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Introduction

Nowadays, making decisions and optimization problems incorporate several criteria, ob-

jectives, and preferences, which usually lead to conflicting conditions (Rosenhead and

Mingers (2001); Marttunen et al. (2017)). To make reliable decisions, decision makers

have to consider all these aspects in their decision-making (Ishizaka and Nemery, 2013).

Conflicting objectives, criteria, and requirements, and also the inherent existence of a

trade-off between factors such as social, environmental, and economic criteria, efficiency

and fairness, costs and benefits, have made problems more complex in practice (Linkov

et al. (2005); Guo et al. (2013)).

At institutions of higher education, for example, a number of decision-making prob-

lems arise on resource allocation involving multiple criteria (Nebel, 2020). These include

situations where people must be grouped into collaborative research teams, lesson study

groups, discussion groups, team meetings, and assigning rooms and time slots to activ-

ities (Nelson et al. (2010); Kauffeld and Lehmann-Willenbrock (2012)). In particular,

allocating students to project teams and scheduling scientific meetings involve decisions

with direct consequences on people and must be done purposely (Sleenhof et al., 2021).

To build successful teamwork and meetings, decision makers should improve the quality

of the allocation by taking an acceptable, transparent and fair decision. Hence, the users’

preferences that are affected by the decisions have an increasing effect on the structure

and interaction of the allocation process. Although considering the users’ preferences

helps in doing a well-substantiated and fair allocation that gives equal opportunities to

the users and makes it acceptable for them, it may also increase the level of difficulty

of the problem. In fact, decision makers’ different perspectives on one side and users’

preferences on the other side, may lead to a trade-off, for which it is harder to find a

solution.

Different decision support tools and systematic approaches are developed to help

meeting organizers, schools and universities’ leaders to do objective allocation, evaluate

the trade-off between criteria, find the potential solutions, and determine the optimal

ones. The approaches are directed to determine an optimal solution for the problems

(Eisenführ et al. (2009); Yatsalo et al. (2015); Marttunen et al. (2017)). Typically, there

are two types of decision support tools for problems that contain multiple criteria and
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multiple conditions: multi-objective approaches and multi-attribute approaches (Hwang

and Yoon (1981); Jahan et al. (2016)).

By increasing peoples’ attention to cost minimization, output maximization, environ-

mental protection, production management, efficient scheduling, efficient and fair assign-

ment, etc., the use of multi-objective approaches or multi-objective optimization with

large scale, non-linear functions, and with more constraints has become more popular

(Cui et al., 2017). Addressing multi-objective problems is usually difficult due to the

complex nature of the problem and satisfying conflicting objectives simultaneously (Li-

Cheng et al. (2009); Cui et al. (2017)). Multi-objective approaches achieve the optimal

goals by considering the interactions between the given conditions. These approaches

have decision variables with either a continuous or an integer domain. When the domain

of the decision variables is integer, the approach is defined as integer multi-objective

optimization (Jahan et al., 2016).

Multi-attribute approaches are used when there is no one perfect solution to suit all

the criteria. Also, they do not necessarily lead to the same solution for every decision

maker. These approaches incorporate decision makers’ preferences information and have

the distinction of placing them in the decision-making process and helping them to find

a compromise solution (Ishizaka and Nemery, 2013). Multi-attribute approaches explore

the balance between the pros and cons of different alternatives and support decision

makers to determine a specific goal. Generally, they define the structure of the decision

problem, specify the performance of the alternatives with respect to the criteria, and

determine a decision (Adem Esmail and Geneletti, 2018).

Various fields, including mathematics, engineering, social studies, economics, agricul-

ture, energy saving, environmental protection, sustainable development, scheduling, and

many other problems in everyday life, are characterized by inherent multiple conflicting

objectives and criteria (Gunantara, 2018). Therefore, multi-objective and multi-attribute

approaches are used in a broad range of research works, with a growing number of real-

world applications either in public policy making or decisions for private corporations

(Ishizaka and Nemery, 2013).

This thesis focuses on multi-objective decision-making and multi-attribute decision-

making approaches, with particular attention to problems where a central decision maker

must consider data on multiple preferences expressed by different persons. Here, the

preferences may indicate wishes of persons who will be affected by the solution to the

problem, or opinions from experts whose different judgement adds information to the

decision maker.

The thesis is organized into four free-standing chapters, where the first and second

chapters aim at implementing a solution in practice to two real-world problems, and the

last two chapters aim at studying methods to solve optimization problems from a more
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methodological perspective. Hence, this thesis contributes to both the methodology and

practice of optimization problems with multiple preferences.

With my co-authors Julio C. Góez and Mario Guajardo, in the first chapter, we study

the conference scheduling problem by considering attendees’ preferences. In the second

chapter, we focus on an assignment problem where the preferences come from students,

and the goal is to find an efficient and fair assignment of them to projects. Derived

from that application, in the third chapter, we study different formulations of the trade-

off between efficiency and fairness in integer assignment problems by considering the

users’ preferences. Lastly, in the fourth chapter, I introduce a multi-methodology ap-

proach to determine the location of a road among different alternatives based on experts’

judgement. Integer programming, multi-objective programming, lexicographic goal pro-

gramming, eigenvalue method, and utility additive theory are employed throughout the

chapters. In the following, each chapter is described in more detail.

Chapter 1. Scheduling conferences using data on at-

tendees’ preferences

Co-authored with Julio C. Góez and Mario Guajardo

Scheduling is an important part of the organization of any scientific conference. Mo-

tivated by the actual context of three different conferences, this chapter introduces a

conference scheduling problem based on the attendees’ preferences. In this paper the

main question is how to schedule the parallel talks of a conference, trying to address

those preferences while also considering other requirements, such as limited time-slots,

speakers availability, and thematic cohesion. We use integer programming to deal with

this scheduling problem and arrive to the candidate schedule. The attendees’ prefer-

ences are collected through a survey in two different utility levels, which then are used to

build a collision cost function. The main contribution of the paper is the development of

a decomposition approach, which first schedules sessions to time blocks minimizing the

collision cost function at session level, and then it schedules talks within the sessions min-

imizing the collision cost function at talk level. This approach proves to find high quality

solutions in considerably shorter time than other two approaches that we study in the pa-

per. In addition, the contribution adds up to the literature on the practice of Operations

Research, as the approach has been used for decision support in the implementation of

the schedule of three real-world conferences.
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Chapter 2. Efficiency and fairness criteria in the as-

signment of students to projects

Co-authored with Julio C. Góez and Mario Guajardo

A wide range of personnel assignment problems has focused on optimization problems,

with the goal of maximizing a measure of efficiency. Lately, fairness has also gained

importance in this problem, as an efficient solution might end up with some groups with

more benefits than others. Motivated by an actual problem of allocation of students to

business projects in a master’s program in Norway, this chapter introduces an assignment

problem and discusses modeling and solution approaches to incorporate both efficiency

and fairness criteria. The problem takes as input the preferences of the students on the

projects they most want to conduct, in addition to other conditions such as requirements

from the companies that propose the projects and balance in the groups in terms of

gender, nationality, languages, etc. The main question then is how to assign students

to the projects, so that their preferences are addressed in a fair an efficient manner,

while the other conditions are also satisfied. We develop a bi-objective approach for this

problem, in which the main contribution is to capture trade-off between efficiency and

fairness using quantitative measures. In particular, to measure fairness we adopt a non-

linear function called Jain’s index, and we also study a lexicographic approach based on

a linear function. Furthermore, the solution approaches are discussed by using different

sequences on the optimization of efficiency and fairness. The proposed approaches have

been used in practice to support the decision of the administrative body in charge of the

program during three consecutive years. The results show that the implemented solutions

have been beneficial for students, companies, and the administrative staff.

Chapter 3. On efficiency and the Jain’s fairness index

in integer assignment problems

Co-authored with Julio C. Góez and Mario Guajardo

Derived from the previous chapter, Chapter 3 focuses on the methodological side of the

trade-off between efficiency and Jain’s fairness index in the integer unbalanced assignment

problem. In fact, besides the particular problem of assigning students to projects, this

type of assignment problem appears in many applications, and it has received large

attention from the academia. Finding solutions that perform well in both efficiency and

fairness simultaneously is, therefore, an important topic in assignment problems. In this

paper the main question is how to assign resources to the users and maximize the total
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benefits of the users and increase the fairness of the assignment, where the number of

resources and users are unequal and a same resource could not be share among multiple

users. We propose a bi-objective approach based on integer programming, by considering

efficiency and Jain’s fairness function to obtain the trade-off in the assignment. Since the

Jain’s fairness index is a non-concave function, which increases the difficulty of solving

the optimization problem, the paper’s main contribution is developing reformulations

to overcome this issue. We study two reformulations, where one is based on a convex

quadratic objective function and the other one is based on mixed integer second order

cone programming. The reformulations and the original formulation are tested using

data from a real-world case and also experimental data from different scenarios, and their

performance is analyzed in terms of solution quality and solving time. The results show

that although all formulations conduce to high quality solutions, the convex quadratic

reformulation outperforms the others in solving time.

Chapter 4. The eigenvalue-UTA approach for multi-

criteria decision-making problems: A case study on a

rural road selection in Iran

Rural road development has been identified by Picchio et al. (2018) as one of the critical

challenges for forest sustainability in forest management. Despite the environmental

consequences of rural road building, its consequences on development and the inhabitants’

welfare, and its considerable construction costs, only a few studies have considered all of

these criteria simultaneously in choosing the proper location for rural road building.

In this chapter, the focus is on a decision-making situation where all conflicting criteria

need to be considered in the rural road location selection process. In the existing literature

it is assumed that all the quantitative criteria can be evaluated and such evaluation is

given as an input to the problem. However, in practice, it might be costly and time-

consuming to evaluate these criteria. Therefore, it becomes important to address the

question on how to evaluate the alternatives in lack of some data. To this aim, this paper

contributes to developing a multi-methodology approach and evaluating the alternatives,

combining previous methods from the literature.

Several approaches have been developed for multi-attribute decision-making problems.

The approaches are divided into two main categories: those weighting the criteria and

ranking the alternatives, and those determining only the rank of the alternatives where

the weight of the criteria is computed beforehand. The multi-attribute approaches based

on utility theory consider both weighting and ranking when the alternatives’ evaluation

regarding the criteria are available.
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In this paper, the multi-methodology approach is based on the eigenvalue method

and utility additive theory is proposed to take into account decision makers’ preferences

and to evaluate the alternatives. The eigenvalue method evaluates the importance of

the alternatives respect to the criteria, and the UTA method determines the importance

of the criteria and the priorities of the alternatives. The approach is illustrated in a

rural road selection problem. To the best of my knowledge, no studies have considered

this multi-methodology approach in addressing multi-attribute decision-making problems,

especially where a part of the data is not available for the decision makers. In addition,

the paper contributes to investigating the effect of cost, ecological, risk and opportunity

aspects in the process of choosing the proper location for forest road building.
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Chapter 1

Scheduling conferences using data on attendees’

preferences∗

Nahid Rezaeiniaa, Julio César Góez a, Mario Guajardo a

aDepartment of Business and Management Science, NHH Norwegian School of Economics, 5045

Bergen, Norway

Abstract

Conferences organizers often face the challenge of scheduling a scientific program. This

problem usually involves many talks that must be scheduled in parallel, subject to time and

space limitations. This paper adopts an Attendee-Based-Perspective to the conference schedul-

ing problem, in which we collect data on attendees’ preferences and use these as a main driver

to schedule the talks. We test three optimization approaches for this problem, based on integer

programming formulations. The main approach divides the problem into two stages: the first

stage schedules predefined thematic sessions and the second stage schedules talks within these

sessions. We report results using real data instances of three conferences. The results show

that our main approach can produce solutions swiftly, accommodating the requirements of the

organizers while allowing attendees to attend most of their preferred talks without collisions.

Our work has been used in practice to generate the actual schedule of these three conferences.

Keywords Conference Scheduling, Integer Programming, Optimization in Practice

∗The current version of this paper is under first review in a scientific Journal.
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1 Introduction

A large number of scientific meetings, such as conferences and workshops, are held annually in

various fields. These meetings are important for the scientific progress, as they provide a venue

for discussion of new ideas among researchers and facilitate new collaborations. Conferences

usually require considerable budget expenses and effort. Particularly, when putting together

a scientific programme, conference organizers face significant scheduling challenges and engage

people working on the organization for several months ahead (Stidsen et al., 2018). Usually,

the organizers need to schedule a large number of talks, often run in parallel, while respecting

time and space limitations. Even in conferences held virtual, a recurrent format in the current

pandemic times, scheduling remains as an important task for conference organizers.

Typically, conference scheduling is done manually (Manda et al., 2019). While a basic setup

can perhaps be approached in this way, the consideration of several criteria may require the use

of optimization tools. A poor schedule can have, for example, undesirable consequences in the

satisfaction level of the attendees and presenters. As they usually incur high costs to take part

of the conference (time consumption, registration fees, travel expenses), a rewarding goal of the

scheduling is to provide attendees with the opportunity to attend all or most of their preferred

talks. In achieving this, the organizers need first to know the preferences of the attendees

and then to deploy a methodology to use these preferences appropriately in the generation of

the schedule. In this paper, we report on the real-world implementation of a preference-driven

approach to schedule conferences. Inspired in Vangerven et al. (2018), we implemented a survey

asking attendees to elicit the talks they would like to attend, and then generated a schedule

that attempts to minimize a collision cost function. This cost function is defined according

to the attendees’ preferences. Our approach is based on integer programming, and explores

different variants to arrive at a candidate schedule. The approach has been adopted in practice

to schedule three conferences so far.

The remainder of this paper is organized as follows. Section 2 reviews relevant literature.

Section 3 explains the conference scheduling problem. Section 4 presents optimization models

for this problem. Section 5 describes three application cases and reports results implemented

in practice. Section 6 concludes with some final remarks.

2 Literature review

The scientific literature has paid increasing attention to the conference scheduling problem.

A broad range of works have studied the problem, adopting a variety of approaches. In this
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section, we limit ourselves to review only papers that have used an Attendee-Based-Perspective

(ABP) approach, which is the most relevant to our work (for other approaches, we refer the

reader to works such as Nicholls (2007), Potthoff and Brams (2007), Edis and Edis (2013),

Stidsen et al. (2018), Manda et al. (2019), Castaño et al. (2019), and Bulhoes et al. (2022)).

In an early attempt, Eglese and Rand (1987) study the conference scheduling problem with

the ABP approach. They consider assigning sessions to time periods and rooms. They ask

attendees to list their four most preferred sessions and also one reserve session. A set of weights

is used to penalize scheduling alternatives that are not in the attendees’ preferences list. The

problem is addressed by an integer programming model, whose objective function is to minimize

the sum of the weights. The authors use a simulated annealing algorithm to solve the problem.

The approach is applied to schedule a conference with 15 different sessions, 4 time periods, and

7 rooms. In another problem, but of similar nature, Sampson and Weiss (1995) formulates an

integer programming model to maximize the attendees’ requests for sessions. Their problem

consists of two parts. One is to assign sessions to periods, and the other one is to assign

attendees to sections of the sessions. A heuristic procedure is developed to solve both parts

simultaneously. They tested the procedure in randomly generated data instances. Le Page

(1996) addresses the problem of assigning sessions to time-slots and rooms. In this problem,

the rooms have different capacities. Sessions with the same topics must be in the same rooms,

and the possibility of scheduling some consecutive sessions on the same day is considered. Each

attendee provides a preferences list with the number of talks that they wish to attend. The

preferences lists is used to build a conflict matrix that comprises the number of attendees who

wish to attend each pair of sessions. A semi-automated heuristic in four steps is proposed to

minimize the sum of the conflicts between the simultaneous sessions. The approach is applied

to schedule a meeting with 35 sessions, 5 rooms, 7 time-slots, and 1100 attendees. Thompson

(2002) proposes a heuristic algorithm to schedule sessions of a conference based on attendees’

preferences. In this problem, the rooms have different capacities and are subject to limited

availability. The author tests the proposed algorithm with randomly generated data and also

with real data of a conference which consists of 47 sessions, 8 time-slots, 8 rooms, and 175

attendees. Sampson (2004) formulates a mixed integer programming model that maximizes a

general attendees’ utility function and uses it to schedule a conference with 213 sessions, 10

blocks, and 1086 attendees. They ask attendees to rank their preferences for talks, and then

the resulting rankings are used to organize the sessions. A simulated annealing algorithm is

developed to solve the model. To eliminate the sessions’ hopping, they allow attendees to enroll

only in scheduled sessions with room capacity constraints.
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The references above considered the attendees’ preferences for scheduling the sessions (that

is, groups of talks) and not talks to specific time-slots within the sessions. In this respect,

Ibrahim et al. (2008) use the combinatorial design theory and present a method for organizing

three conferences. They assign talks to time-slots within some days and in three parallel

sessions. Talks that belong to the same field must not be scheduled simultaneously. Also, talks

that belong to the same pair of fields should not be scheduled in parallel more than once on

the same day. Zulkipli et al. (2013) formulate a goal programming model for assigning talks to

time-slots based on the attendees’ preferences. In their study, attendees rank their preferred

talks from 1 to 10. The resulting preferences list is used to generate weights associated to the

talks. Then, the schedule is generated so as to have balanced weights over sessions scheduled in

the same time-slots. The proposed model is applied to a case with 60 talks and 15 sessions. In

a continuation of this work, Rahim et al. (2017) address a conference scheduling problem with

attendees’ preferences by a Domain Transformation Approach. The goal is to maximize the

attendees’ satisfaction, which is followed by the minimization of conflicts between sessions and

time-slots. The approach attempts to avoid scheduling talks from the same author in parallel

and also to avoid scheduling talks that are in the attendees’ preferences list in parallel. They

test the approach in a dataset with 60 talks and 26 respondents. Quesnelle and Steffy (2015)

develop an integer programming model to assign talks to time-slots and rooms, based on a list

of preferences of the attendees for the different talks. They consider rooms and presenters’

availability, and also the possibility that some speakers should present more than one talk, and

the possibility to offer some talks more than one time. They test the model in a data instance

where the attendees’ preferences are generated randomly.

In the paper closest to ours, Vangerven et al. (2018) address the scheduling of sessions and talks

using a three-step approach. Each of these steps formulates an integer programming model.

First, they schedule talks based on the attendees’ preferences to maximize total attendance.

The objective function associated with the schedule of talks minimizes missed attendance. In

the second step, they reduce the number of session hopping or the overlap between the parallel

sessions to allow more attendees to stay in the same room during a session. In the third step,

they consider presenter availabilities in the scheduling. Their approach is applied to schedule

four conferences and a positive impact is reported in practice. While our problem is similar,

some features differ. First, we allow for preferences in two different utility levels, in contrast to

the single level in their problems. As we report later, this has implications in the data profile

of the preferences and in how they are used in the modeling and solution approach. Second,

our approach is not fully driven by the data on the preferences, but it also incorporates a
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human-assisted grouping of the talks into sessions. Thus, instead of allowing any combination

of talks within a same session as they do, our approach takes as input a partition of the talks

into sessions made beforehand. This was motivated from practice, as the organizers of the

conferences we worked with preferred to keep some thematic cohesion among talks of the same

session. For testing purposes, we also formulate two other approaches, where one preserves

the thematic cohesion and schedules talks into time-slots directly, and the other one schedules

talks into time-slots relaxing the predefined sessions. Also, our problem considers presenter

availabilities as side-constraints of the original problem, instead of postponing the satisfaction

of these to a third goal. Lastly, our contribution adds up to the practice literature on conference

scheduling, reporting the implementation of results in three real-world conferences.

3 The conference scheduling problem

As reviewed in the previous section, a variety of problem features may appear in different

applications of conference scheduling. We follow Vangerven et al. (2018) to define some essential

concepts. Typically, a conference format is comprised of several sessions. A session is a set of

talks taking place consecutively in the same room. The number of consecutive talks in each

session is defined as the length of a session. Consecutive sessions are separated by breaks. It

is common to have several parallel sessions, that is, sessions taking place at the same time.

The number of parallel sessions is usually limited by the number of available rooms. In the

timetable of each conference, there are some predefined blocks. Each block is a set of time-slots

with a specific length. In general, when putting together the scientific program, the organizers

face a problem involving the assignment of talks to sessions, scheduling the sessions to the

blocks, and scheduling talks of each session to specific time-slots within a block. When using

the Attendee-Based-Perspective (ABP), the organizers need to know the preferences of the

attendees with respect to the talks accepted for the conference. A list of preferences indicates

the degree of interest of a conference attendee in each of the talks. Then, the scheduling task

is performed attempting to maximize (or minimize) a measure of satisfaction (or cost) of the

final schedule with respect to those preferences, while satisfying other conditions such as room

and time limitations. We illustrate this with a simple example below.

Let us consider a conference with 16 talks that must be grouped into four sessions of four

talks each, and scheduled over the course of two blocks with four time-slots each. To collect

the preferences of the attendees, the organizers can run a survey where the talks are displayed

and the attendees are asked to express their interest in each of the talk. The interest can be
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expressed by a scale of utility levels, where the highest interest is reflected in a higher number

in the scale. In our example, let us focus on the preferences of only two attendees and a scale

of three utility levels, where 0 means the attendee is not interested to attend the talk (non-

preferred), 1 means the attendee is interested to attend the talk (medium-preferred), and 2

means the attendee is highly interested to attend the talk (high-preferred). Table 1 shows the

preferences of two attendees for each of the 16 talks.

Table 1: Example of attendees’ preferences list

Talk Attendee 1 Attendee 2 Talk Attendee 1 Attendee 2
A 2 2 I 0 0
B 0 2 J 2 0
C 0 2 K 0 2
D 2 2 L 2 0
E 0 2 M 0 2
F 2 2 N 1 0
G 1 2 O 0 0
H 2 0 P 2 2

Suppose that the talks have been grouped into sessions beforehand. The next problem is

assigning sessions to the blocks and talks to the time-slots within each block. Figure 1 shows

three possible schedules. In schedule 1, sessions 1 and 2 are scheduled in parallel, followed

by sessions 3 and 4, also scheduled in parallel. If an attendee wants to attend two talks that

are scheduled in parallel, we may assign a collision cost, since the attendee will not be able to

attend these two talks simultaneously. In this paper, we compute this cost by adding up the

multiplication of the attendee’s utility level across every pair of talks scheduled in parallel. For

example, for attendee 1 in Schedule 1, scheduling talks A and B in parallel contributes zero

cost (2 × 0, using the data of Table 1), while scheduling talks D and J in parallel contributes

with a cost of four (2 × 2). Likewise, talk F in parallel with L, and talk H in parallel with P

contribute with eight more cost units. The pairs of parallel talks in sessions 3 and 4 of Schedule

1 do not add more costs. Thus, the total collision cost for attendee 1 in Schedule 1 is equal

to 12. Another possible solution is Schedule 2, where the parallel sessions are 1 with 4, and 2

with 3. The total collision cost for attendee 1 in this schedule is 4, which improves considerably

over the previous solution. Attendee 1 misses two medium-preferred talks (utility level 1) in

Schedule 2, while in Schedule 1 the attendee misses three high-preferred talks (utility level 2).

A third alternative is Schedule 3, which slightly modifies Schedule 2 by changing the order of

the talks in session 2. The total collision costs for attendee 1 with this schedule is two, which

again improves over the previous solution.

Even if the sessions are already scheduled to blocks, one may try improving a given solution

by the specific scheduling of talks to time-slots within the block. An example is given in Figure
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Figure 1: Illustrating the impact of scheduling on the collision costs for attendee 1 with pre-
defined sessions

2, with two alternative schedules of talks for a same configuration of sessions and blocks. In

this example, the collision costs for attendee 1 in Schedule 4 is seven. Schedule 5 modifies the

schedule of talks to time-slots, while keeping the assignment of sessions to blocks, reducing the

collision cost to one (equivalent to missing a medium-preferred talk).

Figure 2: Illustrating the impact of scheduling on the collision costs for attendee 1 without
predefined sessions
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So far we have illustrated the problem only taking into account one attendee. The problem

naturally becomes more difficult with several attendees, which we illustrate with the example

in Figure 3. This example considers the preferences of both attendees displayed in Table 1.

Note that talks A, D, F and P are high-preferred talks for both attendees. Furthermore, each

attendee has some other preferences. With four sessions and four time-slots within a session,

it becomes impossible to schedule the talks so that both attendees would be able to attend all

of their preferred talks. In Schedule 6, Attendee 1 is allowed to attend all his/her preferred

talks, while Attendee 2 misses three high-preferred talks.

Figure 3: Illustrating the impact of scheduling on the collision costs for two attendees

In all the examples above, we have only focused on preferences and the basic structure of

the conference. If on top of that, we add other conditions from the organizers and speakers, the

problem becomes more difficult and practically impossible to approach manually. Motivated by

the involvement in the organization of some conferences, we have studied several optimization

modelling approaches based on the ABP perspective. These approaches are presented in the

following section.

4 Optimization models

In this section, three Integer Linear Programming (ILP) approaches are formulated for the

problem. In the first two, the talks are enforced to respect the predefined thematic sessions,

while in the third one this condition is relaxed.
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4.1 Enforced thematic cohesion

Scheduling a conference completely driven by the preferences of the attendees may lead to a

schedule with poor thematic cohesion of the different talks assigned to a same session. In fact,

although the preferences might naturally induce certain degree of cohesion (as each attendee

would often prefer talks that belong to a same research area), some attendees might have

interest in diverse topics. A fully preference-driven approach may well disregard such cohesion,

but in the applications that triggered our work, the organizers preferred to assure thematic

cohesion by grouping talks into sessions before we would make any attempt to minimize a

collisions cost function. A simple barrier was that it would become impractical to coin an

informative name for a session of talks grouped by a fully preference-driven approach without

a common theme. Although non-automated, grouping talks into sessions beforehand allowed

the organizers to secure a certain relationship among the talks and to overcome such a practical

barrier. This motivated our first two approaches, which take as input a partition of the talks

into sessions created beforehand by the scientific committee.

4.1.1 A single model with predefined sessions

Given a set of thematic sessions, we formulate a straightforward ILP model that assigns talks

to time-slots, securing that talks within a same predefined session are scheduled to the same

block. To this aim, we define the sets below.

• P: set of conference attendees.

• I: set of talks.

• E : set of predefined sessions (that is, subsets of talks grouped beforehand).

• K: set of time blocks.

• Sk: set of time-slots within a block k ∈ K.

• S: set of time-slots, where S = ∪k∈KSk.

We also define the parameters associated with the inputs and requirements made by the

organizers below.

• cij : total collision cost over all attendees between talks i, j ∈ I, where i ̸= j. We calculate
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this cost using the input provided by the attendees as follows:

cij =
∑
p∈P

ϕipϕjp ∀i, j ∈ I : i ̸= j (1)

Here ϕip is the utility attendee p stated it would obtain from attending to talk i. We

restrict ϕip to be in the set {0, . . . ,Φ}, where Φ is the highest ranking allowed for an

attendee to assign to a talk.

• αie: binary parameter equal to one if talk i ∈ I is assigned to session e ∈ E , and zero

otherwise.

• βij : binary parameter equal to one if talks i and j belong to the same session, and zero

otherwise (it follows that βij =
∑
e∈E

αie · αje ∀i, j ∈ I : i ̸= j).

• n: number of available rooms at the conference venue.

In the model we consider the two sets of binary variables defined below.

xis =

1 if talk i is scheduled in time-slot s

0 otherwise
(2)

yij =

1 if talks i and j are scheduled in the same time-slot

0 otherwise
(3)

With the definitions above, we formulate the integer linear model below.
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min
∑
i∈I

∑
j∈I
i ̸=j

cijyij (4)

s.t.∑
s∈S

xis = 1 ∀i ∈ I (5)

∑
i∈I

xis ≤ n ∀s ∈ S (6)

xis ≤
∑
t∈Sk
t̸=s

xjt ∀i, j ∈ I; s ∈ Sk; k ∈ K : βij = 1 (7)

xis + xjs ≤ 1 + yij ∀i, j ∈ I; s ∈ S : βij ̸= 1 (8)

xis, yij ∈ {0, 1} ∀i, j ∈ I; s ∈ S (9)

The objective function (4) minimizes the collision costs between talks scheduled in the same

time-slot. Constraints (5) ensure that each talk is assigned to one time-slot. Constraints (6)

limit the number of talks in each time-slot by the number of available rooms. Constraints

(7) impose that talks which belong to the same session are assigned to time-slots within the

same block. Constraints (8) are logical relationships to identify the talks scheduled in the same

time-slot. Constraints (9) define the domain of the variables.

4.1.2 A two-model decomposition approach with predefined sessions

As it will be reported in the results section, the previous formulation did not produce solutions

so quickly. To speed up the process, an alternative approach was developed that preserves the

predefined sessions but decomposes the problem in two steps. In the first step, the sessions

are assigned to blocks, while minimizing a collisions cost function at sessions level. In the

second step, the talks are scheduled to the specific time-slots within the corresponding blocks,

while minimizing a collisions cost function at talks level. In each step, an integer programming

model is formulated and solved. In these formulations, we maintain the definition of sets

and parameters presented previously, and also add a few more definitions. First, we define

parameter me as the length (number of time-slots) of session e. We also define a new parameter

ζef to calculate the total collision costs between session e and f as follows:
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ζe,f =
∑
i∈I

∑
j∈I
i ̸=j

cijαieαjf ∀e, f ∈ E : e ̸= f (10)

Note that in the expression (10), the collision cost is calculated at session level, as if atten-

dees would not hop from one session to another.

Step 1: Assigning sessions to blocks

This step assigns sessions to blocks while minimizing the total collisions cost among sessions

scheduled to the same block. For the optimization model in this step we define two sets of

variables as follows:

wek =

1 if session e is assigned to block k

0 otherwise
(11)

zef =

1 if sessions e and f are assigned to the same block

0 otherwise
(12)

The ILP model for assigning sessions to blocks is formulated in (13) – (17).

min
∑
e∈E

∑
f∈E
f ̸=e

ζefzef (13)

s.t.∑
k∈K

wek = 1 ∀e ∈ E (14)

∑
e∈E

wek ≤ n ∀k ∈ K (15)

wek + wfk ≤ 1 + zef ∀k ∈ K; e, f ∈ E : e ̸= f (16)

wek, zef ∈ {0, 1} ∀e, f ∈ E ; k ∈ K (17)

The objective function (13) minimizes the total collision costs among sessions scheduled to

the same block. Constraints (14) ensure that each session is assigned to one block. Constraints

(15) ensure that the number of sessions assigned to each block does not exceed the number

of available rooms. Constraints (16) are logical relationships to identify when two given ses-
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sions are scheduled in the same block. Constraints (17) state the binary domain of the variables.

Step 2: Scheduling talks to time-slots

In the previous step, the model assigns sessions to blocks and minimizes the number of

conflicts using a collision cost function computed at sessions level. In practice, however, the

attendees may hop from one session to another, to see talks that are not part of the same session

but are scheduled at different time-slots. This is accounted for in the second step, where the

optimal solution of the first step w∗
ek is used as an input that fixes the sessions scheduled to

blocks. Given that, we attempt to minimize the conflicts between the parallel talks within each

block, using a collision cost function computed at talks level. For this purpose, we formulate

another ILP model that keeps the notation previously defined, and also incorporate some new

definitions. In (18) a binary parameter γij is defined to identify two different talks that belong

to different sessions in the same block, as follows:

γij =
∑
k∈K

∑
e∈E

∑
f∈E
f ̸=e

w∗
ekw

∗
fkαieαjf ∀i, j ∈ I : i ̸= j (18)

Two sets of decision variables are considered in the model. First, in (19) we define a set of

binary variables to schedule the talks in the time-slots of their corresponding blocks.

uis =

1 if talk i is scheduled in time-slot s of its block

0 otherwise.
(19)

Second, in (20) we define a set of binary variables to identify which pairs of talks are scheduled

in the same time-slots.

vij =

1 if talks i and j are scheduled in the same time-slot of the same block

0 otherwise.
(20)
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The ILP is formulated as follows.

min
∑
i∈I

∑
j∈I
γij=1

cijvij (21)

s.t.∑
s∈S

uis = 1 ∀i ∈ I (22)

∑
i∈I

αie=1

uis = 1 ∀e ∈ E , s ∈ S : s ≤ me (23)

uis + ujs ≤ 1 + vij ∀i, j ∈ I; s ∈ S : γij = 1 (24)

uis, vij ∈ {0, 1} ∀i, j ∈ I; s ∈ S (25)

The objective function (21) minimizes the collision costs between talks scheduled in the same

time-slot. Constraints (22) ensure that each talk is assigned to one time-slot. Constraints (23)

ensure that each time-slot is used. Constraints (24) are logical relationships to identify the

talks scheduled in the same time slot of a block. Constraints (25) determine the nature of the

variables as binary.

4.2 Relaxed thematic cohesion

In this section, we disregard the predetermined sessions and allow the talks to be scheduled

directly to time-slots, driven only by the attendees’ preferences. Although this approach does

not necessarily meet the thematic cohesion wished by the organizers, it provides an idealistic

basis for comparison of the solutions obtained by the two previous approaches.

The main decision in this third approach is whether a talk is assigned to a time-slot or not.

To model this decision, we use the set of binary variables xis and yij as defined in (2) and (3)

previously. We then proceed to solve the following ILP model:
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min
∑
i∈I

∑
j∈I
i ̸=j

cijyij (26)

s.t.∑
s∈S

xis = 1 ∀i ∈ I (27)

∑
i∈I

xis = n ∀s ∈ S (28)

xis + xjs ≤ 1 + yij ∀i, j ∈ I; s ∈ S (29)

xis, yij ∈ {0, 1} ∀i, j ∈ I; s ∈ S (30)

The objective function (26) minimizes the collision costs between talks scheduled in the

same time-slot. Constraints (27) impose each talk to be exactly in one time-slot. Constraints

(28) limit the number of talks in the time-slots by the number of available rooms. Constraints

(29) are logical relationships to identify if two given talks are assigned to the same time-slot.

Constraints (30) state the binary nature of the variables.

4.3 Special requirements

The conference organizers may have some additional requirements such as unavailability of the

authors at some hours, preventing scheduling talks with the same speaker in parallel sessions,

assigning specific thematic sessions to a block or scheduling specific talks in a time-slot. Some

different forms of these requirements are considered, which means the value of some of the

variables becomes fixed.

For this purpose, some new definitions are introduced. The set F contains tuples (i, s) such

that talk i must be scheduled in time-slot s. The set B contains tuples (e, k) such that session

e must be assigned to block k. The set T contains tuples (e, k) such that session e cannot be

assigned to block k. The set A contains tuples (e, f) such that session e cannot be scheduled

in parallel with session f .

Then, the value of the corresponding variables is fixed by the following constraints:
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uis = 1 ∀(i, s) ∈ F (31)

wek = 1 ∀(e, k) ∈ B (32)

wek = 0 ∀(e, k) ∈ T (33)

zef = 0 ∀(e, f) ∈ A (34)

Constraints (31) impose the assignment of a specific talk to a specific time-slot. Constraints

(32) impose the assignment of a specific session to a specific block. Constraints (33) forbid the

assignment of a specific session to a specific block. Constraints (34) forbid a specific pair of

sessions to be scheduled in parallel, thus preventing one author from having talks in parallel

sessions. Note, as an alternative to incorporating the constraints (31) – (34), the definition

of the variables could be expressed accordingly, but we prefer to formulate these constraints

explicitly for the ease of explanation.

5 Numerical results and implementation

The models formulated in Section 4 have been used to support the organizers of three confer-

ences: LOGMS (2017); INFORMS TSL Workshop (2018); and ICSP (2019). In this section,

we first provide an overview of the data gathered for these conferences and then we summarize

our numerical results.

5.1 Overview

The problem features and dimension vary from one conference to another. Table 2 provides

an overview of the number of attendees that participated in the conference and the number

of talks, sessions, time-slots within a session, available rooms, and blocks for each of the three

conferences under study.

Table 2: Overview of condition of the conferences

LOGMS TSL ICSP

Number of attendees 41 30 115
Number of talks 92 42 180

Number of sessions 23 14 60
Number of time-slots 4 3 3

Number of blocks 6 7 10
Number of available rooms 4 2 6
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To collect the attendees’ preferences, an online survey is sent out to all registered attendees,

with some weeks of anticipation on the dates of the conferences. In the survey, attendees are

given the possibility to rank their preferences on every talk, with two different utility degrees.

To illustrate, Table 3 shows a partial overview of the results of the attendees’ preferences survey

for the LOGMS, where a rank equal to 2 means the attendee has a high preference to attend

the talk and a rank equal to 1 means the attendee has a medium preference to attend the talk.

An attendee p who ranked a talk i in the preferences list will have a utility ϕip equal to the

rank given to that talk. If a talk i was not ranked by the attendee p, the utility ϕip is set equal

to 0, and thus implies no collision cost.

Table 3: Partial overview of attendees’ preferences in the LOGMS conference

Attendees

Talks p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

i1 1 2 1

i2 1 2 1 1 2 1

i3 1 2 2 1

i4 2 1 2 1 1

i5 1 2 1 1

i6 1 1 1 1 2 1

i7 1 2 1

i8 2 1 2 1 2 1

The number of preferences given per attendee and the number of preferences per talk are

presented in Figures 4 and 5. Although the number of attendees and talks in the ICSP are

higher than for the two other conferences, the attendees registered fewer preferences and also

fewer choices per talk (a reason perhaps is that the ICSP covers a broad variety of topics, while

LOGMS and TSL are conferences with more focused topics).

Figure 4: The number of preferences given per attendee
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Figure 5: The number of preferences per talk

5.2 Numerical results

The optimization models proposed in Section 4 were implemented in AMPL and solved using

Gurobi version 9.0. A time limit of three hours per run was set. To explore the effect of the

different ranks of the preferences, we run the models first using an objective function that

accounts for both levels of preferences (henceforth referred as BP runs), and then using an

objective function that only takes into account the high-preferred talks (henceforth referred as

HP runs).

The remainder of this section focuses on the numerical results for each conference.

5.2.1 LOGMS 2017

LOGMS is an international conference with specific topics on logistics and maritime systems.

The seventh edition of the meeting was organized in Bergen (Norway) on August 23-26, 2017,

with 92 talks. After the survey was sent out, we received answers from 41 attendees. In total,

they indicated 1203 preferences, of which 485 are high-preferred talks and 718 are medium-

preferred talks. On average, each attendee ranked 20 talks, and the number of talks rated

per attendee varied between 1 and 86. According to the general programme of the conference

and the time availability, the scientific programme had to be accommodated in 6 blocks. Con-

sidering the number of talks and available rooms, we organized five blocks with four parallel

sessions and one block with three parallel sessions. Each session was composed of 4 time-slots.

Also, we considered organizers’ requirements as additional constraints in the scheduling of the

conference. Table 4 summarizes the results obtained for the LOGMS conference.

The rows preceded by the percentage intervals indicate the number of survey respondents

that could attend such a percentage of their preference list (for example, in the solution to the

BP run of the single model with enforced sessions, 28 survey respondents can attend between

90 and 100% of the talks that they ranked as highly preferred). The other rows present some
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Table 4: Results for the LOGMS conference

Single model Decomposition approach Relaxed model
Percentage BP run HP run BP run HP run BP run HP run
of preferred Medium High Medium High Medium High Medium High Medium High Medium High

talks preferred preferred preferred preferred preferred preferred preferred preferred preferred preferred preferred preferred

90-100% 10 28 10 27 12 27 8 29 14 29 8 30
80-90% 11 6 13 10 14 9 12 8 8 7 12 8
70-80% 9 4 6 1 6 0 9 0 7 1 5 0
60-70% 3 1 3 1 1 2 1 2 3 2 8 1
50-60% 2 0 3 0 2 2 4 1 2 0 2 0
40-50% 0 2 1 2 1 1 1 1 2 2 1 2
30-40% 4 0 3 0 3 0 3 0 3 0 3 0
20-30% 0 0 0 0 0 0 1 0 0 0 0 0
10-20% 0 0 0 0 0 0 0 0 0 0 0 0
0-10% 0 0 0 0 0 0 0 0 0 0 0 0

Total collisions 906 938 901 944 878 931
Average collisions 22.09 22.87 21.97 23.02 21.41 22.70

Max. collision 120 120 120 120 120 120
Min. collision 0 0 0 0 0 0

St.dev. 39.85 39.60 39.95 39.42 40.04 39.70

Time 3 hours 3 hours 13 seconds 4 seconds 3 hours 3 hours

statistics on the number of collisions and solution time.

The most remarkable result is that the two-model decomposition approach is able to find

high quality solutions in a few seconds, while the other approaches reach the time limit of three

hours without an optimal solution. In particular, the BP run of the decomposition approach

renders a solution with slightly less collisions than the single model, while their solution times

are 13 seconds and 3 hour, respectively. The schedule found by the decomposition approach

allows a great majority of the respondents to attend most of their preferred talks (e.g. 36 out

of the 41 respondents can attend to between 80 and 100% of their high-preferred talks). The

relaxed model reaches a lower collision cost solution within the 3 hours limit, but recall that this

approach does not respect the sessions grouping predetermined by the conference organizers.

Nevertheless, this solution gives some referential basis for comparison, revealing that the total

number of collisions obtained by the BP run of the decomposition approach is only 2.6% higher

(901 compared to 878). Note that this total number of collisions adds up the collisions over all

the survey respondents, and some of them have expressed many preferences (for example, the

maximum number of collision per respondent is equal to 120, which corresponds to a person

who ranked all talks with either high or medium preference). The box plots in Figure 6 show the

spread of the number of collisions per respondent. Without accounting for the outliers, these

plots reveal that the obtained schedules are able to leave most respondents with a relatively

low number of collisions. As a final remark of the results of the LOGMS conference, the BP

run conduces to less collisions than the HP run in all three approaches. In particular, for the

decomposition model, the solution time of the HP run is shorter (4 seconds vs 13 seconds), but

conduces to 4.8% more collisions.
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(a) Single model (b) Decomposition approach (c) Relaxed model

Figure 6: Box plots with the collisions per respondent in the solutions for the LOGMS confer-
ence

5.2.2 INFORMS TSL Workshop 2018

The Transportation Science and Logistics Society (TSL) of INFORMS organizes a workshop

every one or two years, dedicated to specific topics. The sixth edition of the workshop was held

on January 8-10, 2018, in Hong Kong (China), with focus on E-commerce and urban logistics.

The workshop featured 42 talks. In connection with the organizers, we sent out the online

survey and received responses from 31 attendees. They indicated 550 preferences, of which

253 were on high-preferred talks and 297 were on medium-preferred talks. On average, each

attendee expressed preferences for 16 talks. The workshop featured 7 blocks over 3 days. We

programmed two parallel sessions in each block, with each block composed of four time-slots,

so as to accommodate the 42 talks. Again, the organizers of the conferences had some specific

requirements that we considered as additional constraints in the models.

Table 5 summarizes the results obtained for this TSL Workshop and Figure 7 shows the

spread in the number of collisions per respondent. The decomposition approach was again

solved to optimality very quickly, in a matter of a second. In particular, the solution to the BP

run of the decomposition approach is better in the number of collisions than the best solution

found by the single model reached in the time limit of 3 hours. The HP run of the single model

was solved to optimality in about 19 minutes. The solution of the decomposition approach

stays competitive with respect to that solution, with only three more collisions (equivalent to

about 2%). The relaxed model in this instance was solved to optimality in both the BP and

the SP runs. It can also be observed that the lack of flexibility of the enforced sessions does

not render many differences in terms of collisions. In fact, either 30 or 31 out of 31 respondents

in the solutions with enforced sessions are left with the possibility to attend more than 80% of

the talks they ranked. We find it interesting to observe that the solution time of the HP runs

is lower than the solution time of the BP runs in all three approaches (resembling what we

observed for the decomposition approach in the LOGMS conference). This suggests that the
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(a) Single model (b) Decomposition approach (c) Relaxed model

Figure 7: Box plots with the collisions per respondent in the solutions for the TSL Workshop

incorporation of more than one level of preference as a choice in the online survey makes the

problem harder to solve, which is perhaps related to the larger amount of non-zero coefficients

in the objective function of the BP runs.

Table 5: Results for the TSL Workshop

Single model Decomposition approach Relaxed model
Percentage BP run HP run BP run HP run BP run HP run
of preferred Medium High Medium High Medium High Medium High Medium High Medium High

talks preferred preferred preferred preferred preferred preferred preferred preferred preferred preferred preferred preferred

90-100% 18 26 18 27 18 26 17 26 18 29 18 31
80-90% 6 4 5 4 6 4 6 5 8 2 7 0
70-80% 5 0 6 0 4 1 5 0 3 0 3 0
60-70% 1 1 1 0 2 0 2 0 1 0 2 0
50-60% 1 0 1 0 1 0 1 0 1 0 1 0
40-50% 0 0 0 0 0 0 0 0 0 0 0 0
30-40% 0 0 0 0 0 0 0 0 0 0 0 0
20-30% 0 0 0 0 0 0 0 0 0 0 0 0
10-20% 0 0 0 0 0 0 0 0 0 0 0 0
0-10% 0 0 0 0 0 0 0 0 0 0 0 0

Total collisions 132 151 128 154 120 147
Average collisions 4.4 4.86 4.26 5.13 3.87 4.9

Max. collision 21 21 21 21 21 21
Min. collision 0 0 0 0 0 0

St.dev. 6.62 6.53 6.72 6.46 6.76 6.51

Time 3 hours 1136 seconds 1 seconds 0.8 seconds 274 seconds 10 seconds

5.2.3 ICSP 2019

The ICSP is the premier conference of the Stochastic Programming Society and it serves as a

meeting place for researchers working in stochastic programming, decisions under uncertainty,

and related fields. ICSP 2019 took place on July 29 - August 2, 2019, in Trondheim (Norway).

It was the fifteenth edition of the ICSP and attracted 180 talks. In the online survey of ICSP

2019, attendees were asked to express for each of the 180 talks whether or not they intended to

attend. That is, a “yes” or “no” type of question for their preferred talks, which we then mapped

to only one utility level instead of the two utility levels used for the previous conferences (given

the much higher number of talks of the ICSP compared to the LOGMS and TSL events, the

idea here was to simplify the survey, so more attendees would feel like answering it). We

received responses from 115 attendees. In total, they indicated 1234 preferences in the online
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survey. On average, each attendee ranked 10 talks.

The conference featured 10 blocks over five days. To accommodate the 180 talks in this

format, we organized six parallel sessions in blocks with length equal to three time-slots. Table

6 reports the results obtained for the ICSP event. The most remarkable outcome is that the

decomposition approach found an optimal solution with zero collisions. This means that the

conference schedule allowed the 115 attendees who responded the survey to attend all their

preferred talks. Of course, this is facilitated by the data on the preferences, which in this case

involved less conflicts (note the average of 10 preferences for the ICSP versus 20 and 16 for the

LOGMS and TSL, respectively). The single model, in contrast, did not reach optimality and

finished with a solution with 11 collisions after the 3 hour limit. The relaxed problem found

a solution with zero collisions, equally good to the solution of the decomposition approach,

but in a shorter time of 21 seconds. The decomposition approach took about 15 minutes,

mostly spent in solving the model of the first step. Although this time was longer than the few

seconds it took in the previous two conferences (probably because of the larger number of talks

to schedule in this case), it was still acceptable for the purpose of planning the conference and

publishing the scientific programme, which is done some weeks before the event. The box plots

in Figure 8 eloquently illustrate the effectiveness of the solutions in addressing the preferences

of the attendees to this conference.

Table 6: Results for the ICSP conference

Percentage of Single model Decomposition approach Relaxed model
preferred talks

90-100% 111 115 115
80-90% 4 0 0
70-80% 0 0 0
60-70% 0 0 0
50-60% 0 0 0
40-50% 0 0 0
30-40% 0 0 0
20-30% 0 0 0
10-20% 0 0 0
0-10% 0 0 0

Total collisions 11 0 0
Average collisions 0 0 0

Max. collision 2 0 0
Min. collision 0 0 0

St.dev. 0.36 0 0

Time 3 hours 898 seconds 21 seconds
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Figure 8: Box plots with the collisions per respondent in the solutions for the ICSP conference

5.2.4 Implementation in practice

The solution approach adopted in practice for the three conferences was the decomposition

approach, which showed to be sufficiently quick and effective in finding schedules with a low

number of collisions. In the process of generating a solution, it was important to interact with

the organizing committee, to secure that the grouping of sessions and all the requirements would

be timely communicated and incorporated in the models. It is perhaps interesting to comment

that in the beginning of the project (when we started scheduling the LOGMS conference in

2017), we proceeded with a fully preference-driven approach, based on the relaxed model.

But after we computed some solutions and presented them to the organizing committee, they

found that some of the talks grouped into the same session came up too disconnected from

each other. That motivated the manual grouping of talks into sessions as a pre-processing step.

While this was not hard to manage in these small to medium size conferences, when the number

of talks is larger, it may become more challenging and a modelling approach to group talks

into sessions based on keyword similarity such as in Castaño et al. (2019) could be used (still

in large conferences though, a share of the sessions are often grouped beforehand, according

to tracks or by invitations, which might help to implement this step). After the sessions were

formed, the single model formulation was the most straightforward way of approaching the

problem, but as it has been revealed in the numerical results above, it was time consuming

and did not necessarily end up with the best solutions. This motivated the formulation of the

decomposition approach, which allowed us to considerably speed up the solution process and

to reach solutions that met the expectations of the organizers and attendees.
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6 Concluding remarks

This paper has developed an optimization approach for conference scheduling, taking into ac-

count the preferences of the attendees. The data on preferences is collected by an online survey

conducted some weeks before the conference. The main purpose of the approach then is to

schedule parallel talks avoiding collisions among the talks that the attendees have expressed

as their most preferred ones. We also consider special requirements from the organizers and

speakers, and thematic cohesion among talks of the same session. Our decomposition approach

was able to find high-quality solutions quickly, which were adopted in practice to schedule three

conferences. Besides the specific context of these conferences, our mathematical formulations

allow flexibility to consider a diverse set of requirements from organizers and speakers that

may be used to schedule other conferences or meetings.

While the focus of this work was to provide decision support to conference organizers in

practice, further research may focus on algorithmic development or model reformulation to

speed up the solution process. Also, the pre-processing step of grouping talks into sessions

can become more automated. The size of the conferences we scheduled ranged from 42 to

180 talks, which is rather on the small to medium size. When the number of talks is larger,

further research may automate this step by adopting some methods such as text analysis on

the abstracts or paper submissions. Collecting data on the preferences from the attendees is an

essential input to this conference scheduling approach. In larger events this may also become

more challenging, and the rate of responses might suffer when the menu of talks is too large.

A predictive approach to model the preferences of those who did not respond to the survey,

probably based on the preferences of those who responded and other data, may also be an

interesting subject of future research.
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students to projects∗
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Abstract

Teamwork has increasingly become more popular in educational environments. With

the also increasing mobility trends in the educational sector, internationalization and other

diversity features have gained importance in the structure of teams. In this paper, we discuss

an assignment problem arising in the allocation of students to business projects in a master

program in Norway. Among other problem features, the students state their preferences on

the projects they most want to conduct. There are also requirements from the companies

that propose the projects and from the program administration. We develop a bi-objective

approach to consider efficiency and fairness criteria in this assignment problem. We test the

model using real data of 2017 and 2018, in joint collaboration with the administrative staff

of the program. In light of the good results, our proposed solutions have been implemented

in practice in 2019, 2020, and 2021. The implementation of these solutions have been

beneficial for the administration, the students, and the companies.

Keywords Project assignment, Multiobjective optimization, Efficiency, Fairness, OR

in Practice, OR in Education
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1 Introduction

The educational sector is experiencing a substantial growth in the last years. The UNESCO

Institute for Statistics has forecast an increase from 5.3 million students to 8 million between

2017 and 2025. Likewise, teamwork has increasingly become more popular in educational

environments (Hansen, 2006). With the also increasing mobility trends in the educational

sector, internationalization and other diversity features have gained importance in the struc-

ture of teams and teamwork (Kelly, 2008). International mobility and increasing demand for

teamwork is particularly important in business environments, reflected in that many business

schools have incorporated group projects and multicultural group working experiences into

the curriculum, often in collaboration with companies and other organizations (Hansen, 2006;

Huxham and Land, 2000). In general, collaboration in group projects is a good opportunity for

students to learn teamwork, problem-solving, communication, leadership, and also to become

more creative and more social in their future working places (Hansen (2006); Kelly (2008)).

In fact, it has been documented that positive group experiences help them to be more pro-

ductive in industry settings and help them to succeed in their careers (Henry, 2013). In this

context, schools, universities and educational institutions play an important role in enabling

teamworking experiences (Huxham and Land, 2000).

The decision process of allocating students to groups and matching these groups with

projects is often in charge of administrative staff at schools, who do not necessarily have the

background and tools to generate a solution with all the desirable features. Moreover, as some

criteria in the problem might be in conflict with each other, reconciling all of them into a

single solution poses a challenge that can barely be addressed by manual techniques. A poor

solution can have undesirable consequences not only in the specific features of the groups (such

as gender balance and international composition), but also in the students’ perception about

the fairness of the decision process.

This paper reports the real-world implementation of a bi-objective modelling approach, to

address one of such problems arising in an international business master program in Norway. As

a core activity of the program, the students have to complete a business project in collaboration

with companies. These projects are posted in advance to the students, who then elicit a

ranking of their preferred projects. The administration must form the groups and match them

to the projects, taking into account the students’ preferences, and specific requirements of

the companies, among other aspects. The problem is a one-side preferences assignment while

considering the other sides’ requirements and conditions. Our bi-objective approach is based
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on integer programming, and incorporates concepts of efficiency and fairness regarding the

preferences of the students. This approach has been implemented in practice during the last

three years, replacing the traditional manual approach used before.

The remainder of this paper is organized as follows. Section 2 reviews relevant literature.

Section 3 provides background on the applied setting that originates this work. Section 4 devel-

ops a series of mathematical modelling approaches for the problem, while Section 5 describes

how these are used to compute a solution. Section 6 reports on the implementation in practice

and numerical results. Concluding remarks are provided in Section 7.

2 Literature review

Random selection, self-selection and manually creating groups by a coordinator or instructor

are common approaches to partition students into working teams. While these are easy to

implement, they might fall into a number of shortcoming, such as lack of fit, isolation of some

students, poor balance, and low level of satisfaction among students. These shortcomings have

been addressed by a body of literature that finds its roots in classic assignment problems,

including the celebrated work by Gale and Shapley (1962) on the admission of students to

universities with two-sided preferences. In this section, we limit our review to papers in the

education sector with the most similarities to our work, and to papers discussing efficiency and

fairness criteria.

In the first stream, Krass and Ovchinnikov (2006) study the problem of assigning students to

multiple non-overlapping groups considering diversity in skills, nationalities, genders, culture

and academic backgrounds. They address the problem by an integer programming model,

whose objective is to minimize the number of overlaps. The approach is applied to a case

study arising at an MBA program in Canada. In another real-world case, Cutshall et al.

(2007) introduces principles of equity and cohesion to form student teams in the core courses

of a school of business in Indiana. Among other features, they attempt to match students with

similar academic performance and also to avoid groups with lone female or lone international

students (i.e., the number of female or international students in each group should be zero or

at least two). They address the problem by an integer programming model, whose objective

function is to minimize the maximum deviation of a team’s academic performance.

Although both previous papers have successfully replaced manual methodologies easing the

task of administrative staff and reporting positive results in practice, none of them considered

the preferences of the students when forming the groups. In this respect, Lopes et al. (2008)
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develop a mixed integer programming model for the allocation of students to design projects,

considering students preferences’ and project sponsors’ requirements, among other conditions.

The model uses a single objective function that maximizes a weighted sum of the number of

projects staffed, minus penalties for not satisfying students’ preferences and other desirable

conditions. The model is successfully applied to an engineering program at the University of

Arizona. In a different problem, but of similar nature, Krauss et al. (2013) assign students

to classes at an elementary school in New York City. In the assignment process, they consid-

ered the students designated friends list and also recommendations from parents, teachers and

school therapists. As solution approach, they first use an integer programming formulation to

construct a feasible solution. Then, they use a genetic algorithm to improve along criteria on

the recommendations of parents and teachers, while penalizing the violations of the constraints

originally considered in the integer model.

Although the previous papers somehow incorporate multiple criteria, they do it by com-

bining these criteria into a single objective function. In what is the closest article to ours,

Magnanti and Natarajan (2018) address the problem of assigning students to projects using

two optimization criteria sequentially: efficiency and fairness. In this context, efficiency is

understood as the maximization of the total utility, that is, the sum of the utilities of the

projects assigned to students. The utility associated to the assignment of a student to a spe-

cific project, is calculated according to the ranking of preferences elicited by the students before

the optimization process. Among all the efficient solutions, Magnanti and Natarajan (2018)

then proceed with a lexicographic max-min fairness criterion, which consists of minimizing

the number of students assigned to their least preferred project and then repeat the process

with the second-to-last preference and so on. They apply their approach in an undergradu-

ate program at a university in Singapore and report positive impact in practice. While our

problem and approach are similar, some important features differ. First, due to requirements

of the coordinators and partner organizations, we incorporate some side constraints that differ

from the side constraints in their application. In particular, we aim at incorporating balance

on gender and nationality, and also specific requirements from the partners (such as wished

skills and languages). Second, in addition to the first efficiency and then fairness approach to

compute a solution, we also test the inverted sequence, that is, using the fairness criterion first

and then efficiency. Previous literature in other contexts points to the importance of analysing

the trade-off between fairness and efficiency. A solution based only on efficiency may become

unacceptable for some agents (students in our case), while a solution based only on fairness

may incur in a high efficiency loss or high price of fairness (Bertsimas et al. (2012); Nicosia
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et al. (2017)). Moreover, motivated by a literature stream using quantitative fairness measures,

we are also interested in quantifying fairness. Besides avoiding the iterative process required to

incorporate the lexicographic max-min fairness criterion, a fairness measure allows an easy and

direct way to compare different solutions. For this purpose, we adopt the Jain’s index (Jain

et al. (1984)), a quantitative measure of fairness with advantageous features of being popula-

tion size-independent, unaffected by scale, bounded and continuous. A broad range of works

have used this index to measure fairness, including Sediq et al. (2012), Huaizhou et al. (2013),

Guo et al. (2013), Huaizhou et al. (2013), Hoßfeld et al. (2016). Furthermore, our contribution

reports results on a real-world case arising in a master program at the main business school in

Norway. Our approach has been implemented in practice during the last three years, producing

results that increase the utility of the students and improve fairness over the previous manual

approach. The new approach does not only contribute to the satisfaction among the student

community, but also eases the task of the administrative staff in terms of resource usage and

also in terms of projecting transparency and objectiveness about the decision process.

3 Background

The Global Alliance in Management Education, also called CEMS (because of its former name

Community of European Management School and International Companies), is a cooperation

founded in 1988 involving business schools, universities, companies, and non-governmental or-

ganizations (NGOs). It currently consists of about 100 members from the five continents, with

33 of them in the educational sector. Normally, at most one school per country can have

a partnership in the alliance. From Norway, NHH Norwegian School of Economics has been

member of CEMS since 1992. The flagship program of the alliance is the CEMS MIM or CEMS

Master’s in International Management, a one-year program for students who are pursuing a

Master’s Degree at a CEMS member institution. Students who complete the program success-

fully receive one master’s degree from CEMS, in addition to the master’s degree from their

home institution.

A central piece of the CEMS MIM curriculum requires students to complete a semester-

long business project, in collaboration with one of the companies or NGOs that are partners of

CEMS. The business project usually consists of a real problem faced by one of these partners,

and the students are expected to address the problem and complete a final report that is

submitted to the organization and to academic censors. Participating in a business project

may play an important role in the future career of students, because it provides them with
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the chance to earn early experience as consultant or potentially to find a job position in the

partner organization. Likewise, for these organizations it is valuable to get assigned a suitable

team of students, who can address the challenges involved in the project and provide useful

input. Therefore, the assignment of students to business projects is an important decision and

is usually the responsibility of the administrative staff.

At NHH, the decision process consists of several stages. First, the companies prepare

project proposals supported by the administrative staff and academic supervisors. Then, a

full-day workshop is organized where the partner organizations present their projects to the

students. After the workshop, each student sends a ranking with her/his five most preferred

projects to the administrative staff. The staff also gathers other information about the stu-

dents, such as gender, nationality, language skills, etc. Then, the staff attempts to create groups

and assign them to projects, with the main goal of addressing the students’ preferences. In

addition, the staff considers other aspects, such as gender diversity, nationalities and language

requirements. Until 2018, the assignment of students to projects at NHH was assigned manu-

ally. Although the staff tried to incorporate as much of these criteria as possible, the problem

posed some challenges that could barely be addressed by hand. In particular, it turned practi-

cally impossible to not disappoint some of the students who ended up in projects far from their

top preferences. In contrast, as some others were assigned to their most preferred project, it

became hard to avoid perceptions of unfairness in the process. The difficulties of the problem

are illustrated in Figure 1, which shows a real data instance on the preferences of the students.

The example involves 35 students who ranked their top-five choices among 10 projects. The

choices are labeled as Utility 1,. . . ,Utility 5, where for a given student a value of 5 indicates

that the project is the most preferred by the student, a value of 4 indicates the second most

preferred project, and so on. Projects 1 and 5 are clearly the most popular, with seven and

ten students ranking them as their top choice, respectively. With a maximum allowed of four

students in each of these projects, it turned impossible to assign all these students to their top

choice. On the other hand, only one student ranked project 8 as top choice and, moreover,

none of the students ranked project 9 as top choice. As a fairness criterion, the administra-

tion will do their best to hopefully not assign students to their lowest ranked or non-ranked

projects. However, depending on the number of students and available projects, it might be

necessary to assign a group of students even to these less popular projects. Since it is within

the interest of the program to keep the partnership with the companies that offer the projects,

the administrative and academic staff will help them to make the project proposals attractive

to the students. Nevertheless, avoiding situations like the one described in this example is not
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Figure 1: Distribution of the students’ top-five preferences on 10 different projects

guaranteed, because the profile of preferences is realized according to the individual rankings

of the students after the projects proposals have been presented to them.

To better illustrate the potential conflict between efficiency and fairness, we may consider

alternative assignments of the 10 students who ranked project 5 as their first choice. In one

possible assignment we can assign four students to their top choice, two students to their

second choice, and four students to their third choice. The total utility for this assignment

is 40. In another possible assignment, we can assign one student to her/his top choice, seven

students to their second choice, and two students to their third choice. The total utility for this

assignment is 39, which means a lower performance on the efficiency measure than the previous

assignment. However, under a fairness criterion of assigning as few as possible students to a

less preferred project, the second assignment is better because it assigns only two students

to the third choice (in contrast to the four students assigned to the third choice by the first

solution). Now consider a third alternative, in which we assign two students to their top choice,

six students to their second choice, and two students to their third choice. The total utility for

this assignment is 40, which is as good as the first solution according to the efficiency criterion.

Likewise, the third assignment is equivalent to the second solution according to the fairness

criterion, since both solutions assign two students to their third choice. Even though these

measures of efficiency and fairness do not drive the solutions in completely opposed directions,

this example illustrates that, in general, a more efficient assignment is not necessarily fairer
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neither the other way around. Also, the example illustrates that considering both criteria may

conduce to solutions that are better than solutions constructed using a single criterion.

If on top of these two criteria, we add the other aspects considered by the administrative

staff, it is understandable that computing a solution became a daunting task for them and the

students would sometimes feel disappointed. This motivated us to undertake a collaboration

with the administration as to support their decision-making process and to provide the study

program with better solutions in practice. Our work involved testing several approaches, which

we present in the following section.

4 Mathematical modelling

The foundation of the approaches developed in this paper is mathematical optimization. This

section provides the details of the different components of the optimization formulations that

will be used later to develop our multi-objective approaches.

To build the mathematical formulation, we denote the set of students participating in

the program as S = {s1, . . . , sn}, the set of projects proposed by participating companies as

P = {p1, . . . , pm}, and the set of required attributes as C = {c1, . . . , cl}. Here, the attributes

are for example expertise fields, skills, nationality and gender, and they will be used to model

the criteria for the assignment of students to different groups. Using these sets, we define the

parameters and decision variables needed to build the mathematical optimization model for

the projects assignment problem. For the sake of simplicity, in the reminder of this section we

use the indices s for an arbitrary student in S, p for an arbitrary project in P, and c for an

arbitrary attribute in C.

First, we define the following parameters:

• usp: Defines the utility of a student s when assigned to a project p.

• asc: Defines the presence of an attribute c in a student s. This is a binary parameter,

i.e., it is one if a student has an attribute c and zero otherwise.

• UBp= Upper bound on the number of students that are needed for a project p.

• LBp= Lower bound on the number of students that are needed for a project p.

• UBpc= Upper bound on the number of students with attribute c that are needed for a

project p.
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• LBpc= Lower bound on the number of students with attribute c that are needed for a

project p.

The model has to decide which projects to assign and which students to match with those

projects. We define two different sets of decision variables. First, in (1) we define a set of

binary variables to decide the projects that will be assigned.

yp =

1, if project p is selected,

0, otherwise
(1)

The variable yp allows to disregard some projects. This situation may happen due to the

constraints on the upper and lower number of students needed for each projects. It may occur

that none of the students in S are able to satisfy some projects’ requirements, or the ranking

of some projects may be consistently lower than other projects, which may rule it out when

balancing efficiency and fairness. Second, in (2) we define a set of binary variables used to

decide the assignment of students to the different projects.

xsp =

1, if student s is allocated to project p,

0, otherwise
(2)

4.1 The assignment constraints

The initial problem of assigning the students to the different projects is defined by the assign-

ment constraints (3) – (7).

∑
p

xsp = 1 ∀s ∈ S (3)

xsp ≤ yp ∀s ∈ S,∀p ∈ P (4)∑
s

xsp ≥ LBpyp ∀p ∈ P (5)

∑
s

xsp ≤ UBpyp ∀p ∈ P (6)

xsp, yp ∈ {0, 1} ∀s ∈ S, ∀p ∈ P (7)

Constraints (3) ensure that each student is assigned to a single project. Constraints (4)

ensure that a project p is selected if at least one student is assigned to it. Constraints (5) and

(6) enforce the upper and lower bounds on the number of students that are needed for each
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project. Finally, constraints (7) limit the decision variables to be binary.

4.2 Side constraints

One of the strengths of using mathematical optimization as the foundation of our approach is

the possibility of including side constraints, as it is also highlighted in Magnanti and Natarajan

(2018). Side constraints appear when one has some additional conditions beyond ensuring

a proper assignment and enforcing the limits on the number of students per project. Side

constraints may for example aim at obtaining balance on gender and nationality, as well as

ensuring that specific requirements from the partners are met. Those requirements usually

cover wished skills and languages. The constraints (8) and (9) are used here to model such

requirements. However, this approach does not limit the form of the side constraints that may

be considered. In general, the approach of this paper allows for side constraints of any form.

∑
s

ascxsp ≥ LBpcyp ∀p ∈ P,∀c ∈ C (8)

∑
s

ascxsp ≤ UBpcyp ∀p ∈ P,∀c ∈ C (9)

Constraints (8) and (9) ensure the lower and upper bounds on the number of students with

specific attributes needed for each project are satisfied.

4.3 Measuring the quality of an assignment

The main aim of the approach of this paper is to achieve a balance between efficiency and

fairness. For that purpose, two different goals are defined, which are formulated using linear

functions as follows.

To optimize efficiency, the linear function defined in Equation (10) is used. Specifically,

Equation (10) maximizes the overall utility of an assignment measured as the summation of

the students utility obtained when assigned to a project times the assignment variables.

U = max
∑
s

∑
p

uspxsp (10)

To work towards fairness, the linear function defined in Equation (11) is used. Here, a

utility level is fixed at û and then it minimizes the number of students that will receive such

utility. In the context of this work, the utilities are assigned based on the rank of a project. For
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example, if a project was ranked as k by a student in the preferences survey, then it provides

that student with a utility of uk.

Fk = min
∑
p

∑
s:usp=û

xsp (11)

Equation (11) is used later in a sequential process to minimize the number of students who are

assigned to projects that are not their top choice.

4.3.1 Measuring fairness

A limitation when using (11) is that it does not provide an overall measure of the achieved

fairness of the reached assignment. To overcome that limitation, the Jain’s index (Jain et al.,

1984) is used as an alternative to measure and optimize the assignment fairness. The Jain’s

index formulation is provided in (12).

f(w) =
(
∑n

i=1wi)
2

n
∑n

i=1 (wi)
2 wi ≥ 0 (12)

In (12) w ∈ Rn, n is the number of participants, and wi is the allocation given to the i-th user

in a system. The Jain’s index (12) has the desired properties of population size-independence,

scale and metric independence, boundedness, and continuity. The index is broadly used to

measure fairness in the assignment of resources in telecommunication networks, but it may

also have applications in other areas. In particular, in this assignment problem the Jain’s

index is computed using the utilities and assignment decisions, as shown in (13).

f(x) = max
(
∑

s

∑
p uspxsp)

2

n
∑

s(
∑

p uspxsp)
2 (13)

In (13), given the constraint (3), the term
∑

p uspxsp provides the utility of the assignment

for a student s to a project. Hence, given a total utility for an assignment, the index (13)

provides the assignment fairness measure for that level of utility. In other words, this index

provides a fairness measure for the utility achieved when the assignment efficiency is optimized.

The Jain’s index is bounded by values that depend only on the number of participants. First,

by definition the index is bounded above by 1, since (
∑

s

∑
p uspxsp)

2 ≤ n
∑

s(
∑

p uspxsp)
2.

Second, the lower bound for the index is 1/n, which happens when only one participant is

assigned the total utility. As an illustration of this lower bound, consider a case where only one

student is assigned to one of the projects in her/his preference list and all others are assigned

to projects outside their preference lists. In this solution, the former student receives the total
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utility obtained with the assignment while the others obtain zero of that utility. The fairness

index evaluated at this solution achieves its lower bound 1/n. Notice that for the index to

take a value below 1/n, one would need that (
∑

s

∑
p uspxsp)

2 ≤
∑

s(
∑

p uspxsp)
2, which is

mathematically not possible. The dependence only on the number of participants provides

bounds that are known beforehand and can potentially be used by optimization solvers to

speed up the solution process.

5 Lexicographic solution approaches

To optimize the projects assignment problem, a lexicographic approach is used to prioritize

the different goals. For this, the required optimization models are build using the elements

introduced in Section 4. The assignment constraints in 4.1 and the side constraints in 4.2

ensure a valid assignment. Then, the different possible objective functions are prioritized in

different orders with the aim to research the effect choosing one measure over the other.

5.1 Prioritizing efficiency

When priority is given to efficiency over fairness the following orders is used. First, the problem

(14) is solved to optimize the overall efficiency of the assignment.

max
∑
s

∑
p

uspxsp

s.t. (3) − (9)

(14)

Second, using the optimal efficiency of the first step, denoted by U∗, fairness is improved. Op-

timizing the utility function may result in multiple optimal solutions with the Pareto Efficient

property. A Pareto Efficient solution cannot be more efficient regarding someone’s assignment

unless fairness is reduced in someone’s else assignment (Magnanti and Natarajan, 2018). In-

corporating fairness aims to keep students’ assignments as fair as possible, while keeping the

same maximum utility. Two approaches are considered here to incorporate fairness.

5.1.1 Lexicographic fairness

First, a lexicographic approach is used to improve fairness while enforcing the same efficiency

level obtained when solving (14). In this approach, the first step is to solve Problem (15) to

minimize the number of students assigned to projects ranked 1. To ensure the utility is not

worsening, the utility is constrained to be at least as good as the one obtained solving (14).
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min
∑
p

∑
s:usp=1

xsp

s.t. (3) − (9)∑
s

∑
p

uspxsp ≥ U∗

(15)

Using the solution of (15), the sequence of optimization problems (15) is solved. The

sequence is obtained by changing the value of k ∈ {2, . . . ,K − 1}. Here, K is the highest

ranking a student can assign to a project. In other words, in each step the number of students

assigned to a project with ranking k is minimized, starting with the lowest ranking and moving

up one ranking at a time until the level before the maximum. That minimization is constrained

to ensuring that at most F ∗
ℓ students are assigned to a project with a rank ℓ ∈ {1, . . . , k − 1}.

Here, F ∗
ℓ is the optimal value of the objective function at iteration ℓ in the sequence.

min
∑
p

∑
s:usp=k

xsp

s.t. (3) − (9)∑
s

∑
p

uspxsp ≥ U∗

∑
p

∑
s:usp=ℓ

xsp ≤ F ∗
ℓ ∀ℓ ∈ {1, . . . , k − 1}

(16)

5.1.2 Jain’s index

The second approach uses the Jain index to improve fairness. Here, the Problem (17) is solved

to maximize the Jain’s index while enforcing the same efficiency level found solving (14).

max
(
∑

s

∑
p uspxsp)

2

n
∑

s(
∑

p uspxsp)
2

s.t. (3) − (9)∑
s

∑
p

uspxsp ≥ U∗

(17)

5.2 Prioritizing fairness

When priority is given to fairness over efficiency the approaches discussed in Section 5.1 are

inverted. This results in two different approaches.
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5.2.1 Lexicographic fairness

The first approach uses a lexicographic approach to sequentially improve fairness. The aim

is to minimize the number of students that are assigned to low ranked projects. First, the

Problem (18) is solved to minimize the number of students assigned to projects ranked 1.

min
∑
p

∑
s:usp=1

xsp

s.t. (3) − (9)

(18)

Using the solution of (18), the sequence of optimization problems (19) is solved.

min
∑
p

∑
s:usp=k

xsp

s.t. (3) − (9)∑
p

∑
s:usp=ℓ

xsp ≤ F ∗
ℓ ∀ℓ ∈ {1, . . . ,K − 1}

(19)

Using the sequentially optimized fair assignment, the fairness level obtained is used as a lower

bound to optimize efficiency in (20).

max
∑
s

∑
p

uspxsp

s.t. (3) − (9)∑
p

∑
s:usp=ℓ

xsp ≤ F ∗
ℓ ∀ℓ ∈ {1, . . . ,K − 1}

(20)

5.2.2 Jain’s index

The second approach uses the Jain’s index to optimize fairness first. The Jain’s index is

maximized solving Problem (21).

max
(
∑

s

∑
p uspxsp)

2

n
∑

s(
∑

p uspxsp)
2

s.t. (3) − (9)

(21)
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The optimal value of the Jain’s index found, denoted as J∗, is used as a lower bound for fairness

to optimize efficiency in (22).

max
∑
s

∑
p

uspxsp

s.t. (3) − (9)

(
∑

s

∑
p uspxsp)

2

n
∑

s(
∑

p uspxsp)
2 ≥ J∗

(22)

6 Implementation and numerical results

The approaches proposed in Section 5 were implemented and tested with the data instances of

2017 and 2018, after the assignment through the old manual methodology had taken place. In

light of the good results for those experimental instances, we supported the administration to

conduct the assignment in 2019, 2020, and 2021 by putting this new methodology into practice.

In this section we summarize our numerical results for the four years spanning from 2017 to

2020.

6.1 Overview

The input for the problem are the projects’ descriptions provided by the companies, the admin-

istration’s requests, and the students rankings. With the information in place, we identify the

different attributes and categories. These may vary from one to another year, but in general,

we identify five main categories. First we have profile, which refers to a student’s interests

or field. Second, we consider the language skills, because for some projects it is important to

have at least one student able to speak a specific language. Third, we consider nationality.

Some projects need students with specific nationalities to facilitate the collaboration with a

partner company taking part in the project. Fourth, we consider gender balance, responding

to the requirement of the administration. What balance means precisely, depends on the gen-

der distribution of the class, but for purpose of our formulation this translates into lower and

upper bounds on the number of students of a specific gender assigned to each of the allocated

projects. Fifth, we include a category named home requirement, which requires assigning at

least one student from NHH to each group.

Table 1 provides an overview of the number of students and projects that participated in

the business project program and the number of requested attributes during the years 2017 to

2020.
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Table 1: Overview of number of students, projects and required attributes

2017 2018 2019 2020
Number of students 35 39 34 33
Number of projects 10 11 9 9

Number of requested attributes 10 21 3 9

As for the preference survey, at the beginning of the semester, students taking part at the

business project semester at NHH are asked to rank up K projects. To illustrate, Table 2 shows

a partial overview of the results of the students’ preferences survey for the year 2017, where

K = 5. A student s that ranked a project p in its list will have an utility usp equal to the

rank given to that project. If a project p was not ranked by the student s, it will be assigned

a utility usp = 0.

Table 2: Partial overview of students’ preferences in 2017

Projects
Students p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

s1 4 3 5 1 2
s2 3 4 5 2 1
s3 2 3 4 5 1
s4 4 2 3 5 1
s5 2 5 3 4 1
s6 4 5 1 3 2
s7 5 2 1 4 3
s8 1 2 4 5 3
s9 4 2 1 3 5
s10 3 1 5 4 2

6.2 Numerical results

The optimization models proposed in Section 5 were implemented in AMPL. The linear models

were solved using CPLEX, version 12.8. For the non-linear models, we used BARON version

18.12.26. Additionally, to speed up BARON solution times, we provided the solver with the

Jain’s index bounds presented in Section 4.3.1. The computational runs are set to a time limit

of one hour. Each of the instances from 2017 to 2020 were run using all the four proposed

approaches. For the remaining of this section we use the following abbreviations to identify

each of the approaches:

• PELF: first Prioritize Efficiency and then optimize using the Lexicographic Fairness;

• PEJI: first Prioritize Efficiency and then optimize fairness using the Jain’s index;
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• PLFE: first Prioritize fairness using the Lexicographic Fairness and then optimize Effi-

ciency;

• PJIE: first Prioritize fairness using the Jain’s index and then optimize Efficiency.

6.2.1 Experimental results

In Table 3 we summarize the projects selected each of the years 2017, 2018, 2019 and 2020.

For each year, all the approaches returned the same set of projects. For the sake of clarity,

note that each year has a list of projects that is different and independent from any other year.

Hence, the list of projects for each year is unique and valid only for that year. Moreover, all

approaches disregard some projects due to the low preferences and the few number of students

that ranked them. For example, from the distribution of students’ preferences in the year 2017

shown in Figure 1, the projects 8 and 9 were in the situation described. In particular, note

that only one student ranked project 8 as first choice and no one did it for project 9, which

resulted in those two projects being excluded from the final assignment.

Table 3: Summary of assigned projects

Year Assigned projects
2017 p1, p2, p3, p4, p5, p6, p7, p10
2018 p1, p4, p5, p6, p7, p8, p9, p10, p11
2019 p1, p2, p3, p4, p5, p6, p7, p8, p9
2020 p1, p2, p3, p4, p5, p7, p8, p9

Table 4 summarizes the experimental results for 2017. The last column shows the assign-

ment that was done manually in 2017 by the CEMS administration staff at NHH. The results

for 2017 reached different assignments with small difference in total utilities and fairness. In

all these assignments, 100% of the students are assigned to their top three choices. All the

approaches reached an optimal solution within few seconds. Note that the approaches PELF

and PLFE are based on integer linear models, while the approaches PEJI and PJIE are based

on mixed integer non-linear models. Compared to the manual assignment, none of the solutions

obtained have students assigned to their two bottom choices, while the manual assignment that

was used in 2017 had 9% of students assigned to their two bottom choices.

The two best solutions for the 2017 instance were found by the approaches PELF and PLFE.

First, recall that the approach PELF prioritize efficiency by maximizing the total sum of the

student’s utilities. The solution obtained maximizing utility assigns 25 students to their top

choice, 7 to their second ranked choice, and 3 to their third ranked choice. Given that there are
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Table 4: Efficiency and fairness results for 2017 using all the proposed approaches

PELF PLFE PEJI PJIE Manual assignment
(Percentage of students assigned)

Utility 5 68 % 63 % 68 % 63 % 51 %
Utility 4 26 % 34 % 26 % 34 % 17 %
Utility 3 6 % 3 % 6 % 3 % 23 %
Utility 2 0 0 0 0 3 %
Utility 1 0 0 0 0 6 %
Utility 0 0 0 0 0 0
Total utility 162 161 162 161 142
Fairness 98.4% 98.61% 98.4% 98.61% 92.3%

not students ranked in the three bottom choices, the lexicographic fairness process is initialized

constraining the lower ranked projects assignments to zero. Then, it starts minimizing the

number of students assigned to their third ranked choice. After that process is finished, the

solution found has 24 students assigned to their top choice, 9 assigned to their second ranked

choice, and 2 assigned to their third ranked choice. To summarize, the consideration of fairness

reduced the number of students assigned to the top choice and third ranked choices by one

and two correspondingly, and increased the number of students assigned to their second ranked

choice by 2. Notice that the PELF approach ensures that the two solutions will have the same

utility of 162. Hence, fairness is optimized over the set of optimal solutions to the problem

optimizing efficiency. Hence, the solution found is Pareto efficient. The details of these results

are summarized in Table 5.

Table 5: Details of the PELF solutions for the 2017 instance

Max efficiency Min assignments
with utility 3

Min assignments
with utility 4

(Number of students assigned)
Utility 5 25 24 24
Utility 4 7 9 9
Utility 3 3 2 2
Utility 2 0 0 0
Utility 1 0 0 0
Utility 0 0 0 0
Total utility 162 162 162

Second, the PLFE approach is used to prioritize fairness. This approach starts minimizing

the assignments to projects ranked below the top choice. In the first iteration, the assignments

of students to projects with utility zero is minimized. After that iteration, the solution obtained

has 8 students assigned to the their top choice, 4 to their second ranked choice, 13 to their third
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choice, and 10 to their fourth choice. There are no students assigned to their bottom choice

or to a project that they did not rank. The process continues until it minimizes the number

of students assigned to their second choice. In every iteration, the optimization continues to

satisfy the assignment levels in the lower ranked projects found in previous iterations. The

final solution has 22 students assigned to their top choice, 12 to their second ranked choice,

and one to their third choice. There are no students assigned to their two bottom choices or

to a project that they did not rank. After the last fairness iteration, the approach optimizes

efficiency constrained to ensure the fairness level achieved in each iteration of the lexicographic

fairness process. Notice that, in general, given the utility structure of our instances at the

end of the lexicographic fairness, the overall utility is fixed and optimizing efficiency will not

change the solution. This is reflected in the results summary presented in Table 6. Comparing

the solutions found with the two approaches, PEFL and PLFE, there is a trade off between

efficiency and fairness. As expected, PEFL yields a higher overall utility, while PLFE delivers a

solution with less students assigned to their third ranked project. Here, the difference between

the utility achieved when efficiency is prioritized and the utility achieved when fairness is

prioritized provides the prize of fairness, which is equal to one utility unit in this instance.

Table 6: Details of the PLFE solutions for the 2017 instance

Min
assignments
with utility

0

Min
assignments
with utility

2

Min
assignments
with utility

3

Min
assignments
with utility

4

Max effi-
ciency

(Number of students assigned)
Utility 5 8 9 18 22 22
Utility 4 4 10 16 12 12
Utility 3 13 16 1 1 1
Utility 2 10 0 0 0 0
Utility 1 0 0 0 0 0
Utility 0 0 0 0 0 0
Total utility 115 133 157 161 161

The numerical results of the experiment using the 2018 instance are summarized in Table

7. All approaches found an optimal solution with the same level of utility and fairness. The

optimal solutions found assigned all students to one of their two top choices. Also, the solutions

found for the 2018 instance improves both utility and fairness when they are compared to

the solution manually obtained by the staff. In addition, the solutions obtained with our

approaches satisfied all the companies’ requirements, while the manual assignment did not

manage to satisfy all the requirements. That highlights the complexity of the problem, which
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was not trivial to handle manually and took many hours of work for the administration staff.

However, with these optimization based approaches the solution obtained was compliant and

it took only a few seconds to find it.

Table 7: Efficiency and fairness results for 2018 using all the proposed approaches

PELF PLFE PEJI PJIE Manual assignment
(Percentage of students assigned)

Utility 5 71 % 71 % 71 % 71 % 38 %
Utility 4 29 % 29 % 29 % 29 % 38 %
Utility 3 0 % 0 % 0 % 0 % 21 %
Utility 2 0 0 0 0 3 %
Utility 1 0 0 0 0 0 %
Utility 0 0 0 0 0 0
Total utility 184 184 184 184 161
Fairness 99.09% 99.09% 99.09% 99.09% 96 %

6.2.2 Implementation results

For the years 2019 and 2020, the administrative staff has used the optimization based approach

proposed in this paper. The results obtained are summarized in Table 8, which includes the

performance of the assignments proposed for 2019 and 2020. In both years 2019 and 2020 all

approaches were able to reach optimality within the same time limit. In particular, the PJIE

approach took about 6 minutes to obtain an optimal solution, which was the longest time.

From Table 1 we can see that the conditions for the CEMS assignment problem may change

significantly from year to year. Indeed, the assignment problems faced in 2017 and 2018 were

more demanding on the number of requested attributes by the projects. Note that in 2020, the

students ranked up four projects and a project with rank 4 is the topmost preference.

Table 8: Implementation results for 2019 and 2020

2019 2020
PELF PLFE PEJI PJIE PELF PLFE PEJI PJIE

(Percentage of students assigned)
Utility 5 60 % 60 % 60 % 3 % - - - -
Utility 4 36 % 36 % 36 % 76 % 70 % 70 % 70 % 70 %
Utility 3 2 % 2 % 2 % 18 % 27 % 27 % 27 % 27 %
Utility 2 2 % 2 % 2 % 3 % 3 % 3 % 3 % 3 %
Utility 1 0 0 0 0 0 0 0 0
Utility 0 0 0 0 0 0 0 0 0
Total utility 153 153 153 129 121 121 121 121
Fairness 97.65% 97.65% 97.65% 98.08% 97.93% 97.93% 97.93% 97.93%
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The results in Table 8 reveal that in the year 2019 all approaches except PJIE led to the

same solution, while in 2020 all approaches led to the same solution. In both years all the

students have been assigned to some of the projects stated in their top choices, and with the

great majority assigned to one of their two most preferred choices. In practice, it has been

positive for the administration being able to verify that the solution so obtained has such

a performance along the different criteria and approaches. Being supported by optimization

techniques has also improved the ability to conduct the process in a fast and objective way. In

addition, both sides students and companies can rely now in that the decision process provides

them with an assignment that take into account all the requirements and preferences.

As the numerical results of the implementation are affected by how the preferences of

the students realized in practice, it is interesting to analyze other scenarios for comparison

purposes. In particular, we may construct best-case and worst-case scenarios as a referential

basis to compare the realized solution. In a best-case scenario, the preferences of the students

would be such that everyone is allocated to her/his most preferred choice. It is easy to find

a profile of preferences for this best-case scenario, by simply finding a feasible solution to

the assignment problem with side-constraints. If a feasible solution exists, one can define the

topmost preference of each student as the project to which she/he is assigned in this solution, to

render an overall solution where the total utility is equal to the number of students multiplied by

the highest utility. Note this solution also achieves the maximum of 100% in the fairness index

(since everyone is assigned to a project ranked at the same level). In our case, we have verified

that all approaches quickly reach such idealistic best solution, which in 2019 corresponds to a

total utility equal to 170. Comparing to the results displayed in Table 8, we can see that the

realized scenario of preferences allows to find a solution which reaches about 90% of the total

utility of the best-case scenario. For the 2020 instance, the idealistic solution scores 132 in

the total utility criterion, while the solution to the realized scenario reported in Table 8 scores

121, that is, about 92% in comparison to the best-case scenario. Note in the best-case scenario

the preferences of the students are perfectly split among the assigned projects, which makes

possible to provide all students with the highest utility. This involves some heterogeneity in

the preferences of the students who are assigned to different projects (and homogeneity in the

preferences of the students assigned to a same project). In contrast, we may think of a case

where the preferences of all the students are fully homogeneous, that is, one of the projects

is ranked as top-choice by all the students, another project is ranked as second choice by all

the students, and so on. We could regard this as a worst-case scenario, in the sense that some

few students will be assigned to their ranked projects, while all the others will be assigned
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to a non-ranked project. When running this scenario for our 2019 and 2020 data instances,

the solution assigns between 12% and 15% of the students to a ranked project, and 40% of

the students to a non-ranked project. The total utility is between 50 and 60, and the fairness

between 48% and 50%. The large spread between these results and the results obtained for

the best-case scenario reveals that the performance of the solutions may vary within a broad

range. Moreover, note that an even worse scenario could be constructed by digging deeper into

the constraints that enforce some students to be assigned to a project because of the required

attributes (for example, when a project requires a German speaker and the only students who

speak that language did not rank that project among their top choices). In this way, some data

instances could eventually lead to solutions with total utility equal to zero. Fortunately, as

shown by our results above, the scenarios realized in practice have allowed us to find solutions

much closer to the best-case than the worst-case scenario.

7 Concluding remarks

This paper proposed a decision support tool for deciding the assignments of students to projects,

taking into account the students’ preferences and other problem requirements. Since, in general,

it is not possible to assign all students to their most preferred project, we have developed a bi-

objective integer optimization approach taking into account efficiency and fairness criteria. We

have implemented the approaches to support the decision-making process of the administration

at an international master program. Our solutions have been adopted in practice during the

last three years and the plan is to continue with this application in the forthcoming years. The

results are positive for the students and the companies, as well as the decision process turns

easier to handle for the administration. Since the backgrounds of these stakeholders do not

necessarily include optimization, our close collaboration with the administration has facilitated

their understanding and the adoption of the new methodology.

Although our focus has been practice-oriented and in the specific case of a master program

at NHH, our mathematical formulations allow flexibility to consider a diverse set of require-

ments and side constraints that may be needed in different setups, such as similar programs at

other universities or institutions. Likewise, our work opens avenues to conduct future research

involving more methodological aspects. For example, to the best of our knowledge, this is the

first time that the Jain’s index has been used to measure the fairness in an assignment problem

involving people. While the index has appealing properties and provides a single measure of

fairness (in contrast to the lexicographic order), it inherently involves a non-linear expression
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that affects the nature of the problem. A possible reformulation of the optimization models in-

volving the Jain’s index may lead to more efficient solution approaches. Also, studying different

structures of preferences in a computational study remains of interest not only to investigate

the computational performance of the approaches but also to analyze how they balance the

trade-off between efficiency and fairness. Moreover, studying different utility functions and

different measures of fairness are also topics for further research.
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Chapter 3
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assignment problems
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Abstract

Given two sets of objects, the integer assignment problem consists of assigning objects

of one set to objects in the other set. Traditionally, the goal of this problem is to find an

assignment that minimizes or maximizes a measure of efficiency, such as maximization of

utility or minimization of cost. Lately, the interest for incorporating a measure of fairness

in addition to efficiency has gained importance. This paper studies the trade-off between

these two criteria, using the Jain’s index as a measure of fairness. The original formulation

of the assignment problem with this index involves a non-concave function, which renders

a non-linear non-convex problem, usually hard to solve. To this aim, we develop two refor-

mulations, where one is based on a convex quadratic objective function and the other one is

based on Mixed Integer Second-Order Cone Programming. We explore the performance of

these reformulations in instances of real-world data derived from an application of assigning

personnel to projects, and also in instances of randomly generated data. In terms of solution

quality, all formulations prove to be effective in finding solutions capturing both efficiency

and fairness criteria, with some slight differences depending on the type of instance. In

terms of solving time, however, the performances of the formulations differ considerably.

In particular, the convex quadratic approach proves to be much faster in finding optimal

solutions.

Keywords Integer assignment, Multiobjective optimization, Efficiency, Fairness, Jain’s

index
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1 Introduction

The assignment problem consists of allocating objects in one set to some other objects in

another set. In one set, tasks such as jobs, courses, positions, projects, or resources are available

to be done or used by the agents, individuals, or users of the other set. Operation managers are

often faced with resource assignment problems, where quantitative decision models are useful

to find a solution (Bertsimas et al., 2012). The optimal resource assignment and the trade-off

between efficiency and fairness of the assignments have attracted increasing attention in several

fields of academia and industry such as economics, computer science, wireless communications,

and social fairness (Zabini et al., 2017). In dealing with the trade-off between these two

criteria, research works have tried to develop methodologies to find solutions that perform well

in both efficiency and fairness simultaneously (Guo et al., 2013). Often, the decision maker

who performs the assignment is interested in maximizing an overall metric of efficiency, while

the users affected by the assignment are interested in maximizing their own individual benefits.

On the one hand, maximizing the assignment’s performance on efficiency might lead to some

users ending up in better conditions than other ones. On the other hand, maximizing a fairness

metric among the users might potentially reduce the efficiency of the assignment (Zabini et al.,

2017; Guo et al., 2014, 2013; Sediq et al., 2013). Therefore, studying the trade-off between

efficiency and fairness in assignment problems is an important endeavour.

Motivated by a real-world problem of assigning students to projects (Rezaeinia et al., 2021),

this paper studies the trade-off between efficiency and fairness in an integer unbalanced assign-

ment problem. This type of assignment problems, where the number of resources and users

are unequal, appear in several applications (see e.g. Rabbani et al. (2019) and Majumdar and

Bhunia (2012)). In our problem, each resource must be assigned to only one user, unlike most

of the literature studying the trade-off between fairness and efficiency in assignment problems,

where a same resource could be shared among multiple users (see e.g. Schwarz et al. (2010),

Sediq et al. (2012), Zhou et al. (2017), and Bui et al. (2019)). The different resources are char-

acterized by a number of attributes. We assume that each user requires a limited number of

resources and the benefits of each resource are not the same for all the users. Each user is then

interested in maximizing its own benefit. However, from a central decision maker perspective,

factors such as the limited number of available resources and the different valuation of the

users on the different resources, make it practically impossible to assign the resources so that

all users achieve a maximum benefit.

This paper proposes a bi-objective approach based on integer programming, incorporating
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the concepts of efficiency and fairness in the assignment. Here, an efficient assignment means

an assignment that maximizes the total benefits. To measure fairness, we use the Jain’s index

(Jain et al., 1984). This index is defined as a ratio, where the numerator is the users’ squared

total benefits, and the denominator is the number of users times the total users’ squared

benefits. This ratio is a well-established measure of fairness and has some appealing properties,

as emphasized in Guo et al. (2014); Sediq et al. (2013), and Lan et al. (2010). However, the

Jain’s index is a non-concave function (Guo et al., 2014; Sediq et al., 2013), which increases the

difficulty of solving the trade-off problem. To overcome this issue, in this paper we study two

reformulations tailored to the integer unbalanced assignment problem. One of these is based

on a convex quadratic objective function and the other one is based on Mixed Integer Second-

Order Cone Programming (MISOCP). Using data from a real-world case and also experimental

data from different scenarios, we explore the performance of these reformulations in terms of

solution quality and solving time.

The remainder of this paper is organized as follows. Section 2 reviews relevant literature.

Section 3 develops mathematical modelling approaches for the trade-off problem, while Section

4 presents some reformulations. Section 5 discusses the numerical results. Concluding remarks

are provided in Section 6.

2 Literature review

The scientific literature has paid increasing attention to the trade-off between efficiency and

fairness in assignment problems. A wide range of works have studied the problem in various

fields, especially in network assignment, wireless communication systems, digital transmission,

telecommunications, and some other allocation problems with continuous resources. As a

fairness measure, these works have usually adopted the Jain’s index. This index was firstly

defined by Jain et al. (1984), and since then it has been used in thousands of papers. In

the following, we review papers that have used this index in assignment problems where, in

addition to fairness, the solutions try to meet an efficiency criterion.

Schwarz et al. (2010) studied the trade-off between efficiency and fairness in a mobile

communication system with multiple users. They address the problem using a non-linear

integer program, where the objective is to maximize the total throughput of the users in the

system. A linear approximation is proposed to simplify the non-linear problem, and a max-

min model is proposed to maximize the minimum throughput and guarantee the minimum

fairness level. Then, the Jain’s index is used to quantify the obtained fairness. In another
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paper, Schwarz et al. (2011) used the Jains’ index directly in the primary problem and studied

the trade-off between efficiency and fairness in a wireless network. They proposed a utility

maximization problem based on an α-fair utility function by considering the Jain’s index as

a constraint. Then, a Second Order Cone Programming (SOCP) adapted to the continuous

multi-user scheduling problem was used to transform the problem from a non-convex to a

convex optimization problem.

In a different problem, Sediq et al. (2012) studied the trade-off between the sum efficiency

and Jain’s fairness index in an assignment problem with continuous resources and multiple

users. This work exploited some special conditions of the radio resource allocation problems to

convert the non-convex problem to a convex optimization problem. Another paper that deals

with trade-off between efficiency and fairness is Guo et al. (2013). They consider the increase of

efficiency and fairness in the assignment of resources to users in a wireless communication sys-

tem. They addressed the trade-off between efficiency and the Jain’s index by two optimization

models. In the first model, they considered maximizing efficiency subject to a Jain’s index con-

straint. In the second model, they maximized the Jain’s index by considering a constraint on

the efficiency of the system. There is no reformulation for the Jain’s index in this study, hence,

an algorithm to find the optimal trade-off was proposed. The same authors studied a different

problem but of similar nature in Guo et al. (2014). This problem considers the throughput

maximization in a sub-channel and time slot allocation in downlink systems subject to a Jain’s

index constraint on both short-term and long-term fairness. First, a non-linear integer pro-

gramming formulation was used to model the problem, and then the integer variables were

relaxed into continuous ones and a SOCP formulation was used to convert the problem into a

convex one. Song et al. (2016) used the Jain’s index to measure the fairness of the obtained

solution. The paper analyzes the trade-off problem among spectral efficiency, energy efficiency,

and fairness in cooperative digital transmission systems. An α-fairness function was used in a

multi-objective optimization model to represent the fairness rate. Then, an algorithm based on

the Lagrangian dual decomposition method was used to obtain the solution set of the model.

A heuristic resource allocation algorithm was also proposed to obtain a solution and maintain

the trade-off between many users.

In another context, Kachroo et al. (2016) studied the trade-off between efficiency and fair-

ness in radio resource allocation of maritime channels. Here, the problem consists of assigning

the blocks of the radio resource to the users. To address it, a max-min integer linear program-

ming model was formulated, where the objective function is to maximize the minimum total

throughput from the resource, aimed at increasing fairness in the allocation system. Then, the
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obtained results were compared by using the Jain’s fairness index. In another problem with

continuous nature, Zhou et al. (2017) studied the load balancing problem in a cellular network,

which aims at maximizing the system throughput and balancing the load of the network. They

model the problem by a mixed-integer non-linear programming formulation with a non-convex

objective function. A two-layer iterative algorithm is used to find a nearly optimal solution to

the problem. Then, the Jain’s index was used to measure the load balancing level in the net-

work. Another paper using the Jain’s index is Zabini et al. (2017), which studies the trade-off

between throughput and fairness in a resource allocation problem in wireless communication

systems. They address the trade-off problem by optimizing a model, whose objective function

is to maximize the average throughput subject to a given specified value of fairness. Bui et al.

(2019) studied the trade-off between throughput and fairness in a downlink non-orthogonal

access network. They addressed the problem by a mixed-integer and non-convex optimization

model. For practical implementation and overcoming the problem’s complexity, the integrality

of the variables is relaxed to a continuous formulation. Then, an approximation method is

proposed to solve the relaxed problem, attempting to arrive at a locally optimal solution.

Most of the papers above deal with efficiency and fairness in continuous resource assignment

problems, unlike our problem which has an integer nature. The only exception is Guo et al.

(2014), which addresses an integer problem primarily but it can be converted to a continuous

one. Among the reviewed papers, Zabini et al. (2017) is one of the closest to ours, as they

approach a similar assignment problem. However, their problem has a continuous nature, in

which each resource can be assigned to more than one user, while in our problem each resource

should be assigned to only one user. Sediq et al. (2012) is also close to our article, in terms of

exploiting the structure of the assignment problem and the Jain’s fairness index to reformulate

problem. However, some essential features differ. First, unlike the continuous nature of the

resources in their problem, we deal with the discrete case, which has implications in how to re-

formulate the problem. Second, due to the specific requirements on the assignment of resources

to users in our application, we consider some side-constraints that differ from their work. More-

over, we consider the different sequences in which the efficiency and fairness objective functions

can be used in the optimization process, and we propose different reformulations to develop

the corresponding approaches. Overall, our work contributes to study the trade-off between

efficiency and Jain’s fairness in assignment problems with discrete nature. On the methodolog-

ical side, our reformulations aim at overcoming the difficulty that incorporating fairness imply

on these problems. On the applied side, we illustrate our approaches in a real-world problem,

and also explore their computational performance in several data instances.
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3 Mathematical modelling

This section presents the different elements of the optimization formulations that will be used

later to develop the main approaches.

To define parameters and decision variables in the mathematical formulations, we use two

sets denoted by U = {u1, . . . , un}, which represents the set of users, and R = {r1. . . . , rm},

which represents the set of resources. Additionally, we define pru ∈ R+ as the benefit obtained

when a resource r ∈ R is assigned to a user u ∈ U . Finally, Uu ∈ Z+ and Lu ∈ Z+ denote the

upper and lower bounds respectively for the number of resources that a user u requires.

We use two sets of decision variables. First, the model has to decide to which users assign

resources. We use the binary variable yu ∈ {0, 1}, which is one if user u is selected and zero

otherwise. This is required because given the condition of the unbalanced assignment problems

and the number of resources needed for a user, all the users might not receive the resources

they need. Second, the model has to assign resources to the users. For this purpose we use

the variable xru ∈ {0, 1}, which is equal to one if resource r is allocated to user u, and zero

otherwise.

3.1 Constraints

To model the conditions of the assignment problem under study, we define the following con-

straints:

∑
u∈U

xru = 1 ∀r ∈ R, (1)

xru ≤ yu ∀r ∈ R, ∀u ∈ U , (2)∑
r∈R

xru ≥ Luyu ∀u ∈ U , (3)

∑
r∈R

xru ≤ Uuyu ∀u ∈ U , (4)

xru, yu ∈ {0, 1} ∀r ∈ R, ∀u ∈ U . (5)

Constraint (1) ensures that all resources are assigned to only one user. Constraint (2)

ensures that no resources will be assigned to users that were not selected. Constraints (3) and

(4) impose the upper bounds and lower bounds on the number of resources that are needed for

each user. Constraints (5) enforce the binary nature of the variables.
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3.2 Efficiency and fairness functions

For the optimization models we consider two objectives: efficiency and fairness. We may define

the efficiency and fairness of the assignment problem as a function of the vector x of decision

variables. In (6), B(x) measures the efficiency of an assignment x, which is the sum of the

benefits obtained by the users. For the fairness we use the Jain’s index J(x) (Jain et al., 1984),

which is formulated in (7) using the benefits of an assignment decision x.

B(x) =
∑
u∈U

∑
r∈R

pruxru (6)

J(x) = max
(
∑

u∈U
∑

r∈R pruxru)
2

n
∑

u∈U (
∑

r∈R pruxru)
2 (7)

Note that equation (6) is a linear function on x. The Jain’s index (7) is a non-linear

continuous function with a bounded range in the closed interval [ 1n , 1]. The Jain’s index provides

a fairness measure for an assignment and its two bounds represent two extreme situations. The

lower bound 1
n corresponds to the least fair allocation. In that situation only one user benefits

with the assignment and all the other users do not receive any resources or do not benefit

from the assigned resources. The upper bound 1 corresponds to the fairest assignment in

which all users receive the same benefit. Note that the fairness’ bounds may be achieved

without necessarily optimizing the users’ benefits. Hence, when optimizing an assignment it is

important to consider efficiency and fairness together.

3.3 General formulation

This paper aims to study the trade-off between efficiency and fairness. The main challenge when

using the Jain’s index is that full fairness would not necessarily lead to efficiency. Consider

for example a two users case which is illustrated in Figure 1. The dots in the figure represent

the set of feasible assignments C and the two axis represent the benefits obtained by each

user with a given assignment. Note that full fairness is obtained when both users receive the

same level of efficiency. However, that may happen when both users receive the same benefit,

irrespective if it is the minimum or maximum possible, or something in between. To overcome

that challenge, we propose a bi-objective approach where the pointed weakness of the Jain’s

index fairness function is balanced by maximizing the efficiency of the assignment for any

given fairness level. Note that Figure 1 shows that efficiency and fairness are not necessarily

conflicting. However, depending on how unbalanced the problem is, the optimization process
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Figure 1: Efficiency and Jain’s fairness comparison for feasible assignments in a set C

may demand more on the trade-off between efficiency and fairness.

The general formulation used for building our approach was proposed in Sediq et al. (2012)

and Sediq et al. (2013) in the context of wireless communication assignments. Here, we define

C as the set of vectors x, y satisfying the constraints (1) – (5). Then we obtain the first part of

the formulation (8).

Xp
∆
= {(x, y) | (x, y) = argmax

B(x)≥ p
(x,y)∈C

J(x)} (8)

In (8), Xp is the set of all assignment vectors (x, y) ∈ C that maximize the Jain’s index

subject to a minimum efficiency level of p. Note that (8) works with a prescribed level of

efficiency. Hence, to optimize the trade-off, next we need to maximize the total efficiency B(x)

over the set Xp. In (9), X∗
p ∈ Xp is one of the benefit vectors that maximizes the total efficiency.

Note that X∗
p lays on the Pareto efficient frontier.

X∗
p ∈ argmax

(x,y)∈Xp

B(x) (9)

The remainder of this section will focus on the optimization approaches analyzed in this paper,

which are a variation of the general formulation presented in this section. Those approaches

were previously proposed by Rezaeinia et al. (2021) for the trade-off problem. The models are

based on a lexicographic method to prioritize one goal at a time.
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3.3.1 Lexicographic Efficiency - Fairness

The first lexicographic approach prioritizes efficiency over fairness. Efficiency is computed using

the utility function defined in (6). We formulate the first step of this approach in (10), where

the aim is to obtain the maximum efficiency level for an assignment subject to constraints (1)

- (5). Let B∗ denote the optimal efficiency level obtained by solving the problem (10).

max B(x)

s.t. (1) − (5)
(10)

The second step of this approach is to optimize fairness while maintaining at least an

efficiency level of B∗. We formulate the optimization problem of this second step in (11),

where we maximize the Jain’s index.

max J(x)

s.t. (1) − (5)

B(x) ≥ B∗

(11)

Note that (11) is equivalent to solve the optimization problem considered in (8), where p = B∗.

Hence, we are seeking an assignment that maximizes J(x) and yields an efficiency at least equal

to B∗.

Two remarks are important here. First, note that setting p = B∗ makes unnecessary to

solve the optimization problem in (9). In other words, by construction we already have the

best level of efficiency that can be achieved with just the assignment constraint. Henceforth, a

more constrained problem will not improve on that efficiency level. Second, if the problem (10)

is feasible, then we immediately have a solution that satisfies the feasible set of (11). In other

words, we obtain a certificate of feasibility for both problems even though the second problem

is more constrained. For later reference throughout the article, we formalize this second remark

in Corollary 1 below.

Corollary 1. The feasibility of Problem (11) follows from the feasibility of Problem (10).

3.3.2 Lexicographic Fairness - Efficiency

The second lexicographic approach prioritizes fairness over efficiency. We formulate the first

step of this approach in (12), where we optimize the fairness of the assignment subject to

constraints (1) - (5). To optimize fairness, we use the Jain’s index formulated in (7). Let J∗
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be the optimal fairness level obtained by solving (12).

max J(x)

s.t. (1) − (5)
(12)

The second step of this approach is to optimize efficiency while maintaining at least a

fairness level of J∗. We formulate the optimization problem of this second step in (13), where

we maximize the efficiency utility function B(x).

max B(x)

s.t. (1) − (5)

J(x) ≥ J∗

(13)

Note that (12) is equivalent to solve the optimization problem considered in (8), where

p = 0. Hence, since we are considering only non-negative utilities, we are seeking an assignment

that maximizes J(x) without imposing any lower bound constraint on the efficiency. Then,

problem (13) solves the problem considered in (9) imposing J∗ as the minimum level of fairness

accepted.

Note that for this approach we also have that obtaining feasibility when solving problem

(12) certifies the feasibility of problem (13). This is formalized in Corollary 2 below.

Corollary 2. The feasibility of Problem (12) follows from the feasibility of Problem (13).

Corollaries 1 and 2 have more general implications. Notice that the problems in (10) and in

(12) have the same feasible set. Hence, as a result we obtain that the feasibility of the problem

in (12) is certified by the feasibility of the problem in (10), as stated in Corollary 3 below.

Corollary 3. The feasibility of Problem (12) follows from the feasibility of Problem (10).

Even though the results in Corollaries (1), (2), and (3) follow easily from the definition

formulation and construction, they have an important practical implication. First, we remark

that the problem in (10) is a Mixed Integer Linear Problem (MILP), for which one can exploit

the efficiency of the current state of the art of MILP solvers. However, the problems in (11),

(12), and (13) are non-linear non-convex problems, for which the optimization process tend to

be more challenging. To ease the challenge posed by the nature of those problems, if problem

(10) is feasible, the solution found to it may be used to initialize the optimization of the

problems (11), (12), and (13).
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4 Reformulating the Jain’s Index

One of the challenges when using the Jain’s Index is that (7) is non-linear non-concave. This

may lead to more computational effort and time to solve the problems in (11), (12), and (13).

Additionally, it may not scale, i.e., when the dimension of Xp is large, it might become too

difficult to solve the trade-off problem.

To show the non-concavity of the Jain’s Index, we use a numerical example with the Jensen’s

concave inequality (Jensen, 1906). Note that Jain’s index would be a concave function if and

only if (14) is true.

J(θx+ (1− θ)x′) ≥ θJ(x) + (1− θ)J(x′) (14)

Let θ = 0.5, x = (4, 1, 5) and x′ = (2, 1, 3). Then, we have J(x) = 0.7936, J(x′) = 0.8571.

The left and right-hand side of (14) are 0.8205 and 0.8253, respectively. From the result,

0.8205 ≤ 0.8253, which indicates that (14) is not true and, therefore, it shows that the Jain’s

Index is not a concave function.

The non-concavity of the Jain’s Index affects the nature of the optimization problem and

provides the motivation for looking at possible reformulations.

4.1 Reformulation for the Lexicographic Efficiency - Fairness approach

Here we show how J(x) can be reformulated in problem (11). First, from Corollary 1 we know

that if the problem in (10) is feasible, its optimal solution is also feasible for (11). Moreover,

since the optimal value B∗ found when optimizing (10) does not have any additional side

constraints, we know that it is not possible to obtain a higher value for B(x) within the set

defined by the constraints (1) - (5). Hence, the constraint B(x) ≥ B∗ will always be active for

any feasible solution of (11), i.e., it will always be satisfied with equality. Therefore, we may

write Problem (11) as shown in (15).

max J(x)

s.t. B(x) = B∗

(1) − (5)

(15)

Note that in this formulation we are fixing the value of B(x) = B∗. Now, recall the definition

of the Jain’s Index J(x) in (7). Hence, as a result, we are fixing the numerator of J(x). We
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may reformulate Problem (15) as follows:

max
B∗

n
∑

u∈U (
∑

r∈R pruxru)
2

s.t. B(x) = B∗

(1) − (5).

(16)

Since B∗ is obtained by (10), optimizing the problem in (16) is equivalent to optimizing

the following problem:

max
∑
u∈U

(∑
r∈U

pruxru

)2

s.t. B(x) = B∗

(1) − (5).

(17)

The advantage of Problem (17) is that it has a convex quadratic objective function, which

may help with the computational effort required to solve it.

4.2 Reformulation for the Lexicographic Fairness - Efficiency approach

Here we focus on the reformulation opportunity for the second approach considered in this

paper. First, we have that the problem in (12) is maximizing the Jain’s Index, which makes it

a non-linear and non-convex problem. For that particular problem we have no reformulation

to ease the challenge posed by j(x). Hence, this will remain one of the more computationally

demanding steps of our approaches.

Now, using Corollary 2, we know that if we find a feasible solution (x
′
, y

′
) to (12), then

we have that (x
′
, y

′
) is feasible for the problem in (13). Note that (x

′
, y

′
) may be the optimal

solution, but it is not required to be. This is relevant because it may happen that the Problem

(12) may not be solved to optimality within a certain time limit, but a good enough feasible

solution is available. Let J∗ be the fairness value for that feasible solution (x
′
, y

′
). Using J∗

we can reformulate (13) as a MISOCP. This is a mixed integer non-linear problem, whereby a

linear objective function is optimized by considering some linear constraints and at least one

quadratic cone constraint (Góez (2013)).

To reformulate the problem in (13) we focus on the constraint involving the Jain’s Index.

With that constraint we aim to ensure a level of fairness at least as good as J∗. Note that the

use of J(x) leads to a non-linear non-convex constraint. However, we can exploit the constant
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Figure 2: The affect of J∗ on the trade-off between efficiency and fairness

right-hand side J∗ to reformulate that constraint as a SOC as follows:√∑
u∈U

(
∑
r∈R

pruxru)
2 ≤

∑
u∈U

∑
r∈R pruxru√
nJ∗

. (18)

In (18) we obtained a second-order cone constraint in Rn+1. Thus, the trade-off problem

(13) can be written as (19).

max B(x)

s.t.

√∑
u∈U

(
∑
r∈R

pruxru)
2 ≤

∑
u∈U

∑
r∈R pruxru√
nJ∗

(1) − (5)

(19)

The optimization problem in (19) is a MISOCP. Note the room for trade-off in Problem

(19) is related to J∗. Figure 2 illustrates the effect of different J∗ levels on the trade-off between

efficiency and Jain’s fairness. Problem (19) assigns resources to users and maximizes the total

benefits of the users in the intersection of the possible region and the cone given by the fairness

constraint. In the figure, by considering two users with a maximum of 5 units of benefit for

each, the largest cone corresponds to J∗ ≥ 0.69. As J∗ increases it approaches the value 1,

which is the maximum possible level of fairness and is represented in the figure by the red

dashed line.
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5 Computational results

We test the approaches proposed in Section 4 in a personnel allocation problem, derived from

a real-world application reported in Rezaeinia et al. (2021). This is an unbalanced integer

assignment problem, where students must be assigned to projects in an educational programme.

The projects are proposed by companies and presented to the students in a workshop, with the

support of administrative staff and academic supervisors. After the workshop, the students are

asked to fill out a preference survey and rank K projects by considering their skills, background,

and projects description. The ranking is structured as follows: a project with rank K is the

most beneficial project, and a project with rank 1 has the lowest benefit. Consequently, the

remaining K − 2 projects that the students are allowed to rank have benefits in the range

{2, . . . ,K − 1}. In this problem, the projects defined by the companies are equivalent to what

in the models is the set of users and the students are equivalent to what in the model is the set

of resources. Then, the students’ benefits pru are computed based on the preference ranking

obtained from the survey. Hence, pru = k means that the benefit of student r from being

assigned to project u is equal to k, where k is the given rank to the project by the student.

Also, pru = 0 means that project u is not ranked by student r. In addition, the companies may

have specific requirements on the team of students they will get assigned, on attributes such as

educational background, language skills, and gender. These data are gathered in collaboration

with the administrative staff, and is then used in an assignment model. For this purpose, we

define T = {t1, . . . , tl} as a set of attributes, and art as a binary parameter equal to one if

student r possesses attribute t, and zero otherwise. Then, the following side-constraints are

used in the model:

∑
r∈R

artxru ≥ Lutyu ∀u ∈ U ,∀t ∈ T (20)

∑
r∈R

artxru ≤ Uutyu ∀u ∈ U ,∀t ∈ T (21)

In constraints (20)-(21), Lut and Uut specify upper and lower bounds on the number of

students with attribute t that are needed by project u. Depending on these constraints, the

number of projects, the number of students and their preferences, and other aspects in the

problem, it is in general not possible to assign all students to their top choices. In consequence,

different solutions might render different levels of efficiency and fairness and, therefore, it is

important for the administration to find a solution considering both criteria. More details
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about the problem can be found in Rezaeinia et al. (2021). In what follows, we use the data

instances of that paper, to study the performance of the reformulations we developed in Section

4. All computational codes have been implemented in AMPL. To solve the mathematical

programming models, we use CPLEX version 12.10, except for model (12), which we solve by

using BARON version 18.12.26. The computational runs are set to a time limit of two hours.

5.1 Real-world data instances

These instances of data correspond to five consecutive years, spanning from 2017 to 2021. Table

1 provides an overview on the number of students, the number of projects, and the number of

requested attributes for each of these years.

Table 1: Overview of the real-world data instances

Year Students Projects Attributes Top rank

2017 35 10 10 5
2018 39 11 21 5
2019 34 9 3 5
2020 33 9 9 4
2021 36 9 9 5

Each of the instances from 2017 to 2021 was run using the Reformulation for the Lexi-

cographic Efficiency-Fairness approach (RLEF) and the Reformulation for the Lexicographic

Fairness-Efficiency approach (RLFE) We compare their results with results of the Lexicographic

Efficiency-Fairness (LEF) approach described in Section 3, which provides a basis for compar-

ison for the solutions obtained by the two other approaches.

For the instances of 2017, 2018, and 2020, all the approaches conduced to the same optimal

solution within a few seconds. For 2019 and 2021 the results exhibited some differences, as

shown in Table 2. In these years, the students had to rank 5 out of 9 projects, which deter-

mined the different levels of benefits detailed in the table. The RLEF and LEF approaches

led to the same optimal solution, with a great majority of the students assigned to their first

choice project. This translates into a high level of efficiency, reflected in a large amount of total

benefits. The RLEF approach, in contrast, tends to assign less students to their first choice

project and more to their second choice project, which renders more fairness but at the expense

of less efficiency. This fact is especially notable in the 2019 instance. As for the solving time,

the RLFE took about 10 minutes to obtain an optimal solution in the two instances, while the

RLEF and LEF approaches took only few seconds.
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Table 2: Students assignment for 2019 and 2021 using all the proposed approaches

2019 2021
RLEF RLFE LEF RLEF RLFE LEF

(Number of students assigned)

Benefit 5 20 1 20 24 22 24
Benefit 4 12 26 12 9 12 9
Benefit 3 1 6 1 2 1 2
Benefit 2 1 1 1 1 1 1
Benefit 1 0 0 0 0 0 0
Benefit 0 0 0 0 0 0 0

Total benefits 153 129 153 164 163 164
Fairness 97.65% 98.08% 97.65% 97.53% 97.64% 97.53%

5.2 Experimental data instances

For the purpose of testing the reformulated approaches in larger size problems, we use 240

experimental data instances of different sizes. We group these instances into four data sets,

which differ in the number of students, projects, requested attributes, and the number of

projects ranked by the students. Table 3 shows an overview of the generated data instances,

according to these characteristics.

Table 3: Overview of the experimental data sets

Students Projects Attributes Ranked projects

Data sets A 150 35 20 5
Data sets B 260 56 20 10
Data sets C 360 80 25 15
Data sets D 500 110 25 20

Also, three different scenarios are constructed based on the students’ preferences structure,

and for each scenario we generate 20 instances (therefore, each of the four data sets consists of

60 instances). The scenarios are characterized as follows.

• Random preferences scenario. In a data instance based on the random scenario,

students’ preferences are split among the projects randomly, according to a discrete uni-

form distribution (that is, each project has the same probability of being chosen as the

k-th most favourite by each student). This defines the benefit of assigning a student to

each of the projects, where zero refers to non-beneficial preferences, and K refers to the

top-beneficial preferences. There is no guarantee that all the students could be assigned

to their most preferred choices in this scenario. If a feasible solution exists, some students
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might be assigned to their top-beneficial choices, some others to their second choices, and

so on (some students might even be assigned to their non-ranked projects).

• Semi-homogeneous preferences scenario. In a semi-homogeneous data instance, the

projects and the students are divided into groups of the same size. The first group of

students rank the first group of projects, the second group of students rank the second

part of the projects, and so on. For example, in an instance of data sets A, the first

30 students rank the first seven projects, the second 30 students rank from project 8 to

project 14, and so on. Note in a semi-homogeneous scenario, the students are assigned to

their top-beneficial projects when their preferences satisfy the requirements of the ranked

project.

• Homogeneous preferences scenario. In a data instance based on the homogeneous

scenario, one of the projects is ranked as top choice by all the students, another project

is ranked as the second choice by all the students, and so on. In consequence, considering

the limited number of students that can be assigned to each project, only a few students

will be assigned to their best ranked projects in this scenario.

Table 4 summarizes the experimental results obtained by RLEF, RLFE, and LEF ap-

proaches for data sets A. The set includes 150 students, 35 projects, 20 requested attributes,

and the students rank up to 5 projects.

Table 4: Results for data sets A using all the proposed approaches

Random scenario Semi-homogeneous scenario Homogeneous scenario
RLEF RLFE LEF RLEF RLFE LEF RLEF RLFE LEF

(Percentage of students assigned)

Benefit 5 89 83 89 105 101 105 5 5 5
Benefit 4 40 46 40 30 31 30 5 5 5
Benefit 3 14 17 14 8 11 8 5 5 5
Benefit 2 5 1 5 1 2 1 5 5 5
Benefit 1 2 3 2 1 1 1 5 5 5
Benefit 0 0 0 0 5 4 5 125 125 125

Total benefits 659 655 659 672 667 672 75 75 75
Fairness 96.09 % 96.26 % 96.09 % 94.45 % 94.79 % 94.45 % 35 % 35 % 35 %

Assigned projects 31 31 31 31 31 31 31 31 31
Solved instances 20 0 20 20 0 20 20 0 20

Solving time (sec.) 0.264 7200 64.480 2.431 7200 493.780 1 7200 154.715

The table shows the average of the obtained results in different scenarios. Twenty different

data instances were produced based on each scenario, and each data instance was run with the

proposed approaches. Hence, each column summarizes the average results for the proposed ap-

proaches. The rows are preceded by the average number of the students that could obtain such

a benefit level (for example, in the solution to the RLEF approach of the random scenario, after
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running twenty data instances, 89 students were assigned to their top-beneficial preferences).

The other rows present some statistics on the total benefit and fairness level of the solutions on

average across the 20 instances of each scenario. Also, the average number of projects selected

by each approach is reported in the next row. Note that the number of selected projects de-

pends on the distribution of students’ preferences, thus it may happen that some projects are

not assigned because they were not among the main preferences of the students. In addition,

we report the number of data instances that reached the optimal solution in each approach.

The most notable result is that the RLEF approach is able to find a high quality assignment

in a few seconds, while the RLFE approach reaches the time limit of two hours with a feasible

solution but without proven optimality. Also, it took longer for the LEF approach than the

RLEF to reach an optimal solution. In the random and the semi-homogeneous scenarios, the

RLEF and RLFE approaches reach the assignment with slight differences in the average of

total benefits and fairness levels. In particular, in these scenarios, the RLFE approach renders

a solution with a higher level of fairness than the RLEF and LEF approaches, while the total

benefits level obtained by RLFE is less than in the two other approaches. Although the RLEF,

RLFE, and LEF approaches reach the same assignment with the same average of total bene-

fits and fairness levels in all the instances of the homogeneous scenario, their average solution

times differ considerably, as they take 1 second, two hours, and 8 minutes, respectively. Also,

the approaches differ in the number of instances solved to optimality. The RLEF and LEF

approaches reach an optimal solution in all the 20 instances of each scenario. In contrast, the

RLFE failed to reach optimality in all scenarios. In addition, there are significant differences

between the students’ assignments in different scenarios.

In the random scenario, a great majority of the students are assigned to their three first

beneficial preferences, and none of the students are assigned to their non-beneficial projects.

In the semi-homogeneous scenario, the vast majority of the students are assigned to some of

their preferred projects, while a few students are assigned to non-beneficial projects. In the

homogeneous scenario, only a fstudents were assigned to their beneficial projects, and all the

rest were allocated to their non-beneficial projects.

In the data sets B, there are 260 students and 56 projects. Also, there are 20 requested

attributes, and the students rank 10 projects as their beneficial projects. The numerical results

of the experiment using the data sets B are summarized in Table 5.

The RLEF approach again solved the data instances very quickly, within a few seconds, and

reached the optimal solution in all the instances of all scenarios. In contrast, the LEF approach

did not reach the optimal solution in 5 of the 20 instances of the random scenario and failed in
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Table 5: Results for data sets B using all the proposed approaches

Random scenario Semi-homogeneous scenario Homogeneous scenario
RLEF RLFE LEF RLEF RLFE LEF RLEF RLFE LEF

(Number of students assigned)

Benefit 10 157 156 157 160 157 161 5 5 5
Benefit 9 65 61 65 66 67 64 5 5 5
Benefit 8 23 29 23 20 23 19 5 5 5
Benefit 7 8 8 8 8 7 8 5 5 5
Benefit 6 4 4 4 3 3 4 5 5 5
Benefit 5 2 1 2 1 1 1 5 5 5
Benefit 4 1 1 1 1 1 1 5 5 5
Benefit 3 0 0 0 0 0 0 5 5 5
Benefit 2 0 0 0 0 0 0 5 5 5
Benefit 1 0 0 0 0 0 1 5 5 5
Benefit 0 0 0 0 1 1 1 210 210 210

Total benefits 2433 2430 2433 2437 2433 2433 275 275 275
Fairness 98.82% 98.86% 98.82% 98.59% 98.60% 98.45% 15.10% 15.10% 15.10%

Assigned projects 53 53 53 52 52 52 53 53 53
Solved instances 20 0 15 20 0 0 20 0 20

Solving time (sec.) 3.493 7200 3894.143 6.795 7200 7200 2.705 7200 3159.248

all instances of the semi-homogeneous scenario. Also, the RLFE approach was unable to reach

optimality within the two hours time limit in all scenarios. Although the obtained assignments

by the approaches are slightly different in terms of average total benefits and fairness levels

in the random and semi-homogeneous scenarios, the RLFE renders assignments with fewer

benefits and higher fairness than the other two approaches. In the homogeneous scenario, the

RLEF, RLFE, and LEF approaches reached the same assignment, while there is a significant

difference between their solution times. In the random scenario, there are no students assigned

in their three bottom choices. In the semi-homogeneous scenario, a significant number of

students were assigned to their three first beneficial choices, and a few of them were assigned

to their last and even to non-beneficial projects. In the homogeneous scenario, all approaches

assign five students to each benefit level, while the great majority of students is assigned to

non-ranked projects.

Table 6 shows the obtained results for the data sets C. These instances consist of 360

students, 80 projects, and 25 required attributes. Also, we assume the students rank 15 projects,

where a project with rank 15 is the top-beneficial preference.

The table shows that the RLEF approach obtained optimal solutions in all data instances

within a few seconds, while in the semi-homogeneous scenario it took 10 minutes to reach

optimality. However, the RLFE and LEF approaches conclude the time limit of two hours

with a feasible solution, but without proven optimality. The approaches reached the same

assignment in all instances of the homogeneous scenario, while in the other other two scenarios,

there are slight differences between the assignments obtained by the approaches. In the random

and semi-homogeneous scenarios, the assignments obtained by the RLFE approach render a
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Table 6: Results for data sets C using all the proposed approaches

Random scenario Semi-homogeneous scenario Homogeneous scenario
RLEF RLFE LEF RLEF RLFE LEF RLEF RLFE LEF

(Number of students assigned)

Benefit 15 211 211 215 215 215 218 5 5 5
Benefit 14 94 91 88 89 87 83 5 5 5
Benefit 13 32 33 32 32 32 32 5 5 5
Benefit 12 13 14 13 12 13 13 5 5 5
Benefit 11 4 8 6 6 6 7 5 5 5
Benefit 10 4 1 3 2 3 3 5 5 5
Benefit 9 2 2 2 1 1 1 5 5 5
Benefit 8 0 0 0 0 1 1 5 5 5
Benefit 7 0 0 0 0 0 0 5 5 5
Benefit 6 0 0 0 0 0 0 5 5 5
Benefit 5 0 0 0 0 1 0 5 5 5
Benefit 4 0 0 0 1 0 0 5 5 5
Benefit 3 0 0 0 0 0 0 5 5 5
Benefit 2 0 0 0 0 0 0 5 5 5
Benefit 1 0 0 0 0 0 0 5 5 5
Benefit 0 0 0 0 2 1 2 285 285 285

Total benefits 5155 5152 5143 5130 5128 5128 600 600 600
Fairness 99.45% 99.46% 99.16% 98.82% 98.86 % 98.85% 16.129% 16.129% 16.129%

Assigned projects 74 72 73 75 74 74 78 75 78
Solved instances 20 0 0 20 0 0 20 0 0

Solving time (sec.) 52.45 7200 7200 665 7200 7200 6.71 7200 7200

higher level of fairness and less total benefit than the two other approaches. Note that none

of the students were assigned to their last eight preferences in the random scenario. In the

homogeneous scenario, all approaches reached the same assignment. The students are assigned

to projects with different benefit levels. The majority of the students are assigned to non-ranked

projects.

In data sets D, we consider 500 students with 110 projects and 25 requested attributes. The

students rank 20 projects, where a rank of 20 is the most preferred one. The results obtained

are reported in Table 7.

The most remarkable outcome is that the RLEF approach found an optimal solution to

all instances of each of the three scenarios, and there are considerable differences between its

solution time and other approaches. The RLFE and LEF approaches reach the time limit of

two hours with a feasible solution but not proven optimality. In the homogeneous scenario, all

approaches reached the same assignment. In general, the approaches reached different assign-

ments in each instance of the random scenario and also of the semi-homogeneous scenarios.

There are slight differences in the total benefits and fairness levels, as the RLFE approach ob-

tained assignments with less total benefits and higher fairness levels than the other approaches.

Also, in the homogeneous scenario, a great number of students are assigned to non-beneficial

projects, while in the two other approaches, the vast majority of the students are assigned to

one of their three most beneficial projects.
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Table 7: Results for data sets D using all the proposed approaches

Random scenario Semi-homogeneous scenario Homogeneous scenario
RLEF RLFE LEF RLEF RLFE LEF RLEF RLFE LEF

(Number of students assigned)

Benefit 20 290 285 292 287 280 292 5 5 5
Benefit 19 129 132 127 129 119 120 5 5 5
Benefit 18 47 49 46 48 60 51 5 5 5
Benefit 17 19 19 19 21 28 20 5 5 5
Benefit 16 8 9 8 7 9 7 5 5 5
Benefit 15 5 5 5 5 3 5 5 5 5
Benefit 14 2 0 2 2 1 2 5 5 5
Benefit 13 0 0 1 1 0 1 5 5 5
Benefit 12 0 0 0 0 0 0 5 5 5
Benefit 11 0 1 0 0 0 0 5 5 5
Benefit 10 0 0 0 0 0 0 5 5 5
Benefit 9 0 0 0 0 0 0 5 5 5
Benefit 8 0 0 0 0 0 0 5 5 5
Benefit 7 0 0 0 0 0 0 5 5 5
Benefit 6 0 0 0 0 0 0 5 5 5
Benefit 5 0 0 0 0 0 0 5 5 5
Benefit 4 0 0 0 0 0 0 5 5 5
Benefit 3 0 0 0 0 0 0 5 5 5
Benefit 2 0 0 0 0 0 0 5 5 5
Benefit 1 0 0 0 0 0 0 5 5 5
Benefit 0 0 0 0 0 0 0 400 400 400

Total benefits 9651 9643 9648 9640 9620 9640 1050 1050 1050
Fairness 99.68% 99.68% 99.68% 99.67% 99.69% 99.66% 15.36% 15.36% 15.36%

Assigned projects 101 101 101 100 100 100 106 100 104
Solved instances 20 none none 20 none none 20 none none

Solving time (sec.) 260.72 7200 7200 70.50 7200 7200 52.457 7200 7200

5.3 Discussion

The numerical results show that the size of the problem affects the performance of the ap-

proaches. All the proposed approaches reach optimality quickly in the small size instances, as

illustrated in the runs with the real-world data. The trade-off problem becomes more difficult

when the size of the problem increases, as shown in data sets A, B, C, and D. This also af-

fects the performance of the approaches. For example, the RLFE reached the time limit of

two hours without an optimal solution in all sets, while the LEF approach failed to reach an

optimal solution in data sets C and D.

The results reveal that the users’ preferences have significant influences on the difficulties of

the trade-off problem and the performance of the approaches. The semi-homogeneous and the

homogeneous scenarios are two examples in this case. The number of instances that failed to

reach an optimal solution in these scenarios is more than in the random scenario. The students’

preferences are not perfectly split among the projects. Hence, in the semi-homogeneous sce-

nario, the students are assigned to their top-beneficial projects when their preferences satisfy

the requirements of the ranked project. Also, depending on the conditions of the problem,

some of the students may be assigned to their non-ranked projects. This is shown in data sets
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(a) Random scenario

(b) Semi-homogeneous scenario

(c) Homogeneous scenario

Figure 3: Number of optimal solutions by the approaches in each scenario
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Figure 4: The solving time by the approaches in the random scenario

A, B, and C. Most of the students were assigned to non-beneficial projects in the homogeneous

scenario. On average, the obtained solutions to the instances of the homogeneous scenario

assigned 80% of the students to their non-ranked projects and 20% to the profitable project

The numerical results show the RLEF approach is more efficient in solving the trade-off

problem. The number of solved instances by the approaches in each scenario is shown in

Figure 3. In fact, the RLEF approach reached an optimal solution in all data instances of

all the scenarios. Although the LEF failed to reach optimality in some data instances, its

performance was slightly better than the RLFE approach, which leaves a more considerable

number of instances unsolved.

Also, there are significant differences in the solving time used by the approaches. Figure 4

shows the solving times by the approaches in the random scenarios over the different data sets.

The figure eloquently shows that the solution time by RLEF is less than the other two other

approaches, while the RLFE approach reaches the time limit of two hours in all instances.

In addition, there are considerable differences among the solution time by the RLEF and

LEF approaches when the problem’s size increases. This effect is somewhat more prominent

in data sets C and D. Note the trend of the solving times in the semi-homogeneous and the

homogeneous scenarios are the same.

Furthermore, the results to the different data sets show that the RLFE obtained assignments

with a higher level of fairness than the RLEF and LEF approaches. On the other hand, the

RLEF approach allowed us to find more efficient solutions quickly, even when the size of the

problem increased in the different scenarios.
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6 Concluding remarks

This paper studied different formulations to address the trade-off between efficiency and fairness

in the unbalanced integer assignment problem, where Jain’s index is the fairness function. Since

this index is defined by a non-concave function, it is challenging to solve the trade-off problem.

The difficulty of the problem is highlighted more when the dimension of the problem is vast and

many conditions are involved. To this aim, in addition to a basic formulation, we studied two

reformulations, one based on a convex quadratic objective function and the other one based

on Mixed Integer Second-Order Cone Programming. We analyzed the performance of these

approaches in numerical experiments, carried out using both real-world data and randomly

generated data. The results showed that, although all approaches may conduce to solutions

that address well both efficiency and fairness measures, the convex quadratic formulation is

much quicker than the other formulations.

To the best of our knowledge, this is the first time these types of reformulations of the

Jain’s index have been studied in assignment problems with integer nature. Further work

could explore the performance of the proposed reformulations in optimization problems with

different profit functions. Another avenue for future research is to study the problem when

the users can share the non-continuous resources. Adapting the proposed approaches to study

other integer problems requiring efficient and fair solutions also remains of interest.
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Chapter 4

The eigenvalue-UTA approach for multi-criteria

decision-making problems: A case study on a rural

road selection in Iran∗
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Abstract

Building roads in forest areas is experiencing a period of expansion. The purpose of

these roads is not only to facilitate resource extraction and freight transportation, but also

to enhance the welfare of inhabitants. This paper discusses the problem of evaluating a

rural road network in the Hyrcanian forest in northern Iran. The evaluation must consider a

number of aspects, such as economic and environmental criteria. In addition, opportunities

and risks of forest road building are also considered. A multi-methodology decision-making

approach is proposed to solve the problem, in which the evaluation of the alternatives is

based on an eigenvalue method, and the importance of the criteria and the priorities of

the alternatives are based on a utility additive method. The numerical results show that

the proposed approach can structure and facilitate the decision-making process and it is

flexible for use in similar cases.

Keywords Multi-criteria decision-making, Additive value model, Eigenvalue method,

Road selection
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1 Introduction

Road development is an important challenge in rural areas requiring forest sustainability (Pic-

chio et al., 2018a). The primary purpose of these roads is to facilitate closeness to the forest

area to ease transportation and optimize resources for extraction (Grigolato et al. (2013); Pic-

chio et al. (2018b)). In recent decades, the importance of forests has added different functions

and purposes for forest roads (Laschi et al., 2016). They help with fire control, damage re-

duction, and improving wildlife habitats (Esmaeili Sharif et al., 2016). In addition, efficient

forest roads have a considerable effect on inhabitants’ lifestyle, and they affect regional eco-

nomic growth, providing social needs, water supply, and recreational activities (Demir (2007);

Hayati et al. (2013)). Even in the current pandemic times, an efficient forest road can facilitate

access to healthcare and play an essential role in saving lives of inhabitants in rural areas.

However, forest road building and development activities pose heavy demands on the environ-

ment, which conflict with the principle of sustainable land use planning (Gumus et al., 2008).

Forest roads increase the volume of traffic, as well as the levels of air and noise pollution. They

also contribute to flora and fauna degradation (Akay et al., 2008), disturb the forest floor,

damage soil structure, produce sediment (Rezaei, 2015), and heighten the risk of unwanted

fires (Esmaeili Sharif et al., 2016). Moreover, in forest road building, it is crucial to address

the safety of workers, transportation of products, and the comfort and economy of vehicle

operations (Hayati et al., 2013). Since the forest road building and its maintenance activities

are costly endeavors, an important decision should be taken before each step. As forest roads

are important for different purposes and functions (Akay, 2006), multiple factors are involved

in choosing the proper location for forest road building. These factors integrate most Cost,

Ecological, Risk, and Opportunity (CERO) aspects into the decision-making process.

The decision-making process of forest road building, such as choosing the location of the

road, is often left to forest managers, who are decision makers (DMs) and who do not necessar-

ily have the required background and tools to make a proper decision. Moreover, because of the

positive and negative effects of forest road building, some of the criteria in the decision-making

process conflict with each other. Therefore, adopting all of them into a single solution is a chal-

lenge for DMs, and an inefficient decision might have undesirable economic and environmental

consequences. This motivates the development of decision-making tools for selecting the loca-

tion of forest roads among different alternatives and help managers to make a proper decision.

This paper uses the eigenvalue method and UTilité Additive (UTA) approach and presents a

multi-methodology decision support framework to address forest road location selection in the
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north of Iran. UTA is one of the Multi-Criteria Decision-Making (MCDM) methods designed to

determine the importance of the criteria and prioritize the alternatives under multiple criteria.

The eigenvalue method is a powerful approach used widely to obtain the priority weight vector

of the criteria and alternatives. The proposed multi-methodology approach can incorporate

different criteria to select the desirable road alternative.

The remainder of this paper is organized as follows. Section 2 reviews the relevant litera-

ture. Section 3 explains the forest road building problem as a MCDM problem, and Section 4

presents the methodology. Section 5 illustrates the use of this methodology in a case study of

forest road selection in Iran. Concluding remarks are provided in Section 6.

2 Background

MCDM methods are used in a broad range of works such as environment management, water

management, business, logistics, energy, and strategy planning (Toloie-Eshlaghy and Homay-

onfar, 2011). Since choosing an appropriate location for forest road building is a part of the

decision-making science, a great body of literature has addressed the use of MCDM approaches

for forest road location selection problems.

Hashemkhani Zolfani et al. (2011) studies the problem of forest road locating considering

technical, transportation, environmental, social, and economic features as the evaluating crite-

ria. The authors address the problem through Analytic Hierarchy Process (AHP) and Complex

Proportional Assessment (COPRAS) methods for a case study that took place in Iran. In an-

other similar case, Hayati et al. (2013) looked at the principle of forest road designing through

the lens of efficiency and the environment and did so by considering slope, soil texture, landslide

susceptibility, erosion susceptibility, distance from faults, lithology, geology, and distance from

the stream. They address the problem by using the Delphi method for selecting the criteria,

AHP for weighting the criteria, and a Geographic Information System (GIS) to identify the

best road alternative.

Both of the previously mentioned papers helped forest managers to make decisions easily,

but none of these papers considered cost criteria in forest management. In this respect Gha-

jar et al. (2013) developed functions to estimate the cost of forest road construction. They

considered cleaning operation, embankment, pavement, grading, culverts, and ditch as the six

main cost elements in the estimation by applying the functions in the optimization process.

The functions are able to estimate the minimum construction cost. In another work by Jaafari
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et al. (2015a) the six main cost elements were used in the forest road alternative evaluation.

Also, they evaluated the problem from the landslide perspective by considering slope, altitude,

plan curvature, slope length, lithology, distance from streams, distance from faults, and rain-

fall. Their approach for finding a solution used PEEGER and GIS to design road alternatives

and to extract the values of alternatives from the susceptibility map. In a different but related

topic by Acar et al. (2017), cost criteria were considered differently in the evaluation. The

most suitable roads were created by using the least-cost path analysis. The authors address

the problem using the fuzzy logic approach. They evaluate the road alternatives by considering

land slope, distance from mainstream, road density, and distance to other roads.

While this paper has some similarities with the applications reviewed in this section, some

important features differ. First, due to the importance of economic and environmental criteria

in forest road building and the importance of building an efficient forest road, CERO criteria

are incorporated in the evaluation. A decision based only on economic criteria may have

undesirable environmental consequences, while a decision based only on environmental criteria

may produce an inefficient forest road without creating any opportunities for the area. In

particular, the aim is to include all the CERO criteria and strike a balance in the decision-

making process. Second, in the existing literature it is assumed that all the quantitative criteria

can be evaluated and such evaluation is given as an input to the problem. In practice, however,

evaluating these criteria is often costly and time-consuming. Hence, it might be impossible

to access the quantitative data due to a lack of budget or other limitations. Thus, this paper

contributes to developing a multi-methodology approach and evaluating the alternatives when

access to the required data is costly. For this purpose, this paper proposes to jointly use the

eigenvalue (Saaty, 1988) and the UTA (Siskos et al., 2016) methods. The eigenvalue method

evaluates the importance of the alternatives with respect to the criteria, and the UTA method

determines the importance of the criteria and the priorities of the alternatives. The use of the

approach is illustrated in a case study on forest road selection in Iran.

3 The problem of forest road building using multi-criteria decision-

making

This paper studies the evaluation of a forest network in the Hyrcanian forest. Hyrcanian or

Caspian forest is a unique forested belt between the northern slopes of the Alborz mountains

and the southern basin of the Caspian Sea. It covers 850 km of terrain across the south coast of
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the Caspian sea.1 According to the World Wild Fund for nature (WWF), the Hyrcanian forest

is one of 200 important ecoregions in the world, so its global significance is well established.2

Also it is the only commercial forest in Iran, and it consists of 15 percent of the total forests

of the country. The region includes a wide variety of plant communities. Specific plant species

cover the Hyrcanian forest, which reflects the importance of environmental protection of this

area for forest management in Iran. In addition, 60 percent of the region’s trees (alive and

dead) are used for timber production (Jaafari et al., 2015b), and the region has significant

industrial importance.

In big countries like Iran and with a high population, a significant number of people live

outside the urban areas. Hence, roads are critical facilities that deal with inhabitants’ eco-

nomics, health, and social welfare. Chelav is one of eight rural districts of Amol county in

Mazandaran Province in the north of Iran. Chelav district consists of seven villages, and ac-

cording to the last national census statistics in 2010, the area’s population is 4327. Chelav

forest is part of the Hyrcanian forest, and it is one of the most important forestry regions with

high-quality commercial timber in northern Iran. There is one main road in Chelav district

with two branches that is the only way for inhabitants to access the closest urban area (Amol)

and meet their economic, educational, and health needs. Figure 1 shows Chelav district, its

geographical location toward Amol city, and the main road for access to the area based on

Google map satellite pictures.

As shown in Figure 1, most of the region is a forest area, and a significant number of the

local population live there. The local inhabitants effectively protect the forest area from fire,

illegal timber harvesting, and illegal hunting. The inhabitants of Chelav, in order to access

the closest urban area (Amol town), have to get themselves to the main road. The forest road

density in the region is very low, which causes accessibility difficulties. The low road density,

challenges in access to health, education, and local market has led to the immigration of a large

number of inhabitants to urban areas. Hence the forest managers decided to increase the forest

road density in the region and provide inhabitants social welfare, improve the regional economic

growth, and motivate inhabitants to stay in the area as well as environmental protection. In

addition, the current pandemic situation and the importance of inhabitants’ accessibility to

hospitals and healthcare is the other motivation for building a road in the area. As shown

in Figure 1, the region is divided into three forest areas. Twelve locations spread around

these areas were selected as potential alternatives for forest road building. Considering the

1https://whc.unesco.org/en/list/1584/.
2https://www.iucn.org/news/world-heritage/201812/iucn-reviews-nine-new-world-heritage-nominations-

2019.
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Figure 1: Chelav geographical location toward Amol and the main road of the area (Source:
Google Map Satellite Pictures)

geographical features of the Chelav district, and due to the spread of the inhabitants in the

forest area of the region, selecting a suitable location for forest road building is a complicated

process. The selection should consider aspects on construction costs, environmental damage

and inhabitants access to the main road.

Several criteria are identified to evaluate the forest roads alternatives, and they are defined

based on the forest road studies in the literature. The identified criteria are categorized into

four main groups: Cost, Ecological, Risk, and Opportunity (CERO). The cost criteria are con-

sidered to increase the benefits of forestry activities and minimize the construction cost. Six

cost criteria are considered for forest road building, and they are defined based on Jaafari et al.

(2015b). Clearing cost (C1) is defined based on the number of trees per hectare along each

road. Embankment cost (C2) denotes excavation and cut-and-fill operation costs, which are

needed for each road. Pavement cost (C3) denotes the cost of surfacing material based on the

length of each road alternative. Grading cost (C4) denotes the cost of each road by considering

the road’s slope and surface. Drainage cost (C5) denotes the cost of excavation of ditches that

are needed to control water along each road. The number of ditches depends on the length

of each road alternative. Significant financial resources are required for maintenance activities
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(Picchio et al. (2019); Mahanpoor et al. (2019); Akay et al. (2020)). Hence, maintenance cost

(C6) denotes routine and periodic costs for rehabilitation of each road and makes it available

throughout the entire year.

Due to the heavy effect of road building on the environment, the ecological criteria are con-

sidered to avoid spoiling the forest structure and to decrease the impact of construction. The

altitude (C7) criterion denotes the height above sea level. Altitude is considered to reduce the

landslide probability for the new forest road (Jaafari et al. (2015a); Pourghasemi et al. (2013)).

Distance from faults (C8) is considered to avoid landslide occurrence. A road alternative with

less fault density around and more distance from the fault line is preferred (Jaafari et al.,

2015a). Distance from stream (C9) measures how far the road is from a stream. Since the

probability of occurring landslide close to stream is high (Jaafari et al., 2015a), a road alter-

native with more distance from the stream is preferred. Ground condition (C10) is considered

to ease the forest road building process. A road alternative with more sandy loam soil texture

and fresh soil moisture is preferable (Jusoff, 2008). The slope (C11) criterion is considered to

avoid mass movement along the forest road. The road with high slope is not suitable for road

building (Mohammadi Samani et al. (2010); Jusoff (2008)).

Since the process of forest road building always entails with some risks, the environmental

pollution criterion (C12) is considered to decrease the air, soil, and water pollution (Demir,

2007). A road alternative with less environmental pollution is preferred. Distance from wildlife

habitats (C13) is considered to avoid partition or destruction of wildlife habitats (Gumus et al.

(2008); Gumus (2015)). Progress to the mountain (C14) denotes the difficulties of access to

it. Soil degradation criterion (C15) denotes the soil erosion and decrease of soil stability. The

amount of soil erosion in the process of forest road building depends on the soil moisture and

texture (Pourghasemi et al. (2013); Gumus et al. (2008)).

The forest road building, despite posing some risks, provides various opportunities. Accessibil-

ity for inhabitants (C16) denotes the ease of access for the local population. A road alternative

that creates access for more number of population is preferred. Economic feature (C17) denotes

the possibility of exploiting forestry productions (Gumus et al., 2008). Safety (C18) denotes the

security usage of the road. Transportation (C19) is the most important function of forest roads,

and here it denotes the safety of the vehicles, ease of transportation for forest products, and

inhabitants’ local products (Gumus, 2015). The description of the criteria are summarized in

Table 1.

Forest road location selection is a critical and complicated decision for forest managers and

DMs. The significance of the problem is indicated by multiple criteria, which are in direct or
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Table 1: Description of the criteria

ID Name of the criteria Group’s name ID Name of the criteria Group’s name
C1 Clearing cost Cost C11 Slope Ecological
C2 Embankment cost Cost C12 Environmental pollution Risk
C3 Pavement cost Cost C13 Distance from Wildlife Risk
C4 Grading cost Cost C14 Progress to the mountain Risk
C5 Drainage cost Cost C15 Soil digradation Risk
C6 Maintenance cost Cost C16 Accessibility for inhabitants Opportunities
C7 Altitude Ecological C17 Economic feature Opportunities
C8 Distance from faults Ecological C18 Satety Opportunities
C9 Distance from stream Ecological C19 Transportation Opportunities
C10 Ground condition Ecological

indirect relationships with economic, environmental, and social welfare factors. Considering

these quantitative and qualitative criteria, the conflict between them is not straightforward. To

illustrate the difficulties of the problem, and the potential conflict between the criteria, consider

cost and environmental impact. Forest road building and maintenance are costly activities in

forestry, and forest managers try to reduce them. However, to have a forest road network

with a good design and proper maintenance, and also low environmental impact, a significant

financial investment is required (Picchio et al., 2018a). By adding risk and opportunity criteria

to the problem, the difficult task of road evaluation for DMs becomes apparent. This is the

motivation to propose a solution for the problem and support the forest road decision-making

process.

By considering the CERO criteria, the forest road location selection is a problem with mul-

tiple criteria needing to prioritize the alternatives, and MCDM methods can be used for the

problem. These decision-making tools are utilized frequently for complicated decision problems

(Hashemkhani Zolfani et al., 2020) and facilitate the evaluation of alternatives when there are

conflicts and interactions between the criteria (Montibeller et al., 2006). UTA (Jacquet-Lagreze

and Siskos, 1982) is one of the MCDM methods, which is based on an additive value model.

The method requires a given ranking for a set of alternatives and infers additive value functions

to the alternative set. The method uses linear programming to access functions and to find

weights for criteria so that the ranking obtained through the functions on alternative sets are

as consistent as possible with the given ranking (Siskos et al. (2014); Siskos et al. (2016)). The

UTA method uses the alternatives’ evaluations with respect to the CERO criteria within the

initial decision matrix. Evaluating alternatives based on the CERO criteria is a costly and

time-consuming process and it requires estimating costs, ground conditions, ground slope, etc.

When it is not possible for DMs to access all of these data, a reliable tool is needed to enable

them to evaluate the alternatives. This paper proposes the use of the eigenvalue method (Saaty,

1988) when it is impossible to access all necessary data. The eigenvalue method is developed
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to obtain the priority weight vector of several criteria and alternatives in the decision-making

process by synthesizing the pairwise comparison matrix (Saaty (1990); Sekitani and Yamaki

(1999)). This paper presents a decision support framework using the eigenvalue-UTA approach

and addresses the evaluation of forest roads in the Chelav forestry region by considering the

CERO criteria.

4 Methodology

This section discusses the framework and the formulation of the eigenvalue-UTA approach.

The eigenvalue method developed by Saaty (1988) is applied to determine the evaluation of

the alternatives based on the CERO criteria. Then the UTA approach, which finds its roots in

Jacquet-Lagreze and Siskos (1982) and is further developed in Siskos et al. (2016), is used to

determine the importance of the criteria and prioritize the road alternatives. For the ease of

presentation, this section contains a verbal explanation of the methods, while the mathematical

details are presented in the appendices. First, Appendix A outlines the notation used for

sets, parameters, and variables needed to build the mathematical formulation of the proposed

approach.

Secondly, the mathematical formulation of the additive value system of the UTA method

is provided in Appendix B, whose explanation in brief is as follows. First, the additive value

function (B.1) obtains the global value of the alternatives, while (B.2) and (B.3) are the nor-

malization constraints.

Note that the marginal and the global value functions have the monotonicity property. Eq.

(B.4) illustrates the monotonicity property in the case of the global value function for two given

roads a and b.

It is noteworthy that in the UTA method, the estimation of the marginal value functions

is done according to a piecewise linear form (see Eqs. (B.5) and (B.6) for details).

The eigenvalue-UTA approach

The combination of the eigvenvalue method and the UTA method derives in an integrated

decision support framework, whose two phases are illustrated in Figure 2. The first phase

consists of three steps, and the second phase includes five steps, as outlined below.

Phase 1

Step 1:
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Figure 2: The framework of the multi-methodology approach
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The criteria and alternatives are identified in this step, then the problem’s structure is

formed.

Step 2:

Pairwise comparison matrices are performed based on the problem’s structure. In pairwise

comparisons, DMs compare alternatives concerning each criterion on a scale of 1-9. On this

scale, 1 represents two alternatives that contribute equally to the objective criterion, and

9 illustrates the DMs favoring one alternative over the other one with the highest possible

validity.

Step 3:

The evaluations of the alternatives are determined by the eigenvalue solution method, which

is detailed in Appendix C. The comparison matrices and the evaluation of the alternatives

concerning each criterion are obtained using Eqs. (C.1)-(C.6). Also, the consistency of the

DMs’ judgement is measured by Eqs.(C.7)-(C.8).

Phase 2

Using the output of Phase 1, five steps are defined as follows based on the UTA method.

Step 4:

By using (C.9), the global values of the alternatives are expressed in terms of the marginal

value function.

Step 5:

Underestimation and overestimation error functions are defined to minimize the difference

between the global value of an alternative and the given ranking to that alternative by the

DMs. The error functions are considered in Eq. (C.10) for each pair of consecutive alternatives

in the ranking given by the DMs.

Step 6:

In this step, Model(1) in Appendix C is solved to minimize the total deviations and to obtain

the weights of the criteria under conditions (C.12)-(C.15). The objective function (C.11) adds

up the error functions of the alternatives. Constraints (C.12)-(C.13) are based on the given

rank by the DMs. Constraint (C.12) is formulated for a pair of consecutive alternatives, which

are given unequal rank, and constraint (C.13) is for a pair of alternatives with equal rank.

Constraint (C.14) ensures that the total weights of the criteria are equal to one. Constraint

(C.15) states the nature of the decision variables.

Step 7:

Model(2) aims at finding the mean additive value function of the optimal solutions, when
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the obtained solution of Model(1) is non-unique.

Step 8:

The Eq. (C.9) is used to obtain the alternatives’ global value and to determine their rank-

ing. The weight of each criterion is obtained using Eq. (C.18).

To sum up, the proposed multi-methodology approach uses UTA methods in Phase 2 to

provide the weight of the criteria and rank the alternatives. In particular, the eigenvalue-UTA

approach assigns a marginal value function to the alternatives and uses optimization techniques

to obtain the preferences objectively. This method takes the DMs’ initial preferences, and min-

imizes the difference between the alternatives’ global value function and the given preferences

by the DMs. Therefore, the method provides the preferences in such a way that the ranking

of alternatives is as consistent as possible with the DMs’ preferences.

5 Case study

The deployment of the methodology explained in Section 4 is illustrated in a case study to

evaluate road selection in a rural area of Iran. This section discusses the numerical results

obtained for this case, followed by a sensitivity analysis.

5.1 Numerical results

The input of the problem is the DMs’ preferences provided through questionnaire surveys, which

I collected jointly with collaborators as part of a work detailed in Hashemkhani Zolfani et al.

(2011). Twenty DMs who have the required knowledge and are aware of forest road problems

participated in the study. Table 2 provides the DMs’ information. Before distributing the final

questionnaire between DMs, five experts with an average of 10 years experience in rural and

forest transportation assessed the workability of the survey. They approved the CERO criteria

and their classification through an interview.

In the first question of the questionnaire survey, the DMs were asked to determine the

direction of the preferences of the criteria. The outcomes of this question are shown in Table

3.

To achieve the study’s objective and to obtain the evaluation of the road alternatives, in

the second question, the DMs were asked to indicate the level of importance of the alterna-

tives by making a pairwise comparison with respect to each criterion. Each DM filled nineteen

94



Table 2: DMs’ profile

Field Frequency Year of experience Frequency
Forest management 4 Under 5 years 3

Geologist 4 5 to 10 years 4
Transportation engineer 3 11 to 15 years 4

Project management 2 15 to 20 years 5
Contractor 3 Above 20 years 4

Forest planner 4

Table 3: Criteria’s preferences direction

Criteria C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
Preferences direction min min min min min min min min max max

Criteria C11 C12 C13 C14 C15 C16 C17 C18 C19 -
Preferences direction max min max min min max max max max -

pairwise comparison matrices using the 1-9 scale. In the last question, the DMs were asked

to use the same scale and give an initial rank to the alternatives. After completing the data

collection, the arithmetic mean was used to combine and aggregate the DMs’ responses. Then,

the comparison matrices (Si
m×m) and the alternatives’ initial ranking were obtained. Also,

equations (C.7)-(C.8) were used to check the consistency rate of the matrices. As an example,

Table 4 illustrates the aggregated comparison matrix among road alternatives with respect to

environmental pollution (S12). The consistency rate of this matrix is 0.073, which is an accept-

able rate. The comparison matrices were normalized using Eqs. (C.2)-(C.5). The normalized

matrix with respect to environmental pollution (C12) is shown in Table 5. The alternatives’

initial ranking is shown in Table 6. Note the combined DMs’ responses are rounded to the

largest integer number. The rest of Phase 1 was implemented through the use of the software

SuperDecision version 3.23.

Table 4: The alternatives comparison matrix with respect to environmental pollution (S12)

C12 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12
a1 1 1/5 1/4 1/4 4 3 1/3 1/3 6 5 1/4 1/4
a2 5 1 4 3 1/3 1/4 3 3 5 1/4 1/4 3
a3 4 1/4 1 3 1/3 1/3 1/4 3 2 2 1/4 1/4
a4 4 1/3 1/3 1 2 3 1/3 1/3 1/5 4 1/4 1/4
a5 1/4 3 3 1/2 1 1/3 4 1/3 1/3 4 3 1/3
a6 1/3 4 3 1/3 3 1 1/3 3 2 4 1/3 1/4
a7 3 1/3 4 3 1/4 3 1 3 5 1/4 1/3 4
a8 3 1/3 1/3 3 3 1/3 1/3 1 3 1/3 4 2
a9 1/6 1/5 1/2 5 3 1/2 1/5 1/3 1 1/3 2 1/2
a10 1/5 4 1/2 1/4 1/4 1/4 4 3 3 1 2 1/2
a11 4 4 4 4 1/3 3 3 1/4 1/2 1/2 1 2
a12 4 1/3 4 4 3 4 1/4 1/2 2 2 1/2 1

3https://www.superdecisions.com/.
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Table 5: The normalized comparison matrix with respect to environmental pollution (C12)

C12 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12
a1 0.03 0.01 0.01 0.01 0.21 0.16 0.02 0.02 0.20 0.21 0.02 0.02
a2 0.17 0.06 0.16 0.11 0.02 0.01 0.18 0.17 0.17 0.01 0.02 0.21
a3 0.14 0.01 0.04 0.11 0.02 0.02 0.01 0.17 0.07 0.08 0.02 0.02
a4 0.14 0.02 0.01 0.04 0.05 0.16 0.02 0.02 0.01 0.17 0.02 0.02
a5 0.01 0.17 0.12 0.02 0.05 0.02 0.23 0.02 0.01 0.17 0.21 0.02
a6 0.01 0.22 0.12 0.01 0.15 0.05 0.02 0.17 0.07 0.17 0.02 0.02
a7 0.10 0.02 0.16 0.11 0.01 0.16 0.06 0.17 0.17 0.01 0.02 0.28
a8 0.10 0.02 0.01 0.11 0.15 0.02 0.02 0.06 0.10 0.01 0.28 0.14
a9 0.01 0.01 0.02 0.18 0.15 0.03 0.01 0.02 0.03 0.01 0.14 0.03
a10 0.01 0.22 0.02 0.01 0.01 0.01 0.23 0.17 0.10 0.04 0.14 0.03
a11 0.14 0.22 0.16 0.15 0.02 0.16 0.18 0.01 0.02 0.02 0.07 0.14
a12 0.14 0.02 0.16 0.15 0.15 0.21 0.01 0.03 0.07 0.08 0.04 0.07

Table 6: Alternatives’ initial ranking

Alternatives a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12
Initial rank 11 3 1 2 6 5 12 4 8 7 10 9

Then, Eq. (C.6) performs the evaluation of each alternative, and Eqs. (C.7)-(C.8) perform

the evaluation of consistency measures. Table 7 illustrates the alternatives’ evaluation with

respect to environmental pollution (g12). Note that the obtained evaluations were multiplied

by 100.

Table 7: Alternatives’ evaluation based on environmental pollution (g12)

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12
g12 14 7 8 8 10 6 5 9 10 6 9 8

The evaluations of the alternatives obtained by the eigenvalue method were used to complete

the performance table, which is shown in Table 8.

In the second phase, the UTA method obtained the weight of the criteria and ranked the

road alternatives. The number of segments for each criterion (αi) was determined, and Eqs.

(B.5)-(B.6) were used to estimate the marginal value function of the alternatives based on each

criterion. Equations (1)-(2) illustrate the use of a piecewise linear function for a2 based on

the environmental pollution. Note C12 is a criterion with minimum preference direction. Here,

α12 is equal to 3, and the worst and best evaluation level of the criterion is [14, 5] (note that,

following the convention in the relevant stream of literature, the upper bound of the interval

appears first and the lower bound of the interval appears afterwards).

gj12 = 14 +
j − 1

3− 1
(5− 14), ∀j = 1, 2, 3 (1)

By replacing j in Eq. (1) the interval [14, 5] with three break-points was determined. Since

the evaluation of a2 based on C12 is between 9.5 and 5, the marginal value function of this

evaluation is determined in Eq. (2).

96



Table 8: Performance table for the road location selection problem

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 g13 g14 g15 g16 g17 g18 g19
a1 7 11 9 13 12 10 10 10 11 11 14 14 10 10 7 7 6 8 8
a2 10 10 10 11 8 9 10 7 8 10 17 7 11 10 9 11 7 10 9
a3 9 8 10 9 13 11 8 7 7 9 9 8 6 8 13 13 10 6 10
a4 9 10 10 8 7 10 9 11 7 7 9 8 9 9 7 10 7 6 11
a5 9 6 7 10 11 11 11 9 10 8 6 10 7 9 9 7 6 9 8
a6 8 10 5 5 10 8 7 11 9 10 8 6 9 7 9 8 9 9 6
a7 8 6 9 8 9 7 9 10 6 8 8 5 10 10 10 6 11 10 6
a8 12 12 6 10 5 8 9 7 8 6 5 9 13 6 5 6 10 8 7
a9 7 5 6 6 5 5 8 9 11 9 7 10 7 11 11 8 9 5 6
a10 11 6 9 6 9 7 7 8 5 3 7 6 7 6 9 5 7 8 11
a11 6 5 9 9 6 10 6 3 10 12 3 9 5 8 8 7 11 11 9
a12 4 7 9 5 5 5 6 7 7 5 7 8 10 8 7 11 7 9 9

u(g212) = u(5) +
7− 5

9.5− 5
(u(9.5)− u(5)) (2)

After estimating the marginal value function for all of the evaluations, Eq. (C.9) was used

to express the global value of the alternatives. Eq. (3) illustrates the global value for alternative

a2. Note that a2 is ranked as a seventh alternative (k = 7) in the initial ranking by DMs.

u(g(a7)) = u(10) + · · ·+ 0.75u(5) + 0.25u(13) + · · ·+ u(9) (3)

Computing all of these steps for all of the criteria and the alternatives is a time-consuming

task. Hence, Phase 2 was implemented through the use of Diviz software version 19.1. 4 The

software used performance table, preferences direction, number of segments, and alternatives’

initial ranking as input data. Then, the UTA method obtained the weight of the criteria and

ranked the alternatives. Figure 3a shows the relative importance of the CERO criteria.

The results show that accessibility for inhabitants (C16) from the opportunity group plays

a vital role in forest road location selection. This criterion directly affects local populations’

welfare, and it was considered as the most important criterion in the results. Easing inhabitants’

accessibility to the closest urban area and facilitating their access to health, education, and

local market is the main objective of this study. Distance from wildlife habitats (C13) is the

second most important criterion to protect wildlife and avoid destroying it. According to the

results, transportation (C19) from the opportunity group is the third most important criterion.

The safety of the vehicles and ease of transportation are critical functions of any forest road.

Progress to the mountains (C14) from the risk group is the fourth most important criterion.

This criterion has an essential role in the time and cost of the road building. The slope of the

ground (C11) from the ecological group is the fifth most important criterion. To avoid mass

movement along the road and decrease maintenance costs, a road with less slope is preferred.

4http://www.diviz.org/.

97



(a) Weights of the criteria by the eigenvalue-UTA approach

(b) Weights of the criteria by the parsimonious AHP approach

Figure 3: Weights of the criteria
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Table 9a summarizes the results on the obtained weights. Each column summarizes the results

for each group. The criteria in each group appear sorted from higher to lower priority, and the

final row shows the total weight of each group.

(a) The order of the criteria in CERO group
by eigenvalue-UTA

Cost Ecological Risk Opportunity
Criteria C3 C11 C13 C16

C2 C8 C14 C19

C1 C7 C12 C18

C4 C9 C15 C17

C5 C10

C6

Total weight 0.2270 0.2446 0.1962 0.3315

(b) The order of the criteria in CERO group
by parsimonious AHP

Cost Ecological Risk Opportunity
Criteria C6 C8 C12 C18

C1 C7 C15 C16
C5 C11 C14 C17
C3 C9 C13 C19
C2 C10
C4

Total weight 0.460 0.294 0.114 0.129

Table 9: The order of the criteria in their group

By considering the total weight of the group, the opportunity is ranked as the most impor-

tant one, and then ecological, cost, and risk are in the following priorities, respectively. This

indicates that creating opportunities for inhabitants, providing their social needs, wildlife con-

servation, ease of transportation, and increasing safety in the study area are the main aims of

the road building. Meanwhile, the managers are looking to reduce the environmental damage

and reduce the risk of road building. Also, they prefer to allocate a more significant share of

the budget to create more opportunities.

The obtained ranking for the alternatives is as consistent as possible with the given initial

ranking in Table 6. The method proposed a3 as the best location for forest road building. Based

on the alternatives’ evaluation in Table 8, this road is the best alternative, when it comes to in-

creasing the accessibility for inhabitants. The road has an acceptable rate in terms of progress

to the mountain and transportation. In addition, it has a moderate ground slope. Road a4 is

ranked as the second alternative. This road has a good position to facilitate accessibility for

inhabitants, and it also has a reasonable distance from wildlife habitats. Although it is not

easy to progress to the mountain from the location of a4, it can ease transportation and safety

of the vehicles. Road a2 is the third alternative. It has a good location to create accessibility

for inhabitants and transportation. It has a high ground slope, and it is not easy to progress to

the mountain from its location. However, it is a far distance from wildlife habitats. Since the

cost group is the third important group among the CERO criteria, the first three alternatives

have a high total cost. The ranking of the other alternatives is according to the Table 6.

The solution obtained with the eigenvalue-UTA method considered all the criteria, all the envi-

ronmental consequences and complexity of the problem, which would otherwise be challenging

to handle manually. Using the proposed approach structures the decision-making process and
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also improves the DMs’ ability to address the problem. Also, they can rely on the decision

process that provides them with solutions that take into account all the criteria and preferences.

5.2 Benchmarking

In this study, there are 12 alternatives. To compare the alternatives based on each criterion,

66 pairwise comparisons are asked. By considering 19 criteria, the number of pairwise com-

parisons increases to 1254 questions in total. Although the eigenvalue-UTA approach requires

fewer preferences information than traditional AHP methods, recent AHP variants require

fewer preferences information. For example, the Parsimonious AHP method (Abastante et al.

(2018); Abastante et al. (2019)) is one of the developed methods based on the AHP that re-

duces the number of preferences and pairwise comparisons needed. The parsimonious AHP

is structured in five steps (Abastante et al., 2019). The first step of the method is the DMs’

direct ranking of the alternatives based on each criterion. In the second step, the DMs select

some reference evaluations and use them in the third step to compare them with respect to

each criterion. In the third step, the original version of the AHP method is used to obtain the

relative importance of the criteria and reference evaluations. In the fourth step, the priorities of

the reference evaluations are checked to be consistent with the given ranking by the DMs in the

first step. In case of inconsistency, the DMs are asked to modify the ranking and the pairwise

comparisons. Then, in the fifth step, the priority of the alternatives that are not referenced

evaluations are obtained by piecewise linear interpolation. More details of the method are

explained in Abastante et al. (2018) and Abastante et al. (2019). By considering four reference

levels for the problem of this paper, the parsimonious AHP method reduces the number of

pairwise comparisons from 1254 to 285. The significant difference between pairwise compar-

isons motivates to test the forest road building problem by the parsimonious AHP method and

compare its results with the results of the eigenvalue-UTA approach.

The alternatives are evaluated on a [3, 17] scale as shown in Table 8. These evaluations are

considered as the DMs’ direct ranking to the road alternatives. Then, four reference levels

γ1 = 3, γ2 = 8, γ3 = 11, γ4 = 17 are determined, and 20 pairwise comparison matrices are

provided. The first comparison matrix is the DMs’ preferences on the 19 criteria. Table 10

shows the priorities of the criteria.

Table 11 illustrates the comparison of the reference levels with respect to environmental

pollution C12. By considering the references’ priorities, their consistency is checked with the

reference evaluations (note that the environmental pollution has minimum preference direction;

see Table 3). Next, the piecewise linear interpolation is used to obtain the priorities of the

100



Table 10: Weights of the criteria by the parsimonious AHP

Criteria C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
Weights 0.0774 0.0712 0.0729 0.068 0.0745 0.0969 0.0647 0.0649 0.0548 0.0532
Criteria C11 C12 C13 C14 C15 C16 C17 C18 C19
Weights 0.057 0.0402 0.0232 0.0235 0.0276 0.0405 0.0261 0.0412 0.022

Table 11: The comparison of the reference levels respect to environmental pollution

C12 3 8 11 17 Priorities
3 1 7 8 9 0.610
8 1/7 1 7 8 0.247
11 1/8 1/7 1 6 0.104
17 1/9 1/8 1/6 1 0.036

road alternatives, which are not in the list of reference evaluations. Equation (4) illustrates

the priority of road a5 on C12. Based on Table 8, the evaluation of a5 on C12 is 10, which

belongs to the interval [11, 8]. The priorities assigned to these references are 0.247 and 0.104,

respectively. Hence, the priority of a5 on C12 is obtained as follows:

u(10) = u(11) +
u(8)− u(11)

8− 11
(10− 11) = 0.151 (4)

The final evaluation of the alternatives is obtained by multiplying their priorities by the

rating of the relevant criterion in Table 10. For comparison purposes, the alternatives’ fi-

nal evaluation is shown in Table 12 for both the parsimonious AHP and the eigenvalue-UTA

approaches.

Table 12: Alternatives’ final evaluation by the parsimonious AHP and the eigenvalue-UTA
approaches

Alternatives Parsimonious AHP Eigenvalue-UTA
a1 1 11
a2 2 3
a3 3 1
a4 4 2
a5 8 5
a6 5 5
a7 10 12
a8 9 4
a9 11 8
a10 12 7
a11 6 10
a12 7 9

The results show that the parsimonious AHP approach prioritizes roads a1, a2 and a3 as

the three top alternatives. Note that roads a2 and a3 are also ranked as top alternatives
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by the eigenvalue-UTA approach. In addition, road a7, which is the worst alternative by

the eigenvalue-UTA approach, is also prioritized among the three worst alternatives by the

parsimonious AHP. Figure 3b shows the relative importance of the CERO criteria by the

parsimonious AHP. The results show that all six criteria from the cost group are prioritized as

the six top criteria. Also, the parsimonious AHP prioritizes all five criteria from the ecological

group in the next five top criteria. Table 9b summarizes the priority of the criteria in their

group and the total weight of each group by the parsimonious AHP. The total weight of the

groups renders that the DMs rank cost as the most important group, followed by the ecological,

opportunity, and risk groups, respectively.

Although there are some similarities between the ranking of the roads, some features of the

methods differ. On the one hand, the parsimonious AHP compares more relevant objects,

as shown in the case of this paper. The method requires less information on preferences

and comparisons. Hence, applying this method implies time reduction, and it reduces the

DMs’ cognitive effort. On the other hand, the eigenvalue-UTA method ranks alternatives more

consistently with the given initial ranking. The parsimonious AHP tries to keep the consistency

of the priorities with respect to the reference evaluations, but in the case of inconsistency, it

might be time-consuming to review the information that the DMs provide. Also, the eigenvalue-

UTA method obtains the weight of the criteria as to keep the consistency in the alternatives’

ranking.

5.3 Sensitivity analysis

Following Lahdelma and Salminen (2001) and Greco et al. (2010), the reliability of the proposed

approach is checked by the sensitivity of the results to the alternatives’ evaluation and varying

the main points of the piecewise marginal value functions. This sensitivity analysis is limited

to the alternatives’ evaluation provided by the eigenvalue method only. Three experiments are

defined to check the sensitivity of the results based on the evaluation of the alternatives. The

evaluation of three top-ranked alternatives (a3, a4 and a2) are changed concerning the two most

important criteria (C16 and C13). Then, the weights of the criteria and alternatives’ ranking

are assessed. The evaluation interval for these criteria is [5, 13]. In the first experiment, the

evaluations of the alternatives are changed to the worst evaluation in the interval. Next, in the

second experiment, the evaluations are changed to the middle evaluation of the interval. Then,

the best evaluation in the interval is considered for the alternatives in the third experiment.

Table 13 shows the sensitivity analysis and the results.

It can be seen that in all experiments, the weights of the criteria and their priorities change.
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Table 13: Sensitivity analysis by considering alternatives’ evaluation

Expt. No. g13 g16 Alternatives’ rank Priority of the criteria
1 a2 5 5 a3 > a4 > a2 C8> C11> C19> C2> C7> C1>

a3 5 5 C14> C18> C10> C16> C4> C17>
a4 5 5 C9> C13> C3> C12> C5> C6> C15

2 a2 9 9 a3 > a4 > a2 C16> C13> C14> C19> C8> C2>
a3 9 9 C1> C11> C18> C3> C17> C7>
a4 9 9 C10> C9> C4> C12> C5> C15> C6

3 a2 13 13 a3 > a4 > a2 C13> C16> C3> C14> C8> C19>
a3 13 13 C18> C9> C17> C2> C1> C7>
a4 13 13 C11> C10> C4> C15> C12> C6> C5

In two out of three experiments, C16, C13, C19, and C14 are prioritized as important criteria.

The final ranking of the alternatives is equally consistent with the given initial ranking, although

the evaluation of the alternatives change. Hence, obtaining the evaluation of the alternatives

plays a significant role in weighting the criteria.

Also, four experiments are defined to investigate the variation of the results by modifying the

main points of the piecewise marginal value functions. Since the main points of the piecewise

marginal value function depend on the number of segments (αi), the experiments are designed

to vary this number in the selected criteria. The most important criteria in each group, which

are C3, C11, C13, and C16 are selected, and the number of segments is modified in different

experiments. Table 14 summarizes the results of these experiments.

Table 14: Sensitivity analysis by considering the main poits of the piecewise marginal value
function

Expt. No. Criteria Group Initial segments Expt. segments Criteria priority in each group
1 C13 cost 3 8 C3>C1>C2>C4>C5>C6

C11 ecological 3 8 C11>C8>C7>C9>C10
C13 risk 9 14 C15>C13>C14>C12
C16 opportunity 9 14 C16>C19>C18>C17

2 C13 cost 3 2 C3>C2>C1>C4>C5>C6
C11 ecological 3 2 C11>C8>C7>C9>C10
C13 risk 9 4 C13>C14>C12>C15
C16 opportunity 9 4 C16>C19>C18>C17

3 C13 cost 3 10 C4>C3>C2>C1>C6>C5
C11 ecological 3 10 C8>C7>C9>C11>C10
C13 risk 9 3 C15>C13>C14>C12
C16 opportunity 9 3 C16>C19>C18>C17

4 C13 cost 3 2 C4>C1>C2>C3>C6>C5
C11 ecological 3 2 C11>C8>C7>C9>C10
C13 risk 9 14 C14>C15>C13>C12
C16 opportunity 9 14 C16>C19>C18>C17

For each experiment, the first and the second columns present the selected criteria and the

group’s name to which the criterion belongs, respectively. The third column shows the number

of segments for each criterion that the DMs determined. The next column shows the number

of segments for each criterion in the experiments. In addition, the last column summarizes the

priority of the criteria in their group. In the first experiment, the number of segments increased
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for all selected criteria. In the second experiment, the number of segments decreased for all

the selected criteria. In the third and fourth experiments, the number of segments increased

for two criteria, and it decreased for two others. Varying the number of segments changed

the weight of the criteria, which in some cases resulted in changes in the prioritization of the

criteria. For example, comparing to the results displayed in Table 9a, in experiment 1, where

the number of segments increased for all selected criteria, the weights of the criteria changed,

and it led to varying the prioritization of the criteria in the group of cost and risk. Although

the importance of the criteria changed in experiment 2, the priority of the criteria is the same

as in Table 9a. Varying the number of segments also led to different priorities of the criteria

in experiments 3 and 4. This illustrates that a different number of segments leads to different

criteria weights, and it might change the priority of the criteria. However, the alternatives’

ranking in all experiments is as consistent as possible with the given initial ranking, and it

confirms the reliability of the ranking by the eigenvalue-UTA method.

6 Concluding remarks

This study proposed a combined use of the eigenvalue method and the UTA method to address

MCDM problems and illustrated the resulting methodology in a case study of road building

selection. The approach takes into account quantitative and qualitative criteria and evaluates

the alternatives. In the case study, the purpose of building the road is mainly to increase the

access for local inhabitants and provide easy access to forest products and their transportation.

These objectives are costly and in conflict with sustainable environmental protection. Hence,

selecting the right road is a difficult task. Most of the existing forest road evaluation models

are limited to either cost or environmental criteria. In this paper, different qualitative and

quantitative criteria on the Cost, Ecological, Risk, and Opportunity (CERO) have been con-

sidered in the alternatives’ evaluations. Since access to quantitative data for this problem is

costly and time-consuming, the eigenvalue method was used to assess the alternatives. Then,

through the UTA method, optimization techniques were used to weight and rank the criteria

and alternatives. The sensitivity analysis confirmed that the eigenvalue-UTA approach is an

efficient and stable decision tool for the problem of selecting the location of a road. Also, the

proposed model has structured and well-defined procedures with a straightforward computation

process.

The multi-methodology approach and the CERO criteria defined in this paper can also be

applied in other problems of similar nature, such as selecting the best area for harvesting wood
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or locating a factory around urban or rural areas. Moreover, using the eigenvalue method in

UTA opens avenues to do future research in methodological aspects. This includes reformulat-

ing the proposed multi-methodology approach by using fuzzy set theory or interval data, and

developing a new MCDM approach that can be used for similar cases.

Appendices

A Notations

The sets, parameters, and decision variables are denoted as follows.

A is the set of alternatives, and I is the set of criteria determined by DMs. These sets are

used to define the parameters and decision variables needed to build the formulation of the

eigenvalue-UTA method. For the sake of simplicity, in this paper, the indices a are used for an

arbitrary alternative in A and i for an arbitrary criterion in I.

The following parameters are defined:

• gi: the evaluation of an alternative on criterion i.

• gi∗: the worse evaluation level of criterion i.

• g∗i : the best evaluation level of the criterion i.

• g or g(a): the evaluation vector of an alternative a on the n criteria as (g1, . . . , gn).

• αi: number of segments, which is the number of points between the worse and the best

evaluation level of criterion i.

• δ: small positive number.

• ϵ: arbitrary small number.

The multi-methodology approach has to decide the alternatives’ evaluation regarding each

criterion, weights of the criteria, and rank the alternatives. The decision variable wij is defined

to decide the weight of criterion i in any break-point j of the interval [gi∗, g∗i ]. Also, two error

functions σ+ and σ− are considered as decision variables. They correspond to underestimation

and overestimation errors, respectively. Table A1 provides an overview of the sets, parameters,

decision variables and the other notations that are used in this paper.
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Table A1: Overview of sets, parameters and decision variables in the eigenvalue-UTA approach

Notations Description

Sets A set of alternatives
I set of criteria

Parameters gi evaluation of an alternative on criterion i
gi∗ worse evaluation level of criterion i
g∗i best evaluation level of criterion i
αi number of segments for criterion i
k given ranking by DMs to alternatives
δ small positive number
ϵ arbitrary small number

Decision wij weight of criterion i in break-point j
variables ui(gi) marginal value function or utility function of gi

pi relative weight of ith function ui(gi)
Wi weight of the criterion i
σ+ underestimation error
σ− overestimation error

Vectors g or g(a) evaluation vector of an alternative on the criteria
λenb eigenvalue vector
G evaluation vector of the alternative

Matrices Si alternatives’ comparison matrix respect to criterion i
Ci the normalized matrix of Si

Indices CI consistency index
RI the average value of CI
CR consistency rate
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B Additive value system

The additive value system of the UTA method as described in Siskos et al. (2016) is summarized

as follows:

u(g) =
n∑

i=1

pi.ui(gi) (B.1)

s.t.
n∑

i=1

pi = 1 (B.2)

ui(gi∗) = 0, ui(g
∗
i ) = 1 ∀i = 1, 2, . . . , n (B.3)

In the additive value system (B.1), ui(gi) is a non-decreasing marginal value function or

utility function of gi, which is normalized between zero and one. Also, pi is the relative weight of

utility function ui(gi). In addition, u(g) or u(g(a)) indicates the global value of an alternative a.

Eq.(B.4) expresses the monotonicity property in the case of the global value function.

u(g(a)) > u(g(b)) ⇔ aPb (preference)

u(g(a)) = u(g(b)) ⇔ aIb (indifference)
(B.4)

Eq. (B.5) below is the piecewise linear form for criterion i in the interval [gi∗, g∗i ]. Here, αi

is the number of segments for criterion i, and the interval is cut into (αi − 1) equal intervals.

The break-point gji is given by the following:

gji = gi∗ +
j − 1

αi − 1
(g∗i − gi∗), ∀j = 1, 2, . . . , αi (B.5)

Note, for a criterion i in the interval [gi∗, g∗i ], the breakpoints of the interval are obtained

by changing the value of j ∈ {1, 2, . . . , αi}. Hence, the marginal value of an alternative a in

criterion i is defined based on Eq. (B.6) as follows:

ui(gi(a)) = ui(g
j
i )+

gi(a)− gji
gj+1
i − gji

(ui(g
j+1
i )−gji ), ∀i = 1, 2, . . . , n; j = 1, 2, . . . , αi : gi(a) ∈ [gji−gj+1

i ]

(B.6)
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Eq. (B.7) is used to transform the variables expressing them in terms of wij as follows:

wij = ui(g
j+1
i )− ui(g

j
i ) ≥ 0, ∀i = 1, 2, . . . , n; j = 1, 2, . . . , αi − 1 (B.7)

C The eigenvalue-UTA framework

Eigenvalue method

In the first phase of the framework, the eigenvalue method by Saaty (1990) is used as follows.

First, in (C.1), Si
m×m is the comparison matrix between alternatives with respect to criterion

i, which is given by the DMs.

Si = [sab]m×m a = 1, 2, . . . ,m; b = 1, 2, . . . ,m; i = 1, 2, . . . , n (C.1)

Eq.(C.2) represents the eigenvalue method. G is the goal and evaluation vector of the

alternative, and λenb is the eigenvalue.

SG = λenbG (C.2)

Eqs.(C.3)-(C.5) represent the normalization process of matrix Si, and Ci
m×m is the normal-

ized matrix.

Ea = [eab]m×1 a = 1, 2, . . . ,m (C.3)

eab =
sab

m∑
a=1

sab

(C.4)

Ci = [eab]m×m a = 1, 2, . . . ,m ; b = 1, 2, . . . ,m (C.5)

In (C.6), the evaluation of each alternative on criterion i is obtained as follows:

gi =

m∑
b=1

eab

m
G = [gi]m×1 (C.6)

Eqs.(C.7)-(C.8) are used to measure the consistency of the DMs’ judgement.
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CI =
λenb −m

m− 1
(C.7)

CR =
CI

RI
(C.8)

CI is the consistency index. CR is the consistency rate. The denominator RI is known as

the average random consistency index, whose value depends on the the size of the comparison

matrix and it is tabulated in previous literature (see e.g. Xiaoxin et al. (2018)). It is commonly

stated that pairwise comparisons of a matrix are acceptable if CR ≤ 0.1.

UTA method

Following Appendix B, the framework now uses the UTA method taking as input the evaluation

of the alternatives computed in the previous steps. Eq. (C.9) below expresses the global value

of the alternatives u(g(ak)), k = 1, 2, . . . ,K in terms of the marginal value function ui(gi), and

the variables wij . Here, k is the given ranking by DMs to alternatives and K is the highest

rank that the DMs can give to alternatives.


ui(g

1
i ) = 0, ∀i = 1, 2, . . . , n

ui(g
j
i ) =

j−1∑
t=1

wit, ∀i = 1, 2, . . . , n; j = 2, 3, . . . , αi

(C.9)

Eq.(C.10) below is defined for each pair of alternatives with consecutive ranking. The σ+

and σ− are underestimation and overestimation error, respectively.

∆(ak, ak+1) = u(g(ak))− σ+(ak) + σ−(ak)− u(g(ak+1)) + σ+(ak+1)− σ−(ak+1) (C.10)

The following model minimizes the total deviations and obtains the weights of the criteria.
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Model(1):

minZ =

m∑
k=1

(σ+(ak) + σ−(ak)) (C.11)

s.t. ∆(ak, ak+1) ≥ δ, ∀k : ak ≻ ak+1 (C.12)

∆(ak, ak+1) = 0, ∀k : ak ≈ ak+1 (C.13)
n∑

i=1

αi−1∑
j=1

wij = 1 (C.14)

wij ≥ 0, σ+(ak) ≥ 0, σ−(ak) ≥ 0, ∀i, j, k (C.15)

The optimal objective value of Model(1) is denoted as Z∗. This value is used in the fol-

lowing model, which obtains the mean additive value function of the optimal solutions.

Model(2):

maxui(g
∗
i ) =

j−1∑
t=1

wit, ∀i = 1, 2, .., n; j = 2, 3, .., αi (C.16)

s.t. (C.12) − (C.14)
m∑
k=1

(σ+(ak) + σ−(ak)) ≤ Z∗ + ϵ (C.17)

The following Eq. (C.18) is solved to obtain the weight of the criteria Wi.

Wi =

j−1∑
t=1

wit ∀i = 1, 2, . . . , n; j = 2, 3, . . . , αi (C.18)
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