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Abstract

In Hawk-Dove games with mulitiplicity of equilibria, we study which equilibria are
selected using various equilibrium selection methods. Using a uniform price auction
as an illustrative example, we apply the tracing procedure method of Harsanyi and
Selten (1988), the robustness to strategic uncertainty method of Andersson, Argen-
ton and Weibull (2014), and the quantal response method of McKelvey and Palfrey
(1998) to predict which equilibrium is selected by the players and how changes to
the various model parameters impact the selected equilibria.
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1 Introduction

The Hawk-Dove game is one of the salient models used to study a wide range of ques-
tions in the economic literature as well as being one of the prominent models used in
evolutionary biology. In the classical representation of the game, players compete by us-
ing two strategies - hawk and dove. In this case, the Hawk-Dove game has two possible
Nash equilibria in pure strategies - one of the players behaves as hawk and the other as
dove. As both players prefer the equilibrium in which they select the hawk strategy and
the opposing player selects the dove strategy, which equilibrium were to emerge between
two individuals in any given iteration of the game is ambiguous - either of the two pure
strategies Nash equilibria could be played. To break the ambiguity associated with multi-
plicity of equilibria in games, numerous equilibrium selection methods have been proposed.

We analyze in detail the outcome of three different equilibrium selection methods ap-
plied to a Hawk-Dove game in which we extend the set of strategies, and consequently the
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set of possible Nash equilibria. In each of those equilibria, as in the basic two strategies
Hawk-Dove game, one of the players behaves as a dove, the other as hawk, and both prefer
the equilibrium in which the other player selects the dove strategy. We apply the tracing
procedure method of Harsanyi and Selten (1988), the robustness to strategic uncertainty
method of Andersson, Argenton and Weibull (2014), and the quantal response method of
McKelvey and Palfrey (1998) to predict which equilibrium is selected by the players.

We frame the Hawk-Dove game as a uniform price auction in which two players with
asymmetric production capacities compete to satisfy an inelastic demand. Having ob-
served the demand, the players simultaneously and independently submit a bid for their
entire production capacity, assumed to be lower than the total demand, i.e., each player
faces a positive residual demand when it is dispatched last in the auction. The auctioneer
establishes the maximum and the minimum bids that can be submitted in the auction.
The player that submits the higher bid sets the price and satisfies the residual demand
while the player that submits the lower bid is dispatched first and satisfies the total de-
mand at the price set by the other player. In case of a tie, the players are dispatched
in proportion to their production capacity. Therefore, the tie-breaking rule implemented
determines that the game has the structure of a Hawk-Dove game.1

The game described above has multiple pure strategies Nash equilibria in which one
of the players submits the maximum bid allowed by the auctioneer (dove strategy) and
the opponent submits a bid that makes undercutting unprofitable (hawk strategy). As in
the classic representation of the Hawk-Dove game, the players have opposing preferences
for both sets of equilibria; each player prefers the set of equilibria in which the opposing
player submits the maximum bid allowed by the auctioneer (dove strategy), since in that
case the player dispatched first sells its entire production capacity at the maximum price
allowed by the auctioneer.

The tracing procedure method proposed by Harsanyi and Selten (1988) selects the
equilibrium in which the player with higher production capacity submits the maximum
bid (dove strategy) and the player with lower production capacity submits the minimum
bid allowed by the auctioneer (hawk strategy). This result is very intuitive, since the
tracing procedure method is based on the idea that some equilibria are risky for some of
the players and that players prefer to avoid risky equilibria. In particular, the equilibrium
in which the player with lower production capacity submits the maximum allowed bid
is risky for this player, as doing so exposes the player to a chance of being dispatched
last when residual demand is very low. In contrast, the equilibrium in which the player
with higher production capacity submits the maximum bid is less risky for this player, as
residual demand is very high even when this player is dispatched last.

When the auctioneer increases the minimum bid that can be submitted in the auction,
the tracing procedure method still selects the equilibrium in which the player with higher
production capacity submits the maximum bid allowed. However, in this case, the tracing
procedure method predicts that it is more difficult for the players to select that equilib-
rium. An increase in the minimum bid that the players can submit makes submitting low

1We provide a complete description of the uniform price auction in the model section. In that section,
we also discuss the importance of the tie breaking rule to determine if the uniform price auction has the
structure of a Hawk-Dove game or the structure of a Battle of the Sexes game.
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bids more attractive for both players, and it becomes more difficult to coordinate in the
equilibrium in which the player with higher production capacity submits the maximum
bid.

With independence of suppliers’ production capacities asymmetries, the robustness
to strategic uncertainty method proposed by Andersson, Argenton and Weibull (2014)
selects the two equilibria in which one of the players submits the maximum bid (dove
strategy) and the other player submits the minimum bid allowed by the auctioneer (hawk
strategy). The main idea of this method is that players face some uncertainty about
the strategies played by their opponents. Consequently, if one of the players thinks that
the opposing player will submit a high bid, its best strategy is to submit the minimum
bid since this increases the probability of being dispatched first. In contrast, if one of
the players thinks that the opposing player will submit a low bid, its best strategy is to
submit the maximum bid, since this increases the probability of being dispatched last
and satisfying the residual demand at the maximum bid. Therefore, the robustness to
strategic method selects the two equilibria in which one player submits the maximum
bid and the other submits the lower bid allowed by the auctioneer. An increase in the
minimum bid does not change the equilibrium predicted by this method.

The quantal response method proposed by McKelvey and Palfrey (1998) predicts that
the player with higher production capacity submits the maximum bid (dove strategy)
and the player with lower production capacity submits the lower bids in the strategies set
with higher probabilities (hawk strategy). In the quantal response method the players
choose among the strategies in the game based on their relative expected payoff. The key
idea is that when the players calculate their expected payoff, they make calculation errors
according to some random process. Based on that random process, the players assign
more probability to the strategies that give them a higher expected payoff. Therefore, the
player with higher production capacity assigns more probability to the maximum bid since
it faces a high residual demand and that bid has higher expected payoffs. In contrast, the
player with lower production capacity assigns more probability to the lower bids in the
strategies set, since those bids have higher expected payoffs.

An increase in the minimum bid does not change the strategy of the player with higher
production capacity, since it still faces a high residual demand and does not change its
strategy, but makes more attractive for the player with lower production capacity to sub-
mit lower bids, since for that player, the expected payoff associated to low bids increases.
Therefore, an increase of the minimum bid allowed by the auctioneer facilitates the coor-
dination in the equilibria of the game in which the player with higher production capacity
submits the maximum bid and the player with lower production capacity submits the
minimum bid.

In a similar setup as the one used in this paper, Boom (2008) applies the tracing proce-
dure method proposed by Harsanyi and Selten (1988) to predict the equilibrium selected
by the players in a uniform price auction. To apply the tracing procedure method, the
author assumes that the players only play the strategies that appear in the Nash equilibria
of the game. In contrast, when we apply the tracing procedure method, the robustness
to strategic uncertainty and the quantal response methods we do not restrict the set of
strategies that can be selected by the players except through the minimum and maximum
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bids which are allowed by the auctioneer. Moreover, we also study the importance of
the market design in determining which equilibrium is selected by the players. When
we apply the tracing procedure method, the equilibrium selected crucially depends on
the realization of the demand. This contrasts with Boom (2008), where the equilibrium
selected is always the same.

Due to the multiplicity of equilibria, the tracing procedure method plays a crucial role
in the industrial organization literature that endogenize the emergence of a price leader
in duopoly models. In particular, van Damme and Hurkens (1999) focus on a model with
homogeneous products with linear demand, constant marginal cost, and with one firm
being more efficient than the other. Using an endogenous timing game introduced by
Hamilton and Slutksky (1990), the authors apply the tracing procedure method to show
that the player with lower production costs emerge as a leader in a Stackelberg model with
continuous set of strategies. van Damme and Hurkens (2004) focus on a model with price
competition in a duopoly with differentiated substitutable products, linear and symmetric
demand, and constant marginal cost. In contrast with the models of quantity competi-
tion however, when the players compete in prices, the leadership role is not the most
preferred one. This result is in line with other models of price competition with capac-
ity constraints (Deneckere and Kovenock, 1992; Canoy, 1996; Osborne and Pitchik, 1986).

Using a similar approach as in van Damme and Hurkens (1999), Sadanand and Sada-
nand (1996) analyze a Stackelberg model in which firms face demand uncertainty that
is resolved before production begins in the second stage. They analyze an asymmetric
model where one firm has a higher production capacity than the other and conclude
that the high capacity production player emerges as a price leader. Spencer and Bran-
der (1992) study a Stackelberg model with demand uncertainty and conclude that the
better informed player emerge as Stackelberg leader. By extending the models of price
competition with capacity constraints Deneckere and Kovenock (1992) develop a game
theoretic framework to study the emergence of a price leader in a duopolistic price-setting
game in which the players have capacity constraints and are allowed to choose the tim-
ing of their price announcements. Deneckere, Kovenock and Lee (1992) extend Varian’s
(1980) simultaneous price setting game and find that the player with a larger segment of
loyal consumers becomes an endogenous price leader. Reinganum (1985) and Farrell and
Shapiro (1988) also study the emergence of a price leader using industrial organization
models. We extend the previous industrial organization literature by applying the trac-
ing procedure method, the robustness to strategic uncertainty method, and the quantal
response method to Hawk-Dove games.

The emergence of a price leader has also been studied in experimental settings. In par-
ticular, Cabrales, García-Fontes and Motta (2000) use a vertical product differentiation
model with two asymmetric players first choosing qualities and then choosing prices in or-
der to design an experiment with the structure of a Battle of the Sexes game. The tracing
procedure method applied to their theoretical framework and their experimental results
predict that the higher the degree of asymmetry of the game, the higher the predictive
power of the tracing procedure method. These results are in line with our results, but
in contrast with the experimental design proposed by Cabrales, García-Fontes and Motta
(2000) where the players compete only by setting two prices, we provide a theoretical
framework where the players compete using a continuous set of strategies.
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By applying the same setting used in this paper, Bigoni, Blázquez and Le Coq (2021)
extend the experimental literature that study the emergence of a price leader. In par-
ticular, the authors study which equilibria are selected by the players in a Hawk-Dove
game, and how the structural parameters of the model (suppliers’ production capacities
asymmetries) and the market design parameter (minimum bid allowed by the auctioneer)
affect the equilibrium selected by the players. The theoretical analysis in this paper helps
to frame the experimental design, and helps to predict and understand the experimental
results in that paper. Bigoni, Blázquez and Le Coq (2021) find more probable that the
players coordinate in the equilibrium where the player with higher production capacity
submits the maximum bid (dove strategy), and the player with lower production capacity
submits the minimum bid allowed by the auctioneer (hawk strategy). This result is in line
with the three equilibrium selection methods analyzed in this paper. The authors also find
that an increase in the minimum bid allowed by the auctioneer makes the coordination in
one of the equilibria slightly more difficult.2 This result is in line with the predictions by
using the tracing procedure method, but not with the ones by using the quantal response
method.

We also contribute to the evolutionary biology literature. By applying the evolutionary
stable strategy equilibrium proposed by Maynard Smith and Price (1973), Vega-Redondo
(1996) and Vega-Redondo (2003) study the equilibrium in a Hawk-Dove game when dif-
ferent parameters are introduced in the payoff matrix. Cressman (2003) Friedman (1991)
and Weibull (1995) provide a theoretical framework to study the Hawk-Dove game when
the players of that game belong to a single population or when they belong to two disjoint
populations. Benndorf, Martíne-Martínez and Normann (2016) and Oprea, Henwood and
Friedman (2011) test those predictions using experiments in which the players can choose
only among two possible strategies. Following a similar approach, Berninghaus, Ehrhart
and Ott (2012) endogenize the formation of social networks in a Hawk-Dove game. We
extend the previous analysis by introducing a larger set of strategies in the game.

The article proceeds as follows. Section 2 describes the set-up, the timing and the
equilibrium of the game. Sections 3, 4 and 5 apply the tracing procedure method, the
robustness to strategic uncertainty method and the quantal response method to the game
and study the equilibrium selected by the players. Section 6 concludes the paper. The
proofs are found in annex 1. In annex 2, we provide an example to illustrate the theoretical
analysis. In annex 2, we also describe the algorithms that we apply in the computational
simulations used in the paper.

2 Model

In this section, we present the set-up and the timing of a uniform price auction, and we
characterize the equilibrium.

Set-up: There are two players, i and j, with production capacity ki and kj, where ki > kj.
The level of demand, θ is perfectly inelastic. Moreover, θ ∈ [ki, ki + kj], i.e., the demand

2It is important to notice that the experimental results in this point are not as strong as the ones that
show that the supplier with higher production capacity submits the maximum bid (dove strategy), and
the player with lower production capacity submits the minimum bid (hawk strategy).
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is large enough to guarantee that both players face a positive residual demand. We intro-
duce this assumption because when the demand is very low (θ < kj), both players have
enough production capacity to satisfy the demand individually. In that case, the resulting
Nash equilibrium is unique, and selection methods are no longer useful.

Timing: Having observed the realization of demand θ, each player simultaneously and
independently submits a bid specifying the lowest price at which it is willing to supply
up to its capacity, bi ∈ [bmin, bmax], i = 1, 2, where bmin and bmax are determined by the
auctioneer. The players can only submit bids higher than or equal to bmin and lower than
or equal to bmax.3 The number of bids in that interval (N) is determined exogenously
and it can be freely set. The minimum bid increment between one bid and the next is

defined by ε =
bmax − bmin

N
. Let h be an integer between 1 and N . The set of strategies

is represented in figure 1.

Figure 1: Strategies set

bmin bmin + ε bmin + hε bmax = bmin +Nε

Let b ≡ (bi, bj) denote a bid profile. On basis of this profile, the auctioneer calls players
into operation. The output allocated to player i (player j’s output is symmetric), denoted
by qi(b; θ, k), is given by:4

qi(b; θ, k) =


ki if bi < bj
kiθ

ki + kj
if bi = bj

θ − kj if bi > bj

(1)

When player i submits the lower bid, it sells its entire production capacity (qi = ki).
When both players submit the same bid, the demand is split among them in proportion

to their production capacity
(
qi =

kiθ

ki + kj

)
. When player i submits the higher bid, it

satisfies the residual demand (qi = θ − kj).

Finally, the payments are worked out by the auctioneer. When the auctioneer runs a
uniform price auction, the price received by a player for any positive quantity dispatched
by the auctioneer is equal to the higher offer price accepted in the auction. Hence, player
i’s payoffs (player j’s payoffs are symmetric), denoted by πi(b; θ, k), are given by:5

3The minimum bid in the auction (bmin) and the maximum bid (bmax) are determined by the auc-
tioneer. The minimum bid guarantees a minimum profit for the players. The maximum bid represents
the reservation price for the consumers of the good.

4It is important to emphasize that qi(b; θ, k) is only valid under the assumptions that θ ∈ [kj , ki + kj ].
When θ < kj , qi(b; θ, k) is slightly different, since in this case both players have enough production
capacity to satisfy the entire demand and the equilibrium is unique. For a complete analysis of the
uniform price auction when the demand is low see Fabra, von der Fehr and Harbord (2006).

5As with qi(b; θ, k), πi(b; θ, k) is slightly different when the assumptions of the model are relaxed.
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Figure 2: Payoff matrix in a uniform price auction

bmin +Nε =

bmax

...

bmin + hε

...

bmin

bi

bj

πi(bmin +Nε, bmin) =

(bmin +Nε)(θ − kj)

πj(bmin +Nε, bmin) =

(bmin +Nε)kj

...

πi(bmin + hε, bmin) =

(bmin + hε)(θ − kj)

πj(bmin + hε, bmin) =

(bmin + hε)kj

...

πi(bmin, bmin) =

bmin
θki

ki + kj
πj(bmin, bmin) =

bmin
θkj

ki + kj

bmin

...

...

...

...

...

...

πi(bmin +Nε, bmin + hε) =

(bmin +Nε)(θ − kj)

πj(bmin +Nε, bmin + hε) =

(bmin +Nε)kj

...

πi(bmin + hε, bmin + hε) =

(bmin + hε)
θki

ki + kj
πj(bmin + hε, bmin + hε) =

(bmin + hε)
θkj

ki + kj

...

πi(bmin, bmin + hε) =

(bmin + hε)ki

πj(bmin, bmin + hε) =

(bmin + hε)(θ − ki)

bmin + hε

...

...

...

...

...

...

πi(bmin +Nε, bmin +Nε) =

(bmin +Nε)
θki

ki + kj
πj(bmin +Nε, bmin +Nε) =

(bmin +Nε)
θkj

ki + kj

...

πi(bmin + hε, bmin +Nε) =

(bmin +Nε)ki

πj(bmin + hε, bmin +Nε) =

(bmin + hε)(θ − ki)

...

πi(bmin, bmin +Nε) =

(bmin +Nε)ki

πj(bmin, bmin +Nε) =

bmin(θ − ki)

bmin +Nε = bmax

πi(b; θ, k) =


bjki if bi < bj

bi
ki

ki + kj
θ if bi = bj

bi(θ − kj) if bi > bj

(2)

When player i submits the lower bid, it sells its entire production capacity ki, and
player j sets the price bj. Therefore, player i’s payoffs are πi = bjki. These are the payoffs
over the diagonal in figure 2. When players i and j submit the same bid, the payoff is

split among them in proportion to their production capacity πi = bi
θki

ki + kj
.6 These are

the payoffs on the diagonal in figure 2. When player i submits the higher bid, it satisfies
the residual demand (θ − kj), and it sets the price bi. Therefore, player i’s payoffs are
πi = bi(θ − kj). These are the payoffs below the diagonal in figure 2.

6The tie breaking rule implemented in this game is crucial since it determines if the game is a Hawk-
Dove or a Battle of the Sexes game. According to Cabrales, García-Fontes and Motta (2000), the Battle
of the Sexes game defined in Luce and Raiffa (1957) and the Hawk-Dove game defined in Binmore (1992)
are equivalent. However, the payoff matrix in Benndorf, Martínez-Martínez and Normann (2016) (left-
hand panel, figure 3) and the one in Belleflamme and Peitz (2015) (right-hand panel, figure 3) show that
those games are different. Moreover, Tirole and Fudenberg (1991) study the Hawk-Dove and the Battle
of the Sexes games, but the matrix that they present to characterize the Hawk-Dove game does not
coincide with the one in Benndorf, Martínez-Martínez and Normann (2016). In this paper, we assume
that a game has the structure of a Hawk-Dove game when it follows the structure presented in Benndorf,
Martínez-Martínez and Normann (2016). When the auction is discriminatory, the tie-breaking rule is also
very important, but for different reasons. In that case, the tie-breaking rule is important to guarantee
the existence of the equilibrium (Blázquez, 2018; Dasgupta and Maskin, 1986; Fabra, von der Fehr and
Harbord, 2006; Osborne and Pitchik, 1986).
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Figure 3: Generalized Hawk-Dove and Battle of the Sexes payoff matrices

D

H

bi
bj

c, a

d, d

H

b, b

a, c

D

Hawk-Dove game (a > b > c > d)

D

H

bi
bj

e, f

a, b

H

b, a

c, d

D

Battle of the Sexes game (a, b > c, d, e, f)

Equilibrium: The uniform price auction described above has multiplicity of pure strategies
equilibria defined by:

b∗i = bmax, b∗j =
bmax(θ − kj)

ki
∀i, j (3)

In each of the equilibria defined in equation 3, one player submits the maximum bid
(dove strategy), and the other submits a bid that makes undercutting unprofitable (hawk
strategy). When the players are asymmetric in production capacity, the set of equilibria
in which the player with higher production capacity submits the maximum bid is larger
than the set of equilibria in which the player with lower production capacity submits the
maximum bid. Those sets of equilibria are represented in the dark grey cells in figure 2.
To provide a better understanding of the uniform price auction and the set of equilibria in
that game, in annex 2 (figure 14), we provide an illustrative example taken from Bigoni,
Blázquez and le Coq (2021).

The players have opposite preferences on both sets of equilibria. Both players pre-
fer the set of equilibria in which the opposing player submits the maximum bid (dove
strategy), since in that case the player that is dispatched first sells its entire produc-
tion capacity at the highest possible price. It is possible that both players coordinate
by submitting the maximum bid. In that case, the price perceived by the players is the
maximum bid and the players split the profit in proportion to their production capac-
ity. However, it is very difficult to coordinate on this pair of strategies, since both players
have incentives to deviate and to sell their entire production capacity at the maximum bid.

In the next three sections, we apply the tracing procedure method proposed by
Harsanyi and Selten (1988), the robustness to strategic uncertainty method proposed
by Andersson, Argenton, and Weibull (2014), and the quantal response method proposed
by McKelvey and Palfrey (1998) to analyze which of the described equilibria is played in
the game.

3 Tracing procedure method

In this section, we present the tracing procedure method proposed by Harsanyi and Selten
(1988). We study which equilibrium is selected by the tracing procedure method when
we apply it to the uniform price auction presented in the model section. We also study
the importance of the structural parameters of the model (production capacity and de-
mand), and the market design parameter (the minimum bid allowed by the auctioneer)
in determining the equilibrium selected by the tracing procedure method.
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The tracing procedure method assumes that players’ payoffs are a linear combination
of the original payoff matrix and the expected payoff matrix based on players’ beliefs:

πi = tπi(bi, bj) + (1− t)πi(bi, pj), (4)

In equation 4, πi(bi, bj) represents the original payoff matrix (figure 2), and πi(bi, pj)
represents the expected payoff matrix based on players’ beliefs. In πi(bi, pj), pj is the
probability that player j assigns to each strategy based on player i’s beliefs. Therefore,
when t = 0, players’ payoffs are determined only by players’ expected payoff based on
their prior beliefs. When t = 1, players’ payoffs are determined only by the original payoff
matrix.

In general, at t = 0 the players choose a pair of strategies that is not an equilibrium of
the original game. When t increases the players change their strategies. At some t ∈ [0, 1],
the players chose a pair of strategies that is an equilibrium of the original game (Harsanyi
and Selten, 1988). That pair of strategies (b∗i , b

∗
j) will be the equilibrium selected by the

tracing procedure method. Therefore, the key point in the tracing procedure method is
to find the player that first deviates to a Nash equilibrium in the original game, and to
find the parameter t for which the deviation occurs.

Lemma 1: When all players have uniform prior beliefs about the strategies played by
other players, and when the demand is low, players maximize their expected payoff by
submitting the minimum bid. When the demand is high, players maximize their expected
payoff by submitting the maximum bid.

When player i submits a bid equal to bi = bmin + hε, its expected payoffs are defined
by:7

πi(bi = bmin + hε, pj) = (bmin + hε)(θ − kj)
h

N
+

2bmin + (N + h)ε

2
ki
N − h
N

(5)

The first term in equation 5,
(

(bmin + hε)(θ − kj)
h

N

)
, represents player i’s expected

payoff when it submits the higher bid. Player i submits the higher bid with probability(
h

N

)
. In that case, player i sets the price in the auction (bmin + hε) and it satisfies

the residual demand (θ−kj). The second term,
(

2bmin + (N + h)ε

2
ki
N − h
N

)
, represents

player i’s expected payoff when it submits the lower bid in the auction. Player i submits

the lower bid with probability
(
N − h
N

)
. In that case, player j sets the price, which in

expectation is
(

2bmin + (N + h)ε

2

)
, and player i sells its entire production capacity (ki).8

7The proof of lemma 1 is in the annex. However, in this section, we introduce parts of the proof,
since that help to introduce key concepts that are useful to understand the intuition behind the results
presented in this section.

8The expected payoff function, the first order conditions, the stationary points and the second order
conditions used in lemma 1 are in annex 1. In this section, we introduce some of the equations in annex
1 to facilitate the understanding of lemma 1 and proposition 1.
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The two terms in equation 5 determine player i’s trade off between submitting a high
and a low bid. On one hand, player i wants to increase its bid to maximize its payoff
when it is dispatched last in the auction. On the other hand, player i wants to submit
a low bid to increase the probability of being dispatched first in the auction. This trade
off is determined by the structural parameters of the model (θ, ki, kj), and by the market
design parameter of the model (bmin). To determine the strategy that maximizes players’
expected payoff, it is necessary to work out equation 5’s first order conditions, critical
points and second order conditions.

The first order conditions of equation 5 are determined by:

∂πi(bi = bmin+ hε, pj)

∂h
=

1

N
((θ − kj)(bmin+ 2hε)− ki(bmin+ εh)) (6)

The first term in equation 6,
(

1

N
(θ − kj)(bmin + 2hε)

)
, is positive, which means that

if the players are dispatched last in the auction they want to increase their bids as much
as possible. The second term in equation 6, (−ki(bmin + εh)), is negative, which means
that if the players are dispatched first in the auction they want to submit as low bid as
possible.

After rearranging equation 6 to write it as a function of the structural parameters, we
obtain:

∂πi(bi = bmin + hε, pj)

∂h
=

1

N
(bmin(θ − kj − ki) + hε(2θ − 2kj − ki)) (7)

The first term in equation 7 is always negative, and the second term is negative if

2θ < 2kj + ki. Therefore, if 2θ < 2kj + ki,
∂πi(bi = bmin + hε, pj)

∂h
is negative and player i

maximizes its expected profit by submitting the minimum bid allowed by the auctioneer.
In contrast, if 2θ ≥ 2kj + ki, player i could maximize its expected profit at bmin, at a
critical point, or at bmax. Therefore, it is necessary to work out the critical points and
the second order conditions to know which strategy maximizes the expected payoff. The
critical points are determined by:

∂πi(bi = bmin+ hε, pj)

∂h
= 0⇒ h =

−bmin(θ − ki − kj)
ε(2θ − 2ki − kj)

(8)

The second order conditions are determined by:

∂πi(bi = bmin+ hε, pj)

∂h2
= ε(2θ − 2kj − ki) (9)

The second order conditions determine that the critical point is a global minimum.
Therefore, the players maximize their expected payoffs by submitting the minimum bid
or the maximum bid.

By using equation 7, we can establish the demand thresholds that determine if the
players maximize their payoffs by submitting the minimum or the maximum bid. In par-

ticular, by using equation 7, we obtain player i’s demand threshold
(
θ̂i =

2kj + ki
2

)
. If

10



Figure 4: Demand thresholds players i, j

0
θ̂i =

2kj + ki
2

θ̂j =
2ki + kj

2

ki + kj

we work out the first order conditions for player j, we obtain
(
θ̂j =

2ki + kj
2

)
. Given

that in the model section, we assume that ki > kj, then θ̂i < θ̂j (figure 4). These two
thresholds determine the demand for which the players prefer to submit the minimum or
the maximum bid. This result is formalized in proposition 1.

Proposition 1. When t = 0, the tracing procedure method selects one of the three possible
types of equilibria.

i. Low demand: Both players submit a bid equal to the minimum bid allowed by the
auctioneer.

ii. Intermediate demand: The player with higher production capacity submits the max-
imum bid, and the player with lower production capacity submits the minimum bid
allowed by the auctioneer.

iii. High demand: Both players submit a bid equal to the maximum bid.

When t = 0, players’ total payoffs are determined only by the expected payoffs. When
the demand is low

(
θ < min

{
θ̂i, θ̂j

})
, players’ residual demand is very low, and it is very

risky for them to submit a high bid. Therefore, both players maximize their expected pay-
offs by submitting the minimum bid allowed by the auctioneer (left-hand panel, figure 5).9
In this case, the equilibrium selected by the tracing procedure method is bi = bj = bmin.
When the demand is intermediate (θ̂i ≤ θ ≤ θ̂j), the player with higher production ca-
pacity faces a high residual demand and maximizes its expected payoff by submitting the
maximum bid. In contrast, the player with lower production capacity faces a low residual
demand and maximizes its expected payoff by submitting the minimum bid allowed by
the auctioneer (central panel, figure 5). In that case, the equilibrium selected by the
tracing procedure method is bi = bmax, bj = bmin. Finally, when the demand is high(
θ > max

{
θ̂i, θ̂j

})
, both players face a high residual demand and they maximize their

expected payoff by submitting the maximum bid allowed by the auctioneer (right-hand
panel, figure 5). In that case, the equilibrium selected by the tracing procedure method
is bi = bj = bmax.

It is easy to check that when t = 0 and the demand is intermediate, the tracing
procedure method immediately selects one of the Nash equilibria in the original game.
Therefore, it is not necessary to conduct further analysis. In contrast, when t = 0 and the
demand is low or high, the players do not select one of the Nash equilibria in the initial
game, and it is necessary to determine which player deviates first to a Nash equilibrium
in the original game, and to find the parameter t for which that player deviates to the

9The examples in all the sections and in annex 2 are adaptations of the examples in Bigoni, Blázquez
and Le Coq (2021).
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Figure 5: Expected payoffs ki = 8.7, kj = 6.5, bmin = 1, bmax = 10, N = 110
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equilibrium. Proposition 2 formalizes this analysis.

Proposition 2. When the demand is low or intermediate, the tracing procedure method
selects the equilibrium in which the player with higher production capacity submits the
maximum bid, and the player with lower production capacity submits the minimum bid
allowed by the auctioneer. When the demand is high, no equilibrium is selected by the
tracing procedure method.

When t > 0, players’ profits are determined not only by their expected payoffs, but
also by the payoffs in the original game. These are worked out in equation 2 and rep-
resented in the payoff matrix in figure 2. Therefore, to understand which equilibrium is
selected by the tracing procedure method when t > 0, it is necessary to study the payoff
functions πi(bi, bj) and πi(bi, pj) for different demand realizations.

According to proposition 1, when t = 0 and the demand is low, both players submit
the minimum bid allowed by the auctioneer (left-hand panel, figure 5). In this case, as we
show in lemma 1, the expected payoff (πi(bi, pj)) decreases in bi. Therefore, the players
maximize their expected payoff by submitting the lower bid allowed by the auctioneer,
independent of the value of t. In contrast, in the original game, if one player submits
the minimum bid allowed by the auctioneer, the other player maximizes its payoff by
submitting the maximum bid. Given that when t > 0, the players assign more weight to
the original payoff matrix, when t is large enough, one of the players has incentives to
deviate by raising its bid.

When the players are asymmetric, the player with higher production capacity faces
a high residual demand and it deviates first by submitting a higher bid. However, the
player never deviates to the maximum bid since player i’s expected payoff decreases with
bi, and when t is close to 0, the expected payoff has a lot of weight in player i’s total
payoff. Therefore, when t increases, but is still close to 0, player i deviates by submitting
an intermediate bid (left-hand panel, figure 6).

Once player i raises its bid, player j has no incentives to deviate, since in that case,
player j is better off for two reasons: First, by submitting the lower bid in the auction,
player j maximizes its expected payoff. Second, when player i submits a bid higher than
the minimum bid allowed by the auctioneer, and that bid is high enough, player j maxi-
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mizes its payoff by submitting the lower bid allowed by the auctioneer, since in that case,
the player sells its entire production capacity for a high price (equation 2). Therefore,
when t increases, player i continues raising its bid until finally submitting the maximum
bid. In that moment, both players select a pair of strategies that are an equilibrium in
the original game, and that is the equilibrium selected by the tracing procedure method
(left-hand panel, figure 6).

According to proposition 1, when t = 0 and when the demand is intermediate, the
tracing procedure method selects the equilibrium in which player i submits the maximum
bid and player j submits the minimum bid allowed by the auctioneer (central panel, figure
5). Given that the equilibrium selected by the tracing procedure method when t = 0 is an
equilibrium in the original game, the players do not deviate from this equilibrium when
t > 0.

Finally, based on the results in proposition 1, when t = 0, and the demand is high,
both players submit the maximum bid. In this case, as we show in lemma 1, the expected
payoff (πi(bi, pj)) is concave and achieves its maximum when bi = bmax (right-hand panel,
figure 5). Therefore, the players maximize their expected payoff by submitting the max-
imum bid, independent of the value of t. In contrast, in the original game, if one player
submits the maximum bid, the other player maximizes its payoff by decreasing its bid. In
that case, the player that submits the lower bid sells its entire production capacity at the
price set by the opposing player (equation 2). When t increases, the players assign more
weight to the original payoff matrix. Therefore, when t is large enough, one of the players
has incentives to deviate by decreasing its bid. In contrast with the low demand case
where the player that does not deviate is better off, when the demand is high, the player
that does not deviates is worse off, since it is dispatched last and satisfies the residual
demand. That situation triggers a price war in which both players undercut each other.
The price war finishes when the bids are low enough, since in that case at least one player
has incentives to satisfy the residual demand by submitting the maximum bid. However,
once that one player increases its bid, the other player slightly undercuts the bid to be
dispatched first in the auction at a higher price, and the price war begins again. There-
fore, a pure strategies equilibrium does not exist when t > 0 and the tracing procedure
method does not select any of the equilibria in the original game.10

In proposition 2, we found a closed form solution to study the equilibrium that is
selected by the tracing procedure method depending on the structural parameters of the
model (production capacity and demand), and on the market design parameter (minimum
bid allowed by the auctioneer). We conclude this section by using that closed form solu-
tion to study the impact that an increase in the minimum bid allowed by the auctioneer
has on the equilibrium selected by the tracing procedure method.

Proposition 3. An increase in the minimum bid allowed by the auctioneer has two effects
on the convergence to the equilibrium.

i. The parameter t for which the players deviate from the equilibrium when t = 0
increases.

10In annex 2, we provide an example to show that when the demand is high the tracing procedure
method does not select any of the equilibria in the original game.
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Figure 6: Tracing procedure method ki = 8.7, kj = 6.5, θ = 10, N = 110
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ii. The parameter t for which the players coordinate in one of the Nash equilibria of
the original game increases.

An increase in the minimum bid allowed by the auctioneer makes submitting a low
bid more attractive, since in this case both players split the demand in proportion to
their production capacity at a higher price. Therefore, the parameter t that makes them
deviate from the equilibrium bi = bmin, bj = bmin in the tracing procedure method when
t = 0 increases.

Due to the increase in the minimum bid allowed by the auctioneer, the parameter t for
which the players move from one equilibrium to the next in the tracing procedure method
also increases. Therefore, the parameter t for which the players coordinate in one of the
Nash equilibria of the original game increases. As can be observed in the left-hand side
of figure 6, when the minimum bid allowed by the auctioneer is low, the parameter t for
which the players coordinate in one of the equilibria of the game is t = 0.390. However,
as can be observed in the right-hand panel of that figure, when the minimum bid allowed
by the auctioneer increases to bmin = 2, the corresponding value of t is t = 0.460.

In the numerical simulations, we have also observed that the bid that makes players
indifferent between submitting the minimum bid or deviate to a higher bid also increases.
Therefore, when the players deviate from the original equilibrium in the tracing procedure
method, they deviate by submitting a higher bid. As can be observed in the left-hand
panel in figure 6, when the minimum bid allowed by the auctioneer is low (bmin=1), the
player with higher production capacity deviates first by increasing its bid to 3.72. How-
ever, as can be observed in the right-hand panel of that figure, when the minimum bid
allowed by the auctioneer increases to bmin = 2, the player with higher production capac-
ity deviates by increasing its bid to 7.43.

The theoretical results in proposition 3 have important welfare implications, since an
increase in the minimum bid makes coordinating in one of the equilibria of the game more
difficult to the players. Therefore, the expected equilibrium price can be lower since the
players do not coordinate in one of the equilibria in which the equilibrium price is equal
to the maximum bid.
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Figure 7: Players’ payoff functions (ki = 8.7, kj = 6.5, θ = 10, bmin = 1, bmax = 10,
N = 110)
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4 Robustness to strategic uncertainty method

In this section we present the robustness to strategic uncertainty method proposed by An-
dersson, Argenton and Weibull (2014). We study the equilibrium selected by this method
when we apply it to the uniform price auction presented in the model section and we ana-
lyze the impact that the structural parameters (production capacity and demand) and the
market design parameter (minimum bid allowed by the auctioneer) have in determining
the equilibria that are selected.

The robustness to strategic uncertainty method proposes that players face some un-
certainty about the strategies played by other players. Player i’s uncertainty about player
j’s strategy is modeled as follows:

btij = btj + tεi,j ∀j 6= i, (10)

where the random variables εi,j ∼ φij are statistically independent.

Equation 10 can be interpreted as follows: player i thinks that player j will play strat-
egy bj plus some random perturbation. When the uncertainty parameter (t-parameter)
goes to zero, the players do not face any uncertainty.

For t > 0, the random variable bi,j has probability density defined by:

f ti,j =
1

t
φi,j

(
x− btj
t

)
The profit function is defined by:

πti(b) = E
[
π(bi, b

t
−i)
]

=

∫ [
πi(bi, x−i)f

t
i,j(bj)

]
∂x−i (11)

A pair of strategies (b∗i , b
∗
j) is a t-equilibrium of the game if b∗i and b∗j maximize 11.

Therefore, to find the t-equilibrium of the game is enough to work out the best response
functions and to find the intersection between them.

If we apply equation 11 to the payoff function in the uniform price auction model
defined by equation 2, we obtain:
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πti(bi, b
t
j) = E

[
π(bi, b

t
j)
]

=

∫ [
πi(bi, x−i)f

t
i,j(bj)

]
∂x−i (12)

= bjki

[
1− Φi,j

(
bi − bj
t

)]
+ bi(θ − kj)

[
Φi,j

(
bi − bj
t

)]
,

where Φi,j is the cumulative distribution function of φi,j. The first term in equation

12,
(
bjki

[
1− Φi,j

(
bi − bj
t

)])
, represents player i’s expected payoff when it submits the

lower bid in the auction. With probability
[
1− Φi,j

(
bi − bj
t

)]
player i submits the lower

bid in the auction. In that case, player j sets the price (bj), and player i sells its entire

production capacity (ki). The second term in equation 12,
(
bi(θ − kj)

[
Φi,j

(
bi − bj
t

)])
,

represents supplier i’s expected payoff when it submits the higher bid in the auction. With

probability
[
Φi,j

(
bi − bj
t

)]
player i submits the higher bid in the auction. In that case,

player i sets the price (bi) and satisfies the residual demand (θ − kj).

By using equation 12, it is easy to work out one player’s expected payoff given the strat-
egy of the other player. In particular, we set bj and vary bi between bmin and bmax. Know-

ing that the random variable bi,j has probability density defined by f ti,j =
1

t
φi,j

(
x− btj
t

)
,

and if, as in Andersson, Argenton and Weibull (2014), we assume that f ti,j ∼ N(0, 1), we
work out player i’ expected payoff πti(bi, btj), and we choose bi that maximizes that payoff.
Repeating that process for every bj ∈ [bmin, bmax], we work out player i’s best response
function. By using the same approach we work out player j’s best response function. The
intersection between both players’ best response functions determines the equilibrium se-
lected by the robustness to strategic uncertainty method.

To understand the best response functions, it is useful to work out the expected payoff
for one player when we fix the strategy played by the other player. In the left-hand side
of figure 7, we plot four of the expected payoff functions for player i. When player j sets
a low bid, player i maximizes its expected payoff by submitting the maximum bid. In
contrast, when player j sets a high bid, player i maximizes its expected payoff by submit-
ting low bids. In both cases, as can be observed in figure 7, the players’ expected payoff
functions are concave and therefore, players maximize their expected payoff by submitting
the minimum or the maximum bid, but never by submitting intermediate bids. More-
over, the players shift their best strategies around the bid that determines the threshold
to work out the Nash equilibrium in the uniform price auction (equation 3).11 For the
parameters in the example, the bid that defines the threshold is between 3.7 and 4.6. As
can be observed in the left-hand side of figure 7, when player j increases its bid, the bid
that maximizes player i’s payoff shift from 10 to 1.

The analysis of the players’ expected payoff functions is useful to understand the equi-
librium selected by the robustness to strategic uncertainty method. In figure 8, we plot

11The threshold that determine the Nash equilibrium in the uniform price auction is determined in the
model section (equation 3), and it can be observed in the dark grey areas in figure 14
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Figure 8: Players’ best response functions (ki = 8.7, kj = 6.5, θ = 10, bmax = 10,
N = 110)
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the players’ best response functions. When one player submits a low bid, the best strat-
egy for the other player is to submit a high bid. The players shift from low to high bids
when the opponent player submits a bid around the threshold that determines the set of
Nash equilibria (equation 3). The intersection of the best response functions selects two
of the Nash equilibria in the original game. In each of these two equilibria, one player
submits the maximum bid and the other player submits the minimum bid allowed by the
auctioneer.

We conclude this section studying the impact that an increase in the minimum bid al-
lowed by the auctioneer has on the equilibrium selected by the tracing procedure method.
An increase in the minimum bid allowed by the auctioneer reduces the set of Nash equilib-
ria (right-hand panel, figure 14). However, given that the maximum bid does not change,
the threshold that defines the Nash equilibria also does not change (equation 3). When
we apply the robustness to strategic uncertainty method to the game where the minimum
bid is higher, we observe that an increase in the minimum bid shrinks the best response
functions, but the threshold around which the players shift from high to low bids given
the other player strategies does not change. Moreover, the equilibrium selected by the
robustness to strategic uncertainty method also does not change. As in the case when the
minimum bid allowed by the auctioneer is lower, the robustness to strategic uncertainty
method selects the equilibria in which one player submits the minimum bid and the other
player submits the maximum bid (right-hand panel, figure 8).

5 Quantal response method

As in the previous sections, we present the quantal response method and we study the
equilibrium selected by this method when we apply it to the uniform price auction pre-
sented in the model section.

The quantal response method proposed by McKelvey and Palfrey (1998) assumes that
the players choose among the strategies in the game based on their relative expected
payoff. The key idea is that when the players calculate their expected payoff, they make
calculation errors according to some random process. Based on that random process,
the players assign more probability to the strategies that give then a higher expected
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Figure 9: Quantal response method (ki = 8.7, kj = 6.5, θ = 10, bmax = 10, N = 11)
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payoff. The Nash equilibrium in the quantal response method is the set of probabilities
for which none of the players wants to deviate. Formally, the Nash equilibrium in the
quantal response method is defined as follows: Given {λ1, λ2, ...} a sequence such that
limt−→∞ λt =∞, and {p1, p2, ...} a corresponding sequence with pt ∈ π∗(λt) for all t, such
that limt−→∞ pt = p∗, then p∗ is a Nash equilibrium.

In their seminal paper, McKelvey and Palfrey (1998) use the logistic quantal response
function. That specific function is a particular parametric class of quantal response func-
tions that has a long tradition in the study of individual choice behaviour. The logit
equilibrium correspondence is the correspondence π∗ : < −→ 24 given by:

π∗(λ) =

{
π ∈ 4 : πij =

eλuij(π)∑Ji
k=1 e

λuik(π)
∀i, j

}
, (13)

where the term in the numerator
(
eλuij(π)

)
is one of the players’ expected payoff when

it selects strategy i and the oppose player selects strategy j. The term in the denomi-
nator

(∑Ji
k=1 e

λuik(π)
)

is the sum of one of the players’ expected payoff when it selects
strategy i and the oppose player selects all the strategies in its strategies set. Therefore,
by using equation 13 each player assigns more probability to the strategies that give it
higher expected payoff.

When we apply the quantal response method to the uniform price auction presented
in the model section we observe that the player with higher production capacity (player i)
plays the maximum bid with a probability close to one. In contrast, the player with lower
production capacity (player j) assigns higher probabilities to the lower bids (left-hand
panel, figure 9).

The equilibrium selected by the quantal response method is in line with the equilibrium
selected by the tracing and the robustness to strategic uncertainty methods. Moreover, the
pattern that appears in the equilibrium selected by the quantal response method is very
similar to the pattern that appears in the other two methods, since in the three methods
the players tend to select extreme strategies. In particular, the player with higher produc-
tion capacity submits the maximum bid and the player with lower production capacity
submits the lower bids in the strategies support with higher probabilities. Moreover, the
quantal response method shows similarities to the tracing procedure method, since the

18



quantal response method defines a unique selection from the set of Nash equilibrium by
“tracing” the graph of the logit equilibrium correspondence beginning at the centroid of
the strategy simplex (the unique solution when λ = 0) and continuing for larger and larger
values of λ.

We conclude this section by analyzing the effect that an increase in the minimum
bid allowed by the auctioneer has on the equilibrium selected by the quantal response
method. After an increase in the minimum bid allowed by the auctioneer, player i assigns
probability one to the maximum bid allowed by the auctioneer and player j assigns higher
probabilities to the lower bids in the strategies’ support (left-hand panel, figure 9). An
increase in the minimum bid does not change the strategy of the player with higher
production capacity, since it still faces a high residual demand and does not change
its strategy, but makes more attractive for the player with lower production capacity
to submit lower bids, since for that player, the expected payoff associated to low bids
increases. Therefore, an increase in the minimum bid allowed in the auction facilitates
the coordination in the equilibrium of the game where the player with higher production
capacity submits the maximum bid allowed by the auctioneer. This contrasts with the
results that we obtain when we apply the tracing procedure method, where an increase
in the minimum bid allowed by the auctioneer reduces the possibilities that the players
coordinate in that equilibrium.12

6 Conclusion

We study a uniform price auction with a continues set of strategies that has the structure
of a Hawk-Dove game with multiplicity of Nash equilibria. In each of those equilibria, one
of the players submits the maximum bid (dove strategy) and the other player submits a
bid that makes undercutting unprofitable (hawk strategy). We apply the tracing proce-
dure method (Harsanyi and Selten, 1988), the robustness to strategic uncertainty method
(Andersson, Argenton and Weibull, 2014) and the quantal response method (McKelvey
and Palfrey, 1998) to predict which equilibrium is selected by the players. We also study
the impact that the structural parameters of the model (demand and players’ production
capacities) and the market design parameter (minimum bid allowed by the auctioneer)
have on the equilibrium selected by the players.

The tracing procedure method proposed by Harsanyi and Selten (1988) selects the
equilibrium in which the player with higher production capacity submits the maximum
bid (dove strategy) and the player with lower production capacity submits the minimum
bid allowed by the auctioneer (hawk strategy). When the auctioneer increases the mini-
mum bid allowed in the auction, the equilibrium selected by the players does not change,
but the coordination in that equilibrium is more difficult.

With independence of suppliers’ production capacities, the robustness to strategic un-
certainty method proposed by Andersson, Argenton and Weibull (2014) selects the two

12It is important to remark, that this result is only true when the players are asymmetric. When
the players are symmetric an increase in the minimum bid increases the possibilities of miscoordination,
since in that case, both players assigns higher probabilities to the lower bid and that complicates the
coordination in one of the equilibria of the game. For a detailed analysis of the symmetric case see Bigoni,
Blazquez and le Coq (2018).
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equilibria in which one of the players submits the maximum bid (dove strategy) and the
other player submits the minimum bid allowed by the auctioneer (hawk strategy). When
the auctioneer increases the lower bid allowed in the auction, the equilibria selected by
the players do not change.

The quantal response method proposed by McKelvey and Palfrey (1998) predicts that
the player with higher production capacity submits the maximum bid (dove strategy)
and the player with lower production capacity submits the lower bids in the strategies set
with higher probabilities (hawk strategy). An increase in the minimum bid allowed by the
auctioneer does not change the strategy of the player with higher production capacity, but
increases the probability that the low production capacity player assigns to the minimum
bid, and the coordination in one of the equilibria of the game is easier.

This paper contributes to frame the experimental design, and helps to predict and un-
derstand the experimental results in Bigoni, Blázquez and Le Coq (2021). In that paper,
the authors conduct an experimental analysis of a Hawk-Dove game similar to the one
presented in this paper. The authors find more probable that the players coordinate in the
equilibrium where the player with higher production capacity submits the maximum bid
(dove strategy), and the player with lower production capacity submits the minimum bid
allowed by the auctioneer (hawk strategy). This result is in line with the three equilibrium
selection methods analyzed in this paper. The authors also find that an increase in the
minimum bid allowed by the auctioneer makes the coordination in one of the equilibria
slightly more difficult. This result is in line with the predictions in Harsanyi and Selten
(1988), but not with the ones in McKelvey and Palfrey (1998).

The theoretical results that we present in this paper contribute to the industrial or-
ganization and the trade literature that endogenize the emergence of a price leader in
duopoly models. It also provides a theoretical framework to study evolutionary biology
problems when the players can choose among a continue set of strategies.

We frame the theoretical analysis as a uniform price auction with the structure of a
Hawk-Dove game with a continuous set of strategies. Therefore, the theoretical frame-
work extend the literature of Hawk-Dove games where the players can choose only among
two different strategies.

The theoretical analysis that we have developed also gives us the opportunity to com-
pare the equilibrium played in a uniform price auction with the one played in a discrimina-
tory price auction. Therefore, the theoretical framework that we develop could be useful
to compare the results among different types of auctions (uniform vs. discriminatory price
auctions).

20



Annex 1
Lemma 1.

In lemma 1, we study the relation between the structural parameters of the model (demand and pro-
duction capacities) and players’ expected payoff. When player i submit a bid equal to bi = bmin + hε,
its expected payoff is defined by πi(bi = bmin + hε, pj). Where bmin is the minimum bid allowed by the

auctioneer, h is an integer number, ε =
bmax − bmin

N
is the increase between one bid and the next one,

and can be as small as we want by increasing N .13 N is the total number of bids in the strategies set.
The set of strategies is represented in figure 10. The probability that player j assigns to each bid in the
strategies set is defined by pj . If the probability that each player assign to each bid (pj) follows a uniform
distribution, the close form solution of the expected payoff function for player i when it submits a bid
bi = bmin + hε is worked out as follows:

πi(bi = bmin + hε, pj) =

∫ bmin+hε

bmin

(bmin + hε)(θ − kj)f(bj)∂bj +

∫ bmin+Nε

bmin+hε

bjkif(bj)∂bj

= (bmin + hε)(θ − kj)
(bmin + hε)− bmin
(bmin +Nε)− bmin

+

(bmin +Nε) + (bmin + hε)

2
ki

(bmin +Nε)− (bmin + hε)

(bmin +Nε)− bmin

= (bmin + hε)(θ − kj)
h

N
+

2bmin + (N + h)ε

2
ki
N − h
N

(14)

The first term in equation 14 represents player i’ expected payoff when it submits the higher bid in the

auction. With probability
(

(bmin + hε)− bmin
(bmin +Nε)− bmin

)
player i submits the higher bid in the auction. In that

case, player i sets the equilibrium price (bmin+hε) and satisfies the residual demand (θ−kj). The second
term in equation 14 represents player i’s expected payoff when player j submits the higher bid in the

auction. With probability
(

(bmin +Nε)− (bmin + hε)

(bmin +Nε)− bmin

)
player j submits the higher bid in the auction.

In that case, player j sets the equilibrium price that in expectation is equal to
(bmin +Nε) + (bmin + hε)

2
,

and player i sells its entire production capacity (ki).

Figure 10: Strategies set, and payoffs

(bmin + hε)(θ − kj) bjki

bmin bmin + ε bmin + hε bmax = bmin +Nε

To work out the bid that maximize the expected profit, it is necessary to work out equation 14’s first
order conditions.

∂πi(bi = bmin + hε, pj)

∂h
=

(θ − kj)
N

(hε+ (bmin + hε)) +

ki
2N

(ε(N − h)− (2bmin + (N + h)ε))

=
1

N
((θ − kj)(bmin + 2hε)− ki(bmin + εh)) (15)

13We assume that N is large. That guarantees the set of strategies is continuous, i.e., the probability
of a tie is nil. By doing that we can work out easily player i’s expected payoff given player j’s probability
distribution function.
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Where the first term in equation 15
(

1

N
((θ − kj)(bmin + 2hε)

)
is positive, which means that when

the player satisfies the residual demand, it increases its payoffs by increasing its bid. By the contrary,
the second term in equation 15 (ki(bmin + εh)) is negative, which means that when the player satisfies
the total demand it prefers to decreases its bid to increase its chances to be dispatched first in the auction.

After rearranging equation 15 to write it as a function of the structural parameters, we obtain:

∂πi(bi = bmin + hε, pj)

∂h
=

1

N
(bmin(θ − kj − ki) + hε(2θ − 2kj − ki)) (16)

The first term in equation 16 is always negative, and the second term is negative if 2θ < 2kj + ki.

Therefore, if 2θ < 2kj + ki,
∂πi(bi = bmin + hε, pj)

∂h
is negative and player i maximizes its expected profit

by submitting the lower bid in the auction. In contrast, if 2θ ≥ 2kj + ki, player i could maximize its
expected payoff at bmin, at a critical point, or at bmax. Therefore, it is necessary to work out the critical
points and the second derivative to know which strategy maximizes the expected payoff.

To work out the critical points, it is enough to equalize equation 16 to zero. Therefore,

∂πi(bi = bmin + hε, pj)

∂h
= 0⇔ 1

N
(bmin(θ − kj − ki) + hε(2θ − 2kj − ki)) = 0⇔

h =
−bmin(θ − kj − ki)
ε(2θ − 2kj − ki)

. (17)

To know if the critical point is a maximum or a minimum, it is necessary to work out the second
derivative.

∂πi(bi = bmin + hε, pj)

∂h2
= ε(2θ − 2ki − kj) (18)

Given that we are studying the case in which 2θ > 2kj+ki, the second term in equation 16 is positive,
then equation 18 is also positive. Therefore, the expected payoff is a concave function, and the critical
point defined by equation 17 is a global minimum. Hence, player i maximizes it profits by submitting
the lower or the higher bid allowed by the auctioneer, but not by submitting a bid equal to the critical

point bmin + εh = bmin + ε
−bmin(θ − k2 − k1)

ε(2θ − 2k2 − k1)
.

Figure 11: Demand thresholds players i, j

0
θ̂i =

2kj + ki
2

θ̂j =
2ki + kj

2

ki + kj

Figure 11 summarize the analysis derived from the first and the second order conditions (equations

16, 17 and 18). When the demand is low
(

0 < θ ≤ 2kj + ki
2

)
, both players maximize their expected

payoff by submitting the minimum bid allowed by the auctioneer (left-hand panel, figure 5). When the

demand is intermediate
(

2kj + ki
2

< θ ≤ 2ki + kj
2

)
, player i maximizes it payoff by submitting the max-

imum bid allowed by the auctioneer and player j maximizes it payoff by submitting the minimum bid

allowed by the auctioneer (central panel, figure 5). When the demand is high
(

2ki + kj
2

< θ ≤ ki + kj

)
,

both players maximize their expected payoff by submitting the maximum bid allowed by the auctioneer
(right-hand panel, figure 5).
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Proposition 1. When t = 0 players’ total payoff are determined only by the expected payoff. Therefore,
the proof of proposition 1 is straight forward using the results of lemma 1.

Proposition 2. Proposition 2 analyzes the equilibrium selected by the tracing procedure method when
the demand is low (i), intermediate (ii), or high (iii). We analyze each case.

Case i: Low demand (2θ ≤ 2kj + ki). We prove that when the demand is low, the tracing procedure
method selects the equilibrium in which the player with higher production capacity submits the maximum
bid allowed by the auctioneer and the player with lower production capacity submits the minimum bid
allowed by the auctioneer.

In proposition 1, we show that when t = 0, the tracing procedure method selects the equilibrium in
which both players submit the minimum bid in the auction. However, that pair of strategies is not an
equilibrium in the original game. Therefore, the key point in the tracing procedure method is to find the
pair of strategies for each value of t until the players select a pair of strategies that are an equilibrium in
the original game.

Within the proof, we use the next notation:

ti,1 : (bmin, bmin) → (bmin + hε, bmin). ti,1 solves equation 4 for player i, when it increases its bid from
bmin to bmin + hε while player j’s bid is bmin (figure 12).
ti,2 : (bmin + hε, bmin) → (bmin + Hε, bmin). ti,1 solves equation 4 for player i, when it increases its bid
from bmin + hε to bmin +Hε while player j’s bid is bmin (figure 12).
tj,1 : (bmin, bmin) → (bmin, bmin + hε). tj,1 solves equation 4 for player j, when it increases its bid from
bmin to bmin + hε while player i’s bid is bmin (figure 12).
tj,2 : (bmin, bmin + hε) → (bmin, bmin + Hε). tj,2 solves equation 4 for player j, when it increases its bid
from bmin + hε to bmin +Hε while player i’s bid is bmin (figure 12).
tj,3 : (bmin+hε, bmin+hε)→ (bmin+hε, bmin+Hε). tj,3 solves equation 4 for player j, when it increases
its bid from bmin + hε to bmin +Hε while player i’s bid is bmin + hε (figure 12).
tj,4 : (bmin + hε, bmin)→ (bmin + hε, bmin +Hε). tj,4 solves equation 4 for player j, when it increases its
bid from bmin to bmin +Hε while player i’s bid is bmin + hε (figure 12).

The proof consists of two steps. In step one, we prove that the player with higher production capacity
(player i) deviates first by increasing its bid from bmin to bmin +hε, i.e., ti,1 < tj,1. In step two, we prove
that once that player i deviates by increasing its bid from bmin to bmin + hε, it deviates first again by
increasing its bid from bmin +hε to bmin +Hε, i.e., ti,2 < tj,4. Prove step two directly is difficult, and we
prove it in three different steps: ti,2 < tj,2 < tj,3 < tj,4. Below, we present a sketch of the four steps of
the proof, and we explain the intuition behind each step.

In step one, we prove that the player with higher production capacity (player i) deviates first from
the pair of strategies (bi = bmin, bj = bmin) by increasing its bid, i.e., we prove that ti,1 < tj,1, where ti,1
solves ti,1πi(bmin, bmin)+(1−ti,1)πi(bmin, pj) = ti,1πi(bmin+hε, bmin)+(1−ti,1)πi(bmin+hε, pj), and tj,1
solves tj,1πj(bmin, bmin) + (1− tj,1)πj(pi, bmin) = tj,1πj(bmin, bmin + hε) + (1− tj,1)πj(pi, bmin + hε) (ti,1
and tj,1 are represented in figure 12). Step one proves that the player with higher production capacity
adopts a “dove” strategy in the game where players’ payoff functions are defined by the tracing procedure
method profits equation 4.

In the rest of the proof (steps two, three and four), we need to show that once the player with higher
production capacity increases its bid, the player with lower production capacity never deviates. The intu-
ition is simple, once that in the first step, the player with higher production capacity increases its bid by
adopting a “dove” strategy, the player that adopts a “hawk” strategy is better off, and never deviates from
the strategy in which it submits the minimum bid. Therefore, the player with higher production capacity
continues increasing its bid until the players select the pair of strategies (bi = bmax, bj = bmin). That
will be the equilibrium in the original game selected by the tracing procedure method. Prove that result
directly is complex, since it is necessary to show that ti,2 < tj,4 (figure 12). Therefore, we prove it in three
different steps. In step two, we prove that ti,2 < tj,2. In step three, we prove that tj,2 < tj,3. In step four,
we prove that tj,3 < tj,4. Putting together steps two, three and four, we obtain ti,2 < tj,2 < tj,3 < tj,4.
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Figure 12: Proposition 2. Case i: Low demand (2θ ≤ 2kj + ki)
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In step two, we prove that ti,2 < tj,2, where ti,2 solves ti,2πi(bmin + hε, bmin) + (1 − ti,2)πi(bmin +
hε, pj) = ti,2πi(bmin +Hε, bmin) + (1− ti,2)πi(bmin +Hε, pj), and tj,2 solves tj,2πj(bmin, bmin +hε) + (1−
tj,2)πj(pi, bmin + hε) = tj,2πj(bmin, bmin + Hε) + (1 − tj,2)πj(pi, bmin + Hε), where h < H (ti,2 and tj,2
are represented in figure 12).

In step three, we prove that tj,2 < tj,3, where tj,3 solves tj,3πj(bmin+hε, bmin+hε)+(1−tj,3)πj(pi, bmin+
hε) = tj,3πj(bmin + hε, bmin +Hε) + (1− tj,3)πj(pi, bmin +Hε) (tj,3 is represented in figure 12).

In step four, we prove that tj,3 < tj,4, where tj,4 solves tj,4πj(bmin+hε, bmin)+(1−tj,4)πj(pi, bmin) =
tj,4πj(bmin + hε, bmin +Hε) + (1− tj,4)πj(pi, bmin +Hε) (tj,4 is represented in figure 12).

In the rest of the proof, we explain in detail each of the four steps. In step one, we prove that ti,1 < tj,1,
where ti,1 solves ti,1πi(bmin, bmin)+(1−ti,1)πi(bmin, pj) = ti,1πi(bmin+hε, bmin)+(1−ti,1)πi(bmin+hε, pj).

ti,1πi(bmin, bmin) + (1− ti,1)πi(bmin, pj) =

ti,1bmin
kiθ

ki + kj
+ (1− ti,1)

2bmin +Nε

2
ki
N

N
, and

ti,1πi(bmin + hε, bmin) + (1− ti,1)πi(bmin + hε, pj) =

ti,1(bmin + hε)(θ − kj) + (1− ti,1)

[
(bmin + hε)(θ − kj)

h

N
+

2bmin + (N + h)ε

2
ki
N − h
N

]
.

Therefore, ti,1 is defined implicitly by:

ti,1bmin
kiθ

ki + kj
+ (1− ti,1)

2bmin +Nε

2
ki
N

N
=

ti,1(bmin + hε)(θ − kj) + (1− ti,1)

[
(bmin + hε)(θ − kj)

h

N
+

2bmin + (N + h)ε

2
ki
N − h
N

]
(19)
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And explicitly by the close form solution:

ti,1 =
ni,1(·)
di,1(·)

, where

ni,1(·) = (bmin + hε)(θ − kj)
h

N
+

2bmin + (N + h)ε

2
ki
N − h
N

− 2bmin +Nε

2
ki
N

N

di,1(·) = bmin
ki − θ
ki + kj

− (bmin + hε)(θ − kj) + ni,1(·)

By doing some algebra in ni,1(·), we obtain:

(bmin + hε)(θ − kj)
h

N
= (bmin + hε)(2θ − 2kj)

h

2N
2bmin + (N + h)ε

2
ki
N − h
N

= (2bmin +Nε)ki
N − h

2N
+ hεki

N − h
2N

2bmin +Nε

2
ki
N

N
=

bmin + bmin + (N − h)ε+ hε

2
ki

(N − h) + h

N

= (bmin + hε)ki
h

2N
+ (bmin + hε)ki

N − h
2N

+ ...

(bmin + (N − h)ε)ki
h

2N
+ (bmin + (N − h)ε)ki

N − h
2N

= (bmin + hε)ki
h

2N
+ (2bmin +Nε)ki

N − h
2N

+ (bmin + (N − h)ε)ki
h

2N

Therefore,

ni,1(·) =

(
(bmin + hε)(2θ − 2kj)

h

2N
+ (2bmin +Nε)ki

N − h
2N

+ hεki
N − h

2N

)
−(

(bmin + hε)ki
h

2N
+ (2bmin +Nε)ki

N − h
2N

+ (bmin + (N − h)ε)ki
h

2N

)
=

(
(bmin + hε)(2θ − 2kj − ki)

h

2N
+ hεki

N − h
2N

)
−(

bminki
h

2N
+ (N − h)εki

h

2N

)
= (bmin + hε)(2θ − 2kj − ki)

h

2N
− bminki

h

2N
,

di,1(·) =

(
bmin

kiθ

ki + kj
− (bmin + hε)(θ − kj)

)
+

(
(bmin + hε)(2θ − 2kj − ki)

h

2N
− bminki

h

2N

)
, and

ti,1 =
(bmin + hε)(2θ − 2kj − ki)

h

2N
− bminki

h

2N(
bmin

kiθ

ki + kj
− (bmin + hε)(θ − kj)

)
+

(
(bmin + hε)(2θ − 2kj − ki)

h

2N
− bminki

h

2N

) (20)

In equation 20, ni,1(·) ≤ 0, since the we are studying the low demand case (2θ ≤ 2kj + ki); and

di,1(·) ≤ 0, since 2θ ≤ 2kj + ki, and bmin
kiθ

ki + kj
≤ (bmin +hε)(θ− kj). The last inequality holds to guar-

antee that equation 19 is satisfied: By proposition 1, we know that when the demand is low, the expected

payoff is decreasing, i.e., (1− ti,1)πi(bmin, pj) = (1− ti,1)
2bmin +Nε

2
ki
N

N
≥ (1− ti,1)πi(bmin + hε, pj) =

(bmin +hε)(θ− kj)
h

N
+

2bmin + (N + h)ε

2
ki
N − h
N

. Therefore, to guarantee that equation 19 is satisfied,

it is necessary that ti,1πi(bmin, bmin) = ti,1bmin
kiθ

ki + kj
≤ ti,1πi(bmin + hε, bmin) = ti,1(bmin+hε)(θ − kj).

Therefore, bmin
kiθ

ki + kj
≤ (bmin + hε)(θ − kj), and that guarantees that di,1(·) ≤ 0. Moreover, di,1(·) ≤
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ni,1(·) ≤ 0, and that guarantees that 0 < ti,1 ≤ 1.

By using equation 20, we can prove that ti,1 ≤ tj,1. In particular, given that di,1(·) ≤ ni,1(·) ≤ 0 ∀i, j,
it is enough to show that ti,1 ≤ tj,1 if ni,1(·) ≥ nj,1(·), and if di,1(·) ≤ dj,1(·).

First, we prove that ni,1(·) ≥ nj,1(·):

ni,1(·)− nj,1(·) = (bmin + hε)
h

2N
(ki − kj)− bmin

h

2N
(ki − kj)

= (ki − kj)
h

2N
(bmin + hε− bmin) =

ki − kj
2N

εh2 ≥ 0, (21)

where the inequality holds since ki ≥ kj .

Second, we prove that di,1(·) ≤ dj,1(·):

di,1(·)− dj,1(·) =
bminθ

ki + kj
(ki − kj)− (bmin + hε)(θ − kj − θ + ki) +

ki − kj
2N

h2ε

= (ki − kj)
(
bminθ

ki + kj
− (bmin + hε)

)
+
ki − kj

2N
h2ε

=
ki − kj

2N(ki + kj)

(
2Nbminθ + h2ε(ki + kj)− 2N(ki + kj)bmin − 2N(ki + kj)hε

)
=

ki − kj
2N(ki + kj)

(2Nbmin(θ − (ki + kj)) + hε(ki + kj)(h− 2N)) ≤ 0, (22)

where the inequality holds since,

ki − kj
2N(ki + kj)

≥ 0, since ki ≥ kj ;

2Nbmin(θ − (ki + kj)) ≤ 0, since θ ≤ (ki + kj); and,
hε(ki + kj)(h− 2N) ≤ 0, since h ≤ N.

Therefore, ti,1 < tj,1.

In step two, we prove ti,2 < tj,2, where ti,2 solves ti,2πi(bmin+hε, bmin) + (1− ti,2)πi(bmin+hε, pj) =
ti,2πi(bmin +Hε, bmin) + (1− ti,2)πi(bmin +Hε, pj).

ti,2πi(bmin + hε, bmin) + (1− ti,2)πi(bmin + hε, pj) =

ti,2(bmin + hε)(θ − kj) + (1− ti,2)

(
(bmin + hε)(θ − kj)

h

N
+

2bmin + (N + h)ε

2
ki
N − h
N

)
, and

ti,2πi(bmin +Hε, bmin) + (1− ti,2)πi(bmin +Hε, pj) =

ti,2(bmin +Hε)(θ − kj) + (1− ti,2)

(
(bmin +Hε)(θ − kj)

H

N
+

2bmin + (N +H)ε

2
ki
N −H
N

)
, where h ≤ H.

Therefore, ti,2 is defined implicitly by:

ti,2(bmin + hε)(θ − kj) + (1− ti,2)

(
(bmin + hε)(θ − kj)

h

N
+

2bmin + (N + h)ε

2
ki
N − h
N

)
=

ti,2(bmin +Hε)(θ − kj) + (1− ti,2)

(
(bmin +Hε)(θ − kj)

H

N
+

2bmin + (N +H)ε

2
ki
N −H
N

)
(23)

And explicitly by the close form solution:

26



ti,2 =
ni,2(·)
di,2(·)

, where

ni,2(·) =

(
(bmin +Hε)(θ − kj)

H

N
+

2bmin + (N +H)ε

2
ki
N −H
N

)
−(

(bmin + hε)(θ − kj)
h

N
+

2bmin + (N + h)ε

2
ki
N − h
N

)
di,2(·) = ((bmin + hε)(θ − kj))− ((bmin +Hε)(θ − kj)) + ni,2(·)

By doing some algebra in ni,2(·) and di,2(·), we obtain:

ni,2(·) =
θ − kj
N

(
bmin(H − h) + ε(H2 − h2)

)
+

ki
2N

(
2bmin(N −H −N + h) + ε(N2 −H2 −N2 + h2)

)
=

θ − kj
N

(bmin(H − h) + ε(H − h)(H + h)) +
ki

2N
(2bmin(h−H) + ε(h−H)(h+H))

=
θ − kj
N

((H − h)(bmin + ε(H + h))) +
ki

2N
((h−H)(2bmin + ε(h+H)))

=
2θ − 2kj

2N
((H − h)(bmin + ε(H + h)))− ki

2N
((H − h)(bmin + ε(h+H)))− ki

2N
((H − h)bmin)

=
2θ − 2kj − ki

2N
((H − h)(bmin + ε(H + h)))− ki

2N
((H − h)bmin) ,

di,2(·) = ((θ − kj)ε(h−H)) +
2θ − 2kj − ki

2N
((H − h)(bmin + ε(H + h)))− ki

2N
((H − h)bmin) , and

ti,2 =

2θ − 2kj − ki
2N

((H − h)(bmin + ε(H + h)))− ki
2N

((H − h)bmin)

((θ − kj)ε(h−H)) +
2θ − 2kj − ki

2N
((H − h)(bmin + ε(H + h)))− ki

2N
((H − h)bmin)

(24)

In equation 24, ni,2(·) ≤ 0, since the we are studying the low demand case (2θ ≤ 2kj+ki) and h ≤ H.
And di,1(·) ≤ 0, since (2θ ≤ 2kj + ki), h ≤ H and kj ≤ θ. Moreover, di,2(·) ≤ ni,2(·) ≤ 0, and that
guarantees that 0 < ti,2 ≤ 1.

By using equation 24, we can prove that ti,2 ≤ tj,2. In particular, given that di,2(·) ≤ ni,2(·) ≤ 0 ∀i, j,
it is enough to show that ni,2(·) ≥ nj,2(·), and that di,2(·) ≤ dj,2(·).

First, we prove that ni,2(·) ≥ nj,2(·):

ni,2(·)− nj,2(·) =
2θ − 2kj − ki − 2θ + 2ki + kj

2N

(
bmin(H − h) + ε(H2 − h2)

)
−
(
bmin(H − h)

2N
(ki − kj)

)
=

ki − kj
2N

(
bmin(H − h)− bmin(H − h) + ε(H2 − h2)

)
=
ki − kj

2N
ε(H2 − h2) ≥ 0, (25)

where the inequality holds since ki ≥ kj and H ≥ h.

Second, we prove that di,2(·) ≤ dj,2(·):

di,2(·)− dj,2(·) = ε(h−H)(θ − kj − θ + ki) +
ki − kj

2N
ε(H2 − h2)

=
ki − kj

2N
(2εN(h−H) + ε(H − h)(H + h))

=
ki − kj

2N
(ε(H − h)(H + h)− 2εN(H − h))

=
ki − kj

2N
(ε(H − h)((H + h)− 2N)) ≤ 0, (26)
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where the inequality holds since,

ki − kj
2N

≥ 0, since ki ≥ kj ;

(H − h) ≥ 0, since H ≥ h; and,
(H + h)− 2N ≤ 0, since h < N , H ≤ N , then (H + h) ≤ 2N.

Therefore, ti,2 < tj,2.

In step three, we prove that tj,2 < tj,3, where tj,3 solves:

tj,2πj(bmin, bmin + hε) + (1− tj,2)πj(pi, bmin + hε) =

tj,2πj(bmin, bmin +Hε) + (1− tj,2)πj(pi, bmin +Hε),

and tj,3 solves:

tj,3πj(bmin + hε, bmin + hε) + (1− tj,3)πj(pi, bmin + hε) =

tj,3πj(bmin + hε, bmin +Hε) + (1− tj,3)πj(pi, bmin +Hε).

Therefore, the close form solutions for tj,2, and tj,3 are:

tj,2 =
nj,2(·)
dj,2(·)

=
πj(pi, bmin +Hε)− πj(pi, bmin + hε)

(πj(bmin, bmin + hε)− πj(bmin, bmin +Hε)) + nj,2(·)

tj,3 =
nj,3(·)
dj,3(·)

=
πj(pi, bmin +Hε)− πj(pi, bmin + hε)

(πj(bmin + hε, bmin + hε)− πj(bmin + hε, bmin +Hε)) + nj,3(·)
.

Given that nj,2(·) = nj,3(·), tj,2 < tj,3 if dj,2(·) < dj,3(·). We prove that dj,2(·) < dj,3(·):

dj,2(·) < dj,3(·) ⇐⇒ πj(bmin, bmin + hε)− πj(bmin, bmin +Hε) <

πj(bmin + hε, bmin + hε)− πj(bmin + hε, bmin +Hε)

⇐⇒ (bmin + hε)(θ − ki)− (bmin +Hε)(θ − ki) <

(bmin + hε)
θkj

ki + kj
− (bmin +Hε)(θ − ki)

⇐⇒ bmin + hε

ki + kj
((θkj)− (ki + kj)(θ − ki)) =

bmin + hε

ki + kj
(θkj − (kiθ − k2i + kjθ − kikj))

⇐⇒ bmin + hε

ki + kj
(ki(ki + kj − θ)) > 0,

where the inequality holds since ki + kj ≥ θ. Therefore, tj,2 < tj,3.

In step four, we prove that tj,3 < tj,4, where tj,3 solves:

tj,3πj(bmin + hε, bmin + hε) + (1− tj,3)πj(pi, bmin + hε) =

tj,3πj(bmin + hε, bmin +Hε) + (1− tj,3)πj(pi, bmin +Hε) (27)

and tj,4 solves:

tj,4πj(bmin + hε, bmin) + (1− tj,4)πj(pi, bmin) =

tj,4πj(bmin + hε, bmin +Hε) + (1− tj,4)πj(pi, bmin +Hε) (28)

By comparing equations 27 and 28, we can conclude that:
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First, the right-hand side in equations 27 and 28 is the same for all t ∈ [0, 1].

Second, πj(bmin + hε, bmin) = (bmin + hε)ki ≥ (bmin + hε)
θkj

ki + kj
= πj(bmin + hε, bmin + hε), and

by lemma 1, we know that πj(pi, bmin) ≥ πj(pi, bmin + hε). Therefore, the left-hand side in equation 28
is larger than the left-hand side in equation 27 for all t ∈ [0, 1]. Hence, when bi = (bmin + hε) player j
is better off by submitting bj = bmin, than by submitting bj = bmin + hε, and the parameter tj,4 that
makes player j deviates from bj = bmin to bj = bmin + Hε is always larger than the parameter tj,3 that
makes player j deviates from bj = bmin + hε to bj = bmin +Hε, i.e., tj,3 < tj,4.

To summarize, when the demand is low (2θ ≤ 2kj + ki), the player with higher production capacity
(player i) deviates first from the pair of strategies bi = bj = bmin by increasing its bid (“dove” strategy),
i.e., ti,1 < tj,1. Once that player i adopts a “dove” strategy by increasing its bid to bi = bmin+hε, player j is
better of by adopting a “hawk” strategy, and it never deviates from bj = bmin, i.e., ti,2 < tj,2 < tj,3 < tj,4.
Therefore, player i continues increasing its bid until it submits a bid equal to the maximum bid allowed
by the auctioneer. Hence, when the demand is low, the tracing procedure method selects the equilibrium
in with the player with higher production capacity submits the maximum bid (bi = bmax), and the player
with lower production capacity submits the minimum bid (bj = bmin).

Case ii: Intermediate demand (2kj + ki < 2θ ≤ 2ki + kj).

According with lemma 1, when the demand is intermediate (2kj + ki < 2θ ≤ 2ki + kj), the player with
higher production capacity maximizes its expected payoff by submitting the maximum bid (bi = bmax),
and the player with lower production capacity maximizes it expected payoff by submitting the min-
imum bid (bj = bmin). Therefore, when the demand is intermediate, the tracing procedure method
selects the equilibrium in which the player with higher production capacity submits the maximum bid
(bi = bmax) and the player with lower production capacity submits the minimum bid (bj = bmin) at
t = 0, and the players do not deviate from that equilibrium when t increases. Therefore, when the de-
mand is intermediate, the equilibrium selected by the tracing procedure method is (bi = bmax, bj = bmin).

Case iii: High demand (2ki + kj < θ).

When the demand is high, the tracing procedure method does not select any of the equilibria of the
original game. We illustrate this point with the example in figure 13. As we prove in lemma 1, when the
demand is high the players maximize their expected payoff by submitting the maximum bid (left-hand
panel, figure 5). Therefore, when t = 0, the unique Nash equilibrium is (bi = 10, bj = 10) (left-hand
panel, figure 13). However, that is not an equilibrium in the original payoff matrix of the game (left-hand
panel, figure 14). Therefore, when t increases one of the players has incentives to deviate (central panel,
figure 14). When t increases, the player with lower production capacity deviates by undercutting the
player with higher production capacity, and the Nash equilibrium is (bi = 10, bj = 9.1), which is not an
equilibrium in the original payoff matrix of the game. It is important to notice, that the player that does
not deviates is worse off, since it submits the higher bid and satisfies the residual demand. Therefore,
as soon as t increases a little, it decreases its bid to be dispatched first in the auction, but that trigger
a price war and the other player also wants to undercut. When the bid is too low, it is not profitable
any more to undercut and the player with higher production capacity increases its bid, but in that case
the player with lower production capacity increases its bid, but still undercutting the other player, since
in that case it is dispatched first in the auction and at the same time it increases the expected payoff,
since when the demand is high, the expected payoff is an increasing function. This cycle in the strategies
is summarized in the right-hand panel in figure 13.14 Therefore, when the demand is high the tracing
procedure method does not select any of the equilibria of the original game.

Proposition 3.

i. The parameter t for which the players deviate from the equilibrium when t = 0 increases.

14It is important to notize that the matrices in figure 5 are rounded to the nearest integer number. This
is the reason because in the matrix in the right-hand panel in figure 13 we can not observe the cycle that
we describe in this paragraph, but as soon as we introduce decimals the cycle that we describe appears.
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Figure 13: Payoff matrix in a uniform price auction. ki = 8.7, kj = 6.5, θ = 12.5, bmin = 1,
bmax = 10, N = 11
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In equation 20, we work out the parameter t that makes players deviate from the equilibrium

(bi = bmin, bj = bmin) when t = 0. To prove proposition 3.i., it is enough to show that
∂ti,1
∂bmin

> 0,

i.e., when bmin increases, the players stay longer at the equilibrium (bi = bmin, bj = bmin) when t = 0.

ti,1 =
(bmin + hε)(2θ − 2kj − ki)

h

2N
− bminki

h

2N(
bmin

kiθ

ki + kj
− (bmin + hε)(θ − kj)

)
+

(
(bmin + hε)(2θ − 2kj − ki)

h

2N
− bminki

h

2N

)
where,

ni,1(·) = (bmin + hε)(2θ − 2kj − ki)
h

2N
− bminki

h

2N
,

di,1(·) =

(
bmin

kiθ

ki + kj
− (bmin + hε)(θ − kj)

)
+

(
(bmin + hε)(2θ − 2kj − ki)

h

2N
− bminki

h

2N

)
, and

∂ti,1
∂bmin

=

∂ni,1(·)
∂bmin

di,1(·)− ∂di,1(·)
∂bmin

ni,1(·)(
∂di,1(·)
∂bmin

)2

(29)

In equation 29, the denominator is always positive. Therefore, we only need to prove that
∂ni,1(·)
∂bmin

di,1(·)−
∂di,1(·)
∂bmin

ni,1(·) > 0. That expression is equal to:

∂ni,1(·)
∂bmin

((
bmin

kiθ

ki + kj
− (bmin + hε)(θ − kj)

)
+ ni,1(·)

)
−
(

kiθ

ki + kj
− (θ − kj) +

∂ni,1(·)
∂bmin

)
ni,1(·) (30)

In equation 30, the term
∂ni,1(·)
∂bmin

ni,1(·) appears with positive and negative sign. Moreover,
∂ni,1(·)
∂bmin

=

(2θ − 2kj − ki)
h

2N
− ki

h

2N
. Taking this into account, equation 30 can be simplified to:
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∂ni,1(·)
∂bmin

di,1(·)− ∂di,1(·)
∂bmin

ni,1(·) =

(
(2θ − 2kj − ki)

h

2N
(bmin)

kiθ

ki + kj

)
+

(
kih

2N
(bmin + hε)(θ − kj)

)
−
(

(2θ − 2kj − ki)
h

2N
(bmin + hε)

kiθ

ki + kj

)
−
(
kih

2N
(bmin)(θ − kj)

)
= hε

kih

2N

(
(θ − kj)−

θ

ki + kj
(2θ − 2kj − ki)

)
> 0 (31)

Where the inequality holds, since (θ − kj) > 0, and (2θ − 2kj − ki) < 0 (low demand). Therefore,
∂ti,1
∂bmin

> 0, and the players stay longer at the equilibrium (bi = bmin, bj = bmin) when t = 0. The

intuition of this result is simple, when the minimum bid increases, the equilibrium (bi = bmin, bj = bmin)
is more attractive, and the players stay at that equilibrium longer.

ii. The parameter t for which the players coordinate in one of the Nash equilibria of the original game
increases.

The results presented in propositions 1 and 2 are also valid when the minimum bid allowed by the
auctioneer increases (bMIN > bmin). Therefore, the equilibrium selected by the players is the one in
which the larger player submits the maximum bid (bi = bmax), and the player with lower production
capacity submits the minimum bid (bj = bMIN ). We focus our analysis on the low demand case, since,
as we prove in proposition 2, when the demand is intermediate, the players coordinate in the equilibrium
(bi = bmax, bj = bmin(bMIN )) when t = 0, and when the demand is high, the tracing procedure method
do not select any equilibrium.

The value tbmin
for which the players select the equilibrium (bi = bmax, bj = bmin) when the minimum

bid allowed by the auctioneer is bmin is defined implicitly by:

tbmin
πi(bmin + (N − 1)εbmin

, bmin) + (1− tbmin
)πi(bmin + (N − 1)εbmin

, pj) =

tbmin
πi(bmin + (N)εbmin

, bmin) + (1− tbmin
)πi(bmin + (N)εbmin

, pj),

and explicitly by:

tbmin =

2θ − 2kj − ki
2N

(bmin + (2N − 1)εbmin
)− ki

2N
bmin

−εbmin(θ − kj) +
2θ − 2kj − ki

2N
(bmin + (2N − 1)εbmin)− ki

2N
bmin

(32)

The value tbMIN
for which the players select the equilibrium (bi = bmax, , bj = bMIN ) when the

minimum bid allowed by the auctioneer is bMIN is defined explicitly by:

tbMIN
=

2θ − 2kj − ki
2N

(bMIN + (2N − 1)εbMIN
)− ki

2N
bMIN

−εbMIN
(θ − kj) +

2θ − 2kj − ki
2N

(bMIN + (2N − 1)εbMIN
)− ki

2N
bMIN

(33)

The value of εbmin has been defined in lemma 1 as εbmin =
bmax − bmin

N
, where bmax is the maximum

bid, bmin is the minimum bid allowed by the auctioneer, and N is the number of bids in the strategies

support. By using lemma 1, we also define εbMIN
=
bmax − bMIN

N
. If the difference between bMIN and

bmin is not too big, and if N is large enough, then εbmin
' εbMIN

, and equations 32 and 33 can be
simplified to be compared:

tbmin
=

2θ − 2kj − ki
2N

(bmin + (2N − 1)ε)− ki
2N

bmin

−ε(θ − kj) +
2θ − 2kj − ki

2N
(bmin + (2N − 1)ε)− ki

2N
bmin
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tbMIN
=

2θ − 2kj − ki
2N

(bMIN + (2N − 1)ε)− ki
2N

bMIN

−ε(θ − kj) +
2θ − 2kj − ki

2N
(bMIN + (2N − 1)ε)− ki

2N
bMIN

For further reference, we introduce:

a =
2θ − 2kj − ki

2N
(bmin + (2N − 1)ε)− ki

2N
bmin ≤ 0, since 2θ ≤ 2kj + ki

A =
2θ − 2kj − ki

2N
(bMIN + (2N − 1)ε)− ki

2N
bMIN ≤ 0, since 2θ ≤ 2kj + ki

b = −ε(θ − kj) ≤ 0, since θ ≤ kj

Therefore,

tbmin
=

a

b+ a
≤ A

b+A
= tbMIN

⇐⇒ a(b+A) ≤ A(b+ a)⇐⇒ ab+ aA ≤ Ab+ aA⇐⇒ ab ≤ Ab

Since a ≤ 0, A ≤ 0, and b ≤ 0, then ab ≥ 0 and Ab ≥ 0. Therefore, ab ≤ Ab⇐⇒ a ≥ A:

a−A =
2θ − 2kj − ki

2N
(bmin − bMIN )− ki

2N
(bmin − bMIN ) ≥ 0 (34)

The inequality in 34 holds since 2θ ≤ 2kj + ki and bmin ≤ bMIN . Therefore, tbmin
≤ tbMIN

.

Annex 2
In this section, we introduce an example to illustrate the theoretical results presented in the paper. We
work out the tracing procedure method by using the theoretical predictions in lemma 1, and propositions
1 and 2. We complement that analysis by using another three different methods to work out the tracing
procedure method, and we show that the results are the same. We also detail the algorithm used to work
out the equilibrium selected by the robustness to strategic uncertainty method. To work out the quantal
response method, we apply equation 13.

To illustrate the theoretical results, in figure 14 we work out players’ payoff using equation 2. As
can be observed in that figure, for the parameters defined in this game, ki = 8.7, kj = 6.5, θ = 10,
bmin = 1, bmax = 10, N = 11, there exists six equilibria in pure strategies. In four of those equilibria, the
player with higher production capacity, player i, submits the maximum bid, and player j submits a bid
that makes undercutting unprofitable. In the other two equilibria, it is the player with lower production
capacity, player j, the one that submits the maximum bid.

As can be observed in the payoff matrix, each player prefers to play one of the equilibria in which the
other player submits the maximum bid allowed by the auctioneer. In this annex, we focus our analysis on
the equilibrium selected by the tracing procedure method, the robustness to strategic uncertainty method
and the quantal response method.For a detailed review of the equilibrium selected using behavioural eco-
nomics methods, and for a complete analysis of the equilibrium selected by using a lab experiment, see
Bigoni, Blázquez and le Coq (2018).

Tracing procedure method.

In the example that we use in this section, we increase the number of bids that the players can play
from N = 11 to N = 110. We do that because in the equations used in lemma 1, and propositions 1,
2 and 3, we assume that the expected payoff function (equation 14) used by the players is continuous.
Therefore, when the number of bids is low, the results using the raw information from the payoff matrices
and the close form solutions differ slightly. In contrast, when the number of bids is large enough (N=110),
the results are the same.

32



Figure 14: Payoff matrix in a uniform price auction. ki = 8.7, kj = 6.5, θ = 10, bmax = 10,
N = 11
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To work out the graph presented in figure 6, we use four different approaches.

In the first approach, we use the theoretical results presented in propositions 1 and 2. According
with those results, when t = 0 both players submit minimum bid. When t increases, the player with
higher production capacity, player i, deviates first. By using this theoretical prediction, we fix player j’s
strategy assuming that it always plays the minimum bid. Then, we use equation 4 to work out player i’s
payoff, and for each t, we work out player i’s best strategy.

In the second approach, we work out the payoff matrix for each t using the payoff function of the
original game defined in equation 2 and the expected payoff defined in equation 14. Then, we develop an
algorithm to work out the Nash equilibrium for each t ∈ [0, 1]. The value of t obtained using the previous
algorithm is summarized in the column t1 in table 1. In that column, we work out the value t for which
the players select the equilibrium (b∗i , b

∗
j ) defined by the first two columns in table 1. Moreover, the pair of

strategies (b∗i , b
∗
j ) for each t is the same for approaches 1 and 2. That information is summarized in figure 6.

In the third approach we find the value ti by solving implicitly equation 35. To solve that equation,
we use the routine "fminsearch" in Matlab. Those results are in the column t2 in table 1. Finally, in the
fourth approach, we use the close form solutions in equations 20 and 24. Those results are summarized
in the column t3 in table 1.

tiπi(bi, bj) + (1− ti)πi(bi, pj) = tiπi(bi + εh, bj) + (1− ti)πi(bi + εh, pj) (35)

As can be observed in that table, the value of t that we obtain using the four different approaches is
almost the same.

Robustness to strategic uncertainty method.

To find the equilibrium selected by the robustness to strategic uncertainty method, it is necessary to
work out the best response functions for each player. In this section, we explain the algorithm that we
use to work out those functions.

First, since we know that φi,j
(
bi − bj
t

)
follows a normal distribution (N(0, 1)), we create 10000

random values drawn from a (N(0, 1)).

Second, we set a value of bj ∈ [bmin, bmax]. For that particular value, we set a value of bi ∈ [bmin, bmax],

33



Table 1: t parameter using different methods. ki = 8.7, kj = 6.5, θ = 10, bmin = 1,

bmax = 10, N = 110, ε =
bmax − bmin

N
= 0.0826

b∗i b∗j h H t1 (Nash equilibrium) t2 (fminsearch) t3 (equations 20, 24 )

3.72 1 34 35 0.2330 0.2356 0.2409
4.63 1 45 46 0.261 0.2647 0.2679
5.54 1 56 57 0.2870 0.2901 0.2931
6.44 1 67 68 0.31 0.3138 0.3165
7.35 1 78 79 0.3330 0.3359 0.3385
8.26 1 89 90 0.3540 0.3566 0.3591
9.17 1 100 101 0.3740 0.3762 0.3784
10 1 109 110 0.39 0.3929 0.3934

and for each pair (bi, bj), we work out the value
bi − bj
t

.

Third, we compare the value
bi − bj
t

with each of the 10000 points extracted from a the normal
distribution (N(0, 1)) worked out in the first step. We count the values that are lower and higher than
bi − bj
t

. Those values are the cumulative distribution values
[
1− Φi,j

(
bi − bj
t

)]
and

[
Φi,j

(
bi − bj
t

)]
in equation 12.

Fourth, with the values bi, bj ,
[
1− Φi,j

(
bi − bj
t

)]
,
[
Φi,j

(
bi − bj
t

)]
, and knowing if bi ≤ bj or if

bi > bj , we can use equation 12 to work out the expected value for every bi ∈ [bmin, bmax] given a specific
bj .

Fifth, given a specific bj , we find the value bi ∈ [bmin, bmax] that maximizes player i’s expected value
(figure 7).

Sixth, we repeat the process for every bj ∈ [bmin, bmax] and we obtain player i’s best response function
(figure 8).

Seventh, we repeat steps one to six to obtain player j’s best response function.

Quantal response method.

We describe in detail how we calculate the quantile response equilibria presented in section 5 of the
main text.

Define an increasing sequence of λ parameters {λi}ni=0 such that λ0 ' 0 and initialize i = 0.15 Then,

1. For i, set λ to λi.

2. Given λi, define a system of equations given by π(x;λi)− x = 0.

3. Define optimization starting parameters

x0 =

{
(1, ..., 1)/s if i = 0

π∗(λi−1) otherwise

where s is the number of pure strategies. Using x0, solve the system of equations given in step 2
to find x∗ = π∗(λi).16

15Choosing λ0 to be roughly zero helps find good starting values for subsequent values of λ as we have
that when λ = 0, each strategy is played with equal probability.

16We use Matlab’s non-linear equation solver fsolve, with function and x tolerances both set to 10e−10.
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4. If i < n, set i = i+ 1 and go to step 1.17

One issue in numerically solving the system of equations given in step 2, is that as λi →∞, we also
have that

∑Ji
k=1 exp {λuik(π)} → ∞. Even for relatively small values of λ, this can cause a numerical

overflow. This despite the probability π∗(λi) being well-defined and bounded. To overcome this issue,
we calculate the probabilities π(λ) using an alternative representation of the LogSumExp function.

First, we have that for an n-dimensional vector, the LogSumExp function is defined as

lse(x) = ln

(
n∑
i

exp(xi)

)
Gao and Pavel (2018) note that this function can equivalently be written as

lse(x) = x∗ + ln

(
n∑
i

exp(xi − x∗)

)
where x∗ = max {x1, ..., xn}.

From before, we have

πij =
exp {λuij(π)}∑Ji
k=1 exp {λuik(π)}

Assuming that the probability of each strategy is strictly greater than zero, πij > 0, we can rewrite
this probability as

exp {ln(πij)} = exp

{
λuij(π)− ln

(
Ji∑
k=1

exp {λuik(π)}

)}

and replacing ln
(∑Ji

k=1 exp {λuik(π)}
)
with u∗ + ln

(∑Ji
k=1 exp(λuik(π)− u∗)

)
, we have that

exp {ln(πij)} = exp

{
λuij(π)−

(
u∗ + ln

(
Ji∑
k=1

exp(λuik(π)− u∗)

))}
where u∗ = max {λui1(π), ..., uiJi(π)}. Using this form, we avoid numerical overflow and are able to

find solutions x∗ = π∗(λi) for large values of λ.

17An alternative termination criteria is to look at the distance between π∗(λi) and π∗(λi−1). In our
application, we define our sequence {λi}ni=0 such that the λi are increasing exponentially rather than
linearly and choose therefore to terminate at a large predefined λ.
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