after applying the chain rule, the first-order conditions are 

 

𝜕𝐿(w, 𝜆)

𝜕w
= 𝜇(w′∑t)− 

1
2 − (w′𝜇 − 𝑟𝑓)(w′∑t)− 

3
2 ⋅ ∑w + 𝜆1 = 0 (4.13) 

𝜕𝐿(𝑤, 𝜆)

𝜕𝜆
= w′1 − 1 = 0 (4.14) 

 

Conclusively, after some tiresome algebra, we can express the weights 𝑤 of the tangency 

portfolio as follows in equation 4.12 below. 

𝑤𝑀𝑎𝑥 𝑆ℎ𝑎𝑟𝑝𝑒 =
∑ (𝜇 − 𝑟𝑓 ⋅ 1)−1

1T ∑ (𝜇 − 𝑟𝑓 ⋅ 1)−1
 (4.15) 

 

Note that if the maximation problem would include no short selling of shares, the optimization 

problem could be written as equation 4.11 plus an inequality constraint 𝑤𝑖 ≥  0, 𝑖=1, … , 𝑁. 

However, the inequality constraint prevents the use of Lagrange multipliers to obtain an optimal 

solution, and therefore, matrix algebra (Zivot, 2013).  
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4.2.1 Positive Definiteness in Covariance  

One necessity for portfolio optimization using matrix multiplication is positive definite 

covariance matrices. This is an apparent challenge in multivariate volatility modeling of 

covariance matrices (Chiriac & Voev, 2011). A matrix is positive definite if the eigenvalues in 

the matrix are strictly positive. In algebraic terms, a 𝑛 ∗ 𝑛 matrix 𝑉, is positive definite if 𝑥′𝑉𝑥 

is strictly positive for any non-zero vector 𝑥. Positive definiteness permits economy and 

numerical stability in the solution of linear systems (Higham, 1988). Subsequently, one of the 

prerequisites of Sharpe ratio optimization using matrix algebra, is thus, that the covariance 

matrix is positive definite (Kwan & Clarence, 2010).   

 

A positive definite matrix is invertible. Correspondingly, the inverted matrix, 𝑉−1, is also 

positive definite. The implications of a non-positive definite covariance matrix for the 

optimization problem in equation 4.11 are essential. Without a positive definite covariance 

matrix, equation 4.12 will not provide a minimum of the Lagrangian. As such, the weights from 

the optimization problem will provide a portfolio different from the portfolio that maximizes 

the Sharpe ratio. Thus, we must ensure positive definite matrixes when performing portfolio 

optimization.  

 

Covariance matrix predictions from a forecasting model are not guaranteed to be positive 

definite (Fiszeder & Orzeszko, 2021). One way to ensure positive definiteness is to use 

Cholesky decomposition and predict Cholesky factors instead of predicting each element in the 

covariance matrix. This method was suggested by Andersen, Bollerslev, Diebold, and Labys 

(2003) and later implemented in machine learning by Fiszeder and Orzeszko (2021). Cholesky 

decomposition, or Cholesky factorization, maps a 𝑛 ∗ 𝑛 positive definite matrix 𝐴 to the product 

of 𝐴𝑡 = 𝐾𝑡𝐾𝑡
′ (𝑡 = 1,2, … 𝑇) . Here, 𝐾𝑡 is the lower triangular matrix and 𝐾𝑡

′ is the conjugate 

transpose. As such, the Cholesky factors 𝐾𝑡 can be interpreted as the square root of 𝐴, 

emphasizing the requirement of non-negative eigenvalues to enable Cholesky decomposition. 

We illustrate Cholesky decomposition in equation 4.16.  

 

(
𝐴11 𝐴12 𝐴13

𝐴21 𝐴22 𝐴23

𝐴31 𝐴32 𝐴33

) = (
𝐾11 0 0
𝐾21 𝐾22 0
𝐾31 𝐾32 𝐾33

) ∗ (

𝐾11 𝐾12 𝐾13

0 𝐾22 𝐾23

0 0 𝐾33

) (4.16) 

 

 



Methodology   29 

In a covariance matrix context, this means the following 

 

(

𝜎1
2 𝜎1𝜎2 𝜎1𝜎3

𝜎1𝜎2 𝜎2
2 𝜎2𝜎3

𝜎1𝜎3 𝜎2𝜎3 𝜎3
2

) = (

𝐾11 0 0
𝐾21 𝐾22 0
𝐾31 𝐾32 𝐾33

) ∗ (

𝐾11 𝐾12 𝐾13

0 𝐾22 𝐾23

0 0 𝐾33

) (4.17) 

 

The prediction of Cholesky factors ensures the final covariance matrix to be positive definite 

without imposing any restrictions on the predicted values. Consequently, this thesis enables 

Cholesky decomposition proposed by Andersen, Bollerslev, Diebold, and Labys (2003) when 

predicting covariance matrices.  

 

4.3 Model Performance 

Different statistical learning models perform differently on different data sets. Uncovering the 

best model for a given data set is essential for accurate predictions. Hence, it is crucial to assess 

the model performance of a statistical learning model in any prediction attempt. However, 

selecting the best model is one of the utmost challenging parts of performing statistical learning 

in practice (James, Witten, Hastie, & Tibshirani, 2013). 

 

A common way of assessing model performance is by measuring the accuracy of predictions. 

When applying a statistical model to a previously unseen test set, the measured accuracy is 

referred to as testing error. We can distinguish between the past testing error and the future 

testing error. It is not interesting to focus on how a statistical model would have performed in 

the past, but rather how well the model will perform in the future (James, Witten, Hastie, & 

Tibshirani, 2013). 

 

4.3.1 Bias-variance Trade-off  

Mean squared error (MSE) is a frequently used method for quantifying the extent to which the 

predicted value is close to the true value (James, Witten, Hastie, & Tibshirani, 2013). MSE is 

given by: 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑓(𝑥𝑖))

2
𝑛

𝑖=1

(4.18) 

 

where 𝑦 is the true value, and 𝑓 is an estimated function for the predicted value 𝑥. The expected 

test MSE for any given value 𝑥0 is composed as the sum of three elemental magnitudes: the 
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variance of 𝑓(𝑥0), the squared bias of 𝑓(𝑥0) and the variance of the error term 𝜀 (James, Witten, 

Hastie, & Tibshirani, 2013). Therefore, we can write the expected test MSE as: 

 

𝐸(𝑀𝑆𝐸) = 𝐸 (𝑦0 − 𝑓(𝑥0))
2

= 𝑉𝑎𝑟 (𝑓(𝑥0)) + [𝐵𝑖𝑎𝑠 (𝑓(𝑥0))]
2

+ 𝑉𝑎𝑟(𝜖) (4.19) 

 

𝐸(𝑀𝑆𝐸) is the average test MSE, obtained if 𝑓 was repetitively estimated using many training 

sets, before testing each 𝑓 at 𝑥0. To minimize the expected test error, we must choose a 

statistical learning model that simultaneously accomplishes low bias and low variance. This is 

often referred to as finding the optimal bias-variance trade-off. Note that the variance of the 

error term 𝜖 is irreducible and is thus unalterable and represents the minimum expected MSE 

(James, Witten, Hastie, & Tibshirani, 2013).  

 

The variance of a statistical learning model refers to the amount 𝑓 would change if it was 

estimated using different training sets. As 𝑓 is fitted on the training set, separate training sets 

will result in separate 𝑓. Preferably the estimated function does not vary excessively between 

training sets. Nevertheless, if a statistical learning model has high variance, 𝑓 is sensitive to 

small fluctuations in the training set. A high variance may result from the statistical learning 

method modeling the random noise in the training data. This is referred to as overfitting (James, 

Witten, Hastie, & Tibshirani, 2013). Furthermore, James, Witten, Hastie, and Tibshirani (2013) 

define bias as the error caused by approximating a complicated problem with a simpler 

statistical model. High bias can cause a statistical model to overlook relevant relations between 

predictors and predictions. Consequently, the model cannot capture the variability in the 

training data. This phenomenon is referred to as underfitting (Aalst, et al., 2008). 

 

4.3.2 Thesis Performance Measures  

To evaluate the performance of the prediction models in this thesis, we deploy two performance 

measures: RMSE and MAPE. To provide more intuitive power, MSE can be rooted. By doing 

so, the error rate, called root-mean-squared-error (RMSE), is in the same unit as the true values 

the model is trying to estimate. The formula for RMSE is: 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑓(𝑥𝑖))

2
𝑛

𝑖=1

 (4.20) 
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However, MSE, and thus RMSE, are scale-dependent error rates and can therefore not be used 

for comparisons across different statistical models (Hyndman & Athanasopoulos, 2018). In 

contrast, mean-absolute-percentage-error (MAPE) is not scale dependent and can therefore be 

used to compare statistical performance across different statistical models. In equation 4.21, we 

show the MAPE formula. 

𝑀𝐴𝑃𝐸 =
1

𝑛
 ∑ |

𝑦𝑖 − 𝑓(𝑥𝑖)

𝑦𝑖
|

𝑛

𝑖=1

 (4.21) 

 

 

4.3.3 Time Series Cross-validation 

For most real-life prediction problems, the true 𝑓 is not observable. This opposes an issue when 

computing the future test error, which, as mentioned earlier, is the desirable test error. Thus, an 

alternative approach must be chosen to unfailingly estimate the test error (James, Witten, 

Hastie, & Tibshirani, 2013).  

 

Different techniques exist to overcome the obstacle mentioned above. Due to its simplicity and 

universality, a commonly used method is cross-validation (Arlot & Celisse, 2010). Cross-

validation strives to reliably estimate the test error by designating a subset of the training 

observations to be held out from the fitting process, called the training process. The fitted 

(trained) model is then applied to the designated observations held out of the original training 

process. Such approaches try to simulate the situation where a statistical model is used on 

previously unseen future observations to measure the accuracy of the model. Hence, cross-

validation is used to estimate the future test error (James, Witten, Hastie, & Tibshirani, 2013). 

However, although cross-validation strives to estimate the future test error, this does not 

automatically result in a reliable estimate. We can illustrate this with a simple example.  

 

Consider the following function for the true values for observations 𝑥1, 𝑥2 … 𝑥𝑛: 

 

𝑌𝑖 = 𝑓(𝑥𝑖) = 𝑥𝑖
2 (4.22) 

 

If a statistical method estimates 𝑓(𝑥𝑖) = 𝑥𝑖, the test error for a test set consisting of cross-

validation using only one observation 𝑥1 = 1 will be 𝐸(𝑀𝑆𝐸) = 0. Because 𝑥𝑖
2 ≠ 𝑥𝑖 for all 
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values 𝑥 > 1, the test error estimate of 𝐸(𝑀𝑆𝐸) = 0 is not a reliable estimate. This is a 

consequence of a very small test set. As such, cross-validation does not automatically result in  

a reliable estimate. 

 

k-fold cross-validation is a version of cross-validation involving splitting the set of observations 

into k folds or groups (James, Witten, Hastie, & Tibshirani, 2013). Time series k-fold cross-

validation splits a data set into a training set and a test set, with a time used as a divider 

(Hyndman & Athanasopoulos, 2018). We illustrate a time series 5-fold cross-validation in 

figure 5.  

 

 
Figure 5, Time-Series 5-fold Cross-Validation 

From figure 5, we can see that the data is split into a training and a test set in each fold. None 

of the test sets overlap and are located after the training sets timewise. Next, the standard cross-

validation method is then applied to each fold. The training sets are used to fit, or train, the 

statistical model before the fitted model, is applied to the associated test set. Model performance 

is then assessed by measuring accuracy on each fold and averaging the test error (James, Witten, 

Hastie, & Tibshirani, 2013).  

 

By utilizing time-series k-fold cross-validation with 5 < 𝑘 < 10 we can achieve the simulated 

effect of previously unseen test data as with other cross-validation methods. At the same time, 
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a more optimal bias-variance trade-off is obtained. Using k-fold cross-validation reduces the 

estimated test error rate variation compared to the standard cross-validation. With k-fold cross-

validation, the estimated test error is less dependent on which observations are contained in the 

training set and which observations are included in the test set. In other words, the k-fold 

approach shrinks the bias of the estimate. Further, k-fold cross-validation reduces variance as 

noise in the data set has a higher chance of being categorized as noise and left out of the 

statistical prediction model. This is because the approach applies multiple training and test sets 

(James, Witten, Hastie, & Tibshirani, 2013). 
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5. Data and Modeling 

We classify the data we use into two groups: (1) non-company-specific data, and (2) company-

specific data. The company-specific is divided into two sub-categories: Stock prices and 

Accounting data. Likewise, we divide non-company-specific data into Macroeconomic data 

and Economic variables. The structure of the data set is summarized in figure 6.  

 

 
Figure 6, Data set overview 

The foundation of the data selection has been laid out in the literature review. We recall that 

fundamental data is assumed to impact stock prices, and therefore stock returns. Moreover, we 

argue that the non-company-specific data not only impact stock returns but can also predict 

stock return covariances directly. As such, we believe that the four components shown in figure 

6 could provide reliable predictive power in a portfolio selection context.  

 

We collect the data from numerous sources. The data is either observed quarterly or adjusted 

and converted into quarterly data. Furthermore, we create two separate prediction models, one 

for covariance prediction and one for prediction of expected return. For both models, the 

response variables are observed from Q2 2000 to Q3 2021. In contrast, the explanatory variables 

are observed from Q1 2000 to Q2 2021. That way, the explanatory variables lag one quarter, 

and we train the models using the response variables at time 𝑡 and the corresponding 

explanatory variables at time 𝑡 −  1.   

 

Company-Specific Data  

This thesis focuses on stocks listed on Oslo Stock Exchange (OSE). Consequently, we collect 

the company-specific data through Refinitive Eikon. The data consists of quarterly financial 

statements from 180 companies listed on OSE. Only a few companies in the data have been 

listed since 2000. Thus, the number of quarterly observations increases as the data set 

approaches 2021. This is evident from figure 7. Furthermore, the data set is limited to 
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observations from 2000 onwards due to a rapid decline in data quality. Also, one constraint 

regarding the use of accounting data is that most listed companies publish reports every quarter. 

As such, a maximum of four data observations per year is available for each company. Note 

that the company-specific data is panel data, meaning it varies between observations in the same 

period and across different periods.  

 
Figure 7, Number of quarterly reports per quarter in the data set 

One of the key assumptions in this thesis is that accounting data is available as soon as the 

reporting quarter is ended. For instance, we assume accounting data for the second quarter in 

2021 to be available 01-07-2021. This simplifies the reality, as the quarterly reports are usually 

released later in the upcoming quarter. Ideally, to make the model more realistic, we should 

incorporate the exact publication date of each report into the data. However, Refinitive Eikon 

does not provide publication dates for quarterly reports for Norwegian companies as part of 

their service. Moreover, the publication dates for quarterly reports published before 2010 are 

hard to obtain, even with a manual approach. Hence, to maintain consistency throughout the 

dataset, we assume that all accounting data is available by the end of each associated quarter. 

 

To collect stock price-related information, we choose to use Yahoo Finance. We found Yahoo 

to be the most reliable data source. Most importantly, it was the only source with reliable data 

on adjusted stock prices. Adjusted stock prices are adjusted for splits, splices, dividends, and 
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other adjustments. When calculating quarterly returns, it is imperative to use adjusted prices to 

project the actual return from the stocks. To avoid any confusion, let it be clear that the model 

presented in this thesis does not use any momentum in historical stock prices to perform any 

prediction. According to the literature review, such an approach would have modest predictive 

power. The stock prices are included in the data set to calculate returns (adjusted), current 

market capitalization (close price), and covariance matrices. 

 

Non-Company-Specific Data  

We collect the non-company-specific data using a Bloomberg Terminal. Bloomberg LP is 

considered one of the leading financial data providers globally (Scott, 2010). We include 

macroeconomic factors and economic variables in the model to capture the shape of the 

economy and the changes in these states. Non-company-specific data does not vary across 

companies, only across periods. The timeline for the non-company-specific data reflects the 

company-specific data and spans from Q1 2000 to Q2 2021. Encouraged by the literature 

review, we assume non-company-specific data to be of importance when predicting stock 

returns and covariances. 

 

5.1 Model Structure 

This thesis uses machine learning for portfolio optimization by utilizing three different 

components. As presented earlier, the approach used in this thesis for portfolio optimization is 

to maximize the expected Sharpe ratio of the constructed portfolio. We formulate the expected 

Sharpe ratio as follows. 

 

𝑆𝑅̂ =
𝜇𝑃̂ − 𝑟𝑓

𝜎𝑃̂
 (5.1) 

 

where 𝜇𝑃̂ is the expected portfolio return, 𝜎𝑃̂ is the expected portfolio volatility, and 𝑟𝑓is the 

risk-free rate. Note that we do not need to estimate the risk-free rate because we can observe it 

in the market. We utilize the 3-month NIBOR as the risk-free quarterly rate. Further, from the 

methodology chapter, we know that the portfolio return is given by multiplying the return of 

every stock with each associated weight in the portfolio. Similarly, the portfolio volatility is 

found by multiplying the said weights with the associated covariance matrix. By combining this 

knowledge with equation 5.1, it is evident that to calculate the expected Sharpe ratio, we must 
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estimate three quantities. These quantities are (1) the weight for each stock in the portfolio, (2) 

the return for each stock, and (3) the associated covariance matrix.  

 

The estimation of the three quantities can be thought of as three different sub-models, or 

components, in the final model. We provide a graphical illustration of the model structure in 

figure 8. From here on this model goes by the name Thesis Model. The Returns Model estimates 

the expected returns, while the Covariance Model estimates the expected covariance matrix. 

The Weights Allocation Model uses the estimates from the two other component models and 

calculates the optimal weights maximizing the expected Sharpe ratio. In the upcoming sections, 

we provide a thorough discussion of each sub-model.  

 

 
Figure 8, Graphic illustration of the model structure 

5.1.1 Returns Model 

The Returns Model is an XGBoost regression model to predict the expected return for each 

stock in the subsequent quarter. However, a renowned difficulty in any portfolio optimization 

problem is to predict the expected return (French, Schwert, & Stambaugh, 1987). Inaccurate 

predictions of the expected returns can make the portfolio behave differently than foreseen, and 

small changes in the predictions can cause a significant impact on the final portfolio (Merton, 

1980). We suggest using quarterly financial data and macroeconomic indicators to predict 

expected returns using machine learning and XGBoost.  
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The response variable in the Returns Model, is quarterly logarithmic stock returns. Logarithmic 

returns, often called log-returns, are additive across time. This implies that the annual return of 

a stock or a portfolio can be calculated by summarizing the last four quarterly log-returns. We 

calculate log-returns of financial securities using the following formula: 

 

𝑟𝑙𝑜𝑔 = log
𝑝𝑟𝑖𝑐𝑒𝑡

𝑝𝑟𝑖𝑐𝑒𝑡−1
= log 𝑝𝑟𝑖𝑐𝑒𝑡 − log 𝑝𝑟𝑖𝑐𝑒𝑡−1  (5.2)  

 

However, using log-returns have some drawbacks as well. Log-returns are not additive across 

assets, meaning they cannot be summarized to obtain the combined log-return for the portfolio 

as a whole. On the other hand, discrete returns, often called simple returns, are additive across 

assets. Discrete returns are the most popular returns used in finance and represent the relative 

change in the price of a security. We calculate discrete returns using the following formula: 

 

𝑟𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 =
𝑝𝑟𝑖𝑐𝑒𝑡 

𝑝𝑟𝑖𝑐𝑒𝑡−1
− 1 (5.3) 

 

Consequently, we must convert the predicted log-returns to discrete returns to calculate the 

return of a portfolio. We convert log-returns to discrete returns using the following formula: 

 

𝑟𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 =
𝑝𝑟𝑖𝑐𝑒𝑡

𝑝𝑟𝑖𝑐𝑒𝑡−1
− 1 = 𝑒𝑟𝑙𝑜𝑔 − 1 (5.4) 

 

We present the predictors for the Returns Model in section 5.3. 

 

Data Preprocessing of Returns 

The stock prices from Yahoo Finance are provided on a daily basis, based on official trading 

days for each stock. As such, the raw stock data does not contain observations from weekends 

or other days when the Oslo Stock Exchange was closed. Furthermore, if a stock is left untraded 

for an entire day, Yahoo Finance treats this as a missing value. Thus, when we merged the stock 

information with the financial data, missing values occurred if the last day of the month was a 

nonofficial trading day or if the stock was not traded that day. To account for this, we assume 

that if the price of a stock is missing on any date, the price is equal to the last available price. 
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This method is called Last Observation Carried Forward (LOCF). We include a practical 

example of the LOCF process in figure 9. 

 

 
Figure 9, LOCF process 

An essential clarification is that we use forward-looking quarterly returns to express the log-

return for the next quarter. This is necessary as the model aims to predict quarterly returns. See 

figure 10 for clarification. Accordingly, the data we use to train the model include forward-

looking returns. Meanwhile, the predictors are not forward-looking but express conditions at 

the end of the current quarter.  

 

 
Figure 10, Log-return calculation 

 

5.1.2 Covariance Model 

The Covariance Model is an XGBoost regression model to predict stock return covariance 

matrices. While expected return is a central part of the Markowitz portfolio optimization 

problem, the expected portfolio variance is an equally significant share of the optimization 

problem. We argue that portfolio variance estimation has often been neglected in the portfolio 

optimization discussion. Portfolio risk and return are equally interesting aspects of portfolio 

optimization. As we accent in the introduction, the prediction of covariance matrices using 

machine learning on the Norwegian stock market has never been conducted on such a large 

scale.  
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The name of the response variable for the Covariance Model is Variance/Covariance. The 

associated predictors for the Covariance Model are presented in section 5.3. We calculate the 

quarterly stock return variance for each stock by using daily returns to obtain the daily variance 

of each stock, following equation 5.5: 

  

𝜎2 =
1

𝑛 − 1
∑(𝑥𝑖 − 𝑥)2

𝑛

𝑖=1

(5.5) 

 

where 𝑥𝑖 is the return on day 𝑖, 𝑥 is the mean of the returns and 𝑛 is the number of observations. 

The variance is then scaled up to represent quarterly variance by multiplying the daily variance 

with the number of trading days in the quarter. We approximate the average number of trading 

days to be 60. 

 

The approach for calculating stock returns covariances is similar to the one for calculating the 

variance of stock returns. We calculate the daily covariance of a pair of stock returns using 

equation 5.6. 

 

𝐶𝑜𝑣(𝑥, 𝑦) =
1

𝑛 − 1
∑(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦) 

𝑛

𝑖=1

(5.6) 

 

where 𝑥𝑖 is the return on day 𝑖 for stock 𝑋, 𝑥 is the mean of the returns for stock 𝑋, 𝑦𝑖 is the 

return on day 𝑖 for stock 𝑌, 𝑦 is the mean of the returns for stock 𝑌, and 𝑛 is the number of 

observations. The covariances of the returns are scaled up from a daily frequency to a quarterly 

frequency using 60 as the number of trading days.  

 

Data Preprocessing  

Because we wish to predict quarterly covariances, we group the daily adjusted close prices into 

quarterly time series. Then, we calculate the quarterly covariance matrix for each quarter. 

However, the issue of missing values is also apparent when calculating covariances. To 

calculate the covariance, the number of observations, 𝑛, must be equal for all pairs. This is 

evident from equation 5.6. Hence, covariance calculation is impossible if 𝑛 is different for 𝑥 and 

𝑦. In the calculation of the quarterly covariance matrices, we use the official trading days. 

Accordingly, missing values only occurred when a stock did not trade on an official trading 
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day. Once again, we utilize the LOCF analogy. Consequently, if a missing value occurred due 

to a stock not being traded that day, the missing value was replaced with the last valid price 

from the previous valid trading day. Figure 11 exemplifies the process.  

 
Figure 11, Arbitrary representation of LOCF for ABG and Yara in April 2013 

Definiteness Problems when Predicting Covariance  

As mentioned in section 4.2.2, a positive definite covariance matrix is imperative to maximize 

the Sharpe Ratio using matrix multiplication. However, a calculated covariance matrix from 

stocks is not always positive definite by nature. Often, this is due to high dimensionality and 

linear dependencies between the stocks, causing the matrix to be multicollinear. In matrix terms, 

this is reflected by one or more eigenvalues of 0. According to Andersen, Bollerslev, Diebold, 

and Labys (2003), linear dependencies can occur even in low-dimensional cases with only three 

or four assets, with an increasing probability as the number of assets increases. As such, we 

enable Cholesky decomposition to ensure that the predicted covariance matrices are positive 

definite. We separate the prediction process into four steps.  

 

1. Calculate the quarterly 𝑛 ∗ 𝑛 covariance matrices 𝐴𝑡 ,  𝑡 = 1,2 … 𝑇, where 𝑇 is the 

number of quarters available. 

2. Decompose the covariance matrices 𝐴𝑡 to Cholesky factors using Cholesky 

decomposition. The decomposed matrices have the form At = 𝐾𝑡𝐾𝑡
′.  

3. Predict the each Cholesky factor and construct the Cholesky decomposition matrix  𝐾𝑡+1 

4. Construct the predicted covariance matrix by reversing the Cholesky decomposition,  

A𝑡+1 = 𝐾𝑡+1𝐾𝑡+1
′  

 

Note that the Covariance Model does not forecast the entire Cholesky decomposition matrix at 

once but rather builds the matrix cell by cell. The model iterates through the matrix and predicts 
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the factors accordingly. Finally, the entire covariance matrix is built by reversed Cholesky 

decomposition.   

 

5.1.3 Weights Allocation Model 

The third model in this thesis, the Weights Allocation Model, aims to find the optimal portfolio 

weights. The optimal weights are characterized as the weights that maximize the expected 

Sharpe ratio of the portfolio. We obtain the optimal weights utilizing the predictions generated 

by the XGBoost models presented above, combined with the matrix algebra described in the 

methodology chapter. We recall that the formula for finding the optimal weights is: 

𝑤𝑀𝑎𝑥 𝑆ℎ𝑎𝑟𝑝𝑒 =
∑  ̂

−1
(𝜇 ̂ − 𝑟𝑓 ⋅ 1)

1T ∑  ̂
−1

(𝜇 ̂ − 𝑟𝑓 ⋅ 1)
 (5.7) 

 

where 𝜇 ̂ is a vector with the expected quarterly returns, and ∑̂ is the expected associated 

covariance matrix. As such, the portfolio rebalancing is done quarterly.  
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5.2 Descriptive Statistics 

Table 2 shows the descriptive statistics for the two response variables Log.Return and 

Variance/Covariance. As described previously, we calculate Log.Return once each quarter for 

each company. Meanwhile, we calculate the Variance/Covariance once each quarter for every 

stock and every pair of stocks.  

 

𝑴𝒆𝒂𝒔𝒖𝒓𝒆 𝑳𝒐𝒈. 𝑹𝒆𝒕𝒖𝒓𝒏 𝑽𝒂𝒓𝒊𝒂𝒏𝒄𝒆/𝑪𝒐𝒗𝒂𝒓𝒊𝒂𝒏𝒄𝒆  

𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 8648 560321 

𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑄𝑢𝑎𝑟𝑡𝑒𝑟𝑙𝑦 𝑄𝑢𝑎𝑟𝑡𝑒𝑟𝑙𝑦 

𝑆𝑡𝑎𝑟𝑡 𝑝𝑒𝑟𝑖𝑜𝑑 𝑄2 2000 𝑄2 2000 

𝐸𝑛𝑑 𝑝𝑒𝑟𝑖𝑜𝑑 𝑄3 2021 𝑄3 2021 

𝑀𝑒𝑎𝑛 −0.0029 0.04 

𝑆𝑡𝑑. 𝐷𝑒𝑣 0.3018 0.3184 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 0.0911 0.1014 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 −1.1818 5.436492 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 16.2677 397.0881 

𝐽𝑎𝑟𝑞𝑢𝑒 − 𝐵𝑒𝑟𝑎 (𝑝 𝑣𝑎𝑙𝑢𝑒) <  2.2𝑒 − 16 <  2.2𝑒 − 16 

𝑀𝑖𝑛 −3.9548 −19.7549 

1 𝑄𝑢𝑎𝑟𝑡𝑖𝑙𝑒 −0.1174 −0.0372 

𝑀𝑒𝑑𝑖𝑎𝑛 0.0092 4.4674𝑒 − 07 

3 𝑄𝑢𝑎𝑟𝑡𝑖𝑙𝑒 0.1350 0.1021 

𝑀𝑎𝑥 2.5402 27.0729 

Table 1, Descriptive statistics 

The table above clearly shows that the returns and covariances are skewed with relatively high 

kurtosis. Further, we can reject normality with a Jarque–Bera test on a 1% significance level 

for both response variables. The normality rejection for the covariance variable implies that 

multivariate normal distribution does not sufficiently describe the dependence between stock 

returns, particularly in the tails of the distribution (Sleire, et al., 2021). This observation 

supports the arguments made in this thesis about how a standard Markowitz approach does not 

sufficiently cover the estimation of covariance between stock returns. However, as we can see 
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from figure 12, the distribution of the Log.Return variable resemble a normally distributed 

shape to some extent.  

 
Figure 12, Distribution of logarithmic quarterly returns in the data set 

 

5.3 Predictors  

From the literature review, it is evident that financial ratios can provide some predictive insight. 

However, to capture the inner dynamical changes of capital structures, we must study the 

relative company-specific change from quarter to quarter. Still, the absolute level of each ratio 

is interesting as it describes the financial status of the company. Further, both relative change 

and absolute values are included for non-company-specific values. The arguments are 

comparable to the arguments used for the financial ratios. Fluctuations in the non-company-

specific indicators can disclose directional changes in the economy. On the other hand, the 

absolute values provide an overview of the economy in general. Consequently, quarterly change 

and absolute values are included to capture both dynamics. We compute the quarterly change 

for all variables with the formula in equation 5.8. 

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 =
𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑡 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑡+1 

𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑡+1
 (5.8) 

 



Data and Modeling   45 

5.3.1 Returns Model Predictors 

The selection of the explanatory variables included in the stock return model is based on the 

literature presented in chapter 3. Each predictive is constructed and included in the model under 

the assumption that they capture the effects laid out in the literature review. The predictors are 

divided into non-company-specific and company-specific variables.  

 

Non-Company-Specific Predictors 

The non-company-specific are summarized in table 2. These variables are a combination of 

macroeconomic and economic variables thought to contextualize the current economic 

situation. Note that these variables only vary between periods and not between companies 

within the same period. Further, we include both the absolute value and quarterly change in 

each quarter.  

 

Table 2, Non-Company-Specific predictors 

Norwegian GDP 

As mentioned in the literature review, macroeconomic factors impact stock returns, especially 

industrial production indicators. Based on this, we include the general level of the Norwegian 

Gross Domestic Product (GDP). This is thought to capture parts of said impact through the 

relationship between GDP and stock returns (Chaudhuri & Smiles, 2004). 

 

 

Economic variables Currency rates 

NIBOR 3-month EUR/NOK 

Gros National Product (GDP) USD/NOK 

Consumer Price Index (CPI) 

North-Sea Oil Price  

Stock indexes Bonds & swaps 

OSEBX Norwegian 10-year nominal swap rates 

S&P 500 Norwegian 5-year nominal swap rates 

Dow Jones Norwegian 10-year bond yield 

Nasdaq US 30-year bond yield 

Nikkei 225 US 10-year bond yield 

DAX US 5-year bond yield 
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CPI   

The Norwegian consumer price index (CPI) reflects the current inflation. Inflation is important 

to investors because investors aim to increase their purchasing power. However, inflation works 

in the opposite direction of this goal, creating lower purchasing power. Therefore, we include 

CPI as a predictor to reflect the current inflation and general purchasing power. 

 

NIBOR 

We include the 3-month Norwegian interbank offered rate (NIBOR) to mirror the general 

interest rate level in Norway. Further, we include NIBOR to reflect a risk-free investment with 

a quarterly time horizon. 

 

North Sea Oil Price 

Approximately 35% of the variance in the Norwegian GDP is linked to the Norwegian 

petroleum industry (Bjørnland & Thorsrud, 2013). We assume that the oil price carries 

information about the world economy, therefore contributing with predictive power.  

 

Currency exchange rates 

We feature exchange rates in the model to capture market predictions about the Norwegian 

economy. The considered exchange rates are between Norwegian kroner (NOK), US dollars 

(USD), and Euros (EUR). We assume the uncertainty and risk, such as future interest rate 

predictions, associated with the Norwegian economy to be captured in the exchange rates. 

 

Global stock market indexes 

Global stock market indexes capture the state of the world financial markets. Further, it is fair 

to assume that the global financial markets influence companies on Oslo Stock Exchange and 

that changes in these markets give a pointer for how companies on OSE will behave forwards. 

With this in mind, we include stock market indexes from Norway, Germany, Japan, and the US 

as predictors.  

 

US & NO bonds and swaps 

The US economy influences the Norwegian economy significantly (Qvigstad, 2011). Therefore, 

we incorporate the US Treasury bonds and swaps in the model. This is to capture the current 

and future interest rates in the US and the inflation expectations. The same applies to why we 

include bonds and swaps issued by Norges Bank. 
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Company-Specific Predictors 

The next set of predictors in the Returns Model is company-specific. These variables are created 

using quarterly published financial and the closing price for each stock. The majority of the 

variables are ratios. The chosen ratios, inspired by the literature review, are frequently used by 

investors and financial analysts. When using ratios as predictors, the variables are scaled, 

creating a more common foundation. Furthermore, companies can more manageably be 

compared based on ratios. We present an overview of the company-specific ratios in table 3.   

 

Pricing ratios Leverage & liquidity ratios 

Price-to-book value (P/B) Debt-to-Equity (D/E) 

Price-to-earnings (P/E) Debt-to-Cash (D/C) 

EV-to-EBIT (EV/EBIT) Debt-to-Sales (D/S) 

EV-to-EBITDA (EV/EBITDA) Liabilities-to-Assets 

Profitability ratios Size measurements 

Return on equity (ROE) Revenue 

EBIT-to-Assets Enterprise Value 

Table 3, Categorization of company-specific predictors 

Price-to-book value (P/B) 

Price-to-book is a ratio given by the following formula: 

 

𝑃/𝐵 =
𝑃𝑟𝑖𝑐𝑒 𝑝𝑒𝑟 𝑠ℎ𝑎𝑟𝑒

𝐸𝑞𝑢𝑖𝑡𝑦 𝑏𝑜𝑜𝑘 𝑣𝑎𝑙𝑢𝑒 𝑝𝑒𝑟 𝑠ℎ𝑎𝑟𝑒
 

 

Price-to-book is used to uncover assets in a firm that are on such a high level of intangibly that 

they are hard to value, and therefore not present on the balance sheet. Such assets could be 

human capital, trademark value, and customer relationships. In theory, a company with a low, 

but positive, price-to-book ratio shall be more favorable than a company with a high price-to-

book. A low price-to-book ratio insinuates that a more significant part of the investment in the 

company can be recovered by selling some of the assets in the company. However, this 

presumes that the company assets are priced correctly. As such, a low price-to-book value might 

suggest that the company assets are overvalued. 
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Price-to-earnings (P/E) 

Price-to-earnings (P/E) is used to analyze at what rate a company is earning back the equity 

invested by the shareowners. The inverse of the price-to-earnings ratio is the equity discount 

rate. The formula for the P/E is given by: 

𝑃/𝐸 =
𝑃𝑟𝑖𝑐𝑒 𝑝𝑒𝑟 𝑠ℎ𝑎𝑟𝑒

𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠 𝑝𝑒𝑟 𝑠ℎ𝑎𝑟𝑒
 

A low P/E implies a rapid payback time at the current earnings level. As such, a high P/E implies 

the opposite.  

 

Return on equity (ROE) 

ROE measures the return on the shareholder equity. Shareholder equity is the paid-up equity 

injected into the company when the company is established or later through share issues and 

capital increases. Return on equity is calculated with the following formula 

 

𝑅𝑂𝐸 =
𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠

𝑆ℎ𝑎𝑟𝑒ℎ𝑜𝑙𝑑𝑒𝑟𝑠 𝑒𝑞𝑢𝑖𝑡𝑦
 

 

ROE measures how well a company deploys shareholder equity and is linked to what return an 

investor can expect on an investment.  

 

Revenue 

Despite that, almost all the other company-specific predictors are ratios, revenue is an absolute 

value. The current revenue level is used to classify the size of a company based on sales. 

According to the Small-form Effect, smaller companies tend to achieve higher long-term excess 

returns than larger firms (NBIM, 2012). The absolute value of revenue is included in the model 

to catch some of this effect and other dynamics.  

 

Sector 

Companies in different sectors are valuated differently. An example of such differences is the 

high pricing of tech companies in the later years. The high pricing is accepted because most of 

the future cash flows from such tech companies lay far into the future (Kim, Pukthuanthong‐

Le, & Walker, 2008). Furthermore, we assume that macroeconomic changes and shocks affect 

sectors differently. Therefore, we include a sector categorization in the model.  

 



Data and Modeling   49 

Variables Exclusively for Non-Financial Companies 

Commercial banks and insurance companies, categorized as financial companies, have a 

somewhat different capital structure than other companies. For instance, the balance sheets of 

commercial banks do not include loans in the traditional manner like other companies. Instead, 

commercial banks borrow money from the central banks and through customer deposits. 

Moreover, the debt of insurance companies also has some unique characteristics. A large 

portion is associated with insurance liabilities to customers and therefore is not linked to the 

financing of the company. This considered, we do not include the following predictors for the 

financial companies in the model.  

 

Enterprise value (EV) 

We include the enterprise value (EV) of a company as an absolute value in the model. The 

reasoning for this is similar to argumentation for including revenue as an absolute value. In 

short, we use EV to incorporate the size of a company. The following formula calculates EV: 

 

𝐸𝑉 = 𝑀𝑎𝑟𝑘𝑒𝑡 𝑐𝑎𝑝𝑖𝑡𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 (𝑀𝐶) + 𝐷𝑒𝑏𝑡 − 𝐶𝑎𝑠ℎ, 

𝑊ℎ𝑒𝑟𝑒 𝑀𝐶 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠ℎ𝑎𝑟𝑒𝑠 × 𝑠ℎ𝑎𝑟𝑒 𝑝𝑟𝑖𝑐𝑒 

 

EV-to-EBIT (EV/EBIT) 

EBIT, or Earnings Before Interest and Taxes, represents the earnings a company can produce 

before any stakeholders get their share. EV/EBIT is regarded as a broader version of the P/E 

ratio. Instead of focusing solely on the equity holders, EV/EBIT focuses on a wider group of 

stakeholders. This can provide an idea of the value of the company, regardless of the capital 

structure. A company will likely change its capital structure multiple times throughout its 

lifetime. Therefore, using a valuation ratio that focuses on the full earnings potential through 

EBIT might give an investor a more holistic overview of a company. EV/EBIT is given by:  

 

𝐸𝑉/𝐸𝐵𝐼𝑇 =
𝐸𝑉

𝐸𝐵𝐼𝑇
 

 

EV-to-EBITDA (EV/EBITDA) 

EBITDA, Earnings Before Interest, Taxes, Depreciation, and Amortization, represent the result 

a company can generate solely on its operating activities. This can be thought of as how 

effectively a company generates value from its input factors. The reasons we include the 
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EV/EBITDA in the model are similar to those mentioned for EV/EBIT as both represent earning 

potential. The formula for the EV-to-EBITDA ratio is given by 

 

𝐸𝑉/𝐸𝐵𝐼𝑇𝐷𝐴 =
𝐸𝑉

𝐸𝐵𝐼𝑇𝐷𝐴
 

Debt-to-Equity (D/E) 

There is a linear relationship between the portion of debt to equity and the perceived risk for 

the equity in a firm. Traditionally, this is quantified as the discount rate. Furthermore, a higher 

portion of debt raises the risk for equity holders (Modigliani & Miller, 1958). The nature of 

debt claims causes this. If a company goes bankrupt, debt holders have priority for their claim 

above equity holders. Therefore, a firm taking on higher leverage is equivalent to increasing 

the risk for equity holders. This effect is captured by adding D/E to the model. The D/E ratio is 

given by: 

𝐷𝑒𝑏𝑡/𝐸𝑞𝑢𝑖𝑡𝑦 =
𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝑖𝑧𝑒𝑑 𝑑𝑒𝑏𝑡

𝑀𝑎𝑟𝑘𝑒𝑡 𝑐𝑎𝑝𝑖𝑡𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛
 

Debt-to-cash (D/C) 

As mentioned above, debt imposes a risk. However, high amounts of cash might counteract 

parts of this risk associated with debt. A firm with a low debt-to-cash ratio will have better 

conditions to handle potential market declines. Therefore, the risk imposed by debt is tied to 

the debt-to-equity ratio and the debt-to-cash ratio. We formulate the D/C ratio as: 

 

𝐷𝑒𝑏𝑡/𝐶𝑎𝑠ℎ =
𝐷𝑒𝑏𝑡

𝐶𝑎𝑠ℎ
 

Debt-to-Sales (D/S) 

We include D/S in the model to indicate how much dept a firm can handle, independent of its 

effectiveness of recourses. The ratio is given by: 

𝐷𝑒𝑏𝑡/𝑆𝑎𝑙𝑒𝑠 =
𝐷𝑒𝑏𝑡

𝑆𝑎𝑙𝑒𝑠
 

 Liabilities-to-Assets 

The liabilities of a firm might consist of various accounting items, such as debt, in the form of 

bank loans or bond issues, accounts payable, or pension obligations. Common for them all is 

that they impose some sort of claim on the assets of the company, with priority above the 

invested capital from shareholders. Liabilities-to-Assets measures the size of these claims and 

is given by: 
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𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠/𝐴𝑠𝑠𝑒𝑡𝑠 =
𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠

𝐴𝑠𝑠𝑒𝑡𝑠
 

 

EBIT-to-Assets 

Investors use EBIT-to-Assets to determine how effective a company is at generating profit on 

its assets. EBIT-to-Assets has some of the capabilities as EV/EBIT. However, by including 

cash, a more comprehensive picture of the effectiveness of the company is captured. The ratio 

is given by the formula: 

𝐸𝐵𝐼𝑇/𝐴𝑠𝑠𝑒𝑡𝑠 =
𝐸𝐵𝐼𝑇

𝐴𝑠𝑠𝑒𝑡𝑠
 

 

5.3.2 Covariance Model Predictors 

As for the Returns Model, the Covariance Model also includes macroeconomic and economic 

variables. The variables incorporated in the Covariance Model are: Norwegian GDP and CPI, 

3-months NIBOR, North Sea Oil price, Currencies, Global stock indexes and US & NO bonds 

and swaps. For a thorough explanation of these predictors, please referrer to the previous 

section and table 2. Furthermore, to separate the observations from each other, we include 

company variables indicating which covariance/variance the model is ought to predict.   

 

In addition to the macroeconomic and economic predictors, we incorporate a variable called 

Variance (0/1) and in the Covariance Model. Variance (0/1) incapsulates whether the predicted 

value represents a variance or a covariance in the covariance matrix. The variance of stock 

returns tends to be higher than the associated covariance with other returns. Moreover, the 

variance of stock returns is always positive due to the squared feature in the variance formula. 

On the other hand, covariance can be both positive and negative due to the covariance 

coefficient in the covariance formula. In figure 13, we illustrate the two clarifications.  
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Figure 13, Distribution of the response variable variance/covariance in the data set 

Figure 13 shows that the variances of stock returns generally have a larger magnitude than the 

covariance of stock returns. Further, the plot shows how the variances only have positive values 

while the covariances fluctuate between positive and negative values. Additionally, the figure 

shows periodic prominent increases in magnitude for the covariances. These increases clearly 

show that stock returns covariance more during certain periods. It is fair to say that this is 

especially true for bearish markets because we can observe the covariances increasing during 

both the financial crises in 2008 and the corona pandemic in 2020. 

 

 

5.4 XGBoost Thesis Specifications  

The XGBoost algorithm relies on hyperparameters. In short, hyperparameters are 

predetermined values or weights used in the learning process of an algorithm. These parameters 

must be tuned to make the algorithm learn as adequately as possible and find the optimal bias-

variance trade-off. We only use the training sample data to tune the models in this thesis. 

Furthermore, to avoid overfitting, we utilize time-series cross-validation. For both models, we 

tune a total of six parameters. The parameters are described in table 1.  
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Table 4, Parameters tuned in for the XGBoost 

Tuning an XGBoost model can be a tedious process. The process involves assessing the 

performance of different combinations of parameter values to see which combination performs 

best based on a selected performance measure. We apply RMSE as a performance measure, as 

this is considered best practice. To obtain an unbiased selection of the parameters, we apply 

only the training data in the parameter selection. Furthermore, to measure the performance of 

the different combinations of parameters, we apply a 10-fold time-series cross-validation in the 

selection process.  

 

Moreover, we create a grid of parameters for tuning, using a grid search to cover the whole 

parameter spectrum. The grid is created using a maximum entropy distribution approach to 

obtain an unbiased grid search for the parameters. Due to high dimensional data and extensive 

computational power requirements, we use Google Cloud Platform and a virtual computer to 

tune the models. Further, XGBoost requires all input to be of class numeric. As such, characters 

and factors are not applicable. Consequently, we must remove or replace all non-numeric 

variables with binary variables, as suggested by Chen, He, Benesty, and Tang (2021). In 

practice this means we must replace columns containing company names and sector names with 

binary columns.   

 

 

 

  

Parameter Description 

Number of trees The number of trees grown in the model 

Minimum child weight 
The minimum number of data points in a node required for the 

node to be split further 

Tree dept The maximum number of splits for each tree 

Learn rate (shrinkage) The rate at which the model adapts from iteration-to-iteration 

Loss reduction The required reduction in the loss function to split further  

Sample size The proportion of data exposed to the fitting routine 
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6. Results and Discussion 

To assess the Thesis Model, we use the last four quarters in the data set as a test period. As 

such, we study the quarterly results from Q4 2020 to Q3 2021. We desire to predict for one 

whole year to get a more comprehensive understanding of the predictability. Note that we train 

the model on all available data from the past. Hence, the prediction process can be considered 

a four-fold time-series cross-validation, with a cumulative growing training set as time 

progresses.  

 

First, we find the expected optimal weights in the portfolios using the methodology described 

in section 5.1. In short, we obtain these weights based on the criteria to maximize the expected 

Sharpe ratio of the portfolios. Further, we use the actual returns from the stocks in the portfolio, 

and the associated actual covariance matrix, to calculate the actual Sharpe ratio for the portfolio 

for each quarter in the test period. We summarize the process in figure 14.  

 
Figure 14, Process of finding the optimal weights in the Thesis Model 
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Following the recipe from figure 14, we obtain the results shown in table 5. In the table, 𝜇 is 

the realized quarterly discrete return, 𝜎 is the realized quarterly volatility, and 𝑆ℎ𝑎𝑟𝑝𝑒 is the 

realized quarterly Sharpe ratio.  

 

𝑄𝑢𝑎𝑟𝑡𝑒𝑟 𝑟𝑓 𝜇 𝜎 𝑆ℎ𝑎𝑟𝑝𝑒 

𝑄4 2020 0.0028 2.03 0.67 3.05 

𝑄1 2021 0.0039 0.13 0.42 0.30 

𝑄2 2021 0.0038 0.00 0.18 (0.04) 

𝑄3 2021 0.0020 0.06 0.18 0.35 

𝑀𝑒𝑎𝑛 0.0031 0.56 0.36 0.92 

Table 5, Quarterly realized financial performance Thesis Model 

From table 5, we observe that the Thesis Model performs with varying financial results between 

the quarters. Both the realized return and the associated risk vary significantly, causing heavy 

fluctuations in the Sharpe ratio. For instance, in Q4 2020, the model achieves an extraordinary 

return of 203%. However, the volatility associated with this return is 67%, higher than in any 

other quarter. Still, due to the tremendous return, the Sharpe ratio is divine. On the contrary, in 

Q2 2021, the model obtains a return of 0% for the whole quarter with an associated volatility 

of 18%. Due to the impact of the risk-free rate, the model yields a negative Sharpe in the third 

test quarter. Hence, investing in the risk-free option would have been preferable. In total, 

throughout the test period, the model achieves an average Sharpe ratio of 0.92. However, the 

high Sharpe ratio in Q4 2020 undoubtedly increases the average. When excluding Q4 2020, the 

Thesis Model achieves an average Sharpe ratio of only 0.20, demonstrating the skewed 

contribution to the average Sharpe between the test quarters. 

 

To better understand the performance of the Thesis Model, we can compare the model to other 

portfolio selection methods. Table 6 below compares the Thesis Model financial performance 

to the classical Markowitz portfolio and the equally weighted (1/𝑁) portfolio. The classical 

Markowitz model we apply utilizes historical returns to calculate both expected returns and the 

covariance matrix.   
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 𝑻𝒉𝒆𝒔𝒊𝒔 𝒎𝒐𝒅𝒆𝒍 𝑴𝒂𝒓𝒌𝒐𝒘𝒊𝒕𝒛 𝟏/𝑵 

𝑄𝑢𝑎𝑟𝑡𝑒𝑟 𝜇 𝜎 𝑆𝑅 𝜇 𝜎 𝑆𝑅 𝜇 𝜎 𝑆𝑅 

𝑄4 2020 2.03 0.67 3.05 0.33 0.13 2.55 0.37 0.11 3.36 

𝑄1 2021 0.13 0.42 0.30 0.13 0.13 1.03 0.14 0.09 1.46 

𝑄2 2021 −(0.00) 0.18 (0.04) 0.11 0.12 0.83 0.03 0.10 0.23 

𝑄3 2021 0.06 0.18 0.35 0.06 0.05 1.09 0.03 0.07 0.34 

𝑀𝑒𝑎𝑛 0.56 0.36 0.92 0.16 0.11 1.37 0.14 0.09 1.35 

Table 6, Quarterly financial performance of Thesis Model compared to other portfolio selection methods 

Table 6 shows that the Thesis Model outperforms both the classical Markowitz method and the 

(1/𝑁) portfolio in terms of average portfolio return. Once again, this is due to the deviant 

performance in Q4 2020. Nevertheless, despite an impressive Sharpe ratio of 3.05 in the first 

quarter, both the classical Markowitz and the (1/𝑁) portfolio outperforms the Thesis Model 

when it comes to the average Sharpe ratio. However, the explanation is apparent. The volatility 

of both comparison methods is much smaller and more stable. This indicates that the risk of the 

portfolios from these models is much lower. Hence, even though the mean return of the Thesis 

model is ample compared to the other models, the mean Sharpe ratio is lower due to the high 

risk in the Thesis model.  

 

To further contextualize the performance, we compare the Thesis Model to a stock market 

index. Commonly, portfolios are measured using an index as a benchmark. Thus, we find it 

intuitive to follow the same approach. We compare the model to the Oslo Stock Exchange 

Benchmark Index (OSEBX) as this thesis only considers Norwegian stocks. The comparison is 

shown in table 7.  

  

 𝑻𝒉𝒆𝒔𝒊𝒔 𝑴𝒐𝒅𝒆𝒍  𝑶𝑺𝑬𝑩𝑿 

𝑄𝑢𝑎𝑟𝑡𝑒𝑟 𝜇 𝜎 𝑆ℎ𝑎𝑟𝑝𝑒 𝜇 𝜎 𝑆ℎ𝑎𝑟𝑝𝑒 

𝑄4 2020 2.03 0.67 3.05 0.11 0.10 1.17 

𝑄1 2021 0.13 0.42 0.30 0.09 0.07 1.22 

𝑄2 2021 0.00 0.18 (0.04) 0.06 0.07 0.83 

𝑄3 2021 0.06 0.18 0.35 0.04 0.07 0.51 

𝑀𝑒𝑎𝑛  0.56 0.36 0.92 0.07 0.07 0.93 

Table 7, Quarterly realized financial performance of thesis model and OSEBX 



Results and Discussion   57 

The interpretation of the results in table 7 is comparable to the interpretation of table 6. The 

Thesis Model is superior to the index when considering average portfolio return, thanks to the 

high portfolio return in Q4 2020. However, OSEBX is performing considerably better in terms 

of the amount of risk associated with the realized return. This results in OSEBX exceeding the 

model on average Sharpe ratio. Interestingly, the index has such a high diversification that the 

average volatility is lower than the (1/𝑁) portfolio. 

 

Portfolios from the Thesis Model are constructed with the objective to maximize the Sharpe 

Ratio. However, from the discussion above, it is evident that the model struggles to be 

consistent on this topic. Still, before we condemn the model, we assess the accumulated wealth. 

This method evaluates a portfolio based on the total return of the period, translated into 

monetary wealth. As such, we compute the accumulated wealth for the Thesis Model, the 

classical Markowitz, the (1/𝑁), and OSEBX. In Figure 15, we display the wealth plot, showing 

the development in accumulated wealth for the test period.   

 
Figure 15, Generated wealth 

The wealth plot shows a phenomenal wealth generated by the Thesis Model, especially in the 

first test quarter. Over the four-quarter test period, the Thesis Model has a one-year return of 

264%. In comparison, the classical Markowitz, the (1/𝑁), and OSEBX yield 77%, 65%, and 

36%, respectively. From a portfolio return point of view, this is an extraordinary result. 

Nevertheless, as we have discussed, the abnormal return comes at the price of high portfolio 

volatility. The considerable differences in volatility between the Thesis model and the other 

methods and OSEBX are even more apparent when we study figure 15. Especially, the portfolio 
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volatility for the Thesis Model is extreme in Q2 2020. From January 18th 2021 to March 15th 

2021 the accumulated wealth decreases by 46%. In contrast, the other, less risky alternatives 

do not suffer from similar fluctuations.  

 

We find the results above to be rather interesting. The Thesis Model has a higher average 

quarterly return than any other method by far. Nonetheless, this high average return comes with 

the cost of a high amount of risk, which the model is punished for when calculating the Sharpe 

ratio. One of the most surprising dynamics is the fluctuations within each quarter. Such 

fluctuations do not characterize a well-diversified portfolio. One cause of these dynamics could 

be that the model relies heavily on a few shares with abnormal returns. To study these dynamics, 

we first investigate the distribution of stock returns for the test period in figure 16. 

 

 
Figure 16, Distribution of discrete quarterly stock returns  

By studying figure 16, we observe some outliers regarding quarterly returns, both positive and 

negative. The realized portfolio return presented earlier in this section indicates that the Thesis 

Model might invest heavily in some of these outlier returns, considering the enormous result of 

264% one-year return. Another indication of this phenomenon is the high average volatility for 

the Thesis Model shown in table 6, which is far higher than the volatility for the (1/𝑁) portfolio 

and OSEBX. This indicates that the Thesis Model has a far lower degree of diversification than 

the (1/𝑁) portfolio and OSEBX. To investigate if the Thesis Model stakes heavily on a small 
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fraction of the shares, we can study the allocated portfolio weights in the first test quarter, the 

quarter with the highest return for the Thesis Model. We present the weights in figure 17.  

 
Figure 17, Allocated weights by the Thesis Model in Q4 2020 

The figure above shows that the Thesis Model strongly emphasizes a low number of shares in 

Q4 2020. The highest invested position is weighted 340 times higher than the average weight. 

Such allocation shows a low degree of diversification. This could indicate that the model bets 

on a few shares and that these bets have a highly positive outcome for the Thesis Model. If so, 

this is a worrying observation, implying that the results presented earlier might not represent 

the true model performance. Thus, we find it necessary to study this matter further to validate 

the robustness of the Thesis Model.   

 

To investigate if a few shares cause the Thesis Model performance presented above, we can 

study the contribution of each share in each quarter. We calculate the portfolio contribution by 

multiplying the weight of a share with the return for the same share. Figure 18 below shows the 

distribution of the portfolio contribution of the stocks in each quarter for the Thesis Model. We 

use box plots where observations inside the box are within the range of the 95% and 5% 

percentile.   
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Figure 18, Distribution of portfolio contribution each quarter 

Figure 18 shows some distinct outliers. Q4 2020 is especially striking, where one investment 

position constitutes almost 60% of the total portfolio return for the said quarter. This remark, 

combined with the previous discussion, confirms the suspicion that the Thesis Model relies 

heavily on a small number of shares, which is the opposite of diversification. As such, we raise 

the question of whether the Thesis Model would show staggering results if we were to run the 

model with different conditions.  

 

We use the initial results as a baseline to test the Thesis Model under different conditions. Then, 

we remove the stocks with portfolio contributions outside the lower 5 % percentile and upper 

95 % percentile for each quarter. As such, we obtain a new data set we can use to test the 

robustness of the model and the associated results. Thus, we rerun the Weight Allocation Model 

for the Thesis Model with the new conditions. We also rerun the classical Markowitz method 

and the (1/N) portfolio. The results of the reruns are shown below in table 8. 
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 𝑻𝒉𝒆𝒔𝒊𝒔 𝒎𝒐𝒅𝒆𝒍 𝑴𝒂𝒓𝒌𝒐𝒘𝒊𝒕𝒛 𝟏/𝑵 𝑶𝑺𝑬𝑩𝑿 

𝑄𝑢𝑎𝑟𝑡𝑒𝑟 𝜇 𝜎 𝑆𝑅 𝜇 𝜎 𝑆𝑅 𝜇 𝜎 𝑆𝑅 𝜇 𝜎 𝑆𝑅 

𝑄4 2020 0.42 0.68 0.61 0.23 0.16 1.40 0.29 0.10 2.82 0.11 0.10 1.17 

𝑄1 2021 0.43 0.26 1.63 0.15 0.12 1.23 0.14 0.10 1.40 0.09 0.07 1.22 

𝑄2 2021 (0.49) 0.55 (0.91) 0.08 0.08 0.91 0.02 0.11 0.19 0.06 0.07 0.83 

𝑄3 2021 (0.09) 0.25 (0.38) 0.03 0.05 0.64 0.02 0.07 0.22 0.04 0.07 0.51 

𝑀𝑒𝑎𝑛 0.07 0.43 0.24 0.12 0.10 1.04 0.12 0.09 1.16 0.07 0.07 0.93 

Table 8, Financial performance without using stock of top and bottom 5% contributors for the Thesis Model 

By changing the initial conditions, the characteristics of the portfolios constructed by the Thesis 

Model change considerably. There is a noteworthy decrease in average quarterly return, 

dropping from 56% to 7% with the new conditions, a decrease of almost 90%. However, the 

average volatility for the Thesis Model does not decrease. Instead, the average volatility 

increases from 36% initially to 43% with the new conditions. Consequently, the vast reduction 

in average return for the Thesis Model combined with the slight increase in average volatility 

demolishes the Sharpe ratio of the selected portfolios.  

 

Furthermore, the Thesis Model now performs worse than any other presented portfolio selection 

methods or index, regardless of measurement. This diverges greatly from the initial results 

presented earlier in the thesis. Likewise, we recall that the Thesis Model initially annihilates 

any competition when comparing the different portfolio selection methods and OSEBX in terms 

of generated wealth. The same comparison can be made with the new conditions. This is shown 

in figure 19. 
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Figure 19, Generated wealth with new conditions 

The graphics from figure 19 supports the findings we have previously addressed. The plot 

clearly illustrates a new hierarchy in terms of portfolio return between the different portfolio 

selection methods and OSEBX. The Thesis Model is no longer the undisputed winner regarding 

portfolio return. Instead, with the new conditions, it ends up losing wealth at the end of the test 

period. Note that the accumulated wealth also decreases for both the classical Markowitz and 

the (1/𝑁) portfolios. However, the decrease is negligible compared to the decrease for the 

Thesis Model. Furthermore, the Thesis Model is still the most volatile of the four time-series, 

with vast fluctuations throughout the test period supporting the high average volatility presented 

in table 8.   

 

The results from running the Thesis Model on new conditions are alarming. One aspect is that 

the Thesis Model, under new conditions, performs very poorly. However, the most important 

takeaway is the inconsistencies in terms of results. Initially, we addressed the fact that the 

Thesis Model struggles to construct portfolios with Sharpe ratios that outperform the market. 

Nevertheless, due to the huge returns in the first test quarter, the model outperformed the other 

models and OSEBX in terms of generated wealth. However, the performance argument 

expressed in accumulated wealth is no longer applicable when changing the conditions. Instead, 

the development in generated wealth is the complete opposite. Moreover, the realized ex-ante 

Sharpe ratio for the Thesis Model is much lower. This supports the suspicion that the model is 

consistently failing to select portfolios with a market-beating Sharpe ratio and that the initial 

results we obtain do not represent the true performance of the model. Nonetheless, to explore 
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the cause of the mentioned inconsistencies, we are intrigued to examine the statistical 

performance of prediction models.  

 

6.1 Statistical Performance 

To assess the two statistical prediction models, the Returns Model and the Covariance Model, 

we use RMSE and MAPE as performance measurements. As the models are run once for each 

of the four test quarters, the performance measures presented below in table 9 represent the 

averages for the test period. This resembles a four-fold time-series cross-validation.  

 

𝑴𝒆𝒂𝒔𝒖𝒓𝒆 𝑹𝒆𝒕𝒖𝒓𝒏𝒔 𝑴𝒐𝒅𝒆𝒍 𝑪𝒐𝒗𝒂𝒓𝒊𝒂𝒏𝒄𝒆 𝑴𝒐𝒅𝒆𝒍 

𝑀𝑒𝑎𝑛  −0.0029 0.0401 

𝑅𝑀𝑆𝐸 0.4573 0.3281 

𝑀𝐴𝑃𝐸 584% 151800% 

Table 9, Statistical performance of the prediction models 

The table above shows that statistically, the Returns Model and Covariance Model perform 

poorly. Especially the Covariance Model has a high MAPE, suggesting that the Covariance 

Model is not capable of finding a reliable approximation of the estimation function 𝑓. The 

Returns Model also incurs a high MAPE and an average quarterly log-return misprediction of 

46%. Again, this implies that the Returns Model struggles to find a reliable approximation of 

the estimation function. It appears that neither of the prediction models is able to identify 

beneficial patterns or relationships between the predictors and the response variables.  

 

The poor statistical performance of the two prediction models explains the inconsistent financial 

performance of the Thesis Model presented in the previous section. Unreliable predictions of 

stock returns and covariance matrixes make it nearly impossible for the Weight Allocation 

Model to consistently find weights that yield good financial performance. The inaccuracy of 

the Returns Model and the Covariance Model indicates that the portfolio allocation process in 

the presented Thesis Model is close to random. With predictions not remotely resembling 

reality, the model is not likely to perform portfolio allocation with good financial results.  

 

The lack of prediction accuracy clarifies why the Thesis Model struggles to perform 

consistently satisfying results. The initial financial result is, without doubt, impressive, and the 

model generates a one-year return most investors only can dream about. However, this result is 
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undoubtedly nothing else than a good portion of luck. The inconsistency and inaccuracy of the 

Thesis Model make the model highly unreliable. It is fair to say that using the Thesis Model in 

its current form is close to doing portfolio allocation randomly. This is unmistakably illustrated 

with the exceptional poor statistical performance of the two prediction models. 

 

6.2 Variable Importance 

The main focus of this thesis is prediction performance. As described in the previous section, 

the statistical models perform with close to zero accuracy. However, discussing the variable 

importance in the two prediction models might provide useful insight. Below we present the 

variable importance for the Returns Model and the Covariance Model. We apply Shapley values 

to quantify the importance of the different variables in the model. The idea behind Shapley 

values is to give each variable credit based on its marginal contribution. Shapley value is the 

average of all the marginal contributions from a variable to all possible combinations of 

variables (Shapley, 1953).  

 

6.2.1 Returns Model 

Figure 20 illustrates the average variable importance for the Returns Model. The figure shows 

the top ten most important variables in terms of average Shapley values for the test period. The 

numerical average of the Shapley values can be interpreted as the average contribution to the 

predicted log-return for the different variables.   

 

Figure 20, Variable importance Returns Model 
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Figure 20 shows that eight out of the ten most influential variables are company-specific. This 

is consistent with the literature review, claiming that company-specific characteristics influence 

long-term stock returns. Furthermore, we are not surprised that the 3-month NIBOR, as an 

absolute value, contributes relatively much. A low interest level entails a lower discount factor 

of future cash flows. This is particularly beneficial for companies like tech firms, where a 

substantial part of the cash flow has a long-term horizon.  

 

The variable importance varies naturally between the top ten variables, ranging from 0.026 for 

Enterprise Value to 0.043 for ROE. Nevertheless, the Shapley values are not very large and 

vary to some extent between quarters. An interesting observation from figure 20 is that the 

majority of the ten most important variables are absolute values and not relative change. This 

is interesting as the response variable Log.Return is on a relative change format. We would 

expect to observe more variables to be on the relative change format.  

 

6.2.2 Covariance Model 

We exhibit the variable importance for the Covariance Model in figure 21. The interpretation 

of the Shapley values is the same as for the Returns Model. The only difference is that the 

Shapley values now express the average contribution to the covariance predictions for the 

different variables. 

 

Figure 21, Variable importance Covariance Model 
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Figure 20 shows more variation in the average variable importance for the Covariance Model 

than the Returns Model. The Variance (0/1) variable is almost nine times as influential towards 

the predictions compared to USD/NOK. However, the strong influence from Variance (1/0) is 

not surprising considering the discussion in section 5.3.2. The second most influential variable 

is NIBOR 3M. Central banks commonly use interest rate reduction during a recession and other 

situations when the market is bearish. The opposite is common in bullish markets. Thus, we 

argue that NIBOR 3M functions as a thermometer for the Norwegian economy. Moreover, from 

the literature review, we know that returns are more correlated in very bearish markets. Hence, 

NIBOR 3M might indicate when returns are strongly correlated.   

 

6.3 Limitations 

There are numerous limitations to this thesis. First, the nature of the data limits the Thesis 

Model. The time horizon of the quarterly data ranges from Q1 2000 to Q2 2021. This, combined 

with the fact that there is a limited number of stocks traded on OSE, strangles the number of 

observations available for both prediction models. Also, as shown in Figure 7, Number of quarterly 

reports per quarter in the data set the availability of observations is skewed. As we approach the 

present, the number of quarterly observations increases drastically. Part of the explanation is 

poor data quality from the early years. Further, from 2000 to 2021, the number of companies 

listed on Oslo Stock Exchange has multiplied, causing a natural increase in data availability. 

Regardless, the lopsidedness in the data distribution could be considered a weakness.  

 

Second, financial reports are not available immediately after the quarter-end. One of the key 

assumptions in this thesis is that accounting data is available as soon as the reporting quarter is 

ended. On one side, we could argue that the financial information, in theory, is available when 

a quarter ends. However, in practice, this argument is hollow. In reality, we know that the 

publication of quarterly reports is spread throughout the next quarter. Subsequently, the 

macroeconomic and economic situation at the beginning of the quarter does not reflect the 

current economic state when the quarterly report is released. Conclusively, the model is not 

ideal for operationalization purposes. 

 

Alternatively, we could lag the model one quarter. This would make the model more realistic 

as the information from the reports would be public by the end of the next quarter. Nevertheless, 

the issue of inaccurate publication dates is still apparent. Furthermore, the likelihood that the 
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market has already exploited and adjusted the stock price for the information in the quarterly 

report is high. That said, as machine learning algorithms potentially can discover hidden 

patterns, there is possible that this approach could perform better than the existing model. 

Nevertheless, to make the model more realistic, we should have used the exact release date 

when collecting non-company-specific information and stock prices. Unfortunately, the 

availability of these dates is highly limited, mainly for older observations. Consequently, 

reports where the release date is unavailable would have to be discarded, and the number of 

observations would have been even more limited.  

 

Third, we have made some assumptions regarding the financial trading aspect. In the model, 

we assume no transaction costs. This assumption is unrealistic. All share brokers require a 

commission when trading stocks through their platforms. In particular, short sales of stocks are 

costly. This is due to high initiation costs and interest costs on borrowed shares. Secondly, we 

have assumed no margin calls. A margin call occurs when a portfolio equity value falls below 

a certain threshold. This threshold is established by the individuals lending out the stocks used 

for a short sale. In the occurrence of a margin call, these lenders will demand the portfolio to 

be liquefied (all assets sold) to limit their losses. Thirdly, we have assumed no taxes on capital 

gains. While investment firms are exempted from taxes on capital gains in Norway, private 

investors are not. These assumptions are likely to overestimate the Sharpe ratios we have 

achieved with the presented model. 

 

The fourth limitation involves the selection of variables. Both prediction models rely on 

assumptions about which predictors affect stock fluctuations. These variables were selected 

using previous literature and general conceptions in finance. Although there is evidence from 

other markets, there is limited evidence that these variables sufficiently reflect the changes in 

the Norwegian stock market. Therefore, other variables might better predict the expected return, 

and the covariance between the stock returns analyzed in the thesis. Further, we do not deploy 

cash flow statements when creating predictors. This is due to low data quality on cash flow 

statements from Eikon Refinitive and other sources for the considered stocks. This prevents us 

from using cash flow statements to create predictors. 

 

Lastly, there are limitations related to predictions of financial markets in general. As stated in 

the literature review, predicting financial fluctuations is difficult due to various reasons. 

Further, the task becomes even more troublesome as the time horizon increases. In practice, 
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many factors influence financial markets, not only the financial position of companies and 

macroeconomic development. Some of the most prominent are political conditions, the 

bounded rationality of humans, and the psychological aspect of financial markets (Henrique, 

Amorim, & Kimura, 2019). As the time horizon extends, these factors will cause unexpected 

changes in the market our model struggles to account for.  

 

6.4 Further Research 

We have applied the machine learning technique XGBoost to predict both stock returns and 

covariance between said returns. However, using other machine learning methods could have 

generated more accurate predictions. Thus, it might be interesting to compare the model 

performance obtained in this thesis with other methods. Examples could be other decision tree 

methods like random forest or Adaboost, support vector machines, and neural networks. 

Another approach would be to compare the model performance to other statistical methods such 

as Generalized Linear Models (GML), Nonlinear Regression Models, or a multivariate GARCH 

such as a GARCH-X or a DCC GRACH model.  

 

Furthermore, the methodology presented in this thesis cloud be applied to a broader range of 

stocks and markets. The model might increase its predictive power by extending the data set 

with data from more stock markets. As mentioned in section 6.3, a more extensive data set 

might provide a more precise estimate of the true future test error for the prediction models. 

Additionally, a more extensive data set might offer more variety, enabling the model to discover 

patterns more clearly and better exclude noise in the data.  

 

The third suggestion for further research relates to the limitation associated with the variable 

selection. More extensive research and experimentation regarding the impact of variables on 

Norwegian stock returns could improve the performance of the Thesis Model. As such, the 

prediction models could benefit from a broader and deeper variable selection process. For 

example, company-specific variables might provide supplementary predictive power to the 

Covariance Model. Likewise, if the cash flow statements from listed companies were of good 

data quality, variables building on these statements could be included in the prediction models.  
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7. Concluding Remarks 

In this thesis, we have deployed the portfolio selection theory from Markowitz on the 

Norwegian equity market using predictions created by the XGBoost algorithm. The portfolio 

allocation process in the Thesis Model consisted of two steps. First, we predicted expected 

quarterly returns and coherent covariance matrices for stocks traded on Oslo Stock Exchange. 

Second, these predictions were then utilized to optimize the weights in the portfolios using 

matrix algebra. Such an approach has never previously been explored, to such an extent, in the 

Norwegian equity market. 

 

We tested the Thesis Model through four quarters from Q4 2020 to Q3 2021. Initially, the 

Thesis Model delivers promising results with an impressive 264% one-year return. Compared 

to a classical Markowitz method, a (1/𝑁) portfolio, and OSEBX, the Thesis Model showed 

superior performance in terms of return. However, the Thesis Model simultaneously obtained 

higher average portfolio volatility than any other selection method. The high portfolio volatility 

causes the Sharpe ratio of the Thesis Model to become lower than any other presented portfolio 

allocation method or index. 

 

Moreover, further investigation revealed that the Thesis Model relied heavily on a few stocks, 

which acquired abnormal returns. This result strongly contrasts with our initial desire to detect 

a well-diversified portfolio. Furthermore, the results changed drastically when we changed the 

conditions for the Thesis Model by removing the stocks with the highest portfolio contribution. 

After rebalancing the model, the one-year return dropped to -7%, far worse than any presented 

portfolio allocation method or index.  

 

The results from the Thesis Model are disappointing. The objective of the quarterly portfolio 

optimization is to maximize the Sharpe ratio. Unfortunately, the Thesis Model is not able to 

construct portfolios that reliably aligned with this goal. Nevertheless, the model initially yields 

an impressive one-year return. However, under new conditions the performance change 

drastically. The statistical evaluation of the XGBoost prediction models entails that they both 

deliver highly inaccurate predictions, which propagates further through to the portfolio 

allocation process. Moreover, there is little evidence that the models can detect any patterns in 

the data beneficial for portfolio construction. In sum, the model struggles to foresee market 
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developments, which accumulates into a model incapable of consistently performing with 

satisfying financial results.  

 

To sum up, this thesis shows that predicting stock returns and covariances is a difficult task. 

From a quarterly perspective, there are many factors influencing the developments in the stock 

market. The combination of predictors applied in this thesis appears unsuitable to detect these 

developments. As such, for further research, we suggest investigating a more thorough variable 

selection with different variables. Furthermore, although XGBoost is one of the most renowned 

machine learning algorithms, there is no guarantee that the algorithm is optimal in this 

prediction context. As such, another suggestion for further research is to examine different 

machine learning methods to a broader range of stock markets and investigate whether this can 

provide better predictions. These suggestions might accumulate in a model proficient at 

predicting both risk and return of stocks sufficiently.  
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