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Abstract

In this paper the result of Adrian, Etula, and Muir (2014) is reexamined.

They propose a model with financial intermediary leverage that is able to

price a set of portfolios remarkably well. In this paper the model is estimated

with different portfolios as test assets. This is done to account for recent

critiques of the use of size and book-to-market sorted portfolios as test assets.

This paper uses two new sets of portfolios, industry portfolios and portfolios

sorted on size and pre-formation leverage beta. The proposed model with

financial intermediaries is not able to explain the variation of cross-sectional

average returns on the two new sets of portfolios.
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1 Introduction

In this paper I will reexamine the result from Adrian, Etula, and Muir (2014).

They find that a simple one-factor model with shocks to financial intermedi-

ary leverage is able to explain the cross-sectional variation in average returns

of a set of portfolios remarkably well. They use 25 size and book-to-market

sorted portfolios, 10 momentum portfolios and 6 bond portfolios as test as-

sets. In this paper, I redo their analysis with other portfolios as test assets.

I use two new sets of portfolio compared to Adrian et al. (2014), industry

sorted portfolios and portfolios sorted on size and their pre-formation lever-

age beta. Both new sets of test portfolios give results that are significantly

different from the result from the aforementioned paper. I compare the re-

sults with the three-factor model of Fama and French (1993) as a benchmark.

The model with intermediary leverage has similar performance as the bench-

mark for the original analysis. When I redo the analysis with new portfolios,

I find little evidence for the proposed model with intermediary leverage in

the industry and size and leverage portfolios.

Financial intermediaries are actors who are likely to be closer to the

assumptions in asset pricing theory than individual consumers. Financial

intermediaries are present in most markets and invest based on sophisticated

models and analysis. One example is that banks can often take short posi-

tions with securities held in customer’s margin accounts and therefore do not

need to borrow the security to take a short position. In times of distress, such

opportunities might disappear if the clients withdraw their funds. Security

broker-dealers in the United States are subject to regulations from the Se-

curities and Exchange Commission (SEC) that put constraints on their cap-

ital structure. The standard requirement in the ”net capital rule”(SEC rule

15c3.1) is that its aggregate indebtedness should not exceed 1500% of their
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capital (net capital must exceed 62
3
% of their aggregate indebtedness). From

2004, security broker-dealers have under some circumstances been allowed to

use internal risk models to determine if they fulfill the capital requirement.

The one-factor model is related to several recent theoretical papers where

the discount factor of intermediaries can be tied to intermediary balance

sheets. In the theoretical literature, the intermediaries are often modeled

as risk-neutral actors who face risk related to funding constraints. Their

leverage can be proxy for funding constraints. In the theoretical models, the

marginal value of wealth for intermediaries is larger when their funding con-

straints are tighter. They do not need to be financially constrained today,

but it might also be related to the risk of becoming financially constrained

in the future.

In the empirical asset pricing literature there are a large amount of pa-

pers that tries to explain portfolio returns with linear factor models. A large

amount of these papers use 25 size and book-to-market portfolios obtained

from Kenneth French’s website as test assets. Earlier research has found

several combinations of factors that are able to explain the returns of these

25 portfolios. Recent papers have questioned these results and showed that

the use of these portfolios can lead to wrong conclusion. Problems with these

portfolios are both related to their factor structure and how they are con-

structed based on characteristics. One proposed solution to these problems is

to use other, more appropriate test asset to evaluate a proposed asset-pricing

model.
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2 Literature review

2.1 Adrian, Etula, and Muir (2014)

Adrian et al. (2014) use information from financial intermediaries’ balance

sheets to explain the cross-sectional variation of asset returns. Their main

result is that they are able to explain the cross-section of average returns for

a set of portfolios remarkably well. They use a parsimonious model where

the stochastic discount factor is given by:

mt = 1− bLevFact (1)

where LevFac is a proposed factor of shocks to intermediary leverage1.

They use the leverage factor to explain 25 portfolios sorted by size and book-

to-market, 10 momentum portfolios and 6 bond portfolios. The model is com-

pared to a benchmark model with the three factors from Fama and French

(1993), the momentum factor and a principal component used to price the

bond portfolios. The two models offer comparable performance with sta-

tistically insignificant estimated intercept close to 0, similar R2 and similar

mean absolute pricing errors of the portfolios. As robustness they construct

a traded leverage-mimicking portfolio to be able to do time-series tests of

their model. They are able to create the leverage-mimicking portfolio with

monthly data over a longer time-period. The leverage-mimicking portfolio

has comparable results from the time-series regressions as the model with

the three Fama-French factors and the momentum factor. They compare the

Sharpe-ratio of the leverage mimicking portfolio to the maximum Sharpe-

ratio from the four factors and find that it has higher Sharpe-ratio than each

of the four factors and almost as high as the maximum. They also create

1A detailed description of the construction of the leverage factor can be found in the

data description part of this paper.

11



portfolios sorted on their leverage factor. They find that average returns are

monotonically increasing with increased leverage beta.

2.2 Adrian and Shin (2010)

Adrian and Shin (2010) examine the relationship between asset growth and

leverage growth for different groups of actors. In the case of passive balance

sheet management, we would expect to see a mechanical negative relationship

between asset growth and leverage growth. This is what they observe for

asset growth and leverage growth for households. For non-financial firms

and commercial banks the correlation is close to 0. For financial brokers

and dealers, there is a clear positive correlation between asset growth and

leverage growth. This is evidence for active balance sheet management in

financial brokers and dealers whereas households have more passive balance

sheet management.

2.3 Shleifer and Vishny (1997)

An early theoretical paper that deals with funding constraints in asset pric-

ing is ”Limits to Arbitrage” by Shleifer and Vishny (1997). Their model

consists of three time periods, t={1,2,3}. At time 1 there exists an arbitrage

opportunity with an asset priced lower than the certain time 3 value. They

abstract from problems concerning interest rate and risk at time 3. At the

intermediate time period there is positive probability that the mispricing will

become more severe. In their model, there are risk-neutral arbitrageurs who

are financially constrained with funding based on previous performance. If

the mispricing increases in time 2, the arbitrageurs' previous performance

will deteriorate and their investors will withdraw funds. The implication in

their model is that some arbitrageurs will be forced to reduce their holding of

the mispriced asset when the mispricing is increased. The leverage factor in

12



Adrian et al. (2014) may be a proxy for the financial constraints of financial

intermediaries. In Shleifer and Vishny (1997) the marginal value of wealth

will be higher when the financial constraints are stronger.

2.4 Intermediary asset pricing

Figure 1: Intermediary Asset pricing:The

In his presidential address, Cochrane (2011) have a short discussion of

intermediated markets as markets with frictions. Figure 1 is taken from his

explanation of intermediated markets. Investors invest through intermedi-

aries. Investors finance the intermediaries with different types of claims such

as debt and equity. There may be problems with asymmetric information is

these relationships that can affect asset prices. For instance, in times when

the debt is high, the managers of intermediaries will try to avoid bankruptcy

by selling risky assets. This is something that may be done by several man-

agers at the same time. This can result in so called ”fire sales” and ”liquidity

spirals”. The dotted line is used to describe how large investors may enter in-
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termediated markets if the prices deviate too far away from the fundamental

value. Cochrane (2011) suggest that trying to tie prices or discount-rate vari-

ation to central items in models with financial intermediaries might be more

productive than arguing over puzzling patterns. He mentions one possible

way to do this can be to use balance sheet data from leveraged intermediaries.

There are several theoretical models where financial intermediaries influ-

ence asset prices. In Brunnermeier and Pedersen (2009), they model risk-

neutral intermediaries subject to financing constraints. The model is con-

cerned with market liquidity and funding liquidity of traders. Traders may

experience initial losses that give funding problems. This requires them to

reduce their positions. Under some circumstances, the result can be liquidity

spirals where liquidity dries up when several traders have to reduce leverage.

The resulting stochastic discount factor will be mt+1 = φt+1

Et[φt+1]
where φt+1

is the Lagrange multiplier on the funding constraint at time t+1. The La-

grange multiplier is monotonically decreasing in trader leverage. Leverage of

financial intermediaries can be used as a proxy for funding conditions and

Adrian et al. (2014) use this as a justification for their one-factor model with

financial intermediary leverage. They propose that φt can be approximated

by:

φt ≈ a− b ln(Leveraget) (2)

Another approach is Danielsson, Shin, and Zigrand (2010) who also con-

sider risk-neutral intermediaries who are subject to VaR-constraints. In

their model, traders risk appetite may be time varying because of the VaR-

constraints even if preferences are constant. In equilibrium, the returns of

assets depend on the risk appetite of the traders and through the VaR-

constraints, the leverage of the traders enter the stochastic discount factor.

14



Examples of other theoretical approaches are Brunnermeier and San-

nikov (2014) and He and Krishnamurthy (2008) where financial intermediary

wealth, not leverage are driving asset prices. Brunnermeier and Sannikov

(2014) develop a macroeconomic model with two types of agents, experts

and households. In their model, physical capital can be traded in markets

and the two types of agents wealth constraints determine equilibrium prices.

Financial intermediaries exist due to problems of asymmetric information

and the model predicts that financial intermediary wealth is a proxy for sys-

tematic risk. The model by He and Krishnamurthy (2008) has specialized

intermediaries who invest in risky assets and riskless assets and households

who invest through the intermediary or in the riskless asset similar to Fig-

ure 1. In their model, the intermediaries have constraints with raising equity

funding. The result in their model is that when financial intermediary capital

is low, losses for financial intermediaries have a strong effect on risk premia.

If their capital is high, the effect of losses on risk premia is small. Thus

the intermediary capital, not leverage, is the variable driving differences in

the state prices. Empirically Adrian et al. (2014) do not find evidence that

financial intermediary wealth is driving asset prices.

2.5 Lewellen, Nagel, and Shanken (2010)

Lewellen, Nagel, and Shanken (2010) observe that many recent asset pricing

models are apparently successful at explaining the size and value premia.

These models are often unrelated and therefore they cannot all be correct.

Their suggestion is that the problem is related to the test assets. Many

papers use the 25 portfolios sorted on size and book-to-market obtained from

Ken French’s website. These portfolios have desirable properties such as a

large spread in the cross-sectional average returns. In addition to this, the

portfolios are easily accessible to use for research. Their main argument is
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that most of the variation in these 25 portfolios is explained by the three

factors from Fama and French (1993). If you take a new factor model where

the factors are correlated with the factors from Fama and French (1993), but

not with the residuals, then the new model will also produce large R2. They

provide a simple proof of the problem. Assume the true model is:

R = BF + ε (3)

Where R is a vector of average excess returns, B ≡ cov(R,F )var−1(F ) is

a matrix of the loading of the risk factors, F is the cross-sectional risk premia

and E[ε] = 0. Since this is the true model it has R2 = 1 if we do not consider

the sampling variation. A proposed new model, P, with the same number of

risk factor as the true model is estimated as:

µR = z + Cλ+ α (4)

Their observation is that if cov(F, P ) is nonsingular and cov(P, ε) = 0,

the new model will also have R2 = 1 and apparently be able to perfectly

explain the cross-sectional variation regardless of how little correlation there

is between the true model and the proposed model. A model that explains

very little of the time-series variation in returns may look very good in the

cross-sectional tests. We have cov(R,P)=Bcov(F,P). The factor loadings on

P is then:

C = cov(R,P )var−1(P ) = Bcov(F, P )var−1(P ) (5)

If Q is defined as Q = cov(F, P )var−1(P ) we have B = CQ−1 and

µ = CQ−1µF = Cγ where γ = Q−1µF . Thus we have a new model that

also has R2 = 1 and the proposed model is apparently successful at explain-

ing the variation cross-sectional average returns. The risk premia in the

proposed model γ is not necessarily equal to the risk premia of the factors P.
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The crucial assumption here is that cov(P, ε) = 0. In the 25 size and book-to-

market portfolios, the 3 factors from Fama and French (1993) explain most

of the variation and ε is small. Thus they argue that it is not surprising that

many proposed factor models appear to explain these returns. Therefore it is

not a large hurdle for a factor model to explain these portfolios. Any model

where the factors are correlated with the SMB and HML2 and not with ε will

likely produce a high R2.

They provide simulation-based tests of their argument and find that ran-

dom simulated factors often provide strong test diagnostics. Figure 2 is from

their Figure 1 and shows the R2 from their random factors. The problem is

not as severe for 1-factor models, but the 95th percentile still gives a very

large R2. They also simulate factors with mean 0 and thus the theoretical

price of the risk factor should be 0 and the model should not have any ex-

planation power. This still gives high R2 for a large fraction of the simulated

factors.

The conclusion from their analysis is that asset pricing tests can be mis-

leading where models with good test diagnostics(high R2 and small pricing

errors) do not necessarily provide strong evidence for a model. They offer

some suggestions to improve empirical test. Among them is the use of other

portfolios than just size and book-to-market sorted portfolios such as port-

folios sorted by industry or factor loading. Another suggestion is to take

theoretical restrictions such as magnitude of price of risk and intercept into

consideration. Other suggestions are to use GLS rather than OLS because it

has more informative test diagnostics in their simulation studies or to create

confidence intervals of the test diagnostics.

2There is little variation in βmkt among the 25 size and book-to-market portfolios and

thus the variation in cross-sectional average returns is mainly explained by SMB and HML.
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Figure 2: The figure shows R2 with simulated factors from Lewellen et al. (2010) where

the 25 size and book-to-market portfolios are used as test assets.

The paper is relevant because the original analysis use the 25 size and

book-to-market portfolios in addition to 10 momentum portfolios and 6 bond

portfolios. The model of Adrian et al. (2014) only has one factor and is thus

less affected by the problems discussed in Lewellen et al. (2010) than models

with more factors.

2.6 Daniel and Titman (2012)

Daniel and Titman (2012) also consider the problem that there are several

factor models with economical motivated factors that are able to explain

variation in average returns of portfolios. The factors in these models are

only weakly correlated and as a result, they would give very different pricing

kernels. They argue that the problem is related to how the portfolios are

constructed.
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When securities are sorted in portfolios based on characteristics, most of

the variation in factor loadings that is independent of the characteristics is

diversified away. The only variation in factor loadings that is left is the vari-

ation that is correlated with the characteristics. Since the characteristics are

correlated with returns, the proposed factor loadings will be correlated with

returns. The result will be that it appears as if the proposed factor loading

is able to explain variation in average returns of the portfolios even when it

is only correlated with returns through its correlation with the characteris-

tics. They argue that with portfolios sorted on characteristics, asset-pricing

tests have very little power to reject a proposed model if what they call the

characteristic model is correct. In the case of portfolios sorted on size and

book-to-market, the characteristic model would be that variation in average

returns depends on size and book-to-market.

They simulate a simple model to explain the problems related to different

ways of sorting portfolios. In their simulated model they have returns that

vary with book-to-market value. In addition they have market betas that

are correlated with book-to-market value. The market betas are only corre-

lated with returns through their correlation with book-to-market value. As

the null hypothesis they estimate CAPM on the simulated data with three

different ways of sorting the portfolios. They use two ways of sorting based

on a single variable. They sort on book-to-market and on market beta. Both

approaches result in a clear linear trend with a statistically significant slope

when they estimate the CAPM. The linear trend is only a result of the cor-

relation between book-to-market values and market beta. The third way of

sorting portfolios is to first sort on book-to-market values, then they sort on

market beta within each group from the first stage. This creates variation in

market beta that is almost independent of book-to-market value. When they
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estimate CAPM on these portfolios, the results are close to the true model

with a slope of 0.

They also reexamine two specific models with where they use more suit-

able portfolios. They use both portfolios created specifically to test the

hypothesis in the earlier analysis and industry portfolios. When they create

portfolios to test a hypothesis, they sort stocks based on size, book-to-market

and pre-formation correlation with the factor. With this procedure, they are

able to create variation in correlation with the proposed factor that is inde-

pendent of size and book-to-market. When they use industry portfolios they

are also able to get variation in both average returns of the portfolios and

in the factor loadings. The results for both reexamined models is that the

results look very different when they use different test portfolios.

They suggest to use test assets that span a higher dimensional subspace

of the return space than the 25 size and book-to-market portfolios. The

paper is related to Lewellen et al. (2010). Both articles argue that the low

dimensionality of the 25 size and book-to-market portfolios cause problems.

Lewellen et al. (2010) show that the result of the low dimensionality is that

it will not be very difficult to price these portfolios with other factor models.

Daniel and Titman (2012) argue that the way these portfolios are created

diversifies away much variation and makes it difficult to distinguish between

a proposed model and what they call the characteristic model. Daniel and

Titman (2012) is relevant to this paper because it shows the importance of

having independent variation in the correlation with the proposed factors.
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3 Asset pricing theory

To test an asset pricing model we need to know what implications it has

for the empirical observations. We can use the stochastic discount factor

framework to do this.

3.1 Stochastic discount factor

The price of an asset is given by discounting all future dividends by the

stochastic discount factor. The stochastic discount factor is not known and

different asset pricing models will give different stochastic discount factors.

pit = Et[mt+1(p
i
t+1 + dit+1)] (6)

In the absence of arbitrage, the price of asset i at time t is given by (6) where

mt+1 is the stochastic discount factor from time t to t+1. The price at time

t is pt and the dividend at time t is dt. This can be rewritten in terms of

returns by dividing by pit and we get:

1 = Et[mt+1R
i
t+1] (7)

This relationship also holds for the risk-free asset. From this property,

we can rewrite (7) and get:

0 = Et[mt+1(R
i
t+1 −R

f
t+1)] (8)

This can be rewritten as:

Et[R
e,i
t+1] = −

Covt(mt+1, R
e,i
t+1)

Et[mt+1]
(9)

Re,i
t+1 is excess return over the risk-free rate at time t+1 for asset i.
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3.2 Linear factor models

The form of the stochastic discount factor is based on the asset-pricing model.

For linear factor models, the stochastic discount factor is an affine function

of the factors mt+1 = at− btft+1 where ft+1 is a vector of the factors at time

t+1. For CAPM, ft+1 will be the return of the market portfolio at time t+1.

Conditional factor models have at and bt that may be time varying. If at

and bt are constant, we have an unconditional asset pricing model. Adrian

et al. (2014) propose an unconditional factor model with their leverage factor.

From (8) we observe that we can multiply mt+1 with any scalar without

affecting the results. Thus we can normalize a to 1 to simplify the expression.

When we have an unconditional one-factor model we can rewrite 9 and get:

Et[R
e,i
t+1] = −

Covt((1 + bft+1), R
e,i
t+1)

Et[1 + bft+1]
=
bCovt(ft+1, R

e,i
t+1)

bV art(ft+1)

−bV art(ft+1)

Et[1 + bft+1]
(10)

This can be rewritten as:

Et[R
e,i
t+1] = βitλt (11)

Where we have the vectors βit =
Covt(ft+1,R

e,i
t+1)

V art(ft+1)
and λt = −bV art(ft+1)

Et[1+bft+1]
. When

we have a multifactor model, the expressions for the loadings of the risk

factor on the securities and the price of risk is not exactly as for one-factor

models, but equation (11) still holds with βit and λt as vectors rather than

scalars. The empirical approach in the next section assumes that both the

βit and λt are constant over the time period. This means that it is assumed

that the distribution of the factors and the covariance with excess return on

the assets are constant over the time period. Ghysels (1998) consider the

problems related to time-varying factor loadings. If we estimate a model

with constant factor loadings when the factor loadings are time varying, the

pricing errors will become larger.
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4 Empirical strategy

4.1 Cross-sectional regressions

If the factor had been traded, it would have been possible to use either

time-series regressions or a cross-sectional regression to evaluate the model

performance. The leverage factor is not traded and therefore we cannot use

time-series regressions to evaluate the model. When the factor is not a traded

asset, we can use the two-stage method that gives the same results as using

the procedure from Fama and MacBeth (1973) with constant betas. The first

step is to estimate the factor loadings with time-series regressions for each

portfolio:

Re,i
t = α + βift + εit, t = 1, · · · , T ∀i (12)

Re,i
t is the excess return of portfolio i at time t, ft is the vector of proposed

factors. Then we use the estimated betas to estimate the model from (11).

The first step estimates the loading of the risk factors on the different test

assets. The second step estimates the price of the different risk factors.

The theoretical model (11) for expected excess returns do not contain an

intercept. When we estimate our model we could impose this structure when

we estimate

E[Re,i
t+1] = λ′βi + εi, i = 1, · · · , N (13)

and this would give more efficient estimates of λ. If we include an in-

tercept, the intercept should be close to 0 and not statistically significant

different from 0 if our model is correct and the market is efficient. Fama

(1970) showed that we cannot distinguish between the two if we reject the

null hypothesis. In the analysis, the model has been estimated with an inter-
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cept to be able to test the theoretical restriction that it should be 0. If the

factors are traded assets, λ should theoretically be the mean of traded factors.

The estimates from (13) is given by (14) where Σ = Cov[εtε
′
t] and Σf =

Cov[ft, f
′
t ] are the covariance matrices of the errors and the factors3. The

standard errors of the estimated coefficients account for correlated errors in

the cross-section, but do not account for time-series correlation or the fact

that the factor loadings are estimated in the first stage regression. The lack

of correction for time-series correlation is usually not a problem because there

is little time-series correlation in stock returns. Shanken (1992) shows how

to correct for estimated factor loadings. In Fama and MacBeth (1973) the

model is estimated in a three-step procedure. The first step is the same as in

the procedure used in this paper. The second step estimates the price of risk

for each period based on the factor loadings from the first step. The third

step averages the price of the risk factors over time and creates standard

errors based on this average.

We can usually not say if the errors are too large if estimate a regression,

but when we use the two-stage approach, the first stage gives information

that enables us to do this. We can use the additional information from the

first stage regression to test if the errors are statistically too large. We can

calculate the statistic:

3The estimates of the price of the risk factors are calculated by:

λ̂ = (β′β)−1β′E[Re]

σ2(λ̂) =
1

T
[(β′β)−1β′Σβ(β′β)−1 + Σf ]

(14)

The formulas for the price of risk and its variance are from Cochrane (2005). σ2(λ̂) has

the variance of the coefficients along its diagonal.

24



ε̂′cov(ε̂)−1ε̂ ∼ χ2
N−K (15)

The statistic has a chi-square distribution with N-K degrees of freedom

under the null hypothesis that our model is correct. N is the number of

test asset and K is the number of estimated coefficients. If the statistic is

sufficiently large, we can reject the null hypothesis that the pricing errors are

not too large. cov(ε̂) is given by:

cov(ε̂) =
1

T
[I − β(β′β)−1β′]Σ[I − β(β′β)−1β′] (16)

4.2 Economical vs. statistical rejection

The procedure used to test the model gives both economical and statistical

ways to test whether it is a good model. Economically we would like to see

an intercept close to 0, the price of risk with similar sign as predicted by

theory or close to the mean if the factor is a traded asset, a large R2 and

small pricing errors. Statistically we can test if the intercept is statistically

different from 0 and if the pricing errors are too large with the χ-statistic. In

some situations, we might have opposite conclusion. One case is if we have a

model that is close to the true model and also estimated precisely. Since it is

estimated precisely, we may still reject the null hypothesis that the intercept

is 0 when it deviates a little from 0. The other case is if we have a poor

model, but also large standard errors of the coefficients. We may have an

intercept that is not close to 0, but not statistically different from 0. The

same may happen in the χ2-test used to test if the pricing errors are too large.

In statistical hypotheses testing we may have type I or type II errors. A

type I error is an incorrect rejection of a correct null hypothesis. A type

II error is the opposite where we keep an incorrect null hypothesis. We can
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usually calculate the distribution of a test statistic under the null hypothesis.

This enables us to decide the maximum probability of a type I error we can

accept. This is more difficult for type II errors because we can usually have

infinitely many possible distributions other than the distribution under the

null hypothesis and the probability for a type II error depends on which of

these unknown distributions is the correct. There is a relationship between

type I and type II errors where we can reduce the probability of one by in-

creasing the probability for the other type of error. The power of a test is

defined as 1 minus the probability of a type II error.

In the tests used in this paper, the null hypothesis in the statistical tests

are that the model is correct. In the test with the intercept, the null hy-

pothesis is that the intercept is 0 and the test of the pricing errors has a null

hypothesis that all pricing errors are 0. Thus we might get results that look

better in a statistical sense if our estimates have less power to reject our null

hypothesis. To be able to be better able to test our model, we should use

test assets that give more power to reject the null hypothesis in situations

where it is incorrect. Daniel and Titman (2012) argue that many proposed

models perform well because the empirical analyses lack power to distinguish

between the null hypothesis and the characteristic model.

4.3 Choice of test assets

The test used in this paper assumes that both loadings of the risk factors to

each test asset and the price of risk is constant. For many firms, the loadings

of the risk factors will change over time. For instance, a firm may be a small

firm in a new industry in the first part of the series and a large firm in a

mature industry in the last part of the series. Such a firm is likely to have

different exposures to risk in the early part of the series compared to the last
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part of the series. One way to reduce such problems is to sort stocks into

portfolios where the portfolios are less exposed to time-varying exposures to

the risk factors. If we sort into portfolios, we might reduce such problems

if the firms who change risk also moves to a new portfolio or if the changes

within a portfolio cancels each other.

In the first stage of the regression, the loadings of the risk factors are

estimated and therefore there are estimation errors. If the estimation errors

of the different assets are independent, the estimation error of the portfo-

lio will approach 0 as the number of assets approaches infinity(Huang and

Litzenberger, 1988).

Ang, Liu, and Schwarz (2008) shows that grouping stocks into portfolios

do not increase the efficiency in the cross-sectional analysis. They show an-

alytically that more precise estimates of the loadings of the risk factors do

not result in more precision in the estimates of the price of the risk factors.

The grouping of stocks into portfolios reduce the variation in the loadings

of the risk factors and causes less precise estimates of the price of risk factors.

There are different ways of sorting portfolios. One way is to sort portfolios

based on observable characteristics such as size, book value divided by market

value or industry. Another way is to sort them based on their beta with a

proposed factor. When we sort securities into portfolios we want to create

portfolios with variation in returns and loadings of the proposed risk factors

to be able to estimate the price of risk with precision.
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5 Data description

5.1 Leverage factor

The leverage factor is created from aggregate balance sheets of security

broker-dealers. Security broker-dealers are agents who engage in trading se-

curities, either for its own account or on behalf of its customers. Among the

broker-dealers are subsidiaries of investment banks and commercial banks.

Broker-dealers are required to file financial and operational reports(FOCUS-

reports) to the SEC. The FOCUS-reports must be filled at least quarterly.

The Federal Reserve Flow of Funds report contains the aggregate balance

sheet of broker-dealers from the FOCUS-reports in Table L.129. Table 1

shows the aggregate balance sheet of broker-dealers at 2010Q4. It is similar

to the balance sheet shown in Adrian et al. (2014), but it has been updated

with both the asset and liability repurchase agreements(repos) rather than

just net repos4. The Flow of Funds data series starts in 1952Q1, but the first

period of the series have some properties that raise suspicions. In the first

part of the series, the broker-dealer equity is negative and for most of the

early part of the series, the leverage is very high. From the last part of the

1960s the leverage reaches more reasonable magnitudes and becomes more

stable. Therefore Adrian et al. (2014) use the series between 1968Q1 and

2009Q4. The leverage time series is shown is Figure 3 where the blue line

shows the leverage with full specification of repurchase agreements and the

red line shows leverage with net repurchase agreement specification.

The leverage factor is constructed from the Federal Reserve Flow of Funds

Table L.129. Leverage is calculated as:

4The result of the cross-sectional regressions are not sensitive to the specification of

repurchase agreements used to calculate leverage.
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Figure 3: The plot shows the aggregate leverage of financial brokers-dealers from

1968Q1 to 2009Q4. The red line shows leverage with only net repo specification. The blue

line use the more detailed specification with both the assets and liabilities that make up

net repo and is therefore never smaller.

Leveraget =
Total F inancial Assetst

Total F inancial Assetst − Total Liabilitiest
(17)

The leverage factor is calculated as:

LevFact = [∆ln(Leveraget)]
SA (18)

The leverage factor has been seasonally adjusted using quarterly dummies

and expanding window regressions. The reason to use expanding window

regressions is to create the leverage factor with information available at time

t. There is some evidence in the data that there are seasonal effects in the

leverage factor if we do not adjust for seasonality. If one-way ANOVA is

performed on the leverage factor without seasonal adjustment grouped by

quarter, the p-value is 3.6% and we would reject a null hypothesis of no

seasonal effects at a 5% significance level. Adrian et al. (2014) consider

different ways to deseasonalize but prefer the expanding window regression

because of its simplicity compared to for instance X11-filter approach. Their

results are robust to the different procedures to deseasonalize the data that
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Table 1: Assets and liabilities of Security Brokers and Dealers 2010Q4

This table presents the aggregate balance sheets of security broker-dealers at 2010Q4 from

the Flow of Funds. The table gives the values in billions of USD. It is similar to the

balance sheet presented in Adrian et al. (2014), but also includes the updated specification

of repurchase agreements.(Source: U.S. Flow of Funds Table L.129.)

Assets Liabilities

Cash $96.9 Repurchase agreements $1833.2

Repurchase agreements $1428.5 Corporate and foreign bonds $129.7

Credit market instruments $557.6 Trade payables $18.1

Commercial paper $36.2 Security credit $936.6

Treasury securities $94.5 Taxes payable $3.6

Agencies $149.8 Miscellaneous liabilities $480.7

Municipal securities $40.0

Corporate and foreign bonds $185.6

Other $51.4

Corporate equities $117.2

Security credit $278.2

Miscellaneous assets $1,025.3

Totals $3503.6 $3401.9

Totals (old specification) $2,075.1 $1,973.4

they consider. When we use a dataset that is expanding over time as with

expanding window regressions we do not ensure that there are no seasonal

effects left in the deseasonalized data. When the same one-way ANOVA is

performed on the deseasonalized leverage factor the p-value is 6.1% and there

is almost as strong evidence for seasonality in the deseasonalized leverage

factor. To initialize the data, Adrian et al. (2014) have used observations

from 1965Q3. Seasonal adjustment at time t is done by running the regression

on observations from 1965Q3:
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Levfaci =
4∑
j=1

βjD
j
i (19)

Then the seasonal adjusted factor is calculated by:

LevFacSAt = Levfact −
4∑
j=1

β̂jD
j
t (20)

Di is a dummy variable that takes the value 1 in quarter i and 0 other-

wise. When I redo this procedure, I obtain a variable that has correlation

of 0.96 with the leverage factor used by the authors. The main deviations

are in the last couple of time periods and may be a result of adjustments of

the dataset released after they obtained the data. If the two are compared

without using the last 10 observations, the correlation is in excess of 0.99.

This may indicate that the difference is mainly that the most recent observa-

tions have been updated in the Flow of Funds dataset after the initial release.

The leverage factor has several large spikes at times with economic crises.

Notably we have large negative spikes in 2008Q4 during the financial crisis,

during 1994Q4 during the Mexican peso crisis, 2002Q4 which is a time with

high volatility5 and 1987Q4 after the stock market crash. We can also note

that there are no notable spikes during the crash after the Dot-Com bubble

or during the crises in East Asia or Russia in 1997 and 1998. There are

fewer notable spikes in the first part of the series. In 1974Q1-1974Q3 during

the oil crisis the values are all negative and large, but smaller in magnitude

compared to the later spikes. This indicates that the broker-dealer leverage

is related to macroeconomic and financial events.

5During the last half of 2002, the VIX index is large.
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Figure 4: The plot shows the time-series of the leverage factor from 1968Q1 to 2009Q4.

The specification of the Flow of funds have recently been updated as de-

scribed in Krishnamurthy and Nagel (2013). Before the change, the dataset

only included Net repo, but now it is included for both asset and liabilities.

This causes both assets and liabilities to be higher than in Adrian et al.

(2014). To be comparable to the leverage factor in Adrian et al. (2014) you

have to subtract security repurchase agreement in assets from both assets and

liabilities when the leverage factor is created. The two measures of leverage

are highly correlated. There largest deviations between the two measures

are in the 1980s with smaller deviations before and after that period. Figure

5 shows the difference between the two specifications of the leverage factor

where both have been normalized to have mean 0 and variance 1 and thus it

shows the deviation in number of standard deviations.
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Figure 5: The plot show the difference between the leverage factor from the two

specifications of repurchase agreements. Before calculating the difference, both time-series

are normalized to mean zero and unit variance. The time-series is between 1968Q1 and

2009Q4.
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I have used different specifications of the leverage factor to explain the

variation in cross-sectional average returns of the 25 size and book-to-market

portfolios as robustness check. The results are robust to inclusion of the up-

dated specification of the security repurchase agreements with only minor

differences in estimated coefficients and test diagnostics. The results are not

robust to the use of seasonal adjustment. If seasonal adjustment with ex-

panding window regressions is used, the cross-sectional adjusted R2 is 74%

when we use 25 size and book-to-market portfolios. If the factor is used

without seasonal adjustment, the cross-sectional adjusted R2 falls to 20%

with the same test assets. The emphasis in this paper is not the specification

of the factor, but its performance on explaining portfolio returns outside of

the span of the 25 size and book-to-market portfolios. Therefore the results

in section 6 are estimated with the deseasonalized factor obtained from the

authors of Adrian et al. (2014).

Adrian et al. (2014) estimate the correlation between the leverage factor

and other indicators. They find that it is positively correlated with broker-

dealer asset growth and financial stock returns and it is negatively correlated

with market volatility and credit spreads. This is consistent with Brunner-

meier and Pedersen (2009) where both increase in volatility and reduction in

asset value would cause funding conditions to worsen and thus give a higher

marginal value of wealth.

Table 2: Leverage factor and other factors

Factor Correlation with leverage factor

Re
m 0.13

SMB 0.06

HML 0.26
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Table 2 shows the correlation between the three factors in the Fama-

French model. It shows that the leverage factor has low correlations with

all three factors. The strongest correlation is with the HML factor and the

SMB factor has the weakest correlation. The excess return on the market is

in the middle of these two factors.

5.2 Portfolios

The Size/Book-to-market and industry portfolios are obtained from Ken-

neth French’s web page. The Size/Book-to-Market consists of 25 portfolios

sorted by 5 size groups and 5 groups of book-to-market ratios. The industry

portfolios are sorted based on SIC codes of the firms. I have used the data

sorted in 49 portfolios, but the Healthcare portfolio has been excluded from

the analysis because it has missing values for part of the sample period. The

results are robust to using other industry portfolios such as firms sorted in

10 or 30 portfolios based on industries.

The portfolios created specifically to test this model have been sorted on

size and pre-formation beta with the leverage factor6. The data are monthly

data on securities from the CRSP database, restricted to securities with share

code 10 or 11. The data have been sorted in five groups based on market

value of equity with the use of size breakpoints from NYSE stocks obtained

from Kenneth French’s website. The use of NYSE breakpoints makes sure

that the results are not driven by the inclusion of many small stocks after

1982 when NASDAQ stocks were included in the CRSP dataset. The 10%

smallest firms have not been included to not have results depend on very

small firms. The resulting portfolios are sorted in (10-20), (20-40), (40-60),

6It would be preferable to also sort on book-to-market values. The dataset used to

create the portfolios did not contain information on book-to-market values.
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(60-80) and (80-100) percentiles. The results are not significantly altered

by using (0-20) instead of (10-20) for the portfolios of the smallest firms.

The stocks in each portfolio are sorted based on pre-formation beta with

the leverage factor7. To be included, I have required at least 4 quarters of

observations to estimate the leverage beta of each stock. The results are

robust to the use of 8 or 12 quarters as the minimum number of quarters.

In each size group, the stocks are sorted in five groups with equal number of

stocks sorted by beta with leverage factor. Value weighted portfolio returns

are calculated by:

Ri
t =

∑N
j=1R

i,j
t S

i,j
t∑N

j=1 S
i,j
t

(21)

Where Si,jt is size of security j in portfolio i at time t. Ri,j
t is the return

of the same security. The returns take into account price changes, dividends

and events such as mergers, liquidations and stock splits.

For the portfolios obtained from Kenneth French’s website, the portfolios

have monthly returns, whereas the leverage factor is constructed from data

that is released every quarter. The annualized quarterly excess returns are

calculated as:

Re,i
t = 4(1 +Ri

t,1 −R
f
t,1)(1 +Ri

t,2 −R
f
t,2)(1 +Ri

t,3 −R
f
t,3) (22)

The return of portfolio i at month j of quarter t is Ri
t,j. The proxy for

the risk-free interest rate is one-month Treasury bill rate.

7For the time periods before 1968, I have sorted based on correlation with a leverage

mimicking portfolio created as explained in Adrian et al. (2014) to be able to have the

same time-span of the portfolios. The results are robust to starting later than 1968Q1 and

not use the leverage mimicking portfolio.
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6 Results

6.1 Cross-sectional regressions

Table 3 shows the results from the cross-sectional regressions of asset returns.

The first two columns use the 25 size and book-to-market portfolios as test

assets, the next two columns use industry portfolios as test assets and the

last two columns use size and leverage sorted portfolios. Panel A shows the

estimated coefficients from the second stage regression. Panel B shows the

test diagnostics similar to those showed by Adrian et al. (2014). The MAPE

is the mean absolute pricing error. Total MAPE is defined as the average

absolute pricing error across all portfolios, plus the cross-sectional intercept.

Max MAPE is the maximum absolute pricing error. The χ2-statistic is the

test statistic used to test if the pricing errors are statistically too large. The

last row gives the p-value of this test.

The first two columns use the same factors on the same portfolios as

Adrian et al. (2014) Table V and we should expect to see the same results.

For the Fama-French factors, there are some small deviations in the esti-

mated values, but qualitatively the results are the same. One reason for this

might be difference in the portfolios or factors downloaded at different times.

The estimate for the model with the leverage factor is almost exactly the

same as Adrian et al. (2014) with one exception. The χ2-statistic calculated

in Adrian et al. (2014) is 34.98 with a p-value of 5.2%. When I calculate

the same statistic the result is a χ2-statistic of 71.48 with a corresponding

p-value of 0.00%. It seems unreasonable that small variations in the dataset

could result in such large deviations in this statistic. In Adrian et al. (2014)

this statistic is consistently much lower for the model with the leverage fac-

tor compared to the other models over several choices of test portfolios. I

am unable to replicate this result. As a robustness check, I have used my
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Table 3: Cross-sectional regressions

This table presents the results of the cross-sectional regressions on the 25 size and

book-to-market portfolios, 48 industry portfolios and 25 size and leverage portfolios.

The models are estimated as E[Re
t+1] = λ0 + λfacβfac. FF denotes the model with

the three factors from Fama and French (1993). The LevFac is the one-factor model

with the leverage factor. Panel A reports the risk-premia from the cross-sectional

regression with Fama-Macbeth standard errors. Panel B reports the test diagnostics.

All three sets of portfolios have data from 1968Q1 to 2009Q4.

Panel A: Prices of Risk

25 Sz/B-M 48 Industry 25 Sz/Leverage

FF LevFac FF LevFac FF LevFac

Intercept 13.08 1.16 6.03 6.63 7.49 7.86

t-FM (3.20) (0.30) (1.53) (2.17) (2.27) (2.82)

LevFac 55.30 -3.36 11.79

t-FM (3.29) (-0.28) (0.77)

Market -7.81 0.94 0.79

t-FM (-1.58) (0.20) (0.18)

SMB 1.99 -2.85 2.29

t-FM (1.11) (-1.29) (1.06)

HML 5.50 0.50 -0.97

t-FM (2.79) (0.20) (-0.24)

Panel B: Test diagnostics

MAPE

Intercept 13.08 1.16 6.03 6.63 7.49 7.86

Total 14.10 2.22 7.51 8.31 8.25 8.96

MAX 4.12 3.58 6.07 6.75 1.85 2.40

AdjR2 0.71 0.74 0.15 -0.01 0.52 0.10

χ2 60.82 71.48 61.38 61.30 18.71 21.76

p-value 0.0% 0.0% 4.25% 6.5% 60.3% 53.5%
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Figure 6: The plot shows the realized average excess return and estimated leverage

beta. The left plot shows the 25 size and book-to-market portfolios. The right plot shows

the 48 industry portfolios. The data used is quarterly, but returns have been annualized

by multiplying with four.

program to replicate this statistic in other cases with success8.

For the 25 size and book-to-market portfolios, the leverage factor does

remarkably well at explaining the average cross-sectional returns of the port-

folios. The intercept is close to 0 and not statistically significant. The coeffi-

cient for the leverage factor has a t-value of 3.30 and is statistically significant

larger than 0. This coefficient has the interpretation as the price of the risk.

8My program have been written in Matlab with formulas as explained in the empirical

strategy section and are taken from Cochrane (2005). The program has been used to

replicate the results from Martin Lettau’s course in empirical asset pricing. The program

is able to exactly replicate his results.
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The leverage factor is not a traded asset and therefore there will be mea-

surement error in the independent variable in the first step regression. This

will bias the estimated betas from the first-stage regressions toward 0. As a

result the estimated price of risk in the second stage regression will have bias

in the opposite direction and the absolute value of the price of risk will be

too large. The model with Fama-French factors on the other hand performs

much worse in terms of intercept with an intercept of 13% per annum. If we

compare the test diagnostics, they are of similar magnitude for both models.

For the 25 size and book-to-market portfolios the leverage factor performs

better than the Fama-French factors used as a benchmark.

The left part of Figure 6 shows the portfolios plotted with leverage betas

on the X-axis and average returns on the Y-axis. The 25 size/book-to-market

portfolios lines up nicely along a linear trend with respect to the leverage

beta.

If we use industry portfolios, the conclusions are not the same. For the

leverage factor, we get an intercept statistically different from 0 and a price

of risk that has the opposite sign, but is not statistically different from 0.

Both the MAPE and the maximum absolute pricing errors are larger. The

adjusted R2 becomes negative. The statistical test of the model on the other

hand has a much larger p-value. A reason for this might be that if the model

is estimated with lower accuracy, it is more difficult to reject an incorrect

null hypothesis. The model with Fama-French factors performs better with

respect to the intercept, but this may be due to sampling differences. The

Fama-French factors has a higher adjusted R2 of 15%, but still much lower

compared when we compare it with the value from the 25 size and book-to-

market portfolios. This is consistent with results in Lewellen et al. (2010)

and Daniel and Titman (2012) who shows that being able to price the 25 size
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and book-to-market portfolios is less demanding than pricing other portfo-

lios such as industry portfolios. If we look at the variation in the estimated

leverage betas and the variation in expected returns across the portfolios, we

have fairly similar results for the variation in leverage betas and in expected

returns.

The right part of Figure 6 plots average excess returns and estimated

leverage beta of the 48 industry portfolios. The variation in leverage beta

and average returns are similar for size/book-to-market and industry port-

folios, but the trend we observed for size/book-to-market portfolios is not

present for the industry portfolios.

The last two columns of Table 3 show the estimates from the second stage

regression with the portfolios sorted on size and pre-formation leverage beta.

For the model with the leverage factor, the estimated intercept is slightly

larger than for the industry portfolios with a t-value of almost 3. We would

reject the null hypothesis that the intercept is equal to 0 at conventional

significance levels. The price of risk related to the leverage factor is 11.79,

which is the same sign as for the size and book-to-market portfolio, but the

magnitude is approximately one fifth. It has a t-value of less than 1 and we

would not reject the null hypothesis that it is 0 at conventional significance

levels. The R2 is 10% and is thus better than for industry portfolios, but

not nearly as high as for the size and book-to-market portfolios. The MAPE

looks better than for size and book-to-market and industry portfolios. This

may be a result of less variation in average excess returns in the size and

leverage portfolios compared to the other two sets of portfolios. The χ2-

statistic is lower than for the other two sets of portfolio and we would not

reject the null hypothesis that the errors are not too large with a p-value

in excess of 50%. The benchmark model with the Fama-French factors has

41



an intercept of similar magnitude. The coefficients for excess return on the

market and SMB have the right sign. The coefficient for HML is negative,

but the average return on the HML portfolio is positive. This may be be-

cause there is little variation in loading with this factor and the market factor

that makes the estimates imprecise. The price of risk for SMB is more pre-

cisely estimated than the other coefficients, something that is likely a result

of the portfolios being sorted on size. The R2 is 50% which is better than

the leverage factor, but not as good as the model performed on the size and

book-to-market portfolios. The three-factor model performs slightly better

in terms of MAPE than the model with leverage factor.

Figure 7: The plot shows the realized average excess return on the 25 size and leverage

sorted portfolios and their estimated leverage beta. The different size groups have been

plotted with different colors. The data used is quarterly, but returns have been annualized

by multiplying with four.

Figure 7 shows the combination of leverage beta and average return of
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the 25 portfolios sorted on size and leverage beta. The different size groups

have different colored dots. There is slightly less variation in average returns

compared to size and book-to-market and industry portfolios, but the vari-

ation in leverage beta is similar. There is a positive trend, but it is not as

clear as for the size and book-to-market portfolios. We can observe that the

portfolios with large firms(shown in magenta) are grouped in the bottom left

corner with low excess returns and leverage beta. It looks like the portfolios

within each size group has a less clear trend than if we consider all portfolios.

We can estimate the model (13) with different intercept for each size group.

This follows the approach from Daniel and Titman (2012) where they use the

variation that is independent of characteristics. The reason to use different

intercepts for each size group is to estimate how the leverage factor affects

average returns within each size group.

E[Re,i] =1.96βLevFac+9.75Is=1+10.23Is=2+9.25Is=3+8.61Is=4+7.23Is=5

(0.13) (2.35) (2.78) (2.72) (2.77) (2.75)

(23)

The estimated model is given by (23) where Is=i is an indicator function

valued 1 for size group 1 and 0 otherwise. T-statistics are given in parenthesis.

The price of risk of the leverage factor is closer to 0 with a point estimate of

1.96 instead of 11.79 when estimated with only a constant. The t-statistic

of the estimate is almost 0 at 0.13. The conclusion from this this analysis is

that the when we control for the different size groups, the estimated price of

risk for the leverage factor is approximately 0.

6.2 Size-Leverage portfolios

Table 4 shows the return on the different size and leverage portfolios and the

leverage beta estimated from the first-stage time series regressions. It also
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Table 4: Time-series regressions

The table presents the average annualized returns of the 25 size and leverage sorted portfolios and their leverage

beta. It also shows the same statistics for the 5-1 leverage portfolios in each size group. Panel A shows the average

returns and the t-statistic for the null hypothesis that the average return is equal to 0. Panel B shows the estimated

leverage betas and the t-statistics from the time-series regressions. Data are quarterly 1968Q1 to 2009Q4.

Panel A: Average(Annualized) Returns

Chr r(%/yr) t(r)

SZ 1 2 3 4 5 5-1 1 2 3 4 5 5-1

1 9.27 9.40 10.11 10.46 10.77 1.50 (2.05) (2.74) (2.78) (2.47) (2.10) (0.63)

2 10.96 9.82 10.55 9.93 10.10 0.15 (2.79) (2.95) (3.09) (2.66) (2.49) (0.06)

3 8.84 8.72 9.38 8.86 11.69 2.85 (2.53) (2.91) (2.92) (2.56) (2.86) (1.12)

4 10.16 6.97 7.82 8.75 10.56 0.40 (3.63) (2.72) (2.62) (2.74) (2.62) (0.16)

5 8.10 8.24 6.48 7.24 6.81 -1.29 (3.12) (3.67) (2.71) (2.63) (2.06) (-0.57)

Panel B: Leverage betas

b leverage beta t(leverage beta)

SZ 1 2 3 4 5 5-1 1 2 3 4 5 5-1

1 0.05 0.14 0.15 0.17 0.14 0.09 (0.63) (2.21) (2.19) (2.25) (1.53) (2.10)

2 0.06 0.13 0.11 0.21 0.13 0.07 (0.82) (2.06) (1.80) (3.06) (1.56) (1.41)

3 0.03 0.18 0.15 0.14 0.16 0.13 (0.48) (3.35) (2.47) (2.15) (2.16) (2.84)

4 0.08 0.11 0.13 0.14 0.16 0.07 (1.62) (2.34) (2.45) (2.30) (2.11) (1.56)

5 0.04 0.07 0.08 0.10 0.09 0.05 (0.88) (1.65) (1.77) (1.91) (1.49) (1.16)

includes the statistics for the portfolio created by the highest leverage beta

minus the lowest leverage beta for each size. The upper part shows the re-

turns and the lower part the leverage betas. The average returns and betas

are as in Figure 7 and there are no clear pattern that the portfolios with

higher leverage beta has a higher return within each size group. The bot-

tom part shows the leverage beta of the different portfolios. There appears

to be a positive trend within each size group that shows that pre-formation

on leverage beta is able to create variation in the leverage beta. There is

no monotonic increase in leverage beta within each size group, but all 5-1

portfolios have a positive estimated leverage beta.

If we look at the 5-1 portfolios, the differences in average returns all have

low t-values and we would not reject a null hypothesis that the return on the

portfolio with the smallest leverage betas are different from the portfolios

with the largest leverage beta at conventional significance levels. The high-

est t-statistic is 1.12 within size 3. Except for size 5, the other size groups

have higher average returns for the portfolio with largest preformation lever-
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age beta than for the portfolio with lowest pre-formation leverage beta. If

we look at the difference in leverage betas, they are closer to being statistical

significant, but only 2 of 5 are higher than 2 and would be significant at a 5

% significance level.

7 Conclusion

In this paper I have reexamined the result from Adrian et al. (2014). Their

proposed model has been tested on two new sets of portfolios, industry port-

folios and portfolios sorted on size and pre-formation leverage beta. When

industry portfolios are used, the model with intermediary leverage does not

explain the variation in the cross-sectional average returns and the estimated

coefficients are not similar to those from model estimated on the size and

book-to-market portfolios. For the portfolio sorted on size and pre-formation

leverage the model is somewhat better at explaining the differences in return,

but when we control for each size group the price of risk for the leverage factor

is very close to zero. The three-factor model from Fama and French is used

as a benchmark. The proposed model with intermediary leverage has similar

performance as the benchmark on the size and book-to-market portfolios,

but when industry or size and leverage portfolios are used, the benchmark

clearly outperforms the model with intermediary leverage.

If the proposed model was the correct asset pricing model it should have

been able to price all assets and the resulting estimates should not differ

to much with difference choices of test assets. I do not find evidence that

the model is able to price the variation in returns that are outside of the

return space spanned by the 25 size and book-to-market portfolios. Two

possible topics for future research could be to use the model on other types

45



of securities or try to find another proxy for intermediary funding constraints.

It could be interesting to estimate the model on securities where it is easier

to assert the fundamental value. Shleifer and Vishny (1997) suggest that

their model with limits to arbitrage is more relevant in situations where it is

easier to assert the fundamental value of the security. Another possibility is

that the aggregation of the factor may affect the results. The factor only has

quarterly data and this could potentially reduce much of the variation in the

factor. Consider a situation where financial intermediaries try to maintain a

fairly constant leverage. If there is a shock to their leverage in the first part

of a quarter they may try to offset this shock in the following months and

the shock over the quarter will appear much smaller than the actual shock.

In such a situation, aggregation over time will remove much of the shocks

that occur in the early part of the quarter. The SEC Focus reports that is

used to create the factor is filed quarterly by all security broker-dealers, but

it is filed monthly for those who clear or carry customer securities. The use

of this monthly data could potentially be better in a situation as the one

described over.
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