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General Introduction

Energy markets comprise a dynamic environment involving millions of transactions, some-

times repetitive, between thousands of organizations, impacting billions of people world-

wide. Energy products possess peculiar characteristics, such as non-storability, season-

ality, extreme high-price volatility (power), scarcity, high costs, and limited predictabil-

ity, making them very different from classic financial market products (Eydeland and

Wolyniec, 2003). Technological progress has provided us with more and more tools to

deal with energy management problems. We are now able to explore the energy grid, col-

lect data, forecast demand, and hedge market risk. However, at the same time, knowing

the particular characteristics that energy commodities possess, a thorough and careful

analysis of their features is required. A long-term plan with efficient decision-making

mechanisms could result in optimal hedging strategies and future profit-making invest-

ments in the field.

On a global scale, many countries are at the forefront of promoting cleaner energy

supply, which has increased interdependencies between various energy infrastructures

that generate, convert, and provide different forms of energy. This, in turn, brings out

the instabilities in the energy grid and the uncertainties related to energy security, as

consumers have more diversified and complicated energy usage patterns.

To ensure better management and construct more accurate predictive models, it is

very important to explore these markets and provide a deeper insight into the diverse

issues. Energy demand and price dynamics have been extensively studied in the literature.

Many empirical studies have focused on price evolution processes and energy assets,

such as power plants and gas storage (Cook and Green, 2005; Chen and Forsyth, 2007;

Carmona and Ludkovski, 2010). As the literature in energy markets evolves, many studies

have begun addressing other aspects, including multi-energy systems (Zhou et al., 2021),

mapping techniques (Benth et al., 2008; Taylor, 2011), climate uncertainty (Blazev, 2021),

artificial intelligence tools (Kempitiya et al., 2020), and other economic and financial

factors ( Xu et al., 2021).

The energy sector is a fast-growing and complex sector with multiple economic, po-

litical, or technological challenges. These challenges are linked to the requirement of the

industry to meet a wide array of social demands, which can be related to the three tra-
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ditional dimensions of a sustainable energy system: environmental sustainability (green-

house gas mitigation), security of energy supply (diversification of energy sources and

reliability of supply), and economic sustainability (a competitive energy system and af-

fordable energy supply).

In this thesis, we explore various aspects of stochastic energy demand and price mod-

eling. We attempt to fill some of the gaps in this research area by introducing new

ideas on modeling market dynamics and predicting trends for tackling daily energy mar-

ket challenges. We outline how a data-driven approach can effectively support various

challenging energy market issues such as prediction, pattern recognition, competition,

modeling, and so on.

Empirical applications have been the subject of many studies in applied economics.

Some of these applications focus on perfectly competitive markets while others focus on

markets that are characterized by monopolistic or oligopolistic behavior. Moreover, we

do not know the degree of competitiveness in certain markets and would, therefore, be

interested in assessing it. The identification of market structure and the measurement of

the degree of competitiveness are, in fact, among the most important issues in industrial

organizations. Industrial organization studies usually use a variety of indexes of monopoly

as a means for identifying market structure.

The competitive environment in the retail gasoline market, particularly the Swedish

gasoline market, is a main challenge that I attempted to address in Chapter 1 of this

dissertation. The real gross margins of five oil brands across six different geographical

markets are examined and compared to the margins in rural areas. The concentration

ratio across regions is used to measure monopoly power, and rural markets, as anticipated,

have gas stations with the most distance between them. Service and self-service brands

have been analyzed separately. We found that a relatively stable average gross margin

pattern can be observed for both service and self-service oil stations, as each brand

successfully targets a relatively fixed average real gross margin value annually. These

gross margin patterns were compared with the theoretical background, whereby some

differences and counterintuitive aspects have been identified . The results of the empirical

analysis suggest that high-margin markets have less competition and seem to indicate

differences between service and self-service brands’ profits.

The transport sector in many countries relies heavily on gasoline, especially in ru-

ral areas where public transportation is not well developed. Thus, predicting gasoline

consumption is an important function in planning for future demand in order to address

the environmental consequences of gasoline consumption, particularly with respect to the

emission of greenhouse gases. Therefore, the gasoline consumption and price relationship

is another main topic that I investigate in Chapter 2 of this dissertation. We develop a

dynamic method to describe and model gasoline quantity patterns using price and time
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as inputs. In addition, our model is capable of learning nonlinear mappings between

inputs and output and is suited for gasoline consumption predictions. We perform this

analysis for the Swedish gasoline market while analyzing the market dynamics of the main

cities, the E6 highway, smaller cities, rural districts, and five oil brands in Sweden. The

proposed model illustrates the power of the structural time series modeling in identifying

the structural relationships between economic variables, underlying dynamics, and the

prediction of future gasoline consumption.

Asymmetric price adjustment is a common phenomenon in several markets around

the world, particularly in retail gasoline markets. Chapter 3 of this dissertation studies

this phenomenon in the context of the retail gasoline market in Sweden using a dataset

of daily gas station volume and prices that covers a year. We establish short-run cost

pass-through for both average pump prices and volume-adjusted gasoline prices and find

that the disequilibrium error takes longer to be fully corrected when we test for the

existence of volume-adjusted price asymmetry compared to pump price asymmetry. This

finding suggests that oil companies are more focused on pricing on days and at stations

with larger sales. Estimating Non-linear Autoregressive Distributed Lags models across

regions, different station service levels, and local competition levels, we find that rural

areas and gasoline stations less exposed to local competition are able to impose larger

and more prolonged asymmetry on retail gasoline prices. This supports the conclusion

of several studies, that asymmetry in cost pass-through positively correlates with the

degree of market power. The same pattern is uncovered when we estimate models for

varying service levels. Full-service stations have a higher and more prolonged asymmetry

in pricing than automated, self-service stations. In several studies, the former group of

stations has been found to have a higher market power than the latter.

The late 1990s were followed by a large increase in the number of energy modeling

studies, in particular those that aimed to forecast future electricity demand. A large num-

ber of studies focused on short-term load forecasting over a time horizon of hours. These

forecasts can help market participants devise their bidding strategies in the auction-based,

pool-type markets. Less attention has been given to approaches that make medium-term

load forecasts, although, medium-term forecasting methods are useful for balance sheet

calculations and risk management applications. Chapter 4 of this dissertation focuses on

the relationship between seasonal load and prices in the New York wholesale electricity

market (NYISO). In this chapter, we propose a new modeling approach that is useful

in predicting the seasonal load in the NYISO, which may assist market participants in

assessing market risk better and adjusting hedging positions. We first sort and filter

raw market data from 2006 to 2018 into annual, seasonal (90-day), and weekly moving

averages. We then develop three non-linear waveform models that relate the moving av-

erages of load and prices while accounting for seasonality in the data. As a next step, we
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extract the waveform from the filtered data and employ the Box-Jenkins methodology

for the time series analysis to model the resulting noisy residuals. We conclude by per-

forming out-of-sample forecasts of the seasonal moving average model using data from

2019 and 2020. The results provide evidence that the approach developed in this paper

could forecast the relationship between load and prices in NYISO with a high degree of

accuracy.

This dissertation investigates the demand and price dynamics in energy markets. It

focuses on some specific energy industries, namely the gasoline and electricity industries,

and attempts to provide useful pre-processing data techniques and dynamic models that

can help market participants make more informed decisions.

My thesis consists of four chapters. Every chapter is structured as a self-contained

chapter, with a separate bibliography. All four chapters have a common research fo-

cus: the energy field and empirical methodologies. The goal is to propose innovative

modeling approaches and data pre-processing techniques that can play a key role as

decision-support tools, which can estimate risk and generate recommendations for pol-

icy making. The readers will find a wide spectrum of methods and techniques across the

chapters, such as non-linear data analysis, data filtration techniques, waveform functions,

and predictive models.
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Chapter 1

The real effects of gross margin patterns: Evidence

from self/service oil brands

Ritvana Rrukaja∗

aDepartment of Business and Management Science, NHH Norwegian School of Economics, 5045

Bergen, Norway

Abstract

Using descriptive techniques and detailed data, we attempt to describe the competi-

tive environment in the Swedish gasoline market. In particular, we can draw conclusions

on the local competition by constructing real gross margins and comparing these across

oil brands and regions with different characteristics. The service and self-service brands

have been analyzed separately. A relatively stable average gross margin pattern can be

observed for both service and self-service oil stations, as each brand successively targets

a relatively fixed average real gross margin value annually. The observed mean-revision

patterns suggest that the real gross margin volatility and historical margin values will

eventually revert to the long-run mean. In addition, the results suggest less competition

in high-margin markets and seem to indicate differences between service and self-service

brands’ profits. Surprisingly, each brand seems to get a higher profit in Stockholm, and

their margins resemble the rural district’s margin levels while varying across other re-

gional markets. Finally, the results of our empirical analysis on oil brands’ margins show

the ability of brands to generate stable profits over time and, in some regional markets,

even to earn a large profit. These findings have important implications for potential com-

petitors in the market and policymakers who wish to encourage effective competition.

Keywords: real gross margins, local competition, (self) service stations, price rigidity,

mean-revision.

∗I thank Leif K. Sandal, Øystein Foros, and Frode Steen for their useful comments and suggestions and

also for providing data access.
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1.1 Introduction

Although highly vertically integrated oil companies may not necessarily engage in implicit or

explicit cooperation, retail gasoline prices should be impacted by the degree of competition

in retailing. Besides, wholesale prices should also drive retail price fluctuations. This study

explores the firms’ real gross margins, which reflect the volume-adjusted retail prices minus

costs. Studies on gasoline margins have not examined the real gross margins due to the

station-specific gasoline volume data requirement imposed by such a study. However, having

an idea of firms’ real margin strategies is important for uncovering the degree of competitive

market constraints.

Therefore, we attempt to contribute to the literature by using detailed Swedish daily

volume and price data to examine five oil brands’ real gross margins by simultaneously con-

sidering two different categories of gasoline brands: service and self-service. Specifically, we

investigate the brand’s real gross margins at the national level and across six different local

markets between January 1, 2012 and December 31, 2012. A significant positive relationship

between service brands’ real gross margins and market concentration supports the idea that

government incentives to support new entry in the retail market will enhance competition

and consequently lead to lower margins. Similar implications would apply to the self-service

market. On the contrary, obtaining significant market power across different regions, ac-

companied by significant differences in margin levels, suggests that government intervention

to investigate anticompetitive behavior at the national level might have a limited impact.

Byrne and De Roos (2019) and Foros and Nguyen-Ones (2021) are examples of studies that

use descriptive techniques to study the presence of coordination and coordinated effects.

However, such papers do not consider the real gross margins and the service and self-service

brands separately across different geographical areas and over time. Foros and Nguyen-Ones

(2021) show how the market leader’s recommended prices are used to coordinate the timing

and the level of industry-wide price jumps in the Norwegian gasoline market. In comparison,

Bryne and De Roos (2019) document how gasoline retailers in an urban market in Australia

used the price-transparency program called FuelWatch to initiate and sustain cooperation.

Hence both studies examine the presence of price-leadership follower as a mechanism through

which firms create focal points to originate and sustain cooperation. Foros and Nguyen-Ones

(2021) focus on the systematic use of daily recommended prices. Byrne and De Roos (2019)

concentrate on the frequent use of everyday station-level prices to organize oil companies.

Hence, the primary distinction between our observations and those of Foros and Nguyen-Ones

(2021) and Byrne and De Roos (2019) relates to what daily station-level prices represent. In

contrast to these studies, we consider brand volume-adjusted prices and real gross margins

across urban and rural markets facing different competition constraints. Analogously, we

draw attention to how brands are more integrated in some urban and rural markets than
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others. Within this line of research, this study revisits the relationship between the intensity

of market competition and the firms’ margins by focusing on Swedish gasoline retailing. How

and why do brands’ real gross margin patterns change across urban and local markets over

time? Are there lower margin levels in more competitive markets? This study answers these

questions through a unique empirical analysis of real gross margins of brands. We analyze

a rich consecutive dataset that spans a year and contains station-specific observations from

six different geographical areas.

Both tax and wholesale prices are given, which firms cannot influence. Therefore, real

gross margins of brands describe the firms’ price adaptation over time. Foros and Steen

(2013) and Nguyen-Ones and Steen (2019) also describe the market features during the sam-

ple period. Foros and Steen (2013) examine retail pricing, vertical control, and competition

in the Swedish gasoline market. Their descriptive analysis also reveals some similarities

between Stockholm and the price patterns in rural areas. Later, Nguyen-Ones and Steen

(2019) investigated the degree of competition in the Swedish gasoline market by estimating a

structural model that considered the main features of both demand and supply. In contrast,

we focus only on the brands’ real gross margins and separately explore the local competition

conditions for service and self-service brands.

All retail stations throughout the six different geographical areas adjust their real gross

margins according to cost changes every day. The data shows similar margin patterns across

brands on the long-run time interval. We find that service brands, such as Statoil, OK-Q8,

and Shell, are positively correlated on time in adjusting their real gross margins due to cost

changes at the national and regional level. Nationally, we observe a distinct picture for the

self-service brands. St1 always charges on average ten Öre/liter higher real gross margins

than Jet, and their profits never cross. The difference between the margins of St1 and Jet

gets closer in Stockholm compared to other regions. Overall, the five oil brands seem to

target a relatively fixed average profit value on their sales patterns’ adaptation that reflects

a mean-reverting process.

We consider the average distance to the nearest competitor across different regional

markets to measure the competition environment. The largest span is observed in rural

areas where the closest competitor is over 4 km away. Therefore, we consider the level of

real gross margins in rural areas to measure the profit of isolated markets. The data shows

that, surprisingly, all brands generate the highest profits in Stockholm.

Furthermore, the data shows that both the real gross margin level and its pattern in

Stockholm resemble the market features of rural areas. Therefore, based on this monopolization-

like pattern in Stockholm, it is reasonable to think that the markets are less competitive in

Stockholm and the rural districts than other main cities in Sweden. The analysis of the

brand margins at the station level also supports this finding. The spread of real gross mar-

gins between stations of the same brand is bigger in Malmö than in Stockholm and the rural

areas.
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Further, the data shows that service branded stations have different market positions in

terms of margins across regions, and that their daily moving average of margins follows a

stable trend. Among self-service brands, St1 is the leader in terms of margins in all local

markets. It never lowers its margins to Jet’s level, although the difference is significantly

lower in Stockholm. Our rich and complete dataset allows a purely descriptive analysis for

ascertaining these empirical findings.

The remainder of this paper is organized as follows. Section 1.2 provides a brief review of

the empirical studies investigating the relationship between competition and prices. Section

1.3 contains the data description, and Section 1.4 presents our empirical findings and 1.5

discusses them. Section 1.6 contains the concluding remarks and discusses the potential for

future research.

1.2 Review of literature on the relationship between competition and co-

operation

According to Encaouna and Geroski (1986), firms in more competitive industries face higher

uncertainty about their future position in the market. In that regard, they may be more

concerned with ensuring short-run margins, which lead to higher responsiveness to current

cost or demand shocks. By contrast, the price dynamics of firms facing less competition

are more oriented toward long-run objectives than short-run costs or demand fluctuations,

resulting in a higher price rigidity. Alternatively, Stiglitz (1984) argues that oligopolists may

prefer to delay adjusting prices to avoid breaking tacit pricing understandings.

Maskin and Tirole (1988) posit that firms alternate between changing prices. This can

work like a firm’s commitment not to change prices instantaneously, as in the classic Bertrand

competition model. The authors show that there exists a perfect Markov strategy that allows

firms to coordinate on the monopoly price. They also show that the commitment to stick

to a fixed price for an extended period can lead to cooperation and alignment. This fact

has already been supported by several empirical studies that investigated the link between

competition and price flexibility (Alvarez and Hernando, 2006; Cornille and Dossche, 2006).

The existence of greater price stickiness in markets characterized by higher concentration

levels is viewed as an inverse proxy for market competition. Furthermore, the results of

these studies corroborate previous findings of the positive relationship between price change

frequency and the speed of difference to the degree of competition.

Another strand of literature explored the rockets and feathers phenomena in the gasoline

markets. The studies investigated the factors that may explain why retail prices respond

quicker to wholesale price increases and slower to wholesale price decreases. Among the po-

tential reasons for asymmetric cost pass-through, consumer-search behavior and coordination

theories have received the most attention in the literature. The latter implies that previous

retail prices may be the focal points based on which retailers can collude when oil prices

decrease. On the contrary, retailers would quickly raise retail prices when oil price increases
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because continuing to maintain the previous retail price would be unprofitable. Several

studies have empirically found consistency in the collusion theory for explaining asymmetric

pricing. Using monthly state-level US data, Deltas (2008) observes that markets with higher

average retail–wholesale margins experience a slower adjustment and a more asymmetric

response. In addition, Deltas (2008) also shows that a higher degree of retail market power

results in a slower adjustment speed. In other words, asymmetric pricing is more prevalent

in less competitive gasoline markets. This finding is also supported by Verlinda (2008) and

Balmaceda and Soruco (2008). Verlinda (2008) shows that the asymmetric pricing behavior

falls within the geographical proximity of gasoline stations. While Balmaceda and Soruco

(2008), using station-level data from Chile, find that the asymmetric responses are much

more prevalent for branded gas stations than unbranded stations. Later, the findings pro-

vided by Lewis (2015) on the US gasoline retail market also suggest that the use of odd

prices, particularly those ending in 5 or 9, results in higher margins and that odd prices can

be an effective mechanism to sustain collusion.

On the contrary, the search-based theory (Yang and Ye, 2008; Tappata, 2009; Lewis,

2011; Cabral and Fishman, 2012) is based on the idea that consumers are more likely to

intensify search following cost increase than cost decrease. Yang and Ye (2008) have indicated

that cost-change search and learning may play a crucial role in the price adjustment process.

Hastings and Shapiro (2013) confirm such a consumer pattern; they posit that consumers are

more price-sensitive when prices increase. Consequently, knowing this purchasing behavior,

retailers will be less inclined to decreasing the price following a cost decrease than increasing

the price following a cost increase, which leads to asymmetric pricing.

Another explanation between competition and asymmetric pricing is the Edgeworth cy-

cles. Noel (2007a, 2007b), using data from the Canadian gasoline market, shows that isolated

and less competitive markets often exhibit a long period of price stability, while more com-

petitive local markets tend to have short-lived price cycles.

Petrikaite (2016) shows how more information available to consumers about fuel prices

facilitates switching sellers, and how high consumer search costs may result in higher gasoline

market prices. In another example, Byrne and De Roos (2019) document that gasoline

retailers in Australia used the price transparency program called FuelWatch to initiate and

sustain cooperation. They argue that firms can undertake unilateral price announcements

declaring a pricing scheme’s elements, and that these elements have to comprise leadership

and price match. A mutual understanding in an oligopoly might also be achieved following

simple attempts to raise prices in the market, although this might not always be the case. If a

firm raises prices and rivals match the new price, then the firms reach a mutual understanding

and, from that moment on, they may be able to sustain tacit collusion. Pricing schemes must

respond to market outcomes quickly, as they need to provide the best response in the short-

term while still trying to increase profits in the long run.

Finally, two recent studies (Gautier and Le Saout, 2017; Benoit et al., 2019) have inves-
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tigated whether the degree of spatial competition is a driver of price stickiness in the French

retail gasoline market. Benoit et al. (2019), using daily prices for over 8000 French gas

stations, find that the intensity of local competition reduces the rigidity of retail gasoline

prices. They also observe that the degree of price stickiness of gas stations strongly depends

on the price-setting behavior of their local rivals.

Of particular note is the fact that the intensity of gasoline competition at the station

level is primarily concentrated at a specific geographical distance between a given gas station

and its rivals. Since pump prices are fully transparent, both consumers and retailers observe

the final prices daily and adjust their purchasing/business strategies accordingly. Therefore,

gas stations are spatially dependent on their daily effort to set the level of pump prices.

Within this line of research, the current paper revisits the relationship between com-

petition and firms’ margin levels by focusing on the Swedish retail gasoline market. More

specifically, this paper adds to the rich body of literature by providing evidence on the rela-

tionship between the degree of local competition as measured by station proximity to rivals

and real gross margins at the station level.

1.3 Data description

We focus our research on the Swedish gasoline market, containing daily station-level micro-

data for five oil brands across six different local markets. All stations part of the sample

are vertically integrated because the oil majors own them and directly control day-to-day

pricing. In this respect, the Swedish gasoline market is similar to the Norwegian gasoline

market (Foros and Steen, 2013), but distinctly different from the market in many other

countries. For example, vertical integration is significantly less common in the US gasoline

market (Borenstein et al., 1993).

Three major oil companies are part of our sample: Statoil Fuel & Retail AB, St1 Energy

AB, and OK-Q8 AB. The first two own brands that run service (Statoil and Shell) and

self-service (Jet and St1) stations. In 2012, Statoil Fuel & Retail AB was the largest retailer

in the market, having a market share of 34% in gasoline volume. OK-Q8 AB and St1 Energy

AB were the second and third largest retailers with 27.9% and 22.6% market share in gasoline

volume, respectively.

We considered the three service and two self-service brands separately. We utilized a novel

dataset containing the daily station-specific observations of gasoline volume, Rotterdam spot

market price, and pump prices. This dataset is obtained from the Swedish Competition

Authority covering the period from January 1, 2012 to December 31, 2012. In total, we have

a balanced dataset of 366 liters in daily retail gasoline volume and price observations across

147 stations in 6 different geographical markets, that is, Stockholm, Gothenburg, Malmö,

the E6 highway, smaller cities, and rural areas. Volumes are in terms of a liter and prices are

in terms of Swedish kroner per liter (SEK/liter). The retail price has two components: fiscal

and market. Taxes account for approximately 63% (energy tax + CO2 tax + VAT) of the
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final retail price in Sweden. The Rotterdam spot market price is an input price that can be

considered the price of buying gasoline on the international market. The primary cost source

for oil firms is this price, as we do not observe firm-specific costs. Thus, firms are subject

to the same input price. Given the richness of the data, we built a variable representing the

firms’ profitability, in this case, real gross margin, which is defined as the difference between

the volume-adjusted price and gasoline costs. More importantly, each volume and price value

is linked to a station, brand, and region that allows us to examine a brand’s profitability at

the national, regional, and station levels. The daily volume and price data for each station

are complementary because they allow us to introduce the volume-adjusted prices in the

literature and examine the real gross margin patterns. Furthermore, we considered three

different price measures. 1) The daily volume-adjusted gasoline price, which is the everyday

price at the pump (including taxes), adjusted by the volume sold on that day at each station.

2) The daily Rotterdam spot market price for refined products as a measure of input price.

3) We define brands’ real gross margins as the volume-adjusted prices, which are less than

the input cost and taxes.

1.4 Empirical analysis

The following subsections will discuss the empirical evidence separately for the service and

self-service gasoline brands.

1.4.1 Service gasoline brand results

1.4.1.1 Real gross margin patterns at the national level

Our dataset has some important implications for studying firms’ dynamic profit strategies.

The data’s high frequency implies that: 1) there is retail competition daily, 2) retailers set

gross margins simultaneously each day, and 3) retailers face standard daily input cost and

tax fluctuations over time. Typically, integrated players in this retail gasoline market have

a very dense retail network covering the entire country. All stations of the retail network of

the major oil companies in our sample are under their ownership. As such, the owners of

the major oil companies are free to set the retail price. Besides, the owners can perfectly

observe each other’s prices each day. Our descriptive framework maps well into data-driven

approaches and reveals important market issues by just observing the data. The daily real

gross margins of brands are calculated at country, regional, and station level using the

following formula, and consumer daily volume-adjusted price for gasoline consists of the

following components:

Pt = POt + Tt + RGMt ∗ V ATt (1)

where Pt is the daily volume-adjusted price for gasoline at day t, POt is the input price

at day t, Tt is the tax (energy tax + CO2 tax), V ATt is the value-added at day t and RGMt

is the real gross margin. Further, formula (1) assumes that POt and Tt were paid on the
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same day.1 Therefore, we should be aware that when the input prices climb for a certain

period, it underestimates their gross margins, and vice-versa when the input prices decline.

Of these components, tax constituted approximately 37% of the sales price, product cost

33%, gross margin roughly 5%, and VAT 25% of the retail price in December 2012.2. The

state sets both the energy tax and the carbon tax every year. The input cost considered in

our analysis comprises the cost of crude oil but does not include the transport, handling, and

storage costs. Based on the information we received from the managers of the transportation

and logistics department of the oil companies, the transportation cost was relatively fixed

during the sample period due to the long-term contacts for transport/distribution. About

1–2% of the retail price, including taxes, reflected the transport cost, which was set to be

the same across Sweden.

As a next step, we have considered the proximity of stations to measure the degree of

competition across regions. Table 1 below shows the average station distance from the closest

competitor across regions.

Table 1: The distance to the closest rival station across regions (in km)

Regions Stockholm Gothenburg Malmö E6 Smaller cities Rural areas

Mean 1.1 0.9 0.9 2.5 0.616 4.7

Standard deviation 0.2 0.1 0.1 0.5 0.1 1.4

As anticipated, the distance between a station and its nearest competitor is larger in

rural areas compared to other regions. Therefore, we have considered the real gross margin

values in rural areas as reflecting the profits of isolated markets.

The input cost is given on each day, and it is fixed for every company. POt + Tt is the

price that a retailer has to pay to get the product at a station and then sell it. The only

difference here is that Tt was constant throughout the year while POt is paid on a different

day. Given the price formula (1), consumers will carry the tax’s financial burden, increasing

the input cost. Therefore, changes in RGMt represent firms’ price adaptation throughout the

year and also firms’ dynamic profit strategies. RGMt in all figures that follow are expressed

in SEK/liter sold. Figure 1 shows the national distribution of real gross margins of brands

belonging to three service brands that run only service stations. Each color represents an oil

company in our analysis. Specifically, red for Statoil Fuel & Retail AB, green for St1 Energy

AB, and blue for OK-Q8 AB, unless otherwise indicated.

1In the literature, it is common to assume that the option value of gasoline today measured through the

Rotterdam price is the daily cost.
2https://drivkraftsverige.se
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Figure 1: The distribution of service brands’ real gross margins

The x-axis contains the margin values, and the y-axis is the probability density function

for the continuous random variable x. As can be seen, OK-Q8 charges higher real gross

margin values nationally than Shell and Statoil, with an annual mean of 0.85 SEK/liter, 0.83

SEK/liter, and 0.8 SEK/liter, respectively. However, Shell’s profits exhibit higher variations

compared to Statoil and OK-Q8.

Next, to examine the influence of the past margin decisions on current margin values, we

have calculated the average of the historical margin data for each day. Figure 2 depicts these

values for the service brands nationally.

Figure 2: The daily average of the historical margin data

The vertical axis shows the daily average of the historical margin data, and the horizontal

axis shows the days of the year. As shown in Figure 2, the mean of historical data exhibits

some variations at the beginning of the year due to the lack of the previous year’s data.

Nevertheless, the mean is still relatively stable throughout the year. It seems like each brand
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targets a fairly fixed mean value and maintains it over time. Surprisingly, their mean margins

do not cross but move synchronously. In addition, Figure 2 shows that OK-Q8 targeted the

highest margin mean nationally and Statoil the lowest. At the same time, Shell appears to

be the middle brand in terms of margins during the entire year. This fact implies a clear

margin targeting structure over time.

1.4.1.2 Real gross margin patterns at the regional level

Increased concern about gasoline pricing has increased the interest in how gasoline prices

are determined and how they change in different local markets. Figure 3 shows the service

brands’ real gross margin distributions across six regions, including urban and rural markets

in Sweden.

Figure 3: The distribution of brands’ margin across regions

Again, the vertical axis contains the probability density function and the horizontal axis

indicates the margin values. In comparison to Figure 1, Figure 3 presents a detailed picture

of service brands’ margin levels across local markets. Statoil and OK-Q8 are closely leading

the market in terms of margins in Stockholm, while Shell sets seemingly lower margins than

the other two brands in Stockholm. However, Shell is the market leader in terms of margins

in Gothenburg and Malmö, followed by Statoil and OK-Q8.

Interestingly, Statoil and OK-Q8 have almost the same margin distributions with almost
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identical margin means and standard deviations in Stockholm and Malmö. OK-Q8 charges

higher margins than the other two brands on the E6 highway and in rural areas. While in

smaller cities, OK-Q8 and Shell seem to set higher margins, although the spread of Shell’s

margins is more significant than that of OK-Q8. Shell has lower gross margins than its

competitors in Stockholm, but it seems to have significantly higher margins in Gothenburg

and Malmö. This finding is interesting because it may imply that these brands have different

market positions in terms of margins across local markets.

Therefore, we calculated the brands’ annual mean margin across regions. Table 2 shows

how service gasoline brands are positioned across local markets. The positions highest,

middle, and lowest is given based on the annual mean margin of the brands.

Table 2: Brands’ position in terms of margins across six regions in Sweden

Regions Stockholm Gothenburg Malmö E6 Smaller cities Rural areas

Highest brand Statoil Shell Shell OKQ8 OKQ8 OKQ8

Middle-brand OKQ8 Statoil Statoil Shell Shell Statoil

Lowest brand Shell OKQ8 OKQ8 Statoil Statoil Shell

OK-Q8 has the highest mean margin in three regions, lowest in two, and medium in one

region. Statoil is the leader in one region, the middle brand in three regions, and the lowest

on the E6 highway and in smaller cities. In contrast, Shell seems to be the leader in two

regions, the middle brand in two, and the lowest in two. Interestingly, all brands are the

lowest in two local markets.

To better understand how these brands compete in those six different local markets,

we have computed the daily moving average of the previous brands’ gross margins at the

regional level (Figure 4).
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Figure 4: The daily average of the historical margin data across regions

With the same reasoning as at the national level, the daily average of the historical

regional margin values exhibits some variations at the beginning of the year. Again, the

mean of the historical values seems to be relatively stable throughout the year in each

region. Statoil and OK-Q8 closely follow each other in Stockholm, with Statoil charging a

slightly higher margin mean than OK-Q8. Shell is the lowest in Stockholm. In line with

previous results, we see the opposite setting in Gothenburg and Malmö, where Shell is the

highest and Statoil the middle brand. In contrast, in smaller cities, rural areas, and on the

E6 highway, OK-Q8 is the leader.

Each brand is the lowest brand in two regions, and this fact is also evident from Table

2. Statoil is the lowest brand on the E6 highway and in smaller cities, Shell in Stockholm

and rural areas, and OK-Q8 in Gothenburg and Malmö. This fact may suggest a shared

market. Another finding that Figure 4 reveals is the increased slope of the brand-running

mean during the second half of the year in each region except in Malmö, where Statoil and

OK-Q8 have a downward slope. Figures 2 and 4 also reveal the importance of the previous

brands’ margin data in the current margin decision. Given that the oil price may be random,

it suggests that the adjustments may follow a certain rule. In other words, all brands try to

target a fixed daily margin, but they know that the oil price is changing every day, so they

have to adjust the price continuously to approach this target margin.
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Moreover, the fact that brands’ margins do not undercut throughout the year, either at

the national or regional levels, suggests a structure in this market. In addition, we observe

a higher margin mean in Stockholm and rural areas than other big cities and smaller cities.

This might imply that the competition conditions in Stockholm are comparable with the

competition conditions in rural markets. The latter is considered in the literature as a

market that reflects monopolistic market outcomes while the former reflects competitive

market features.

1.4.1.3 Real gross margin patterns at the station level

As above, we have calculated the station mean of historical margins; Figure 5 shows these

values for three regions: Stockholm, rural areas, and Malmö. We have chosen these three

regions to represent high margin regions (Stockholm and rural areas) and low margin regions

(Malmö).

Figure 5: The mean of the historical margin values across stations and regions

As can be seen, the spread in Malmö is much larger than in Stockholm and rural areas.

This fact supports the results above, which suggest a more competitive local market in

Malmö as compared to Stockholm. Similarly, as in the figures above, we observe a relatively

stable mean in the station level data. It seems that each station targets a relatively fixed

mean value and tries to keep it over time with slight variations of the targeted value.
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1.4.2 Self-service gasoline brands’ results

1.4.2.1 The gross margin patterns at the national level

We found it important to examine the self-service retail brands as there is a dearth of research

focusing on these brands. Therefore, observing their real gross margins and comparing them

with the service brand margins gives us insights into the market structure differences and

competition conditions between (self) service brands. First, we analyzed the daily real gross

margins of self-service brands at the country level; Figure 6 shows the distribution of the

margins for each brand. The red indicates the brand owned by Statoil Fuel & Retail AB

and green reflects the brand owned by St1 Energy AB.

Figure 6: Distribution of the real gross margins of brands

The x-axis contains the gross margin values of the self-service brands nationally, and

the y-axis their corresponding probability density functions. St1’s annual margin mean is

seemingly bigger and exhibits a larger variation compared to that of Jet. The majority of

Jet’s margin values range from 0.4 SEK/liter to 0.8 SEK/liter with an annual mean of 0.61

SEK/liter, while the real gross margins of St1 range from approximately 0.4 SEK/liter to

1 SEK/liter with an annual mean of 0.71 SEK/liter. Thus, a 10 öre/liter difference exists

between the two self-service brand margins on average. Figure 7 below compares the daily

real gross margins between the two brands. The blue line represents the case where we

assume that St1’s margins are equal to Jet’s margins. While, the red dots are the real

combinations of their daily gross margins taken from Figure 6.
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Figure 7: A comparison between St1’s and Jet’s margins

Although we noticed from Figure 6 that St1, on average, charges higher margins, Figure 7

shows that St1 always captures higher daily margins than Jet, and their margins never cross.

The difference is always above the diagonal. However, the service brand margins fluctuate,

as shown in Figure A1 in the Appendix. This probably simply suggests that independent

of wholesale gasoline price fluctuations, Jet will always charge lower margins than St1. On

the one hand, this fact can imply that St1 cannot afford to lower its margins down to Jet’s

margin level due to other costs that we do not have information on in our analysis.

On the other hand, this fact may suggest less competition. Brands that run self-service

stations do not compete in the same manner as the service brands nationally. Indeed, Figure

7 is a strong picture if we combine it with Figure A1. Considering our visual inspection of

the national margins for two different categories of gasoline brands: service and self-service,

we choose to display the same graph as in Figure A1 for both categories of gasoline brands

in Stockholm and rural areas. Figure A2 in the Appendix shows the results. St1’s and Jet’s

margin values are much closer in Stockholm than in rural areas. Interestingly, Jet captures

the highest margin in Stockholm, compared to other regions. This seems to imply that Jet is

more competitive in Stockholm. However, does that also imply that it is not important for

Jet to be cheaper in Stockholm due to the lack of fierce competition? In other words, knowing

that service stations have higher prices, Jet tries to capture as much profit as possible in

Stockholm. In rural districts, however, we observe a clear market leader in terms of margins:

St1 in the self-service graph and OK-Q8 in the service graph.

Next, we calculated the daily mean of historical margin data of brands that run only self-

service stations to examine how their past margins influence the current margin outcomes.

Figure 8 shows the mean for Jet and St1 at the national level.
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Figure 8: The daily average of the historical margin data

In addition, the annual average margin value that St1 and Jet seem to target can be seen

in Figure 8. The variations at the beginning of the year can be due to the unavailability

of the previous data. Nevertheless, approximately after January, the target seems obvious

for Jet and St1 with SEK 0.6 and SEK 0.7, respectively, and each brand seems to belong

somewhere above and below that targeted profit value.

1.4.2.2 Gross margin patterns at the regional level

Again, as for gasoline brands that offer full service at the station, we have observed the

distribution of the daily margins of self-service brands across different local markets, such

as Stockholm, Gothenburg, Malmö, the E6 highway, smaller cities, and rural areas. Figure

9 shows the distribution profiles.
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Figure 9: The distribution of brand margins across regions

We see that St1 has a more significant mean margin across all areas. Except in Stockholm

and smaller cities, we observe a ten öre/liter difference between their margins. As a next step,

we have calculated each brand’s daily mean of the historical margin value across regions,

and Figure 10 depicts these values.

Figure 10: The daily average of the historical margin data across regions
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Supporting what we saw from the previous figures, the mean of St1 is seemingly higher

than Jet’s mean in each region. The differences are smaller in Stockholm and smaller cities

but significantly bigger in Malmö, rural areas, Gothenburg, and on the E6 highway. The

data shows a precise self-service brand positioning across local gasoline markets. St1 is the

most expensive brand, and Jet is the cheapest brand (in daily values), regardless of their

stations. We are uncertain about making some conclusions if these results suggest that St1

might enjoy some market power or that these two self-service brands seem to not actually

be competing.

1.4.2.3 Gross margin patterns at the station level

For each station of St1 and Jet located in Stockholm, rural areas, and Malmö from our

sample, we have calculated the daily average of the previous gross margins to analyze how

important the past is on today’s station profit decisions. Figure 11 shows that the spread of

gross margins between Jet’s stations is more significant in Stockholm than in Malmö. The

same pattern can be observed for St1, indicating an opposite pattern of what we observed

for the service brands (Figure 5). This means that different from the service stations, the

self-service stations have a slightly more significant margin spread in regions with high gross

margin values than in those with low margin values.

Figure 11: The daily average of the historical margin data across stations and regions

The mean of historical data for both self-service brands has a downward slope in Malmö
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and an upward slope in Stockholm. Gasoline stations that belong to Jet charge slightly lower

gross margins than the ones that belong to St1.

1.5 Discussion

This study observed oil companies’ profit decision-making in the Swedish retail gasoline

market and investigated how real gross margin values adjust as firms’ responses to cost

change.

We started by separately analyzing service and self-service gasoline brands and looking

at their margin strategies to investigate if it can be possible that brand margins enhance,

notwithstanding the evidence of regional differences in margins. We observe that all brands

capture higher margins in Stockholm and rural areas and that such an increase in margins

might be due to the absence of fierce competition in Stockholm. Oil brands that run only

service stations seem to not compete as aggressively in Stockholm as they do in Gothenburg

or Malmö. Abrantes-Metz et al. (2006), using daily price data from the retail gasoline

industry in Louisville, argue that markets exhibiting high mean prices and low variance

suggest the presence of conspiracies. Referring to their paper, we have calculated the mean

and variance of volume-adjusted prices across regions, and Figure 12 depicts the results

observed.

Figure 12: Price means and standard deviations across regions

As apparent from Figure 12, the so-called “outliers” (Abrantes-Metz et al., 2006) in

our case seem to be Stockholm and rural areas, which have high means and relatively low

variances. Gothenburg and the E6 highway have a low mean and standard deviation. In
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contrast, Malmö and smaller cities exhibit a lower price mean and a higher price variation

than other regions. Table A1 placed in the Appendix contains the mean price t-tests across

regions. In this case, we test whether the prices are significantly different in Stockholm

compared to rural areas and other regions. We observe that the difference between the mean

prices in Stockholm and rural districts is not statistically different. In contrast, the difference

in mean prices in those regions is statistically different from that of the other regions, further

strengthening the observed results on the similarities between Stockholm and rural areas.

A reasonable assumption is that Stockholm seems to be a less competitive market based

on the observed monopolization pattern. All brands target a higher annual margin mean in

Stockholm, and the difference between service and self-service brand margins gets smaller.

Among service brands, OK-Q8 charges the highest margin countrywide and St1 charges the

highest among self-service brands in our sample. The margin variations are more considerable

in low-profit regions than in high-profit regions for both cases. Surprisingly, the margin level

in Stockholm is significantly different from the other big cities in Sweden, resembling the

rural district’s margin levels. These results suggest less competition in Stockholm than in

Gothenburg and Malmö. The price difference is much more evident between self-service

brands, where St1’s national margins are always higher than Jet’s national margins, and

they never crossed during the year. On average, Jet is cheaper than St1 across all regions,

but their margin difference is much smaller in Stockholm compared to other areas. In

contrast, service brands shift their roles in terms of margins across regions. The relatively

stable moving average margin patterns observed across different local markets reveal the

importance of the previous brand profit decision in their day-to-day decisions.

Moreover, the evident steady mean gross margin target seems to be well adapted by

each brand nationally and locally. As expected, the real gross margins of service brands

are seemingly higher than the real gross margins of self-service brands. This difference may

arise from various reasons, such as the capitalization of providing a higher service, labor cost,

covering the convenience store costs, or earning additional profits.

1.6 Conclusion

At the national level, we observe that both self-service and service oil brands seem to target

a seemingly rigid mean margin over time. Significantly, the regional level analysis results

show that the highest brands’ real gross margin areas are Stockholm and rural areas. How-

ever, the data suggest higher competition in Gothenburg and Malmö. Results in Stockholm

significantly differ from other big cities in Sweden.

Additionally, a mixed, leading role in terms of margins across different local markets is

observed for the service brands. Statoil, OK-Q8, and Shell have lower margins in two regions

out of six. In contrast, the data show a different reality for self-service brands. St1 always

gets higher margins than Jet, independent of the station’s geographical location. Service

brands have on average a ten Øre/liter higher gross margin than self-service brands and
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seem to compete more than the self-service brands. The stable mean margin throughout

the year may reflect a lack of effective competition in Stockholm and isolated markets (rural

areas). Thus, price-sensitive drivers that compare prices might indeed not exert competitive

pressure on the gasoline brands in those two local markets.

However, due to the high market transparency and the technological developments, no

explicit communication between companies is needed to cooperate on a strategy of fixed

target profit that satisfies all market participants. During our sample period, the centralized

price setting in the Swedish retail gasoline market may have contributed to a common profit

strategy on rigidity in gasoline markups where major companies aim to maximize common

profit for their self-service and service stations.

The analysis at the station level across regions supports our findings at the regional level.

The variations between stations’ margins in Stockholm and rural areas are significantly minor

than in Malmö.

However, the surprising regional margin patterns and the coexistence of sticky daily mean

margin observed in Stockholm should be developed further, withs special focus on the role

of price asymmetry or implicit coordination.
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1.7 Appendix

Figure A1: The margins of service brands in Sweden
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Figure A2: The brands’ margins in Stockholm and rural areas

(a) Self-service brands

(b) Service brands
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Table A1: The t-tests of the difference between mean prices across regions.

Regions Mean Vol. weighted price Std. Dev. t-tests

Stockholm — rural areas 14.8407 — 14.8168 .4455 — .4462 0.7242

Stockhom — Gothenburg 14.8407 — 14.6004 .4455 — .4275 7.444∗ ∗ ∗

Stockholm — Malmo 14.8407 — 14.6665 .4455 — .4627 5.189∗ ∗ ∗

Stockholm — E6 14.8407 — 14.6543 .4455 — .4218 5.813∗ ∗ ∗

Stockholm — Smaller Cities 14.8407 — 14.7412 .4455 — .4476 3.016∗ ∗ ∗

Rural areas—Gothenburg 14.8169 — 14.6004 .4462 — .4275 6.699∗ ∗ ∗

Rural areas — Malmo 14.8169 — 14.6665 .4462 — .4627 4.475∗ ∗ ∗

Rural areas — E6 14.8169 — 14.6543 .4462 — .4218 5.064∗ ∗ ∗

Rural areas — Smaller Cities 14.8169 — 14.7412 .4462 — .4476 2.291∗∗

Gothenburg — Malmo 14.6004 — 14.6665 .4275 — .4627 -2.005∗∗

Gothenburg — E6 14.6004 — 14.6543 .4275 — .4218 -1.715∗

Gothenburg — Smaller Cities 14.6004 — 14.7412 .4275 — .4476 -4.349∗ ∗ ∗

Malmo — E6 14.6665 — 14.6543 .4627 — .4218 0.372

Malmo — Smaller Cities 14.6665 — 14.7412 .4627 — .4476 -2.219∗∗

E6 — Smaller Cities 14.6543 — 14.7412 .4218 — .4476 -2.701∗ ∗ ∗

***p < 0.01, **p < 0.05, *p < 0.1
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Chapter 2

Stochastic modeling of quantity and price

dynamics in the Swedish gasoline market

Ritvana Rrukaja∗, and Leif K. Sandal a

aDepartment of Business and Management Science, NHH Norwegian School of Economics, 5045

Bergen, Norway

Abstract

Medium-term gasoline demand shifts are required for the efficient management of

consumers’ responsiveness to price changes. A dynamic model that has performed well

with a medium-term prediction is the model that describes the seasonal effects noticeable

in the data. This study develops a model that takes into account trend and seasonality

of the five-week moving averages of gasoline quantity and quantitative adjusted prices.

The analysis includes three modeling steps: a pre-processing step where the raw data is

transformed to moving averages, a model specification step, and the residuals modeling

analysis step. The leftover residuals from the model have been fitted by two different

normal distributions. The resulting approach is promising, providing a helpful tool in

understanding the gasoline quantity-price relationships nationally and regionally in the

retail gasoline market in Sweden.

Keywords: Gasoline quantity, price variations, cyclicality, stochastic modeling

∗We thank Frode Steen for his helpful comments on this chapter.
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2.1 Introduction

Gasoline is one of the most heavily traded oil-derived products worldwide. Economists and

environmentalists have been interested in understanding the factors that determine gaso-

line demand, especially in the last 30 years. Oil is a necessity in daily life and is one of

the main drivers of countries’ economies. Gasoline prices fluctuate due to occasional short-

ages in available refining capacity and the uncertainty in the global oil market. Measuring

consumers’ responses to such price variations is essential for understanding the potential

macroeconomic impacts of future petroleum disruptions and developing sustainable policies

to respond appropriately to urban and global environmental challenges.

Different econometric methods have been explored in the retail gasoline industry to shed

light on the gasoline demand and price relationship. Some approaches focus on the path

estimation of price elasticity of gasoline demand using aggregate data while others use disag-

gregate data.1 A substantial body of literature has provided the elasticity estimates at the

country level (e.g., Baranzini and Weber, 2013; Liu, 2014; Rivers and Schaufele, 2015; Coyle

et al., 2012; Crotte et al., 2010). In reality, however, consumers make gasoline purchase

decisions daily, responding directly to the gasoline pump prices on the day of the purchase.

However, models that use monthly, quarterly, or annual gasoline consumption and price

data across states or large geographic areas necessarily aggregate these different purchase

decisions, likely resulting in masking consumer responsiveness to local price changes. Some

notable studies that have provided gasoline demand elasticities using micro-level data are

Nguyen-Ones and Steen (2020), Levin et al. (2017), and Coyle et al. (2012).

The gasoline demand elasticity values documented across several gasoline markets world-

wide provide us with information about the gasoline demand responses due to price changes.

However, at the same time, how this relationship between gasoline demand and prices is

evolving remains to be explored. This study develops a stochastic modeling approach to de-

scribe the medium-term relationships between gasoline quantity and volume-adjusted prices

over time. We first construct a five-week moving average (MA) of the daily gasoline volumes

and volume-adjusted prices. We then build an explicit model describing the seasonal effects

of the gasoline quantity development. After removing the deterministic components trend

(and seasonality), the received stochastic residues of gasoline quantity are modeled via two

different normal distributions. We utilize daily gasoline price and volume data from the

Swedish retail gasoline market at the station level.

Given the detailed data on gasoline quantity and price, we use the quantity-adjusted

prices instead of the average prices typically used in the literature. Another contribution

of this paper is to provide evidence regarding medium-term gasoline quantity and the price

1Dahl and Sterner (1991), Graham and Glaister (2002), and Lipow (2008) provide summaries of the results

regarding gasoline demand elasticities.
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correlational relationship, which is provided nationally and across six regional markets. In

addition, a similar modeling approach is used to understand the relationship between gasoline

sales and the prices of five oil brands. The R-squared values that the stochastic model yielded

are large in all the analyses. They imply that the Swedish consumers exhibit similar gasoline

purchase behavior across different local markets and that our dynamic model has been able

to describe the stochastic development of the gasoline quantity.

Establishing these facts is important for reacting quickly to the increased concerns about

the contribution of road transport to climate change and the growing demand for electric

vehicles. Although advanced dynamic models are not used in the gasoline demand literature,

they have been extensively included in the modeling of commodity prices in order to describe

the strong seasonal effects that electricity prices possess.2 Finally, it is worth mentioning

that this approach for mid-term prediction of future price and quantity relationships can be

extended to handle risks in other markets, such as agriculture and power.

This paper is organized as follows. Section 2.2 presents a literature review of gasoline

demand modeling. Section 2.3 provides a brief explanation of the data used in this paper from

the Swedish Competition Authority (SCA) and the Swedish retail gasoline market. Section

2.4 offers a more in-depth explanation of how the dynamic model and the residual fitting

model are built and how they are used to explain the gasoline demand–price relationship.

Section 2.5 presents and discusses the results and Section 2.6 concludes the paper.

2.2 Gasoline demand literature

This paper’s contribution is related to but also differs from the previous research on gasoline

demand estimation. We start by discussing the existing methodology and empirical literature

in this field, and then we explain how new insights can be gained by applying our dynamic

approach. Studies before the 1970s, that directly focused on analyzing gasoline elasticities,

are minimal, while in the last four decades, the price elasticity of gasoline demand has been

extensively studied. Besides, a wide range of studies has been conducted to explain how gaso-

line demand is related to price, income, and other variables, such as population, tax, public

transportation, vehicle characteristics, and so on. However, the results vary between these

studies, depending on the estimation technique, data used, and period. Studies on gasoline

demand estimation also differ by the functional form introduced in their approaches. The

log-linear demand model that has been applied in most studies utilizes monthly, quarterly,

or annual gasoline consumption and average gasoline prices across states or large geographic

areas. Such models are called “static” demand models, where the parameters on price rep-

resent an estimation of demand elasticity (Wadud et al., 2010). In cases where demand

and price changes vary over time, as in the real gasoline market, these static models can

be appropriate in capturing the immediate and long-term responses of a price change. In

studies that assume that gasoline demand may take time to adjust to price fluctuations,

2Lucia and Schwartz (2002), Ghiassi et al. (2006), Keles et al. (2012), and Nepal (2015).
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authors often apply a more flexible approach by including lagged values of prices and other

control variables in the demand equation. The outcome of these “dynamic” methods is the

elasticity of demand, which is the sum of the parameters on current and lagged prices (Dahl

and Sterner, 1991; Lin and Prince, 2013). Levin et al. (2017) argue that the higher the levels

of data aggregation, the more inelastic the price elasticity of gasoline demand. This argu-

ment makes sense since the aggregated data reflects the overall market rather than the micro

demand from consumers facing pump prices from various gasoline stations. An exception is

Nguyen-Ones and Steen’s (2020) structural model analysis, which estimates the downstream

competition level in gasoline markets by utilizing daily station-level demand and price data.

Such data have played an important role in observing gasoline demand and prices at a higher

frequency than the vast majority of gasoline studies that rely on a more aggregated market

analysis.

Another strand of research on gasoline markets focuses on using the co-integration and

ordinary least squares methods, which rely on macroeconomic control variables such as

inflation (Hughes, 2008). Others rely on average income (Wadud et al., 2010; Baranzini

and Weber, 2013; Coglianese et al., 2017), which is linked to aggregate gasoline demand,

producing overall market elasticities. Using cointegration techniques, Schleiniger (1995) finds

that price changes do not explain variations in demand and that income per capita has a

significant impact on demand dynamics. Typically, the overall market elasticities presented

in the literature are lower than one. Dahl and Sterner (1991) and Graham and Glaister

(2002) observe lower short- and long-term price elasticities than income elasticities. Bons et

al.’s (2008) meta-analysis reported a mean price elasticity of gasoline demand of -0.34 in the

short-run and -0.84 in the long-run. Wang (2009) finds elastic gasoline demand in Perth,

Australia. Moreover, he finds a price elasticity of -6.20 for a sample of stations with their

nearest competitor within 4.2 km and -18.77 for a sample of stations located right next to

their nearest competitor.

Despite the uncharted gap in gasoline demand modeling using high-frequency volume

data at the station level, other gasoline consumption areas have been studied in detail.

Much research has focused on estimating the price and income elasticities of demand.3 Eckert

(2013) suggests a need for more studies in demand estimation using high-frequency, station-

level data. This paper fills this gap in the literature and observes how price and gasoline

consumption relate to time.

3Espey’s (1998) meta-analysis examined 41 articles, Graham and Glaister’s (2004) examined 69 articles,

Dahl and Sterner’s (1991) over 100 articles, Goodwin et al. (2004) 240 articles, and Eckert’s (2013) employed

more than 75 empirical studies of gasoline retailing.
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2.3 Data and the Swedish gasoline market

2.3.1 Data overview

The gasoline volume and retail price data used to examine the gasoline quantity–price rela-

tionship have been obtained from the SCA covering the period January 1, 2012 to December

31, 2012. The dataset comprises a time series of morning and afternoon gasoline prices

and daily gasoline volume observations from 190 stations across Sweden (for more details

about the market structure during the sample period, see Ganslandt and Ronnholm, 2014.

For more information on the data, see the report on the Swedish gasoline market by Foros

and Steen, 2013 and the article by Nguyen-Ones and Steen, 2020. We consider everyday

prices the mean price between the two price observations for each day. A station must have

demand and price observations available for each day in 2012 to be considered. Thus, this

requirement allows for the same number of stations included in the national, regional, and

brand-wide gasoline consumption analysis. This requirement should also reduce the mis-

matches on daily quantity and the volume-adjusted daily price for gasoline that can result

from non-synchronous timing.

We have excluded the data of 43 stations because the volume and price values were

missing for more than five consecutive days during a year, which may happen for several

reasons, such as stations were closed or were misreporting issues. In other instances, we

have substituted the missing observations by taking the simple average of the two preceding

and two succeeding averages of gasoline volume and retail prices. Four big fuel companies

dominated the Swedish gasoline market during our sample period: Statoil Fuel & Retail AB,

Preem AB, OK-Q8 AB, and ST1 Energy AB. In 2012, they controlled more than 99% of

the market: Statoil Fuel & Retail AB held 34.86% of the volume, OK-Q8 AB held 27.93%,

ST1 Energy AB held 22.62%, and Preem AB held 14.22%, leaving only 0.36% of the volume

to others. All stations that belonged to Preem AB had missing consecutive data for up to

18 days. Thus, we have removed this company from our analysis. Statoil Fuel & Retail AB

and OK-Q8 AB have significantly higher shares compared to their rivals. Another structural

change in this market is that many stations have been transformed into self-service retail

stations. In 1999, automated stations had a 32% market share, while in 2013, it was up to

62% (Foros and Steen, 2013). We utilize consecutive daily volume and price measurements

at the station level across regions, that is, Stockholm, Gothenburg, Malmö, the E6 highway,

small cities, and rural areas, and across brands, that is, Statoil, OK-Q8, Shell, Jet, and St1.

It is worth noting the importance of high-frequency gasoline micro-data because such data

are rarely seen in the gasoline literature.

2.3.1.1 Gasoline volume characteristics

The absence of high-frequency gasoline volume data in the literature gives our paper a

considerable advantage concerning modeling the relationship between gasoline quantity and
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prices using a dynamic model. Figure 1 illustrates the daily gasoline volumes at the station

level using a histogram.

Figure 1: The histogram of gasoline volume at the station level

We also investigate the gasoline volume patterns at the regional level and for the five

oil brands in the Swedish gasoline market; Table 1a shows the summary statistics across

regions. As we have a different number of stations for each region, we cannot have a regional

comparison between the mean volumes. From the number of observations, we see that rural

areas have the highest number of observations, resulting in the highest number of stations

in our sample. The standard deviation is highest for the E6 highway and Gothenburg and

the lowest in rural areas and Malmö. Indicating that the variation of volume observations

from the sample mean of the E6 highway and Gothenburg is more significant than in other

regions.

Table 1a: Descriptive Statistics of Gasoline Volume (liters)

Region

Regions Stockholm Gothenburg Malmö E6 Smaller Cities Rural Areas

Mean 7165 6586 5629 6790 6017 3022

St. Dev 3730 4448 3299 4475 3343 2078

Minimum 21.54 564.8 36.12 26.65 54.52 96.53

Maximum 23701 28242 20568 29833 21609 17504

Num. Obs 8052 7320 8418 8418 9516 12078

Note:Sample period, hourly observations, 2012:01:01-2012:12:31
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The minimum and maximum values illustrate the highest and the lowest value in each of

these regions. The lowest station volume data is observed at a station in Stockholm, while

the highest value is observed at a station on the E6 highway. The latter pattern makes

intuitive sense because the E6 highway is one of the main highways in Sweden, which runs

through Malmö and Gothenburg. In contrast, the lowest volume value in Stockholm could be

due to an unfavorable station location, or fierce competition. Table 1b contains the summary

statistics of daily station volume data across brands.

Table 1b: Brand

Brand Statoil OK-Q8 Shell Jet St1

Mean 5478 4581 3682 10806 3746

St. Dev 3270.4 2654.5 1673.2 4062.7 1653.7

Minimum 330 321 26 91 21

Maximum 21713 21433 13092 29833 15200

Num. Obs 13542 8784 7686 10248 13542

Note:Sample period, hourly observations, 2012:01:01-2012:12:31

Statoil and St1 have the highest number of stations in our sample, while Shell has the

lowest, that is, 21 stations. Jet has the highest standard deviation and St1 the lowest. The

minimum value of daily gasoline volume is observed at a station owned by St1, while the

highest volume value is observed at a station owned by Jet. As mentioned earlier, these two

brands ran only self-service stations. Utilizing the above volume datasets, we have calculated

the average daily gasoline sales in Sweden, across six different geographical areas and five

oil brands. Figure 2 displays three plots at those analysis levels. As can be seen from

Figure 2, gasoline consumption in Sweden appears to be relatively stable, with a few spikes

before public holidays. The first spike is observed before the Easter holiday, the second

before the national day of Sweden, the third is before Midsummer, and the fourth spike is

before Christmas Eve. It is not surprising to observe the most significant jump in gasoline

consumption before Midsummer (the time of the year around the summer solstice, which

is a big festival on the Swedish calendar and leads to a mass exodus from cities such as

Stockholm and Gothenburg to the countryside, where people go to their summerhouses).

Figure 2 reflects this jump in gasoline consumption before June 21, 2012 when gasoline sales

increased approximately twice before the Midsummer day and dropped almost twice on the

Midsummer day.
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Figure 2: Gasoline consumption during 2012

However, with different ranges, daily gasoline consumption seems to exhibit similar pat-

terns on all plots. The highest volume values happened on the same days, and all spikes

and drops appear synchronized. People seem to have similar behavior regarding filling up

on gasoline across local markets, and also, each brand seems to face similar gasoline sale

fluctuations at the national level. This tendency also makes intuitive sense because gasoline

consumption is typically the highest before public holidays when people drive more, causing

the big spikes that we see in Figure 2 and less during regular days. In the days following the

increase, the demand decreases, causing significant declines.

2.3.1.2 Price characteristics

The distribution of price data is illustrated by the histogram in Figure 3. The x-axis contains

the bins with price ranges, while the y-axis contains the number of price values that fall in

each bin. The daily gasoline prices in Sweden vary from SEK/liter 13.5 to SEK/liter 16.

The most significant variation of the pump prices between days is less than SEK/liter 3

throughout the year. The vast majority of bins have more than 1500 observations, and these

bins range from SEK/liter 14.3 to SEK/liter 15.3.
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Figure 3: A histogram of prices at the station level

Table 2a and Table 2b below show a summary of the statistics of the pump price data

at the station level for each region and each brand in the Swedish gasoline market during

the sample period. The standard deviation is relatively small and almost the same across

local markets. The lowest price value is observed in Stockholm and Gothenburg, while the

highest value is observed in rural areas.

Table 2a: Descriptive Statistics of Gasoline Prices (SEK/liter)

Region

Regions Stockholm Gothenburg Malmö E6 Smaller Cities Rural Areas

Mean 14.84 14.64 14.68 14.72 14.77 14.84

St. Dev 0.46 0.45 0.48 0.49 0.46 0.45

Minimum 13.3 13.3 13.4 13.4 13.44 13.68

Maximum 15.93 15.93 15.94 15.94 15.93 15.95

Num.Obs 8052 7320 8418 8418 9516 12078

Note:Sample period, hourly observations, 2012:01:01-2012:12:31

Again, similar to what is illustrated in Table 2a, the standard deviation is relatively

small and very similar from brand to brand. The minimum pump price value is observed

at stations of OK-Q8, Jet, and St1, while the highest pump price value is observed at a

station of OK-Q8. Statoil and St1 have more stations nationally in our sample. Overall, the

histogram of pump prices and the tables with the summary statistics show that the amplitude
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Table 2b: Brand

Company Statoil OK-Q8 Shell Jet St1

Mean 14.83 14.85 14.83 14.58 14.71

St. Dev 0.46 0.46 0.47 0.45 0.47

Minimum 13.44 13.3 13.45 13.3 13.3

Maximum 15.93 15.95 15.94 15.68 15.78

Num.Obs 13542 8784 7686 10248 13542

Note:Sample period, hourly observations, 2012:01:01-2012:12:31

of the pump price variations is relatively smaller throughout the year in the Swedish gasoline

market compared to other gasoline markets (West, 2004; Foros and Steen, 2013; Baranzini

and Weber, 2013).

2.3.1.3 Volume-adjusted prices

In our analysis, we introduce the daily volume-adjusted prices calculated at the national,

regional, and brand levels as follows:

V APt =
∑
Pi,t×Qi,t
Qt

where Pi,t is the pump price at station i and day t, Qi,t is the quantity sold at station

i and day t, and Qt is the total gasoline quantity sold on day t. In the numerator, we are

summing the multiplication of daily pump prices and gasoline volumes across stations. We

believe that volume must be taken into consideration because V APt reflects sales. Hence,

if a station in the sample has a high price and does not sell much, then this price does not

affect the V APt because the gas station has to sell quite a lot before it influences the price.

Figure 4 shows three plots of V APt for each analysis level.

Figure 4: The daily volume-adjusted price
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Figure 4 displays the seasonal pattern over the yearly cycle of the gasoline price. Prices

rose sharply from January to April, and at the beginning of May, they rapidly decreased until

the end of the month. Then, the cycle seems to repeat with much more volatile gasoline

prices during the winter season. Gasoline retail prices are generally lower during winter.

The seasonal patterns can also be seen in the Rotterdam spot prices, acting as the main

driver of gasoline price variations. Another factor affecting the seasonal patterns might

be the governmental regulations that change seasonally. These regulations require different

gasoline formulas due to environmental considerations. During warmer seasons, the additives

necessary for the summer formula increase the production costs for refineries and pump

prices. Gasoline volume sold in the summer is less likely to evaporate in warm weather.

Refiners replace cheaper and more evaporative gasoline components with less evaporative

but more expensive components. On the contrary, colder weather can lower retail prices

because the winter formula used is less expensive to produce.4 In contrast to the non-

apparent seasonal fluctuations seen in the volume data (Figure 2), there are evident seasonal

fluctuations in gasoline prices (Figure 4).

2.3.2 The Swedish retail gasoline market

The fuel retail trade in Sweden was characterized by competition between a limited number

of companies during 2012. These companies had their retail network spread throughout the

country, covering extensive territory. Besides, pricing was largely transparent to consumers,

and companies’ retail price changes often occurred in parallel. In the years before 2012, the

Swedish retail gasoline market had undergone several structural changes in terms of company

acquisitions and mergers, which led to boosting the market concentration (Ganslandt and

Ronnholm, 2014). To more closely examine consumer behavior in this market, we have

analyzed the gasoline quantity–price relationship for each day of the week in each region.

Figure 5 shows the percentage of gasoline volume sold by day of the week across six different

geographical areas: Stockholm, Gothenburg, Malmö, the E6 highway, smaller cities, and rural

areas. Smaller cities include cities with more than 33,000 and less than 80,000 inhabitants,

while rural areas comprise less than 10,000 inhabitants. Each color in Figure 5 represents the

percentages of gasoline volume sold in a particular region each day of the week during 2012.

The gasoline volume by day of the week is calculated as a percentage of the total volume over

the week across areas. If the same gasoline quantity is sold every day of the week in a region,

it will be approximately 14% each day (black dashed line). On Fridays, the average volume

rises from 14% to 16.5% in rural areas to 16% in smaller cities, continuing with a 1.5%

increase in local markets such as the E6 highway, Malmö, and a lower rise in Gothenburg

(1.3%) and Stockholm (1.1%). In Stockholm, the highest gasoline sales happened on Fridays

and the lowest on Saturdays. Figure 5 clearly shows that gasoline sales spiked on Fridays in

4https://www.caranddriver.com/news/a15339380/the-vapor-rub-summer-versus-winter-gasolineexplained

; https://www.epa.gov/gasoline-standards/gasoline-reid-vapor-pressure
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all local markets.

Figure 5: Volume share by day of the week

Consumers seem to fill up their cars on Fridays in all areas more than on other days of

the week. In the rural areas, Fridays’ volumes are approximately 18% higher than the daily

average of 14% and are significantly different from Tuesdays’ gasoline volumes. The gasoline

consumption pattern that we observed in Figure 5 can be explained by the fact that people

in Sweden tend to fill their car tanks on the last working day, before the weekend. People

who live in cities plan to spend their weekends in the countryside, which forces them to fill

their car tanks before long trips. We consider this pattern as the “weekend” effect.

A second reason can be related to the technological aspect, that is, the car tank capacity.

The car tank has a certain capacity, depending on the type of car. Therefore, the capacity

limitation does not allow people to fill their car tanks more than the specified amount of

gasoline. A car delivers on average 16.6 km/liter and has a fuel tank capacity of 43–65 liters

of gasoline. Ohman and Lindgren (2003) report that, on average, Swedish employees travel

about five kilometers a day to and from their workplace. Moreover, they document that every

third employee must cross at least one municipality border to get to work. However, the

exact mileage delivered by a vehicle may differ based on several factors, including the type

of vehicle, driving style, quality of fuel, and the condition of various components. In about a

week, tank capacity will substantially fall, and it will be time for drivers to fill up their gas

tanks again. On average, 14.3% of the sales take place on Sundays in rural areas (green line),

13.8% in Stockholm (red line), 14.7% on the E6 highway (black line), and so on. On Mondays,

gasoline sales are close to the daily mean in almost all the regions, while gasoline sales drop

on Tuesdays, meaning that people do not purchase much gasoline on Tuesdays compared
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to the other days of the week. Not surprisingly, the average gasoline volume on Sundays

on the E6 highway is significantly higher compared to other days except for Fridays, and in

other regions due to the “weekend” effect. The dramatic decrease in gasoline consumption

on Saturday suggests that a substantial number of consumers filled their cars on Fridays.

Finally, we can conclude that consumers pursue similar gasoline consumption patterns across

different geographical areas. In Figure 6, we observe how volume-adjusted prices change

within a week across the same local markets. Besides the differences in geographical zones,

other factors contribute to regional differences in gasoline prices, such as distance from the

supply location, local competition, and operating costs. The same colors represent the same

regions as in Figure 5.

Figure 6: The regional average volume-adjusted price by day of the week

Price fluctuations are similar across regions. Stockholm and rural areas seem to be

the local markets where filling up a car with gasoline costs the most while Gothenburg is

the cheapest across all week days. In Figure 7, we present the price differences between

Gothenburg and other regions in percentage. The average volume-adjusted prices by day

of the week in Stockholm and rural areas are 2% higher than the average volume-weighted

prices in Gothenburg on Mondays. The lowest price differences can be observed between

Gothenburg and Malmö and between Gothenburg and the E6 highway, where the average

volume-weighted prices in Malmö and the E6 highway are less than 1% higher than in

Gothenburg. Surprisingly, although we would have anticipated lower prices in Stockholm

than in isolated markets such as rural areas, the data shows no significant variations between

the average weekly volume-adjusted prices in Stockholm and rural regions. Figure 7 indicates

less competition in Stockholm.
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Figure 7: The prices differences between Gothenburg and other regions

Tuesdays are days with higher gasoline prices in all regions except Gothenburg, while Sundays

are days with the lowest gasoline prices. This pattern may be a result of several factors. First,

gasoline demand is relatively low on weekends due to the “weekend” effect. Second, the

financial markets and Rotterdam spot market are closed on Saturdays and Sundays. Thus,

no new information arrives on those days. Third, knowing that sales is lower on Sundays,

oil companies may attract consumers by keeping prices down. In the Norwegian market,

although the price cycle amplitude is much larger than in the Swedish gasoline market, a

few consumers still shift their purchases on low price days (Foros and Steen, 2013). Weekly-

synchronized cycles in other markets might benefit consumers by making it easier for them

to shift gasoline purchases strategically on days with relatively low prices (Noel, 2002; Doyle

et al., 2010; Lewis and Noel, 2011; Noel and Chu, 2015; Siekmann, 2017; Noel, 2019).

Noel et al. (2019) observed the gasoline market in Perth, Australia, where declines always

occurred on Wednesdays and peaks occurred on Thursdays. In the Swedish gasoline market,

we observed a different behavior. The average volume-adjusted price peaks always occurred

on Tuesdays except in Gothenburg, and the declines always occurred on Sundays. The

average volume-adjusted price cycles in each region in Sweden as in other markets (Foros

and Steen, 2013; Noel, 2019) lasted precisely a week, and Figure 6 clearly illustrates the

weekly pattern. To closely examine the effect of the average volume-adjusted price cycles

on the day-of-the-week sales in each region, we compared Figures 5 and 6. Figure 5 reports

pure volume measurements, while Figure 6 shows prices that contain some volume effects.

46



On Fridays, we see that companies try to keep the price high in all regions, because they

generally expect high demand. The same pattern can be noted on Sundays across all areas

when price is the lowest of the week and sales are down as well. This pattern might have

more to do with time than prices, suggesting that if the oil companies expect that the Friday

pattern is strong, they will keep the price as high as possible as long as it does not affect

customers. On the contrary, they may also try to lower the price when the expected volume

is low to capture “random” customers. As a next step, we have calculated the total variation

of the average volume-adjusted prices for each day of the week across regions. Figure 8 shows

the price variations together with the histogram of the volume-adjusted prices by day of the

week in smaller cities.

Figure 8: Price distribution by day of the week in smaller cities

As can be seen, the spread of gasoline prices by day of the week in smaller cities is

insignificant, and the average volume-adjusted price is on the lower half of the spread except

for Mondays, which indicates that there are more cases with low prices than high prices in

those days. It is worth noting that Figure 8 does not really show the price dispersion across

weekdays and how representative the point of an average price is. To see how much price

values deviate from the mean, we have calculated the coefficient of variation by the day of

the week across all local markets. The coefficient of variation is expressed as a percentage

in Figure 9.
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Figure 9: The coefficient of variation of price values across regions

As can be seen, prices for the E6 highway and Gothenburg are more volatile. Indicating

that the price dispersion is lower for the high price regions than for the low price regions.

We have observed some extreme price values throughout the year in Stockholm, but they

are not frequent because they disappear when considering the coefficient of variation. The

volume-adjusted prices seem to be less volatile during weekdays than weekends.

2.4 Methodology

In this study, as a first step, we calculated the daily volume-adjusted prices nationally,

regionally, and across brand. The stations with low sales do not significantly affect the daily

volume-adjusted prices. Hence, the everyday gasoline prices that we acquire will represent

an effective price per liter of gasoline sold on a specific day in Sweden, across local markets

and brands. The total daily gasoline consumption and the volume-adjusted prices will be

used as input data in the next step of our analysis, that is, the pre-processing step. In

order to smoothen the input data, we have pre-processed them. More specifically, the first

transformation on the data starts by calculating a five-week MA for both gasoline quantity

and prices. To calculate the five-week moving averages, we have chosen a window size of 35

days. The formula of the moving averages for gasoline quantity and prices is as follows:

Moving Average Φt = 1
w

t∑
s=t−(w−1)

φt

where Φt denotes either the five-week MA of gasoline quantity or prices, φ denotes the

daily gasoline volume or price observations, w denotes the MA window, and t represents the

time of observation. This pre-processing step smoothens the data and assembles the short-

run dynamics of Swedish gasoline demand and price into medium-run dynamic measures.
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We then specify a dynamic model that maps the 35-day MA of gasoline quantity. We ran a

non-linear fitting model to find the internal parameters used to transform the data. Trans-

formation applies the parameters to data. The non-linear model estimates the interception

and the other parameters in the following formula:

Yt = β1 + β2t+ β3t
2 + β4 sin(

2πt

t1
)xt + β5 cos(

2πt

t2
)t+ β6

sin(2πtt3 )

xt
+ β7 cos(

2πt

t3
)x2t

+ β8 sin(
2πt

t4
)xt + zt

(1)

where Yt denotes the five-weeks moving averages of demand at time t scaled by 105, x denotes

the five-weeks moving averages of volume-weighted gasoline prices at time t , t is a numeric

time indicator of the observation, and t1 = 190.5, t2 = 104.5, t3 = 199.3, and t4 = 99.9.

Our model contains periodic terms with different periods (t1, ..., t4), but it is an aperiodic

function with many quasi-periodic properties. Hence, it has flexible base functions that can

mimic complex signals. zt is a vector of residuals, and the eight β-terms are parameters that

need to be decided. The fixed parameters β1, β2, . . . , β8 are used to transform (i.e., map)

the five-week moving averages of gasoline volume.

Finally, we took the residuals from formula (1) and fitted them with the sum of two

normal distributions with different mean and standard deviations. The model used to map

the residuals is as follows:

zt=δ1 ∗N(δ2, δ3) + δ4 ∗N(δ5, δ6) + εt.

where, zt are the residuals at time t and δ1 to δ6 are the parameters to be estimated.

The parameters δ2, and δ5 represent the mean of the normal distributions, while δ3, and δ6

represent the sigma values, and εt represents the white noise. Again, the δ-parameters are

estimated using the non-linear model. By applying our modeling mechanism, every time we

get new observations, the whole process can be repeated. Similarly, we have transformed

the gasoline volume data for six local markets and five fuel brands in the Swedish gasoline

market. It is worth highlighting that the same advanced model is used to map the 35-day

MA of gasoline quantity at the country level, across regions, and across brands.

2.5 Results

Figure 10 shows the five-week MA of gasoline quantity. Figure 11 shows the five-week MA

of the volume-adjusted prices at the national level.
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Figure 10: Five-week MA of volume Figure 11: Five-week MA of prices

Using the five-week MA of volume data as Yt, and the five-week MA of prices as xt in

the formula (1), we have estimated all the β1, β2, . . . ,β8 parameters. Table 3 presents the

values of β that best suited the five-week MA of gasoline quantity at the national, regional,

and company level by using the same model specification.

All parameters, β2 through β8 measure the strength of various medium and long-run

dynamics in the five-week MA of gasoline quantity. In almost every region, the values for

β2 are positive, and the values for β3 are negative. The four parameters that measure the

relationship between the five-week MA of volume and gasoline prices β5, β6, β7, and, β8, are

highly statistically significant at the 1% significance level across all regions. The R-squared

values presented in Table 3 indicate that our advanced model generally performs well and

offers a perfect fit across areas. The model seems to perform particularly well in region 4

(the E6 highway), in region 5 (smaller cities), and in region 6 (rural areas), the last of which

exhibits the highest R-squared value. Regions 4 and 5 show R-squared values of over 0.95,

while regions 1, 2, and 3 indicate R-squared values that exceed 0.84. Moving to the results

that we acquired by running the model on the 35-day MA of gasoline sales across oil brands,

we see that the sign of β2 is positive, and the sign of β3 is negative across all brands. All

coefficients are statistically significant at the 1% significance level, which provides strong

evidence of the presence of seemingly quasi-cyclical patterns in gasoline sales. We have

removed the parameters β4 and β5 from formula (1) because they did not improve the fit

of the five-week MA of gasoline sales for Shell and Statoil, respectively. Statoil exhibits the

highest R-squared values (0.979). Moreover, the R-squared values for automated brands

such as Jet and St1 are also substantially high: both brands showed R-squared values over

of 0.90.

As a final step, we took the residuals from the dynamic model in all analyses, and we

fitted them with two different normal distributions. Figure 12 presents the empirical kernel

distribution of the residuals at the national level versus the combined normal distribution.
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Figure 12: The fitted distribution of the residuals at national level

Figure 13 illustrates the empirical distributions of the residuals and the combined normal

distributions across local markets. The observed distribution of the residuals in each area is

characterized by a different color, while the combined normal distribution is the red curve

in each plot. For example, the yellow line in the first plot indicates the empirical kernel

distribution of the residuals after mapping the five-week MA of gasoline quantity in Stock-

holm, and the red line is the combined normal distribution. The second plot presents the

empirical kernel distribution (blue) of the residuals fitted by two normal distributions (red)

in Gothenburg and so on.

Figure 13: The fitted distribution of the residuals across regions

Finally, we again fitted the residuals of the dynamic model for each brand with two

different normal distributions. Figure 14 shows the distributions of Statoil, OK-Q8, Shell,

Jet, and St1.
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Figure 14: The fitted distribution of the residuals across fuel brands

Again, the red curve is the combined normal distribution, and the other colors present

the empirical kernel distribution of each brand. The leftover residuals εt are white noise with

no structural information at all market-analysis levels developed in our study.

2.5.1 Discussion of results and implications

This study developed a modeling approach that can potentially be utilized by market par-

ticipants to estimate future medium-term gasoline quantities and vice-versa. Our model

consisted of three modeling steps: a pre-processing step, where the raw data is transformed

to moving averages; model specification, where flexible expressions are incorporated to map

the MA of gasoline quantity; and modeling the residuals from the mapping process. This

study employed these three modeling techniques to model the medium-run relationship be-

tween gasoline quantity and prices in the Swedish gasoline market. We begin by calculating

a five-week MA of the daily gasoline quantity and volume-adjusted price observations. These

resulting data series are quasi-periodic signals with unpredictable fluctuations in amplitude

and frequency. After creating the five-week moving averages of Swedish gasoline quantity

and prices, we developed a dynamic model that expresses the gasoline volume as a func-

tion of time, prices, and interaction terms between time and prices. As a final modeling

step, we model the leftover residuals by summing two different normal distributions. The

R-squared values that our model yielded are high at national, regional, and brand levels,

and all coefficients are highly significant.
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While there are similarities between standard econometric studies and the dynamic mod-

eling approach we present in this paper, we believe that there are several key differences.

First, it is common to mathematically transform non-stationary data into stationary data

before carrying out an econometric analysis; for instance, in the econometric analysis of

gasoline time-series, it is common to log transform the raw quantity and price data. In con-

trast, our approach utilizes non-stationary data. To smoothen the raw data, we converted

them into five-week moving averages. Second, we perform additional analysis on our model

residuals, which is uncommon in most econometric studies. By carrying out this extra step,

we could fit our model residuals despite having initially high R-squared model values. Third,

while most econometric studies intend to identify causality in a given economic system, our

dynamic model reveals a highly detailed image of the dynamics between gasoline quantity

and prices in Sweden, across local markets and brands in the Swedish retail gasoline market

during the sample period. In addition, our model can provide a long-run price elasticity of

demand that varies over time. The calculated price elasticity of gasoline demand ranges from

-0.17 to 0.16 with an average of -0.02, indicating low responsiveness of gasoline’s quantity

demanded relative to changes in its price. We considered it as long-run elasticity due to the

data smoothening in the pre-processing step.

Furthermore, due to the non-linear nature of our model, this analysis reveals many ad-

ditional details and dynamics about the mid-term relationship between quantity and prices,

which are not easily visible using standard linear regressions. Finally, our results can be

back-transformed, while the results obtained from statistical modeling do not have this op-

tion.

2.6 Conclusion

This paper presented a new approach to modeling the gasoline quantity and price dynamics

in the Swedish retail gasoline market. We observe from the data that the quantity for

gasoline exhibits similar patterns nationally, locally, and across brands. During 2012, the

highest quantity of gasoline was sold on Fridays in each region in Sweden, while the lowest

gasoline sales happened on Sundays. Our analysis demonstrates that consumers in Sweden

do not strategically choose the day of the week when purchasing gasoline. In all regions,

Tuesdays were the most expensive days, and in the majority of areas, Sundays were the

cheapest days of the week to fill gasoline. Surprisingly, the data also shows that gasoline is

more expensive in highly populated and less populated regions (Stockholm and rural areas),

where the competition is expected to be high (Stockholm) and low (rural areas). In addition,

gasoline in Sweden is more expensive in regions with fewer price fluctuations (Stockholm and

rural areas) and cheaper in areas with the frequent price fluctuations (Gothenburg). These

results are consistent with what was found in Valadkhani (2013). However, several other

studies have argued that consumers may shift their gasoline purchases to known low-price

days (Noel, 2018; Noel, 2012; Noel and Chu, 2015). The results of this paper suggest that
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Swedish consumers do not do this.

Similar patterns have also been observed in the Norwegian gasoline market (Foros and

Steen, 2013). While this paper provides new insights into national and regional gasoline

consumption patterns and the impact of the volume-adjusted prices, it also highlights the

need to use daily consecutive quantity–price data in the analysis of the gasoline market and

represents an exception in the literature. The absence of high-frequency volume data at

station level in the literature has prevented many studies from examining the relationship

between gasoline quantity and price over time.

Given the gasoline price values, decision-makers can apply our approach to calculate

likely shifts in gasoline sales. Moreover, the national and regional results can enhance the

understanding of the Swedish gasoline retail market and benefit the country’s competition

authority, in cooperation with the government, to devise tax policies and other local policy in-

struments. Overall, our approach allows for understanding the underlying dynamics between

gasoline quantity and prices and provides the potential for predicting future quantity–price

relationships for specific local markets, brands, and the Swedish gasoline industry.
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Abstract

Estimating non-linear autoregressive distributed lag models, using a panel of de-

tailed daily station-level data from the Swedish market, we establish short-run cost

pass-through for both average pump prices and volume-adjusted gasoline prices. The

disequilibrium error takes longer to be fully corrected when we test for the existence of

volume-adjusted price asymmetry than in the case of pump price asymmetry, suggesting

that oil companies are more focused on pricing on days and at stations with larger sales.

Estimating models across regions, different station service levels, and local competition

levels, we find that rural areas and gasoline stations less exposed to local competition

are able to impose larger and more prolonged asymmetry on retail gasoline prices. This

supports several studies concluding that asymmetry in cost pass-through is positively

correlated with the degree of market power. The same pattern is uncovered when we

estimate models for varying service levels. Full-service stations have a higher and more

prolonged asymmetry in pricing than automated self-service stations. The former group

of stations has, in several studies, been found to have higher market power than the

latter.

Keywords: Gasoline markets, asymmetric short- and long-run cost pass-through, mar-

ket power, volume-adjusted prices, station heterogeneity, local competition, asymmetric

dynamic multipliers
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3.1 Introduction

Many studies have aimed to examine the behavior of firms in the gasoline market. One

important strand of literature has focused on Edgeworth price cycles (Edgeworth, 1925;

Maskin and Tirole, 1988) and saw tooth-like pricing patterns.1 Several studies have focused

on studying the presence of coordination and coordinated effects.2 Others have attempted

to investigate whether retail gasoline markets have prices where cost changes are asymmet-

rically reflected in consumer prices.3 This pattern, often referred to as ”rocket and feathers”

(Bacon, 1991), has been observed and analyzed in several markets and across many prod-

ucts (Peltzman, 2000).4 In response to wholesale price changes, consumer prices rise quickly,

and the costs are passed-through immediately, while they tend to fall at a much slower pace

when the wholesale price decreases. This asymmetrical pattern is well documented in a large

number of empirical studies of gasoline markets.5

Some studies also look at how this asymmetry is related to the competitive situation in

the market. For instance, Borenstein et al. (1997) attribute the asymmetry to tacit collusion.

Likewise, Verlinda (2008) attributes the asymmetry to market power and provides evidence

that a high service level on the station level (implying higher market power) increases the

pass-through asymmetry. Another strand of literature focuses more directly on how market

characteristics, such as spatial competition, differences in station amenities, and the effects

of brand identity and contractual forms, influence the degree of competition in retail gasoline

markets. In a recent study, Nguyen-Ones and Steen (2021) examine the combined effect of

several factors, using the same dataset as we do here, and show that these factors have

a non-trivial impact on the level of competition. They also provide an overview of this

literature.

However, fewer studies relate the order of price-cost asymmetry to market characteristics

as those outlined above. In this study, we exploit a particularly rich dataset to uncover to

which extent asymmetric cost pass-through is related to such market characteristics. An

1See, for example, Noel (2016) and Eckert (2013) for comprehensive surveys on pricing, and Edgeworth

cycles and competitive pricing games. Others have treated cycles as an outcome of intertemporal price

discrimination (e.g., Conlisk et al., 1984), and some authors have argued that complexity through cycles can

be used to soften price competition (e.g., Carlin, 2009; Ellison and Wolitzky, 2012).
2See, for example, Byrne and De Roos (2019) on coordination and collusion; Foros and Steen (2013a),

Foros et al. (2021) on coordination and price cycles; and among others Hastings (2004), Slade (1987), Netz

and Taylor (2002), and Nguyen-Ones and Steen (2021) on local competition.
3See, for example, Borenstein et al. (1997), Asplund et al. (2000), Johnson (2002), Verlinda (2008),

Apergis and Vouzavalis (2018), and Byrne (2019).
4Peltzman (2000) analyzes as many as 77 different consumer goods and 165 producer goods (food, agri-

culture, metal products, textiles). He found asymmetric price responses for several of these.
5See eg. Borenstein et al., 1997; Deltas, 2008; Asplund et al., 2000; Eckert, 2002; Verlinda, 2008; Bal-

maceda and Soruco, 2008; Hofstetter and Tovar, 2010; Lewis, 2011, Lewis and Noel 2011, Apergis and

Vouzavalis, 2018 and Byrne, 2019.
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observation from the ”rocket and feather” literature is that lack of competition will allow

for short-run asymmetry in pass-through rates. However, the literature is in agreement

regarding long-run pass-through, where some authors even impose this in their models (see,

e.g., Lewis, 2004; Apergis and Vouzavalis, 2018; Byrne, 2019).

To the extent that the degree of competition is linked to short- and long-run asymmetry,

we anticipate that the longer the retailers can impose asymmetry from cost changes in the

wholesale prices, the higher is their market power. Byrne (2019) also posits that rural stations

exposed to lower competition exhibit longer asymmetric cost pass-through than stations in

cities exposed to more competition from neighboring gasoline stations.

Likewise, differences in competition due to station heterogeneity have been shown to

create differences in prices and market power. Eckert and West (2005) find evidence that

station characteristics affect sellers’ price setting, and suggest the presence of imperfect com-

petition. Haucap et al. (2017) conclude that prices are positively related to station service

levels, and Shepard (1991) finds that stations charge a full-service markup. Estimating a

structural conjectural variation model, Nguyen-Ones and Steen (2021) find that manned ser-

vice stations in Sweden have a higher market power (markups). This suggests the presence

of a more persistent short-run pricing asymmetry for manned service stations.

We analyze the extent to which the Rotterdam spot market prices are passed on to

consumer prices for gasoline in Sweden and how quickly this happens. We estimate short- and

long-run effects using dynamic time-series models for different regions and allow for station

heterogeneity both with regards to station service-level and differences in local competition.

Furthermore, as far as we know, earlier studies have not been able to use volume-adjusted

prices in their analyses of pass-through asymmetry because they require detailed data on

quantities that are seldom available. Hence, recent and abundant empirical literature has

used (average) pump prices or recommended (quoted) prices to show that asymmetric price

adjustments exist.

Our dataset includes daily observations on transaction prices and quantities for 147

gasoline stations in Sweden for 2012. As can be seen in many national gasoline markets,

the Swedish downstream market is concentrated, with four companies sharing 99% of the

market in our sample period. Statoil Fuel & Retail AB has a market share of 34.9% in

gasoline volume, St1 Energy AB has 22.6%, OK-Q8 has 27.9%, and Preem AB has 14.2%

(SPBI, 2013).

In line with previous studies, the dataset allows us to not only analyze asymmetry for

average pump prices but also use volume-weighted prices in our models. A company should

be more concerned with obtaining “profitable” asymmetry at stations with higher sales than

at stations with lower sales. The volume-adjusted prices will account for this. Hence, we

expect to find clearer pass-through asymmetry by applying volume-adjusted prices.

We apply a non-linear autoregressive distributed lag (NARDL) model developed by Shin

et al. (2013) to estimate these dynamic effects. Similar to the empirical process followed by
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Apergis and Vouzavalis (2018), we have tested the presence of short- and long-run asymme-

tries by deriving both the positive and negative partial sum decompositions of the dependent

variable. This methodology is a one-step estimation model and can test the presence of coin-

tegration between variables through a bounds-testing process irrespective of whether these

variables are I(0) or I(1). Moreover, the asymmetric dynamic multipliers obtained from the

model would allow us to observe the long- and short-run responses of the gasoline prices to

positive and negative oil innovations.

Using the NARDL models, we find clear evidence of short-run price asymmetry both

using average pump prices and volume-adjusted prices for the Swedish national market.

Prices increase more after input price increases, then they fall after input price reductions.

Interestingly, and as expected, the volume-adjusted price asymmetry takes longer to correct

the disequilibrium error than the average pump price asymmetry does. This suggests that

companies are indeed more focused on the pricing at larger gasoline stations since the profits

from asymmetry will be higher from pricing “correctly” for these than for smaller stations.

In the following sections, we examine the presence of asymmetric pass-through for Rotter-

dam spot prices on volume-adjusted prices across six different geographical regions, between

service and self-service stations, and between stations with a distance to the nearest com-

petitor of more than 3 km and within 3 km.

Turning first to heterogeneity across regions, we find a larger pricing asymmetry in rural

markets than in cities, which is consistent with what Byrne (2019) finds from Ontario,

Canada. Related to this finding, our estimates of cost pass-through for gasoline stations that

have less local competition measured from the distance to the nearest competing station also

exhibit more persistent short-run asymmetry. These results are consistent with the empirical

gasoline literature, which show that markets that enjoy some market power have an incentive

to prolong the pass-through of cost changes to consumer prices (Verlinda, 2008; Deltas, 2008;

Byrne, 2019).

However, Stockholm is an exception in our analysis, contradicting the above findings.

Somewhat surprisingly, the patterns found in Stockholm resemble those found in rural mar-

kets. This is in line with what Foros and Steen (2013b) reported in studying the Swedish

gasoline market. Despite being the largest city in Sweden, Stockholm has price patterns,

both in terms of dynamics and levels, that are closer to what one observes in rural areas

rather than what is observed in other large Swedish cities.

When it comes to heterogeneity at service levels, pricing asymmetry in terms of the

timing and the amplitude of the adjustment is found to be less pronounced in the self-service

stations than in the service gasoline stations. This difference is likely due to the market

power that the service stations exhibit. Using mostly the same dataset, Nguyen-Ones and

Steen (2021) estimate a significant difference in the markup between self-service and service

stations, where the self-service stations have 29% lower markups.6

6In their Table 6, p.22, model (4) they find a significant benchmark markup of 0.37 for all stations. For
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Finally, we also perform “back of the envelope” calculations to show the effects of the

asymmetric pricing behavior. We find that as much as 1,136,982 thousand SEK is the esti-

mated overcharge in the average price model. This increases by 49,008 thousand SEK, when

we account for the effect of one extra day and volume-adjusted prices. Hence, this suggests

that the model using average prices underestimates the full overcharge due to asymmetry by

4.1%. The overcharge amounts to only 2.7% of all gasoline spending in 2012, obviously due

to the high exogenous taxes and the Rotterdam wholesale price representing on average 93%

of the retail price. Focusing on the margin, this overcharge represents 40–60% of the daily

average margin. Thus, we also calculate the total gross margin in SEK for 2012 to compare

it to these overcharges. The total margin in 2012 is around 3 billion SEK. Hence, the 2.7%

increase in total expenditure for gasoline implies a doubling of the gross margin, suggest-

ing that for the oil companies, asymmetric pricing is a major way of increasing profits. In

markets such as transparent oligopolies, where prices are mostly determined by exogenous

costs and overall demand is typically inelastic, companies have strong incentives to impose

asymmetric pricing.

Section 3.2 presents the literature review, Section 3.3 describes our dataset and the

Swedish market, Section 3.4 presents the econometric approach, and Section 3.5 presents and

discusses the results. Section 3.6 discusses potential policy implications. Finally, Section 3.7

offers concluding remarks while proposing future research directions.

3.2 Price dynamics and cost pass-through in gasoline markets

3.2.1 The empirical literature

This section briefly summarizes some of the research on price dynamics and cost pass-through

in the gasoline market. The studies considered typically used international wholesale gasoline

spot prices and average consumer level pump prices for gasoline. Most of the studies confirm

that the gasoline price dynamics resemble the “rockets and feathers” phenomenon. This

phenomenon applies across countries, data periods, and data-use frequency. Some studies

use other dynamic modeling approaches but eventually arrive at the same conclusions.

The vast majority of studies use error correction models (ECM) to identify possible

asymmetries in short-run consumer price responses due to changes in wholesale prices (for a

detailed survey on ECM as an econometric specification in gasoline literature, see Grasso and

Manera, 2007). Most studies find asymmetry in the price responses to costs. Borenstein et

al. (1997) and Borenstein and Shepard (1993) found asymmetric price responses. Borenstein

and Shepard (1993) found empirical support for their model of asymmetric price responses

and implicit cooperation, and therefore argue that collusion drives “rockets and feathers.”

Borenstein et al. (1997) used the semi-monthly index prices from regional stations in the

US from 1986 to 1992. They again found that prices increase faster with an increase in spot

the self-service stations the markup estimate is only 0.26 (Nguyen-Ones and Steen, 2021).
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prices than the rate at which they decrease with reductions in spot prices.

Asplund et al. (2000) investigated the Swedish market, where they analyzed indicative

daily pump prices from Shell for the period 1980–1996. Applying an error correction model

showed that there is only a gradual adjustment of consumer prices to the cost of gasoline

in the short run but a one-to-one relationship in the long run. They also found asymmetry

in price responses. The pump prices obtained an immediate significant price change of 0.70

SEK/liter after an increase in the Rotterdam spot price of one SEK. On the contrary, the

corresponding reduction in the Rotterdam spot price led to a price change of only 0.35

SEK/liter.7

Johnson (2002) analyzed 15 gasoline markets in his study (1996–1998, daily index prices

in the US). He calculated average development in the price after a positive and negative

shock in the spot price and differences between spot and consumer price. Based on his

data, Johnson (2002) found that negative shocks are absorbed far slower in consumer price

than positive shocks. Verlinda (2008) analyzed the US market for the period 2000 to 2003.

Utilizing weekly station data and in line with other studies, he found asymmetric price

responses. Lewis (2011) analyzed the US market but used somewhat longer weekly data

(2000–2007) and observed both the station and area levels, also finding asymmetry.

Balmaceda and Soruco (2008) analyzed the petrol market in Chile based on the weekly

data of 44 petrol stations in Santiago from 2001 to 2004. They also used an error correction

model and demonstrated asymmetry in pricing. Station prices reacted more quickly to an

increase in the spot price (6.2% increase over increase in purchase price) than to a decrease

in the spot price (the reduction in the station price is 10.2% lower than the reduction in the

cost of gasoline). Faber (2015) analyzed Dutch daily station data for the period 2003–2005.

He found price symmetry, but only for 38% of the stations in the dataset.

A more recent study, Apergis and Vouzavalis (2018) apply the NARDL model as we

use here. They address pricing asymmetry utilizing weekly data that span from January

2009 to July 2016 in the US, UK, Spain, Italy, and Greece. They find mixed results across

countries for short- and long-run asymmetries. Asymmetric price responses due to wholesale

price changes are found only in Italy and Spain. Byrne (2019) analyzes data from Ontario

and estimates gasoline pricing asymmetry across different regional areas. Using weekly data,

he finds symmetric pass-through of positive and negative cost shocks in urban markets.

However, in rural markets, a short-run asymmetry is observed. 45% of positive shocks and

21% of negative shocks are passed through to prices at the same week, and the rest is

corrected fully in the upcoming week.

Some studies do not find such asymmetries, but they are in the minority. For example,

Bachmeier and Griffin (2003) found, in the US gasoline market, that the results depend on the

7Asplund et al. (2000) include both spot prices and tax in their error correction model. They can thus

also comment on how the guide price changes as a result of changes in taxes and fees. They find that tax

change has an immediate effect on the retail price of gasoline, in the sense that the short-term effect of tax

on the recommended price is very close to one both in the short-run and in the long-run.
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estimation method and data frequency. In particular, they found that when they use daily

data, there is less asymmetry and they used standard two-step estimation of error correction

models (see Engle and Granger, 1987). They also found less asymmetry than Borenstein

et al. (1997) when using the same estimation method as Borenstein et al. (1997). Unlike

Borenstein et al. (1997), Bachmeier and Griffin (2003) had access to a higher-frequency

dataset.

The literature unambiguously concludes that all changes in spot prices are absorbed in

their entirety in the long-run, which means that one can expect full pass-on (cost transfer)

at consumer prices in the long-run. Some studies have even imposed this on their models

(see, e.g., Lewis, 2011). The supportive argument is that one should theoretically expect

full pass-through, and to the extent that this is not observed, there are biases in the models

(Lewis, 2004; Verlinda, 2008).

Although most studies have used error correction models, several studies have looked at

price dynamics for gasoline prices where other methods were used. Here too, one typically

finds asymmetry in price responses when wholesale costs are measured through spot price

change. Noel (2007) used a Markov (switching) model to analyze price cycles across 19

Canadian cities during the period 1989–1999, a phenomenon that has also been observed in

many markets, including, for example, the Norwegian market (See Foros and Steen, 2013).

Noel (2007) found that the price cycles are less asymmetrical, shorter, and larger (higher

variance/amplitude) when more competition is measured as a greater presence of independent

gasoline stations in the market. He attributes this to the literature and models around

asymmetric price dynamics.

Later, Lewis and Noel (2011) used a similar Markov model and show that passing on

costs is even faster in markets with clear Edgeworth cycles. They argue here that cycles are

more important for passing on costs than market characteristics. Eckert (2003) found less

evidence of asymmetry when he used error correction models to show that cycle movements

dominate the asymmetric price response in the Canadian gasoline market from 1989 to

1994. Douglas and Herrera (2010) have a slightly different approach to price dynamics and

pricing systems where they analyzed the daily price patterns for nine petrol stations in

Philadelphia, Pennsylvania, USA. They extended an earlier study of the same market by

Davis and Hamilton (2004), who estimated hazard models that predicted price changes and

analyzed pricing systems for the same market. However, Douglas and Herrera (2004) had

instead estimated an autoregressive probability model. The model predicts the probability of

price change at a time t due to the historical distribution of price changes, including previous

price changes and historical distance between the cost of goods and prices. They typically

also found asymmetric price responses.
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3.2.2 Sources of asymmetric cost pass-through in gasoline

In gasoline literature, asymmetric cost pass-through has two strands of explanations: search

costs and collusive behavior. Consumers’ search intensity in gasoline markets is considered

to reflect competition in the market. More specifically, this search intensity explains firms’

asymmetric price responses to oil price fluctuations (Tappata, 2009). Tappata (2009) argues

that when the input prices for gasoline are high in the current period, consumers search

very little because they do not expect a significant variation in prices. However, when the

input prices are low in the current period, consumers expect that prices will exhibit higher

variations in the next period, therefore they increase their search. Moreover, Tappata (2009)

develops an oligopolistic model with competitive firms. Consumers have partial information

and they endogenously choose to search less when gasoline input prices are anticipated to

be high in the market setting. The ”rocket and feathers” pattern has also been confirmed

empirically by Lewis (2011) and Yang and Ye (2008). Lewis (2011) examines retail price

dispersion using station-level data from Southern California, USA. He relates the price dis-

persion to models of consumer search. Similarly, Yang and Ye (2008) provide a search-based

theoretical and empirical analysis of asymmetrical pricing.

Douglas and Herrera (2010) test whether the pricing dynamics can be attributed to unin-

formed customers, uninformed manufacturers, or strategic pricing, and they concluded that

the results do not support that the price patterns are driven by menu costs or information

access/collection (search costs). Instead, they believe in finding support for strategic pricing

to explain the price dynamics for petrol stations. Therefore, as per their observations, larger

price increases due to cost shocks are passed on to customers immediately, while negative

cost price shocks take longer to be passed on to customers.

Verlinda (2008) expands the model of Borenstein et al. (1996) by introducing differentia-

tion, where the differentiation takes the form of geographical distances. Increased geograph-

ical distances can be seen as increased product differentiation, which reduces competition

as the players have more coordination options than just price. This opportunity, in turn,

enables them to set prices asymmetrically. Consistent with these findings, Byrne (2019) and

Deltas (2008) also empirically documented that increased local market power allows for an

increased degree of asymmetric pricing.

Indeed, several authors argue that collusion may be behind the asymmetry in fuel mar-

kets’ price responses. Clarke and Houde (2013) analyzed a price cartel from 2005 to 2006

that was revealed by the competition authorities in Canada; this cartel collaborated by using

a typical asymmetric pricing pattern that followed the dynamics of wholesale price changes.

Rather than collaborating around a fixed margin, they collaborated through an asymmetric

pricing pattern where they typically increased prices more after an increase in wholesale

price. At the same time, when there was a decline in wholesale price, there was a less de-

crease in prices, thereby increasing their profits. At the same time, they collaborated to delay

price increases to increase market shares from competitors outside the cartel. Borenstein et

67



al. (1996) argue more in the direction of implicit collusion, stating that the collaboration on

pricing collapses faster when the product cost increases since competitors’ potential penal-

ties are lower. Balmaceda and Soruco (2008) report that the results of asymmetric pricing

responses due to the markets’ transparency and unique design in Chile cannot be explained

based on search costs but rather on implicit cooperation.

In sum, we can say that the literature has not unambiguously clarified which factors

influence and drive such asymmetric price responses (Lewis and Noel, 2011). Although

previous studies have investigated pricing asymmetry, they focused only on a country or

city-level analysis. In what is the closest article to ours, Byrne (2019) addresses pricing

asymmetry in different regional markets: urban and rural. In this context, rural markets are

found to exhibit more asymmetry in gasoline price responses due to oil price fluctuations.

The gasoline price associated with a specific date and market is calculated as the average

price across all stations on a given date and at a given market. However, for the station-level

analysis, the average price of a station during a week is used.

While our approach has several similarities to the literature, some important features

differ. First, due to a rich dataset, we incorporated both daily station prices and volume-

adjusted prices. We can analyze both these and compare the results to a corresponding

analysis of average prices. To the extent that firms are engaging in pass-through asymmetry,

we anticipate the effect to be more pronounced for volume-weighted prices. To the extent

that firms are asymmetrically passing through costs to consumer prices, they should be more

focused on obtaining this at the stations where and on days when sales are at their highest.

Furthermore, we investigate pricing asymmetry across different station characteristics,

mirroring heterogenous competition levels. In particular, we differentiate between service

and self-service gasoline stations across regions and stations with heterogeneous spatial com-

petition.

3.3 A first look at the market: Data description

The dataset consists of daily data on Rotterdam spot prices, average transaction prices,

and gasoline volumes sold for 147 branded stations across 6 different geographical areas

in Sweden. This dataset was obtained from the Swedish Competition Authority (SCA).

The period covered is from January 1, 2012 to December 31, 2012. Four major companies

dominated the Swedish gasoline market during our sample period: Statoil Fuel & Retail AB

(operating the brands Statoil and Jet), Preem AB, St1 Energy AB (operating the brands St1

and Shell), and OK-Q8 AB. In 2012, they controlled more than 99% of the market: Statoil

Fuel & Retail AB holding 34.86% of volumes, OK-Q8 holding 27.93%, ST1 Energy AB

holding 22.62%, and Preem AB holding 14.22%, leaving only 0.36% of the sales to others.8

Of these brands, Jet and St1 only operated self-serviced stations. While Statoil, Preem,

OK-Q8, and Shell only represented full-service stations. We require that a station must have

8https://www.konkurrensverket.se/globalassets/publikationer/uppdragsforskning/forskrap2013-5.pdf
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demand and price observations available for each day during 2012 to be considered. Forty

three stations of Preem did not meet this requirement. Therefore, Preem has been removed

from the analysis.

In addition, we have information on the distance of each station to their nearest com-

petitor. For the analysis that follows, an essential variable is the daily Rotterdam spot

prices. Throughout this paper, “input prices” will refer to these Rotterdam spot prices un-

less otherwise indicated. The volume-adjusted prices are computed at the national, regional,

(self)-service station, and station levels. This price is a function of three components:

1. The station’s daily volume of gasoline sold.

2. The station’s daily average pump price.

3. Total daily gasoline sold nationally, regionally, across brands, and stations.

For example, the daily volume-adjusted price in Stockholm is computed as the sum of revenue

of all Stockholm stations divided by the corresponding total daily gasoline sales. Table 1

lists the descriptive statistics of the variables used in our analysis.

The data was collected to be used in a study of the Swedish gasoline market. The stations

were picked by the SCA and the oil companies, to be representative of the six different

regions in Sweden (Foros and Steen, 2013b). The regions are “larger cities” (Stockholm,

Gothenburg and Malmö—the three largest cities in Sweden), “larger cities” (cities with a

population between approximately 30,000 and 80,000),“the E6 highway”9 and “rural areas”

(population below 10,000).

Table 1: Summary statistics at the national level

Variables Mean Std. Dev Min Max

Av. pump prices (SEK/liter) 14.760 .440 13.908 15.730

Vol-adj. prices (SEK/liter sold) 14.727 .435 13.870 15.709

Volume (liter) 818.000 87.690 464.000 1,210.000

Input prices (SEK/liter) 5.390 .359 4.800 6.151

Service (SEK/liter sold) 14.842 .439 14.011 15.819

Self-Service (SEK/liter sold) 14.609 .432 17.701 15.579

≤ 3 (SEK/liter sold) 14.692 .433 13.806 15.672

>3 (SEK/liter sold) 14.748 .438 13.900 15.731

Note: The sample period is January 1, 2012, to December 31, 2012. N=366..

In the sample, national pump prices averaged 14.760 SEK/liter (including taxes), volume-

adjusted prices averaged 14.727 SEK/liter sold, while input prices were approximately 9.3

9The E6 highway is a part of the international E-road network. It is defined as a separate geographical

region as customers who frequently purchase from stations along the highway mostly are highway commuters.
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SEK/liter lower. Higher volume-adjusted prices are observed in Stockholm and in rural areas

and lower in Gothenburg. On average, prices in the service market differ from the automated

market prices by approximately 0.2 SEK/liter sold. A smaller difference in prices is observed

between stations with the distance to their nearest competitor within 3 km and more than 3

km. The daily average observed pump prices, volume-adjusted prices, and input prices from

January 1, 2012 to December 31, 2012 have been plotted in Figure 1.

Figure 1: Gasoline and input price patterns for average

and weighted pump prices in Sweden (2012)

As can be seen, nationally, the daily fluctuations in the pump prices and volume-adjusted

prices closely follow the cost movements. The vertical axes to the left contain the gasoline

price values, while the vertical axes to the right contain the input price values. The volume-

adjusted prices seem to be lower than the observed pump prices, but both exhibit a similar

seasonal pattern as the input prices. Following the time series from left to right, we can

see that the vertical values’ length is relatively compressed when prices rise and somewhat

stretched when the prices fall, implying rigidity in prices. Nevertheless, the compression is

less pronounced than the stretching, indicating an asymmetric behavior.

3.4 Empirical strategy and methods used

To the extent that variables are non-stationary, the ARDL and NARDL models constitute a

very suitable modeling tool since they accommodate both I(0) and I(1) variables. The alter-
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native to ECM modeling is to look at the first differences of the variables, as non-stationary

I(1) then become stationary, and both asymptotic properties and standard statistical tests

can be used. However, one loses all long-run information from the level-form of the variables,

and one must be content with estimating only short-run asymmetry. In this study, we want

to evaluate both short- and long-run effects of input prices on gasoline prices and cannot

just look at first-differenced variables. Therefore, the NARDL model has been used. This

estimation method precisely assumes that the dependent variables’ response to increases (+)

and decreases (-) of the independent variable is asymmetric. Moreover, the NARDL model,

as an extension of the ARDL model proposed by Pesaran and Shin (1998) and Pesaran et al.

(2001), can entrain a mix of I(O) and I(1) regressors, and the long-run terms are specified.

However, unlike the ARDL model, the NARDL model accommodates the decomposing of

the regressor into its positive and negative changes. Hence input prices (IPt) is decomposed

into its positive and negative partial sums for

Increases:

IP+
t =

t∑
j=1

∆IP+
j =

t∑
j=1

max(∆IPj , 0)

and decreases in (IPt)

IP−
t =

t∑
j=1

∆IP−
j =

t∑
j=1

min(∆IPj , 0)

where the partial sum of positive change in IP is denoted by IP+
j and the partial sum

of negative change in IP , denoted by IP−
j . Both IP+

j and IP−
j are included as separate

regressors in the model.

The non-linear model for our study takes the following form:

∆V Pt = β0+

p−1∑
i=1

γi∆V Pt−i+
q∑
i=0

δ+i ∆IP+
t−i

q∑
i=0

δ−i ∆IP−
t−i︸ ︷︷ ︸+θV Pt−1+ϕ

+IP+
t−1 + ϕ−IP−

t−1︸ ︷︷ ︸+vt

(1)

Short-run Long-run

∆OPt = β0+

p−1∑
i=1

γi∆OPt−i+
q∑
i=0

δ+i ∆IP+
t−i

q∑
i=0

δ−i ∆IP−
t−i︸ ︷︷ ︸+θOPt−1+ϕ

+IP+
t−1 + ϕ−IP−

t−1︸ ︷︷ ︸+vt

(2)

Short-run Long-run

where, V Pt is the daily volume-adjusted gasoline price, OPt is the daily observed pump

price, IPt is the daily Rotterdam spot price, and vt is an i.i.d. process with zero mean and

constant variance. The symbol delta (∆) denotes first differences, while p, and q are the lag

orders of the dependent and independent variables, respectively.
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The optimal number of lags for p, and q is obtained using the Akaike information criteria.

We then test for a cointegrating relationship between the variables V Pt OPt , IP+
t , and IP−

t

using the following NARDL bounds-tests (Banerjee et al., 1998; Pesaran et al., 2001) for an

asymmetric long-run cointegration:

F-test: H0 : θ = ϕ+ = ϕ− = 0, and HA : θ 6=ϕ+ 6=ϕ− 6=0

t-test: H0 : θ = 0, and HA : θ < 0

The two tests are denoted as FPSS and tBDM (Shin et al., 2013). The critical value bounds

for both depend on the number of regressors, k. In the situation of long run asymmetry,

where we have V Pt (OPt), IP
+
t , and IP−

t , the value of k ranges between 1 and 2. If we reject

H0 (of no cointegration), we conclude that the variables are cointegrated in the presence of

asymmetry. In this context, this means that one would expect that the gasoline price and

the input price levels follow one-to-one in the long-run and thus be cointegrated, while they

may differ from each other, and partly strongly in the short-run.

Next, we calculate the NARDL long-run level asymmetric coefficients following Shin et

al. (2013). The long-run asymmetric effects of IPt on V Pt (OPt) are calculated by dividing

the negative of the coefficient of IP+
t−1 (ϕ+) by the coefficient of V Pt−1(θ) : L+

IP = −ϕ+

θ ;

and, likewise, by dividing the negative of the coefficient of IP−
t−1(ϕ

−) by the coefficient of

V Pt−1(θ) : L−
IP = −ϕ−

θ .

Then, if a long-run relationship exists (bounds test), we proceed to test using a Wald

test whether the difference in the long-run asymmetric coefficients is statistically significant:

H0 : −ϕ+

θ = −ϕ−

θ HA : −ϕ+

θ 6=
−ϕ−

θ

If we reject H0, it means we have long-run asymmetry. In other words, the magnitude of the

change in V Pt (OPt) when IPt increases is not the same as when IPt decreases.

The next step is to test the following hypotheses for short-run asymmetry, again by

employing a Wald test.

H0 :
q∑
i=0

δ+i =
q∑
i=0

δ−i HA :
q∑
i=0

δ+i 6=
q∑
i=0

δ−i

Again, if the Wald test for the equality of the sum of (+) and (-) lags of IP is rejected, we

conclude that the impact of IPt on V Pt (OPt) is asymmetric.

If there are no long- and short-run asymmetries, then model (1) is reduced to the traditional

ECM model. In case only short- or long-run asymmetry is detected, then the model (1)

is transformed to the NARDL with short-run asymmetry (model 3) and the NARDL with

long-run asymmetry (model 4) below:

∆V Pt = β0 +

p−1∑
i=1

γi∆V Pt − i+

q∑
i=0

δ+i ∆IP+
t−i

q∑
i=0

δ−i ∆IP−
t−i + θV Pt−1 + ϕIPt−1 + vt (3)
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∆V Pt = β0 +

p−1∑
i=1

γi∆V Pt − i +

q∑
i=0

δi∆IPt−i + θV Pt−1 + ϕ+IP+
t−1 + ϕ−IP−

t−1 + vt (4)

In the same way, we have constructed both models for ∆OPt. Finally, we have calculated the

asymmetric dynamic multipliers in order to see how V Pt (OPt) adjusts to its new long-run

equilibrium following a positive (+) or negative (-) change in IPt.

The cumulative dynamic multiplier effects of IP+
t , and IP−

t on V Pt are evaluated as:

m+
h =

h∑
j=0

∂V Pt+j
∂IP+

t

,m−
h =

h∑
j=0

∂V Pt+j
∂IP−

t

for h = 0, 1, 2, 3, ...,

In the same way, the asymmetric dynamic multipliers for OPt are calculated. If h→∞,then

m+
h →

−ϕ+

θ and m−
h →

−ϕ−

θ . Thus, the asymmetric dynamic multipliers will show us

the duration of the temporary disequilibria after an input price IPt change, and also the

magnitude of an increase (decrease) in the gasoline price (V Pt, OPt) due to the positive

(negative) change.

In sum, the NARDL framework provides information on the existence of asymmetry, whether

it exists in the short- or long-run, and also provides a measure of the accumulated effect of

the asymmetry.

3.5 Empirical results

Models (1), (3), and (4) were used first for national-level data. Here, we aim to see whether

the relationship between the daily input prices for gasoline and volume-adjusted retail prices

differs from the relationship between the input prices and daily average pump prices typically

estimated in the empirical gasoline literature.

3.5.1 Price asymmetry in Sweden using national prices: Average and volume-

adjusted prices

We have calculated the daily volume-adjusted prices and average gasoline pump prices na-

tionally. The NARDL model was then used to examine the long- and short-run price reactions

due to input price changes.

We start out by uncovering the stationarity properties of our price variables. We apply

the Augmented Dickey-Fuller (1979) test on all our variables, and we found the presence of

a unit root at the 1% significance level. All variables become stationary after applying the

first differences. Table 1A in the Appendix shows the results of the Augmented Dickey-Fuller

test. As described in the methodology section above, we started with a general specification

of the NARDL model, and through appropriate testing, end with one final model. Table 2

below presents our preferred NARDL model findings for the national-level analysis. Tables

2A and 3A in the Appendix show all the four NARDL models estimated for the two retail

prices. Column 2 in Table 2 shows the results using the volume-adjusted price, and the

results for the average pump prices are shown in column 4.
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Table 2: Estimation results in Sweden as suggested by the NARDL models

Method: NARDL with LR Symmetry and SR Asymmetry

Variables Variables

Vol.-adj. prices Coefficients Pump prices Coefficients

Constant 2.669 ∗∗∗(0.215) Constant 3.029 ∗∗∗(0.226)

V Pt−1 -0.325 ∗∗∗(0.025) OPt−1 0.371 ∗∗∗(0.026)

IPt−1 0.392 ∗∗∗(0.030) IPt−1 0.451 ∗∗∗(0.032)

∆V Pt−1 0.347 ∗∗∗(0.043) ∆OPt−1 0.285 ∗∗∗(0.042)

∆V Pt−2 -0.238 ∗∗∗(0.043) ∆OPt−2 -0.185 ∗∗∗(0.041)

∆V Pt−3 0.147 ∗∗∗(0.041) ∆OPt−3 0.127 ∗∗∗(0.039)

∆IP+
t 0.238 ∗∗∗(0.070) ∆IP+

t 0.249 ∗∗∗(0.073)

∆IP+
t−2 -0.191 ∗∗∗(0.072) ∆IP+

t−2 -0.310 ∗∗∗(0.075)

∆IP−
t -0.148 ∗∗(0.075) ∆IP+

t -0.226 ∗∗∗(0.071)

∆IP−
t−1 -0.212 ∗∗∗(0.079) ∆IP−

t−1 -0.244 ∗∗∗(0.084)

LRIP 1.205 ∗∗∗(0.023) LRIP 1.225 ∗∗∗(0.021)

λ -0.325 ∗∗∗(0.025) ϕ -0.371 ∗∗∗(0.026)

R2 0.485 R2 0.491

tBDM -13.633 ∗∗∗ tBDM -13.397 ∗∗∗

FPSS 85.188 ∗∗∗ FPSS 92.717 ∗∗∗

IPSR 0.407 ∗∗∗(0.151) IPSR 0.409 ∗∗∗(0.158)

Note: Standard errors in in parentheses, and ∗p<0.10, ∗∗p<0.05, ∗∗∗p<0.01.

The results suggest a potential long-run relationship between input prices and retail,

volume-adjusted, and pump prices. Therefore, as a next step, we have tested our vari-

ables for cointegration through a bounds-testing process. The cointegration tests tBDM

and FPSS are 12.433 and 52.559, -13.397 and 92.717, respectively, for both cases, and the

null hypothesis for no cointegration is rejected at a 1% significance level. Thus, we have

evidence of cointegration between volume-adjusted prices and input prices when long- and

short-run asymmetry is taken into account. We find a long-run relationship between the

average pump prices and input prices for gasoline when only short-run asymmetry is consid-

ered. The positive and negative long-run coefficients are 1.187 and 1.193, respectively, and

are highly significant. They indicate that in the long-run, a 1% price increase (decrease)

of input prices causes a 1.187% (1.193%) increase (decrease) in the volume-adjusted prices.

The long-run coefficient in the case of observed prices (column four) (LRIP ) is 1.225 and is

highly significant, implying that a 1% price increase (decrease) of input prices results in the

rise (fall) of pump prices by 1.225% in the long run, ceteris paribus. The error correction

λ has the correct negative sign and is statistically significant in both cases, suggesting a

somewhat higher adjustment speed for the average pump prices. The Wald tests for short

run (IPSR) asymmetry in columns 2 and 4 implies that the short-run asymmetry responses
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are present when we consider both volume-adjusted and average prices. However, in column

2, we find some weak evidence on a 10%-level and also for the long-run (IPLR) asymmetry

for the volume-weighted retail prices (see column 5, Table A2: IPLR=-0.007).10 Figure 2

below presents the asymmetry from the dynamic multipliers for both cases, volume-adjusted

prices, and pump prices. Specifically, Figure 2 highlights the differences in the asymmetry

between the volume-adjusted and average pump prices.

Figure 2: The asymmetry + C.I. for NARDL

The solid red and blue lines in the middle are the asymmetry plots for volume-adjusted

and pump prices, respectively. They reflect the difference between the dynamic multipliers

of positive and negative changes in IP . The asymmetry lines lie within the upper and the

lower bounds of the 95% confidence interval. Thus, if the zero line falls within the confidence

interval boundary, there is no asymmetry because it will not be statistically significant.

Figure 2 shows that in the short- run, an increase due to a positive change in input prices

is more significant than the magnitude of decrease due to a negative change. There is a

cumulative positive and statistically significant effect of input price on gasoline prices from

10The models pass the tests of stability and serial correlation. Besides, the NARDL model with long- and

short-run asymmetry also passes the normality test.
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the first four days, indicating asymmetry in favor of positive cost innovations. This difference

mirrors the observed short-run asymmetry that we already determined from the Wald tests

where IPSR for volume-weighted prices, and the average pump prices are nearly similar (0.407

vs. 0.409). Thus, the asymmetry line with its confidence interval moves away quite distinctly

from the zero lines in the early stages compared to the later stages. Similarly, the thick blue

line shows that the magnitude of the increase of the observed prices due to a positive change is

larger in the short-run. Another important feature of the NARDL estimates (graph in Figure

2) is the time it takes before the asymmetry in the short-run disappears, and we are back to a

symmetric equilibrium. Both dynamic multipliers show strong temporal pricing asymmetry,

but the adjustment speed toward long-run equilibrium is relatively slower for the volume-

adjusted prices than the average prices. Actually, while the average pump price returns to

a long-run equilibrium after two days, it takes three days for the same to happen with the

volume-weighted price (see Table A2). Hence, in line with the adjustment speed parameters,

it takes volume-weighted prices longer to return to equilibrium. This result suggests that

to the extent the Swedish firms manage to impose asymmetric pass-through costs, they are

more concerned with determining prices on stations or days with higher sales. Estimating

asymmetry based on average prices (as has been common in the literature) underestimates

the degree of asymmetry. In the following, we will use the volume-adjusted prices as a

dependent variable when we analyze price asymmetry heterogeneity across regions, service

levels, and spatial competition levels.

3.5.2 Regional heterogeneity: Price asymmetry across regions

As described in the data section, we have available data for six Swedish regions that are

anticipated to differ regarding supply (e.g., number and density of stations) and demand

(driving pattern, income, and consumer density). Table 3 displays the station distribution

across regions and Figure 3 the volume-adjusted prices.

Table 3: Station distribution by brands across regions

Regions/Brands Statoil OK-Q8 Shell Jet St1 Total

Stockholm 5 5 3 4 5 22

Gothenburg 5 2 4 5 3 20

Malmo 5 5 4 4 5 23

E6 4 4 5 5 5 23

Smaller cities 6 4 4 6 6 26

Rural areas 12 4 2 4 12 33

Total 37 24 22 28 36 147
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Figure 3: Volume-adjusted prices across regions in Sweden in 2012

We found the highest prices in rural areas and in Stockholm. The latter is surprising,

given Stockholm’s status as both the largest city and the capital of Sweden. The former

is less surprising as the stations in rural areas are much less exposed to competition from

nearby stations. This is also in line with what Foros and Steen (2013b) observed. Further,

smaller cities exhibit higher prices. The lowest prices are found in Gothenburg and Malmö,

which are number two and three cities in Sweden, respectively. Table 4 shows more detailed

descriptive statistics, showing much the same picture. Regarding quantities, the largest

volumes were found in Stockholm and along the E6 highway. Table 5 presents the results

of asymmetric responses of volume-adjusted prices to input price changes across regions.11

The evidence of a long-run relationship between input and retail prices is found for cities,

highways, and rural areas. The Wald tests document that there is an asymmetric behavior

in gasoline prices’ short-run responses to input prices across all regions.

We also find some evidence of long-run asymmetry in Malmö, the E6 highway, and rural

areas, but as above, the numbers are very close to zero, ranging from -0.02 to 0.007 (see Table

11In Table 5, we only include our preferred models, the underlying 3x6 NARDL models are not included

here but the results of the NARDL models with LR and SR asymmetry across regions is presented in Table

A4 in the Appendix.
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Table 4: Descriptive statistics regional average weighted gasoline prices and average station

quantities

(a) Average station prices

Variables Mean Std. Min Max

Regions Dev.

Stockholm 14.841 .445 13.929 15.802

Gothenburg 14.600 .428 13.396 15.546

Malmö 14.666 .463 13.593 15.73

E6 14.654 .422 13.823 15.645

Smaller c. 14.741 .448 13.919 15.751

Rural areas 14.817 .446 14.024 15.815

(b) Average station quantities

Mean Std. Min Max Obs.

Dev.

7165 3730.4 21.540 23 701 8052

6586 4448.2 564.840 28 242 7320

5629 3299.4 36.120 20 568 8418

6790 4475.3 26.650 29 834 8418

6018 3343.9 54.520 21 609 9516

3022 2078.0 96.530 17 505 12 078

Note: This table shows descriptive statistics on a sample of the Swedish gasoline market

during 2012. Panel A presents the statistics of average station prices (SEK/liter sold). In

Panel B, the average quantity related to stations is provided. Statistics are provided

separately for six different geographical region samples. The number of observations (N) is

offered by day.

A4). We find negative and highly significant adjustment speed in all areas. The adjustment

speed in Malmö is the highest (-0.361), whereas rural regions and Stockholm appear to have

lower adjustment speeds (-0.283 to -0.286). The difference between rural areas and Malmö is

not very surprising and is in line with the expectation that in rural areas with potentially less

competition, asymmetry can last longer. The low adjustment speed for Stockholm is more

surprising but is in line with the fact that the price dynamics and price levels in rural areas

and Stockholm are very similar (see also Foros and Steen, 2013b). Stockholm also stands

out because the accumulated short-run effect is negative (-0.308) and, in common with the

smaller cities and the rural areas, lower in magnitude than the others.

The short-run asymmetry as measured through IPSR is varying, but is now clearly the

lowest for rural areas (0.236) versus Stockholm where IPSR is much the same as for the E6

highway and smaller cities (between 0.41 and 0.51). Again, the other large cities Gothenburg

and Malmö, stand out with IPSR around 0.84–0.85. Figure 4 contains the corresponding

dynamic multipliers for each area. The graphs mirror to a large extent what we see in

Table 5. In Gothenburg, gasoline prices are back on to long-run symmetry already after

one day. Malmö, smaller cities, and on the E6 highway, gasoline prices take three to four

days to reach the long-run equilibrium. In contrast, this process takes six days for both

Stockholm and rural areas, and the dynamics magnitude is much lower. Additionally, the

amplitude of the dynamics differs. In Gothenburg and Malmö, the firms can impose much

higher asymmetric pass-through, double as high as what we saw for the national prices above.

IPSR is estimated to be in the range of 0.84 to 0.85, whereas the national average (weighted

prices) was 0.41. Again, the amplitude of the pass-through dynamics in Figure 4 reveals a
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much lower amplitude for rural areas, smaller cities, and Stockholm.

The finding of a cumulative positive and statistically significant effect of input price

changes on volume-adjusted prices, lasting somewhat longer in Stockholm and rural areas,

might suggest less competition in Stockholm than other leading cities. Stockholm takes

almost a whole week to return to a symmetric equilibrium as compared to, in the extreme,

one day in Gothenburg. From Table 4, we can see that this also corresponds to the price

levels observed. Stockholm has the highest average price of all six regions (14.841), whereas

Gothenburg has the lowest (14.60).

Table 5: Estimation results across local markets

Regions: Stockholm Gothenburg Malmö E6 smaller c rural areas

Method: LR Symmetry& LR Symmetry & LR Symmetry & LR Symmetry & LR Symmetry & LR &

NARDL with SR Asymmetry SR Asymmetry SR Asymmetry SR Asymmetry SR Asymmetry SR Asymmetry

Variables Coefficients Coefficients Coefficients Coefficients Coefficients Coefficients

Constant 2.331*** 2.653*** 2.697*** 2.468*** 2.493*** 2.307***

(0.154) (0.310) (0.274) (0.408) (0.181) (0.149)

V Pt−1 -0.285*** -0.315*** -0.345*** -0.299*** -0.309*** -0.281***

(0.018) (0.034) (0.032) (0.024) (0.021) (0.017)

IPt−1 0.350*** 0.358*** 0.435*** 0.353*** 0.381*** 0.344***

(0.022) (0.039) (0.041) (0.028) (0.026) (0.021)

∆V Pt−1 0.361*** 0.264*** 0.283*** 0.098** 0.345*** 0.349***

(0.040) (0.044) (0.046) (0.043) (0.043) (0.042)

∆V Pt−2 -0.164*** -0.214*** -0.191*** -0.109*** -0.151*** -0.116**

(0.043) (0.045) (0.046) (0.043) (0.043) (0.043)

∆V Pt−3 0.138*** 0.126*** 0.154*** 0.173***

(0.039) (0.045) (0.041) (0.039)

∆V Pt−7 0.112*** 0.106***

(0.042) (0.039)

∆V Pt−17 0.071**

(0.035)

∆IP+
t 0.142*** 0.263** 0.448*** 0.229*** 0.211*** 0.114**

(0.057) (0.133) (0.122) (0.088) (0.074) (0.055)

∆IP+
t−2 -0.410*** -0.273** -0.292*** -0.121**

(0.138) (0.121) (0.076) (0.056)

∆IP+
t−4 -0.223*

(0.135)

∆IP+
t−6 -0.164** 0.486***

(0.055) (0.140)

∆IP+
t−9 0.090*

(0.052)

∆IP+
t−13 0.113**

(0.053)

∆IP+
t−15 -0.101**

(0.052)

∆IP−
t -0.155*** -0.355*** -0.285*** -0.173*** -0.142***

(0.055) (0.119) (0.086) (0.073) (0.053)

∆IP−
t−1 -0.432*** -0.322***

(0.140) (0.131)

∆IP−
t−6 -0.295** -0.136**

(0.136) (0.071)

∆IP−
t−6 -0.182***

(0.071)

LRIP 1.228*** 1.136*** 1.260*** 1.179*** 1.233*** 1.223***

(0.021) (0.047) (0.038) (0.032) (0.025) (0.021)

λ -0.284*** -0.306*** -0.345*** -0.335*** -0.310*** -0.271***

(0.017) (0.034) (0.033) (0.028) (0.021) (0.025)

R2 0.550 0.391 0.369 0.343 0.499 0.574

tBDM -15.873*** -9.364*** -11.116*** -12.914*** -14.680*** -16.857***

FPSS 128.387*** 44.423*** 58.351*** 81.495*** 110.287*** 133.961***

IPSR 0.424*** 0.844*** 0.853*** 0.514*** 0.409*** 0.236*

(0.103) (0.349) (0.257) (0.138) (0.171) (0.132)

Note: Standard errors in in parentheses, and ∗p<0.10, ∗∗p<0.05, ∗∗∗p<0.01.
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Figure 4: Asymmetric dynamic multipliers across regions

One explanation for Stockholm could have been the higher station volumes, but also

Gothenburg has high average station volumes (refer to Table 4). A natural question is also

whether the Swedish market exhibits Edgeworth-like cycles and saw-tooth patterns. This

was explicitly analyzed by Foros and Steen (2013b), using the same dataset as we do here,
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and they found no sign of this. Indeed, they found very little evidence of price cycling.

However, to the extent that they uncovered (very moderate) price cycles, these were most

pronounced in markets that have the lowest prices, that is, Gothenburg and Malmö, though

they did not resemble saw-tooth-like patterns.

The only study besides us that has estimated asymmetry in pass-through is Byrne (2019).

Byrne (2019), using data from Canada, found more asymmetry in rural markets than in

cities. If we disregard the Stockholm result, we find evidence of the same pattern, estimating

asymmetry across different markets.

Consistent with what we also found at the national-level analysis. A temporal cumulative

positive and statistically significant effect of input price innovations on gasoline prices in the

short-run is evident in six different regional markets, though close to zero for Gothenburg,

indicating the existence of asymmetry in favor of positive cost changes. In other words,

retailers are quick to raise and slow to reduce prices when an input change occurs.

3.5.3 Station heterogeneity: Service and self-service gasoline stations

From what we saw above, and in line with Byrne (2019), market power seems to be associated

with a more asymmetric cost pass-through. Using the same data, while also including the

Preem stations, Nguyen-Ones and Steen (2021) find evidence of higher markups for service

stations as compared to self-service stations. Hence, in our sample, we have chosen to calcu-

late two price series: one representing the daily volume-adjusted gasoline prices for service

stations and the other representing price series for the automated stations. We then test

for the presence of asymmetric behavior of volume-adjusted prices to input price deviations

for these two station groups. To our knowledge, we are the first to provide estimates for

the input-volume-adjusted price relationship from these two station types separately. Table

6 shows the results. The variables are cointegrated in both markets, and the adjustment

speeds λ are statistically significant and have the correct sign. We observe a slower speed

of adjustment in the service market than in the self-service market. The subsequent step is

to implement the Wald tests for potential long- or short-run asymmetries. The Wald tests

accept long-run symmetry with respect to input price, indicating the pass-through from in-

put prices to the volume-adjusted price of gasoline in the long-run. The short-run symmetry

is rejected at a 1% significance level, which signifies asymmetric pass-through in the short-

run. The long-run coefficient LRIP is statistically significant at a 1% significance level and

has a positive causal effect on V P . In Figure 5, the temporal asymmetric behavior can be

observed.

IPSR is statistically significant for both gasoline station groups, but in line with the higher

adjustment speed, somewhat higher for the self-service stations. However, we find that short-

run asymmetry, in favor of positive responses, results in both markets. This indicates that

similar to the national and regional-level analysis, retailers are quick to increase and slow to

decrease gasoline prices when an input change happens.
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Interestingly, we find some support for differences correlated with the degree of market

power. We find that manned service retailers adjust the asymmetry first after four days,

whereas, at the automated self-service stations, the asymmetric cost pass-through only lasts

for three days (see Table 6). Several studies associate high service levels with higher prices or

more market power. Eckert and West (2005) find evidence that station characteristics affect

sellers’ price setting and suggest the presence of imperfect competition. Haucap et al. (2017)

conclude that prices are positively related to station service levels, and Shepard (1991) finds

that stations charge a full-service markup. Nguyen-Ones and Steen (2021) confirm higher

market power for manned service stations in Sweden. From our asymmetry result, and in

line with this, we find that the oil companies are better able to extract market power through

asymmetric pass-through of costs for a longer duration for these stations.

Table 6: Estimation results across self-service and service gasoline stations

Market: Service stations Self-service stations

Method: NARDL with SR NARDL with SR

Variables Coefficients Coefficients

Constant 2.806*** (0.211) 3.028*** (0.042)

V Pt−1 -0.339*** (0.024) -0.373*** (0.028)

IPt−1 0.413*** (0.029) 0.449*** (0.034)

∆V Pt−1 0.372*** (0.043) 0.183*** (0.042)

∆V Pt−2 -0.239*** (0.043) -0.132*** (0.040)

∆V Pt−3 0.159*** (0.041) -

∆IP+
t 0.168*** (0.067) 0.339*** (0.083)

∆IP+
t−2 -0.221*** (0.071) -0.307*** (0.084)

∆IP−
t -0.135** (0.067) -0.259*** (0.081)

∆IP−
t−1 -0.266*** (0.077) -0.245*** (0.095)

LRIP 1.217*** (0.021) 1.201*** (0.023)

λ -0.339*** (0.024) -0.372*** (0.029)

R2 0.505 0.429

tBDM -13.825*** -13.116***

FPSS 96.939*** 87.029***

IPSR 0.348*** [0.018] 0.537*** [0.003]

Note: Standard errors in (), p-value in [], and ∗p<0.10, ∗∗p<0.05, ∗∗∗p<0.01.
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Figure 5: Asymmetric dynamic multipliers for service and self-service gasoline stations

3.5.4 Results for stations with a different degree of local competition

As discussed above, there exists a large literature base discussing the effects of local competi-

tion on retail gasoline markets (see, e.g., Hastings, 2004; Slade, 1987; Netz and Taylor, 2002;

Nguyen-Ones and Steen, 2021). Nguyen-Ones and Steen (2021), estimating a Bresnahan-Lau

(1982) structural model for the Swedish market, find markup results suggesting that differ-

entiation in terms of location has a significant impact on a stations’ level of market power

in Sweden. The increased density of stations reduces each sellers’ markup and resulting in a

positive effect on the local competition. These findings are in line with those of Barron et al.

(2004), Barron et al. (2008), and Clemenz and Gugler (2006), who show that higher station

density tends to lower average prices suggesting that a higher number of sellers raises local

competition.

To scrutinize this, we analyze how a distance to the nearest competitor affects pricing

asymmetry. We calculated the daily volume-adjusted prices for all stations with their clos-

est competitor within a span of 3 km and volume-weighted prices for those that have their

closest competitor more than 3 km away.

Table 7 contains the estimates of these two cases. The volume-adjusted prices and input

prices are cointegrated, suggesting a long-run relationship between these two variables. We

find only short-run asymmetry for both relationships, for both those having a close competi-

tor and those that do not. Thus, we have used the NARDL model, which accounts only for

short-run asymmetric responses.
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Table 7: Estimation results of stations based on the distance to their nearest competitor

Distance: Stations Stations

≤ 3km > 3km

Method: NARDL with LR& SR NARDL with SR

Variables Coefficients Coefficients

Constant 2.913*** (0.233) 2.458*** (0.174)

V Pt−1 -0.356*** (0.027) -0.302*** (0.020)

IPt−1 0.429*** (0.033) 0.376*** (0.025)

∆V Pt−1 0.295*** (0.043) 0.216*** (0.041)

∆V Pt−2 -0.194*** (0.042) -0.094*** (0.023)

∆V Pt−3 0.106 *** (0.041) 0.104*** (0.041)

∆IP+
t 0.287*** (0.081) 0.178*** (0.067)

∆IP+
t−2 -0.284*** (0.082) -

∆IP−
t -0.209*** (0.076) -0.179*** (0.064)

∆IP−
t−1 -0.247*** (0.088) -

LRIP 1.205*** (0.023) 1.247*** (0.024)

λ -0.356*** (0.026) -0.302*** (0.019)

R2 0.463 0.454

tBDM -13.215*** -14.916***

FPSS 87.542*** 113.583***

IPSR 0.461*** [0.007] 0.358*** [0.000]

Note: Standard errors in (), p-value in [], and ∗p<0.10, ∗∗p<0.05, ∗∗∗p<0.01.

We find that if the input price increases (decreases) by 1%, the VP increases (decreases)

by about 1.205% and 1.247%.12 Hence, we observe almost a one-to-one relationship. The

Wald tests fail to reject long-run symmetry with respect to input price, indicating a sym-

metric pass-through from input prices to the retail price of gasoline in the long-run.13

In terms of the short-run, the Wald tests decisively reject the null of additive short-run

symmetry with respect to input price. This pattern of asymmetry determines the shape of

the dynamic multipliers presented in Figure 6. At a 1% confidence interval, we reject the null

hypothesis of summative symmetric adjustment, and PSR is equal to 0.461 and 0.358. This

indicates that the positive impact of IP+ on V P is significantly greater than the positive

impact of IP− in the short-run, and mostly so for the gasoline stations with closer local

competitors.

Columns (1)–(2) show the negative and statistically significant adjustment speed λ for

both markets, whereas anticipated, the adjustment speed is somewhat slower for stations

12The long-run level coefficient for both cases is LRIP and the error correction forms are EC= VP-

(1.205*IPt−1) and EC= VP-(1.247*IPt−1), respectively.
13Both NARDL models passed the test of stability and serial correlation.
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having lower local competition. Further, the error correction term provides evidence that

being in a market more than 3 km away from the nearest competitor can significantly slow

the speed of pass-through asymmetry. The dynamic multipliers in markets with a distance

between stations less or equal to 3 km has a rapid return to long-run symmetry after just

three days. Stations with more than 3 km to their closest competitor are able to impose

short-run asymmetric cost pass-through for as much as seven days (see Table 7).

Figure 6: Asymmetric dynamic multipliers for NARDL

This can be seen clearly from Figure 6, which shows the dynamic multiplier effects. Since

the average distance to competing gasoline stations correlates with regions in the sense that,

in rural areas, one typically finds a longer distance between competitors as compared to in

cities. Interestingly enough, the longest period of short-run asymmetry in cost pass-through

is found for rural regions (6 days) and stations with no competitors nearby (7 days). As

such, our results are in line with what Byrne (2019) found for the Canadian market.

3.6 Economic implications of asymmetric pass-through of oil prices to

gasoline prices

Using the NARDL models, we find clear evidence of short-run price asymmetry both using

average pump prices and volume-adjusted prices for the Swedish national market. Prices

increase more after input price increases compared to their decrease when input price reduces.

Figure 7 shows the difference in asymmetry between the model using the average prices and

the model using the volume-weighted prices. The volume-adjusted price asymmetry takes

an extra day to correct the disequilibrium error as compared to what we find for the average

pump price asymmetry. Hence, this indicates that companies are indeed more focused on

pricing at larger gasoline stations.
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Figure 7: The Asymmetry + C.I. for NARDL in Sweden

Indeed this also impacts how we interpret the effects of asymmetric pricing behavior. If

we consider only average prices, we underestimate the effect of the asymmetry. In our case,

for Sweden aggregated, we find one more day of asymmetry. This extra day accounts for a

significant part of the overcharge created by the asymmetric pricing behavior. In Table 8, we

do a “back-of-the-envelope” calculation of the effects of asymmetry. Based on our estimates

from using average prices and the model using volume-weighted prices (see Figure 7), we find

an approximately average overcharge for the 2(3) days predicted by the models.14 Note that

the overcharge, the prices, and the margins will differ across these models. Calculating these

overcharges, we find that as much as 1,136,982 thousand SEK is the estimated overcharge

14Average price and margin increase due to asymmetry on Day 1 (Day 2). For instance, this overcharge

can be calculated as asymmetry on Day 1 (Day 2) divided by the daily average price: 0.48/14.76= 3.3%

(0.68/14.76= 4.6%), and by the daily average margin 0.48/1.0478=45.8% (0.68/1.0478=64.9%). Then, to

calculate the cost of the asymmetric price responses for Day 1 (Day 2) in Sweden, we have used the daily

gasoline consumption in 2012 (see Sweden Gasoline consumption—data, chart/TheGlobalEconomy.com) and

multiplied it with the asymmetry value: 0.48 (0.68)*8167972= 470,475,187 (666,506,515) SEK. Finally, the

annual cost of asymmetry in SEK in Sweden is calculated as the daily cost times 120, the number of days

when the gasoline price increases in our sample. Similarly, the calculations are made for the model based on

volume-weighted prices, but the only difference is the presence of Day 3 asymmetry and using volume-weighted

average price (14.73) and margin (1.0238).
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for the average price model.

Table 8: “Back-of-the-envelope” calculations

Models Day 1 Day 2 Day 3

1. The average price model Total effect SEK

Price increase due to asymmetry (%) 3,3 % 4,6 %

Margin increase due to asymmetry (%) 45,8 % 64,9 %

Annual cost of asymmetry in SEK 470 475 187 666 506 515 1 136 981 702

in Sweden

2. The vol-weighted price model Day 1 Day 2 Day 3 Total effect SEK

Price increase due to asymmetry (%) 2,6 % 4,2 % 1,4 %

Margin increase due to asymmetry (%) 38,1% 66,4% 19,5%

Annual cost of asymmetry in SEK 382 261 090 607 697 117 196 031 328 1 185 989 534

in Sweden

Difference in overcharge in SEK - 49 007 832

Difference in overcharge in % -4,13%

This increases by 49,008 thousand SEK when we account for the effect of one extra

day, and volume-adjusted prices.15 Hence, it suggests that the model using average prices

underestimates the full overcharge due to an asymmetry of 4.1%. In fact, the overcharge

amounts to 2.7% of the total expenditure on gasoline in Sweden in 2012. Table 8 also shows,

as compared to the margin, this overcharge represents 40–60% of the daily average margin.

This is obviously due to the significant taxes that, together with the Rotterdam price, leave

the companies with a very low gross margin per liter. Thus, we also calculate the total gross

margin for 2012 to compare it to these overcharges. The total margin is around 3 billion

SEK; therefore, there is an overcharge of around 1 billion SEK. Hence, the 2.7% increase in

total expenditure for gasoline implies a doubling of the gross margin, suggesting that for the

oil companies, asymmetric pricing presents a major avenue for increasing profits. Since the

last part of the retail price is determined by taxes and the Rotterdam wholesale price, this

increase in the margin is not very noticeable for consumer expenditures, who end up paying

less than 3% extra for their gasoline.

3.7 Summary and discussion

Given the rich dataset that we had access to from the Swedish retail gasoline market, we have

been able to examine whether there is a significant difference between asymmetric average

pump price responses and volume-adjusted price responses to input price variations. We

observe that when using volume-adjusted prices, the disequilibrium error takes more time to

be fully corrected to the long-run equilibrium, suggesting that the oil companies are more

concerned with the price setting on days and stations with higher volumes.

15Calculated as the difference in the annual cost due to asymmetry in pricing between the model estimated

using average prices (SEK 1,236,981,702) and the model using volume-weighted prices (SEK 1,185,989,534).

87



In the rest of our empirical analysis, we continue using only volume-adjusted prices as the

dependent variable. We analyze how asymmetry is related to the degree of competition by

estimating models across regions, and considering service-level heterogeneity and the local

competition.

The results for our regional models are overall consistent with what Byrne (2019) found.

Asymmetric price responses are more pronounced in rural markets than in urban markets,

although Stockholm seems to be an exception. When controlling for local competition pres-

sure by dividing stations into those being exposed to nearby competitors within 3 km, and

those stations where this is not the case, we find a similar result. The stations not exposed

to as much local competition exhibit a similar pattern to what we found for the rural region.

Here, the most prolonged short-run asymmetry was concluded among all estimated models.

Additionally, we investigated the presence of asymmetric price responses for service and

self-service stations. The results indicate that the pricing asymmetry is larger and more

prolonged for service stations. This result, that is, stations with higher service levels have

larger pricing asymmetry, supports the results found by Verlinda (2008). It is also in line

with the findings of Byrne (2019), that is, evidence suggesting that market power increases

cost pass-through asymmetry. Several studies have concluded that a higher service level is

associated with higher prices and market power, suggesting that the prolonged asymmetry

found here can be attributed to differences in competition level (see, e.g., Eckert and West,

2005; Haucap et al., 2017; Shepard, 1991; Nguyen-Ones and Steen, 2021).

Overall, our results are largely consistent with the existing literature that relates market

power with the presence of asymmetric cost pass-through to the retail price of gasoline.

Moreover, the analysis confirms that gasoline prices in Sweden during the sample period

display the “rocket and feathers” pattern by responding more rapidly to the input price

increases than decreases. When input price increased, retailers were able to quickly pass-

through the input price increases to volume-adjusted price. Conversely, when input prices

decreased, the retailers delayed the pass-through.

As we saw in the section above, the economic impact on retailer’s gross margins is

substantial, still only affecting average prices and expenditure marginally. In transparent

oligopolies, where taxes and exogenous costs make up a significant part of the retail price

and overall demand typically is inelastic, incentives to impose asymmetric pricing are very

high.

The literature seems to conclude that market power leads to larger pricing asymmetry

(see, e.g., Byrne, 2019; Verlinda, 2008; Deltas, 2008). Indeed, we support their findings.

The volume-adjusted price converges with its long-run equilibrium position through a slower

adjustment speed in rural areas, the service market, and stations with no competitor within

3 km.

For all models, and in line with the literature, we find a return to long-run pricing

asymmetry. Another interesting feature of using daily data is that for all models, we find
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that the return to long-run asymmetry is always achieved within one week, both for average

pump prices and for using volume-weighted prices. Several studies using more aggregated

data find longer adjustment periods, probably due to the lower data frequency but also due

to longer datasets. Our dataset, though representing real transaction data, is after all, only

366 days long.

We have aggregated across stations using different selection criteria; regions, service level,

and local competition level. Since we have access to a detailed panel of transaction prices

and volumes per day for as many as 147 gasoline stations, the next interesting step would

be to estimate dynamic models for each station and relate the results to variables measuring

the particularities of the stations’ demographics with regards to local demand, competition

level, and station heterogeneity. This would potentially take us further in the direction of

what Byrne (2019) did while estimating price dynamics across stations and comparing the

results across local markets in Canada.
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3.8 Appendix

Table A1. Augmented Dickey-Fuller test for unit root

Variables Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

VP -1.634 -3.451 -2.875 -2.570

OP -1.692 -3.451 -2.875 -2.570

IP -1.528 -3.451 -2.875 -2.570

Variables Test 1% Critical 5% Critical 10% Critical

Statistic Value Value value

∆VP -14.295 -3.451 -2.875 -2.570

∆OP -15.409 -3.451 -2.875 -2.570

∆IP -18.936 -3.451 -2.875 -2.570
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Table A2. Estimation results in Sweden using volume-adjusted prices, daily dataset

Method: ARDL NARDL NARDL NARDL

with LR with LR & SR with SR

Variables Coefficients Coefficients Variables Coefficients Coefficients

Constant 2.694*** (0.251) 3.376*** (0.298) Constant 4.689*** (0.359) 2.669*** (0.215)

V Pt−1 -0.326*** (0.029) -0.236*** (0.021) V Pt−1 -0.328*** (0.025) -0.325*** (0.025)

IPt−1 0.391*** (0.035) IPt−1 0.392*** (0.030)

IP+
t−1 0.281*** (0.025) IP+

t−1 0.389*** (0.030)

IP−
t−1 0.282*** (0.025) IP−

t−1 0.391*** (0.030)

∆V Pt−1 0.370*** (0.045) 0.388*** (0.045) ∆V Pt−1 0.343*** (0.043) 0.347*** (0.043)

∆V Pt−2 -0.235*** (0.044) -0.291*** (0.049) ∆V Pt−2 -0.238*** (0.042) -0.238*** (0.043)

∆V Pt−3 0.126*** (0.043) 0.168*** (0.048) ∆V Pt−3 0.143*** (0.040) 0.147*** (0.041)

∆V Pt−4 -0.105** (0.045) ∆IP+
t 0.234*** (0.070) 0.238*** (0.070)

∆V Pt−7 0.117*** (0.038) ∆IP+
t−2 -0.190*** (0.072) -0.191*** (0.072)

∆IPt -0.122*** (0.046) ∆IP−
t -0.548*** (0.075) -0.148** (0.069)

∆IPt−1 -0.110** (-0.055) ∆IP−
t−1 -0.221*** (0.079) -0.212*** (0.079)

∆IPt−2 -0.124** (0.052)

LRIP 1.191*** (0.039) LRIP 1.205*** (0.023)

LR+
IP 1.191*** (0.039) LR+

IP 1.193*** (0.024) -

LR−
IP 1.198*** (0.036) LR−

IP 1.187*** (0.026) -

λ -0.320*** (0.029) -0.322*** (0.028) ϕ -0.326*** (0.026) -0.325*** (0.025)

R2 0.467 0.414 R2 0.489 0.485

tBDM -13.513*** -13.058*** tBDM -13.433*** -13.633***

FPSS 68.197*** 44.804*** FPSS 57.976*** 85.188***

LRIP - -0.061 (0.169) LRIP -0.007* (0.004) -

IPSR - - IPSR 0.813*** (0.159) 0.407*** (0.151)

Note: Standard errors in in parentheses, and ∗p<0.10, ∗∗p<0.05, ∗∗∗p<0.01.
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Table A3. Estimation results in Sweden using average pump prices, daily dataset

Method: ARDL with NARDL with LR NARDL with NARDL with LR

LR & SR Asymmetry & LR & SR Symmetry &

Symmetry SR Symmetry Asymmetry SR Asymmetry

Variables Coefficients Coefficients Variables Coefficients Coefficients

Constant 3.021*** (0.268) 4.021*** (0.353) Constant 5.297*** (0.381) 3.029*** (0.226)

V Pt−1 -0.369*** (0.032) -0.280*** (0.025) V Pt−1 -0.371*** (0.027) -0.371*** (0.026)

IPt−1 0.450*** (0.039) IPt−1 0.451*** (0.032)

IP+
t−1 0.337*** (0.030) IP+

t−1 0.449*** (0.033)

IP−
t−1 0.338*** (0.030) IP−

t−1 0.450*** (0.032)

∆V Pt−1 0.317*** (0.044) 0.318*** (0.047) ∆V Pt−1 0.283*** (0.042) 0.285*** (0.042)

∆V Pt−2 -0.189*** (0.043) -0.193*** (0.046) ∆V Pt−2 -0.186**** (0.041) -0.186*** (0.041)

∆V Pt−3 0.124*** (0.041) 0.120*** (0.044) ∆V Pt−3 0.126*** (0.039) 0.128*** (0.040)

∆IPt -0.191*** (0.050) ∆IP+
t 0.247*** (0.073) 0.249*** (0.073)

∆IPt−1 -0.119** (-0.059) ∆IP+
t−2 –0.309*** (0.075) -0.310*** (0.075)

∆IPt−2 -0.176*** (0.055) -0.107** (0.055) ∆IP−
t -0.680*** (0.078) -0.226*** (0.071)

∆IP−
t−1 ∆IP−

t−1 -0.246*** (0.084) -0.244*** (0.085)

LRIP 1.219*** (0.022) LRIP 1.218*** (0.021)

LR+
IP 1.203*** (0.035) LR+

IP 1.211*** (0.024) -

LR−
IP 1.206*** (0.032) LR−

IP 1.213*** (0.022) -

λ -0.369*** (0.032) -0.368*** (0.030) ϕ -0.367*** (0.027) -0.371*** (0.026)

R2 0.441 0.377 R2 0.491 0.491

tBDM -13.923*** -13.213*** tBDM -13.875*** -14.113***

FPSS 68.197*** 44.348*** FPSS 65.746*** 98.552***

LRIP - -0.003 (0.005) LRIP -0.002 (0.004) -

IPSR - - IPSR 0.865*** (0.169) 0.409*** (0.158)

Note: Standard errors in in parentheses, and ∗p<0.10, ∗∗p<0.05, ∗∗∗p<0.01.
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Abstract

Wholesale electricity markets exhibit high price volatility; therefore, market par-

ticipants routinely hedge price risks through the use of financial derivatives, such as by

acquiring futures contracts that allow them to buy or sell electricity for a pre-determined

price over a set time period. Considering the perspective of a market participant, this

study applies techniques from the field of signal processing to map medium-term rela-

tionships between load and prices in the New York State wholesale electricity market

(NYISO). We first sort and filter raw market data from the year 2006 to 2018 into an-

nual, seasonal (90-day), and weekly moving averages. We then develop three nonlinear

models that relate the moving averages of load and prices while accounting for seasonal-

ity in the data. As a next step, we extract the model from the filtered data and employ

the Box–Jenkins methodology for the time series analysis to model the resulting noisy

residuals. We conclude by performing out-of-sample forecasts of the seasonal moving

average model using data from 2019 and 2020. The forecast results indicate that our

modelling approach is useful in predicting the relationship between seasonal load and

prices in the NYISO and that it may assist market participants to better assess market

risks and adjust their hedging positions.

Keywords: Electricity markets, signal processing, risk management, mathematical

modelling, nonlinear data analysis

*A six-page version of the paper has been published on the IISE Annual conference proceedings page. A
shorter version of this paper has been submitted to the IEEE journal, Transactions on Power Systems.
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International Workshop on Forecasting for Social Good, and IISE Annual conference 2021 for helpful com-
ments.

98



4.1 Introduction

In the mid-1990s, electricity markets across Europe, North America, and Australia underwent

a dramatic period of transformation. The electric power industry, which had historically been

dominated by vertically integrated and state-regulated monopolies, was restructured into an

open-market paradigm with free entry and auctions where market participants were required

to bid competitively to buy and sell power. Though this shift in market design has generally

led to increased competition and the entry of new market participants, restructuring has also

created new challenges for market participants and regulators (Monitoring Analytics, 2020).

One notable challenge is that restructured power markets can exhibit extreme volatility.

The supply and demand for power must always be equal and even minor fluctuations in the

weather, fuel costs, or plant availability can cause dramatic price spikes. This price volatility

was brought into sharp focus during the California energy crisis of the early 2000s and the

Polar vortex during the winter of 2014.1 Though the former was partially due to market

manipulation and the latter was due to extreme weather, both resulted in prolonged periods

of extreme price volatility that caused billions of dollars in excess charges and catastrophic

losses for some industry participants. To protect themselves against price volatility, electric-

ity market participants commonly engage in financial hedging strategies.2 Previous studies

have highlighted that hedging practices are crucial for protecting against spikes in the price

of the commodities that generate electricity in the case of generators and, in the case of

retailers, in the price of the electricity itself. For example, Consolidated Edison (ConEd)

notes the following in its 2019 Annual Report:

“To reduce the volatility of its customers’ electric energy costs, the company has contracts

to purchase electric energy and enters into derivative transactions to hedge the costs of a

portion of its expected purchases under these contracts and through the NYISO’s wholesale

electricity market.” (Consolidated Edison 2019 Annual Report – Page 22).

“Con Edison’s subsidiaries hedge market price fluctuations associated with physical pur-

chases and sales of electricity, natural gas, steam and, to a lesser extent, refined fuels by

using derivative instruments including futures, forwards, basis swaps, options, transmission

congestion contracts and financial transmission rights contracts” (Consolidated Edison 2019

Annual Report – Page 160).

However, there are costs and risks associated with the purchase of futures contracts,

forward agreements, and other derivatives; as a consequence, inefficient hedging strategies

can result in significant financial losses. Because of the potential negative impact that such

1See Stoft (2002) and Monitoring Analytics (2014).
2From Klemola and Sihvonen (2015): “Electricity companies are among the most active users of financial

derivatives. This is mostly because highly volatile electricity prices require rigorous hedging, but also because
increased competition within the industry forces companies to find new sources of profit, such as arbitrage
and speculation.”
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“hedging losses” can impose on the public in the form of higher rates, some regulators require

market participants to file reports outlining their hedging strategies and they closely monitor

those programs.3 In addition, many companies, including publicly traded companies such

as ConEd, routinely report on the overall financial performance of and risks associated with

their hedging programs. Put simply, hedging programs are integral to the electricity markets,

and the participants in those markets are strongly motivated to implement programs that

are not only effective but financially prudent and efficient.

In this study, we develop a modelling approach that can potentially be utilized by power

market participants to fine-tune their hedging strategies. We develop this approach using

data from the New York Independent System Operator (NYISO), which is the wholesale

power market clearinghouse for the state of New York. These data are of high-resolution,

well organized, and are freely available online. However, this modeling approach could likely

be applied to many other electricity markets. In order to take advantage of the fact that

medium-term demand for power and medium-term prices for power are highly synchronous,

we use a series of non-linear models to bi-directionally map these two time series to each

other. This mapping enables anyone with an accurate forecast of medium-term load to be

able to estimate future medium-term prices, and vice versa.

A signal is defined as “any sequence of numerical data that varies with respect to an un-

derlying independent variable, mostly time,” and signal processing is the subfield of applied

engineering that focuses on the analysis of signal behavior (Nepal, 2015). Signal processing

developed into a formal field of study in the 1940s in order to construct and analyze commu-

nication systems and has since then been widely used in physics and engineering. In recent

years, however, signal processing has begun to receive more attention in the field of finance

where it can be used to analyze economic variables such as derivative prices.

Signal processing can be broadly broken down into three main modeling components:

filtration, waveform identification, and noise analysis (Nepal, 2015). Filtration involves per-

forming mathematical transformations on a signal in an effort to distill its random or “noisy”

component. This smoothens the signal and makes it easier to carry out the next step, namely,

fitting a waveform function that approximates the signal’s persistent, low frequency period-

icity. In the case quasi-periodic signals, it is common for practitioners to use aperiodic

functions, a flexible technique that consists of summing a series of trigonometric functions

that collectively model the amplitude and frequency of the signal in question. Finally, the

leftover signal noise, that is, the model residuals or “error terms” that are not captured by

the filtration and waveform fitting steps, is analyzed to ensure that it is stationary white

noise and that it does not contain any additional systemic information.

This study employs these three modeling techniques to model the medium-run relation-

ship between load and prices in the NYISO. We begin by sorting thirteen years of hourly

real-time NYISO market data into four distinct time periods that reflect the consumer de-

3See Washington State Docket UG-132019.
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mand for power over the course of the day: morning, midday, evening, and night. We

then consolidate these hourly data by calculating daily observations of average load and

load-weighted average prices for each of these time periods.

We then employ a series of filtrations on these daily observations. First, we calculate a

365-day moving average (MA) of the daily load and price observations. We then create a

new data series where we divide the daily observations by the annual MA on the same date

and subtract one. This new filtered data series expresses the daily NYISO load and prices as

percentage deviation from the annual MA. As a final step, we calculate the 90-day seasonal

MA and 7-day weekly MA of the percentage deviation data.

After creating these annual, seasonal, and weekly moving averages of the NYSIO load and

prices, we develop three signal functions that express the load as a function of purely seasonal

expressions, prices, and interaction terms between time and prices. As a final modelling step,

we subtract the fitted waveform functions from the actual seasonal MA observations to create

model residuals, that is, the model noise that is left over from the filtration and modeling

steps. We model these noisy residuals using the Box–Jenkins methodology for time series

analysis via autoregressive regressions that capture any remaining seasonality left in the

data. We choose the seasonal model for the noise analysis as the model yielded the highest

R-squared values and because it most closely resembles the typical duration of power futures

contracts.

To validate the predictive capability of this signal-processing approach, we perform simple

out-of-sample forecasts of the seasonal model using 2019 and 2020 NYISO market data as

testing data. We find that the out-of-sample forecasts yield model residuals that closely

resemble the training data residuals. This indicates that the seasonal model yields relatively

accurate predictions of the relationship between seasonal load and prices across all NYISO

zones and time periods. We do note, however, that some forecasts are more accurate for some

NYISO zones than others, suggesting that some market zones may require more aggressive

hedging strategies than others.

While there are similarities between the standard econometric analysis and the signal

processing approach we follow in this study, we believe that there are several key differences.

First, while it is common to mathematically transform raw economic data before carrying

out an econometric analysis, our approach employs heavier data filtration than is common in

most econometric studies. For instance, in the econometric analysis of financial time series, it

is common to transform raw price data into percentage returns. In contrast, we immediately

transform NYISO market data into annual moving averages and then apply several additional

filtrations thereafter in order to eliminate more structures (quasi-periodicities and trends)

from the signals before we study the residuals. Second, we perform additional analysis on

our waveform model residuals, which is uncommon in most econometric studies. Though

some econometric studies provide descriptive statistics about model residuals, few actually

go so far as to build additional models that describe residual behavior. This part of the
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analysis, that is, analyzing the noise left over from the filtration and waveform modelling

steps, is standard practice in signal processing. By carrying out this additional step, we

were able to find left over explanatory information in our model residuals despite having

initially high model R-squared values. Finally, while it is the intent of most econometric

pursuits to identify causality in a given economic system, causality is not the primary focus

of our analysis. Undoubtedly, short-term fluctuations in power demand cause changes in

electricity prices and the two variables are highly correlated across time. However, it is our

intent to accurately model and predict this correlational relationship in order to exploit it

for the purpose of risk management in electricity markets. In our waveform functions that

describe the basic structural behavior of load, we allow for prices modifying amplitudes and

frequencies.

By inspecting the estimated parameter values of our models, we find that they can reveal

a highly detailed picture of the dynamics between load and prices across the NYISO market

areas and time periods. The vast majority of these parameter values are consistent with the

known physical characteristics of the NYISO market landscape, and the waveform functions

yield high R-squared values—two results that strengthen the validity of our analysis.

We believe that this paper makes several unique contributions to applied economic re-

search. First, we use innovative filtration methods on the raw NYISO load data: we have

not seen any previous studies express load in terms of percentage deviations from the annual

mean. Second, while most previous research has focused solely on power market load or price

forecasting, we actually focused on forecasting the relationship between the two. Third, we

take advantage of the highly synchronous moving averages of load and prices by using prices

to modulate the amplitude and frequency of load in a nonlinear model setting. Finally, due

to the extensive time period and zone based sorting of the NYISO market data, we are able

to present a very detailed analysis of the price and load dynamics across the NYISO and

offer insights about price elasticity in the market. This analysis spans thirteen years of the

NYSIO market operation and, due to the nonlinear nature of our models, reveals many extra

details and dynamics that are not easily visible using standard linear regressions.

We also believe that the modeling paradigm and market analysis presented in this paper

could be of interest to electricity market participants and other risk management practition-

ers. Knowing that many load serving entities (LSEs) already employ sophisticated hedging

strategies in practice, we do not suggest any new hedging strategies in this paper. The signal

processing approach we have developed can, however, be used to independently estimate the

medium-term average price of power given that an LSE has a reasonably accurate medium

term load forecast. Since we have developed functions that relate load, time, and price, an

improved forecast of average prices will likely yield improved forecast of load. Most LSEs are

capable of accurately forecasting short to medium term load and we therefore believe that

the former is more useful to market participants. With independent, data-driven estimates

of medium-term power prices, LSEs could potentially make better-informed decisions that
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can lead to lower hedging costs. Such an estimate can be compared to the current price of

power in the futures markets and potentially help utilities better determine whether power

is selling at a premium, discount, or fair market value.

In addition, by using information about the demand for electricity, we believe that our

modeling approach potentially yields an enhanced methodology for assessing price risk in

wholesale power markets. Rather than simply using past information about prices to predict

future values, we use past information about both load and prices together. Because we are

using moving averages in addition to periodic terms and flexible interaction terms in the

waveform functions, our models can capture long-run, persistent trends and medium-term

trends alike.

This paper is organized in the following manner. Section 4.2 presents a review of relevant

literature. Section 4.3 provides a brief overview of electricity markets and the physical

characteristics that influence their dynamics, with a special focus on the NYISO. We also

briefly discuss futures contracts for electricity. Section 4.4 provides a thorough overview of

the NYISO market data used in the analysis and discusses their statistical properties. Section

4.5 presents the processes used to sort and filter the raw market data and three waveform-

like functions used to model three different moving averages of the filtered data. Section 4.6

presents the results of the parameter estimation of models and discusses the market dynamics

that they reveal about the NYSIO. In Section 4.7, we analyze the noisy residuals of the 90-

day seasonal model using the Box–Jenkins time series methodology. Section 4.8 presents

the results of our out-of-sample forecasts of the seasonal model and offers some insights for

risk management in the NYISO based on these results. Finally, Section 4.9 presents our

concluding remarks and potential paths for future research.

4.2 Literature review

During the past decade, load and price forecasting in electricity markets has been an active

field of research (Aggarwal et al., 2009). Researchers have concentrated not only on models

but also on data pre-processing techniques and other mathematical methods that increase

forecasting accuracy. This research has focused on forecasting over variety of time scales,

such as; short term which may span several hours to several days; medium-term, which may

span a week, several months or even several years, and; long-term which may span several

years to a decade. For the short-term, three distinct data-driven methods have been used to

predict load or price time series: Regression or casual models (Engle et al., 1992) ARIMA

configurations (Christiansen, 1971; Taylor and McSharry, 2007; Taylor, 2011) and Artificial

intelligence models, including boosting machines (Lloyd, 2014), Artificial Neural Network

(ANN) models (Charytoniuk and Chen, 2000; Han et al., 2018; Taylor and Buizza, 2006),

and Generalized Additive Models (GAM) (Goude et al., 2013). ARIMA and exponential

smoothing models are based on the initial assumption that predicted variable are strongly

stationary, which may limit their application in the case of load or price prediction.
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Moreover, these methods are preferred by some researchers when dealing with linear data.

The so-called similar-day approach is simple but has low accuracy when large variations exist

in load time series. Exponential smoothing methods (ESM) perform better than the standard

moving average method, but it is difficult to determine the parameter of smoothing factors.

GAM is a flexible nonlinear modeling approach and provides better estimation accuracy

than conventional linear models. It works best, however, for trends that are steady and

systematic. For longer forecasting horizons, a limited number of studies exist.

Medium-term electricity load forecasting (MTLF), however, is an area of research that

requires more attention considering its vital applications in the operation and planning of

power systems at the generation, transmission, and marketing levels. In the study by Ghiassi

and Zimbra (2002), the authors develop an MTLF model in Taiwan by developing a uni-

variate, dynamic multi-layered artificial neural network that uses a Fourier series to capture

the non-linearity of load. Their annual and seasonal model forecasts produce mean average

percentage error (MAPE) values below 1%.

Similar attempts have been made by Juen and Chang (2004) using the SVM-based model

and by Chen et al. (2008) applying the manifold learning methodology-locally linear em-

bedding (LLE). In Juen and Chang (2004) article, the authors succeeded in forecasting next

month’s daily peak load using load data from 1997 to 1998 provided by EUNITE competi-

tion2001, while the forecast accuracy in Chen et al. (2008) is demonstrated by numerical

results using historical price data taken from the Eastern U.S. electric power markets. In

the studies by Lucia and Schwartz (2002) and Benth and Schmeck (2014), stochastic factors

affecting electricity prices are presented. In the article by Lucia and Schwartz (2002), an

Ornstein-Uhlenbeck processis used to model the stochastic component of spot prices in the

Nordic Power Exchange.

Moreover, a simple deterministic function with one trigonometric expression is utilize to

capture the seasonal component of spot prices. Later, Benth and Schmeck (2014) examine

the spiking behavior in daily spot electricityprices of the European Energy Exchange (EEX).

They develop a deterministic sinusoidal function to capture seasonality in these raw price

data. One set of Fourier expressions captures annual seasonality, and another captures

semi-annual seasonality. Benth and Schmeck (2014) and Klüppelberg et al. (2010) use

deterministic functions with trigonometric expressions to model seasonality in power prices

and then proceed to filter the deseasonalized data before analyzing the resulting stochastic

component.

Features such as weather are also incorporated into load forecasting models. Chang

et al. 2010 study proposes a modified fuzzy neural network considering variables such as

temperature, wind, rainfall, air pressure, rainy time, relative humidity, and day light time.

The model provides monthly electricity load forecasting in Taiwan. However, features such as

weather and climate data are recommended to be avoided in medium-term load forecasting

due to uncertain information (Amjady, 2007). However, none of aforementioned models can
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address the need of moreflexible model that gives an accurate medium-term forecast horizon.

4.3 The NYISO and Power Market Fundamentals

The NYISO is a federally regulated, non-profit entity that is tasked with two primary func-

tions. The first is to facilitate the sale of bulk electric power in the state of New York by

acting as a market clearinghouse. The second is to safely operate the bulk power transmis-

sion grid via centralized dispatch, that is, act as a sort of “air traffic controller” for the power

grid.

These two functions are deeply connected in the everyday operations of the NYISO. After

collecting bids and offers to buy and sell power, the NYISO aggregates these quantities into

market demand and supply curves and then clears the market by solving a unit dispatch

problem that maximizes economic welfare while respecting the physical limitations of the

grid to ensure system reliability. During real-time power delivery, the NYISO constantly

balances the power flow on the grid by operating a real-time spot market and directing

generators to adjust their power output based on the current market conditions.

4.3.1 NYISO as the grid operator

The physical power grid is comprised primarily of power plants that generate electricity

and end users such as private residences, commercial buildings, and industrial facilities.

Individual end users often lie within a service territory where a utility or LSE is responsible

for purchasing bulk power from the high-voltage grid and delivering it directly to the end

user. The demand for power is often times called “load” and we will henceforth use these

two terms interchangeably.

Generators and end users are connected to each other via a network of power lines that

transmit electricity produced by generators to the end users. These power lines operate at

different voltage levels, that is, at different electrical pressures. In the state of New York,

the NYISO is responsible for operating power flowing on high-voltage “highway” lines, also

called the “transmission network,” that have voltages between 115 kV to 765 kV. Power lines

that operate at voltages below 115 kV are part of the “distribution” network that directly

connect to end users and are operated by local utilities.

In addition to voltage levels, power lines differ in the amount of electricity they can safely

transmit. Electrical flow produces heat as a byproduct, and each line has a power rating

that dictates how much electricity can flow over the line without causing it to melt. If a

line becomes too hot and melts, it could cause a power surge that leads to a cascade of

subsequent line failures on the grid and a system blackout.

The high-voltage grid uses alternating current (AC) power flow. In AC power flow,

electrons oscillate back and forth at a specific frequency, measured in hertz (Hz). In order for

power to flow in an AC setting, all components of the power grid, including generators, must

be synchronized at precisely the same frequency, which is 60 Hz in the case of the NYISO.
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In practical terms, this means that the demand for electricity must always be precisely equal

to the amount that is supplied, that is, power must always be perfectly balanced. If the

frequency is too high or low, it may cause electrical equipment such as generators to spin

too quickly or too slowly and power blackouts can occur as a result.

As the grid operator, the NYISO is responsible for dispatching generators such that the

frequency on the grid is maintained at 60 Hz and that high-voltage line thermal limits are

not violated. This requires that the NYISO constantly maintain grid power balance 24 hours

a day, every day of the year, by directing the power output of each generator connected to

the grid.

4.3.2 NYISO as a market clearinghouse

In addition to operating the physical power grid for system reliability, the NYISO conducts

a series of auctions in which all NYISO market participants trade electricity. There are two

primary auctions: a “day ahead” market, where participants submit bids to purchase and

sell electricity 36 hours before actual power delivery; and a real-time or “balancing” market,

where adjustments to the day ahead market take place to reflect the actual physical demand

for power. Combined, these two auctions comprise what is commonly referred to as the

“two-settlement” system (Stoft, 2002).

In the day-ahead market, all entities that wish to purchase electricity submit hourly bid

curves and all entities that wish to sell electricity submit hourly offer curves to the NYISO.

These curves must be submitted by 05:00 on the day before the actual power delivery day (i.e.,

twenty hours before the dispatch day begins).4 For each hour of the day, each participant

submits a curve that is comprised of up to ten increments of price and quantity pairs that

indicate how much power the given participant would be willing to sell or purchase at a given

price. For each hour of the day, the NYISO then horizontally aggregates all offer curves in a

total market supply curve and horizontally aggregates all bid curves into a market demand

curve. After calculating the aggregate supply and demand curves, the NYISO clears the

market by solving a constrained optimization problem with the objective of maximizing

total system economic welfare while taking into account the technological constraints of the

power system such as generating capacity and ramping rates of units, thermal line limits,

and so on. In the NYISO, this market-clearing mechanism is known as security constrained

unit commitment. Finally, the NYISO calculates the day-ahead hourly market prices, and

those who submitted cleared demand bids pay the cleared market sellers at the specified

day-ahead market prices.

During real-time power delivery, however, any number of factors may cause demand

or supply to deviate from the cleared day-ahead market quantities. Unexpected weather

conditions, forced plant outages, and excess wind or solar production can all affect the

real-time power balance. For this reason, the NYISO operates a real-time or “balancing”

4See Craan (2019) for more details.
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market where generators are instructed to deviate from their day-ahead market positions

to accommodate these changes in power flow.5 When load deviates from the day-ahead

market solution, the demand curve will shift along the supply curve and the marginal cost

of power will consequently change. When demand changes suddenly and generating units

must quickly ramp up production to meet load, real-time price spikes can occur, adding a

major source of risk to market participants. We discuss price volatility more thoroughly in

Section 4.2. Because power lines are limited in the amount of power they can transmit, the

NYISO employs a zonal pricing scheme to manage congestion in the transmission network.

Zonal pricing is a form of locational pricing that will cause prices to differ when transmission

lines reach their thermal limits. For example, if the demand for electricity in Zone K exceeds

the amount that can be transmitted over the lines that connect it with Zone J, a local

generator in Zone K will need to be turned on or ramped up in order to maintain the

power balance in Zone K. Since prices are set equal to the cleared offer of the marginal

generator, the price in Zone K will increase to reflect the new marginal generator balancing

the local power supply. If the marginal generator remains unchanged in Zone J, so too will

the price in Zone J. Consequently, Zones J and K will exhibit different prices. The NYISO

is comprised of eleven such zones, depicted in Figure 1 below. This figure was directly taken

from the Federal Energy Regulatory Commission website on ISOs in the US.6 When a zone

Figure 1: Zonal map of the NYISO

becomes isolated from neighboring zones due to congestion, it may exhibit dramatically

different market dynamics than when lines are not congested. For example, before the line

connecting Zones J and K becomes congested, the marginal unit in both zones may be a coal

5Because generators have already been paid for their output in the day- ahead market, they should be
indifferent to increasing or decreasing their power output in real time in a perfectly competitive market. If
they are ramped down, they will be forced to buy back power that they had sold in the day- ahead market
at a lower price than they sold it for, thus earning a profit. If they are ramped up, they will sell their power
at a higher price since they have a monotonically increasing supply curve. See Stoft (2002) for more details.

6https://www.ferc.gov/market-assessments/mkt-electric/new-york/2013/10-2013-elec-ny-archive.pdf
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plant located in Zone J. After the line becomes congested, however, Zone K may need to rely

on a gas-fired generator that is more flexible but more expensive and subject to volatility in

the real-time natural gas market. As a result of congestion in the line connecting it to Zone

J, price volatility in Zone K might therefore increase.

4.3.3 Unique power market characteristics

The fact that the short-run demand for power in wholesale electricity markets is extremely

inelastic is well known; it is a consequence of the fact that end users only pay for their

aggregate power consumption via a monthly bill and are largely ignorant to price changes

in real time (Stoft, 2002; Monitoring Analytics, 2020).7 The vast majority of end users

consume power when they need it and do not consume less power even when prices drastically

spike in the wholesale markets. As a result of this pricing disconnect, the demand for

power largely acts as a purely exogenous market force, that is, it is not responsive to real-

time prices whatsoever. ISOs simply direct generators to increase or decrease the supply

of power as a response to movements in load and are largely powerless to control load

under normal circumstances. If one were to graph power prices as a function of demand, it

would appear that demand increases as prices increase, implying that the demand for power

increases as it becomes more expensive. This result is contrary to standard economic theory

and makes little sense without understanding that short-run demand acts independently of

market price signals and suppliers must respond to movements in demand at the direction of

the NYISO. As a consequence of this highly independent nature of power demand, short-run

prices “respond” to movements in demand but not the other way around.8

For a variety of reasons, there are administrative constraints on energy offers in the

NYISO. Perhaps the most apparent of these constraints is a price cap on both day-ahead

and real-time market energy offers as a measure to mitigate the use of market power under

tight market conditions. Though there are many details behind this rule, in practice, it

effectively dictates that under normal circumstances, the price of electricity cannot exceed

$1,000/MWh in the NYISO. Under extraordinary circumstances, for example, when extreme

weather causes severe scarcity in natural gas markets, generators may exceed this offer cap

if they can document that their actual incurred cost will exceed this value. Instances where

prices exceed the offer cap, however, are rare. As an example, in Zone I, there were only 41

hours where prices exceeded $1,000/MWh out of a total of 120,840 hourly price observations

that span 13 years.

7Since the inception of restructured power markets in the late 1990s, this extreme demand elasticity has
persisted as one of the largest challenges of wholesale power market design. Most US markets have even
introduced special “demand response” programs in an attempt to increase demand-price elasticity with very
limited success (Monitoring Analytics, 2020).

8There is an ongoing debate among researchers about the long-run price elasticity of demand for power,
that is, the price elasticity of demand that spans several years or longer. Most research has empirically
confirmed highly price inelastic short-run demand for power but elasticity estimates are mixed for longer time
periods. See Bernstein and Griffin (2006), Deryugina et al. (2017), and Feehan (2018) for a more in-depth
discussion.
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Finally, prices for power in the NYISO can and do take on negative values. From a power

balance perspective, negative prices indicate that there is an oversupply of power on the grid

and consumers will be paid for each unit of electricity they use and power producers must

pay for each unit they produce. Although it is possible that negative prices can result from

sudden congestion in a transmission line, the more likely culprit in several zones are Federal

production tax credit (PTC) programs for wind generators. Under these programs, wind

generators receive a fixed dollar amount for every MWh of power produced, regardless of the

current spot market price. For instance, if a wind generator receives $10 for every MWh they

produce, even if the spot price of electricity is $0/MWh, they will receive $10 for 1 MWh

output. If spot prices are -$9/MWh, they will still earn a $1/MWh profit. Consequently,

wind generators will often offer to sell power for negative prices so long as the absolute

value of the negative offer is lower than the value of the PTC. In market areas where the

wind-generating capacity is high, prices can and do often become negative during the middle

of the night when demand is low and wind speeds are typically the highest as the demand

curve will intersect a negative portion of the supply curve.

4.3.4 Supply, demand, and price dynamics

The NYISO is responsible for ensuring that there is adequate generating capacity to meet

system peak load and a capacity reserve margin of extra capacity available in the event of

an emergency during extreme weather events. The supply of power, that is, the generating

capacity of power plants, is generally fixed in the short- and medium-run. This is because

new, largescale power plants are generally expensive and take several years to build. Even

older, less-efficient units that retire may announce their planned retirement several years

in advance so that the NYISO can allow them to shut down without causing the available

generating capacity to fall below the minimum capacity reserve requirements.

Coal and nuclear units typically have long-term contracts for fuel and are seldom at

risk of fuel shortages since they can store fuel on-site. Run-of-river hydro plants or hydro

plants with pumped storage capabilities are also generally immune to water shortages and

can run when needed. Gas and oil-fired units also typically have long-term contracts for fuel

but have less on-site storage capacity and may experience problems obtaining fuel during

extreme weather conditions. Gas units may be especially prone to spot market risks as

gas must be delivered in real time to the unit. Renewable power generation from wind

and solar in the NYISO is limited but steadily growing. Neither solar nor wind power is

upwards dispatchable and, despite having zero fuel costs, are beholden to real-time weather

conditions, that is, sunshine and wind speeds. Flexible generators such as gas and hydro

units are often used to balance the sudden fluctuations caused by wind and solar resources.

End-user demand for electricity systematically varies over the course of a day.

Demand is typically low during the night when consumers are asleep but rises precipi-

tously during the morning hours when people wake up and begin their day. Demand further
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increases during the middle of the day when people go to work; large commercial buildings

utilize lighting and heating, ventilation, and air conditioning (HVAC) systems, people use

electronic devices, factories begin production plans, and so on. Finally, as people return

home from work in the evening, demand tends to increase even further as households cook

meals, run large electronic appliances such as washing machines and dishwashers, and turn

on HVAC systems and lighting. Figures 2 and 3 show the hourly demand and price for

electricity in Zone J (New York City) on January 1, 2018 and represent typical daily load

and price patterns in the NYISO.

Figure 2: Hourly load in Zone J
on January 1, 2018

Figure 3: Hourly real-time power prices in Zone J
on January 1, 2018

Figure 2 clearly shows that power demand is lowest at night, begins to rise rapidly around

07:00, and then plateaus at an elevated level from about 11:00 to 15:00 as people are at work

and school. The load then rapidly increases again around 15:00 until it reaches its peak from

17:00 to 18:00 and begins to drop off as people end their days. In Figure 3, we see that

prices are generally stable throughout the day but rise precipitously during the morning and

evening ramp-up periods when demand is rising rapidly.

In addition to daily patterns, the demand for electricity exhibits several additional time-

dependent patterns. Demand for power is typically higher during the weekdays and both

lower and with less-pronounced peaks during the weekends. There are also strong seasonal

patterns in load; load is generally lowest during the spring and autumn when weather is mild

and cooling and heating needs are low, but tends to increase during the winter as more power

is used for heating. In the NYISO, demand increases sharply during the summer when hot

weather leads to a precipitous rise in air conditioning. Though these annual seasonal patterns

occur rather cyclically, the intensity of these weather patterns may vary from year to year,

causing peak demand in one year to be higher than in another. Finally, in the very long

run, the demand for power may be affected by population growth or shrinkage or gradual
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changes in electricity use such as energy efficiency, the emergence of electric vehicles, and

other technological, demographic, and behavioral factors. Figures 4 and 5 show the hourly

load in Zone J over the course of 2018 and during a five-year period from 2013 to 2018. In

Figure 4: Hourly load in Zone J
in the year 2018

Figure 5: Hourly load in Zone J
from 2014 to 2018

Figure 4, we clearly see an annual seasonal pattern where load is elevated slightly during

the winter, is lower during the spring and autumn, and is significantly elevated during the

summer. Figure 5 shows how this annual seasonal pattern repeats itself year after year. We

can also see the yearly variations of this seasonal pattern in Figure 5, as the summers of

2015 and 2016 seem to have been cooler than the summers of 2014 and 2017. Despite these

differences in seasonal peaks, the overall demand for power seems to exhibit a stable long-

term trend, indicating that load was not growing or shrinking dramatically during this time

period. Although power prices generally follow the same seasonal pattern as load, prices are

far more volatile which in turn makes these seasonal patterns more difficult to see. Figure 6

lists the power prices for Zone J during the course of 2018.
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Figure 6: Hourly real-time power prices in Zone J in the year 2018

From Figure 6, it is difficult to see any clear seasonal patterns in prices, though they do

appear elevated during the winter. We will see next that the NYISO power futures curve

more clearly depicts seasonal price patterns as it measures expected average monthly prices

as opposed to raw spot prices.

4.3.5 Risk management in the NYISO: Futures contracts

Many market participants wish to shield themselves from price risk by hedging because

electricity prices can be extraordinarily volatile. Though there are several methods and

products available that allow participants to hedge, one popular means is by obtaining

futures contracts for power. A futures contract is a financial derivative where two parties

agree to a pre-determined price, commonly called a “strike” price, for goods to be delivered

on some future date. At the time of delivery, the buyer of the futures contract will pay the

supplier the strike price regardless of the current prevailing spot market price and is therefore

protected from spot market-price movements.

Futures contracts are typically standardized derivative products traded openly on ex-

changes. NYISO power futures are traded on several centralized exchanges such as the CME

Group (formed from the mergers of the Chicago Mercantile Exchange, Chicago Board of

Trade, and New York Mercantile Exchange) and the Intercontinental Exchange (ICE). In

contrast to an internal bilateral transaction where two market participants directly negotiate

specific contract terms, futures contract details such as strike price, quantity of deliverable

power, duration of delivery, settlement rules, among others, constitute publicly available in-

formation for all market participants. Indeed, even members of the general public can easily

access the details of power futures contracts traded on the CME or ICE.9

9Power futures contract information can be accessed directly on the CME Group website.
https://www.cmegroup.com/trading/energy/electricity/nyiso-zone-a-5-mw-peak-calendar-month-day-ahead-
lbmp-swap-futures-contract-specifications.html
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Another important characteristic of futures contracts for power is whether they are for

“peak” or “off-peak” power delivery. Peak power contracts cover all weekdays (Monday

to Friday) from 07:00 to 22:00 when the demand for power is typically the highest. Peak

contracts traded on the CME and ICE exclude North American Electric Reliability Corpo-

ration (NARUC) holidays such as July 4th and Thanksgiving when schools and businesses

are closed and power demand will resemble a weekend day. Off-peak contracts cover periods

of lower demand for power, that is, weekday nights (from 23:00 to 06:00), weekends (all day

Saturday and Sunday), and NARUC holidays.

NYISO power futures are available for both day-ahead and real-time prices where the

former are traded primarily on the CME and the latter on the ICE. Though it is possible

to purchase futures contracts with annual or seasonal durations, the most commonly traded

futures have a monthly duration. This means that the contract holder is entitled to a fixed

amount of power at the contract strike price over an entire month.10

Futures contracts are traded for power in each zone because the NYISO is a zonal market

where prices are settled within each zone. Figure 7 shows the monthly futures curve for power

in six NYISO zones traded on the CME as of October 2019. These contract prices reflect

the market expectations of average monthly power prices and are traded for up to five years

for future delivery.

Figure 7: Forward curve for monthly peak day-ahead power futures in select NYISO zones

Although the prices differ between zones, there is a clear pattern of significantly elevated

prices during the winter, slightly elevated prices during the summer, and low prices during

the “shoulder months” of spring and autumn across all zones, which mirrors the patterns

seen clearly in the load data. We will discuss why prices differ systematically between the

NYISO zones in the following section.

10Contracts are sold in units of capacity but translate to units of power. For example, if an LSE holds a
peak contract for 5 MW, they will pay the strike price for 5 MWh for each of the 16 peak hours during a
weekday. Thus, the 5 MW futures contract actually translates to 80 MWh of power delivery over the course
of a normal weekday.
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4.3.6 The NYISO market landscape

New York possesses several geographic and demographic characteristics that have determined

the location and fuel type of power plants within its borders, resulting in the evolution of

the state’s high-voltage power grid. These physical power grid attributes are not trivial and

actively influence the NYISO’s market dynamics.

The majority of New York State’s population lives in or is in close proximity to New

York City. In 2010, the US Census counted a total population of 19.3 million people living

in the state of New York, 13.0 million of whom live in the dozen counties that comprise the

New York City metropolitan area. The rest of the state is far more sparsely populated and

the majority of the remaining 6.3 million inhabitants live in clusters around the northern

cities of Buffalo, Rochester, Syracuse, and the state capital, Albany. Consequently, Zones

G to K of the NYISO contain over two thirds of the state’s population and account for the

vast majority of power demand in the NYISO.

Although New York’s population is heavily concentrated in the southeastern part of the

state, the so-called “upstate” regions, represented by Zones A to E, contain a comparatively

large share of the state’s power generation capacity. Figure 8, below, was directly taken from

the NYISO’s 2019 “Power Trend Report,” and it depicts the generation fuel mix in different

regions of New York and has a simplified depiction of the high-voltage transmission network

that spans the state.11

Figure 8: High-voltage transmission network and generation fuel mix in the NYISO

As Figure 8 shows, 87% of the installed generating capacity in the upstate region comes

from zero-emission power plants, that is, hydro, wind, or nuclear generating resources. Most

of the hydro, wind, and nuclear power plants in New York are situated in the northern part

of the state around the Niagara region and in close proximity to Lake Ontario. The Robert

11The NYISO 2019 Power Trends Report can be accessed directly here:
https://www.nyiso.com/documents/20142/2223020/2019-Power-Trends-Report.pdf/0e8d65ee-820c-a718-
452c-6c59b2d4818b?t=1556800999122
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Moses Niagara hydro plant, the largest in the state, is located in Zone A and other large

nuclear and hydro plants hug the shores of Lake Ontario. In addition, the upstate region

contains relatively few generators that burn coal, oil, or natural gas to produce electricity.

An important economic characteristic of hydro and nuclear plants is that they have short

run marginal costs that are effectively equal to zero. They therefore almost always offer to

sell power to the market at lower prices than plants that burn fossil fuels.

Figure 8 also shows that the “downstate” zones, that is, Zones F to K, have a power

generation fuel mix that is significantly different than the upstate region. Although the

large Indian Point nuclear facility is located approximately 50 km from New York City, ap-

proximately 70% of the generating capacity downstate is comprised of conventional thermal

power plants that burn natural gas and/or oil. Because they must pay for fuel, thermal

plants have positive short-run marginal costs and almost always offer power to the market at

higher prices than hydro or nuclear plants. During the winter and summer months, when the

demand for electricity is very high, capacity limits on the major natural gas pipelines that

feed into the New York City metro area may cause temporary fuel shortages for gas-fired

power plants. This in turn forces these units to offer their power output at higher marginal

prices to the market and regularly causes elevated prices and price volatility in the downstate

zones (Patton et al., 2019).

The disparate locations of load and generation in the NYISO has also had consequences

for the development of the high-voltage transmission network. Due to long distances and

the heavily forested terrain of the Adirondack Mountains, the capacity of the high-voltage

grid that connects the upstate and downstate regions is limited, frequently experiencing con-

gestion. Figure 8 highlights the Central East Constraint, the major transmission bottleneck

in the NYISO. When demand for power in the downstate zones becomes higher than these

high-voltage lines are able to safely transmit, the NYISO effectively cleaves into two different

sub-markets. During this situation, prices in the upstate zones typically decrease as lower

power demand and cheaper marginal generating resources form a new market equilibrium.

Conversely, prices in the downstate zones typically rise as higher demand must be met with

more expensive marginal generating resources such as gas-fired generators.

Finally, the NYISO is connected to four adjacent balancing authorities: PJM Intercon-

nection to the south, the New England ISO (ISO-NE) to the east, the Ontario Independent

Electricity System Operator (IESO) to the northwest, and the Hydro-Quebec service ter-

ritory to the northeast. PJM, ISO-NE, and IESO are wholesale power markets whereas

Hydro-Quebec is a regulated, government-owned utility that is responsible for power genera-

tion and transmission in the Canadian province of Quebec. The high-voltage interconnectors

between the NYISO and these four adjacent control areas allow market participants to import

and/or export power out of the NYISO. As the IESO and Hydro-Quebec control areas are

dominated by relatively inexpensive nuclear and hydro generators, producers in these mar-

kets regularly export power into the NYISO in an attempt to receive higher market prices
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for their electricity output. Zone A, which constitutes the Buffalo metropolitan area and the

westernmost portion of the state, is the NYISO zone directly connected to the IESO. Zone

D, which constitutes the far northeastern portion of the state, is the NYISO zone directly

connected to Hydro-Quebec. Because of their direct connection to these adjacent control

areas, Zones A and D are frequently exposed to large influxes of cheap power from Canada

that can cause transmission lines within these zones to become constrained. These internal

zonal constraints in turn lead to periods of high price volatility in these two zones, which

does not regularly occur in other upstate zones (Patton et al., 2019).

4.4 Data

From the NYISO website, we downloaded all available real-time hourly load and price data

for all 11 zones.12 The earliest available data for both series begins on January 1, 2006 and

we proceeded to download all hourly data from this start date up to and including November

30, 2019. We used all data from 2006 to 2018 to estimate our models and all data from 2019

exclusively for out-of-sample forecasting. For each zone, we have 122,712 hourly observations

of real-time prices and 122,712 observations of real-time load. Across all zones, this gives us

a total of 1,349,832 observations each for real-time load and prices.

As discussed in Section 2, there are distinct intra-daily patterns of consumer electricity

use, a fact reflected by the presence of futures contracts for peak and off-peak hours of power

demand. We were able to obtain a large number of load and price observations. We then

sorted these raw hourly data into four separate time periods; morning, midday, evening, and

night. From a data analytics perspective, we believe that by splitting the days into four

rather than two distinct time periods we are able to uncover a richer picture of the dynamic

relationship between load and prices during different parts of the day.

The hours that constitute each time period are presented in Table 1. Although we deviate

Table 1: Hours contained within the four distinct time periods

Time Period Hours Beginning

Morning 07:00, 08:00,09:00

Midday 10:00, 11:00, 12:00, 13:00, 14:00, 15:00

Evening 16:00, 17:00, 18:00,19:00, 20:00

Night 21:00, 22:00, 23:00, 00:00,01:00 02:00, 03:00,04.00, 05:00, 06:00

slightly from the standard definition of peak and off-peak as defined in the power futures

contracts traded on the CME, we are effectively splitting the peak time period of HB 07:00

to HB 22:00 into three distinct time periods: morning, midday, and evening. The night-time

period is almost identical to the hourly definition of off-peak except with the added hour of

12In the NYISO real-time market, load and prices are measured in 5-minute increments. All market
quantities and prices, however, are ultimately settled on an hourly basis. The NYISO facilitates these hourly
settlements by calculating the time-weighted/integrated (TWI) prices that are hourly averages of the 5-minute
increments that fall within each hour. We therefore downloaded all of the load and price data labeled “TWI”
on the NYISO website.
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HB 21:00. We chose the hours contained in each time period based on the visual inspection

of the average daily load curve discussed in Section 2.

At the same date and hour across all eleven NYISO zones, there were nine hourly load

observations with zero or missing values. These missing or zero observations generally appear

in the early years of the data and appear to be related to daylight savings time. Table 2

shows the date and hour for each of these nine missing values.

Table 2: Missing values in NYISO load and price data

Date Hours Beginning

March, 4, 2006 05:00, 06:00,07:00

October, 29, 2006 01:00

November, 4, 2007 01:00

November, 2, 2008 01:00

November, 1, 2009 01:00

To address this issue, we estimated these missing observations by taking the simple

average of the two preceding and two succeeding averages of load. In the instance of March

4, 2006 when there were multiple missing observations in a row, we first calculated the load

value at 5:00 by taking the average of hours beginning 3:00, 4:00, 8:00, and 9:00. The load

value at 6:00 was then calculated using the average of 4:00 using the average of our load

estimates at 5:00 , 8:00, and 9:00. Finally, we calculated the load value at 7:00 using the

average of our load estimates at 5:00 and 6:00, 8:00 and 9:00.

In addition, there were twelve negative observations for hourly load in Zone H. Most of

these were concentrated in the hours beginning 00:00 to 06:00 on March 14, 2014. In contrast

to prices or net power balance, we have no reason to believe that load can be a negative

quantity as it has a lower bound of zero. Although we are suspicious that these negative

load values indicate some sort of data entry error, they constitute a minuscule number of

observations and we simply retain them in our dataset. The remaining 1,349,820 hourly load

observations across all zones in the NYISO were positive.

4.4.1 Descriptive statistics: Load

Tables 3–6 present descriptive statistics of real-time hourly zonal load in the NYISO from

2006 to 2018. First, across all zones, the time varying load patterns are overwhelmingly

consistent with the known patterns of consumer demand for electricity discussed in Section

2.

Table 3: Descriptive statistics of load. Time period: Morning

Zones Zone A Zone B Zone C Zone D Zone E Zone F Zone G Zone H Zone I Zone J Zone K
(West) (Genesee) (Central) (North) (Moh.Valley) (Capital) (Hud.Valley) (Millwood) (Dunwoodie) (NYC) (L.Island)

Mean 1831 1167 1930 634 950 1389 1143 325 698 6170 2442
Median 1842 1175 1926 642 939 1382 1134 321 687 6083 2382
Mode 1842 1176 1896 468. 928 1415 1073 327 724 5191 2338
St. Dev 197 148 227.05 134.66 132.92 171.30 149.25 58.35 114.85 1033.06 413.38
Kurtosis -0.06 0.42 -0.12 -1.36 -0.11 0.52 1.22 2.91 1.43 0.76 2.06
Skewness -0.22 0.02 0.03 0.08 0.21 0.24 0.59 0.43 0.81 0.75 1.05
Minimum 1179 753 1305 289 579 844 547 -83 220 3199 499
Maximum 2649 1900 2907 963 1425 2222 2008 1141 1309 10769 4821
Observations 14244 14244 14244 14244 14244 14244 14244 14244 14244 14244 14244
Note: Sample period, hourly observations, 2006:01:01-2018:12:31
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Table 4: Descriptive statistics of load. Time period: Midday

Zones Zone A Zone B Zone C Zone D Zone E Zone F Zone G Zone H Zone I Zone J Zone K
(West) (Genesee) (Central) (North) (Moh.Valley) (Capital) (Hud.Valley) (Millwood) (Dunwoodie) (NYC) (L.Island)

Mean 1937 1255 2017 634 985 1461 1265 352 773 6837 2776
Median 1921 1228 1993 630 969 1419 1205 339 730 6572 2548
Mode 1942 1219 1863 494 900 1395 1224 301 740 6600 2462
St.Dev 216.21 181.41 233.69 131.11 131.82 207.94 233.96 73.16 154.06 1171.78 671.29
Kurtosis 0.91 2.35 0.87 -1.46 -0.03 1.75 2.43 1.36 1.98 0.95 1.71
Skewness 0.59 1.20 0.67 0.06 0.43 1.18 1.49 0.97 1.41 1.07 1.43
Minimum 1119 832 1426 291 534 962 649 135 293 3801 622
Maximum 2921 2198.5 3153.4 1219 1558.6 2402.9 2495.1 729.5 1530.3 11442.9 5935
Observations 28488 28488 28488 28488 28488 28488 28488 28488 28488 28488 28488
Note: Sample period, hourly observations, 2006:01:01-2018:12:31

Table 5: Descriptive statistics of load. Time period: Evening

Zones Zone A Zone B Zone C Zone D Zone E Zone F Zone G Zone H Zone I Zone J Zone K
(West) (Genesee) (Central) (North) (Moh.Valley) (Capital) (Hud.Valley) (Millwood) (Dunwoodie) (NYC) (L.Island)

Mean 1957 1279 2054 642 1008 1525 1344 383 808 6825 2972
Median 1941 1258 2030 644 996 1498 1299 375 774 6572 2814
Mode 1931 1208 2112 734 880 1542 1184 339 768 6104 2766
St.Dev 212.12 178.91 241.39 133.35 138.16 213.95 234.95 77.86 149.31 1089.66 631.03
Kurtosis 0.29 1.41 -0.02 -1.36 -0.41 0.88 1.55 0.52 1.97 1.39 1.55
Skewness 0.40 0.89 0.45 0.08 0.29 0.79 1.15 0.53 1.32 1.21 1.25
Minimum 1159 824 1406 331 576 946 670 -172 404 4157 713
Maximum 2908 2188 3098 964 1540.1 2425 2495 726 1544 11456 5915
Observations 23740 23740 23740 23740 23740 23740 23740 23740 23740 23740 23740
Note: Sample period, hourly observations, 2006:01:01-2018:12:31

Table 6: Descriptive statistics of load. Time period: Night

Zones Zone A Zone B Zone C Zone D Zone E Zone F Zone G Zone H Zone I Zone J Zone K
(West) (Genesee) (Central) (North) (Moh.Valley) (Capital) (Hud.Valley) (Millwood) (Dunwoodie) (NYC) (L.Island)

Mean 1629 993 1661 596 784 1176 1005 277 603 5315 2149
Median 1606 970 1636 603 767 1151 972 269 575 5089 2035
Mode 1524 946 1726 432 661 1106 879 229 536 5073 1743
St.Dev 195.29 151.38 229.99 132.39 141.80 198.43 185.13 68.14 127.48 1014.98 481.74
Kurtosis 0.53 1.44 0.19 -1.36 -0.07 0.93 2.29 1.56 2.29 1.53 3.04
Skewness 0.68 0.97 0.63 0.08 0.58 0.78 1.20 0.59 1.28 1.19 1.43
Minimum 1025 668 1173 267 300 702 445 -342 235 2859 447
Maximum 2750 2038 2872 990 1452 2306 2258 862 1412 10659 7089
Observations 47480 47480 47480 47480 47480 474800 47480 47480 47480 47480 47480
Note: Sample period, hourly observations, 2006:01:01-2018:12:31

The mean and median load values for all zones are lowest during the night when people

are asleep. Average load then increases sharply during the morning when people wake up,

and climbs higher still during the midday hours when people are at work and school. With

the exception of Zone J, which corresponds to New York City, mean and median load values

are highest during the evening when people return home from work and increase their use

of large appliances, lighting, and HVAC systems. The mean and median values for load in

Zone J are highest during the midday time period. At the same time, Zones G, H, and K,

corresponding to the suburban areas outside of New York City, exhibit the largest increases

in mean and median load from midday to evening. Taken together, these statistics seem to

reveal a pattern where commuters from the suburbs enter New York City for work during

the day and then return home to the suburbs during the evenings.

As expected, Zones J and K, where Zone K corresponds with the heavily populated

Long Island, consistently exhibit the highest mean and median load values across all time

periods. Zones D, H, and I exhibit the lowest mean and median load values across all time

periods. This result is not surprising due to the fact that Zone D corresponds to sparsely

populated territories in the Adirondacks, and Zones H and I are geographically small zones

that correspond with the Northern suburbs of New York City.

Across almost all zones, the standard deviation and variance values for load are higher

during the midday and evening and lower during the morning and night. In Zones D and E,
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the exceptions to this trend, the standard deviation and variance of load values were almost

identical across all time periods. In terms of absolute magnitude, Zones J and K show the

largest standard deviation and variance values, where Zone J shows standard deviations of

over one thousand in each time period. Zone H exhibits the lowest standard deviations in

each time period.

In contrast to the time period trends in mean and standard deviation, the overall time

period trends for load ranges are weaker. In eight out of eleven zones, however, range values

are lowest during the morning, indicating that load during this time period is generally more

uniform than in other time periods.

In addition, the midday and night time periods show the highest range values in nine

out of the eleven zones, indicating potentially more load value uncertainty during these time

periods. Across all time periods, the relative magnitude of range values closely follows the

patterns seen in the mean, median, and standard deviations. Zone J has by far the largest

range values across all time periods; the range for each time period in this zone exceeds 1,000

MWh. Zone K shows the second highest ranges across all time periods. Zones D, E, and H

have the smallest ranges across all time periods.

We next examine the skewness and kurtosis of the load. Skewness is the statistical mea-

surement of symmetry in a given distribution. A skewness of zero indicates that a distribution

is perfectly symmetrical. In the context of this discussion, a positive skewness indicates that

there is an asymmetrically higher probability of large load values and lower probability of

small load values. A negative skewness indicates an asymmetrically higher probability of

small load values. Kurtosis is the statistical measure of the tails of a distribution, that is,

the likelihood of outcomes that lie far away from the mean. In finance, kurtosis is frequently

called “tail risk” and serves as an important measure of the likelihood of “extreme” events

that lie very far away from the mean of the distribution. Distributions that exhibit kurtosis

higher than the normal distribution are called “leptokurtic” or sometimes more informally

“fat-tailed” to indicate the higher likelihood of events taking place in the extreme regions

of the distribution. In risk management terms, an economic variable that possesses a dis-

tribution with large kurtosis values is inherently riskier and a risk-averse market participant

would seek to mitigate this risk through hedging.

In Tables 4 and 6, we see that almost all zones exhibit skewness that is positive or close to

zero. Across all zones, midday load generally exhibits the highest skewness and morning load

generally exhibits the smallest skewness. The downstate zones exhibit significantly larger

positive skewness than the upstate zones across all time periods with the exception of Zone

B, which shows high positive skewness during midday, evening, and night. The midday,

evening, and night time loads in Zones G, I, and J have a positive skewness larger than one,

and the load in Zone K has a positive skewness greater than one across all time periods.

Though they share some similar trends with the skewness values, the kurtosis values for load

reveal additional market dynamics. The time-varying trend of kurtosis across all zones is
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generally the same as for skewness, that is, highest during the middays and lowest during the

mornings. Notable exceptions to this trend are Zones J and K where the kurtosis is highest

during the night. All of the downstate zones (F through K) exhibit leptokurtosis with Zones

G, I, and K showing kurtosis values larger than one for every time period. With kurtosis

values approximately equal to three, Zones H and K exhibit the highest absolute kurtosis

values during the morning and night, respectively. However, there is no one clear trend that

dominates the upstate zones’ kurtosis values. While Zone B shows significant leptokurtosis

much like the downstate zones, Zones A, C, and E all generally show low kurtosis values

outside of the midday time period. Zone D exhibits negative kurtosis across all time periods,

which indicates a thin-tailed distribution where load values that are extremely far from the

mean are less likely to occur than in a standard normal distribution.

Figures 9 and 10 are histograms of hourly evening load observations for Mohawk Valley

(Zone E) and New York City (Zone J) from January 1, 2006 to December 31, 2018. In both

figures, we have superimposed a normal distribution over the observed distribution. Figure 9

shows that the load in Mohawk Valley has historically followed a distribution that is almost

perfectly normal with a kurtosis close to zero and some slight positive skewness. Figure 10,

however, shows a more typical distribution of load in the NYISO, especially in the downstate

zones. It is highly positively skewed and the high concentration of large load values that lie

outside of the normal distribution depict leptokurtosis.

Figure 9: Histogram of evening load in Zone E Figure 10: Histogram of evening load in Zone J

Taken together, the statistics for skewness and kurtosis indicate that there is an elevated

risk of “extreme” high-load values in the downstate Zones F to K and Zone B when compared

to a normal distribution, that is, most zones exhibit a distribution depicted in Figure 10.

Other than in Zone B, the risk of these extremely large load values is generally lower in

the upstate zones where kurtosis is small in magnitude or even negative. Figure 9 is more

representative of the distribution of load in these upstate zones.
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4.4.2 Descriptive statistics: Prices

We now turn our attention to hourly real-time prices. Tables 7–10 present descriptive statis-

tics of real-time hourly zonal power prices in the NYISO from 2006 to 2018. Each table

presents the descriptive statistics of prices from a given time period. We see several inter-

esting trends in these tables. First, across all time periods, the mean and median prices in

the downstate zones (F–K) are consistently higher than those in the upstate zones (A–E).

Average prices in the downstate zones are generally $10 to $20/MWh higher than those in

the upstate zones and mean prices in Zone K are approximately $30/MWh higher. Zones J

and K consistently exhibit the highest mean and median prices across all time periods due

to the fact that these two zones have by far the highest load levels in the NYISO and also

frequently rely on gas- and oil-fired generators that have high marginal costs to balance load

during periods of high demand. Zone D shows the lowest mean values for prices across all

time periods, which reflects the presence of inexpensive hydro and nuclear generators whose

capacity far exceeds the local demand for power.

Table 7: Descriptive statistics of prices. Time period: Morning

Zones Zone A Zone B Zone C Zone D Zone E Zone F Zone G Zone H Zone I Zone J Zone K
(West) (Genesee) (Central) (North) (Moh.Valley) (Capital) (Hud.Valley) (Millwood) (Dunwoodie) (NYC) (L.Island)

Mean 39.46 39.64 41.74 37.96 42.77 48.60 48.81 49.02 49.0 52.59 56.98
Median 32.20 32.89 34.28 31.91 35.00 37.82 38.80 38.82 38.83 40.11 42.17
Mode 30.18 31.83 29.77 26.49 32.43 32.67 23.47 41.37 35.77 40.68 33.83
St.Dev 38.19 36.19 38.76 47.25 40.54 44.99 43.75 44.05 43.96 49.01 54.52
Kurtosis 149.5 168.5 175.3 278.1 179.9 122.6 136.3 133.5 130.8 98.97 106.6
Skewness 8.31 8.25 8.67 -2.95 8.79 7.27 7.63 7.55 7.47 6.75 3.56
Minimum -294.3 -324.2 -306.2 -1613 -322.9 -153 -156.9 -156 -156.1 -156.7 -1476
Maximum 1135 1183 1209 1236 1283 1266 1236 1232 1224 1231 1210
Observations 14244 14244 14244 14244 14244 14244 14244 14244 14244 14244 14244
Note: Sample period, hourly observations, 2006:01:01-2018:12:31

Table 8: Descriptive statistics of prices. Time period: Midday

Zones Zone A Zone B Zone C Zone D Zone E Zone F Zone G Zone H Zone I Zone J Zone K
(West) (Genesee) (Central) (North) (Moh.Valley) (Capital) (Hud.Valley) (Millwood) (Dunwoodie) (NYC) (L.Island)

Mean 43.74 41.97 44.08 39.81 45.08 52.23 55.40 56.29 56.57 61.04 70.11
Median 34.49 35.04 36.71 33.97 37.5 40.76 42.45 42.58 42.68 44.85 49.74
Mode 30.77 31.48 35.84 26.98 31.93 38.32 35.03 36.85 37.32 36.6 31.71
St.Dev 47.50 37.70 38.93 40.53 39.70 46.95 56.06 60.41 61.29 62.94 74.64
Kurtosis 129.3 139.6 130.5 133.6 127.4 83.83 108.5 123.2 125.3 87.88 69.64
Skewness 8.17 7.07 6.92 2.66 7.09 5.92 8.26 8.92 9.02 7.40 6.43
Minimum -716.9 -750.5 -759.1 -1069 -711.8 -743.3 -154.4 -165.4 -142.1 -53.7 -162.3
Maximum 1335 1073 1074 1024 1091 1079 1257 1418 1438 1285 1709
Observations 28488 28488 28488 28488 28488 28488 28488 28488 28488 28488 28488
Note: Sample period, hourly observations, 2006:01:01-2018:12:31

Table 9: Descriptive statistics of prices. Time period: Evening

Zones Zone A Zone B Zone C Zone D Zone E Zone F Zone G Zone H Zone I Zone J Zone K
(West) (Genesee) (Central) (North) (Moh.Valley) (Capital) (Hud.Valley) (Millwood) (Dunwoodie) (NYC) (L.Island)

Mean 46.71 46.94 49.01 45.19 50.31 57.43 61.55 62.66 62.93 67.12 80.53
Median 35.56 36.63 38.1 35.6 39.09 42.93 45.25 45.45 45.54 48.16 57.14
Mode 34.49 31.69 37.05 31.29 36.23 35.88 29.34 24.52 33.46 45.03 37.2
St.Dev 47.71 44.36 45.76 46.48 46.94 53.51 61.05 65.27 66.01 66.42 84.39
Kurtosis 91.87 95.76 87.69 85.65 86.52 70.27 81.63 99.52 100.8 68.99 57.61
Skewness 6.15 5.54 5.33 3.77 5.55 5.24 6.84 7.57 7.63 6.26 5.62
Minimum -666.1 -688.9 -706.7 -815.8 -663.5 -693.4 -227.7 -137.5 -136.9 -138.1 -128.7
Maximum 1183 1202 1192 1178 1247 1288 1327 1499 1527 1389 1800
Observations 23740 23740 23740 23740 23740 23740 23740 23740 23740 23740 23740

Note: Sample period, hourly observations, 2006:01:01-2018:12:31
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Table 10: Descriptive statistics of prices. Time period: Night

Zones Zone A Zone B Zone C Zone D Zone E Zone F Zone G Zone H Zone I Zone J Zone K
(West) (Genesee) (Central) (North) (Moh.Valley) (Capital) (Hud.Valley) (Millwood) (Dunwoodie) (NYC) (L.Island)

Mean 30.07 30.59 31.92 29.89 32.77 39.68 38.88 38.98 38.97 41.02 45.52
Median 27.39 27.78 28.71 27.32 29.33 32.31 32.6 32.59 32.59 33.4 35.37
Mode 29.95 25.8 32.6 25.08 33.54 35.72 35.7 21.75 31.99 32.7 27.98
St.Dev 27.07 27.28 27.95 35.15 29.27 35.36 32.71 32.73 32.66 34.83 40.37
Kurtosis 217.93 133.65 104.87 884.91 102.64 62.63 74.73 70.58 70.35 55.66 41.28
Skewness 5.07 3.64 3.32 -13.58 3.19 4.09 4.11 3.93 3.91 3.60 3.48
Minimum -469.8 -522.6 -498.9 -2482.1 -519.1 -415.3 -352.7 -350.8 -351.2 -352.1 -357.5
Maximum 1446 1226 1142 1171 1185 1204 1202 1204 1201 1202 1201
Observations 47480 47480 47480 47480 47480 47480 47480 47480 47480 47480 47480
Note: Sample period, hourly observations, 2006:01:01-2018:12:31

Second, across all zones, the mean and median values for prices are lowest during the

night, increase during the morning, climb higher during the midday, and reach their highest

values during the evening. As with load, these results are overwhelmingly consistent with

known consumer behavior and reflect demand fluctuations over the course of a day.

In contrast to the low volatility seen in the load, we see dramatically higher volatility in

prices, putting into sharp focus the need for NYISO market participants to hedge against

price risk. Indeed some of the statistics presented in Tables 7–10 are extreme by most

measures. The standard deviations of prices largely follow the same patterns as the mean

and median values. They are considerably higher in the downstate zones than they are in

the upstate zones across all time periods, and Zone K exhibits the highest values across all

time periods. In each zone, the standard deviations are lowest during the night and, with the

exception of Zone D, highest during the evenings. In addition, due to the large presence of

windmills and hydro imports from Quebec, we see that Zone D exhibits uncharacteristically

high standard deviations during the night and morning compared to other upstate zones.

This is because wind speeds are highest and the demand for power is lowest during the night.

As a result, unexpected strong winds during the night time can lead to surges in supply that

cause large price swings.

Across all zones, price ranges are generally highest during the midday and the evening

when demand for power is highest. As discussed in Section 4, prices are normally capped

at $1,000 per MWh but since most zones have maximum values around $1,200 per MWh,

we see evidence of some extreme weather events where fuel shortages caused generators to

incur costs that exceeded the price cap. Ranges do not appear to vary dramatically between

zones, although since minimums are generally lower in upstate zones, the ranges in upstate

zones are generally a bit higher than in downstate zones. Once again, Zone D stands out

from other zones: with minimum values of $-1,613.64 per MWh and -$2,482.04 per MWh

for morning and night, respectively, it exhibits enormous ranges. For comparison, the other

upstate zones have minimum values of approximately -$400.00 per MWh during the night

and -$300.00 per MWh during the morning.

With the exception of the morning and night prices in Zone D, prices in all zones and time

periods exhibit high positive skewness—a result that comes as no surprise given the presence

of large, positive price spikes. Zone D is negatively skewed due to the large negative price

spikes that have occurred during the morning and night. In almost all instances, skewness

values are lowest during the nights. With the exception of Zone D, skewness values are
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highest during morning in the upstate zones and Zone F. Price skewness values are highest

during the midday time period in the remaining downstate Zones G to K.

All prices in all zones exhibit very high levels of leptokurtosis indicating a so-called “fat

tailed” distribution consistent with price-spiking behavior. Kurtosis values are generally

higher in upstate zones than in downstate zones and tend to be the highest during the

morning and midday time periods across all zones. Prices in Zone D during the night

exhibit a staggeringly large kurtosis of $884.9 per MWh , a result driven by an extremely

minimum value of $-2,482.04 per MWh that lies over 70 standard deviations to the left of the

mean price in this time period. Perhaps somewhat surprisingly, the corresponding zones to

New York City and Long Island (Zones J and K) actually show some of the lowest kurtosis

values across all time periods. We suspect that this is because prices rarely become negative

in these zones, thereby resulting in statistical outliers that are overwhelmingly positive.

Figures 11 and 12 are histograms of the evening price observations for Zone J (New York

City) and the night time price observations for Zone D from January 1, 2006 to December

31, 2018. In both figures, we have superimposed a normal distribution over the observed

distribution.

Figure 11: Histogram of evening prices in
Zone J

Figure 12: Histogram of night prices in
Zone D

Figure 11 is representative of the price distribution in almost all time periods for all

NYISO zones as presented in Table 7. In this figure, the prices are heavily clustered around

the median value of $48.16 per MWh but we can clearly see the positive skewness and large

kurtosis of the distribution caused by large positive price spikes. In Figure 12, prices are

also clustered heavily around the median value, but several large negative price spikes cause

the distribution to be skewed negatively and to have an extremely high kurtosis.
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4.4.3 Implications for risk management

The descriptive statistics of hourly real time prices presented in this section underscore the

importance of hedging for NYISO market participants that are sensitive to price risk. As

we have seen in this section, prices are highly leptokurtic and can exhibit spikes upwards

of 3500% higher than the mean price. For LSEs that must purchase large quantities of

electricity, such price movements could spell catastrophic losses of millions of dollars over the

course of a single hour. LSEs can reduce their exposure to such spikes by purchasing financial

derivatives. Though the majority of zones exhibit positively skewed price distributions, we

see that in the case of Zone D there is a possibility of extreme negative price spikes during

the night, which could be similarly catastrophic for generators. These generators could sell

their power forward via futures contracts to hedge against such occurrences.

We also wish to highlight that the descriptive statistics of prices clearly illustrate the

logic behind offering both peak and off-peak futures contracts. Mean prices are significantly

lower during the night than other time periods, a fact reflected in the lower prices of power

in off-peak futures contracts sold on the CME and ICE. Although they are generally less

volatile than peak hours, night time prices still show high levels of skewness and kurtosis,

necessitating derivatives capable of allowing market participants to mitigate price risk during

these periods of lower demand.

4.5 Methodology

In this section, we will provide an overview of the methods used to analyze the relationship

between load and prices in the NYISO. We begin by describing the steps taken to pre-process

and filter the raw NYISO market data, which we carry out in order to smoothen the data.

We first sort the raw data by aggregating hourly observations into four distinct time periods

that span the course of a day. Next, after performing a series of transformations on the

sorted data, we calculate three different moving averages for both load and prices: an annual

MA, a 90-day seasonal MA, and a weekly MA. Finally, we present three non-linear functions

that describe the moving averages of load as a function of a series of periodic expressions

and the corresponding MA of prices. The parameters of these functions are estimated using

nonlinear least squares.

To avoid confusion, we will refer to the three functions introduced in this section as

“models” or “waveform functions.” We do this to highlight the fact that these equations are

in a sense deterministic since they are built largely from Fourier-like terms and are quasi-

periodic. In contrast, we reserve the word “regression” to describe the functions used to

analyze the residuals of these models in Section 7. We do this to emphasize the fact that we

are using the Box–Jenkins approach to analyze these residuals, an approach that uses purely

statistical diagnostic methods.

124



4.5.1 Data pre-processing and filtering

Before performing our analysis, we carry out several pre-processing and filtration steps to

further transform the raw NYISO load and price data. We employ these steps to smoothen

the raw data and allow for better parameter estimation from our models. In addition, since

LSEs purchase futures contracts for power that have monthly durations, these steps are

meant to compress the short-run dynamics of NYISO load and prices into measures that

capture more of their long- and medium-run dynamics.

First, we calculate the daily arithmetic mean of load during each time period and across

all zones. For example, we calculate the average morning load for Dunwoodie on January

1st, 2006 by summing together the raw load values at hours 7:00, 8:00, and 9:00 and by

dividing this sum by three. This procedure is repeated for the midday, evening, and night

time periods across all zones and all 4,748 days in the sample period. We add the load values

for each time period and divide by the number of hours in the given time period. With four

time periods and 11 zones this yields 208,912 observations of average hourly load in each

time period.

Next, we transform the raw price data by calculating daily load-weighted average prices

across all time periods and zones. We begin this calculation by multiplying the hourly real-

time price of electricity by the corresponding hourly load. All total hourly payments within

a given time period are then summed together. Finally, this total sum is divided by the total

load consumed in the same given time period.

For example, assume that on a given day in New York City consumers demanded elec-

tricity as follows: 5,000 MWh at 7:00 AM; 5,500 MWh at 8:00 AM; and 6,000 MWh at 9:00.

The respective prices were 30$/MWh at 7:00 AM, 35$/MWh at 8:00 AM, and 40$/MWh

at 9:00 AM. The load-weighted average price for the New York City zone at this particular

morning observation would then be

(5000MWh·30 $
MWh

)+(5500MWh·35 $
MWh

)+(6000MWh·40 $
MWh

(5000MWh+5500MWh+6000MWh) = 35.30$/MWh

Finally, using our transformed load and price data, we calculate a series of moving averages:

Moving Average Φz,p ,t = 1
w

t∑
s=t−(w−1)

φz,p ,t

where Φ denotes either the moving average of load or prices, φ denotes the daily load and

prices, w denotes the moving average window, z denotes the zone, p denotes the time period,

and t denotes the day of observation. In the three following subsections, we will introduce

the moving average data series used in each model and any additional model-specific data

transformations.
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4.5.2 Annual moving average model

In this section, we introduce a model for the annual MA of load. First, we calculate the

annual moving averages of real-time load and prices for each time period in every zone,

yielding a total of 88 transformed time series. Since we must use the previous 365 days of

the raw data to calculate the first value of the annual MA, the beginning date of the new

time series is January 1st, 2007. Like the original values of load and prices, the annual

moving averages for load are measured in MWh and the annual moving averages for prices

are measures in $/MWh. As an example of what these new time series look like, Figures

13 and 14 show the annual MA time series for load and prices in New York City (Zone J)

during the evening. We first focus our attention on the graph showing the annual MA of

Figure 13: The annual moving average of load in
Zone J

Figure 14: The annual moving average
of prices in Zone J

load. We notice immediately that, like the raw load data, the average MA of load appears

to follow a quasi-cyclical pattern. Although it is not perfectly uniform across the whole

time series, there seems to be a frequency that spans approximately 1,400 days. In contrast,

however, the amplitude of this new time series appears quite unpredictable as it shrinks and

expands at seemingly irregular intervals. Finally, the data appear to trend downwards over

time although the cyclicality persists throughout the time series. The graph depicting the

annual MA of prices possesses many of the same characteristics as load. The data follow a

downward trending quasi-cyclical pattern with an approximate frequency of 1,400 days and

irregular shifts in amplitude.

The prices, however, appear to be somewhat smoother than the load; there are very

few sharp spikes or valleys that we see in the time series for load. In addition, there is a

precipitous drop in the annual MA of prices that begins around t = 600 and persists for the

remainder of the series. This point seems to correlate 2009 as the shale gas revolution in

the eastern US, when the market was flooded with natural gas, making previously expensive
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gas-fired power plants far cheaper to operate. Finally, when comparing both of the graphs,

there is a clear correlation between the two series: despite differences in amplitude, they

appear synchronous and exhibit the same approximate downward drift.

Taking into consideration our visual inspection of the annual moving averages for load

and prices in NYISO, we choose the following non-linear model specification to explain the

annual MA of load:

Lz,p ,t = αz,p +β1,z ,p · exp(sin(
πt

738
)) · log(Pz,p ,t) + β2,z ,p ·Pz,p ,t

+ β3,z ,p ·t · Pz,p ,t +β4,z ,p · log(t) + εz,p ,t

(1)

where Lz,p ,t is the annual moving average of load, Pz,p ,t is the annual moving average of

prices, t is a numeric time indicator of the observation, εz,p is the residuals, and αz,p and the

four βi,z ,p terms are parameters to be determined. Taken together, these components allow

us to capture a large range of potential relationships between the AMA load and prices in

the NYISO.

The term αz,p is the “baseline” value of the annual moving average of the load in a given

zone and time period. In other words, this term measures the long-run average value of load

after controlling for time-dependent fluctuations in weather and prices.

The three coefficients β1,z ,p, β2,z ,p, and β3,z ,p collectively measure the relationship between

the annual moving averages of load and prices.

The expression, exp(sin( πt
738)), is a periodic function and its amplitude is modified by the

logarithm of prices to better capture the irregular nature of the load’s amplitude as it changes

over time. We take the logarithm of these prices to compress the changes of amplitude of the

price series as it generally has a higher magnitude than the corresponding amplitude in the

load series. When multiplied together, these two components form an interaction term that

approximates both the frequency and the amplitude of the annual moving average of load. In

practical terms, it allows us to take a more direct measurement of the cyclical relationship

between long-run load and prices in a given zone and time period. This relationship is

captured in the coefficient β1,z ,p. Because this coefficient is assigned to a term that uses

log prices, it measures the average unit MWh increase in the annual moving average of load

given a unit percentage increase in the annual moving average of price.

The second coefficient, β2,z ,p, is straightforward to interpret: it measures the linear

component of the relationship between the annual moving averages of load and prices. More

specifically, β2,z ,p measures the average response of the annual moving average of load to a

one unit increase in the annual moving average of prices after controlling for seasonality and

potential long-run changes in the load and price relationships captured in the other terms.

The third coefficient, β3,z ,p measures the interaction term between time and the annual

average prices. β3,z ,p is therefore a sort of inflationary measurement that allows for changes

in the relationship between load and prices to evolve over time. If β3,z ,p is close to zero,
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it indicates that the relationship between prices and load vary little over time, that is, this

relationship is approximately the same in 2007 as it is in 2018. If this coefficient is not

equal to zero, then we have evidence that the relationship between these two time series is

changing over time.

The fourth and final coefficient in the annual model,β4,z ,p, allows for the possibility of

load growth or shrinkage over time, which is not directly correlated to changes in power

prices. Long-run changes in the demand for power in a given zone may be due to growing

or shrinking population, changes in energy efficiency, and so on. If this coefficient is close to

zero it indicates that there is little or no change in the baseline load levels over time in a given

zone. If this coefficient is positive, it indicates that the baseline level of load is increasing

over time in a given zone. If this coefficient is negative, it indicates that the baseline level

of load is decreasing over time.

We used a nonlinear least squares to estimate the model parameters. Non-linear optimization

in MATLAB requires an initial guess value of the model parameters to facilitate numerical

convergence. For all 44 zonal and time-period runs of the annual model, our initial guess

value for αz,p was equal to 1,800 and our initial guess values for all four βi,z ,p coefficients

were equal to 1.

4.5.3 Seasonal moving average model

We next present our seasonal model which seeks to estimate the relationship between load

and prices that have been deseasonalized at the annual and 90-day time windows. From

the perspective of an LSE looking to purchase futures contracts for electricity, we consider

this model to be of more importance than the annual model. Since winter and summer are

periods of peak electricity demand in the NYISO, it is especially important for an LSE to be

able to understand their price risk during these periods. With accurate load forecasts and a

model that can accurately forecast the seasonal relationship between load and prices, LSEs

can make better-informed hedging decisions given, the current futures market prices.

We begin by dividing the daily observations of load during a given time period and zone

by the annual MA of load in the same time period and zone. We then transform this quantity

into a percentage by subtracting one. For example, on April 1, 2007, the morning load value

for Zone I was 548.8 MW and the annual MA for load on the same date was 723.7 MW. Our

percentage of the morning load to the annual MA is therefore 548.8MW
723.7MW -1=-0.242. Finally,

we calculate the 90-day moving average of this percentage to calculate the seasonal moving

average (SMA) of load. We repeat this process to calculate the SMA prices for all zones

and time periods. We will henceforth refer to these newly transformed data series as the

“seasonal” load and prices.

Equation (2) depicts our model for the seasonal MA of load:

Lz,p ,t = ζ1(t) + Pz,p ,t ·ζ2(t) + εz,p ,t (2)
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ζ1 = β1,z ,p · sin(
πt

91
) + β2,z ,p · cos(

πt

91
) + β3,z ,p · sin(

πt

182
) + β4,z ,p · cos(

πt

182
)β5,z ,p · sin(

πt

364
)

+ β6,z ,p · cos(
πt

364
) + β7,z ,p · sin(

πt

728
) + β8,z ,p · cos(

πt

728
).

ζ2 = β9,z ,p · sin(
πt

728
) + β10,z ,p · cos(

πt

728
) + β11,z ,p .

where Lz,p ,t and Pz,p ,t are the seasonal moving average of load and prices, respectively, t

is a numeric time indicator of the observation, εz,p ,t is an error term, and the eleven βi,z ,p

terms are parameters to be decided. Because the SMA load and prices are measured in

percentage deviations from the annual moving average, we assume a linear intercept equal

to zero.

The seasonal model closely resembles a Fourier series, that is, a weighted sum of periodic

functions. A Fourier series is a commonly used modeling paradigm for signal processing as

it is capable of decomposing complicated waveforms into a sum of weighted sine and cosine

pairs.13

The first eight terms of our seasonal model are periodic functions that are purely depen-

dent on time. These eight terms are grouped in successive Fourier sine and cosine pairs that

cover four frequencies: 182 days, 364 days, 728 days, and 1,446 days. These four pairs of

trigonometric terms are intended to capture the medium and long-term trends that may be

present in the seasonal data.

In addition to the purely time-dependent explanatory variables in the seasonal model,

there are three terms that include the seasonal MA of prices. The coefficients β9 and β10

measure the interaction terms between sine and cosine functions with periodicities of ap-

proximately four years and the seasonal MA of prices. These two terms effectively extended

the model with terms that allow long-term prices to modulate the amplitude of the seasonal

load.

The final model term, β11, measures the linear, non-cyclical relationship between the

seasonal moving averages of load and prices. This term essentially measures the average

change in load correlated with a unit change in prices after controlling for seasonality in the

two series.

4.5.4 Weekly moving average model

We now present our third and final model, which maps the relationship between the seven-day

moving averages of load and prices. The weekly moving average time window is significantly

shorter than the annual and seasonal moving averages and might be useful for an LSE that

seeks to take into account shorter term market dynamics when updating estimations for price

or load values. LSEs could therefore use this model in tandem with the annual and seasonal

models to fine tune estimates for prices or load if they are considering changing their futures

13Sine and cosine functions are orthogonal functions and both are necessary to map all possible forms of a
periodic function at a given frequency.

129



contract portfolio at the beginning of a new delivery month.

The process used to create the weekly MA data series is identical to that used to create

the seasonal moving averages; for all zones and time periods, we divide the daily average real

time load and prices by their corresponding annual MA values and subtract this quantity by

one to transform it into relative deviations. Next, we subtract the seasonal MA from these

relative deviations. We then calculate the 7-day MA of these data to get our weekly moving

average (WMA) load and price data series.

Equation (3) depicts our model for the weekly moving average of load:

Lz,p ,t =

(
β1,z ,p · sin(

2πt

182.47
) + β2,z ,p · cos(

2πt

182.47
) + β3,z ,p · cos(

πt

182.47
)

+ β4,z ,p · sin(
π

a
) · Pz,p ,t

)
· t

b+ t
+ β5,z ,p ·(

Pz,p ,t
c+ t

) + β6,z ,p ·Pz,p ,t +εz,p ,t

(3)

where Lz,p ,t is the weekly moving average of load, Pz,p ,t is the weekly moving average of

prices, t is a numeric time indicator of the observation, εz,p ,t is an error term, and the six

βi,z ,p terms are parameters to be determined. In addition, this model includes three scaling

parameters, a, b, and c, that we can use for frequency and amplitude modulation. As in the

seasonal model, we are again modeling a time series measured in percentage deviations from

the annual MA and therefore assume a linear intercept equal to zero.

The weekly model borrows elements found in both the annual and seasonal models. The

coefficients β1, β2, and β3 measure time-dependent cyclical fluctuations in the WMA load,

precisely like the terms found in the seasonal model.

The coefficients β4, β5, and β6 measure the relationship between WMA load and prices.

The coefficients β4 and β5 measure time and price interaction terms that are similar to those

found in the annual and seasonal models, albeit with some modifications. The interaction

term measured by β4 includes the WMA prices within the trigonometric function, which

serves to modulate the frequency of the WMA load as opposed to the amplitude. The

parameter a is used to shrink or stretch the frequency of this term to better fit the WMA

load. The term measured by β5 is a hyperbolic interaction term that dampens the amplitude

of WMA prices as time increases. The scaling parameters b and c allows us to increase or

decrease the dampening effect. As t increases, the dampening effect of c becomes smaller.

In this study, we chose to set a to be equal to 1.31, b to be equal to 6.5, and c to be

equal to 149.5 when estimating the weekly model coefficients. These values were determined

through visual inspection and by iteratively fitting the model to achieve the highest adjusted

R-squared values.

Finally, the coefficient β6,z ,p measures the linear relationship between WMA load and

WMA prices, and is analogous to the coefficients featured in the annual and seasonal models.
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4.6 Results

4.6.1 Annual model results

Tables 11–14 list the annual model parameter values across all zones and time periods.

Unless noted otherwise, all parameters are statistically significant at the 1% significance

level. We first discuss the values for α, which represents the adjustment constant of load

after controlling for seasonality and price levels in a given zone and time period. The α

term is therefore related to the concept of the mean in that it acts as a sort of central

moment of the load. Whereas the mean measures the central moment of all observations of

a dataset regardless of time of observation, the α term is estimated while explicitly taking

into account fluctuations in long-term weather patterns and price levels. Though α is not

perfectly synonymous with the mean, the trends in the α term is estimated while explicitly

taking into account fluctuations in long term weather patterns and price levels. Though α

is not perfectly synonymous with the mean, the trends in the α values largely mirror those

seen for the mean values of load in Section 4. Across all time periods, Zone J exhibits the

largest α values and Zone H exhibits the lowest. In addition, within each zone, the α values

generally tend to be lowest during the morning or the night and highest during the evenings.

Table 11: Annual model parameters across zones. Time period: Morning

Zone A Zone B Zone C Zone D Zone E Zone F Zone G Zone H Zone I Zone J Zone K
(West) (Genesee) (Central) (North) (Moh.Valley) (Capital) (Hud.Valley) (Millwood) (Dunwoodie) (NYC) (L.Island)

α 1836∗ 1158∗ 1986∗ 476∗ 813∗ 1379 ∗ 1090∗ 188∗ 773∗ 5644 ∗ 2189∗
(4.567) (2.03) (4.385) (22.741) (4.418) (6.499) (3.04) (2.519) (3.033) (14.75) (11.51)

β1 5.47∗ 0.53∗ 3.32∗ 0.77S -1.45∗ 5.449∗ 0.78 ∗ -1.65 ∗ 4.23∗ 3.14∗ 4.50∗
(0.090) (0.042) (0.09) (0.455) (0.091) (0.133) (0.062) (0.050) (0.061) (0.291) (0.21)

β2 1.50 ∗ 0.8 ∗ 1.64∗ 4.98∗ 1.01∗ -0.08∗ 1.63∗ 0.49∗ -0.16∗ 3.63∗ 2.46∗
(0.033) (0.013) (0.027) (0.14) (0.026) (0.03) (0.015) (0.012) (0.0152) (0.067) (0.049)

β3 0.0003∗ -7.1E-05∗ 0.0004∗ -0.0004∗ 0.0001∗ 0.0008∗ -0.0004∗ -0.0003∗ 0.0004∗ -0.001∗ -0.0006∗
(1.2E-05) (5.8E-06) (1.2E-05) (6.6E-05) (1.1E-05) (1.5E-05) (7.4E-06) (6.1E-06) (7.2E-06) (3.4E-05) (2.2E-05)

β4 -15.47∗ -3.67∗ -23.78∗ -0.82 12.37∗ -12.94∗ 0.52∗ 20.50∗ -17.89 ∗ 60.36∗ 25.81∗
(0.586) (0.263) (0.574) (2.937) (0.577) (0.859) (0.402) (0.333) (0.401 ) (1.955) (1.489)

N 4384 4384 4384 4384 4384 4384 4384 4384 4384 4384 4384

R2 0.755 0.767 0.839 0.482 0.48 0.579 0.908 0.515 0.630 0.571 0.637

Note: Standard errors in parentheses. An asterisk indicates significance at the 1% level.

Table 12: Annual model parameters across zones. Time period: Midday

Zone A Zone B Zone C Zone D Zone E Zone F Zone G Zone H Zone I Zone J Zone K
(West) (Genesee) (Central) (North) (Moh.Valley) (Capital) (Hud.Valley) (Millwood) (Dunwoodie) (NYC) (L.Island)

α 1863∗ 1197∗ 2032∗ 465∗ 827∗ 1424∗ 1145∗ 191∗ 850∗ 6119∗ 2220∗
(5.65) (3.36) (3.37) (22.71) (5.59) (6.43) (4.05) (2.85) (3.52) (18.2) (18.96)

β1 4.58∗ 0.61 ∗ 3.23∗ -0.31 -1.11∗ 5.98 ∗ 1.81∗ -1.34 ∗ 4.64 ∗ 5.02 ∗ 6.14∗
(0.10) (0.06) (0.08) (0.43) (0.11) (0.11) (0.07) (0.05) (0.06) (0.32) (0.27)

β2 2.14∗ 0.98 ∗ 1.81∗ 5.25∗ 1.03∗ 0.22∗ 1.74∗ 0.55∗ 0.01∗ 4.69∗ 3.55∗
(0.04) (0.02) (0.02) (0.13) (0.03) (0.03) (0.02) (0.01) (0.01) (0.07) (0.06)

β3 0.0002 ∗ -6.7E-05∗ 0.0004∗ 0.0003∗ 0.0003∗ 00007∗ -0.0005∗ -0.0003∗ 0.0005∗ -0.002∗ -0.0008∗
(1.3E-05) (1.0E-05) (1.3E-05) (7.5E-05) (1.6E-05) (1.4E-05) (9.4E-06) (6.6E-06) (8.1E-06) (3.8E-05) (3.1E-05)

β4 -7.81∗ 2.52∗ -20.46∗ -8.74∗ 13.11∗ -10.91 ∗ 9.16∗ 22.98∗ -21.19∗ 79.71∗ 52.09∗
(0.71) (0.44) (0.60) (3.03) (0.75) (0.85) (0.54) (0.38) (0.47) (2.46) (2.46)

N 4384 4384 4384 4384 4384 4384 4384 4384 4384 4384 4384

R2 0.70 0.553 0.837 0.526 0.439 0.589 0.903 0.488 0.684 0.708 0.649

Note: Standard errors in parentheses. An asterisk indicates significance at the 1% level.

131



Table 13: Annual model parameters across zones. Time period: Evening

Zone A Zone B Zone C Zone D Zone E Zone F Zone G Zone H Zone I Zone J Zone K
(West) (Genesee) (Central) (North) (Moh.Valley) (Capital) (Hud.Valley) (Millwood) (Dunwoodie) (NYC) (L.Island)

α 1918∗ 1230 ∗ 2086.∗ 442∗ 857∗ 1526∗ 1254∗ 225∗ 869∗ 6208∗ 2519∗
(6.11) (3.81) (4.61) (22.32) (5.15) (7.38) (4.56) (2.95) (3.85) (17.88) (16.14)

β1 5.86∗ 0.93∗ 3.87 ∗ 0.18 -0.93∗ 6.63∗ 2.37 ∗ -1.35∗ 4.66 ∗ 4.67∗ 5.61 ∗
(0.11) (0.07) (0.08) (0.43) (0.09) (0.13) (0.08) (0.05) (0.06) (0.31) (0.235)

β2 1.32∗ 0.75∗ 1.39∗ 4.76∗ 0.70∗ -0.09∗ 1.29 ∗ 0.47∗ 0.02∗ 3.75 ∗ 2.31∗
(0.04) (0.02) (0.02) (0.12) (0.03) (0.03) (0.02) (0.01) (0.01) (0.06) (0.05)

β3 0.0003 ∗ -2.6E-05∗ 0.0004∗ -0.0003∗ 0.0001∗ 0.0009∗ -0.0003∗ -0.0003∗ 0.0004∗ -0.001∗ -0.0006∗
(1.3E-05) (9.1E-06) (1.1E-05) (5.9E-05) (1.2E-05) (1.5E-05) (9.3E-06) (5.8E-06) (7.7E-06) (3.3E-05) (2.2E-05)

β4 -10.95∗ 1.48∗ -22.17∗ 1.53 14.75∗ -18.21∗ 5.04 ∗ 23.24∗ -18.34∗ 67.02∗ 46.35∗
(0.78) (0.49) (0.61) (2.94) (0.68) (0.97) (0.61) (0.39) (0.52) (2.42) (2.07)

N 4384 4384 4384 4384 4384 4384 4384 4384 4384 4384 4384

R2 0.62 0.40 0.797 0.50 0.45 0.631 0.85 0.469 0.604 0.651 0.611

Note: Standard errors in parentheses. An asterisk indicates significance at the 1% level.

Table 14: Annual model parameters across zones. Time period: Night

Zone A Zone B Zone C Zone D Zone E Zone F Zone G Zone H Zone I Zone J Zone K
(West) (Genesee) (Central) (North) (Moh.Valley) (Capital) (Hud.Valley) (Millwood) (Dunwoodie) (NYC) (L.Island)

α 1872∗ 1087∗ 1989∗ 554∗ 760∗ 1319 ∗ 1087∗ 174∗ 722∗ 5372∗ 2142∗
(4.81) (2.34) (6.63) (24.64) (4.79) (8.55) (3.79) (2.52) (2.95) (15.76) (10.59)

β1 8.28∗ 1.17∗ 4.01∗ 1.02 -1.17∗ 6.98∗ 1.19 ∗ -1.34∗ 4.53 ∗ 4.32∗ 4.56∗
(0.10) (0.51) (0.14) (0.51) (0.10) (0.18) (0.08) (0.05) (0.06) (0.34) (0.19)

β2 0.60∗ 0.61 ∗ 1.10 ∗ 6.40∗ 0.84∗ -1.02 ∗ 1.55∗ 0.32∗ -0.34∗ 3.83∗ 1.96 ∗
(0.04) (0.01) (0.05) (0.19) (0.035) (0.05) (0.02) (0.01) (0.02) (0.08) (0.05)

β3 0.001∗ 0.0002∗ 0.0009 -6.8E-05 0.0006∗ 0.0016∗ -0.0002∗ -0.0002∗ 0.0006∗ -0.001∗ -0.0004∗
(1.8E-05) (9.1E-06) (2.5E-05) (9.9E-05) (1.7E-05) (2.6E-05) (1.1E-05) (7.8E-06) (9.2E-06) (4.8E-05) (2.5E-05)

β4 -26.55∗ -2.64 ∗ -35.04∗ -12.54∗ 7.35 ∗ -16.84∗ -3.08∗ 20.13∗ -14.82 ∗ 57.65 ∗ 21.57∗
(0.63) (0.31) (0.87) (3.23) (0.63) (1.14) (0.50) (0.34) (0.39) (2.13) (1.37)

N 4383 4383 4383 4383 4383 4383 4383 4383 4383 4383 4383

R2 0.735 0.448 0.647 0.48 0.628 0.664 0.803 0.598 0.641 0.39 0.431

Note: Standard errors in parentheses. An asterisk indicates significance at the 1% level.

Zones D, G and K are exceptions to this trend: in these zones, α values are highest

during the night. More generally, however, we note that within each zone, there is relatively

little variation in these α values across time periods. We believe that this is an indication

that the remaining four model parameters account for most of the time and price-dependent

variations in load and that the estimated α values effectively capture the baseline load levels.

Along with AMA prices, the coefficient β1 acts to modulate the amplitude of the main

waveform function in the annual model. This waveform function measures the long-run

cyclicality of the load and has a periodicity of approximately four years. The coefficient β1

can also be thought of as an amplitude multiplier for the periodic interaction term, adjusting

the amplitude up or down depending on how well the amplitude of AMA prices matches that

of the AMA load. In addition, the sign of β1 acts to shift the waveform function left or right

to better fit the AMA load.

Across all zones, the β1 values show no clear time period trends,that is, the relative

magnitude of β1 during the night is not consistently higher than its magnitude during the

evenings, and so on. The intra-zonal ordering of β1 values seem to change randomly from

zone to zone. In the vast majority of zones, however, the values for β1 are the same sign

across all time periods: Zones A, B, F, G, I, J, and K show positive values forβ1 across all

time periods and Zones D, E, and H show negative values for β1 across all time periods.

Zone C is the only exception to this trend as it shows a negative β1 value during the night

but positive β1 values during the morning, midday, and evening.

Zone F shows by far the largest magnitude β1 values for every time period: it is ap-
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proximately one order of magnitude larger than the second largest β1 values in Zone D. In

contrast, Zone E shows by far the smallest magnitude β1 values in each time period. We

find this result particularly interesting given that these two zones are located adjacent to

one another but often become isolated from one another due to the Central East constraint

as depicted in Figure 8 in Section 2. It is not immediately clear why the β1 values for these

two zones are so dramatically different but it could be simply because prices in the two zones

are similar despite large differences in their load profiles. Zone F has a much larger load

profile than Zone E and the β1 values reflect the different amplitudes in the two zones. We

also note that the β1 values in Zones I, J, and K are all very similar across all time periods.

This result suggests that the AMA load patterns in the three zones that directly comprise

the New York City metro area exhibit approximately the same cyclical dynamics.

The coefficient β2 measures the linear relationship between load and prices and, as dis-

cussed in Section 4, acts as the linear component of the inverse demand elasticity. This is

due to the fact that load is extraordinarily inelastic in power markets and causes movements

in prices, not the other way around. We would therefore expect all β2 values to be positive.

A large β2 value indicates that prices are more inflexible given an increase in load and a

small β2 value indicates that prices respond more to an increase in load. In any given zone,

the sensitivity of prices in response to movements in load could be the result of many phys-

ical grid characteristics. For example, in zones where demand is relatively larger than local

supply or areas that can become isolated from supply due to transmission constraints, we

would expect to see small β2 values. In zones where there is an oversupply of power relative

to the local demand, we would expect β2 values to be larger.

Indeed, β2 values are positive in all but two instances: during the morning and the night

time periods in Zone I. This a very strange result as negative value for β2 implies that

increases in demand would actually cause prices to decrease. We note, however, that while

this isolated result is strange, it is possible that when combined with the positive morning

and night values for β1 and β3 in Zone I, the price elasticities for these time periods will turn

out to be positive. As for cross-zonal time periods trends, the β2 values during the midday

are largest in eight out of the eleven zones indicating that prices are generally less sensitive

to shifts in load during the midday. In contrast, the β2 values for the evening time period

were lowest in six out of the eleven zones and second lowest in four zones. This result is

consistent with the fact that load is the highest in most zones during the evening and price

spikes happen more frequently as a result.

Across all zones, Zone D exhibits the highest β2 values for every time period indicating

that prices are very insensitive to changes in load. This result makes intuitive sense since

Zone D corresponds to a very sparsely populated part of the state of New York that has

large hydro and nuclear generators. Perhaps somewhat more surprisingly, β2 values in Zones

J and K, which correspond to the extremely densely populated New York City urban area,

are also elevated across all time periods when compared to the remaining zones. Despite
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the extreme population density of this area, there are dozens of natural gas and petroleum

liquid-fired plants located in these two zones, and the β2 values are an indication that the

supply-to-demand ratio here is higher than expected.

Across all zones, Zone I exhibits by far the smallest β2 values in magnitude for all four

time periods. Zone H also shows consistently small β2 values that are well below one.

Taken together, these β2 values seem to indicate that the suburbs north of New York City

have relatively high demand in comparison to the installed power generation and/or become

isolated from cheaper power sources when transmission lines become congested. In the six

remaining zones –A, B, C, E, F, and G –β2 values lie largely between one and two across all

time periods.

The coefficient β3 measures how the relationship between seasonal load and prices changes

over time. If β3 is negative, it is an indication that price sensitivity is increasing: a unit

increase in load is causing a progressively larger increase in prices as time progresses. This is

because, when combined with β1 and β2, a negative β3 value decreases the combined effect

of the coefficients that relate load to prices as time progresses. When we invert the sum

of these three coefficients to get an estimate of price elasticity of demand, the denominator

β1,z ,p · exp(sin( πt
738)) · 1

AMAPricesz ,p,t
+ β2,z ,p +β3,z ,p ·t will grow smaller as t increases over

the long run, ceteris paribus. A negative β3 may be the result of load growth, a reduction

in generation capacity, or generators offering at higher prices. The opposite is true if β3

takes on a positive value; a unit increase in load is causing a progressively smaller change in

load. Such a result may be due to load shrinkage, an increase in generation capacity, a new

transmission line that increases local supply, and so forth.

Across zones, the β3 values show no apparent time period trends. The ordering of the

largest and smallest β3 value magnitudes seem to change randomly from zone to zone. Within

the majority of zones, however, the signs of β3 values are consistently positive or negative.

Zones A, C, E, and I exhibit positive β3 values across all time periods and Zones F, G, H, J,

and K exhibit negative β3 values across all time periods. Zones B and D show mixed results:

the value of β3 in Zone B is positive during the night and the value of Zone D is positive

during the midday but both zones exhibit negative β3 values in the remaining time periods.

Across all zones, Zones F and J show β3 values with the largest magnitudes indicating that

the price sensitivity to load is changing faster in these two zones than the remaining zones

after accounting for seasonality and price levels. On the other end of the spectrum, Zones A,

B, and C show β3 values with relatively smaller magnitudes, suggesting that, ceteris paribus,

the price sensitivity to changes in load is evolving at a slower pace than the remaining zones.

We now turn to β4 which measures the “pure” time trend in load after controlling for

seasonality and price fluctuations. This parameter is measured in the level-log configuration;

a 1% increase in time yields a β4 change in the AMA load where β4 is measured in MWh.

Positive β4 values indicate load growth over time and negative values indicate load shrinkage.

Though the β4 values presented in Tables 11–14 may seem high at first glance, it is important
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to remember that the β4 values must be combined with the values of β1 and β3 to fully express

the time trend of AMA load. In this sense, β4 is a sort of correction term that captures the

linear time trend of AMA load but must be combined with other parameters to fully express

the load’s time-driven dynamics.

In all but two zones, the signs for β4 were consistent across all four time periods. Zones

A, C, F, and I exhibit negativeβ4 values across all four periods which indicates load shrinkage

over time and Zones E, G, H, J, and K exhibit positive β4 values across all four periods,

which indicates load growth over time. Taken together, the β4 values indicate load shrinkage

in the upstate portion of the state of New York load growth in the downstate portion of the

state. These signs are largely consistent with the values of β3, which also indicate whether

price sensitivity was increasing or decreasing over time.

Although Zones B and D both exhibit mixed signs for β4 across time periods, the evidence

seems to be pointing toward load shrinkage in both zones. In Zone B, three of the four β4

values were negative, only the midday time period β4 value was positive. In the case of Zone

D, the morning and evening β4 coefficients were not statistically significant but the values for

the midday and night time periods were negative, large in magnitude, and highly statistically

significant. There are no apparent time period trends in β4 in the upstate zones; within each

upstate zone, the ordering of β4 values by magnitude for morning, midday, evening, and

night vary greatly from zone to zone. In the downstate zones, however, there is a clearer

trend where β4 values during the midday are highest in magnitude, followed by evenings.

The β4 values during the night and morning time periods exhibit the lowest values in all

downstate zones except for Zone I. These results are consistent with a larger load growth

during the midday and evening hours than in the morning and night time periods.

Finally, we turn our attention to the adjusted R-squared values. We see quite clearly,

however, that the annual model seems to work far better for some zones than others. Out of

all of eleven zones, Zone G had the highest R-squared values in every time period. R-squared

values in Zone G range from 0.80 to 0.91, indicating an excellent model fit across all time

periods.

In conclusion, the R-squared values presented in Tables 11–14 suggest that our annual

model provides a very good functional fit between the annual moving averages of load and

prices in some NYISO zones but a weaker fit in others. There are a multitude of factors that

could explain the varying performance of the annual model across different zones and time

periods; patterns in consumer behavior, fuel prices, transmission network topology, among

others, all vary across zones and can lead to differences in the relationship between load

and prices. For LSEs that wish to make more long-term power purchasing arrangements

in Zones A, C, F, and G, this annual model would be expected to provide accurate annual

price forecasts given an accurate annual load forecast. For the remaining zones, however, the

relationship between annual load and prices acts in a way that is not entirely captured by

this model. In the next section, we will see that modelling outcomes improve significantly
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when we reduce the MA time window to 90 days and control for additional seasonal cycles.

4.6.2 Seasonal model results

Tables 15–18 below present the results of the seasonal model parameter estimations. The

first eight coefficients, β1 to β8, measure the strength of various medium and long run

seasonal cycles in the SMA load. In almost every zone and time period the values for β1

are positive, the values for β2 are negative, and both are statistically significant at the 1%

significance level, providing strong evidence for the presence of a semiannual seasonal cycle

in load. With the exception of β6, the signs of the remaining seasonal coefficients are more

mixed across zones and time periods. The sign of β6 is almost universally positive across

all zones and time periods. These six model coefficients are overwhelmingly statistically

significant at the 1% significance level although there are several instances of statistically

insignificant coefficients that seem to be scattered somewhat randomly across zones and

time periods. Despite these scattered insignificant coefficients, the large number of highly

statistically significant coefficients provides evidence of multiple medium-run seasonal cycles

in the SMA load.

Table 15: Seasonal model parameters across zones. Time period: Morning

Zone A Zone B Zone C Zone D Zone E Zone F Zone G Zone H Zone I Zone J Zone K
(West) (Genesee) (Central) (North) (Moh.Valley) (Capital) (Hud.Valley) (Millwood) (Dunwoodie) (NYC) (L.Island)

β1 0.011∗ 0.016∗ 0.015∗ 0.001 0.019∗ 0.019∗ 0.028 ∗ 0.040∗ 0.025∗ 0.024∗ 0.031∗
(0.0003) (0.0003) (0.0003) (0.0016) (0.0006) (0.0004) (0.0004) (0.0008) (0.0005) (0.0005) (0.0005)

β2 -0.028∗ -0.035∗ -0.033∗ 0.010∗ -0.052∗ -0.045 ∗ -0.044∗ -0.061∗ -0.054∗ -0.056∗ -0.07∗
(0.0003) (0.0003) (0.0003) (0.0016) (0.0006) (0.0005) (0.0005) (0.0008) (0.0005) (0.0005) (0.0006)

β3 0.017∗ 0.002∗ 0.036∗ 0.055∗ 0.051∗ -0.016∗ -0.027∗ 0.03∗ -0.085∗ -0.105∗ -0.097∗
(0.0004) (0.0004) (0.0004) (0.0018) (0.0007) (0.0006) (0.0005) (0.0012) (0.0007) (0.0006) (0.0007)

β4 0.004∗ 0.010 ∗ 0.008∗ 0.010∗ 0.016 ∗ 0.012∗ 0.006∗ 0.020∗ -0.014∗ -0.016∗ -0.013∗
(0.0003) (0.0003) (0.0003) (0.0017) (0.0006) (0.0004) (0.0004) (0.0008) (0.0005) (0.0005) (0.0005)

β5 -0.005∗ -0.003∗ -0.004∗ 0.027 ∗ 0.007∗ -0.006∗ 0.0008∗ 0.009∗ -0.003 ∗ -0.005∗ -0.0034∗
(0.0003) (0.0003) (0.0003) (0.0016) (0.0006) (0.0005) (0.0004) (0.0008) (0.0006) (0.0005) (0.0005)

β6 0.004∗ 0.004∗ 0.004∗ 0.01∗ 0.005∗ 0.005∗ 0.002∗ 0.024∗ 0.005∗ 0.005∗ 0.009 ∗
(0.0003) ( 0.0003) (0.0003) (0.0017) (0.0006) (0.0005) (0.0005) (0.0008) (0.0005) (0.0005) (0.0005)

β7 -0.008∗ -0.002∗ -0.002∗ 0.083∗ -0.003∗ 0.002∗ -0.0004 0.010∗ -0.011 ∗ 0.001∗ -0.001∗
(0.0003) (0.0003) (0.0003) (0.0018) (0.0001) (0.0005) (0.0005) (0.0009) (0.0006) (0.0005) (0.0006)

β8 0.011∗ 0.005∗ 0.006∗ 0.005∗ -0.004∗ 0.012∗ 0.009∗ -0.003∗ 0.016∗ 0.009∗ 0.013∗
(0.0003) (0.0003) (0.0003) (0.0016) (0.0006) (0.0004) (0.0004) (0.0008) (0.0005) (0.0005) (0.0005)

β9 0.044∗ 0.025∗ 0.027∗ 0.026∗ 0.031∗ 0.021∗ 0.024∗ 0.082∗ 0.031∗ 0.031∗ 0.037∗
(0.0018) (0.0015) (0.0013) (0.0045) (0.0023) (0.0017) (0.0018) (0.0033) (0.0019) (0.0018) (0.0025)

β10 0.017∗ 0.035∗ 0.016∗ 0.023∗ 0.023∗ 0.041∗ 0.047∗ 0.055∗ 0.068∗ 0.031∗ 0.046∗
(0.0017) (0.0015) (0.0014) (0.0054) (0.0025) (0.0014) (0.0015) (0.0028) (0.0017) (0.0016) (0.0017)

β11 0.056∗ 0.050∗ 0.065∗ 0.130∗ 0.074∗ 0.063∗ 0.064∗ 0.076∗ 0.035∗ 0.047∗ 0.054∗
(0.0012) (0.0011) (0.0011) (0.0045) (0.0021) (0.0014) (0.0014) (0.0025) (0.0022) (0.0015) (0.0016)

N 4384 4384 4384 4384 4384 4384 4384 4384 4384 4384 4384

R2 0.80 0.822 0.908 0.594 0.852 0.801 0.815 0.774 0.875 0.925 0.907

Note: Standard errors in parentheses. An asterisk indicates significance at the 1% level.
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Table 16: Seasonal model parameters across zones. Time period: Midday

Zone A Zone B Zone C Zone D Zone E Zone F Zone G Zone H Zone I Zone J Zone K
(West) (Genesee) (Central) (North) (Moh.Valley) (Capital) (Hud.Valley) (Millwood) (Dunwoodie) (NYC) (L.Island)

β1 0.016∗ 0.026∗ 0.023∗ 0.003∗ 0.028 ∗ 0.031∗ 0.042∗ 0.056∗ 0.031∗ 0.024∗ 0.041∗
(0.0003) (0.0004) (0.0003) (0.0015) (0.0006) (0.0005) (0.0006) (0.0008) (0.0006) (0.0004) (0.0007)

β2 -0.037∗ -0.051∗ -0.045 ∗ -0.007∗ -0.064∗ -0.057∗ -0.064∗ -0.079∗ -0.063∗ -0.055∗ -0.09∗
(0.0003) (0.0004) (0.0003) (0.0015) (0.0006) (0.0005) (0.0006) (0.0008) (0.0006) (0.0005) (0.0007)

β3 -0.021∗ -0.059∗ -0.010∗ 0.066∗ 0.009∗ -0.074∗ -0.114∗ -0.074∗ -0.139∗ -0.123 ∗ -0.188 ∗
(0.0004) (0.0004) (0.0003) (0.0015) (0.0006) (0.0005) (0.0006) (0.0008) (0.0006) (0.0005) (0.0007)

β4 -0.001 ∗ -0.002∗ 0.0008∗ 0.021∗ 0.009∗ -0.0003 -0.014∗ -0.0009 -0.024∗ -0.018∗ -0.028∗
(0.0003) (0.0004) (0.0003) (0.0015) (0.0006) (0.0005) (0.0006) (0.0008) (0.0006) (0.0004) (0.0006)

β5 -0.0002 -0.002∗ -0.002 0.034∗ 0.007∗ -0.0004 0.001∗ 0.012∗ -0.001∗ -0.001∗ 0.001∗
(0.0003) (0.0004) (0.0003) (0.0015) (0.0006) (0.0005) (0.0006) (0.0008) (0.0006) (0.0004) (0.0007)

β6 0.005∗ 0.003∗ 0.005∗ 0.011∗ 0.005∗ 0.004∗ 0.002∗ 0.028∗ 0.006∗ 0.004∗ 0.008 ∗
(0.0003) (0.0004) (0.0003) (0.0015) (0.0006) (0.0005) (0.0006) (0.0008) (0.0006) (0.0004) (0.0007)

β7 -0.008∗ 0.001∗ -0.001∗ 0.076∗ 0.0002 0.003 ∗ 0.0008 0.014∗ -0.01∗ 0.001∗ -0.003 ∗
(0.0004) (0.0005) (0.0004) (0.0018) (0.0007) (0.0006) (0.0007) (0.001) (0.0007) (0.0005) (0.0008)

β8 0.009∗ 0.005∗ 0.006∗ 0.004∗ -0.005∗ 0.014∗ 0.014∗ 0.001 0.019∗ 0.011∗∗ 0.02∗
(0.0003) (0.0004) (0.0003) (0.0015) (0.0006) (0.0005) (0.0006) (0.0008) (0.0006) (0.0004) (0.0007)

β9 0.102∗ 0.057∗ 0.042∗ 0.174∗ -0.02∗ 0.047 ∗ 0.060∗ 0.132∗ 0.069∗ 0.062∗ 0.123∗
(0.0061) (0.0062) (0.0046) (0.014) (0.0076) (0.0033) (0.0051) (0.0071) (0.0052) (0.0036) (0.0067)

β10 0.014∗ 0.021∗ 0.004∗ 0.101∗ -0.008∗ 0.041 ∗ 0.048∗ 0.072∗ 0.036∗ 0.032∗ 0.040 ∗
(0.0018) (0.0025) (0.0019) (0.0067) (0.0033) (0.0021) (0.0025) (0.0033) (0.0025) (0.0018) (0.0026)

β11 0.094∗ 0.087∗ 0.085∗ 0.221∗ 0.095∗ 0.088∗ 0.098∗ 0.108∗ 0.098∗ 0.070∗ 0.105 ∗
(0.0014) (0.0017) (0.0013) (0.0048) (0.0023) (0.0016) (0.0018) (0.0025) (0.0018) (0.0014) (0.0019)

N 4384 4384 4384 4384 4384 4384 4384 4384 4384 4384 4384

R2 0.883 0.901 0.88 0.618 0.806 0.896 0.935 0.872 0.947 0.956 0.963

Note: Standard errors in parentheses. An asterisk indicates significance at the 1% level.

Table 17: Seasonal model parameters across zones. Time period: Evening

Zone A Zone B Zone C Zone D Zone E Zone F Zone G Zone H Zone I Zone J Zone K
(West) (Genesee) (Central) (North) (Moh.Valley) (Capital) (Hud.Valley) (Millwood) (Dunwoodie) (NYC) (L.Island)

β1 0.026∗ 0.035 ∗ 0.03∗ 0.004 ∗ 0.034∗ 0.038∗ 0.051 ∗ 0.068∗ 0.04 ∗ 0.028 ∗ 0.051∗
(0.0004) (0.0005) (0.0003) (0.0015) (0.0006) (0.0005) (0.0006) (0.0008) (0.0006) (0.0005) (0.0007)

β2 -0.04∗ -0.053∗ -0.046∗ -0.011∗ -0.062∗ -0.057∗ -0.064∗ -0.078∗ -0.065∗ -0.056∗ -0.086∗
(0.0004) (0.0005) (0.0003) (0.0015) (0.0006) (0.0005) (0.0006) (0.0008) (0.0006) (0.0005) (0.0007)

β3 -0.009∗ -0.036∗ 0.005∗ 0.058 ∗ 0.03 ∗ -0.053∗ -0.095∗ -0.044∗ -0.116∗ -0.11∗ -0.149∗
(0.0004) (0.0005) (0.0004) (0.0015) (0.0006) (0.0006) (0.0006) (0.0008) (0.0006) (0.0005) (0.0007)

β4 0.014∗ 0.02∗ 0.019∗ 0.016 ∗ 0.032∗ 0.02∗ 0.004∗ 0.023 ∗ -0.005∗ -0.008∗ -0.001∗
(0.0004) (0.0005) (0.0016) (0.0006) (0.0005) (0.0006) (0.0008) (0.0006) (0.0004) (0.0006) (0.0005)

β5 -0.006∗ -0.005∗ -0.005∗ 0.028∗ 0.004 ∗ -0.007∗ -0.001∗ 0.008∗ -0.005∗ -0.005∗ -0.004∗
(0.0004) (0.0005) (0.0003) (0.0015) (0.0006) (0.0005) (0.0006) (0.0008) (0.0006) (0.0004) (0.0006)

β6 0.005∗ 0.002∗ 0.004 ∗ 0.01 ∗ 0.006∗ 0.002∗ 0.0007 0.025∗ 0.005 ∗ 0.003∗ 0.004 ∗
(0.0003) (0.0005) (0.0004) (0.0016) (0.0006) (0.0005) (0.0006) (0.0008) (0.0006) (0.0004) (0.0007)

β7 -0.008∗ -0.0007 -0.003∗ 0.074∗ -0.003∗ 0.001 5.1E-05 0.011 ∗ -0.011∗ 6.8E-05 -0.003∗
(0.0005) (0.0005) (0.0004) (0.001) (0.0007) (0.0006) (0.0007) (0.0009) (0.0007) (0.0005) (0.0008)

β8 0.011∗ 0.0066∗ 0.007∗ 0.008∗ -0.003∗ 0.013 ∗ 0.014∗ 0.0008 0.0186∗ 0.01∗ 0.017∗
(0.0004) (0.0005) (0.0003) (0.0015) (0.0006) (0.0005) (0.0006) (0.0008) (0.0006) (0.0004) (0.0006)

β9 0.081∗ 0.064∗ 0.054 ∗ 0.136∗ 0.039∗ 0.051∗ 0.064∗ 0.136 ∗ 0.086∗ 0.062 ∗ 0.107 ∗
(0.0035) (0.0033) (0.0024) (0.0077) (0.0036) (0.0031) (0.0046) (0.0066) (0.0049) (0.0036) (0.0064)

β10 0.004∗ 0.023∗ 0.014 ∗ 0.081 ∗ 0.019∗ 0.045∗ 0.052 ∗ 0.068∗ 0.036∗ 0.033∗ 0.027 ∗
(0.0024) (0.0025) (0.0019) (0.0065) (0.0028) (0.0021) (0.0025) (0.0035) (0.0025) (0.0019) (0.0026)

β11 0.085∗ 0.085∗ 0.084∗ 0.21∗ 0.085 ∗ 0.084∗ 0.089 ∗ 0.095∗ 0.094 ∗ 0.067 ∗ 0.093∗
(0.0015) (0.0017) (0.0012) (0.0046) (0.0019) (0.0017) (0.0019) (0.0026) (0.0019) (0.0015) (0.0021)

N 4384 4384 4384 4384 4384 4384 4384 4384 4384 4384 4384

R2 0.841 0.866 0.895 0.633 0.864 0.872 0.914 0.847 0.928 0.943 0.947

Note: Standard errors in parentheses. An asterisk indicates significance at the 1% level.

Across all zones and time periods, the three coefficients that measure the relationship

between the SMA load and prices, β9, β10, and β11, are overwhelmingly positive and statisti-

cally significant at the 1% significance level. As with the β1 term used in the annual model,

β9 and β10 measure the long-run cyclicality of the SMA load while using SMA prices for

the purposes of amplitude modulation. The fact that these coefficients are positive indicates

that the vertical fluctuations of SMA load and SMA prices are synchronous. As with β2

used in the annual model, β11 measures the linear relationship between SMA load and prices

after controlling for seasonal fluctuations in the two time series. As we discussed previously,

a positive β11 value indicates that, over average, an increase in the demand for power yields

an increase in prices. This is consistent with the well-documented fact that the demand for

power is thoroughly disconnected from real-time power prices and will cause prices to move
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Table 18: Seasonal model parameters across zones. Time period: Night

Zone A Zone B Zone C Zone D Zone E Zone F Zone G Zone H Zone I Zone J Zone K
(West) (Genesee) (Central) (North) (Moh.Valley) (Capital) (Hud.Valley) (Millwood) (Dunwoodie) (NYC) (L.Island)

β1 0.015∗ 0.022∗ 0.021∗ 0.002∗ 0.027∗ 0.025∗ 0.034∗ 0.051∗ 0.034∗ 0.032∗ 0.038∗
(0.0003) (0.0004) (0.0003) (0.0017) (0.0007) (0.0006) (0.0005) (0.0009) (0.0006) (0.0005) (0.0006)

β2 -0.03∗ -0.042 ∗ -0.038∗ -0.011∗ -0.061∗ -0.054∗ -0.054∗ -0.073∗ -0.067∗ -0.066∗ -0.079∗
(0.0004) (0.0004) (0.0003) (0.0017) (0.0007) (0.0006) (0.0005) (0.0009) (0.0006) (0.0005) (0.0006)

β3 0.014∗ -0.002∗ 0.036∗ 0.063∗ 0.057∗ -0.023∗ -0.039∗ 0.02∗ -0.099∗ -0.119∗ -0.107∗
(0.0004) (0.0004) (0.0004) (0.0018) (0.0007) (0.0007) (0.0006) (0.0011) (0.0007) (0.0006) (0.0007)

β4 0.004∗ 0.01∗ 0.01∗ 0.017∗ 0.022∗ 0.015∗ 0.005∗ 0.021∗ -0.016∗ -0.017∗ -0.014∗
(0.0003) (0.0004) (0.0003) (0.0017) (0.0007) (0.0006) (0.0005) (0.0009) (0.0006) (0.0005) (0.0006)

β5 -0.004∗ -0.0006 -0.004∗ 0.037∗ 0.011∗ -0.009∗ -0.0007∗ 0.013∗ -0.003 ∗ -0.004 ∗ -0.003 ∗
(0.0004) (0.0004) (0.0003) (0.0017) (0.0007) (0.0006) (0.0005) (0.0009) (0.0006) (0.0005) (0.0006)

β6 0.0002∗ 0.003∗ 0.004∗ 0.007∗ 0.005∗ 0.006∗ 0.003∗ 0.027∗ 0.005 ∗ 0.006 ∗ 0.009∗
(0.0004) (0.0004) (0.0003) (0.0018) (0.0007) (0.0006) (0.0005) (0.0009) (0.0006) (0.0005) (0.0006)

β7 -0.009∗ -0.0007 -0.002∗ 0.088∗ 0.0009 0.001∗ 5.0E-05∗ 0.008∗ -0.012 ∗ 0.0005 -0.0015∗
(0.0004) (0.0004) (0.0004) (0.0019) (0.0008) (0.0006) (0.0006) (0.0011) (0.0007) (0.0006) (0.0007)

β8 0.014∗ 0.006∗ 0.007∗ 0.002∗ -0.003∗ 0.016∗ 0.01∗ -0.001 0.018∗ 0.011 ∗ 0.014∗
(0.0003) (0.0004) (0.0003) (0.0017) (0.0007) (0.0006) (0.0005) (0.0009) (0.0006) (0.0005) (0.0006)

β9 0.057 ∗ 0.038∗ 0.033∗ 0.006∗ 0.034∗ 0.025∗ 0.027∗ 0.101∗ 0.047∗ 0.048 ∗ 0.057 ∗
(0.0023) (0.0024) (0.0021) (0.0067) (0.0038) (0.0023) (0.0024) (0.0041) (0.0028) (0.0026) (0.0035)

β10 0.012∗ 0.039∗ 0.018∗ 0.015 0.027∗ 0.050 ∗ 0.063∗ 0.076∗ 0.043∗ 0.044∗ 0.051∗
(0.0019) (0.0019) (0.0017) (0.0074) (0.0032) (0.0018) (0.0018) (0.0032) (0.0022) (0.0020) (0.0021)

β11 0.072 ∗ 0.068∗ 0.076∗ 0.014∗ 0.102 ∗ 0.069∗ 0.088∗ 0.076∗ 0.076∗ 0.064 ∗ 0.072 ∗
(0.0013) 0.0013) (0.0012) (0.0049) (0.0069) (0.0017) (0.0016) (0.0027) (0.0019) (0.0016) (0.0018)

N 4383 4383 4383 4383 4383 4383 4383 4383 4383 4383 4383

R2 0.806 0.832 0.902 0.588 0.852 0.793 0.841 0.783 0.896 0.930 0.921

Note: Standard errors in parentheses. An asterisk indicates significance at the 1% level.

rather than the other way around.

The R-squared values presented in Tables 15–18 indicate that the seasonal model gen-

erally offers an improved fit in comparison to the annual model. The seasonal model seems

to perform particularly well in the downstate zones. Across all models, Zone J exhibits the

highest R-squared values during the morning and night time periods and Zone K exhibits the

highest values during the midday and evening time periods. In addition, the R-squared val-

ues in Zones J and K are very large for all four time periods; both zones exhibited R-squared

values over 0.90 in all time periods. Zones G and I also perform quite well with R-squared

values that exceed 0.90 for the midday and evening time periods and 0.80 for the morning

and night time periods. Of the downstate zones, the seasonal model performed the weakest

in Zone H, but even here, R-squared values during the midday and evening time periods are

large, hovering around 0.85. Although the seasonal model fit was generally lower in the up-

state zones, it still offers improvements over the annual model: Zones A, B, C, and E exhibit

R-squared values above 0.80 across all four time periods, and all four model R-squared values

for Zone C are closely clustered around 0.90. Zone D was a notable exception as it exhibits

the lowest R-squared values of any zone across all four time periods. In addition to the fact

that Zone D also exhibited some unusual parameter values when compared to general trends

in other zones, the presence of low R-squared values indicates that our seasonal model does

not capture the dynamics of the SMA load and prices in Zone D as well as it does in the

other ten NYISO zones.

4.6.3 Weekly model results

Tables 19–22 show the weekly model parameter values across all zones and time periods. The

coefficients β1, β2, and β3 measure the cyclical, time-dependent components of the weekly

model. Across all forty-four weekly models, β1 values are positive and clustered around 0.45.
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In all models except for Zone A during the mornings, β2 is positive. In addition, the values

for β2 are clustered tightly around 0.10 in the downstate zones in all time periods but exhibit

far more variability in the upstate zones. Together, these coefficient values provide evidence

of the presence of medium-term seasonal trends in the WMA data.

Table 19: Weekly model parameters across zones. Time period: Morning

Zone A Zone B Zone C Zone D Zone E Zone F Zone G Zone H Zone I Zone J Zone K
(West) (Genesee) (Central) (North) (Moh.Valley) (Capital) (Hud.Valley) (Millwood) (Dunwoodie) (NYC) (L.Island)

β1 0.029∗ 0.036 ∗ 0.035∗ 0.024∗ 0.059∗ 0.049∗ 0.038∗ 0.047∗ 0.057∗ 0.059∗ 0.073∗
(0.0007) (0.0008) (0.0008) (0.0011) (0.0016) (0.0009) (0.0011) (0.0016) (0.0014) (0.0013) (0.0014)

β2 -0.046∗ 0.064 ∗ 0.059∗ 0.029 ∗ 0.086∗ 0.079∗ 0.09∗ 0.118∗ 0.099∗ 0.097∗ 0.126∗
(0.0007) (0.0008) (0.0008) (0.0012) (0.0016) (0.0015) (0.0011) (0.0017) (0.0015) (0.0013) (0.0014)

β3 0.014∗ -0.0004 0.026∗ 0.057 ∗ 0.036∗ -0.015∗ -0.023∗ 0.012∗ -0.059∗ -0.076∗ -0.069∗
(0.0007) (0.0008) (0.0008) (0.0012) (0.0016) (0.0016) (0.0011) (0.0017) (0.0015) (0.0013) (0.0015)

β4 0.025∗ 0.043∗ 0.042∗ 0.019∗ 0.051∗ 0.035∗ 0.039∗ 0.046∗ 0.039∗ 0.032∗ 0.025∗
(0.0013) (0.0014) (0.0013) (0.0016) (0.0017) (0.0016) (0.0018) (0.0028) (0.0025) (0.0026) (0.0022)

β5 13.257∗ 2.058 0.479 5.391∗ 13.201∗ 3.317 3.072 32.14∗ -6.677∗ -0.115 12.507 ∗
(1.8318) (2.0912) (1.9309) (2.598) (2.4848) (2.1492) (2.5412) (3.9183) (3.4059) (2.6412) (3.7895)

β6 0.009∗ 0.019 ∗ 0.028 ∗ 0.026∗ 0.023∗ 0.033∗ 0.032∗ 0.036∗ 0.021∗ 0.016∗ 0.014 ∗
(0.0014) (0.0016) (0.0014) (0.0014) (0.0018) (0.0016) (0.0018) (0.0029) (0.0025) (0.0024) (0.0025)

N 4384 4384 4384 4384 4384 4384 4384 4384 4384 4384 4384

R2 0.637 0.711 0.751 0.557 0.781 0.742 0.724 0.664 0.663 0.738 0.751

Note: Standard errors in parentheses. An asterisk indicates significance at the 1% level.

Table 20: Weekly model parameters across zones. Time period: Midday

Zone A Zone B Zone C Zone D Zone E Zone F Zone G Zone H Zone I Zone J Zone K
(West) (Genesee) (Central) (North) (Moh.Valley) (Capital) (Hud.Valley) (Millwood) (Dunwoodie) (NYC) (L.Island)

β1 0.039∗ 0.047 ∗ 0.042 ∗ 0.026∗ 0.065∗ 0.053∗ 0.049 ∗ 0.057∗ 0.062∗ 0.057∗ 0.089∗
(0.0008) (0.0011) (0.0008) (0.0011) (0.0011) (0.0011) (0.0014) (0.0018) (0.0016) (0.0012) (0.0019)

β2 0.069∗ 0.089∗ 0.081∗ 0.039 ∗ 0.112∗ 0.113∗ 0.121∗ 0.157∗ 0.106∗ 0.087∗ 0.156∗
(0.0008) (0.0011) (0.0009) (0.0012) (0.0011) (0.0012) (0.0016) (0.0019) (0.0018) (0.0013) (0.0021)

β3 -0.018∗ -0.042∗ -0.007∗ 0.045∗ 0.007∗ -0.055∗ -0.082∗ -0.055∗ -0.112∗ -0.091∗ -0.138∗
(0.0008) (0.0011) (0.0008) (0.0011) (0.0011) (0.0011) (0.0014) (0.0018) (0.0016) (0.0012) (0.0019)

β4 0.018∗ 0.037∗ 0.031 ∗ 0.026 ∗ 0.032 ∗ 0.045 ∗ 0.053∗ 0.052∗ 0.051∗ 0.045∗ 0.031∗
(0.0014) (0.0021) (0.0016) (0.0019) (0.0021) (0.0019) (0.0024) (0.0029) (0.0027) (0.0021) (0.0031)

β5 11.361∗ 0.392 2.881 -7.674∗ 20.95∗ -2.391 9.093 9.506∗ 17.722∗ 15.251∗ 5.098
(2.4891) (3.1672) (2.7811) (3.4813) (3.3581) (3.5993) (4.0758) (4.7821) (4.3532) (3.5922) (4.881)

β6 0.041∗ 0.066 ∗ 0.058 ∗ 0.033 ∗ 0.051∗ 0.044∗ 0.057 0.067∗ 0.052∗ 0.033∗ 0.073 ∗
(0.0021) (0.0031) (0.0024) (0.0026) (0.0029) (0.0022) (0.0014) (0.0038) (0.0035) (0.0025) (0.0038)

N 4384 4384 4384 4384 4384 4384 4384 4384 4384 4384 4384

R2 0.763 0.804 0.814 0.544 0.831 0.811 0.808 0.778 0.766 0.808 0.812

Note: Standard errors in parentheses. An asterisk indicates significance at the 1% level.

Table 21: Weekly model parameters across zones. Time period: Evening

Zone A Zone B Zone C Zone D Zone E Zone F Zone G Zone H Zone I Zone J Zone K
(West) (Genesee) (Central) (North) (Moh.Valley) (Capital) (Hud.Valley) (Millwood) (Dunwoodie) (NYC) (L.Island)

β1 0.033∗ 0.042 ∗ 0.037 ∗ 0.023∗ 0.057∗ 0.047∗ 0.041∗ 0.043∗ 0.053∗ 0.054∗ 0.074∗
(0.0009) (0.0011) (0.0009) (0.0011) (0.0011) (0.0011) (0.0014) (0.0018) (0.0015) (0.0012) (0.0017)

β2 0.082∗ 0.103 ∗ 0.091∗ 0.037∗ 0.113∗ 0.114 ∗ 0.135∗ 0.168∗ 0.122∗ 0.093∗ 0.167 ∗
(0.0009) (0.0011) (0.0011) (0.0012) (0.0012) (0.0012) (0.0016) (0.0021) (0.0017) (0.0013) (0.0019)

β3 -0.009∗ -0.029∗ 0.002∗ 0.048∗ 0.022∗ -0.043∗ -0.072∗ -0.039∗ -0.087∗ -0.082∗ -0.113∗
(0.0009) (0.0011) (0.0009) (0.0011) (0.0011) (0.0011) (0.0014) (0.0017) (0.0015) (0.0012) (0.0017)

β4 0.036∗ 0.055∗ 0.047∗ 0.026∗ 0.053 ∗ 0.055∗ 0.046∗ 0.047∗ 0.043∗ 0.035∗ 0.03∗
(0.0016) (0.0021) (0.0017) (0.0018) (0.0021) (0.0019) (0.0024) (0.0029) (0.0025) (0.0019) (0.0028)

β5 5.881∗ -5.322∗ -2.797 -8.109∗ 10.291∗ -4.049 2.703 8.806∗ 4.628 8.921∗ -7.386 ∗
(2.2161) (2.7151) (2.3611) (2.6252) (2.7653) (2.9421) (3.5513) (4.2495) (3.7462) (3.0651) (3.3883)

β6 0.024∗ 0.041∗ 0.042∗ 0.048∗ 0.032∗ 0.033∗ 0.052∗ 0.065∗ 0.052∗ 0.037∗ 0.053∗
(0.0022) (0.0027) (0.0022) (0.0022) (0.0026) (0.0022) (0.0031) (0.0037) (0.0033) (0.0024) (0.0035)

N 4384 4384 4384 4384 4384 4384 4384 4384 4384 4384 4384

R2 0.766 0.798 0.806 0.595 0.818 0.813 0.808 0.781 0.771 0.804 0.822

Note: Standard errors in parentheses. An asterisk indicates significance at the 1% level.

The values of β3 show far more variation across zones and time periods; they are positive

and negative, large and small with no concrete systemic patterns. Across all time periods,

however, the β3 values for Zones I, J, and K are all negative and clustered around -0.10

suggesting that there are some longer term seasonal trends prevalent in the WMA load in

these three downstate zones and that these three zones share some similar weekly dynamics.
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Table 22: Weekly model parameters across zones. Time period: Night

Zone A Zone B Zone C Zone D Zone E Zone F Zone G Zone H Zone I Zone J Zone K
(West) (Genesee) (Central) (North) (Moh.Valley) (Capital) (Hud.Valley) (Millwood) (Dunwoodie) (NYC) (L.Island)

β1 0.029∗ 0.039∗ 0.035∗ 0.022∗ 0.063∗ 0.056∗ 0.042∗ 0.051∗ 0.064∗ 0.054∗ 0.077∗
(0.0007) (0.0008) (0.0008) (0.0012) (0.0012) (0.0011) (0.0011) (0.0018) (0.0016) (0.0012) (0.0015)

β2 0.052∗ 0.072 ∗ 0.067∗ 0.031∗ 0.101∗ 0.093 ∗ 0.104∗ 0.138 ∗ 0.117 ∗ 0.096∗ 0.137∗
(0.0007) (0.0009) (0.0008) (0.0012) (0.0012) (0.0011) (0.0012) (0.0019) (0.0017) (0.0013) (0.0016)

β3 0.012∗ -0.0009 0.027 ∗ 0.057∗ 0.042∗ -0.021∗ -0.031∗ 0.004∗ -0.071∗ -0.082∗ -0.077∗
(0.0007) (0.0008) (0.0008) (0.0012) (0.0012) (0.0011) (0.0011) (0.0018) (0.0016) (0.0012) (0.0015)

β4 0.042∗ 0.051∗ 0.045∗ 0.026 ∗ 0.062 ∗ 0.041∗ 0.047∗ 0.056∗ 0.055∗ 0.039∗ 0.038∗
(0.0014) (0.0016) (0.0016) (0.0019) (0.0022) (0.0018) (0.0021) (0.0032) (0.0029) (0.0021) (0.0026)

β5 4.114∗ -2.281 -2.306 -4.394 16.534∗ 9.104∗ 6.504 53.575 ∗ -2.828 8.495 ∗ 12.285 ∗
(1.8651) (2.2179) (2.3971) (3.1452) (3.3975) (2.7494) (3.2374) (5.0794) (4.4868) (3.3434) (5.0512)

β6 0.011∗ 0.025∗ 0.038∗ 0.034 ∗ 0.034∗ 0.043∗ 0.041 ∗ 0.041∗ 0.023∗ 0.028∗ 0.028 ∗
(0.0016) (0.0019) (0.0019) (0.0019) (0.0026) (0.0019) (0.0023) (0.0035) (0.0032) (0.0026) (0.0034)

N 4383 4383 4383 4383 4383 4383 4383 4383 4383 4383 4383

R2 0.731 0.778 0.791 0.558 0.803 0.779 0.774 0.721 0.717 0.788 0.787

Note: Standard errors in parentheses. An asterisk indicates significance at the 1% level.

Although it defies straightforward interpretation, β4 measures what is essentially a fre-

quency modulation term for the WMA load that uses a combination of the WMA prices

and a cyclical term. A larger β4 value indicates that the frequency of the WMA price signal

has a larger impact on the WMA load frequency. Across all zones and time periods, the

values for β4 are clustered closely around 0.35. With the exception of Zone G during the

midday time period, all β4 values are positive. Zones A and D generally exhibit the smallest

β4 values and Zones E, H, and I exhibit the largest. Although the time period trends are a

bit unstable, the β4 parameter during the night time tend to be the largest within a given

zone indicating that the WMA load and WMA price frequencies are somewhat more aligned

during the night time than other periods of the day.

The coefficient, β5, measures an interaction term between time and WMA prices. How-

ever, because the time variable is located in the denominator, the passage of time will have

a dampening effect on the relationship between WMA load and prices. This effect will be

captured whether β5 is positive or negative as a negative β5 value simply acts to reflect

the interaction term over the x-axis. The model results for β5 are quite mixed and unlike

most of the other model coefficients we have seen; a sizable portion of the β5 values is not

statistically significant at the 5% significance level. Zones C and G contain no statistically

significant coefficients and Zones B and F contain only one statistically significant value, each

indicating that WMA load in these zones exhibit little or no time-dependent dampening. In

contrast, this time-dampening effect appears to be most pronounced in Zones E and H since

both zones show large and statistically significant β5 values across all time periods.

As expected, the vast majority of values for β6 are positive. Across all zones, the β6

values tend to be smallest during the mornings and largest during midday or evenings;

seven out of the eleven zones exhibited their largest β6 values during the midday and three

exhibited them during the evenings. Therefore, it appears that, after controlling for cyclical

and linear time interactions, WMA prices are more sensitive to changes in WMA load during

the mornings and less sensitive to changes in WMA load during the midday and evening time

periods. This result makes intuitive sense since load increases quickly during the morning

and generators must somewhat rapidly ramp up their production as a consequence, often
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times causing large jumps in prices.

Across all time periods, Zones F, G, H, and K exhibit the highest β6 values and Zones

A and J exhibit the lowest. This result suggests that the WMA prices are generally less

sensitive to WMA load in Zones F, G, H and K and more sensitive to changes in WMA load

in Zones A and J. As a final observation, we note that the values of β6 are lower than the

corresponding coefficient in the seasonal model, β11. We believe that the explanation for this

is straightforward: due to the nature of spot prices for power, a single price spike caused by

a sudden increase in load will affect the weekly MA value of prices more than it will in a

90-day MA.

Lastly, we turn our attention to the R-squared values. We first note that within almost

every zone, R-squared values are lowest during the mornings, higher during the night, and

highest during the midday or evenings. Only Zone D deviates from this consistent pattern.

What is most apparent, however, is that across all zones and time periods the R-squared

value ranges are very tightly clustered between 0.75 and 0.80; only Zone D, which was the

worst performing zone, falls far outside of this range with R-squared values clustered tightly

around 0.55. This tight clustering of R-squared values for the weekly model stands in contrast

to the annual and seasonal models where R-squared values varied far more across zones and

time periods. This clustering also seems to suggest that the WMA load and prices, which

are data series with significantly less “time momentum” than the corresponding AMA or

SMA data series, have a similar relationship from zone to zone and that the weekly model

captures these dynamics in largely the same way. Although there are large differences in

β5 across zones and time periods, this parameter’s value and statistical significance changes

quite dramatically between zones and time periods. Comparing the R-squared values across

all three models, we see that the weekly model largely outperforms the annual model, which

shows R-squared values that range widely between zones and time periods and are generally

much lower. Despite a slightly higher variation in R-squared values, however, the seasonal

model generally exhibits higher R-squared values than the weekly model. The seasonal model

yielded many R-squared values over 0.80 and several even larger than 0.90.

4.7 Seasonal model residual analysis

In this section, we present the methodology and results of our analysis of the seasonal

model residuals. In the parlance of signal processing, these residuals constitute the “noise”

component of the seasonal MA model, that is, the left over component of the signal whose

behavior is not explained by the quasi-periodic waveform function. As opposed to the annual

and weekly models, we chose to analyze seasonal model residuals for two primary reasons.

First, of the three models that we developed, the seasonal model yielded the highest average

R-squared values. From this result, we surmise that the seasonal residuals will be the least

likely to contain omitted systemic information. Secondly, power futures with monthly and

seasonal durations appear to be among the most commonly traded hedging instruments.
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The seasonal model is therefore likely to be the most applicable model for making real-world

decisions about risk mitigation.

4.7.1 The Box–Jenkins methodology

We use the time series analysis methodology developed by Box and Jenkins (1970) to con-

struct regressions of the seasonal model residuals. The core idea of this methodology is

that the past values of a given time series variable may contain valuable information about

predicting its future values and comprises of three main steps. The first is to ensure that

the data in question are stationary, that is, exhibit a constant mean and variance over time.

This ensures that the data are deseasonalized and do not exhibit means that are time de-

pendent. The second step is to determine whether past values of the stationary data contain

important information about predicting future values and, if they do, choose the optimal

number of previous values, also called “lags,” of the variable. Finally, after choosing a model

specification, the model parameters are estimated and the model residuals are inspected to

see if they are white noise, that is, exhibit a zero mean and constant variance.

The Box–Jenkins methodology frequently gives rise to ARMA models, where autoregres-

sive and MA denote two distinct statistical processes. In time series data that follows an

autoregressive process, the current value of a given variable can be expressed as a function

of its previous value or sum of previous values. In other words, the current value of a given

variable is correlated with previous values from the same time series. When this is the case,

the current value of this quantity can be computed as a linear function of the previous values,

as follows:

Yt = β0 + β1Yt−1 + β2Yt−2 + ...+ βpYt−p + εt

where Yt is a time series variable, β1 ...βp are coefficients to be estimated, p is the final

lag length and εt is an error term. We will henceforth refer to the lagged variables in an

autoregressive process, Yt−s, as AR terms.

In contrast to an autoregressive process, an MA process is one where a given variable

can be described as the sum of its previous error terms,εt. It is formulated as follows:

Yt = µ+ εt + θ1εt−1 + θ2εt−2 + ...+ θqεt−q

where Yt is a time series variable, µ is the time invariant mean of Yt, θ1 ... θq are coefficients

to be estimated, q is the final lag length, and εt is an error term. We will henceforth refer

to the lagged variables in an MA process, εt−q, as MA terms.

In order to determine the type of model and optimal number of lagged AR and/or

MA terms, the Box–Jenkins methodology employs the use of autocorrelation and partial

autocorrelation functions (ACF and PACF, respectively). An ACF measures the correlation
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between a variable at time t and at all preceding lags, t-1, t-2, and so on. The PACF measures

the correlation between a variable at time t and all preceding lags with the caveat that it

controls for all intermediate lags. For instance, a PACF measures the correlation between Yt

and Yt−3 while controlling for Yt−1 and Yt−2. In this sense, the PACF measures the direct

partial relationship between Yt and any other lag value, Yt−p, in a way that the ACF does

not. In the Box–Jenkins methodology, a steadily decaying ACF and PACF with several sharp

peaks or rapid decay is indicative of an autoregressive process. A steadily decaying PACF and

ACF with several sharp peaks or rapid decay is indicative of a MA process. When choosing

lag lengths, it is customary to choose the lags that show statistically significant correlations

on the PACF or ACF correlograms depending on whether the process is autoregressive or

an MA.

4.7.2 Model selection

We first ran the Dickey–Fuller tests on all forty-four sets of seasonal model residuals to test

for stationarity. For all sets of residuals, the Dickey–Fuller test statistic strongly rejected

the null hypothesis of a unit root and therefore confirmed that the residuals are stationary

across all zones and time periods. In addition, the seasonal model is a waveform function that

already captures the seasonality of the SMA load and prices. We have therefore effectively

already taken into account seasonality in our data.

To choose the appropriate model ARMA, we generated the ACF and PACF functions

for all forty-four sets of seasonal model residuals. In all sets of residuals, the ACFs showed

identical patterns; linearly decaying correlation of lagged variables as the lag length increased.

Across all sets of residuals, the PACF functions exhibited extremely similar general patterns:

large, statistically significant spikes during the first few lags and a quickly decaying dampened

sinusoid of lag values thereafter. Taken together, the ACF and PACF correlograms of the

seasonal model residuals indicate that they follow an autoregressive process.

Figures 15–18 show two sample ACF functions and two sample PACF functions, that is,

those of seasonal model residuals of Zones G and J during the morning time period.

Figure 15: ACF of Zone G Figure 16: ACF of Zone J
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Figure 17: PACF of Zone G Figure 18: PACF of Zone J

We see from Figures 15 to 18 that the ACF functions are identical but that the PACF

functions differ in the number of statistically significant lag terms. There also appears to

be a weekly component that is present, that is, the lag at seven, fourteen, and so on are

correlated with the current residual value. This is to be expected as the relationship between

load and prices on Monday mornings will correlate with past values of the relationship on

Monday mornings due to the behavioral patterns of power end-users.

For each zone across all time periods, we fit an AR regression using ordinary least squares

to each of the forty-four sets of seasonal model residuals by choosing all statistically significant

lags until reaching an insignificant lag. For example, based on the two PACF correlograms

above, we fit an AR(9) model to Zone J and an AR(4) model to Zone G during the morning

time periods. Although this is a simple model-selection process and excludes several statis-

tically significant lags, we shall see that the adjusted R-squared values following our simple

rule indicate a highly sufficient model fit. Because the residuals already have a mean that is

approximately equal to zero, we fit these regressions without a linear intercept.

4.7.3 Results

Tables 23–26 below show the results of the AR regressions that run on the seasonal model

residuals. The parameter values of these regressions largely match the dampened sinusoid

pattern seen in the PACF functions. Twenty-six of these AR regressions have two lags,

fifteen have four lags, and three have nine lags. We also see that the regressions for the

morning and midday time periods tend to have more lags than those for the evenings and

night time periods. It is not exactly clear why the lag lengths tend to be larger during the

morning and midday time periods. It could be because SMA load is less volatile during the

mornings and midday than it is during the evenings and nights. There would therefore be

predictive power in a longer time span of past SMA load values during the morning and

midday time periods than in the evenings and nights.
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Table 23: AR(2–9) parameters across zones. Time period: Morning

Zone A Zone B Zone C Zone D Zone E Zone F Zone G Zone H Zone I Zone J Zone K
(West) (Genesee) (Central) (North) (Moh.Valley) (Capital) (Hud.Valley) (Millwood) (Dunwoodie) (NYC) (L.Island)

β1 1.35∗ 1.51 ∗ 1.42 ∗ 1.13∗ 1.45∗ 1.52∗ 1.55 ∗1.57∗ 1.55∗ 1.62 ∗ 1.56∗
(0.015) (0.014) (0.015) (0.014) (0.013) (0.014) (0.014) (0.012) (0.014) (0.013) (0.012)

β2 -0.52 ∗ -0.61 ∗ -0.65∗ 0.002∗ -0.45∗ -0.69 ∗ -0.69∗ -0.58 ∗ -0.75∗ -0.71∗ -0.56∗
(0.025) (0.022) (0.022) (0.025) (0.013) (0.027) (0.027) (0.012) (0.027) (0.023) (0.012)

β3 0.29∗ 0.12 ∗ 0.42∗ -0.04∗ - 0.34∗ 0.26∗ - 0.37∗ 0.14∗ -
(0.025) (0.023) (0.022) (0.025) (0.027) (0.027) (0.027) (0.023)

β4 -0.12∗ -0.02∗ -0.19∗ -0.09∗ - -0.16∗ -0.13∗ - -0.18∗ -0.07∗ -
(0.014) (0.023) (0.015) (0.015) (0.014) (0.015) (0.015) (0.023)

β5 - -0.12∗ - - - - - - - -0.08∗ -
(0.023) (0.023)

β6 - 0.11∗ - - - - - - - 0.12∗ -
(0.023) (0.023)

β7 - 0.56 ∗ - - - - - - - - 0.64∗ -
(0.023) (0.023)

β8 - -0.92 ∗ - - - - - - - -1.07 ∗ -
(0.022) (0.022)

β9 - 0.35∗ - - - - - - - 0.43∗ -
(0.014) (0.013)

N 4380 4375 4380 4380 4382 4380 4380 4382 4380 4375 4382

R2 0.995 0.996 0.995 0.999 0.998 0.997 0.997 0.998 0.997 0.998 0.997

Note: Standard errors in parentheses. An asterisk indicates significance at the 1% level.

Table 24: AR(2–9) parameters across zones. Time period: Midday

Zone A Zone B Zone C Zone D Zone E Zone F Zone G Zone H Zone I Zone J Zone K
(West) (Genesee) (Central) (North) (Moh.Valley) (Capital) (Hud.Valley) (Millwood) (Dunwoodie) (NYC) (L.Island)

β1 1.279∗ 1.49 ∗ 1.46∗ 1.32∗ 1.52∗ 1.59∗ 1.59∗ 1.54∗ 1.54 ∗ 1.56∗ 1.53∗
(0.014) (0.015) (0.014) (0.014) (0.012) (0.012) (0.012) (0.015) (0.012) (0.014) (0.015)

β2 -0.28 ∗ -0.62 ∗ -0.62 ∗ -0.32∗ -0.52 ∗ -0.59 ∗ -0.59 ∗ -0.51 ∗ -0.54 ∗ -0.66∗ -0.52 ∗
(0.014) (0.027) (0.026) (0.014) (0.013) (0.012) (0.012) (0.027) (0.013) (0.024) (0.027)

β3 - 0.22 ∗ 0.32∗ - - - - 0.28∗ - 0.17∗ 0.06∗
(0.026) (0.026) (0.027) (0.025) (0.027)

β4 - -0.09∗ -0.16∗ - - - - -0.06∗ - -0.11∗ -0.08∗
(0.015) (0.015) (0.015) (0.025) (0.015)

β5 - - - - - - - - - -0.09∗ -
(0.025)

β6 - - - - - - - - - 0.12∗ -
(0.025)

β7 - - - - - - - - - -0.47∗ -
(0.025)

β8 - - - - - - - - -0.81∗ -
(0.024)

β9 - - - - - - - - - -0.31 ∗ -
(0.014)

N 4382 4380 4382 4380 4382 4382 4382 4380 4382 4380 4380

R2 0.994 0.997 0.999 0.996 0.998 0.998 0.998 0.998 0.997 0.997 0.998

Note: Standard errors in parentheses. An asterisk indicates significance at the 1% level.

Table 25: AR(2–4) parameters across zones. Time period: Evening

Zone A Zone B Zone C Zone D Zone E Zone F Zone G Zone H Zone I Zone J Zone K
(West) (Genesee) (Central) (North) (Moh.Valley) (Capital) (Hud.Valley) (Millwood) (Dunwoodie) (NYC) (L.Island)

β1 1.42∗ 1.52 ∗ 1.48∗ 1.31∗ 1.46∗ 1.61∗ 1.61∗ 1.62∗ 1.61∗ 1.63∗ 1.62∗
(0.014) (0.013) (0.013) (0.014) (0.015) (0.012) (0.011) (0.011) (0.012) (0.015) (0.011)

β2 -0.42 ∗ -0.52 ∗ -0.49 ∗ -0.30 ∗ -0.42 ∗ -0.61∗ -0.61∗ -0.62 ∗ -0.61∗ -0.83∗ -0.62∗
(0.013) (0.012) (0.013) (0.014) (0.026) (0.012) (0.011) (0.012) (0.012) (0.028) (0.012)

β3 - - - - 0.07∗ - - - - 0.32∗ -
(0.026) (0.028)

β4 - - - - -0.11∗ - - - - -0.12∗ -
(0.015) (0.014)

N 4382 4382 4382 4382 4382 4380 4382 4382 4382 4382 4382

R2 0.997 0.997 0.999 0.997 0.998 0.998 0.998 0.998 0.998 0.997 0.998

Note: Standard errors in parentheses. An asterisk indicates significance at the 1% level.

The values of the first four coefficients in the AR regressions are remarkably similar across

all zones and time periods. We believe that this high degree of similarity in AR regression

results suggests that parameters of the seasonal waveform function have captured most of

the variation in behavior between zones. In the forty-four AR regressions, all β1 values are

positive and almost universally clustered around 1.50. Similarly, all but one of the values for

β2 are negative and almost universally clustered around -0.50. All but one of the values for
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Table 26: AR(2–4) parameters across zones. Time period: Night

Zone A Zone B Zone C Zone D Zone E Zone F Zone G Zone H Zone I Zone J Zone K
(West) (Genesee) (Central) (North) (Moh.Valley) (Capital) (Hud.Valley) (Millwood) (Dunwoodie) (NYC) (L.Island)

β1 1.59∗ 1.60 ∗ 1.61∗ 1.32∗ 1.66∗ 1.71∗ 1.71∗ 1.69∗ 1.84∗ 1.71 1.76∗
(0.012) (0.012) (0.012) (0.014) (0.015) (0.011) (0.011) (0.011) (0.015) (0.015) (0.011)

β2 -0.60 ∗ -0.60 ∗ -0.61 ∗ -0.32∗ -0.71∗ -0.71oneS -0.71∗ -0.69 ∗ -1.01∗ -0.93∗ -0.77∗
(0.012) (0.012) (0.012) (0.014) (0.029) (0.011) (0.011) (0.011) (0.031) (0.029) (0.011)

β3 - - - - 0.16∗ - - - 0.21∗ 0.33∗ -
(0.029) (0.031) (0.029)

β4 - - - - -0.11∗ - - - -0.05∗ -0.12∗ -
(0.015) (0.015) (0.015)

N 4381 4381 4381 4381 4389 4381 4381 4381 4379 4379 4381

R2 0.998 0.998 0.998 0.999 0.999 0.999 0.998 0.999 0.999 0.998 0.999

Note: Standard errors in parentheses. An asterisk indicates significance at the 1% level.

β3 are positive and clustered loosely around 0.30 and all β4 values are negative and clustered

around -0.10. The AR regression for Zone D during the morning time period is the exception

to the otherwise universal trends for β2 and β3 as it exhibits positive and negative values for

β2 and β3, respectively, and neither are statistically significant at the 10% level. After β4,

the steady alternating pattern between positive and negative coefficients appears to break

down. In the AR(9) regressions for Zones B and J during the morning and Zone J during

the afternoon, the coefficients for lags five through nine seem to switch randomly between

positive and negative.

Finally, we note that in all regressions presented here, adjusted R-squared values are

extraordinarily high: every regression exhibits values over 0.99. Although these results may

seem “too good to be true” at first glance, we keep in mind several important details. First,

we initially sorted the raw NYISO load and price into distinct time periods and carried out

several data-smoothening transformations that included removing the annual MA trend from

the data and a 90-day MA of the resulting deseasonalized data. Second, these transformed

seasonal data were then fit to a quasi-periodic waveform function that already yielded high

adjusted R-squared values in the majority of zones and time periods, generally clustered

around 0.80 but some exceeding 0.90. In other words, the seasonal waveform function has

already extracted a good deal of mathematical information from the data series and it comes

as little surprise that the resulting residuals are expressed well as a purely time-dependent

function of their past values.

In the following section, we validate our modelling approach and test its true usefulness

in an applied setting by performing a series of out-of-sample forecasts. The results of these

forecasts provide evidence that the high adjusted R-squared values from the AR regressions

presented here are indicative of a truly good model fit.

4.8 Seasonal Model Out-of-Sample Forecasting

We next test the predictive power of the combined seasonal model and corresponding AR

regressions by performing a series of out-of-sample forecasts. We use hourly NYISO real-time

load and prices from 2019 and 2020 as our forecasting test data. Before running the forecasts,

these raw data are sorted and filtered in exactly the same manner as the raw data from 2006

to 2018 as discussed in Section 4. We then calculated the predicted values of the test data
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using the model parameters that we estimated using 2006 to 2018 NYISO data as presented

in Tables 14–18. Finally, we use the model parameters estimated by the AR regressions in

Section 4 to create predicted model residuals and subtract these from the observed seasonal

model residuals. Note that for each out-of-sample forecast, we use the seasonal model and

AR-regression parameters specific to each zone and time period.

To measure the accuracy of the seasonal model’s in-sample fit and out-of-sample forecasts

and compare forecast accuracy across all zones and time periods, we calculate the mean

absolute error (MAE) for each forecast. The MAE is defined as

MAE =

∑n
i=1 |ỹi − yi|

n

where ỹi is the predicted value of the variable given from the model and yi is the observed

value of the variable we wish to predict, and n is the number of observations in the given

data sample. From this equation, we see that as the distance between the predicted and

observed values of the variable increases, the MAE also increases. Consequently, a higher

MAE value indicates a poor out-of-sample forecast whereas a lower MAE value indicates a

good out-of-sample forecast. In addition, because the MAE uses the absolute value of these

distances, it penalizes over- and under-forecasted values identically. In the context of this

analysis, a larger MAE value of the out-of-sample error terms indicates a weaker ability of a

seasonal model to forecast the relationship between seasonal load and prices.

The out-of-sample MAE values measure how well the seasonal model predicts the rela-

tionship between the seasonal load and prices in a given zone and time period. Figures 19

and 20 depict the in-sample and out-of-sample forecast error terms, εi = ỹi – yi, for evening

time period in Zone A and Zone J, respectively. The in-sample error terms are colored in

blue and the out-of-sample forecast error terms are colored in red.

Figure 19: Zone A evenings Figure 20: Zone J evenings

In both figures, we see that the average error value for the entire timespan of the data

is approximately zero. With the exception of a few very large error terms, the volatility
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remains fairly constant throughout the time span as well, including during the out-of-sample

period. In addition, we can clearly see the impact of the Covid-19 global pandemic during

the spring of 2020, where the MAE values shrink to almost zero. We suspect that this is

because load patterns became more predictable as people were forced to stay home.14

4.8.1 Forecasting results

Table 27 shows the MAE values for all in-sample and out-of-sample model residuals across

all NYISO market zones and time periods. These MAE values are presented as decimal

representations of percentages.

Table 27: Mean absolute error of in-sample model residuals and out-of-sample forecast residuals in
NYISO market zones

Zone in-sample out-of- sample

Morning Midday Evening Night Morning Midday Evening Night

Zone A 0.021 0.065 0.060 0.042 0.024 0.044 0.037 0.030
Zone B 0.025 0.043 0.046 0.036 0.014 0.021 0.025 0.024
Zone C 0.036 0.048 0.048 0.040 0.013 0.019 0.022 0.022
Zone D 0.024 0.074 0.063 0.053 0.018 0.078 0.069 0.078
Zone E 0.035 0.054 0.044 0.044 0.014 0.019 0.018 0.022
Zone F 0.028 0.035 0.035 0.029 0.013 0.013 0.016 0.020
Zone G 0.026 0.041 0.037 0.034 0.014 0.017 0.018 0.025
Zone H 0.032 0.047 0.049 0.041 0.020 0.034 0.038 0.032
Zone I 0.016 0.046 0.048 0.031 0.011 0.021 0.027 0.021
Zone J 0.022 0.029 0.026 0.027 0.016 0.024 0.024 0.025
Zone K 0.025 0.067 0.067 0.014 0.015 0.046 0.058 0.029

Table 27 has several patterns that are worth noting. First, all MAE values for both the

in-sample model residuals and out-of-sample forecast residuals are less than 0.1%. Second,

across all zones and time periods, the out-of-sample MAE value tends to be lower than

the corresponding in-sample MAE value. This is despite the fact that we use static model

parameters estimated from the in-sample data to perform the out-of-sample forecasts. We

speculate that this is a result of the fact that we only forecast over two years of data in

contrast to the twelve years of data used for the in-sample. With a forecast window that

is short relative to the in-sample training period, there are theoretically fewer opportunities

for large, unexpected market outcomes that yield large MAE values such as those seen in

Figures 19 and 20 during 2016. We note, however, that our model yields these low MAE

values despite significantly lower than expected load levels in the NYISO during the spring

and summer of 2020 due to the COVID-19 pandemic (NYISO, 2020). Taking these facts

into consideration, the low out-of-sample MAE values relative to the larger in-sample MAE

values provide evidence that our modelling approach is capable of accurately forecasting

14NYISO, ”COVID-19 and the Electric Grid: Load Shifts as New Yorkers Respond to Crisis.” April 14, 2020.
Available at: https://www.nyiso.com/-/covid-19-and-the-electric-grid-load-shifts-as-new-yorkers-respond-to-
crisis.
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the relationship between the seasonal load and prices in the NYISO, even when unexpected

events occur. Next, across all zones and time periods, the MAE values for both the in-sample

and out-sample model residuals tend to be smaller during the morning. For the in-sample

residuals, the MAE values tend to be higher during the midday and evening time periods

and then shrink during the night.

Finally, our modelling approach yields lower out-of-sample MAE values in some zones

than others. Zones B, C, E, F, G, and J exhibit out-of-forecast MAE values below 0.026%

across all time periods and Zone I exhibits out-of-forecast MAE values below 0.028% across

all time periods. In contrast, Zones A, D, H, and K exhibit MAE values that are considerably

higher than this 0.026% threshold. These elevated values are especially apparent during the

midday and evening time periods, both of which are part of the on-peak portion of the day.

Across all zones, Zone D exhibits the highest MAE values during the midday, evening, and

night time periods, each of which is approximately three times higher than the corresponding

MAE values in the NYISO market zones where the model fits best. Zone A exhibits the

highest forecast MAE value for the morning time period.

4.8.2 Out-of-sample forecast implications for risk management

The results of these out-of-sample forecasts have implications for LSEs or other market

participants who wish to mitigate spot market risk by purchasing futures contracts for power.

The signal processing analysis in this study is a tool that can yield an independent estimate

of power prices given a load forecast or vice versa.

In seven of the eleven NYISO zones, the MAE values for the out-of-sample forecasts have

all been approximately the same and below a threshold of 2.6E-4. Although this outcome is

statistical in nature, it is nevertheless evidence that our signal processing methodology is able

to filter and model the load and price data in these zones such that the relationship between

these two time series exhibits approximately the same risk profile in each zone. Higher

MAE values for the out-of-sample forecasts in Zones A, D, H, and K, however, indicate that

the relationship between average seasonal load and prices in these zones is more difficult to

predict than in the remaining zones. In other words, the relationship between these two

data series is less predictable using our signal processing approach and an accurate seasonal

load or price forecast in these zones is less likely to produce an accurate forecast for the

corresponding seasonal price or load level.

An LSE looking to mitigate spot market risk should choose more aggressive hedging

strategies in Zones A, D, H, and K than the other zones. Such a strategy could mean

hedging a larger share of the expected load in these zones even if futures market prices are

higher than the seasonal model estimates. For commodity market speculators, the results

of our analysis indicate that market participants who face spot market price risk might be

willing to pay a higher risk premium for futures contracts in these zones.

149



4.9 Conclusion

In this paper, we presented a signal processing approach to modeling the medium-term

relationship between load and prices in the NYISO wholesale electricity market. Although

signal processing is a modeling paradigm that has long been commonplace in engineering

and other applied sciences, it has more recently received increased attention in the field of

quantitative finance. It is primarily comprised of three modeling steps: a filtration step,

where raw data is transformed to allow for easier model fitting; determining a quasi-periodic

waveform function that describes the filtered signal’s frequency and amplitude; and modelling

any remaining noise component of the signal that is not well described by the waveform

function.

The highly seasonal cyclicality and fairly stable stochastic drift seen in electricity market

load and prices make them good candidate variables for signal processing. In addition, there

are real-world risk management applications of modeling the relationship between these

variables as many power market participants seek to hedge their price risks by purchasing

futures contracts. We chose to carry out our analysis on the NYISO because, in addition to

being publicly available and easily accessible online, NYISO market data is well maintained,

organized neatly into eleven market areas, and goes back to 2006.

We first transformed raw NYISO market data into moving averages in order to smoothen

the data, which constituted the filtering step. Next, we fit a series of quasi-periodic waveform

functions to these filtered data series in order to describe the cyclical component of the signal

they exhibit. Finally, after extracting the modelled waveforms from the filtered data, we

modelled the model residuals, which comprised the signal noise, by using the Box–Jenkins

time-series modeling methodology.

To validate the predictive capability of our modelling approach, we performed a series

of out-of-sample forecasts on test data from 2019 and 2020 using our seasonal model. The

results provided evidence that the approach developed in this paper was able to forecast the

relationship between load and prices in the NYISO with a high degree of accuracy. These

predictions could act as an independent assessment of whether futures contracts for power are

trading at a premium, discount, or fair market value and assist a NYISO market participant

in making more informed hedging decisions.

Several avenues of future research could build upon the findings presented in this paper. A

simple extension could be to roll the parameter estimation process of the waveform functions

so that model coefficients are updated with each new observation. Further research could

also seek to combine models with different MA time windows in the hope that a multiple-

window approach will improve forecasting. Ambitious researchers with access to historical

NYSIO power futures data and experience with programming algorithms could seek to back

test hedging strategies generated by our model and compare it to other risk management

models. Finally, signal processing could be used to model markets for other commodities

that exhibit strong seasonal fluctuations such as agricultural products like corn, wheat, and
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soybeans. Data on the demand for such products will likely be of lower frequency than power

market load data but the results would be no less interesting.
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