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Abstract

Maritime scheduling software is a fairly new and dynamically growing industry. While

statistical methods for event impact analysis are well research, they have yet to be applied

to this new area. This master thesis investigates the impact of implementing a fleet

allocation and scheduling software by a maritime shipping company. Ideas from existing

research by Wang et al. (2019) are applied in order to assess event impact on Vessel

Weight Utilization, defined as the ratio of cargo weight and the deadweight of the ship,

which is a proxy for total cargo carrying capacity. Random Forest is used to predict the

"would be" performance of the KPI in a counterfactual scenario in which the software is

never introduced. The difference between the actual KPI time series and the "would be"

scenario quantifies the software impact.

Furthermore, this paper expands on the existing framework by proposing a way to use

Random Forest to make two predictions of the KPI, one for the factual scenario and one

for the counterfactual scenario. This allows not only for calculating software impact, but

also for prediction distributions to be compared using, among others, kernel density plots

and the Kolmogorov–Smirnov test. OLS models are used as a naive benchmark to check

the validity of the methods used.

Results suggest that implementing the fleet allocation and scheduling software had a

slight effect on the shape of the distribution, but ultimately did not have a visible effect

on mean Vessel Weight Utilization over a 2 year period after software implementation.

This can be viewed as a positive outcome given that the focus of the Decision Support

System during the studied period was on increasing user experience, rather than fleet

plan mathematical optimization. The research results indicate that switching to a digital

tool marketed as more scalable and increasingly optimization-based does not create a

substantial operational risk for the maritime shipping company as measured by the tracked

KPI.

Keywords – Event Impact Analysis, Key Performance Indicator, Machine Learning,

Random Forest, Decision Support System, Maritime software effect, Fleet scheduling,

Maritime shipping
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1 Introduction

1.1 Assessing the risk of implementing new solutions

This study aims to perform an event impact analysis to measure the effect of a fleet

allocation and scheduling software on a maritime transportation company’s relevant KPI.

The study outcome can be viewed in the context of an assessment of business operational

risk for the maritime shipping company which decides to switch to using the new software.

Historically, profound understanding of this kind of operational risk used to be neglected.

However, in the last two decades this topic rose to prominence (Moosa, 2007). Nowadays,

operational risk is a big concern for businesses. (Bonet et al., 2021)

Bonet et al. (2021) discuss that while usually companies assess their operational risk

based on their internal data, there are other factors that can affect this assessment. Those

factors include scenario analyses, which can provide insights about the operational risk

in a situation which did not necessarily take place but could possibly happen. This

master thesis makes use of a similar idea of creating “would be” scenarios. By comparing

them with each other and with the real-world historical data, it provides insights about

risk resulting from switching to a digital DSS. A deeper understanding of this kind of

operational risk is relevant for several players. In the broad context, it is relevant for the

maritime shipping industry and the maritime software industry. In the specific context it

is relevant for the partner company and the customer shipping company who provided

information and relevant data for conducting this analysis.

1.2 Moving towards a data-driven industry

As maritime shipping becomes increasingly more digitalized and moves towards becoming

a data driven industry, maritime KPI tracking and analysis play a key role in this industry-

wide transformation. Already in 2013, Duru et al. mentioned that “in the last few years,

the use of Key Performance Indicators (KPIs) is a popular and trending practice in the

business” (Duru et al., 2013). Today this practice of tracking relevant maritime data

continues to increase as maritime software companies, such as Veson Nautical, Q88, or

Dataloy Systems AS, offer maritime software solutions and market their solutions as data
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2 1.3 Relevance of this thesis

driven (Veson Nautical, 2022a; Digital Ship, 2021).

It is not uncommon for companies in the maritime software industry to claim to provide

data-driven maritime scheduling DSS solutions which achieve positive effects (Veson

Nautical, 2022b). However, to the knowledge of the author of this study, such claims

appear to be unsupported, without clear ties to scientific methods or backing research.

In some cases, surface level qualitative assessment is presented as quantitative research

(Veson Nautical, 2022b). It is easy to claim and promote positive effects of maritime

scheduling DSS but it is significantly more difficult and complex to actually achieve

numerical results in assessing such software (Diz et al., 2014; Fagerholt, 2004; Fagerholt

and Lindstad, 2007). While there exists research focusing on single-use solutions, it is

difficult to find any descriptions of accomplishing the task of measuring the value creation

of a flexible maritime software designed to be used by many maritime transportation

companies for an extended period.

1.3 Relevance of this thesis

This paper is written in cooperation with Dataloy Systems AS (later referred to as

Dataloy), which presented the author with a specific business case. Dataloy would like

to understand how the implementation of FAS, their product, really affects the business

risk for their customer. While subjective perception of business risk could of course be

measured by qualitative interviews, it is significantly more difficult to assess the underlying

risk itself numerically. As mentioned by Wang et al. (2019), "determining whether an

event has positive, negative or no effect on KPI is not a trivial task". Nonetheless, the

goal of this analysis is to quantify such event effect to provide the partner company with

a more tangible and objective statistic revealing whether the implementation of their

product had a positive, negative, or no effect on a chosen indicator. This analysis can be

useful as internal feedback concerning one of the company’s key products, which in turn

has the potential to influence Dataloy’s marketing and pricing strategy.

The author’s previous professional experience within maritime data analytics suggests

that spot maritime shipping is heavily driven by market forces and a subject to highly

variable TCE rates. Furthermore, the spot market rates generally lack regular seasonal

patterns. For this reason, it is considered difficult for maritime software providers to
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1.3 Relevance of this thesis 3

convince shipping companies that their product adds value, or that the benefits of

implementing their solution outweigh the business risks. This problem was already visible

when Marintek, an NTNU research institute, tried to market their maritime DSS in the

early 21st century (Fagerholt, 2004). According to the experience of the author of this

thesis gained by working with a maritime software company and interviewing maritime

software professionals, this problem is still relevant to this day. This thesis aims to address

that issue. In Section 1.2, I elaborated on the trend of maritime software companies using

“data” as a catch phrase while describing their success stories. However, it is not obvious

that those claims are based on any numerical analysis results. This research is relevant for

the maritime software industry, which can attempt to derive business value from maritime

data analytics research which does provide the needed numerical results.

Moreover, this thesis can be of interest for the anonymous partner shipping company,

because it provides an analysis of how a product their purchased, and by extension an

operational framework they implemented, affected their business. Similarly, the same

logic of relevance of this research can be extended to maritime shipping companies in

general, especially the ones which are considering purchasing FAS or similar software.

Additionally, in the maritime software industry, there exists a prevailing idea that the

maritime shipping industry can be characterized as conservative and historically reluctant

to adapt new ways of doing business. Fleet scheduling, which is an essential part of

operations of maritime shipping companies, has traditionally been done using a system of

spreadsheets rather than with the help of integrated maritime software solutions. As fleet

allocation and scheduling decision support systems are being developed and marketed,

there exists an industry-wide need to assess the efficiency of those solutions as opposed to

traditional, manual methods. This paper aims to contribute to closing this knowledge

gap. The framework and methods used in this paper can be generalized to provide insight

for both professional and academic maritime software research.

To conclude, by shedding light on the effects of maritime software, this paper not only

contributes to the general body of knowledge encompassing the maritime transportation

and maritime software industries, but also directly addresses a specific business need.
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1.4 Dataloy’s FAS

This research project is essentially an event impact analysis where the goal is to quantify

the impact of the event, implementing maritime software, on the business of the shipping

company implementing it. This section provides details about the maritime software

studied.

FAS is a software which assists schedulers in creating fleet plans. A planner can use FAS

to create a new sea voyage, allocate cargoes on that voyage, edit specific information

concerning each cargo and voyage, exchange cargoes between voyages, and shift voyages

from one vessel to another to finalize a schedule for a whole fleet. Several fleet schedule

scenarios can be created and compared before a scheduler can "nominate" a voyage when

they are sure that a given voyage transporting given cargo will be done by a specific ship.

This basic example of a scheduler’s workflow is facilitated by FAS automatically calculating

and adjusting information such the quantity of cargo on board, the dates of events like

a voyage start or a port call, or an indication of a vessel missing the laycan window. It

enables processes which were traditionally done using spreadsheets to be performed inside

a web application where users have access to an overview including a list unallocated

cargoes and other information related to maritime planning. Users are also able to test

out different fleet schedule scenarios, and can collaborate with others.

According to Dataloy’s website, their solution “encourages the planner’s soft skills and

expertise” (Dataloy Systems AS, 2022). The company’s philosophy of prioritizing UX

and creating a tool which supports the work of human fleet planners, before gradually

implementing more advanced solutions like fleet optimization algorithms is in line with the

findings of NTNU’s Marintek institute (Fagerholt, 2004; Fagerholt and Lindstad, 2007).

This connection is explained in more detail in Section 3.1 On the other hand, because

of this philosophy FAS did not include robust mathematical optimization algorithms for

optimizing fleet schedules in the studied period.

Additionally, an important aspect of the decision support system is providing the user

with an application which, according to Dataloy’s claims, is a simpler, more scalable,

time-saving solution as compared to traditional manual methods. (Dataloy Systems AS,

2022). If that is the case, it is important for the shipping company to know whether that
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solution will not decrease the quality of the work of schedulers. Therefore, the time and

money investment related to switching to a digital DSS solution can be perceived as an

operational risk by maritime transportation companies. Assessing the impact of software

implementation on a relevant shipping KPI quantifies that risk.
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2 Research question formulation

Two-part research question

The goal of this research is to quantify the impact of FAS on a maritime shipping company,

which corresponds to operational business risk for that company. The research question

formulated to solve that business problem can be divided into two parts.

1. Did implementing the software have any negative or positive effect on the value of

the tracked shipping KPI?

(a) Did software implementation have a statistically significant effect on the tracked

KPI?

(b) How did the tracked KPI change on average after software implementation, if

it changed at all?

2. Did software implementation have an effect on the distribution of the KPI?
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3 Literature review

3.1 Previous maritime software effectiveness research

The literature on decision support systems for fleet scheduling is limited. There is a wealth

of research concerning maritime shipping optimization on a case-by-case basis. That is,

one-time scientific projects aiming to solve a very specific problem or optimize operations

for a single maritime shipping company. (Diz et al., 2014) However, it is difficult to find

many descriptions of long term, flexible DSS solutions which could be used to support

fleet allocation and scheduling of many companies over a long period.

One exception is Turborouter, a DSS developed in the early 21st century by Marintek,

a research institute at NTNU. The researchers published a few papers about it, but

stopped publishing after 2008 (Marintek, 2008). Turborouter included dynamic port to

port calculation, a schedule calculator with multiple ports and time in each port, a cargo

allocation tool, real time satellite positions of the vessels, a fuel consumption calculator,

and optimization algorithms for vessel fleet scheduling. The scientists tried to approach

the problem purely from the optimization perspective, but did not succeed long term from

the business perspective. Through conversations with shipping experts within Dataloy I

found that shipping companies can be reluctant to digitalize due to a conservative mindset.

Other barriers can include lack of funding, no proven RoI, and cybersecurity concerns.

The two decades old findings of the NTNU scientists are in line with Dataloy’s underlying

philosophy. Marintek found that while algorithmic solutions exist, it was difficult to

convince shipping companies to replace spreadsheets with modern solutions. The key

finding of Marintek was that the focus should be shifted from an optimization tool to a

more user friendly decision support system. They recommended “developing the DSS in

small steps” with feedback loops at each step, as well as “selling vessel position reports

as a product based on internet subscription”. (Fagerholt, 2004) Marintek stressed the

importance of putting the customer in focus by allowing a manual cargo assignment

function while the algorithmic solution was to remain a suggestion.

To the disappointment of the author of this thesis, it appears that the size of the

body of knowledge in this topic did not undergo any drastic changes over the years.
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According to Diz et al. (2014) “Although improved and detailed mathematical models and

optimization algorithms to support ship scheduling decision making are available, few

studies demonstrate the successful applications of such tools in real-life cases.”

The shortage of successful applications of fleet allocation and scheduling decision support

systems makes it even more difficult to measure their value creation. Diz et al. (2014)

claim that a DSS designed for PETROBRAS resulted in 7.5% reduction in operational

costs, but this was also case-based optimization. According to NTNU’s Marintek, “in

general, DSS benefits are often difficult to measure” (Fagerholt, 2004). The institute

remained convinced of this up until 2007, when the researchers reiterated that "in general

improvements and benefits resulting from the use of DSSs are often difficult to measure”

(Fagerholt and Lindstad, 2007). However, Fagerholt and Lindstad describe that their

optimization software gave their customers cost reductions of 4%-5% as compared with

manual planning. Those considerable savings were driven by increased fleet utilization,

and with the shipping company being able to transport a few additional spot cargoes over a

relatively short period (Fagerholt and Lindstad, 2007). The researchers also reported that

the time spent on schedule planning experienced a significant reduction, which allowed

for planners to engage in other creative tasks (Fagerholt and Lindstad, 2007). The NTNU

institute stopped publishing about Turborouter a year later, and I am not aware of any

other previous research which describes accomplishing the task of measuring the value

creation of a flexible maritime software designed to be used by many companies.

3.2 Previous event impact analysis research

Previous event impact analysis research can be divided into five categories. Each of the

approaches is subject to different limitations, and contributes to the general body of

knowledge on this topic under a different set of assumptions.

First, impact of an event can be analyzed by a comparison of KPI values before and after

the event. This method was applied by Mbugua et al. (1995) to research the impact of

removal of registration fees in public healthcare on the use of health services by vulnerable

groups of people in Kenya. The researchers gather longitudinal data from 9 months before

until 2 months after the policy change and apply statistical tests to compare the two

samples. Mbugua et al. (1995) achieve results showing a difference in the number of people
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who use health care services between the two time periods, however this method does

not assure that the measured change indeed happened due to the studied event. While

comparing before and after data an assumption has to be made that the change between

the two data samples was not a result of time series characteristics such as seasonality

or trend. If seasonality or trend are present in the data, the choice of the observation

window could impact the analysis results.

Second, ARIMA time series modeling can be used to evaluate how a KPI has changed

over time. This traditional econometric method was applied by Koski et al. (2007) to

study impact of policy changes on alcohol consumption in Finland. An even earlier study

proposed modeling a time series using a differential approach to analyze smog data in Los

Angeles (Box and Tiao, 1975). While a difference equation is not synonymous with an

ARIMA model, ARIMA approach includes a differencing term. Here, the main idea can

be to fit the model on pre-event time series data, and use it to make a prediction over a

scenario data set which includes the studied event. Using this method for event impact

analysis was criticized by Lagarde (2012) who points out that it can be problematic to

select the best-fitting ARIMA model to appropriately model the time series. Furthermore,

Lagarde (2012) mentions that ARIMA modeling might not be appropriate in cases in

which there are not enough data points, since this technique works best for long time

series. Additionally, it is worth to indicate that ARIMA makes the most sense for data

where seasonality and trend can be expected, such as macroeconomic indicators studied by

Koski et al. (2007) and Box and Tiao (1975). A measured divergence from the expected

seasonality and trend could be evidence for a public policy causing change. However,

many business KPIs, such as shipping KPIs, are not characterized by clear seasonal and

long term trend patterns. Therefore ARIMA modeling is not appropriate for more variable

KPIs, since it is unfeasible to measure divergence from a seasonal pattern without being

able to convincingly model the seasonal pattern in the first place.

Third, segmented linear regression is presented by Lagarde (2012) as a method alternative

to ARIMA modeling. The author introduces a binary variable taking on a value of 1

for observations for which a policy change took place, and 0 for which it did not take

place. Then, the linear model coefficients are analyzed to check if the event had an impact

on the tracked KPI. This method is simpler than ARIMA while, according to Lagarde,
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producing more robust estimates of event impact than basic approaches, similar to the

before and after comparison taken by Mbugua et al. (1995). However, Wang et al. (2019)

criticizes the segmented linear regression approach of Lagarde (2012), mentioning that it

will not perform well if the KPI time series exhibits complex behaviors.

Another approach to event impact analysis as referenced by Wang et al. is the usage of

change point detection algorithms. Wang et al. (2019) reports that Jarušková (1997) and

Adams and MacKay (2007) use such algorithms to detect both the occurrence and timing

of an event. However, if the timing of detected event does not coincide with the event of

interest, this technique loses its purpose if the goal is to study the impact of a predefined

event.

Finally, the most recent approach referenced in this thesis is described at the 2019 18th

IEEE International Conference on Machine Learning and Applications by Wang et al.

(2019). The authors propose training a ML model on a KPI sequence before the event

took place. Subsequently, the KPI can be forecasted beyond the event horizon. Under

the assumption that the forecast is highly accurate, the event impact on the KPI can

be determined by a comparison between forecasted KPI values and actual KPI values.

Wang et al. (2019) claim that this technique outperforms the aforementioned methods

by, for example, handling noisy data better, and modeling the dynamics of the data on

a more granular level than the methods which rely on modeling aggregated KPI time

series. Wang et al. (2019) test this event impact analysis framework in two scenarios

with simulated data sets, and three sets of real-life data: they research the impact of

equipment maintenance, impact of a traffic accident, and impact of the announcement

of new products. These examples are varied, which shows how the statistical methods

presented transcend specific industries. This thesis makes use of that fact by applying the

idea of Wang et al. to a new industry and extending it, which is outlined in detail in the

next chapter.
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4 Methodology

4.1 Choosing the relevant KPI

According to Wang et al. (2019), the two major components involved in formally defining

an event impact analysis problem are the choice of KPI and an event of interest. For

the purposes of this application, the latter is predetermined - the event is given by the

partner company. However, the choice of a relevant KPI remains a problem without a

single obvious answer. Wang et al. make an observation that the KPI choice requires

deep domain knowledge. In this research, qualitative interviews with industry experts

within Dataloy Systems and the anonymous customer shipping company as well as the

author’s previous knowledge gained through professional research and experience with

maritime data analytics are applied to specify the relevant indicator.

Qualitative interviews suggest that there exists a prevailing idea within the industry that

some shipping KPIs, such as TCE, are heavily dependent on the volatile shipping market

and are not an accurate reflection of the schedulers’ work, therefore they are not ideal

for quantifying the effect of scheduling DSS. To achieve high quality results, the chosen

KPI should capture the event effect in a way that is explainable by business logic and

agreed on by industry experts. Therefore, in this thesis a choice is made to account for

the market effects by selecting a more market independent KPI.

This criterion of a good KPI to measure the success of fleet schedulers is met for example

by measuring the time a vessel arrives into the port too late or too early, i.e. the number of

days before and after laycan or capturing changes in vessel speed. Researching inefficiencies

in planning how fast a shipping vessel should move would be within the domain affected

by FAS and to a larger extent independent of market forces, but this kind of data was not

available to Dataloy in the time frame required to measure the effects of the customer

company purchasing and implementing the software.

Finally, Vessel Weight Utilization, was chosen as an indicator which is an intersection

between the set of possible KPIs calculated with available data collected by the customer

shipping company, and the set of KPIs which to a large extent reflect the work of the

schedulers who use Dataloy’s FAS. For the purpose of this research, VWU is defined as
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the ratio of cargo weight on board of a shipping vessel and the deadweight of the vessel,

which is a good proxy for the total cargo carrying capacity. The relevance of this KPI

was confirmed by performing qualitative interviews with industry experts within Dataloy

Systems and the customer shipping company.

4.2 Data preprocessing

4.2.1 Data sourcing and feature engineering

The data of the anonymous maritime shipping company is sourced from the database of

Dataloy Systems AS. Relevant variables to be sourced are chosen based on consultations

with maritime industry experts within Dataloy Systems AS as well as the author’s

qualitative assessment related to previous maritime data analytics experience. The

potential predictors which are available and reasonably complete for the anonymous

shipping company are qualitatively assessed and screened based on their market

independence as well as their potential to be drivers of VWU. This process results

in identifying a list of predictors to be used in a later stage of the analysis (see Table 4.1).

In the next step, several data sets with maritime data aggregated on the voyage leg level

are sourced, cleaned and merged. The analysis in this research is performed in the R

programming language (R Core Team, 2021). R packages tidyverse (Wickham et al.,

2019) and lubridate (Grolemund and Wickham, 2011) are used for handling tabular data.

The studied period is limited to 4 years ex-ante the event and 2 years ex-post the event.

Additionally, only data from bulk cargo vessels is analyzed. Project carriers were excluded

from the study, since in their case it is not relevant to analyze VWU. Similarly, Time

Charter voyages are not included in this analysis, because the data generated by those

voyages is not influenced by FAS, since they are performed by hired vessels.

Some features are dropped already at this stage due to large amounts of NAs and are not

included in Table 4.1. The final data frame consists of the following features:
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potential predictors which are available and reasonably complete for the anonymous

shipping company are qualitatively assessed and screened based on their market

independence as well as their potential to be drivers of VWU. This process results

in identifying a list of predictors to be used in a later stage of the analysis (see Table 4.1).

In the next step, several data sets with maritime data aggregated on the voyage leg level

are sourced, cleaned and merged. The analysis in this research is performed in the R

programming language (R Core Team, 2021). R packages tidyverse (Wickham et al.,

2019) and lubridate (Grolemund and Wickham, 2011) are used for handling tabular data.

The studied period is limited to 4 years ex-ante the event and 2 years ex-post the event.

Additionally, only data from bulk cargo vessels is analyzed. Project carriers were excluded

from the study, since in their case it is not relevant to analyze VWU. Similarly, Time

Charter voyages are not included in this analysis, because the data generated by those

voyages is not influenced by FAS, since they are performed by hired vessels.

Some features are dropped already at this stage due to large amounts of NAs and are not

included in Table 4.1. The final data frame consists of the following features:
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Table 4.1: Selected variables.

Variable name Variable

role

Description

voyage_start_date_gmt time variable start of each voyage in GMT time

zone

leg_id ID variable unique identifier of each leg

voyage_reference ID variable unique identifier of each voyage

vessel_weight_utilization dependent

variable

studied KPI

leg_no predictor number of legs in a voyage

restricting_deadweight predictor deadweight of the shipping vessel

from_port predictor origin port in a leg

to_port predictor destination port in a leg

reason_for_call_from_port predictor reason why a vessel was in the origin

port, e.g. loading

reason_for_call_to_port predictor reason why a vessel was in the

destination port, e.g. discharging

vessel_name predictor name of a specific vessel

days predictor number of days per leg

distance predictor distance in miles per leg

speed predictor average speed in knots per leg

volume predictor volume of cargo per leg

do_consumption_low_sulphur predictor consumption of diesel oil low sulphur

bunkers

do_consumption_high_sulphur predictor consumption of diesel oil high

sulphur bunkers

fo_consumption_low_sulphur predictor consumption of fuel oil low sulphur

bunkers

fo_consumption_high_sulphur predictor consumption of fuel oil high sulphur

bunkers

miles_ballast predictor number of nautical miles in a voyage

a vessel travelled without any cargo
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Continuation of Table 4.1

Variable name Variable

role

Description

miles_loaded predictor number of nautical miles in a voyage

a vessel travelled with cargo

commodity predictor type of bulk cargo transported

vessel_type predictor type of vessel, e.g. selfdischarger

days_total predictor total number of days in a voyage

days_ballast predictor number of days in a voyage a vessel

travelled without any cargo

days_loaded predictor number of days in a voyage a vessel

travelled with cargo on board

consumption_leg predictor sum of consumption of all types of

bunkers per leg

fuel_lowsulphur_used predictor 1 if fuel oil low sulphur fuel was used,

0 otherwise

fuel_highsulphu_used predictor 1 if fuel oil high sulphur fuel was

used, 0 otherwise

diesel_highsulphur_used predictor 1 if diesel oil high sulphur fuel was

used, 0 otherwise

diesel_lowsulphur_used predictor 1 if diesel oil low sulphur fuel was

used, 0 otherwise

route_unique predictor categorical variable signifying the

unique route between two ports in

a leg, without taking account the

direction of travel. E.g. Gdańsk -

Helsinki is counted as the same route

as Helsinki – Gdańsk

voyage_time_loaded_share predictor ratio of time a vessel was loaded

in a voyage and time a vessel was

ballasting
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Continuation of Table 4.1

Variable name Variable

role

Description

voyage_ballast_distance_share predictor ratio of distance a vessel was

ballasting in a voyage and the total

voyage distance

no_legs predictor total number of legs in a given

voyage

vessel_time_utilization predictor time in a voyage a vessel was loaded

divided by the sum of the time the

vessel was loaded and ballasting

4.2.2 Handling data quality issues

Because of model specifications, the predictors in the data set used in the future ML

model should not have NA values. Features containing large amounts of NA values

were discarded at an earlier stage of data preprocessing. Otherwise, rows including the

missing data points would have to be removed, which would severely limit the number of

observations in the cleaned data set. Those observations could have the ability to add

predicting power to the model by supplying information present in other, more complete

columns. The leftover selected and engineered features still include some NA values. In

their case, filtering is used to remove bad data instances. Removing too many columns

with predictors could potentially hamper the predictive power of the model. However,

Belgiu and Drăguţ (2016) and Zhou et al. (2016) report that RF algorithms tend to work

well with multidimensional data and are not sensitive to multicollinearity. Therefore, if

RF is implemented, then including a large number of predictors in a model should not

pose a danger to its out-of-sample predictive ability.

Furthermore, the data used is user generated, and therefore contains mistakes and

inconsistencies resulting from human error or negligence. For example, 68 observations

contained negative number of duration days and negative average speed per voyage leg,

and in 35 cases registered departure from a port of origin is an earlier date than the arrival

date in the destination port. Such mistakes could happen when a user makes a wrong entry
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in Dataloy’s software. Filtering is used to identify and remove such observations which

contain typos and logical mistakes in the data. Additionally, entries which were only test

voyages are removed from the analysis. Observations corresponding to legs which lasted

more than 50 days are also removed to account for cases where vessel maintenance work

was registered as a voyage leg in Dataloy’s software. This number was chosen arbitrarily

after consulting shipping industry experts from Dataloy and is valid for the case of the

specific customer shipping company. The preprocessing steps of filtering types of data

relevant for the study as well as cleaning the data set from test entries, mistakes, etc,

reduce the number of voyage leg observations from 22,996 to 7,523.

4.3 Applying existing methodology to a new industry

4.3.1 RF Model 1 set up and fitting

Random Forest is the ML technique which is chosen for this analysis for reasons described

in Section 4.2.2. In this research, ML models are deployed within the tidymodels framework

(Kuhn and Wickham, 2020). Furthermore, the preprocessing steps allow for the maritime

data to be split in a way suggested by Wang et al. (2019). The chronological split

between pre-event training and post-event testing sets is made using the time variable

voyage_start_date_gmt. This variable is later removed from the data set and not included

as a predictor. The logic behind this decision is not to treat the data set as a multivariate

time-series, but rather two cross-sectional data sets sourced in two different periods: one

in the period before the studied event, and one in the period after the studied event. This

is designed to help with highlighting any potential differences between data generated by

a company utilizing traditional methods and data generated by the same company using

FAS.

Is is important to call attention to the fact that the variables presented in Table 4.1 are

not used in the later ML models in the same form. Instead, one hot encoding is used

to handle categorical variables. For every unordered factor in factor variables a binary

dummy is created. For example, for each reason for call in the destination port, a binary

dummy variable is created with the value of 1 if the vessel called into the destination port

for a given reason in a given leg and a value of 0 if it did not. One problem with this
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technique is the high cardinality of the variables. For example, a feature route_directional

was initially defined as a categorical variable describing a route between two ports while

taking the direction of the route into account, such that Gdańsk - Helsinki would be a

different route from Helsinki – Gdańsk. This variable was dropped because the number of

individual routes was equal to 93% of the number of observations in general. The number

of unique routes still constitutes 80%, which is a large portion of the total number of

routes, but it was kept in the model because there was a higher chance that the unique

routes could be repeated and used as predictors. The directional routes do not repeat

often, since the customer company operates in the spot market. One can speculate that

the route variables could have more predictive power if they had lower cardinality.

Subsequent to one hot encoding, the RF model hyperparameters are tuned based on a

random grid. Those parameters are mtry, which is the number of predictors that are

sampled at random with each split, the number of trees contained in the ensemble RF

model, and min_n, which signifies the minimum number of data points in a node that

are required for the node to be split further (Kuhn and Wickham, 2020). For each of

the 10 randomly generated model configurations in the grid, a RF model is fitted on a

data set comprised of randomly selected 75% of pre-event training data, and validated

against and a set comprised of the remaining 25% of pre-event data. This process is

expedited by employing parallel computing using the parallel package in R (R Core Team,

2021). Using just two PCU cores instead of one resulted in a 34% execution time saving.

Following the repeated model fitting and validation, exact specifications of each model

with corresponding RMSE and R-squared metrics are collected. RMSE is chosen as the

metric to rate the models, because it penalizes large errors more than small ones, as

opposed to alternatives such the MAE. It is also more easily interpretable than another

popular metric of MSE, because its value corresponds to the value of the studied KPI

itself. For example, RMSE can easily be put in the context of VWU, since an RMSE of

0.4 can be explained as an error of 0.4 percentage points in measuring how filled up a

cargo vessel is. Since by its nature the VWU ranges from 0 to almost 100%, the achieved

RMSE value is very close to its corresponding normalized RMSE value, which can be

used as a good way of comparing ML models. The hyperparameter tuning process is

repeated 12 times, each with time with a different approach to one hot encoding and and

a different mtry range parameter. The mtry range can be understood as the lowest and
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highest allowed number of columns which are sampled at each split when creating the

tree models.

As a result of the selection process described above, the best performing RF model is

identified and named RF Model 1. This chosen model has the mtry parameter of 329, is

comprised of 779 trees, has the min_n parameter of 38. The main idea of this analysis is to

use RF Model 1 to make a forecast of the studied KPI using only pre-event data for model

training and validation. This way, the VWU forecast made for the post-event time period

is a fabricated counterfactual reflecting the pre-event way of doing business. In other

words, this forecast can be interpreted as a hypothetical “would be” scenario in which the

customer shipping company did not implement the software. Unlike the hyperparameter

tuning, this process cannot be parallelized because there is only one sequential process in

making of the ensemble tree-based model. Parallelization of hyperparameter tuning could

be achieved, because different potential models from the random grid could be fitted and

validated simultaneously.

Subsequently, a comparison made between this modeled hypothetical scenario VWU and

the real shipping data in which Dataloy’s FAS software was implemented is designed to

capture the effect that FAS had on the studied KPI of the maritime shipping company.

According to Wang et al. (2019), this idea is a “systematic and statistically sound way” of

answering the question whether a particular event made a statistically significant impact

on the operations of a company as defined by a selected KPI. The plot of predictions

resulting from this model, as well as other visualizations in this analysis are made with

plotly (Sievert, 2020). In this study, this comparison is a simple difference between the two

vectors, rather then traditional way of calculating a squared difference metric in comparing

the prediction to the test set. This way, it is not the absolute distance between the

actual KPI values and the fabricated counterfactual KPI is calculated, but the difference

including information about the direction of change between the two scenarios. Simply

subtracting one vector from the other provides information not only whether software

implementation had an impact on the KPI, but also whether that potential impact was

negative or positive. This difference, interpreted as the software effect, can be aggregated

over the studied post-event time period to produce a mean software effect (see Equation

4.1), which is the answer to the first research question.
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The mean software effect is given by the equation:

µ =
N∑

n=1

(an − pn)/N (4.1)

Where µ is the mean software effect, n is each voyage leg in the total number of voyage

legs N done by vessels of the customer shipping company over the studied post-event

period, a is the actual measured KPI value, and p is the predicted "would be" KPI value.

A positive mean software effect means that, on average over the studied period, VWU

increased due to implementing FAS by the customer shipping company. Conversely, a

negative mean software effect means that the measured cargo tonnage capacity utilization

decreased due to the effect of implementing FAS.

Additionally, the numerical outcome of the research question is supplemented by variable

importance analysis and a line plot of the factual and counterfactual VWU over time.

Variable importance plot showing a sorted table of the most influential features which affect

the prediction results is generated using the vip package in R (Greenwell and Boehmke,

2020). The impurity method calculated with residual sum of squares is chosen for

classifying features importance. It is a standard method of calculating feature importance

in regression RF models (Greenwell and Boehmke, 2020). This way, the feature importance

score of a given feature is calculated based on the total decrease in node impurities from

splitting on that feature, averaged over all trees (Greenwell and Boehmke, 2020).

Besides, it is important to point out that while a certain level of industry knowledge

is required to take this approach, for example for feature engineering, the industry-

independence of this framework allows for the focus to be on the data science aspect and

not the shipping industry aspect. Consequently, it assures that the principles of this event

impact analysis method remain the same across different data sets. Therefore, while the

overall goal of the study is to unveil the answer to the research question, the described

experience of applying this methodology is an interesting insight in itself.

4.3.2 OLS Model 1 as benchmark for RF Model 1

In their study, Wang et al. (2019) propose checking the ML solution against a naive

benchmark model. In this research, OLS method is chosen as a way to put the ML model
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in a wider context. This decision is motivated by the fact that OLS is the simplest linear

model which is adequate for regression, while at the same time having a straightforward

interpretation.

While RF models can handle multicollinearity and multidimensionality in the data (see

Section 4.2.2), the benchmark linear model would be prone to those problems. This would

create an issue especially due to the use of the one hot encoding technique which converts

several categorical variables into a large number of binary variables. This is mitigated

by limiting the number of features used in the OLS model to the top 10 best performing

variables of RF Model 1 defined through feature importance analysis (see Figure 5.2).

While perfect comparability of the methods cannot be achieved due to aforementioned

limitations in the possible number of features, OLS Model 1 is also trained on data split

in the same way as RF Model 1 (see Section 4.3.1).

Subsequently, coefficient analysis can provide insights about the significance level of each

predictor. More importantly, the RMSE and R-squared values achieved by this model

can be compared with the same values obtained by the equivalent ML model. This can

constitute a sanity check for this method. Since it can be expected that the much more

advanced ML method can outperform a simple linear regression, the OLS model obtaining

a larger RMSE than the RF model would be a sign that there was a mistake in the RF

model set up process. Moreover, quantifying the difference between the RMSE scores of

OLS Model 1 and RF Model 1 can provide information about the extent to which the

ML is superior to the linear solution, and presumably confirm that the RF method is

indeed the appropriate method for this kind of analysis as compared to a naive benchmark

method.

4.4 Modifications to extend existing methodology

The approach of Wang et al. (2019) provides a useful framework which enables a comparison

between actual data and the predicted scenario of a shipping company not using the

scheduling software. In this study, the insights achieved by implementing this framework

involve visualizing the performance of the actual and predicted scenario data over time, as

well as calculating a numerical indicator of the change of performance of the KPI between

the predicted scenario and the real data. This numerical indicator is a value aggregated
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over a two-year time period and clearly communicates the averaged-out effect of buying

the software on the performance of the shipping KPI.

However, the approach suggested by Wang et al. (2019) has some limitations. The analysis

described in sections 4.3.1 performed by deploying RF Model 1 was useful in providing the

sufficient statistic of the overall software effect. However, due to the nature of predictions

generated by a model minimizing RMSE, it is not possible to derive many insights from

comparing the distributions of the predicted KPI time series with the actual KPI time

series.

While analyzing the distributions, it can be found that the prediction data is much less

variable than the actual data. However, this should not be interpreted as an inherent

characteristic of the relationships between the two KPI time series. Instead, this behavior

could be an effect of the low bias of the model, yielding any comparison invalid. It is

to be expected that a model chosen by minimizing RMSE will be less variable than the

actual real-world time series.

In other words, it is not appropriate to compare the distributions of the predicted

counterfactual KPI with the real-life KPI, because the two distributions were generated

using different processes. The distribution of predicted KPI was generated by RF Model

1, and the distribution of actual KPI was generated by real world market processes with

random shocks. Consequently, the predicted distribution in the "would be" scenario is

influenced by the model choice, and the actual KPI distribution is not. Therefore, it is

not feasible to derive insights from comparing the two distributions.

Those limitations can be addressed and accounted for by making two predictions, one

for the scenario of the company acquiring the software and one for the scenario of the

software never being implemented. Comparing the two predicted scenarios, instead for one

predicted scenario and the actual data, allows for more meaningful distribution comparison

and can help to answer the question whether there is any effect in KPI variability which

can be attributed to the software use. Using this method, two distributions are more

comparable because they were generated using the same method - the same ML model.

This mitigates the bias which was present in the case of comparing a model generated

distribution with a measured real-world distribution.
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4.4.1 Feature engineering and data splitting modifications

This method requires a modification to feature engineering and data splitting. Firstly,

a binary variable soft is introduced, taking a value of 1 for all observations where the

software was in use, and a value 0 for all observations which were gathered in the period

when the software was not in use. A similar approach was taken by Lagarde (2012) who

used a binary event variable as one of the predictors in a linear model to assess event

impact.

Furthermore, instead of splitting the data into training, validation, and test set time-wise,

the entirety of available data is randomly split into a 75% training and 25% validation

set. This method does not provide an opportunity for an out of sample prediction, or the

future “would be” scenario, but it allows for looking into feature statistical significance

explored further in Section 4.4.2.

4.4.2 OLS Model 3 as a binary variable significance check

While the initial OLS Model 1 provided a benchmark for the first ML solution, a similar

technique can also be used to check whether the introduced binary software variable is

statistically significant.

Namely, the OLS model can be used as a significance check by analyzing the p-value of

the soft variable. Similarly to OLS Model 1, top 10 most influential features from the

RF model are selected and an OLS model is trained on the whole data set, with the

modification of including soft as an additional predictor. The coefficients of the resulting

model can be used to derive insights about the significance of the software as a driver

of measured potential difference in VWU. The assumption made in this study is that

significant linear relationship between the binary software predictor and the independent

variable would mean that software use has a quantifiable effect on the company’s KPI.

4.4.3 RF model and OLS benchmark model modifications

Given that OLS Model 3 confirms that the binary software variable is statistically

significant, a new RF model is fitted on the new training and validation data described

in Section 4.4.1, including the modification of changing the software binary variable.
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This is different from traditional out-of-sample testing, but in this case the ultimate goal

is not to make a future forecast as correct as possible, but to make in-sample forecast

scenarios and compare them. Specifically, RF Model 2 uses original data as training and

validation, and then recycles the same data to make two different testing sets – one with

soft = 0 and one with soft = 1. This technique allows for generating and comparing

counterfactual scenarios just like in the approach taken by Wang et al. (2019), while also

allowing for comparing the distributions, accounting for any biases resulting from the

model itself. Comparing a model-generated scenario data with real world data leaves

room for the set up of the model to influence the comparison results. However, comparing

two model-generated scenarios mitigates this influence and theoretically provides more

comparable results, assuming that the model is able to replicate the data with reasonably

high accuracy.

Using the approach described above, the mean software effect is given as a function of

two predictions estimated by RF Model 2:

µ =
N∑

n=1

(p′n − p′′n)/N (4.2)

Similarly to Equation 4.1, in Equation 4.2 µ is the mean software effect, n is each voyage

leg in the total number of voyage legs N done by vessels of the customer shipping company

over the studied post-event period. The key modification is that the relevant statistic

includes a difference between p′, which is a prediction of the KPI in the factual FAS

scenario, and p′′, which is a prediction of the KPI in the counterfactual no-FAS scenario.

Equivalently to Equation 4.1, a positive mean software effect means that, on average over

the studied period, VWU increased due to implementing FAS by the customer shipping

company. Conversely, a negative mean software effect means that the measured cargo

tonnage capacity utilization decreased due to the effect of implementing FAS.

Furthermore, RF Model 2 can be benchmarked against a naive OLS Model 2, the same way

RF Model 1 was benchmarked against a naive OLS Model 1. OLS Model 2 is comparable

to RF Model 2 because it uses the same features and data splitting, namely random 75%

training and 25% validation sets which together account for all of the data, both pre and

post event. This is the main difference between OLS Model 2 and OLS model 3, which is
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fit on all of the available data. Just like with OLS Model 1, the validation RMSE achieved

by OLS Model 2 can be compared to the validation RMSE achieved by RF Model 2 for

the same reasons as explained in detail in Section 4.3.2.

4.5 Summary of deployed models

To summarize, this section provides an overview of all five models used in this analysis.

1. RF Model 1 is based on a chronological split of all data between training and testing

according to the date of studied event. Random 25% validation set is then extracted

from the training set. A prediction is made using the testing set with actual data.

Software effect is calculated by subtracting the prediction results from original data.

2. OLS Model 1 is a naive benchmark model for RF Model 1.

3. OLS Model 3 is a significance check for the soft variable. It involves fitting an OLS

model on all available data.

4. RF Model 2 is based on a random split of all data between 75% training and 25%

validation. Two predictions are made using simulated testing sets created for two

different scenarios. Software effect is calculated by subtracting no-FAS prediction

results from FAS prediction results.

5. OLS Model 2 is a naive benchmark model for RF Model 2.

4.6 Comparing distributions

The second part of the research question concerns the distributions of the studied KPI in

the event in which FAS is applied, and in the event in which FAS is not applied. After RF

Model 2 is used to produce two predictions, several techniques can be used to compare

the distributions. Significantly different distributions of vectors corresponding to the two

scenarios would mean that applying FAS did have an effect on the chosen KPI. In this

research, R packages sjmisc and BSDA are used for statistical analysis (Lüdecke, 2018;

Arnholt and Evans, 2021).

A simple way to start the comparison is to look at summary statistics describing spread

of the distributions. The fact that the standard deviation of the predicted results is
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much lower than the standard deviation of the actual KPI can be expected since the

model is trained to minimize RMSE. This behavior is also the reason for why these

distributions should not be directly compared. However, a useful comparison is the one

between no-FAS prediction and FAS prediction. The difference of between the standard

deviation measures for those distributions is less than 1%, which suggests that there was

no observed significant effect on the variability of VWU as predicted by RF Model 2. After

an analysis of summary statistics provides some insights, but more advanced methods are

used.

4.6.1 Statistical testing

Applying statistical tests to research the similarity and compare the two distributions can

be a more advanced, formal way of answering the second part of the research question.

A common way to test if two data sets are different is the Chi-square test. However,

this test is only applicable to categorical data, and VWU is continuous. One solution

would be to bin the VWU vectors and divide them into categories, for example every 10%

of the KPI value. However, the result of this analysis could become too dependent on

the method of creating the required categories. Instead, this research will make use of

the two-sample Kolmogorov-Smirnov test developed by Smirnov in 1939. This test can

be used to compare two distributions which exhibit continuous characteristics, like the

two VWU scenario projections. The KS test calculates the D-statistic which in this case

is understood as the distance between the curve of the empirical distribution function

of the no-FAS scenario VWU distribution, and the curve of the empirical distribution

function of the FAS scenario VWU distribution. This distance is given alongside the

p-value signifying the probability of the result being incorrect. The null hypothesis of

the KS test is that the two samples were drawn from the same distribution, which in

this use case would mean that the two scenario distributions are the same. If the null

hypothesis can be rejected, then the test result supports the alternative hypothesis that

there is a statistically significant difference between the two scenarios. The KS test can be

sensitive to distribution characteristics like location or shape of the distribution. However,

it appears to be more sensitive in detecting differences in means, in comparison to an

alternative recurrence plots technique (Wallot and Leonardi, 2018).

The difference in means can be further explored by applying a two-sample z-test, developed
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over the years since the 18th century, but described in detail by Lehmann et al. (2005).

This test is used to determine whether the means of the two vectors are different from

each other. Its alternative hypothesis states that the true difference in means is not equal

to 0. If means are indeed different, this would provide evidence supporting the hypothesis

that FAS did affect VWU of the customer company. This is a parametric test, which

assumes that the two samples are normally distributed. For this reason, each vector is

scaled to bring the distribution closer to a normal distribution. However, the distributions

are not centered. That would mean performing a full Z-score standardization, essentially

automatically ensuring an inability to reject the null hypothesis that the true difference in

means is equal to 0, since both the means would be artificially transformed to 0. I choose

to implement this test with several standard confidence intervals, like 0.99, 0.95, and 0.90.

4.6.2 Visual analysis

Z-test and KS test can be good ways to quantify the difference between the distributions,

but statistical testing should not be used on its own. Some insights can become apparent

from simply inspecting the distributions visually. Hence the need for histograms and

density plots.

Histograms serve to visualize the number of voyage legs which were predicted to fall

into each of the predetermined ranges of VWU. For ease of visual interpretation, the

histograms are created to contain 40 bins evenly spaced between 0% and 100% of the KPI.

Subsequently, kernel density estimation is used to create density plots. As reported by

El Machkouri (2011), this technique was independently invented by Rosenblatt (1956)

and Parzen (1962). A kernel, defined as an even, non-negative, real-valued function is

appropriate for visualizing vessel tonnage capacity utilization, because it is a continuous

PDF with an area under the curve equal to 1. Hence, it is appropriate for visualizing

the continuous KPIs. A kernel function is created at every data point, and the average

of all kernels is interpreted as the approximation of the PDF for the researched KPI.

Kernel density estimation is a non-parametric, or independent of assuming any underlying

distribution method. An important parameter in creating a kernel density estimate is the

bandwidth (Trosset, 2009). The bandwidth is the parameter determining how many data

points should be included in each of the kernels. The larger the bandwidth, the smoother
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the graph, therefore for a relatively large data set of tightly packed observations a smaller

bandwidth would be more appropriate, since it places more weight on the data point, and

not the neighboring data points in each of the kernels. In this study I decide to let the

function density() from R package stats choose the bandwidth parameter automatically

(R Core Team, 2021). The result is a smooth plot which can be interpreted similarly to a

histogram but captures the continuity of the projected KPIs.
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5 Results

The results of the analysis provide answers to both parts of the research question.

5.1 Research Question 1

The first part of the research question concerns the overall effect of the researched software

implementation event on VWU, which is vessel cargo weight capacity utilization. To find

the answer two ML models were deployed. This answer is supplemented by results from

three linear models. This section describes results obtained by using the five models in

relation to the first research question.

5.1.1 RF model 1 - forecast against actual data

Firstly, 12 different RF models with different model specifications and feature selections

were deployed. Subsequently, the validation set RMSE data and the mean and median

effect of the software over the test set period information was collected and the relationship

between those two values was analyzed. There appears to be an inverse relationship

between RMSE values and software effect. Less complex models suggested a slight positive

mean effect of 0.02 percentage points more utilized vessel cargo weight capacity. The more

exact the model, the more the mean effect converges to 0. The best performing model

with 0.125 RMSE resulted in an estimated mean effect of FAS implementation equal to

-0.0038 and the estimated median effect equal to 0.0264. The distribution of the estimated

software effect ranged from –0.8423 to 0.7408, with the IQR showing that the length of

the middle 50% of the interval of space resulting from the prediction was equal to 0.1530.

Furthermore, the analysis provides information about the R-squared value of the models.

Saunders et al. (2012) conclude that “unfortunately, there are no set criteria as to what

universally represents a “good” R-squared value, so the only way of assessing such a

statistic is via comparison with another predictive model.” Following this logic, several

models with different RMSE and R-squared scored are compared in this analysis. It can

be concluded that as RMSE scores decrease, R-squared values increase. In the best model,

71.1% of the variance in the dependent variable is explained by the fitted model relative

to the mean of the dependent variable.
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effect of the software over the test set period information was collected and the relationship

between those two values was analyzed. There appears to be an inverse relationship

between RMSE values and software effect. Less complex models suggested a slight positive

mean effect of 0.02 percentage points more utilized vessel cargo weight capacity. The more

exact the model, the more the mean effect converges to 0. The best performing model

with 0.125 RMSE resulted in an estimated mean effect of FAS implementation equal to

-0.0038 and the estimated median effect equal to 0.0264. The distribution of the estimated

software effect ranged from 0 . 8 4 2 3 t0 0.7408, with the IQR showing that the length of

the middle 50% of the interval of space resulting from the prediction was equal to 0.1530.

Furthermore, the analysis provides information about the R-squared value of the models.

Saunders et al. (2012) conclude that "unfortunately, there are no set criteria as to what

universally represents a "good" R-squared value, so the only way of assessing such a

statistic is via comparison with another predictive model." Following this logic, several

models with different RMSE and R-squared scored are compared in this analysis. It can

be concluded that as RMSE scores decrease, R-squared values increase. In the best model,

71.1% of the variance in the dependent variable is explained by the fitted model relative

to the mean of the dependent variable.
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Figure 5.1 presents the actual VWU and the projected "would be" VWU over time

aggregated on the quarter level. Lower aggregation level would result in a graph which

would be confusing to interpret visually. While a prediction was made for each leg of

each voyage within the studied period, which amounts to multiple predictions per day,

the predictions are visualized as a time series in an aggregated format for increased

interpretability.1

Figure 5.1: Counterfactual scenario VWU predicted by RF Model 1

RF Model 1 used to generate the set of predictions presented in Figure 5.1 was driven by a

number of features. The features which influenced the predictions the most are displayed

in Figure 5.2:

1For the same reason of increased interpretability, colors on the graphs throughout this paper are
kept consistent. On all graphs, blue corresponds to actual data, orange corresponds to no-FAS scenario
prediction, and green corresponds to FAS-scenario prediction. The blue - orange spectrum is chosen
because it is generally more convenient for people with colorblindness than other color palettes. The
exact shade of green was chosen to complete a visually equidistant color palette - all colors look equally
different and are easiest to tell apart (Learn UI Design, 2022).
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RF Model l used to generate the set of predictions presented in Figure 5.1 was driven by a

number of features. The features which influenced the predictions the most are displayed

in Figure 5.2:

1 For the same reason of increased interpretability, colors on the graphs throughout this paper are
kept consistent. On all graphs, blue corresponds to actual data, orange corresponds to no-FAS scenario
prediction, and green corresponds to FAS-scenario prediction. The blue - orange spectrum is chosen
because it is generally more convenient for people with colorblindness than other color palettes. The
exact shade of green was chosen to complete a visually equidistant color palette - all colors look equally
different and are easiest to tell apart (Learn UI Design, 2022).
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Figure 5.2: Variable importance plot of RF Model 1

5.1.2 OLS Model 1 - naive benchmark validation RMSE check

for RF Model 1

The software implementation effect results were achieved by applying the framework

for event impact analysis described by Wang et al. (2019). The authors also suggest

checking the ML model against a naive benchmark. In this paper I check the RMSE of

the best performing RF model against a simple OLS model using the top performing RF

features. For comparability, the benchmark OLS model was fitted on the pre-software

implementation training set of the chronological data split and checked against a random

25% validation set in the same way as in the RF model.

The achieved validation set RMSE was 0.205, which is considerably higher than

the RMSE of 0.125 achieved by the RF model. When it comes to coefficient

analysis, variables commodity_GENERAL CARGO2, commodity_AGGREGATES,

commodity_COKE, restricting_deadweight, commodity_DOLOMITE commodity_Ferro

Alloys, and commodity_Windmills were statistically significant with p-values close to 0.

2Some of the explanatory variables were automatically generated through one hot encoding
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5.1.2 OLS Model 1 - naive benchmark validation RMSE check

for RF Model l

The software implementation effect results were achieved by applying the framework

for event impact analysis described by Wang et al. (2019). The authors also suggest

checking the ML model against a naive benchmark. In this paper I check the RMSE of

the best performing RF model against a simple OLS model using the top performing RF

features. For comparability, the benchmark OLS model was fitted on the pre-software

implementation training set of the chronological data split and checked against a random

25% validation set in the same way as in the RF model.

The achieved validation set RMSE was 0.205, which is considerably higher than

the RMSE of 0.125 achieved by the RF model. When it comes to coefficient

analysis, variables commodity_ GENERAL C A R G O , commodity_ AGGREGATES,

commodity_ COKE, restricting_deadweight, commodity_ DOLOMITE commodity_ Ferro

Alloys, and commodity_ Windmills were statistically significant with p-values close to 0.

S o m e of the explanatory variables were automatically generated through one hot encoding
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Variables miles_loaded and days_total were statistically significant with the p-values

of less than 0.001. Variable days_loaded was not statistically significant. The obtained

R-square value signifies that the benchmark model explains 37.6% of the variance in the

dependent variable, as opposed to the R-squared of 71.1% of the RF model. The model

was significant with the p-value less than 2.2× 10−16, or close to 0.

5.1.3 OLS Model 3 - software effect statistical significance check

The result from RF Model 1 shows that, on average, implementing the fleet allocation

and scheduling software did not affect the KPI in the measured period. Additionally,

OLS Model 1 achieved much lower RMSE than RF Model 1, which can be understood as

the RF model passing a sanity check. Furthermore, the extent of the difference between

the RMSE measures of the two models suggests that the RF technique is appropriate

for this research as compared to a benchmark model. This approach of testing a ML

model against a naive benchmark was suggested by Wang et al. (2019). However, another

method of determining whether an event can possible have an impact on a measured KPI

as proposed in this master’s thesis involves checking the statistical significance of the

effect of the software by introducing a software use binary variable to the model.

The OLS Model 3 was fitted on all the available voyage leg maritime data within the

studied period, encompassing the periods before and after FAS software purchase and

application. This OLS model regressed VWU on the binary software variable as well as

the top 10 most important features. The coefficients of the resulting model were analyzed

to answer this part of the research question. The binary software variable was found to

be statistically significant with p-value less than 0.05. Out of the other 10 independent

variables chosen based on their performance in RF Model 1, only the days_loaded variable

was found not to be statistically significant. The remaining nine predictors were significant

with p-values less than 0.001. The R-squared of this model was found to be 32%, which is

comparable to the 36% achieved by OLS Model 1. The p-value of Model 3 was found to

be less than 2.2× 10−16. This p-value close to 0, in conjunction with the p-value of the

software variable, means that the effect of the soft variable is statistically significant.

Furthermore, this model was used to make a prediction for each of the two scenarios

corresponding to the two simulated data test sets. Those predictions resulted in the
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estimated software mean effect of –0.0173 percentage points of VWU.

5.1.4 RF model 2 - forecasting and comparing two scenarios

The benchmark OLS Model 3 analysis results suggest that using a binary software variable

as a predictor of vessel cargo weight utilization percentage is statistically significant.

However, results from a validation RMSE check performed in the analysis of OLS Model

1 show that a linear model is greatly outperformed by an RF model for the purpose of

this analysis. Therefore, a second RF model was created as a further novel extension of

event impact analysis methodology proposed by Wang et al. (2019).

RF Model 2 was trained and validated on all the available data both ex-ante and ex-post

software purchase, and subsequently used to generate two projections: one for the scenario

with soft = 0 and one with soft = 1. The model used the same independent variables as

OLS Model 3.

While RF Model 2 was trained on thousands of observations of many variables of maritime

data, it is the most insightful to look at the two predictions visualized in a two dimensional

space. Figure 5.3 displays factual quarterly VWU values for the whole fleet, a prediction of

those values in a factual scenario, and a prediction of the same values in a counterfactual

scenario.
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Figure 5.3: Counterfactual scenario and factual scenario VWU predicted by RF Model 2

Similarly to the original RF approach applied before in RF Model 1, the difference between

two ML predictions estimated with RF Model 2 which can be interpreted as the software

use effect was calculated to be close to 0. The mean software effect over a two-year period

after purchasing FAS by the customer company was estimated to be 0.002, while the

median was close to 0. The RMSE of RF Model 2 was 0.149, which is lower than the

first RF model, but higher than the linear benchmark. RF Model 2 also achieved a worse

than RF Model 1 R-squared of 55.6%. The distribution of the estimated software effect

ranged from –0.1738 to 0.3352, which is a smaller difference than the previous ML model.

Similarly, the IQR of the software effect estimated by RF Model 2 was also smaller, being

equal to 0.0024.

Figure 5.4 provides information about the most influential features of RF Model 2. Those

are the features which affected the predictions visualized in Figure 5.3.
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Similarly to the original RF approach applied before in RF Model l, the difference between

two ML predictions estimated with RF Model 2 which can be interpreted as the software

use effect was calculated to be close to 0. The mean software effect over a two-year period

after purchasing FAS by the customer company was estimated to be 0.002, while the

median was close to 0. The RMSE of RF Model 2 was 0.149, which is lower than the

first RF model, but higher than the linear benchmark. RF Model 2 also achieved a worse

than RF Model l R-squared of 55.6%. The distribution of the estimated software effect

ranged from 0.1738 to 0.3352, which is a smaller difference than the previous ML model.

Similarly, the IQR of the software effect estimated by RF Model 2 was also smaller, being

equal to 0.0024.

Figure 5.4 provides information about the most influential features of RF Model 2. Those

are the features which affected the predictions visualized in Figure 5.3.
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Figure 5.4: Variable importance plot of RF Model 2

5.1.5 OLS Model 2 - naive OLS benchmark validation RMSE

check for RF model 2

The benchmark OLS model fitted on randomly selected observations consisting of 75%

of the original data and checked against a validation set of the remaining 25% provides

a reference point for RF Model 2 when it comes to validation set RMSE. The resulting

RMSE value for the benchmark OLS model was 0.188, which is considerably higher than

the RMSE of 0.149 achieved by the RF model. When it comes to coefficient analysis, the

binary software variable and the days_total variable were significant with the p-value lower

than 0.01. One variable, days_loaded, was not statistically significant. The remaining

8 out of the 11 dependent variables were significant with their p-values close to 0. The

obtained R-square value signifies that the benchmark model explains 34% of the variance

in the dependent variable, as opposed to the R-squared of 55.6% of the corresponding RF

model. The model was significant with the p-value less than 2.2× 10−16, or close to 0.
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5.1.5 OLS Model 2 - naive OLS benchmark validation RMSE

check for RF model 2

The benchmark OLS model fitted on randomly selected observations consisting of 75%

of the original data and checked against a validation set of the remaining 25% provides

a reference point for RF Model 2 when it comes to validation set RMSE. The resulting

RMSE value for the benchmark OLS model was 0.188, which is considerably higher than

the RMSE of 0.149 achieved by the RF model. When it comes to coefficient analysis, the

binary software variable and the days_total variable were significant with the p-value lower

than 0.01. One variable, days_loaded, was not statistically significant. The remaining

8 out of the 11 dependent variables were significant with their p-values close to 0. The

obtained R-square value signifies that the benchmark model explains 34% of the variance

in the dependent variable, as opposed to the R-squared of 55.6% of the corresponding RF

model. The model was significant with the p-value less than 2.2 10 1 8 , or close to 0.
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The second part of the research question concerns the effect that the software had on

the distribution of the measured KPI. As shown in Section 5.1.2, the KPI prediction in

the "would be" scenario is a relatively good approximation of what would happen in the

real world if the shipping company never implemented FAS. However, as described in

Section 4.4, because the real world KPI and the "would be" scenario KPI were generated

using different processes, it was not appropriate to compare their distributions. Instead, it

was much more adequate to compare the distributions of two predictions generated using

the same model, as described in Section 4.4.3. This section describes the results of this

comparison.

One way to test whether the studied event had any non-zero impact on the measured KPI

was to check whether the FAS scenario prediction and the no-FAS scenario prediction

have significantly different distributions. A two-sample KS test was performed on the two

vectors. The null hypothesis in this test states that the VWU prediction in the no-FAS

scenario and the VWU prediction in the FAS scenario have the same distribution. The D

test statistic of the two-sample KS test, which measures the maximum absolute distance

of the empirical cumulative distribution functions, was calculated to be 0.0919. A low

p-value of 0.0042 provides enough evidence to decisively reject the null hypothesis at 1%

significance level. Therefore, the alternative hypothesis that the two VWU predictions have

varying distributions holds. However, from this test results it is not known whether the

small, but statistically significant difference comes from varying shapes of the distributions,

varying means, or other factors.

Subsequently, the distributions were further compared using a two-sample z-test test.

The z statistic was calculated to be equal to z = 0.0928. That low z statistic could be

interpreted as the two distributions being the same. However, an important value in the

test results is the p-value which was calculated to be 0.926. A high p-value does not allow

for rejecting the null hypothesis that the true difference in means is equal to 0.

Thus, statistical testing revealed that the projected KPI distributions are not exactly the

same, but that when averaged over time they have the same means.

Finally, the distributions were visually inspected to derive more insights.
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5.2.1 No-FAS scenario prediction distribution

Figure 5.5: Distribution of no-FAS prediction results

As visible in Figure 5.5, in a scenario in which FAS was never implemented the distribution

of VWU prediction is bimodal and negatively skewed. The predictions estimated for

the 2-year test period ranged from 0.0689 to 0.9753, while the IQR of the distribution

of no-FAS prediction results was 0.17543. The average voyage leg over this time period

was predicted to be done by a vessel that was 78.02% filled up by weight. As most of

the outliers are towards the lower end of the VWU KPI, a typical, median voyage leg

was predicted to be done by a vessel that had 81.67% weight capacity utilization. The

standard deviation of the predictions was calculated to be 0.1561, which is significantly

lower than the standard deviation of the real test data in this period which was 0.2216.
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As visible in Figure 5.5, in a scenario in which FAS was never implemented the distribution

of VWU prediction is bimodal and negatively skewed. The predictions estimated for

the 2-year test period ranged from 0.0689 to 0.9753, while the IQR of the distribution

of no-FAS prediction results was 0.17543. The average voyage leg over this time period

was predicted to be done by a vessel that was 78.02% filled up by weight. As most of

the outliers are towards the lower end of the VWU KPI, a typical, median voyage leg

was predicted to be done by a vessel that had 81.67% weight capacity utilization. The

standard deviation of the predictions was calculated to be 0.1561, which is significantly

lower than the standard deviation of the real test data in this period which was 0.2216.
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Figure 5.6: Kernel density of no-FAS prediction results

A kernel density plot presented in Figure 5.6 can further validate insights gathered about

the distribution of the predicted KPI. The chosen bandwidth for the density plot was 0.039.

The density plot provides a continuous visualization of the distribution and confirms the

insights about its shape characteristics derived from visual analysis of Figure 5.5.
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A kernel density plot presented in Figure 5.6 can further validate insights gathered about

the distribution of the predicted KPL The chosen bandwidth for the density plot was 0.039.

The density plot provides a continuous visualization of the distribution and confirms the

insights about its shape characteristics derived from visual analysis of Figure 5.5.
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5.2.2 FAS scenario prediction distribution

Figure 5.7: Distribution of FAS prediction results

A visual comparison of Figures 5.5 and 5.7 yields an insight that in the FAS scenario the

distribution of RF Model 2 prediction results has a similar shape as the distribution in

the no-FAS scenario. The same can be concluded when comparing Figures 5.6 and 5.8.

In the FAS scenario distribution, the estimated prediction ranged from 0.1612 to 0.9789

within the test period. This is a slightly smaller range than in the no-FAS scenario. On

the other hand, the IQR for the second scenario prediction was equal to 1.9999, which is

more varied than in the first scenario prediction. The vessel weight capacity utilization

over the testing period for an average voyage leg was estimated to be 78.02%, which is

the same as in the first scenario. Similarly, in the FAS scenario the typical vessel weight

capacity utilization over the testing period was calculated to be 81%, which is very close

to the value of 81.67% predicted in the case of no-FAS scenario. The standard deviation

of the predictions in this distribution was calculated to be 0.1549, which is significantly

lower than the standard deviation of the real test data in this period, but very close to

the standard deviation calculated for the no-FAS scenario.
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A visual comparison of Figures 5.5 and 5.7 yields an insight that in the FAS scenario the

distribution of RF Model 2 prediction results has a similar shape as the distribution in

the no-FAS scenario. The same can be concluded when comparing Figures 5.6 and 5.8.

In the FAS scenario distribution, the estimated prediction ranged from 0.1612 to 0.9789

within the test period. This is a slightly smaller range than in the no-FAS scenario. On

the other hand, the IQR for the second scenario prediction was equal to 1.9999, which is

more varied than in the first scenario prediction. The vessel weight capacity utilization

over the testing period for an average voyage leg was estimated to be 78.02%, which is

the same as in the first scenario. Similarly, in the FAS scenario the typical vessel weight

capacity utilization over the testing period was calculated to be 81%, which is very close

to the value of 81.67% predicted in the case of no-FAS scenario. The standard deviation

of the predictions in this distribution was calculated to be 0.1549, which is significantly

lower than the standard deviation of the real test data in this period, but very close to

the standard deviation calculated for the no-FAS scenario.
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Figure 5.8: Kernel density of FAS prediction results

The chosen bandwidth for the kernel density plot in Figure 5.8 in the no-FAS scenario

was 0.044. The two-sample KS test and two-sample the z-test results suggest that the

two prediction distributions are different, but it cannot be rejected that their means are

the same. However, visual inspection of both histograms and density plots reveals that

the distributions themselves look very similar.

The result that while the variance of the two distributions can be different, the distributions

themselves look similar is further confirmed by a visual assessment of scenario prediction

box plots in Figure 5.9.
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The chosen bandwidth for the kernel density plot in Figure 5.8 in the no-FAS scenario

was 0.044. The two-sample KS test and two-sample the z-test results suggest that the

two prediction distributions are different, but it cannot be rejected that their means are

the same. However, visual inspection of both histograms and density plots reveals that

the distributions themselves look very similar.

The result that while the variance of the two distributions can be different, the distributions

themselves look similar is further confirmed by a visual assessment of scenario prediction

box plots in Figure 5.9.
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Figure 5.9: Box plots of scenario prediction distributions

Overall, a conclusion can be reached that implementation of FAS by the customer company

had a minor, but statistically significant effect on the distributions of VWU but did not

make a meaningful difference when it comes to the VWU value averaged over the two-year

period ex-post the software purchase.
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Overall, a conclusion can be reached that implementation of FAS by the customer company

had a minor, but statistically significant effect on the distributions of VWU but did not

make a meaningful difference when it comes to the VWU value averaged over the two-year

period ex-post the software purchase.
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6 Discussion

This section of the paper provides commentary and interpretation of insights described in

the Results section, as well connects the described results to their potential real-world

applications. Additionally, the contribution made by this thesis is presented. Finally,

research limitations are discussed, and possible further research directions are proposed.

For the purpose of clarity, research question discussion in this section follows the same

narrative outline as the Results section.

6.1 Research Question 1 discussion

The first research question relates to the overall effect of the software on the tracked

shipping KPI. I answer it by performing two analyses using ML models, and one significance

check by deploying a linear model.

6.1.1 RF Model 1 - forecasting a counterfactual scenario

A key measure in this study is the forecast of how the KPI would behave if software was

not implemented. This value should be viewed in conjunction with the actual KPI data,

and the difference between the actual and predicted values constitutes the effect of the

software. Figure 5.1 shows that the prediction line remains below the actual VWU values

for most of the time. However, in a smaller number of points the prediction values are

considerably higher than actual values. This interesting behavior visible in the graph is a

graphical reflection of the analysis result which shows that the median effect seems to

converge around a slightly positive value of 0.02 percentage points difference, while the

mean effect is a number close to 0. This could suggest, that for most voyage legs the

vessel cargo tonnage capacity was utilized in 0.02 percentage points more than it would be

if Dataloy’s customer did not implement FAS. However, given the RMSE it is not possible

to reject that this result is not due to randomness in the data. In other words, the model

suggests that, on average for all voyage legs, FAS had no effect on the utilization of vessel

cargo weight capacity. It can be expected that the true effect is between –0.13 and 0.13

percentage points. Correspondingly, the model suggests that during a typical voyage leg

the vessel cargo weight capacity was utilized 0.02 percentage points more than it would
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be if FAS was not used. The true effect on median effect can be expected to be between

–0.11 and 0.15 percentage points.

While simpler models suggest a slight positive impact on the measured KPI, more

robust models with lower RMSE show no difference between actual data and the

theoretical scenario of a shipping company never implementing the software solution. The

interpretation of this result is that the shipping company’s performance as measured by

the vessel tonnage capacity utilization did not decrease with the switch to the new software.

Therefore, in light of the result achieved by implementing the methodology of Wang et al.

(2019) to a new industry, it can be concluded that implementing Dataloy’s FAS by its

customer shipping company did not negatively affect the company’s operational efficiency

as measured by vessel weight capacity utilization. Furthermore, by extension, available

data suggests that switching to FAS software does not pose a significant operational risk

to the partner shipping company.

This result can be viewed as positive both for the shipping company, and for the

software company developing the product. It would be inadequate to expect a significant

improvement in KPIs related to mathematical optimization of the schedule, such as the

vessel weight capacity utilization. It is important to keep in mind that within the studied

period, FAS did not yet implement fleet plan and scheduling mathematical optimization

algorithms. During that period, the focus and the biggest underlying advantage of FAS

was to streamline and systematize the work of human schedulers, as well as provide the

customer companies with a scalable solution with the goal to make seamless switch to a

solution with algorithmic optimization recommendation mechanisms in the foreseeable

future. Due to the current UX benefits as well as the expected future added value of the

mathematical optimization benefits, it is a satisfying result for a DSS software solution

which is proven to not pose a greater risk than the traditional methods, but rather provide

an expectation of being “future proof”. For the shipping company, the described result

means that the operational risk is not significant and should not be a reason for concern.

For the software company, the outcome of this analysis provides feedback that for the

time being their software DSS solution is able to replicate the performance of methods

relying solely on human skill and experience. This provides evidence that Dataloy AS is

in the right place to begin implementation of more advanced mathematical optimization
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algorithms. Interestingly, during the feature importance analysis restricting_deadweight

was chosen as one of the most important predictors of VWU. In the perfect world, vessel

size should not determine the degree to which the vessel is filled up with cargo, since the

vessel should be chosen to fit the cargo. However, it is possible to predict how filled up a

bulk carrier will be based on its size. This implies that vessels are not always perfectly

matched with the amount of the cargo. This could be either due to vessels of more

adequate size not being available in the portfolio of the shipping company, or due to a

tendency to select vessels that are not the optimal size for a given cargo.

6.1.2 OLS Model 1 - naive benchmark validation RMSE check

for RF model 1

The results from the naive benchmark check of the first ML model suggest that the chosen

RF approach is a correct technique for performing this analysis. By extension, this model

performance check also suggests that the chosen statistic calculated as the difference

between real-world and prediction data is sufficient to derive meaningful insights about

the operational performance of the studied shipping company. Overall, the results from

OLS Model 1 provide evidence supporting the reliability of RF Model 1 results and their

business-context interpretation.

6.1.3 OLS Model 3 - software effect statistical significance check

As described in the methodology chapter, the OLS model explanatory variables were

selected based on the top performing features in the RF model. Hence, it is not surprising

that most of the features are statistically significant with p-values close to 0. However,

what is key for this part of the analysis is the significance figure for the software dummy

variable. The result from OLS Model 3 shows that this variable is statistically significant

with p-value less than 0.001. This means that the extension of event impact analysis

methodology proposed in this master’s thesis passes the significance check designed

specifically for this study. The decision to introduce a binary software variable and in the

later stages of the research project use it to model scenario VWU holds its ground due to

this variable being statistically significant in OLS Model 3.

While this linear model provided a variable significance check performed by analyzing
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the coefficients significance scores, it cannot provide any information on the validation

set RMSE. This is because the model was fitted on all available data without reserving

any observations for a validation set. For this reason, the predictions estimated using

this model are not comparable with the other models and are not as trustworthy. This

method cannot be treated as a possible accurate prediction model, but rather only serve

a purpose of checking variable significance levels.

6.1.4 RF model 2 - forecasting and comparing two scenarios

The methodology introduced in this thesis involves a comparison of two scenario predictions.

While this approach is still designed to provide an answer to Research Question 1, the

chosen relevant statistic is calculated differently. They key value of average software effect

over a 2-year period after implementing FAS is calculated as a difference between the

predicted VWU in a scenario in which the customer company does not use FAS, and the

predicted VWU in a scenario in which the customer company does use FAS. As seen in

Figure 5.3, the predicted time series in a FAS scenario seems to follow the actual data

closer than the non-FAS scenario. This suggests that RF Model 2 was able to adequately

replicate the behavior of the actual VWU time series.

However, when averaging out the years, the final outcome shows that there was no

significant difference between the outcomes in the two simulated scenarios. The result

of this part of the analysis confirms the result produced by RF Model 1. Answering

Research Question 1 using two different methods, one inspired by Wang et al. (2019) and

one original, essentially provides a cross validation of the achieved study results. Since the

result produced with RF Model 2 is the same as the result produced with RF Model 1, the

same interpretation of study result holds from the perspective of the software company,

as wear as the shipping company purchasing the software.

Moreover, further comments and conclusions can be made about the software effect in the

context of organizational knowledge and time efficiency in the operational processes of

the customer shipping company.

Firstly, maritime shipping companies rely on the collective knowledge and skills of their

schedulers. The traditional manual ways of making fleet plans could correspond to a

risk that the quality of such fleet plan would decrease if the experienced professionals
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were to leave the company. The result of this analysis suggests that implementing a DSS

software for fleet allocation and scheduling can result in fleet plans of the same quality as

measured by the tracked KPI. However, a hidden benefit of implementing this solution is

that the risks related to producing sub-optimal plans are spread out over both the DSS as

well as the expertise of human schedulers. Those risks are no longer a function of just

one variable in the equation – the human element. A synergy achieved by combining the

skill of shipping professionals with the existing and potential future benefits of scheduling

software could potentially contribute to current way of doing business being retained by

an organization even in the case that some of the schedulers were to retire or for any other

reasons part ways with a shipping company.

Secondly, since the results show that in the context of VWU a scenario in which the DSS

solution is used, and the company spreads out the responsibility for a fleet schedule to

both human intuition and the software, can be just as good as a scenario in which all of

the responsibility lies on the shoulders of schedulers, a potential benefit of saving time

can be expected. Under the assumption that the improved UX can make the allocation

and scheduling process quicker and more transparent, the reclaimed time of shipping

professionals can be applied to other areas withing the organization. One can hypothesize

that streamlining the fleet allocation and scheduling process can be used to improve overall

organizational efficiency related to people within the company.

Additionally, another interpretation of the results, this time from the perspective of the

software company, is that it can utilize the insights from this research to facilitate building

of trust with existing and potential new customers. This analysis concludes that there

is no significant operational risk in switching to a digital DSS solution. This knowledge

can be used as basis for forming long-lasting professional relationships between maritime

software companies and their maritime shipping customers.

6.1.5 OLS Model 2 - naive OLS benchmark validation RMSE

check for RF model 2

A novel approach proposed in this master thesis was to analyze the impact of applying

new maritime software by training and validating a ML algorithm on all the available

data, both ex-ante and ex-post software purchase. Naturally, the quality of this approach
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had to be separately tested. Key insights were derived from the analysis of the regression

beta coefficients and their statistical significance. The analysis of this benchmark OLS

model shows that the RF algorithm makes sense as a method of choice for this research

also within the new framework involving a comparison of two ML predictions.

Additionally, OLS Model 2 can be thought of as a robustness check of OLS Model 1. Since

the second linear model was created using the same features as the first linear model, plus

the binary soft variable, it can be used to provide insights about that variable. This result

further confirms the validity of using software use as a relevant predictor of measured

KPI.

6.2 Research Question 2 Discussion

The second research question relates to the effect of the software on distribution of the

tracked shipping KPI. I answer it by performing statistical testing and visual analysis of

the distributions generated by RF Model 2 for two alternative scenarios: one where the

customer company never implements FAS, and one where it does implement FAS.

6.2.1 Statistical testing

The KS test confirmed that the distributions of the two KPI predictions are different.

The test statistic can be interpreted that the probability of the difference between the

distributions being larger than D = 0.09 is smaller than 0.4%. However, this test does

not show where the difference comes from – the location such as mean or median, or the

shape of the distributions, such as skewness or kurtosis.

Ultimately, the shipping company’s success in the context of the utilization of vessel cargo

carrying capacity would be mostly reflected in the mean. By extension, this is the statistic

which would also be key from the perspective of the software company, which can be

assumed to want to maximize the customer’s success. The results of the two-sample z-test

suggest that it is not possible to prove that the no-FAS and the FAS distributions means

are different. Indeed, the descriptive statistics results of the no-FAS VWU distribution

and FAS VWU distribution suggests that the two means are very similar, both close to

78%. Those results can be interpreted to mean that while the VWU distributions are not

the same, the differences do not come from the average VWU values aggregated over time.
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6.2.2 Visual analysis

An analysis of visualizations of the VWU scenario predictions revealed that the shape of

their distribution is similar, despite the quantitative statistical testing showing that the

distributions are not exactly the same. This holds both for the shape of the histograms,

as well as the kernel density plots. For the stakeholders, this means that switching from

more manual methods to a fleet allocation and scheduling software does not result in an

increased operational risk also from the perspective of the measured KPI distributions.

6.3 Contribution

My initial approach is based on the approach by Wang et al. (2019). They test the

framework on two simulated data sets and a real-life application. My approach is more

applied, since I strive to solve a concrete business problem. The contribution made by

this thesis involves applying the described methodology to a new industry of maritime

transportation. This application is useful since digitalization and use of data to make

business decisions has lagged behind in maritime shipping compared to air cargo or

truck transport. In addition, this thesis makes a contribution by extending a framework

previously described in literature.

Furthermore, the literature on decision support systems (DSS) for fleet scheduling is

limited. There exists a plethora of research concerning optimization for specific companies

on a case-by-case basis, but it is difficult to find many descriptions of long term, flexible

solutions. Consequently, there exists a need for research outlining a possible approach to

evaluate the effectiveness of maritime DSS software. My work contributes by providing

such approach.

Additionally, my work addresses specific business needs of my partner company who can

use the outcomes of the research to understand the effects of their product, as well as

utilize those insights in the areas of developing a marketing and pricing strategy. However,

those business needs can be relevant for the whole maritime software sector. Providing

insights to contribute to understanding the risk in switching to a more advanced, digital

solution can be beneficial both for maritime software companies, as well as maritime

transportation companies.
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6.4 Limitations and further research

One limitation of the study is that no learning curve in software use is assumed. For this

thesis there was no available data on how quickly the company switched to the new system

and whether they still relied on old methods and processes. The learning effect curve

could be estimated for example by interviewing a sufficiently large number of schedulers

to determine how quickly they adapted to the use of new software. This was outside of

the scope of this thesis, but such additional interview-based information could be used to

divide the ex-post period into time-wise subdivisions indicating different levels of software

use. Those levels of software use could be used as weights in an ensemble model similar

to the models applied and developed in this thesis.

Another limitation of this study is that it uses historical data from only one customer who

purchased and applied only one specific software solution. As more maritime transportation

companies shift towards digital and data-driven solutions and generate historical maritime

pre-event and post-event data, future research could use this new information to widen

the scope of the analysis. This thesis provides a framework to analyze changes in maritime

KPIs in the context of a shipping company switching to a new software, which is a major

change in the way of doing business. Researching impact of a specific software on a larger

number of maritime shipping companies or researching the impact of different examples of

maritime scheduling software could provide further contributions in the field of maritime

data analytics.

In addition, it is important to point out that the software which effect was studied is

continuously being developed. Therefore, its impact can be different as time progresses.

It would be interesting to perform this kind of event impact analysis several times by

collecting data for periods after new major milestones are implemented, for example

after the implementation of mathematical optimization algorithms. The achieved results

could be then compared with the results of this study, which assessed the impact of

maritime software which over the studied period prioritized UX rather than optimization-

based recommendation mechanism. This idea of periodic analysis is closely associated

with the findings of Fagerholt (2004) described in more detail in Section 3.1. Fagerholt

recommends that maritime DSS software should be implemented in stages. An event

impact analysis, such as the one proposed in this thesis, could be performed at each of

48 6.4 Limitations and further research

6.4 Limitations and further research

One limitation of the study is that no learning curve in software use is assumed. For this

thesis there was no available data on how quickly the company switched to the new system

and whether they still relied on old methods and processes. The learning effect curve

could be estimated for example by interviewing a sufficiently large number of schedulers

to determine how quickly they adapted to the use of new software. This was outside of

the scope of this thesis, but such additional interview-based information could be used to

divide the ex-post period into time-wise subdivisions indicating different levels of software

use. Those levels of software use could be used as weights in an ensemble model similar

to the models applied and developed in this thesis.

Another limitation of this study is that it uses historical data from only one customer who

purchased and applied only one specific software solution. As more maritime transportation

companies shift towards digital and data-driven solutions and generate historical maritime

pre-event and post-event data , future research could use this new information to widen

the scope of the analysis. This thesis provides a framework to analyze changes in maritime

KPis in the context of a shipping company switching to a new software, which is a major

change in the way of doing business. Researching impact of a specific software on a larger

number of maritime shipping companies or researching the impact of different examples of

maritime scheduling software could provide further contributions in the field of maritime

data analytics.

In addition, it is important to point out that the software which effect was studied is

continuously being developed. Therefore, its impact can be different as time progresses.

It would be interesting to perform this kind of event impact analysis several times by

collecting data for periods after new major milestones are implemented, for example

after the implementation of mathematical optimization algorithms. The achieved results
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based recommendation mechanism. This idea of periodic analysis is closely associated
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recommends that maritime DSS software should be implemented in stages. An event

impact analysis, such as the one proposed in this thesis, could be performed at each of
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the major development stages. This way, it would be possible to assess the impact of a

specific major improvement in the software, and insights from such assessment could play

a role in the software company’s strategy to market this improvement. Moreover, such

periodic analysis could also be used to influence the direction of future development of

the software DSS product.

Additionally, an assumption is made that this research can be relevant for the maritime

software and maritime transportation industries because it provides numerical analysis

results which can be used to drive business value. However, it is not obvious that providing

such data translates to a higher business value for marketing or pricing applications better

than qualitative, descriptive, non-data-driven argumentation. This could be an area of

research on the crossroads of business and psychology.

Lastly, it would be interesting to further experiment with different validation approaches.

A validation set approach is the simplest and the most computationally efficient. For this

reason, it was the go-to approach given the limited resources. A more complex validation

method, for example K-fold validation could further minimize validation set RMSE and

make the model more precise. However, the deployed RF models showed that the effect of

incremental improvements in validation set RMSE scores corresponded to incrementally

smaller changes in the predicted KPI. Due to the observed damping behavior of the

incremental RMSE improvements it is not obvious that a model with a better RMSE score

would achieve significantly better predictions. There is a trade-off between prediction

accuracy and model computational requirements, and the outcome of this analysis which

showed converging behavior in estimated software effect suggests that further RMSE

improvements would only lead to almost the same final results.
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7 Conclusion

Maritime shipping is changing towards becoming a more digitalized, data driven industry.

Recent application of scheduling and fleet allocation decision support systems, which

appear simpler and quicker than manual practices, raises the question whether those

software solutions can achieve as good of a result as more complicated traditional methods

involving spreadsheets and manual calculations.

I apply methods from Wang et al. (2019) in a new setting to solve a timely business

problem of determining the effect of implementing a scheduling and fleet allocation DSS

on vessel tonnage utilization. Subsequently, I build on top of that framework and extend it

to create original methods of approaching the problem. My method provides an in-depth

analysis of the specific business challenge; it can also be generalized to contribute to the

general body of knowledge in the area of maritime technology research and event impact

analysis.

The results of this research indicate that implementing the maritime DSS did not create

any substantial operational risk for the customer company. On the other hand, it also

did not visibly improve their performance as measured by the tracked KPI. However,

because in the studied period fleet optimization algorithms were not a part of the DSS, it

is difficult to expect dramatic changes which could be expected in the case of an extensive

use of mathematical optimization. Instead, in connection with the time saving aspect of

the DSS as well as the benefits of standardization, scalability, and increased ease of future

implementation of mathematical optimization, a software not having a negative effect on

the industry specific KPIs can be considered successful. Incorporating FAS software in

the everyday operations of the company can be seen as groundwork, a base of building

organizational knowledge and understanding of technology. This base can be expected

to provide a smoother transition to increasingly optimization-based, data-driven fleet

scheduling and allocation methods, essentially “future-proofing” the shipping company.
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