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Abstract

As the share of variable renewable energy sources increases, so does the need for near-delivery

offloading of surplus electricity. The availability of potentially cheap energy sources in intraday

markets begs warrants the reconsideration of a potentially overlooked market. From a power

buying perspective, this thesis has applied promising deep neural network techniques to produce

accurate electricity price forecasts before day-ahead market closure. Architectures tested in this

thesis include long short-term memory (LSTM), gated recurrent units (GRU), deep autoregres-

sive models (DeepAR) and temporal fusion transformers (TFT). Using nested cross-validation

scheme, we seek to better approximate the generalization error of our models. LSTM and GRU

models are found to be the best performing, in day-ahead and intraday markets, beating the

benchmark measured in MAE by 30.6 % and 29 %, respectively. The increase in performance

achieved by deep neural architectures are found to be particularly prominent in periods of high

price volatility.

Our overall goal has been the creation of decision tool, to be used by an electricity buyer to

determine optimal electricity market for a given set of delivery hours. The results presented

in this thesis are based on the NO2 power region (South Norway) as a result of its relative

intraday liquidity. We implement the decision tool by means of a a probabilistic classifier trained

specifically on the forecasts of the optimal deep neural architectures. We find that the use of a

probabilistic classifier increase classification performance when compared to using sign-difference

of the forecasts directly.

Despite numerous potential error sources, our decision tool is shown to increase expected

marginal profits when compared to a day-ahead-only trading strategy by testing in a out-of-

sample simulated “production” environment. We model a decision tool to fit the needs of

various risk profiles, and find that higher risk tolerance warrants higher profits. Though beyond

the scope of this thesis, the general outline of this decision tool can be modified and extended

to fit the needs of power producers.

Keywords: Deep Neural Networks, Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU),

Temporal Fusion Transformer (TFT), Autoregressive Recurrent Networks (DeepAR), Probalistic classifi-

cation, Energy Quantified, Nord Pool, NO2 (South Norway), Intraday market, Elbas, Day-ahead market,

Elspot, Regulating market, Electricity price forecasting, Nested Cross-Validation
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Introduction

1 Introduction

Nord Pool was one of the the first electricity exchanges to be opened after a wave of deregulation

in the Nordic countries (Bye and Hope, 2005). Shortly after its debut in 1991, Nord Pool

expanded its offering by allowing for continuous trading. Initially conceived as a supplement for

the balancing markets, intraday markets1 have seen somewhat of a reconsidering as intermittent

energy sources are increasing its share of total electricity production in the Nordic countries.

An increasing share of wind power in particular, is likely to lead to an increased dependence on

intraday trading Mauritzen (2015). Perez-Arriaga and Batlle (2012) define intermittency as a

component of non-controllable variability and partial unpredictability.

Price determination hours ahead of delivery poses problems, when the availability of power fluc-

tuates. Price discovery in day-ahead markets2 assumes that no fundamental price-drivers have

changed in the period between price settlement and delivery. As the share of intermittent power

sources increases, the validity of this assumption may diminish. This is particularly relevant

for South Norway’s (NO2) power region (see figure 1), where the Cross-Skagerrak subsea power

line significantly increases inter-dependency of energy sources between Denmark and Norway

by adding 1,700 MWh worth of capacity (“The Skagerrak 4-interconnector - cable contracts

signed”, 2013). Intermittent energy producers will be increasingly faced with the decision to

trade on intraday markets or to face balancing costs for any deviation from the promised pro-

duction. From a power buyer’s perspective, this development enables wholesale electricity buy

available wind power not priced in the day-ahead market. Participating in intraday trading will

however involve inherent risks. Balancing costs may incur for any market participant that are

not able to meet their predetermined buying or selling volume.

Recent advances in forecasting techniques may offset this risk by allowing for more accurate

forecasts. Incorporating multitude of factors affecting electricity prices can be difficult using

traditional econometric forecasting techniques. Deep neural networks have been successfully

applied to time-series, often as convolutional neural networks (CNN) or recurrent neural net-

works (RNN). Iterations aimed to improve upon issues with RNN, such as the long short-term

models (LSTM) originally proposed by J. Hochreiter (1991) have been shown outperform tra-

ditional such as autoregressive integrated moving average (ARIMA) forecasting models (Lago et

al., 2018). More accurate forecasts may allow buyers to compare electricity prices on day-ahead

and intraday at a critical closing decision point. Day-ahead markets required market partici-

1Commonly known as Elbas market
2Commonly known as Elspot market
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Introduction

pants to submit their bids at noon before the day of delivery (Mauritzen, 2015). Ahead of the

bid-submission deadline, it may be feasible for electricity buyers to decide, for each and every

upcoming delivery hours the next day, which market to participate on. In other words, bidding

on the day-ahead market or wait until next day and buy on the intraday market, or perform a

combined trading strategy.

In this thesis we will explore this possibility by training and validating a range of neural network

architecture to forecast day-ahead and intraday electricity prices. We opt to take a buying

perspective of the market participants on the Nord Pool markets, which determines particular

choices in the creation of the decision tool. We find that our best performing neural networks

outperform benchmarks in terms of mean absolute error (MAE) by 30.6 % and 29 % in day-

ahead and intraday markets, respectively. Applying a probabilistic classifier trained on day-

ahead and intraday forecasts, improves forecasts modestly. The application of the decision tool

in a simulated use-case is found to increase expected profits when compared to buying electricity

exclusively in day-ahead markets.

1.1 Problem Definition

A central prerequisite of determining the optimal electricity market for an electricity buyer is

well-performing forecasts. We follow a k-fold cross-validation scheme as described in Hastie et al.

(2008). To ensure more efficient use of data, while having adequate time dispersed samples, we

perform a rolling cross validation within in each fold. The end result is a nested k-fold cross-

validation technique, similar to previous work by Varma and Simon (2006). Simpler validation

techniques such as holdout-validation may not give an accurate estimate of a model’s general-

ization error. Our approach uses a probabilistic classification model to rectify forecast errors of

the implemented deep learning models. The end result, simply referred to as the decision tool,

may be used by electricity buyer to optimally allocate buy volume for the delivery hours of the

following day. The decision tool itself is transferable to power producers, but it is beyond the

scope of this thesis to demonstrate the efficacy of its application from a producers perspective.

Throughout this thesis we seek to answer the following research question:

RQ Through the use of deep learning forecasts, can an optimal market for buying electricity be

determined ahead of the day-ahead market submission deadline?

We will place a particular emphasis on using variables, machine learning techniques, performance

validation, and forecasting horizons that would be available to a potential electricity buyer.
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2 Literature review

Electricity market forecasts are usually reserved to predict either day-ahead or intraday markets.

Day-ahead market forecasts garners the most attention probably due its dominant share of total

trade. Examples of forecasting day-ahead prices using neural networks include Lago et al. (2018)

and Sprangers et al. (2022). Intraday forecasts are mostly reserved to the immediate hours before

delivery, as seen in Narajewski and Ziel (2020) and in Kolberg and Waage (2018). These forecasts

may be useful for intermittent power producers determining whether surplus power should be

left to balancing market or sold on the intraday markets. Power producers incur balancing costs

when power promised for any delivery hour deviates from power produced. The Transmission

System Operator (TSO)3 keeps reserves available, levying the increased balance costs on any

power producers failing to comply with promised supply. Holttinen (2005) estimates that wind

power producers could reduce their balancing costs significantly by participating in intraday

trading rather than selling on the day-ahead market. Similar results are found by Bourry and

Kariniotakis (2009), proposing a combined approach of participating in both day-ahead and

intraday markets to lower balancing costs.

Faria and Fleten (2011) take the perspective of a price-taking hydro-producer when considering

the value of participating in intraday trade. They find that given the lack of liquidity and

uncertainty when simulating prices in intraday markets, taking intraday prices into account,

does not make a meaningful impact on profits. It should be noted that the decision to trade

in intraday markets is made in a two-stage stochastic model, where intraday trade is made

after deciding the optimal sell volume in the day-ahead markets. A central point of interest for

our thesis is whether more accurate forecasting tools could provide foresight into at a critical

decision point of any discrepancy between intraday and day-ahead prices before day-ahead price

settlement. This entails building forecasting tools solely with the data that would be available

at the moment of decision. Maciejowska et al. (2019) forecasts intraday and day-ahead prices

to classify the sign of the price difference between intraday and day-ahead markets in Poland

and Germany. Employing econometric techniques they achieve a 57.3 % accuracy on classifying

day-ahead and intraday price differences in the Polish electricity markets. The top performing

autoregressive model (ARX), as seen in Maciejowska et al. (2019) utilises exogenous market

variables, but were not able to efficiently use long series of data.

The extent to which the price difference can be accurately classified depends on the accuracy of

3Statnett (Norway), EnergiNet (Denmark) and Svenska kraftnät (Sweden) are examples of Transmission Sys-
tem Operators
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the forecasts. Nord Pool opens for trade at noon, and any forecasts has to be ready for relevant

decision makers to act before the day-ahead market submission deadline. By the time of delivery

multiple factors affecting the price may have influenced the price to the point where the forecast

no longer is sufficiently accurate.

Neural network based forecasting architectures have been successfully applied to electricity price

forecasting. As forecasting models they have been demonstrated to be flexible and able to

model non-linear characteristics (X. Chen et al., 2012). Traditional multilayered perceptrons

(MLP) have been refined to capture sequential data as the families of RNN and CNN are

examples of. Advances in RNN, such as LSTM networks originally proposed by S. Hochreiter

and Schmidhuber (1997), have been shown to outperform econometric forecasting techniques.

Lago et al. (2021) presents several deep4 neural architectures for forecasting electricity prices

in Belgian, French, German and Nordic markets. They experiment with adding additional

linear layers atop of LSTM, RNN and CNN architectures. They find that deep neural networks

outperformed their benchmark model lasso estimated autoregressive (LEAR).

Gated recurrent unit (GRU) networks originally proposed by Cho et al. (2014), which features

prominently in this thesis, simplify the forgetful properties of the LSTM networks. GRU models

are found to have a comparable performance to that of LSTM models, at a computational

discount (Chung et al., 2014). Forecasting electricity load, Wu et al. (2019) show that GRU

networks perform better and have lower computational complexity than LSTM networks.

Considering the aforementioned advances in forecasting techniques, a key goal of this thesis

is to research the possibility of using accurate forecasting methods to evaluate intraday and

day-ahead markets before market submission deadline. We aim to add to existing literature

by doing for Nord Pool markets with neural network forecasting techniques, what Maciejowska

et al. (2019) did for Polish and German markets with econometric techniques.

4In the context of neural networks, deep neural networks usually refer to models with at least one hidden layer
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3 The Power Market

Nord Pool is a European power market primarily owned by Euronext and TSO Holding and

offers trading in both day-ahead and intraday markets across 16 European countries (“About us”,

n.d.). 360 companies in 20 countries actively trade on Nord Pool, and Nord Pool is committed

to allowing for all kinds of traders regardless of company size and location. Since Nord Pool is

the counterparty for all participants their key role is to handle payments and ensure delivery.

The magnitude of the total trade volume across its markets is significant, during 2021 the total

buy and sell volume exceeded 450 Terra Watt hours (TWh) each (“Nord Pool Announces 2021

Trading Figures”, 2022).

The pretext of Nord Pool’s establishment was the deregulation of governmental ownership in the

1990s in order to create an efficient market across countries. As a result, the price for a given

trade hour depends on the market balance between supply and demand which contributes to

preventing monopolistic prices (“The power market”, n.d.). Additionally, this social-economic

price model does not only serve the purpose of serving competitive prices but eases the iden-

tification of production or capacity shortcoming by for instance observing higher demand than

power production supply.

3.1 The Scandinavian Power Market

The Scandinavian power market comprises many power-intensive industries, delivering a mixture

of e.g. hydro, nuclear and wind power (“An overview of the Nordic Electricity Market”, 2019).

Power consumption changes as a consequence of the seasonal weather conditions e.g. change in

temperature (see section 4.2). Due to large seasonal variations in weather conditions, Nordic

household stands for a large share of electricity heated houses which distinguishes from the

rest of European power consumption. In addition, the Scandinavian power market holds a

large share of renewable power generating sources especially hydro, but wind power production

is also increasing. In a span of 10 years wind power’s share of total produced electricity in

Denmark has increased from 13 % in 2006 to 42 % in 2016 (Unger et al., 2018). Which in

turn affects the imported volume and power price in i.e. Norway, since wind power cannot

be stored on large scale. Due to its intermittent property (see definition in section 4.1), an

overproduction of power for windy situations will decrease the power prices in Denmark, as a

consequence of high supply and low demand. Additionally, since wind power heavily relies on

the weather conditions, and weather is hard to forecast, it will cause deviation in the planned

capacity available on the day-ahead market, which is partly why the intraday market exist. The
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same affect occurs for run-of-river power production when the precipitation is high, which is

among the important power sources in Norway. The intermittent power generating sources are

considered as important price-drivers on predicting the intraday and day-ahead prices, which

also the literature reveals in section 4.1.

3.2 The Norwegian Power Market

The Norwegian power market is separated into five different areas: NO1 (South East Norway),

NO2 (South Norway), NO3 (Middle Norway), NO4 (North Norway) and NO5 (West Norway)

(see figure 2). Figure 1 made by Norwegian Ministry of Petroleum and Energy shows the

different mixture of power delivery where 93 % of the renewable power production in Norway,

given a normal production year, are given by hydro power production and 7 % by wind power

production (“Kraftmarkedet”, n.d.). In general, the hydro production sources consist mainly of

hydro reservoir and run-of-river production. Hydro reservoirs regulate power production in order

to meet demand, while run-of-river and wind power production are variable sources suffering

intermittency as mentioned in literature review. Both run-of-river and wind power generation

shares the disadvantage of heavily relying on the weather conditions, i.e. precipitation or wind,

as these sources generates electricity independent of demand. In contrast, the storage reservoirs

can produce electricity in periods with inadequate precipitation and inflow. Considering the

important power generating sources give an indication on what type of power source that may

drive the day-ahead and intraday power prices we want to forecast.
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The Norwegian Power Market

Figure 1: The figure shows the distribution of renewable power sources in Norway for each power areas given normal
production year. All the number are in Terra Watt hours rounded to closest whole number. Ekspertomr̊ade = Power
Market Area in Norway, Vannkraft = Hydro Power (e.g. run-of-river), Vindkraft = Wind Power, Magasinkapasitet =
Hydro Reservoir Capcity Power. Reprinted from THE POWER MARKET, in Energi fakta Norge, n.d., retrieved May 27,
2022, from https://energifaktanorge.no/norsk-energiforsyning/kraftmarkedet/

3.2.1 Transmission connections

Norway’s renewable power production often leads to power surplus, making it possible to export

large amounts of power to foreign countries (“Mest kraftutveksling med Norden”, 2021). At the

time of writing, Norway has transmission connections to Sweden, Denmark, Germany, Nether-

lands and Great Britain. The most recent interconnection opened in October 2021, named the

North Sea Link, connecting Great Britain with Norway and was initially transmitting half of

its capacity and gradually increased to full capacity by March 2022 (“UK and Norway”, n.d.).

In addition, Sweden and Denmark account for most of the power exportation share in Norway.

Norway purchases power when the power price in the foreign country is lower than the internal

power prices (“The power market”, n.d.). An overview of the different transmission connections

in-between Norwegian areas and to other countries from Norway, is shown in figure 2. The

main reason for the partition of area in Norway is due to the transmission capacity constraints

(“Bidding areas”, n.d.). Additionally, the capacity can differ given the direction of exchange.
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Transmission Connections

Figure 2: The figure shows the internal and external transmission
connections in Norway. Reprinted and adapted from Nord Pool, Nord
Pool, n.d., retrieved February 1, 2022, from
https://www.nordpoolgroup.com/en/Market-data1//nordic/map.
Reprinted with permission.

3.3 Trade markets in the Norwegian areas

3.3.1 Day-ahead markets

The day-ahead market provides the opportunity to trade hourly power one day in advance (“The

power market”, n.d.). It is also the most liquid market because the majority of trades occur

in this market (see section 5.5). Market participants can start their bidding and provide offers

between 8 a.m. and 12 p.m. Ahead of 10 a.m. the TSO publishes the available capacities in each

bidding area (more about TSO in section 3.3.3). The decision tool presented in this thesis, has

to provide forecast of day-ahead prices between 10 a.m. and 12 p.m. such that the end-user have

time to decide a bid placement, or not. This is due to the fact that when the auction closes at

12 p.m. the market prices will be calculated for the next day (Mauritzen, 2015). The day-ahead

prices are calculated as a function of buy and sell orders, involving price and volume, and the

available transmission capacity. Nord Pool uses a common European algorithm to calculate the

prices for the different areas. The market prices in different areas are revealed at 2 p.m. and

showing if the trade for the market participant did pass through or not. The period between 12

p.m. and 2 p.m. is commonly called clearance period. This decision time-window constraints

the rest of this thesis where also the forecast prices of the intraday market is performed in the

same period.
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3.3.2 Intraday markets

Nord Pool offers continuous intraday trading, opening two hours after price settlement is com-

pleted on the day-ahead market (Tanger̊as and Mauritzen, 2014). The market exists as a con-

sequence that weather conditions are unreliable such that the market balance in the day-ahead

market may be interrupted, because of change in actual production or consumption (“The power

market”, n.d.). The intraday market may compensate for this imbalance providing continuous

trades between the periods of market clearance and one hour before operation. A more exhaus-

tive study on intraday market is provided in section 5.5, which shows that the prices in, i.e.

NO2, is lower on the intraday market relative to the day-ahead market on median. It is then

interesting to consider this market in order to exploit cost reducing opportunity, i.e. buy in the

market where the price is lowest.

3.3.3 Balancing markets

In order to understand the entirety of the energy markets there are, in addition to day-ahead and

intraday, market balances between demand and supply. Balancing markets coexisting to resolve

sudden events that can disturb the aforementioned market balance (“The power market”, n.d.).

Households, service industries, especially involving human life and health, and manufacturing

industries heavily rely on continuous power supply, and any imbalances can cause fatal conse-

quences (“Security of electricity supply”, n.d.). Service interruptions may occur such as faults in

power lines, substations and control systems, but the most common cause of failure is weather-

related incidents. Operational security is then crucial to secure end-users power consumption

with reliable power supply and the Transmission System Operator functions as a regulator to

ensure balance in the power markets (“The power market”, n.d.). In Norway, Statnett is as-

signed this task and generally uses the flexible hydro power plants to maintain instantaneous

market balance. In more details, the TSO has to ensure a system frequency of between 49.9 and

50.1 Hz. If deviation from this frequency occurs, depending on how long the imbalance lasts,

the TSO can act by using different remedy. See section A.1.1 in the appendix for more details

on the different reserves.

3.4 Merit order

Figure 3 shows the merit order curve on the Nord Pool power exchanges. The merit order curve

illustrates that different power sources supply electricity depending on demand in the market

and available capacities. At the left most of figure 3, beige and light grey, the renewable energy

produces a large share of power, to a relative low marginal cost. Due to the intermittency of
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wind production, and the high variance in operating capacity, has a wide implication on Nord

Pool exchanges as these capacity sizes increases (reduces), and due to its low marginal cost drive

the power prices down (up). On the other hand, as the demand for power increases the capacity

for each power sources will reach their production limit, resulting in other dispatchable power

sources to step in to meet the demand. Thermal power plant uses fuel to produce energy, and

as we will see in section 4.3, the carbon price shown in dark grey in figure 3, drives the marginal

cost of these dispatchable power sources further up. In short, the power is produced where the

marginal cost is lowest, and increases as a function of demand and available capacities.

Merit Order Curve

Figure 3: Merit order curve of Nord Pool Exchanges 2009, where CHP is short for
combined heating and power production. Adapted from “System and market
integration of wind power in denmark”, by Pöyry from Lund et al., 2017, Energy
Strategy Reviews, 1 (3), p. 143-156. Copyright 2012 by the Elsevier Ltd.
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4 Price-Drivers

We opt to use literature as a guide to find relevant variables that can explain the day-ahead and

intraday prices, but well aware that there is a possibility that historical findings may not yield

similar relationships in recent period of time. In addition, we opt to include temporal features

and binary structural change features.

4.1 Intermittent Renewable Power Generation

The intermittent energy sources have over the years increased its share of energy generating

sources in the Nordic electricity markets (see section 3) and are considered important price-

drivers both on intraday and day-ahead markets. As mentioned in the introduction, Perez-

Arriaga and Batlle (2012) defines intermittency as a component of non-controllable variability

and partial unpredictability. Non-controllable variability meaning that renewable power plants

are unavailable, due to low solar intensity, especially at night, for solar photovoltaic power

generators or insufficient wind in wind production, when there is demand for it or providing

significant amount of power production when demand is low (Kyritsis et al., 2017). The latter,

partial unpredictability is referring to the limitation of knowing future power production of

renewable energy due to the fact that the production depends on the stochastic nature of weather

conditions.

The importance of intermittent renewable power generating sources on intraday and day-ahead

electricity prices are also revealed in the literature as there exist empirical evidence that renew-

able energy production, such as wind and solar photovoltaic production, are significant and have

an price-reducing effect on the day-ahead power prices when the production increases, especially

in the Spanish, Austrian, German and Italian power market (Gelabert et al., 2011; Würzburg

et al., 2013; Cludius et al., 2014; Ketterer, 2014; Clo et al., 2015). As intraday and day-ahead

markets are highly correlated, with a correlation coefficient of 94.26 % when calculating it for

price area NO2 in the period of 2019 and 2022, it is a reasonable assumption that price-drivers

in the day-ahead market have a significant explanatory power on intraday markets.

Only considering the price-effect of increased renewable generation may not explain volatility in

day-ahead and intraday prices. In the paper of Kyritsis et al. (2017), on intermittent solar and

wind power effect on electricity prices in Germany, finds that solar power generation reduces

the volatility and the probability of day-ahead electricity price spikes. The opposite effect with

wind power generation where the volatility increases and introduces price spikes on day-ahead

electricity price. Similar findings when Rintamäki et al. (2017) studied both the danish and
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German power market. These effects occurs during all hours, peak hours and off-peak hours

(Kyritsis et al., 2017).

Another renewable power generating source is hydroelectric plants. Since Norway is the largest

hydro power producer in Europe and the Norwegian power market is highly dependent on

hydroelectric generation, it is considered as an important price-driver in the power market

(“Energy and marine resources”, n.d.; Mosquera-López et al., 2018). Geissmann and Obrist

(2018) confirms this in their findings that hydro power generation, i.e. storage and pump-

storage generation, has even larger impact on power prices relative to other renewable sources.

They argue that it is due to water reservoirs availability, that supply and demand intersects

each other in the steeper region of the merit order curve, which yields higher potential price

reductions.

4.2 Weather Conditions

Intermittent renewable energy generation are highly dependent on weather conditions, but each

power source is affected in different ways. Mosquera-López et al. (2018) finds negative relation

between temperature and power prices when freezing event occurs, where freezing event is defined

as temperature below zero degrees Celsius. This is due to the fact that when water freezes

hydro power generations are stopped, triggering other power production sources such as thermal

plants to turn on to fulfill demand requirements. Additionally, hydro power generation does not

only depend on temperature, precipitations effects the water reservoir level as well when the

temperature is not cold. Water reservoir might be less dependent in rapid changes in weather

conditions, because it needs constant precipitations for a long period in order to increase the

water-filling level.

Solar photovoltaic power depends on cloudiness, temperature and possible precipitation (Russo

et al., 2022). Russo et al. (2022) explains, in the context of future climate change, that increas-

ing average temperature might reduce the solar panels efficiency and increased cloud coverage

ambient humidity. They also writes that clouds are one of the hardest meteorological features

to simulate, indicating that it might be a unreliable feature to include in order to forecast power

prices.

Wind speed affects the wind power production, where extreme weather events and high vari-

ability in wind speed, can disrupt power production (Russo et al., 2022). On the other hand,

insignificant amount of wind speed when demand is high will likely lead to increased use of hydro

power generation, according to the merit order curve (see section 3.4).
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Besides, electricity demand is also affected by temperature (Mosquera-López et al., 2018). Tem-

perature is an important variable because of the Nordic climate, where low temperature leads

to increased power consumption in order to e.g. heat houses. In a study of factors affecting

electricity demand in Athens and London by Psiloglou et al. (2009) finds that both cities peak

in demand at winter due to low temperature and peak in demand at summer only for Athens

due to hot temperature and increased use of air-conditioning.

4.3 Dispatchable Power Generation

We see that renewable generation sources are highly dependent on weather conditions, which

means that in situations with production shortcoming or outages, e.g. freezing water due to

temperature below zero degrees Celsius, windless conditions or low solar intensity, there is a need

to use other power sources that has more reliable supply on-demand, i.e. dispatchable power

generating sources. Solar, wind or hydro production are unlikely to produce at full capacity

due their dependence on natural weather factors (Geissmann and Obrist, 2018). As expected,

and which is also is written in the paper by Mosquera-López et al. (2018), when hydroelectric

power plants stop generating power thermal power plants must be turned on, with its higher

marginal cost observed in the merit order graph (see section 3.4), yields an increase in the price

of electricity. This applies also to other intermittent generating sources such as wind and solar

power production.

In contrast to renewable power generation, which are dependent on weather conditions and

highly independent from the electricity demand, dispatchable power generating sources uses

fuel in order to produce electricity, which are nuclear, coal or natural gas (“Understanding The

Term ’Dispatchable’ Regarding Electricity Generation”, 2021). The main advantage of using

these power sources are the reliability, as fuel is constantly supplied.

In a study of fundamental price-driver on continental European day-ahead power market Geiss-

mann and Obrist (2018) find that gas prices have a significant impact on power prices where an

increase in gas prices lower the power prices. ACER (2021) presented a insights of the recent

high energy prices, which they state to be mainly driven by the global gas price surge (“High

Energy Prices”, 2021). They also writes that the high gas prices are driven by tight supply and

high demand from North-East Asian and South America (liquefied natural gas), leaving less

gas available for Europe. In contrast, Rintamäki et al. (2017) finds that natural gas prices are

insignificant on the danish daily price volatility, stating that the reason behind this is due to

small daily changes on gas spot prices which is unlikely to affect short-term bidding behaviours.
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Additionally, Gelabert et al. (2011) argues that the insignificance of gas prices is caused by the

fact that producers secures the gas supply through long-term contracts, and this isolates them

from the variation in gas prices to a great extent.

Other factors that contributes to increased power prices in Europe are the increased coal and

carbon prices (“High Energy Prices”, 2021). Carbon prices was instituted in Europe as a

consequence of Kyoto Protocol in 2005 in order to reduce greenhouse gas emission (“What

is the Kyoto Protocol?”, n.d.). The increase in coal and carbon prices are mainly driven by

economic recovery, yielding higher demand, and change in weather condition pattern, such as

cold winter and unusually hot summer. Geissmann and Obrist (2018) finds that carbon price

had a insignificant marginal effect on day-ahead electricity prices. Same argument by Gelabert

et al. (2011) about long-term contracts for gas supply applies to power plants using coal resource

as well.

4.4 Custom features

We opt to include basic temporal information features, i.e. hours, day, week and month as

addition features. This can be seen i table 11 in the appendix. The purpose of using such date

or time components is to potentially find which time or seasons are important for the dependent

variables of day-ahead and intraday price forecast. Besides, the date time in the selected time

series itself uses different time zones. See section B.1.2 in the appendix for further details.

Binary structural change features may be relevant in order to capture sudden changes or price

dynamic change of behaviour, in case that other covariates may fail to explain. As these variables

are already known, we opt to given occurrence such as Covid-19 pandemic an activation between

an approximate time interval, “Yes” in period and nothing else. The important transmission
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5 Data

The purpose with this section is to inform reader how the data is used, forecasting models are

gathered, which pre-processing is needed such that the inputted data have an acceptable quality

with the purpose of outputting decent results. Then use the insights from data exploration to

explain why this thesis has scoped the decision tool to price area NO2 in Norway. As neural

networks requires great amount of data records to perform decently, we intend to gather as

much data as possible. Nord Pool has provided data as far back as 1999 and Energy Quantified

provided us a student license with 3 years data where the start period is March 28, 2019. Because

of the limited period of data from Energy Quantified, and due to important forecasts, synthetics

and historical data, we decided to restrict our data period from March 28, 2019 until March 17,

2022.

5.1 Nord Pool

The Nord Pool data is consolidated from Nord Pool’s File Transfer Protocol server (FTP-server)

comprising historical price, volume and capacity data5. Price and volume/capacity are measured

in Euro and megawatt hour (MWh), respectively. The day-ahead data is structured hourly and

provides information about market prices, total power trade volume and transmission capacity

for each area in Scandinavia, Balticum, Germany and Great Britain. As intraday trading involves

continuous bidding on price and volume within specific hours or several hours (i.e. block orders)

the data is represented as ongoing transaction data. Both day-ahead and intraday prices will be

used as dependent variables in the different forecasting approaches, due to our architecture of

predicting each market and afterwards make probabilistic classification of day-ahead exceeding

intraday prices.

Winter and summer time cause a special feature in the data by increasing an extra hour record,

or reducing an hour record, which Nord Pool has handled by including an extra hour on the

3rd hour ante meridian, i.e. hour 3a and 3b. In order to overcome this extra hour feature, as it

only occurs twice a year, we opt to average both the price and volume data for these particular

hours.

The resolution of our data should match the lowest common resolution, e.g. 15 minutes, hour

or day et cetera. As day-ahead prices are submitted in hourly resolution, we opt to increase

the ticker data resolution from intraday trades into hourly resolution. As the intraday data is

5The open market data can be gathered from https://www.nordpoolgroup.com/en/Market-
data1/#/nordic/table or from the FTP-server if reader contacts Nord Pool directly
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continuous, it can be transformed into hourly data by calculating an hourly volume-weighted

average price, similarly done by Knapik (2017):

VWAPh =

I
i=0 Priceh,i · V olumeh,iI

i=0 V olumeh,i
(1)

where h indicates a given hour and I is the total number of price and volume i bid observations

per hour. Block bids, on the other hand, extend for several hours and large block bids can affect

the prices for each of these hours. It is then reasonable to populate its price and volume equally

for each hour6.

5.2 Energy Quantified

The Energy Quantified data is gathered from its API through a Python Client7 and comprises

a wide portfolio of determinants i.e. weather, hydro, wind and regulation on wholesale energy

market integrity and transparency data (REMIT)8. REMIT contains information about abrupt

messages e.g. production stop. Energy Quantified provides forecasts, backcasts, actuals and

synthetic actuals data for each of the aforementioned determinants with 15 minutes, hourly

and daily resolutions. Synthetic data are mainly actual time series corrected for missing or

erroneous values by Energy Quantified. The Energy Quantified covariates may contribute to

explain the two dependent target variables i.e. day-ahead and intraday prices. We will now dive

into particularities of the Energy Quantified data and briefly explain the relevant covariates we

are going to use in the neural network models.

5.2.1 Weather forecast models

Energy Quantified either borrows already existing forecasts, indicated by a tag for external

issuer, or creates their own forecasts. Especially weather forecasts are issued by the (“Weather

forecast models and schedule”, n.d.):

• European Centre for Medium-Range Weather Forecasts (ECMWF)

• Global Forecast System (GFS)

• Icosahedral Nonhydrostatic (ICON)

6E.g. a block bid of 10 MWh volume for 2 hours yields 10 MWh at the first hour and 10 MWh on the second
hour

7Python Client tutorial: https://energyquantified-python.readthedocs.io/en/latest/. Be aware that only
freemium data is available and that we are provided additional data for this thesis

8Commonly known as UMM - urgent market messages
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• Arome (Nordic)

• UK Met Office (UKMO)

The Global Forecast System is a American global weather model, that has been popular in the

industry due to the public availability, but since the model is primarily not focusing on Europe,

the ECMWF is preferred due its higher quality and resolution on topology and geography

(“Weather forecast models and schedule”, n.d.). Arome and UK Met Office are French- and

UK-developed weather models, respectively. Due to their poor results, in contrast to the ICON

model, which is the German weather model, these are discontinued after December 31, 2021,

and replaced by the ICON model. In this research we opt to not use ICON, because its data

only contains forecast from roughly 2022, and we are interested to use data from 2019 to 2022.

Summarized, the preferred forecast model, in this thesis, is the ECMWF.

5.2.2 Forecasts

We are particularly interested in models that forecast well on 38 hours horizon, due to the

decision tool forecasting horizon from 10 a.m. to next day 12 a.m. in a production setting (see

subsection 3.3.1). Since the cross-validation of models is built for this particularity, it is then

important to avoid using the latest forecast available as this introduces the problem of training

on known future values. It is reasonable to use the latest forecast that is older than 38 hours.

Energy Quantified9 offers the opportunity by allowing for data gathering on day ahead forecast

with certain date interval, which we chose to be the latest 2 days (48 hours) ahead forecasts.

Figure 4 illustrates this by an example for multiple forecast series for a specific forecast ensemble

short-term NO2 Wind Power Production MWh/h forecast in the winter season. This forecast is

issued two times a day, 8 a.m. and 8 p.m. shown as grey, and our rolling 38 hours forecast in

yellow. It shows which samples are retrieved from Energy Quantified in order to make 38 hours

rolling forecast possible in color of beige. The first 38 hours forecast, in figure 4, shows that

only first and third forecast series are used, we could not have used the fourth forecast series

because it is issued 4 hours after the 38 hours forecast starts. The second 38 hours forecast is

even a better example showing that it uses three different forecast series which uses the latest

sample from the latest possible forecast series number seven. Same procedure for every multiple

forecast series from Energy Quantified.

9An in-depth description on how this can be done is provided on this link: https://energyquantified-
python.readthedocs.io/en/latest/userguide/instances.htmlnext-steps
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Example of used samples from multiple forecast series

Figure 4: This figure shows how multiple forecast series of ensemble short-term NO2 Wind Power Production MWh/h
forecast is retrieved in order to avoid overlapping future forecast when performing 38 hours forecast in our decision tool.
*Be aware that this is only an example for a certain forecast series in a certain period of time.

Energy Quantified provides range of different forecast from in-house forecast to forecast issued by

third-parties (“Data types for curves”, n.d.). In general, they offers deterministic and ensemble

forecasts, where deterministic forecast is a single forecast and ensemble forecast is a combination

of multiple forecasts. Ensemble forecast is one of the forecasting methods that has been around

since 1990s in numerical weather forecasting (Zhu, 2005). Zhu (2005) writes that the mean

of ensemble forecasts often yields better performance on short term (3-5 days) in contrast to

deterministic forecast, and one could argue that this is a better option. Even though ensemble

forecasting yields better results on a longer time horizon than couple of days Boucher et al.

(2011) finds in their research on comparison of ensemble and deterministic hydrological forecasts

on short term, that ensemble forecast is more beneficial than deterministic forecasting. That

ensemble forecast yields better results than deterministic forecast is also discovered by Zhao

et al. (2021) in their research on precipitation forecasts.

For spot and exchange forecasts there are mainly two forecasts which is marked with prefix and

postfix. Prefix forecasts are forecast issued before the day-ahead auction closes including forecast

for the day-ahead, while postfix forecasts are forecast that are issued after spot auction is closed

and actual spot price is published (“Instance tags”, n.d.). As our main goal is to forecast before

the day-head auction closes at 12 p.m., we opt to gather the prefix forecasts.
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5.3 Selected time series

The selected features used in the neural network models are shown in table 1, and mainly four

types of time series are used: forecast, actual, synthetic and remit. All except from forecasts are

actual data, where the synthetics are actual time series corrected for missing values by Energy

Quantified, and REMITs are actual urgent market messages (see section 5.2). There is one time

series per area, which means that the number of total features used are the time series multiplied

by area name or exchange direction.

As the reader can see in table 1, the selected covariates are of different types and units, and not

on a shared resolution. Most of the time series is provided in Mega Watt hours (MWh). Residual

load is wind power production and solar photovoltaic production subtracted from consumption.

In other words, load on the power market that is not affected by wind and solar production,

which indicates how much the dispatchable sources have to produce in order to meet the demand

in the market. Residual production is scheduled exchange net import on day-ahead and nuclear

production subtracted from residual load. In other words, how much the power productions

there are in the market that are not imported from other areas, produced by wind or solar

power sources, or nuclear production.

Power exchange occurs in both directions as import and export. As the scheduled exchange

day-ahead is a net, the sign in the time series determines which direction the power flows. On

the other hand, actual exchange day-ahead capacity on the transmission line between areas and

countries it may occur, for some connections, that there are different capacity on the import

and export cables. It is then necessary to include the exchange capacity in both directions.

Instead of representing the chilling, cloudiness and heating in form of e.g. wind direction or

temperature, Energy Quantified represent these in form of consumption index in percentages

(“Weather indexes”, n.d.). Cooling index is defined as percentage of running installed cooling

capacity in countries or areas, heating index is percentage of running installed heating capacity

in countries and areas and wind chill index is measured as additional heating capacity needed by

a combination of low temperature and wind in countries or areas. Energy Quantified explains it

with an example that in the coldest areas in Finland the heating index reaches 100 % at (minus)

-25 degrees Celsius, while the heating index reaches 100 % in Italy below zero degrees Celsius.

The power consumption does not increase above 100 % as all the heating units are in use.
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Selected covariates

Time series Unit Type Resolution Area

Consumption index chilling % Forecast 15 minutes NO2, DK1
Consumption index cloudiness % Forecast 15 minutes NO2
Consumption index heating % Forecast 15 minutes NO2
Consumption MWh Forecast 15 minutes NO1, NO2, NO5, DK1
Consumption Temperature ◦C Forecast 15 minutes NO1, NO2, NO5, DK1
Hydro precipitation energy MWh Forecast Hourly NO2
Hydro reservoir water filling % Forecast Daily NO2
Hydro run-of-river production MWh Forecast 15 minutes NO2
Solar photovoltaic production MWh Forecast 15 minutes DK1
Spot price EUR/MWh Forecast Hourly NO2
Spot price short-term EUR/MWh Forecast Hourly NO2
Residual load MWh Forecast 15 minutes NO1, NO2, NO5, DK1
Residual production day-ahead MWh Forecast Hourly NO1, NO2, NO5, DK1
Wind power production MWh Forecast 15 minutes NO2, DK1
Schedule exchange day-ahead MWh Forecast Hourly [DE→NO2, DK1→NO2, GB→NO2,

NL→NO2, NO1→NO2, NO5→NO2,
SE3→NO1]

Dispatchable power productiona MWh Actual Hourly DK1
CHP power production MWh Actual Hourly NO1, NO2, NO5
Hydro power production MWh Actual Hourly NO1, NO5
Price imbalance consumption EUR/MWh Actual Hourly NO1, NO5, DK1
Price regulation down EUR/MWh Actual Hourly NO2
Price regulation up EUR/MWh Actual Hourly NO2
Volume regulation netto MWh Actual Hourly NO2, NO5, DK1
Exchange day-ahead capacity MWh Actual Hourly [DE→NO2, DK1→NO2, GB→NO2,

NL→NO2, NO1→NO2, NO5→NO2,
SE3→NO1, DE←NO2, DK1←NO2,
GB←NO2, NL←NO2, NO1←NO2,

NO5←NO2]

Hydro reservoir production MWh Synthetic Hourly NO1, NO2, NO5
Hydro precipitation energy MWh Synthetic Hourly NO1, NO2, NO5

Hydro reservoir available capacity MWh REMIT Hourly NO2
Hydro run-of-river available capacity MWh REMIT Hourly NO2
Netto transfer exchange capacity MW REMIT 15 minutes [DE→NO2, DK1→NO2, GB→NO2,

NO1→NO2, NO5→NO2, DE→NO2]

Table 1: Showing all the selected independent variables used in the forecast models. Note that this is the raw-format
given by Energy Quantified, but the used time series after pre-processing or chosen download resolution from Energy
Quantified is given in hours. MWh = Mega Watt hours.

aSee table 13 in the appendix for more information about the consolidated feature

5.4 Pre-processing

5.4.1 Non-trade hours and missing data in time series

Table 2 lists a summary of non-trade hour records for all time series involved with intraday or

balancing market, an exhaustive summary can be found in the appendix. One can observe that

the intraday and NO2 Price regulation data hold between 59.9 % and 72.5 % of non-trade hour

records as a share of total number of observations. Intraday price and volume data contains

32.3 % of non-trade hours. We want to emphasise that among the non-traded hours there may

exist missing values, which is fairly hard to detect as it is not possible to distinguish it from

non-traded hours. Regardless of the cause of the missing record we treat it in the same manner

and perform linear interpolation.
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Area

NO2, DK1
NO2
NO2

N O l , N 0 2 , N 0 5 , D K l
N O l , N 0 2 , N 0 5 , D K l

NO2
NO2
NO2
D K l
NO2
NO2

N O l , N 0 2 , N 0 5 , D K l
N O l , N 0 2 , N 0 5 , D K l

NO2, DK1
[DE» N O 2 , D K I N O 2 , G B » N O 2 ,
NL NO2, N O 1 N O 2 , N O 5 » N O 2 ,

SE3» N O 1 ]

D K l
NO1, NO2, NO5

N O l , N 0 5
N O l , N 0 5 , D K l

NO2
NO2

NO2, NO5, D K l
[DE» N O 2 , D K I N O 2 , G B » N O 2 ,
NL NO2, N O 1 N O 2 , N O 5 » N O 2 ,
SE3» N O 1 , D E - N O 2 , DK1«-NO2,
G B « - N O 2 , NL«-NO2, NO1«-NO2,

NO5«-NO2]

NO1, NO2, NO5
NO1, NO2, NO5

NO2
NO2

[DE» N O 2 , D K I N O 2 , G B » N O 2 ,
NO1 N O 2 , NO5 NO2, D E N O 2 ]

Table l: Showing all t h e selected independent variables used in t h e forecast models. Note tha t this is t h e raw-format
given by Energy Quantified, but t h e used t ime series after pre-processing or chosen download resolution from Energy
Quantified is given in hours. M W h = Mega Watt hours.

S e e table 13 in the appendix for more information about the consolidated feature

5.4 Pre -process ing

5.4.1 Non-trade hours and missing data in t ime series

Table 2 lists a summary of non-trade hour records for all time series involved with intraday or

balancing market, an exhaustive summary can be found in the appendix. One can observe that

the intraday and NO2 Price regulation data hold between 59.9 % a n d 72.5 %of non-trade hour

records as a share of total number of observations. Intraday price and volume data contains

32.3 %of non-trade hours. We want to emphasise that among the non-traded hours there may

exist missing values, which is fairly hard to detect as it is not possible to distinguish it from

non-traded hours. Regardless of the cause of the missing record we treat it in the same manner

and perform linear interpolation.
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Summary of non-traded hours for given time series

Series Non-trade hour Share of total

NO2 Price Regulation Up EUR/MWh H Actual 17628 72.46%
NO2 Price Regulation Down EUR/MWh H Actual 14565 59.87%
Intraday trade buy volume 7853 32.28%
Intraday Price Difference 7853 32.28%
Intraday Price 7853 32.28%
NO5 Volume Regulation Net MWh H Actual 87 0.36%
NO2 Volume Regulation Net MWh H Actual 87 0.36%
DK1 Volume Regulation Net MWh H Actual 87 0.36%

Table 2: Summary of non-trade hours in time series. Note that there may exist missing
values among the non-traded hours, which is not possible to detect.

Missing data records is particularly problematic for time series data, since the records has a

temporal evolutionary effect (Bergmeir and Beńıtez, 2012). Figure 14 in the appendix shows all

the missing data records of the selected time series. The share of missing values of total number

of records are beneath 0.16 %, which indicates that the amount of missing values are relative

low.

Figure 5 shows an example of consecutive non-trade hours frequency of the particular custom-

engineered intraday NO2 time series (see section 5.1). One can also find similar tendency in

the other time series containing missing records, which is not provided. One can observe that

most of the non-existing records occurs with single hour interval, and that it gradually decreases

with increasing hour interval. In order to get a similar format as the continuous day-ahead time

series adding empty records for the missing hours is necessary, as these are not included in the

gathered time series. Hourly non-trade volume for the intraday data can be replaced with zero

value, as these are actually non-trades occurring in the market, but where replacement of non-

existing prices need more attention. The simplest technique is to replace the non existing prices

with the average of all prices, but this is a very biased method that leads to great deviation in

the time series due to the increased fluctuation in prices in the last years.

Number of consecutive non-traded and missing hours on intraday market NO2

Figure 5: Number of consecutive non-trade hours between traded hours on intraday NO2 in 2019-2022

Junninen et al. (2004) stated that replacing missing records with the average values disrupted the
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inherent structure of the data and decreased model performance. Another technique is to impute

the missing values in-between observable prices (neighbor prices) using linear interpolation,

which Mohamed Noor et al. (2014) confirms to be better than the averaging method. The

equation for this method is as follows (Canale and Chapra, 1998):

f(x) = f(x0) +
f(x1)− f(x0)

x1 − x0
(x− x0) (2)

where x is the covariate, x1 and x0 are know values from ahead and previous values of the

covariate and the function f(x) is the transformation from missing value to a linear interpolated

value.

Other more advanced methods such as nearest neighbor, neural network, multiple imputations

or more hybrid model combining different techniques are considered. Studying the performance,

speed and reliability in the paper of Junninen et al. (2004) reveals that linear interpolation

performs well on short time gaps, is reliable on short time gaps and little less on long time

gaps, but is the fastest method to compared to other methods researched. They also states that

missing data is lost in entirety and a good approach will remedy the problem as far as possible.

Considering time, effort and quality of choosing a imputation technique we opt to replace the

missing price data using linear interpolation, even though Junninen et al. (2004) reveals that

the more advanced methods performs slightly better. A minor critique of this technique is that

the precision will be reduced and may lead to some distorted results in the forecast, but the

alternative is to reduce the amount of data by removing actual observations of day-ahead data

for the corresponding missing hours in the intraday time series.

As we are conducting cross-validation technique, in order to decide model hyper-parameters

and perform model evaluation, using train, validation and test-sets it is necessary to be aware of

information leakage. Since using pre-processing before performing cross-validation, in this case,

using linear interpolation leads to information leakage between the cross-validated folds. In order

to overcome this problem, the imputation technique can be performed on each fold after the

fold split are determined. Performing it this way, introduces a new problem that each fold can

contain missing values in the start and at end of the splitted time series. Missing values in the

end of a time series fold is not an issue as these missing values are imputed with last known value

observed. Missing values at the start of a series cannot be replaced by a linear interpolation, as

the equation 2 does not have any initial value, because linear interpolation depends on previous

and ahead observed data records. For simplicity we chose to impute these values with the first
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non-missing value as long as the entire series does not contain only missing values, since these

are replaced with zero. For categorical features the missing values are replaced using forward

filling of existing values.

5.4.2 Feature scaling

The selected covariates in this paper comes in different scales, e.g. Mega Watt hour or per-

centages. Machine learning models that is trained on scaled input feature usually yields higher

performance compared to models that are not, which means that feature scaling is an important

step in pre-processing of data (Cao et al., 2016). Haykin (2009) states that scaling of numerical

features in deep neural network models is required in order to get a faster and more stable

learning process. As there exist a variety of scaling methods it is required to find a proper

scaling method that suits the electricity data which we have gathered. Ahsan et al. (2021)

finds that model performance fluctuates with different scaling methods, but also reveals that

there does not exist a single best scaling method. As we opt to use the same feature scaling

method among all the features, and as not all of the features are either normally distributed or

free for outliers, we choose to perform Robust Scaling (RS)10. Robust Scaling is a method that

removes the median and performs the scaling in the interquantile range (IQR), meaning that

the observations centering and scaling statistics are not affected by outliers (Baijayanta, 2020).

The Robust Scaling equation is presented as:

RS(xi) =
xi − xmedian

x3rd−quartile − x1st−quartile
(3)

where i is the ith observation in a feature minus the feature’s median divided by IQR which is

the 75th percentile minus 25th percentile of the feature. This type of scaling takes outliers into

account by not include it in the scaling process. The resulting scaled observation has then zero

mean and zero median with a corresponding standard deviation of one.

5.5 Data Exploration

In order to justify the relevance of our decision tool, choosing to buy on intraday or day-ahead

market, we need to study if there exist enough trade-volume and that power prices on the next

day intraday are significantly lower than day-ahead market prices. We have scoped the problem

at hand to the power region NO2 (South Norway), due to the fact that it is the most liquid

market of the Norwegian Nord Pool regions.

10See figure 30, 31, 32, 33 and section B.1.1 in the appendix
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5.5.1 Buy-volume on intraday markets

Figure 6 shows median buy volume on the different intraday markets in Norway. It reveals that

NO2 (orange line) is the only price region that by median has continuous trade-volume greater

than zero MWh volume. It is noticeable that the other power areas, NO1 and NO3-NO5,

normally (median) do not have any buy volume between 5 a.m and up until 11 a.m. Observing

the plot, figure 6, in combination with missing trade-hours in table 7 shows that NO2 has least

number of missing trade-hours, 32 % of total number of traded hours, in the intraday market.

This supports our decision of choosing NO2 as the region to exploit the opportunity to buy

power on the intraday market in this case.

Hourly median buy volume on intraday markets

Figure 6: Median buy volume on intraday markets per hour in
2019-2022

Missing trade-hours

Area Frequency Share

NO2 8540 32.0%
NO1 11289 42.3%
NO3 13668 51.3%
NO4 18828 70.6%
NO5 18974 71.2%

Figure 7: Number of non-traded hours and share of
total number of hours

Studying table 3 one can see that the traded buy-volumes are significantly lower on the intraday

markets in contrast to the day-ahead markets, with median MWh between 0 and 10.8 from

2019 to 2022. It is noticeable that a power companies act of buying on the intraday market

yields smaller portfolio position, because the volume is significantly lower than day-ahead, with

a ratio of 0.29 % for NO2. But, it is still interesting for all power companies to exploit a buy-

opportunity after all. As NO2 still reveals the highest median MWh volume, it is far more

attractive to pursue the buying strategy on intraday market in this area. For more details on

buy-volume spread in the different areas a descriptive statistics on intraday and day-ahead is

provided in table 15 in the appendix.

Intraday median volume share
of day-ahead median volume

Market Day-ahead Intraday Share

NO2 3721.3 10.8 0.290%
NO1 3675.4 5.0 0.136%
NO3 2912.2 0.0 0.000%
NO4 1662.2 0.0 0.000%
NO5 1653.4 0.0 0.000%

Table 3: Intraday median volume share of
day-ahead median volume
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5.5.2 NO2 markets

In the previous section about buy-volume in intraday markets, we restricted the case to yield

power area NO2. This section will then only focus descriptive statistics on price and volume for

power area NO2. The line plots in figure 8 and 9 shows the evolution of median buy-volume,

in mega watt, weekly from 2019 to 2022 for day-ahead and intraday, respectively. On the day-

ahead market the median volume cycles approximately between 2,500 and 5,000 MW, where the

volume is lowest in summer season and highest in winter periods. One can see that the volume

on day-ahead market for NO2 has not changed volume level in this period. The weekly volume

on the intraday market on the other hand reveals a upward trend from 2019 to 2022, which

indicates that trades on this market has increased. This is attractive for the papers problem

because it indicates that either more buyers or increased volume of power companies’ portfolio

is increasing.

Weekly median buy volume Day-ahead market

NO2

Figure 8: Weekly median buy volume
development on day-ahead market in 2019-2022

Weekly median buy volume Intraday market

NO2

Figure 9: Weekly median buy volume
development on intraday market in 2019-2022

Not only is volume an important factor for making power purchases attractive on NO2’s intraday

market, but we also need to consider the prices. Observing figure 10 it clearly indicates that

the intraday prices for NO2 on median is lower than the day-ahead market prices. Studying

the confidence interval the prices for the markets can overlap between 6 a.m. to 9 p.m. This

is fundamental for making our decision tool usable in practice. Power trading occurs daily, as

aforementioned in section 3, and figure 37 in the appendix shows that power prices is relative

stable from Monday to Sunday on median both for day-ahead and intraday market NO2, but

where the spread in price is broader in weekdays in contrast to weekends.
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Hourly median prices of Intraday and Day-ahead market N02

Figure 10: Median price of intraday and day-ahead NO2 market per hour in 2019-2022

In order to make forecasts on the hourly time series of prices it is important to understand how

the price has evolved over time. Observing figure 11 it shows that power prices both in day-

ahead and intraday market have been relative stable from 2019 to early 2021, where it thereafter

becomes more volatile. Roughly speaking the time series has become non-stationary in the later

period in time.

Intraday and day-ahead prices NO2

Figure 11: Intraday and day-ahead prices for area NO2 in 2019-2022
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6 Methodology

In this thesis we seek to use deep learning architectures to provide accurate forecasts for Nord

Pool day-ahead and intraday markets. These forecast will act as the foundation for a decision

tool for electricity buyers. A probabilistic classifier trained on deep learning forecasts, and

validated on historical price differences could plausibly provide useful information for electricity

buyers at a critical decision point.

In this section we will provide explain the general outline of our decision tool, a basic introduction

into neural networks in general, and the specific architectures applied in this thesis. To evaluate

the implemented neural network models, a selection of benchmark models will be validated in

an exactly similar manner to that of the neural models. The cross validation techniques applied

in this work is a response to the peculiarities of dealing with non-stationary time series data,

and will be explained in that context. We start off by elaborating on our end goal, a simulated

production of a decision tool for electricity buyers.

6.1 Decision tool outline

A central goal of this thesis is the creation of decision tool, enabling power buyers to make an

informed decision about which market to participate in for any delivery hour. To achieve this,

we need accurate forecasts for the intraday and day-ahead markets.

The general outline of this decision tool can be seen in figure 12, where the difference between

day-ahead and intraday market price is used as training data along with a small selection of

predetermined important features. The end goal of the classifier network is to correctly classify

day-ahead-intraday price based on available forecasts. Training and weight adjustment is done

by calculating the binary cross entropy loss of the logits of the model and observed price dif-

ferences of day-ahead and intraday markets. The networks shown in the figure is a multilayer

feedforward network, but we also tested architectures with LSTM layers. We have viewed this

classification problem as a point-point forecasts, and as a result, data is not treated sequentially.

Figure 12 shows an outline of how data forecast data is passed to the probabilistic classifier and

classifications generated.
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into neural networks in general, and the specific architectures applied in this thesis. To evaluate

the implemented neural network models, a selection of benchmark models will be validated in

an exactly similar manner to that of the neural models. The cross validation techniques applied

in this work is a response to the peculiarities of dealing with non-stationary time series data,

and will be explained in that context. We start off by elaborating on our end goal, a simulated

production of a decision tool for electricity buyers.

6.1 Decision t o o l outline

A central goal of this thesis is the creation of decision tool, enabling power buyers to make an

informed decision about which market to participate in for any delivery hour. To achieve this,

we need accurate forecasts for the intraday and day-ahead markets.

The general outline of this decision tool can be seen in figure 12, where the difference between

day-ahead and intraday market price is used as training data along with a small selection of

predetermined important features. The end goal of the classifier network is to correctly classify

day-ahead-intraday price based on available forecasts. Training and weight adjustment is done

by calculating the binary cross entropy loss of the logits of the model and observed price dif-

ferences of day-ahead and intraday markets. The networks shown in the figure is a multilayer

feedforward network, but we also tested architectures with LSTM layers. We have viewed this

classification problem as a point-point forecasts, and as a result, data is not treated sequentially.

Figure 12 shows an outline of how data forecast data is passed to the probabilistic classifier and

classifications generated.
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Design of concept

Figure 12: Whole neural network process from price forecast to probability classification of day-ahead
exceeding intraday price

An electricity buyer would have to make decision for every delivery hour before day-ahead market

submission deadline. Any information available a later time, such as updated wind-forecasts will

not be available at the critical decision point. We emphasize that forecasts for both markets

are made using solely information that would be available for an electricity buyer at the time of

decision. In practical terms this means that the forecasts and resulting probabilities of intraday

discount has to be ready between 10 a.m (as day-ahead capacities are released) and before closing

time for bids at the day-ahead market at 12 p.m.

Figure 13 shows a simulated production use-case , where the start point of forecasting every day

at 10 a.m. (see section 3.3.1) with a forecast horizon of 38 hours in order to capture the whole

day-ahead market next day. As forecast accuracy degrades with increasing horizons Kyritsis

et al. (2017), increasing forecast length beyond 38 hours would only hinder forecast accuracy as

new information has been made available in the meantime.
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decision. In practical terms this means that the forecasts and resulting probabilities of intraday

discount has to be ready between 10 a.m (as day-ahead capacities are released) and before closing

time for bids at the day-ahead market at 12 p.m.

Figure 13 shows a simulated production use-case , where the start point of forecasting every day

at 10 a.m. (see section 3.3.1) with a forecast horizon of 38 hours in order to capture the whole

day-ahead market next day. As forecast accuracy degrades with increasing horizons Kyritsis

et al. (2017), increasing forecast length beyond 38 hours would only hinder forecast accuracy as

new information has been made available in the meantime.
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Decision tool in production

Figure 13: Shows how the decision tool will be used in production

The training needed to produce the needed day-ahead and intraday forecasts requires consider-

able computational resources. This puts constraints on how far an electricity buyer can postpone

training the models used for the next day’s forecasts. Assuming that necessary computational re-

sources are available for the electricity buyer, a decision window of two hours should be sufficient

to train and decide optimal market for every delivery hour.

6.2 Simulated use-case of decision tool

The goal of the decision tool outlined above is to provide probabilistic classifications of likely

day-ahead-intraday price difference, where a probability above 50 % indicates likely intraday

discount. Depending on the required, liquidity in the intraday market may not be sufficient

to cover all or any part of the bid. This presents a considerable risk for a potential intraday

electricity buyer.

By participating in intraday trading, the electricity buyer incurs a risk of not fulfilling part or

the entire bid volume. Grid stability has to be ensured, and the mismatch between demand

and fulfilled intraday and day-ahead volume has to be bought in the balancing market. The

discrepancy between the buyer’s demand and the volume fulfilled in intraday markets will have

to be covered in the regulating markets. For consumers the regulating market follows a one-price

system, where the price depends on the direction of the overall system imbalance (“Regulation

information per area”, n.d.). The system balance can be described in the equation below, where

the added volume by leaving a bid to the regulating market is given by Vb.

system imbalance = system imbalance− Vb (4)

29

Methodology

Decis ion t o o l in p r o d u c t i o n

Day-ahead
bid close

Day-ahead
bid close

t (12a.m.)

'r
I I I I

t , ( 1 2 a.m.)

I I ! I I
ta(12p.m.)

II I I I
ta4 (12a.m.)

I I ! I I
t (02 p.m.)

I
I I I I

tu (12 a.m.)

r r '
Market capacity
provided by TSO

Market capacity
provided by TSO

Used 24 hours forecast

Used 24 hours forecast

- 38 hours daily forecast at 10 a.m.

F i g u r e 1 3 : Shows how the decision tool will be used in production

The training needed to produce the needed day-ahead and intraday forecasts requires consider-

able computational resources. This puts constraints on how far an electricity buyer can postpone

training the models used for the next day's forecasts. Assuming that necessary computational re-

sources are available for the electricity buyer, a decision window of two hours should be sufficient

to train and decide optimal market for every delivery hour.

6.2 Simulated use-case of decision t o o l

The goal of the decision tool outlined above is to provide probabilistic classifications of likely

day-ahead-intraday price difference, where a probability above 50 % indicates likely intraday

discount. Depending on the required, liquidity in the intraday market may not be sufficient

to cover all or any part of the bid. This presents a considerable risk for a potential intraday

electricity buyer.

By participating in intraday trading, the electricity buyer incurs a risk of not fulfilling part or

the entire bid volume. Grid stability has to be ensured, and the mismatch between demand

and fulfilled intraday and day-ahead volume has to be bought in the balancing market. The

discrepancy between the buyer's demand and the volume fulfilled in intraday markets will have

to be covered in the regulating markets. For consumers the regulating market follows a one-price

system, where the price depends on the direction of the overall system imbalance ("Regulation

information per area", n.d.). The system balance can be described in the equation below, where

the added volume by leaving a bid to the regulating market is given by •

system imbalance = system imbalance- V, (4)

29



Methodology

In reality, as demand fluctuates, an electricity buyer may have to decrease and increase bid

volume passed to the regulating market. We should emphasize that we have made three crucial

assumptions when simulating the use of the decision tool.

1. The total bid volume of the electricity buyer is fixed and predetermined before day-ahead

market submission deadline

2. A trade is made in its entirety in day-ahead, intraday or regulating market.

3. When participating in the intraday markets, the observed price is paid and volume is

adequate to fulfill the bid in its entirety.

With the above assumptions in place we can boil down the scenarios facing an electricity buyer,

and illustrate them in a decision tree:

Price outcomes

Figure 14: Different price outcome if deciding to buy on intraday market

Figure 14 shows the prices encountered by an electricity trader that has decided to participate

in intraday trade with the entirety of its bid volume. The bottom branch of the tree shows the

scenario in which price formation in intraday market is successful and the bid of the buyer is

accepted in its entirety. The resulting price is assumed to be the observed intraday price for the

delivery hour. We should again emphasize that using the observed intraday price as a metric for

intraday price is problematic. Weber (2010) finds that liquidity in intraday markets often are

insufficient for a buyer to remain a price-taker, and that large bids will affect intraday prices. It

is thus unlikely that any large bids would end up with ex-post intraday price.

If no liquidity exists for a given delivery hour, as determined ex-post by a missing intraday price,

the bid is processed in the regulating market. Depending on the regulation direction, the buyer

can either pay the up or down regulating price following the one-price system for consumption

imbalances (“Regulation information per area”, n.d.)11.

11For a brief description of the one-price and two-price systems see A.1.1
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Figure 14 shows the prices encountered by an electricity trader that has decided to participate

in intraday trade with the entirety of its bid volume. The bottom branch of the tree shows the

scenario in which price formation in intraday market is successful and the bid of the buyer is

accepted in its entirety. The resulting price is assumed to be the observed intraday price for the

delivery hour. We should again emphasize that using the observed intraday price as a metric for

intraday price is problematic. Weber (2010) finds that liquidity in intraday markets often are

insufficient for a buyer to remain a price-taker, and that large bids will affect intraday prices. It

is thus unlikely that any large bids would end up with ex-post intraday price.

If no liquidity exists for a given delivery hour, as determined ex-post by a missing intraday price,

the bid is processed in the regulating market. Depending on the regulation direction, the buyer

can either pay the up or down regulating price following the one-price system for consumption

imbalances ("Regulation information per area", n.d.)l ' .
11 For a brief description of the one-price and two-price systems see A. l. l
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Based on the price-scenarios outlined above, a profit function for an electricity buyer can be

formulated. When demonstrating a simulated production use-case of this decision tool we solve

the decision-process using various risk-thresholds µ.

∆P̂h,d = P̂ day−ahead
h,d − P̂ intraday

h,d , ∀ {h | 1 ≤ h ≤ 24, h ∈ N}, d ∈ N (5)

System imbalance ≡ ϑ (6)

πh,d =




P day−ahead
h,d − P intraday

h,d , if Prob(∆P̂h,d) ≥ µ & ∃P intraday
h,d

P day−ahead
h,d − P up regulation price

h,d , if Prob(∆P̂h,d) ≥ µ & P intraday
h,d & ϑ < 0

P day−ahead
h,d − P down regulation price

h,d , if Prob(∆P̂h,d) ≥ µ & P intraday
h,d & ϑ > 0

0, otherwise

(7)

Profit =

D
d=1

H
h=1

πh,d (8)

Equation 5 ∆P̂h,d shows the probability of day-ahead prices exceeding intraday prices, where

P̂ day−ahead
h,d and P̂ intraday

h,d are forecasts of day-ahead and intraday prices for delivery hour h in day

d, respectively. In the first condition of equation 7 ∆P̂h,d exceeds our risk threshold µ, and the

profit is given by the difference between observed day-ahead price P day−ahead
h,d and intraday price

P intraday
h,d ex-post. In the second and third equations we still decide to participate in intraday

markets as the probability is above our risk threshold µ, but in this intraday price and thus

volume is non-existent and we pay either downward or upward regulation price. The profit

function compares intraday trade with a baseline day-ahead trading approach, where all trade

is done exclusively in day-ahead markets. This implies that paying the day-ahead price gives

a profit πh,d of 0 as seen in the fourth condition in equation 7. This occurs when production

and consumption is a state of balance, and no downward or upward regulation price exists.

System balance will only persist as long as the bid volume is not significant enough to cause a

consumption excess, which is plausible only in the case of small volumes. The total profit in our

production period is the sum of all marginal profits for every day and delivery hour shown in

equation 8.
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P r o ( A P ) > & P7 o <0
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h,d h,d '

(7)

0, otherwise

D H

- ) a »
d = 1 h = 1

(8)

Equation 5 A P , a shows the probability of day-ahead prices exceeding intraday prices, where

Pi,:y-ahead and P r a d a y are forecasts of day-ahead and intraday prices for delivery hour h in day

d, respectively. In the first condition of equation 7 A P , exceeds our risk threshold , and the

profit is given by the difference between observed day-ahead price Pi,:y-ahead and intraday price

P r a d a y ex-post. In the second and third equations we still decide to participate in intraday

markets as the probability is above our risk threshold , but in this intraday price and thus

volume is non-existent and we pay either downward or upward regulation price. The profit

function compares intraday trade with a baseline day-ahead trading approach, where all trade

is done exclusively in day-ahead markets. This implies that paying the day-ahead price gives

a profit n,a of O as seen in the fourth condition in equation 7. This occurs when production

and consumption is a state of balance, and no downward or upward regulation price exists.

System balance will only persist as long as the bid volume is not significant enough to cause a

consumption excess, which is plausible only in the case of small volumes. The total profit in our

production period is the sum of all marginal profits for every day and delivery hour shown in

equation 8.
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6.3 Neural Networks

Neural networks have gained much attention in the recent decades and years much to its inherent

flexibility. The name “neural network” is derived from the analogous similarity with the way our

brain works trough its neurons connected by synapses, referred to as weights. Theoretical proofs

have shown that neural networks can mimic any functional form given an adequate amount of

neurons, making them universal approximators (Hornik et al., 1989). Similar proofs exist for

networks of arbitrarily large depths (Lu et al., 2017). Without the assumption of infinite neurons

however, width or depth becomes a trade-off. In recent years deeper neural networks been shown

to have greater performance given the same overall network size. Eldan and Shamir (2016) prove

that to approximate a given function f , an exponentially larger number of neurons would have

to be added to a network composed of 1-layer fewer.

This relatively recent focus on network depth rather than width births the sub-field of deep

learning. Deep learning is often ambiguously used, but a common definition is any neural

network with at least one hidden layer (Goodfellow et al., 2016). Good complexity-performance

trade-offs makes deep neural networks attractive for a wide set of problems. In our paper, all

neural networks architecture are to a certain extent regarded as “deep”.

In this thesis we focus primarily on LSTM, GRU, TFT and DeepAR models. Before going

into details on these neural networks’ architecture, we are now going to provide insights from

the most basic neural network models, which is fundamental in order to understand the more

complex models.

6.3.1 Feedforward and Recurrent Neural Networks

In its most classical sense, a feedforward neural network considers an array of input data X =

[x1, ..., xn] and maps them to an output prediction ŷ. Feedforward networks distinguish from

other networks which considers groups of data in connection e.g. RNN, which considers data

points in sequence, and CNN. A feedforward network attempts to fit a function f(x; θ) that most

closely maps x to y, actual observations, by altering model weights θ (Goodfellow et al., 2016).

In a multilayer neural network the value of each neuron is determined by a weighted sum of

connected neurons. In a two-layer network composed of n neurons the value of neuron h, in the

second layer, can be expressed as hi = g(x1 ·θ1+x2 ·θ2+ ...+xn ·θn+b), where xi is input data, θi

the connected neuron weight and b denotes the bias, i.e the threshold in absolute terms needed

for the neuron to become active. To introduce non-linearity into the neural network the input

of every neuron is passed through an activation function g. Historically sigmoid σ activation
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functions have been used, but recently rectified linear unit (ReLU) has become popular as seen

in Glorot et al. (2011), expressed as σ(ai) =
1

1+e−ai
. The ReLU activation function is defined

as the maximum of 0 and the neuron’s input, f(ai) = max(0, ai). It quickly becomes tedious to

fully express a large neural network in the aforementioned fashion, and as result we commonly

use vectors to express neural networks. The value of neurons h in vector-form can be expressed

as hi = g(x1 · θ1 + x2 · θ2 + ...+ xn · θn + b) = g(WTx+ b). In the remainder of this thesis we

will use vector notation as often as possible.

A feedforward neural network can be seen as a graph composed of chained functions, which can

be seen in figure 15, where an additional layer denotes an added function. In the case of a network

with three layers, constituting a multi-layer perceptron (MLP), the output of the network can

be described as a recursive application of f i on x f(x) = f (3)(f (2)(f (1)(x))). The depth of this

recursion determines the number of hidden layers. In a feedforward network the connections are

without cycles, and the outputs of the model is only passed a single way, forward from input to

output, hence it represents a directed acyclic graph. In a recurrent network, feedback of model

output is allowed, making it a cyclic graph.

Figure 15: Feedforward vs. Recurrent Neural Network.

Starting off with a predetermined number of neurons, the weights θ are initialised to a small,

often random, values. The initial weights may also follow a density function. As the initialisation

values determine our starting point for further searches for local and global optimums, they may

influence whether the network training converges at all (Goodfellow et al., 2016). Learning and

thus altering of the initial weights are done by backward-propagation. In short this involves

calculating model mismatch between target data, and our model predictions. In a regression

setting, the mean absolute error can serve this purpose, as given by: L(θ) = 1
D


(x,y)∈D |y −
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f(x|θ)| (Goodfellow et al., 2016). By adjusting model weights the loss function can be minimized.

As the loss for function is differentiable, we can describe the gradient of the loss function denotes

the magnitude of weight change, given by θt+1 = θt − γ∇θL(θt), where θ denotes the vector of

model weights, ∇ = ∂L
∂θ and γ the learning rate. This approach is called gradient descent as

we gradually move towards a local minimum. This local minimum may or may not be a global

minimum, and gradient descent does not guarantee global optimality.

The loss function L(θ) is calculated after the model has seen a single subset or batch of data.

If the batch or subset constitutes the entirety of the dataset it is called vanilla gradient descent

(Ruder, 2017). Performing weight updates after seeing potentially numerous examples of the

same data is inefficient, and we could greater utilize our data by weight updates after every new

occurrence of data. The resulting fluctuating descent means that the convergence will be sporadic

and with greater variance, allowing us to potentially skip over unwanted local minimums. This

approach is called stochastic gradient descent.

In practical applications it is more efficient to split the dataset into many smaller batches,

updating model weights after each pass on the mini-batch of n examples expressed as θ = θ−γ ·

∇θL(θ;x
(i;i+n); y(i;i+n)) (Ruder, 2017). This approach is often referred to as mini-batch gradient

descent, although the terminology of gradient descent methods is often used interchangeably

and inconsistently. Several optimization methods combines the approaches of stochastic and

mini-batch gradient descent such as ADAM (Kingma and Ba, 2014) and Ranger (Wright and

Demeure, 2021). An in-detail discussion of optimization techniques comes in section 6.5.3. The

key-takeaway of these approaches is the alteration of the learning rate γ as model training

progresses, i.e applying an adaptive learning rate.

The training process in a feedforward network can be described algorithmically, loosely based

on Chollet (2018) and Goodfellow et al. (2016) shown in algorithm 1. To more closely fit the

probability network later described in this thesis we will use a sigmoid σ function on the output

layer. The activation function ReLU is applied to the hidden units. In the network described

below the initial weights values where randomized, but often follow distributions such as Lecun

or He initialisation (Boulila et al., 2021).
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Algorithm 1: Training in a multilayer feedforward neural network

Initialize weights ∀θ ← k ∈ [−0.5, 0.5] ;

foreach s ∈ S where S is a set of all mini− batches do

Forward pass:
1. Receive input from all connected preceding neurons. The input in neuron hi is given by

zi = WTx+ b

2. Apply activation function to the hidden units hi = ReLU(zi)

Backward pass:

1. From the mismatch between y and h, store the loss L(θ) from the current batch. Using MAE

L(θ) = 1
D

∑
(x,y)∈D |y − f(x|θ)|

2 . Update weights according to loss function θt+1 = θt − γ∇θL(θt) The updated weights are

skewed in the direction of the gradient, reducing expected loss.

end

A single epoch of training is complete

Final predictions are made after passing through the output layer ŷ = σ(WTh+ b)

6.3.2 Incorporating time into Neural Network models

In the feedforward model each data point is considered separately, not allowing for relationships

between data points of the same series. A pragmatic approach could incorporate relevant variable

lags of the target variables. This methodology allows for some simple time-based relationships

by adding time-steps as features, and complexity is increased dramatically as we increase our

time-steps. Recurrent neural network allows for inherent modelling of sequential data.

Unfortunately handling long-term and short-term relationships in the same neural network

presents problems. Originally described in J. Hochreiter (1991) as a problem faced when at-

tempting to use backward propagation with sequential data. The problem can be shown with

the last part of the gradient descent expression, the gradient of loss function L, δL(θ) = ∂L
∂θ (see

subsection 6.1.1) which can be expressed as ∂L
∂θ =

T
t=0

∂Li
∂θ ∝

T
t=0(

y
t=k+1

∂ht
∂hi−1

)∂hk
∂θ , where ht

is a hidden state, one can observe that vanishing gradient occurs when | ∂ht
∂ht−1

| < 1 and exploding

gradient when | ∂ht
∂ht−1

| > 1 given a large value of T (Or, 2020).

6.3.3 Partially solving the vanishing gradient problem

Long short-term memory model solve the problem of vanishing gradients, by gating connections,

allowing time dependent information to enter the network without altering previous information.

New input data is fed to input gate, and existing temporal relations are kept unaltered by

outputs from the previous timestep ht−1. This means that backward propagation can occur
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without increasing the magnitude of the learned gradients, allowing for larger but not unlimited

time spans. The memory cell’s forget gate as presented first in S. Hochreiter and Schmidhuber

(1997), uses a sigmoid function σ forcing the output to constrict to the interval [0, 1], where

0 represents a complete reset and 1 a copy of the last state Ct−1. The forget gate computes

this degree of forget-fullness by taking in the network’s last state with a bias bf , given by

ft = σ(Wf · [ht−1, xt] + bf ) (Olah, 2015). This can be seen in the sigmoid σ layer leftmost in the

figure below.

LSTM

Figure 16: LSTM. Adapted from Understand
LSTM Network, in Colah’s blog, by Olah, 2015,
retrieved May 1, 2022, from
https://colah.github.io/posts/2015-08-
Understanding-LSTMs/

The current contents of the memory cell ct is updated according to the new input values it,

given by Ct = ft · Ct−1 + it.

Although introducing added complexity, LSTM has become a common way of at least partially

dealing with the problem of vanishing gradients and allowing for long-term dependencies in our

neural networks. The partial solution to the vanishing gradient problems allows for more stable

predictions, and have been shown to outperform traditional MLP networks as seen in Shah et al.

(2018).

The added complexity of long short-term models presents problems, and numerous simplifica-

tions have since been made. Gated recurrent unit first introduced in Cho et al. (2014) builds

on LSTM networks, combining the LSTM forget and input gate into a single update gate zt

as seen in the figure below (Olah, 2015). By removing the forget gate a significant number of

parameters have been pulled from the network, but has lost its ability to control to degree of

exposure to previous states Ct−n (Chung et al., 2014).
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GRU

Figure 17: GRU. Adapted from Understand
LSTM Network, in Colah’s blog, by Olah, 2015,
retrieved May 1, 2022, from
https://colah.github.io/posts/2015-08-
Understanding-LSTMs/

Chung et al. (2014) finds that GRU offers similar performance, at a computational discount.

The computational complexity of forecasting using large recurrent neural network is already

high. Any levitation in computational requirements are welcomed. In that regard we view GRU

models as a promising avenue for electricity price forecasts.

6.3.4 DeepAR

DeepAR is a forrecast model based on autoregressive recurrent networks, other words LSTM

RNN, and has been proven to improve forecast performance relative to state-of-the-art forecast-

ing methods on a wide variety of datasets (Salinas et al., 2020). Challenges according to using

multiple time series as independent variable is that magnitudes differ widely and distributions

is strongly skewed in practical applications. Four main advantages of using DeepAR models in

contrast to state-of-art models are:

1. Minimal manual handling of provided independent variables is needed, as the model learns

seasonal behaviors and complex dependencies with minimal tuning.

2. The benefit of learning from other similar covariates makes forecasts possible even though

there may be little historical data on the dependent variable, which traditional forecast

methods are not able to perform as they truly use the dependent variable’s historical

information.

3. Can produce probabilistic forecasts generated from Monte Carlo simulation samples, which

can be used to create forecast with quantiles.

4. Can incorporate a wide range of likelihood functions, such that user choose the suitable

likelihood functions for the statistical property of the data.
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DeepAR solves two of the LSTM shortcomings which are: the problem of fitting outliers due

to the uniform distribution sampling, and handling of temporal scaling (Berk, 2021). Both

being solved by aggregating information from covariates, but for a uniform distribution case the

outliers are smoothed such that forecast values yield less extreme values which may reduce the

forecast performance. DeepAR is beneficial because of its hyperparameter for user defined scale

factor. Hence, Salinas et al. (2020) propose a heuristic approach, which works well in practice,

of scaling each of the autoregressive input zi,t at each LSTM cell by dividing it on average values

vi = 1 + 1
t0

t0
t=1 zi,t. Meaning that a high (low) mean increases (decreases) the probability of

sampling outliers.

The model architecture can control for how long in the past the network can see and how long

in to the future it is going to predict. It is suggested to use over hundred related time series

with at least 300 observations across all training time series in order to outperform traditional

models such as ARIMA and ETS (“DeepAR Forecasting Algorithm”, n.d.). Which is promising

as we already have a large number covariates and fulfilling the least observation requirement.

6.3.5 Temporal Fusion Transformers

A relatively recent development in sequential neural networks is Temporal Fusion Transformers

(TFT) (Lim et al., 2021). Temporal fusion transformers is a network of networks comprised

of encoder-decoder LSTM networks, gating networks and more. In contrast to most neural

network architecture handling sequential data, the TFT architecture distinguish between static

and unknown variables by use of static covariate encoders (Lim et al., 2021). Examples of

static variables may include days of the week or seasonal binary variables and other time-

dependent variables which can be known at forehand. Static variables may increase or decrease

the importance of temporal features, and help in variable selection.

In recurrent neural networks, and its variants, the significance of past observation may vary

according to order. Transformer networks employ self-attention to rank the significance of parts

of the sequential data used in the encoders. The encoders map a sequence of data into a vector

format where the significance or weighting of the input data can be weighted by self-attention

(Bahdanau et al., 2016). Self-attention functions maps a set of queries and a key-value pair to

an output, where the output is a weighted combination of values. In the context of forecasting,

transformer networks have used self-attention to highlight certain parts of a sequential data (Li

et al., 2019).

Attention-based transformer networks constitute a valuable part of the TFT architecture, inter-
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pretability of model features, a key property which less complex LSTM and RNN architectures

lack. Being able to identify the most important aspects of input data offers value for the end-

users of the model, as well as allowing the TFT networks to weight input variables according to

their significance at each time-step and reducing the impact of any noisy variable (Lim et al.,

2021).

As a whole Temporal Fusion Transformers are complex and a highly specialized forecasting

architecture, but offers great promise in terms of performance, outperforming both traditional

forecasting methods ARIMA and ETS, but also complex deep learning architectures such as

DeepAR (Arik and Pfister, n.d.). Of particular interest to this work, is the architecture’s ability

to distinguish between static and time-dependent variables.

6.4 Probabilistic neural network classifier

In the simplest sense, the likelihood of day-ahead prices exceeding intraday price for a given

delivery hour can be deduced by subtracting intraday from day-ahead forecasts. However, this

approach potentially neglects the inherent uncertainty in forecasts. Small changes in the level of

intraday and day-ahead forecasts may result in exaggerated classifications of price differences.

As an example, imagine if the day-ahead forecasts systematically overestimates day-ahead prices,

i.e an expected positive forecast error. If intraday forecasts have a negative forecast error, the

resulting predicted probabilities will be biased and skewed in favor of predicting a positive day-

ahead intraday price difference. By training a neural network classifier we seek to close the gap

between predicted and true probability of day-ahead prices exceeding intraday prices.

Using a probit model Maciejowska et al. (2019) calculates the probabilities of day-ahead discount,

i.e intraday price exceeding day-ahead price. We will present as neural network classifier as an

alternative to a benchmark logit model.

6.5 Training Neural Network models

In training and validating neural networks a large number of hyperparameters needs to be

carefully tuned. The sheer size of the search space makes it at best a challenging process. In

practice neural network training often involves narrowing the search space by starting off with

the impactful hyperaparameters. We will only mention them briefly, and refer the reader to the

appendix section for a more in-detail overview.
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6.5.1 Learning rate

The learning rate γ controls how much the neural network model should respond to the esti-

mated error when weights are updated (Brownlee, 2020). A high learning rate typically leads

to faster learning, but risks missing local optimum. On the other hand, a small learning rate

increases convergence time and increases the risk of the model getting stuck in a local optimum.

Altering the learning rate while training through learning rate schedule can smooth descent

when approaching a local minima. Typically this involves reducing the learning rate after a

training condition has been met, for instance having trained on all data n times, i.e n epochs.

6.5.2 Hidden layers and neurons

Altering the depth and width of a neural network can have dramatic and immediate effect

on model characteristics. While a general preference for deep networks can be seen in existing

literature, the learned representations of shallow and deep networks can often be similar. Nguyen

et al. (2021) looks at the difference in predictions made by shallow and deep networks finding

that on the whole the predictions had similar accuracy and characteristics.

6.5.3 Optimizers

The learning strategy applied in training neural networks is dictated by the model optimizer.

We have so far briefly introduced gradient descent methods, and the use of adaptive learning

rates. The preferred optimizer of the machine learning has changed in the course of years, and

differs based on the research problem in question. For large neural networks adaptive optimizers

are generally preferred as they have a higher chance of convergence, i.e moving towards some

minima. In this thesis we have applied mainly two types of optimizer: Ranger (Wright and

Demeure, 2021) and Adam (Kingma and Ba, 2014). For a brief walk-through of stochastic

weight averaging and its advantages see section C.1.4 in the appendix.

6.6 Benchmark models

6.6.1 ETS

Exponential smoothing method, in contrast to the proposed neural network models, is simple

but robust forecasting approach (Billah et al., 2006). The three most common and basic types

of exponential smoothing models are: simple exponential smoothing provided by Brown (1959),

trend-corrected exponential smoothing by Holt (2004), and Holt-Winters method by Winters

(1960). The component used to create ETS forecast are level, trend and seasonal effect, combin-

ing the components by either adding or multiplying them together, and adapt the model over
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time when there is a structural change in the time series (Billah et al., 2006). In total there

are 30 combinations of these components, and we opt to perform an exhaustive grid search in

order to find the most applicable ETS model on the power market time series using nested

cross-validation for hyperparameter selection in section 6.

6.6.2 SARIMA

Seasonal Autoregressive Integrated Moving Average (SARIMA(p,d,q)(P,D,Q)s) is a univariate

model composed by four terms where autoregressive order term determines how many lagged

orders of its target value should be included, integrated order determines number order of

differences in order to get stationary time series, moving average order in order to mitigate short-

term fluctuations, and length of the seasonality. In this case, where the power prices for both

day-ahead and intraday market has hourly frequency, it is usually three types of seasonality:

a daily pattern, a weekly pattern and an annual pattern (R. Hyndman and Athanasopoulos,

2018). The methodology for finding a SARIMA model is described by Wang et al. (2013):

1. Elimination of non-stationary time series is an important step in SARIMA models. One

way to identify how many differencing to perform is through studying the autocorrelation

function (ACF). It is generally common to use either one or two differences in order to

overcome the non-stationary problem.

2. In the process of constructing a model that smooths the stationary sequence, the pre-

liminary step is to consider autocorrelation (ACF) and partial autocorrelation (PACF)

function, but is not enough in order to identify the optimal SARIMA model.

Another approach is to perform an exhaustive grid search of all possible combination of SARIMA

terms in specific range for each terms, using the hyperparameter selection cross-validation ap-

proach suggested in the upcoming section 6.8. As an exhaustive grid search is computational

expensive, we opt to conduct a random grid search in order to reduce the estimation time.

6.6.3 Energy Quantified forecasts and simpler forecasting methods

In addition to ETS and SARIMA simpler forecasting techniques will be considered as bench-

mark models for comparison-reason with the complex neural network models. We have chosen

three methods: Näıve, Mean and Energy Quantifieds short-term and mid-term day-ahead price

forecasts. The Näıve approach is simply taking the last observed value in a train period and

extrapolating the forecast period using this value. On the other hand, Mean forecast is taking

the average of train period and extrapolate it on the forecast period, where one chose how many
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the average of train period and extrapolate it on the forecast period, where one chose how many
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recent period to average on. We have simply taken the mean of the whole train period. The

day-ahead price forecast provided by Energy Quantified are already finished forecasts. It is

interesting to see if our neural network approach is able to outperform forecasting companies

such as Energy Quantified. Since only day-ahead price forecast we opt to benchmark it against

intraday market in addition, since intraday market has it similarities with the day-ahead market.

6.7 Performance and evaluation metrics

6.7.1 Regression metrics

Evaluating prediction performance across machine learning models, under the same circum-

stances, is essential to find the best performing model. Common evaluation metrics are Root

Mean Squared Error (RMSE) and Mean Absolute Error (MAE) (Twomei and Smith, 1995).

Willmott and Matsuura (2005) indicate that RMSE can be a misleading metric due to the func-

tion’s three characteristic components of error, in contrast to MAE’s simple average of error.

The benefit of using MAE as performance metric is the easy interpretation of the mean error,

since it is relatable to the measure unit. In other words, for the purpose of price prediction,

e.g. 10 in mean absolute error is equal to 10 EUR/MWh in error on average. Hence, we opt to

go further with MAE which is calculated by the average of the sum of absolute error, in other

words, the deviation between predicted and observed prices presented in 9. Additionally, this

metric will be used as loss function in neural networks (see section as well 6.3.1).

MAE =
1

N

N
t=1

|ŷt − yt| (9)

The performance metric RMSE assigns more weight to greater prediction errors, because it

squares the error before taking the average, which can be seen in 10. It is proven to be very

effective in improving model performance, because of the sensitivity to large errors, which it

penalizes (Chai and Draxler, 2014). But, Chai and Draxler (2014) does also point out that

neither RMSE nor MAE is the best statistics metrics, because they remove a lot of information

when aggregating the error to a single measure value. As the underlying assumption of RMSE

is that it follows a normal distribution and that error are unbiased, Chai and Draxler (2014)

state that it is a better performance metric rather than MAE, due to the fact that model errors

are likely to have a normal distribution for n samples ≥ 100 rather than uniformly distributed

errors which MAE is more suitable for. It is noteworthy that RMSE can never be smaller than

MAE, due to its mathematical expression.
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RMSE =

 1

N

N
t=1

(ŷt − yt)2 (10)

Symmetric Mean Absolute Percentage Error (SMAPE) was proposed by Makridakis (1993) and

is a modification of MAPE with the divisor divided by two. SMAPE, and also MAE, are scale-

independent measures and Makridakis (1993) writes that scale independent measure has been

a key characteristic for good measures (Kim and Kim, 2016). Because it is scale independent

the metric can be used to compare results across datasets, since the unit is in percentages.

However, it is possible that the divisor may approaches zero which makes the metric unstable,

due to the fact that actual values can be close to zero and that the predicted value likely will

approach zero as well (R. Hyndman and Athanasopoulos, 2018). R. J. Hyndman and Koehler

(2006) recommends to not use this performance metric. We chose to include this performance

metric, well aware of the warnings, but not using as the main metric to determine the model

performance outcome. The formula is as follows:

SMAPE =
1

N

N
t=1

|ŷt − yt|
(|yt|+ |ŷt|)/2

(11)

A combination of metrics are comprehensive to assess model performance. The performance

metrics will be used to evaluate both validation and test dataset. First for the critical model

construction and second to justify how well a given model performs on unseen data.

6.7.2 Classification metrics

The simplest performance metric for classification problem is using the accuracy performance

metric with the following equation:

Accuracy =
TP + TN

TP + TN + FP + FN
(12)

where T and F denotes True and False, respectively. P and N denotes Positive and Negative,

respectively.

ROC stands for receiver operating characteristic12 and AUC for Area under the ROC curve.

Bradley (1997) concludes that ROC AUC has number of desirable properties compared to overall

accuracy: that it is not dependent on a predefined decision threshold, it indicates how well the

12Commonly called “error curve”
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negative and positive classes are separated by accounting for the distribution between of the

positive to negative classes, and indicates how to the amount “work done” by a classification

scheme, penalizing the score to random or “one class only” classifiers. The latter is observable

for the Näıve classifier only classifying intraday participation (see figure 7.4). A model without

skill is represented as 0.5, and shown as a horizontal line in the ROC AUC plot (Brownlee,

2021). The equation for ROC AUC binary classification metric is shown here:

Sensitivity (TPR) =
TP

TP + FN
, Fall out (FPR) =

FP

FP + TN
(13)

ROC AUC =
1 + Sensitivity − Fall out

2
(14)

where TPR is short for true positive rate and FPR short for false positive rate.

6.8 Model selection and performance evaluation

In selecting model architecture we want to maximize the likelihood of our model performing

well across in a wide range of conditions, whether it be change of seasons or exogenous shocks

affecting electricity prices. As we shall see, this has multiple implications for how we evaluate

our models. Our evaluation process can roughly be described as a three-step process involving:

1. Model selection: Using a nested cross-validation scheme we test a large number of models

on a small but unseen validation dataset.

2. Performance: Approximate generalization error by testing a smaller subset of optimal

models on a large unseen test dataset

3. Production: Two optimal models, one for each market, are used to forecast day-ahead and

intraday prices. The forecasts provide the basis for calculating the probability of intraday

price discount before day-ahead bid submission deadline.

Model selection and validation is performed on data ranging from March 28, 2019, to December

31, 2021, where the decision tool is put in production using a smaller subset of 2022 data. The

division can be seen in figure 18.
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Sampling of data

Figure 18: Figure shows how the data has been divided into a train, val, test sample
and production sample

6.8.1 Model selection in time series

Validating model performance is crucial for ensuring that all models perform well on unseen

data. Performing a single static separation for time series, hold-out method, do not capture a

model performance in different period of time, introducing the problem of selecting models that

only perform well on a subset of data. Evaluating model performance across multiple periods

of time reduces the risk of choosing models that may overfit to certain period of time compared

to using a single training, validation and test period. There are primarily two concerns which

prohibit us from using a holdout method: lack of data, and non-stationarity in electricity price

data. Model performance can be approximated by holdout-validation using a sufficiently large

test dataset, but this would limit the available training data. Restricted to three years of data,

expanding the test-set would inevitably reduce the data used to train our models. Reducing the

data available for model training while increasing test-data will lower bias, but at the expense

of increased variance (Raschka, 2018).

K-fold cross-validation is a more comprehensive validation technique where validation is con-

ducted on sections of data, i.e. section of time periods (Hastie et al., 2017). Models are fitted

for each training fold and the models performance are computed by averaging the performance

metric of each validation fold. The purpose of performing k-fold cross validation is to increase

generalizability of a model such that it performs well in different time periods. Rolling cross

validation, as described in R. Hyndman and Athanasopoulos (2022), involves moving or rolling

a test window across all available data as can be seen in figure 19.
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Figure 19: Illustration of rolling forecast using expanding training
window.

To save complexity a electricity forecasts are often evaluated using the entirety of the test-set in

one sweep (Lago et al., 2021). This is particularly problematic in our case as we seek to mimic as

closely as possible the real life usage of deep learning forecasts, meaning that all available data

should be utilized. As we are particularly interested in making best possible 38 hours forecasts

(see section 6.1) the validation and test size for each fold should contain only 38 observations. In

practice this means that the aggregate of our individual testing folds have little time dispersion.

This can be mitigated by allowing for gaps between each test fold, at the expense of efficient

use of available data.

Addressing the issue of non-stationarity we ideally want several well-dispersed testing folds. To

balance the efficient use of data, and representative testing folds, we propose to use a nested

sliding-expanding cross validation scheme. The term nested means that the cross-validation is

done consecutively, first on the outer fold then on the inner fold of each outer fold. In detail, the

cross-validation will be performed with sliding window split on the outer fold, while the inner fold

is using expanding training window with rolling forecast origin. Varma and Simon (2006) find

that nested cross-validation reduced the estimated error estimate. We will apply the outlined

cross-validation scheme for hyperparameter-selection and model performance evaluation which

can be seen in figure 20 and 21.

6.8.2 Hyperparameter selection for each architecture

In order to find the best possible hyperparameter configuration for each model architecture, i.e.

LSTM, GRU, TFT and DeepAR, we conduct the cross-validation with evaluation on a rolling

forecasting origin using 5 folds with sliding window on the outer fold, as shown in figure 20.

Since the neural network models are computational expensive, the time required to perform a

single cross-validated run is considerable. Hence, we opt to chose 5-fold cross validation such
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window.

To save complexity a electricity forecasts are often evaluated using the entirety of the test-set in

one sweep (Lago et al., 2021). This is particularly problematic in our case as we seek to mimic as

closely as possible the real life usage of deep learning forecasts, meaning that all available data

should be utilized. As we are particularly interested in making best possible 38 hours forecasts

(see section 6.1) the validation and test size for each fold should contain only 38 observations. In

practice this means that the aggregate of our individual testing folds have little time dispersion.

This can be mitigated by allowing for gaps between each test fold, at the expense of efficient

use of available data.

Addressing the issue of non-stationarity we ideally want several well-dispersed testing folds. To

balance the efficient use of data, and representative testing folds, we propose to use a nested

sliding-expanding cross validation scheme. The term nested means that the cross-validation is

done consecutively, first on the outer fold then on the inner fold of each outer fold. In detail, the

cross-validation will be performed with sliding window split on the outer fold, while the inner fold

is using expanding training window with rolling forecast origin. Varma and Simon (2006) find

that nested cross-validation reduced the estimated error estimate. We will apply the outlined

cross-validation scheme for hyperparameter-selection and model performance evaluation which

can be seen in figure 20 and 21.

6 .8 .2 H y p e r p a r a m e t e r se lec t ion for each archi tecture

In order to find the best possible hyperparameter configuration for each model architecture, i.e.

LSTM, GRU, T F T and DeepAR, we conduct the cross-validation with evaluation on a rolling

forecasting origin using 5 folds with sliding window on the outer fold, as shown in figure 20.

Since the neural network models are computational expensive, the time required to perform a

single cross-validated run is considerable. Hence, we opt to chose 5-fold cross validation such

46



Methodology

that more model configurations can be validated which compromises for an higher k-fold that

could have lower the expected variance of our validation error estimates. In each outer fold we

use time series split with expanding window and arbitrarily repeated six times with a rolling

origin.

Nested Cross-Validation for Hyperparameter Selection

Figure 20: Self-produced figure that shows 5-folded cross-validation of hypereparameter selection for each
neural network

When the model has finished its cross-validation procedure the total performance for all folds

are averaged in order to justify the hyper-parameter selection noted as, e.g. mean of MAEs or

mean of RMSEs.

6.8.3 Model performance evaluation

In order to evaluate the best model configuration for each architecture, i.e. best possible chosen

hyperparameters for LSTM, GRU, TFT and DeepAR, it is necessary to evaluate the models per-

formance on a large unseen dataset. In finding optimal model configuration we used a smaller

validation size as a compromise between lowered variance of the validation error and compu-

tational expense. This compromise is ill-advised when calculating the expected generalizable

error of of our trained models. To ensure that the our models can be accurately compared to

the benchmarks, test fold size has to be increased considerably.

Performing model training with an separated validation set, in this case 38 hours validation

size, leads to a 38 hours gap between training and forecasting on the test set. Another approach

is to include the validation set as a part of training data, and be well aware that the trained

model already is familiar with the validation data, but this avoids the problem of 38 hours
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gap between training and forecast on test data. The cross-validation architecture in model

performance similar to hyperparameter selection using nested cross-validation with evaluation

on a rolling forecast origin shown in figure 21.

Nested Cross-Validation for Model Evaluation

Figure 21: Self-produced figure that shows 5-fold cross-validation of model performance

The total number of aggregated test size will then be 2,280 hours (95 days) 13. The chosen

number of outer folds and inner folds may seem arbitrarily chosen, as it is to a certain extent,

but it is a trade-off between estimation reliability and computational expenses.

After the refitting the model forecast 38 hours and the total performance for the whole folds

test set is calculated by averaging the performance metric on the test data.

6.9 Technical implementation

In this thesis we have relied on Python as our sole programming language. The decision to

stick with a single programming language simplified and stream-lined the pipeline from data

collection to forecast generation. We have relied heavily on the data processing tools available

in the Pandas, and Numpy Python packages. The forecasting and classification models were

developed using the framework Pytorch. From the outset Tensorflow, a popular machine learning

framework, was in serious consideration, but later additions to Pytorch such as Pytorch lightning

and Pytorch forecasting gave Pytorch a slight edge14.

A relatively recent development within neural network training is the use of Graphical Processing

Units (GPU). GPUs excel at repeated operations, such as the matrix operations performed

135 folds outer loop x 12 rolling forecast inner loop x 38 hour forecast horizon (test size)
14The Python source code used to train the deep neural networks in this thesis is available at a Github repository:

https://github.com/sondreid/Buy-on-Intraday-Market-or-not-A-Deep-Learning-Approach
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https://github.com/sondreid/Buy-on-Intraday-Market-or-not-A-Deep-Learning-Approach

48



Methodology

in training neural networks (Oh and Jung, 2004). The models presented in this thesis was

trained primarily using a RTX 2060 GPU with 6GB VRAM, 32GB system RAM and a AMD

3600X processor. Additional computational power was rented through Paperspace Gradient

notebooks and Paperspace CORE virtual servers. The virtual servers rented generally had less

computational power (Nvidia P4000), but with more VRAM (8GB) parallel runs of more than

one model configuration were possible. Training models across multiple computer systems15

is time-demanding endeavour. Running all machines using a common Linux-based operating

system helped in this regard16.

Validating and testing numerous model architectures would be useless unless the results are

properly stored and logged. Neptune AI offers an excellent model logging tool which we have

used extensively. Storing model configurations, validation and test results on an cloud-based tool

such as Neptune has the added benefit of allowing results to be sent seamlessly from multiple

devices.

15Configurations were run using a desktop computer, Paperspace notebooks and Paperspace virtual server in
tandem

16Specifically, all models were run using Ubuntu-20.04 as the operating system
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7 Results and Analysis

Following the model selection and evaluation procedure as outlined in section 6.8, we present

benchmark and neural network architecture results. As emphasized, model selection is done on

a limited validation set due to the sheer computational complexity of validating hundreds of

candidate models. Selection and evaluation of neural network and non-neural network models

are done using the same cross validation approach. In this way we can objectively analyse model

performance, and suitability for electricity price forecasting.

Model performance can reasonably be expected to degrade according to how many hours have

passed since the forecast was made. Similarly, we have seen how electricity prices in intraday and

day-ahead markets are non-stationary and accordingly the optimal forecasting model may vary

according to period in question. We therefore place a particular emphasis on model performance

across the hours of the forecast horizon, and different folds. The best performing model for

intraday and day-ahead markets will be used to make forecasts in the production period. The

forecasts are passed to an multilayer feedforward network trained to calculate the likelihood of

day-ahead price exceeding intraday prices, that is, an intraday discount.

7.1 Validation performance

After multiple trials of grid search and fine tuning of hyperparameter configurations and val-

idated the architecture performance using nested cross-validation (see section 6.8.2) the final

results are revealed in table 4. As aforementioned, we have chosen four different model architec-

tures, i.e. GRU, LSTM, TFT and DeepAR, where each of these model is presented with the best

possible hyperparameter combinations. In this setting, each of the architecture is targeted to

forecast the both intraday and day-ahead power prices using actual data as validation. Table 6

shows some key hyperparameters, i.e. hidden size, learning rate γ, layers, dropout rate, gradient

clipping scale factor and stochastic weighted average starting epoch (SWA). Additionally, the

architecture with its final hyperparameter combinations are ranked with respect to the perfor-

mance metric MAE shown in table 4. Besides, RMSE and SMAPE are included in order to

show other performance metric to compare to MAE. The table reveals that GRU with the exact

same hyperparameter combinations, both on day-ahead and intraday, is the best performing

model only considered on hyperparameter selection validation. Its performance results are 7.412

and 9.441 MAE on day-ahead and intraday, respectively In other words, the neural network

deviates from the actual power prices by 7.412 and 9.441 EUR/MWh on average on day-ahead

and intraday, respectively.
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The models and their optimal hyperparameters are tested using a small but unseen validation set.

As important modelling techniques such as learning rate schedules are dependent on validation

loss, the validation metrics are likely biased. An more exhaustive evaluation is needed to select

the best forecasting model for intraday and day-ahead markets, respectively (see section 7.3).

Hyperparameter Selection of Neural Network Models using Nested Cross-Validation

Model Target Mean validation SMAPE Mean validation MAE Mean validation RMSE

GRU Day-ahead 0.131 7.412 10.218
TFT Day-ahead 0.136 8.023 10.744
LSTM Day-ahead 0.160 9.245 11.865
DeepAR Day-ahead 0.254 14.761 17.296

GRU Intraday 0.167 9.441 11.866
TFT Intraday 0.189 9.875 12.486
LSTM Intraday 0.201 10.121 14.231
DeepAR Intraday 0.223 11.362 14.244

Table 4: Mean validation results of the best hyperparameter selection validated through nested
cross-validation for each architecture on day-ahead and intraday price as target.

Using the exact same cross-validation approach as with neural network models, one can observe

the following results of the best possible combination for each benchmark forecast models in

table 5. Considering figure 11 (see section 5.5.2) it is reasonable that day-ahead and intraday

price time series are non-stationary yielding first order differencing in the ARIMA models. The

main difference between the ARIMA model with target on day-ahead power prices and intraday

power prices are 2nd and 4th order moving average-term and use of fifth and second order

autoregressiv-term, meaning that it regresses on its own previous values. It is noteworthy,

that non of the optimal ARIMA models using seasonality. The best possible hyperparameter

configuration for ARIMA models have the lowest MAE among the other selected benchmark

models, with 8.028 and 11.167 MAE for day-ahead and intraday power price forecast on average,

respectively. As aforementioned, comparing each architecture this way may be biased, and a

more correct comparison comes in the next section.

Just behind the ARIMA models, one can observe that Energy Quantified’s short-term day-ahead

forecasts performs relative poorly compared to ARIMA with approximately 1 MAE in deviance

both on intraday and day-ahead. It is also noteworthy that the Näıve model with day-ahead

price as target outperforms the ETS model. The best possible parameter configuration of ETS

on day-ahead price target is additive, additive damped and additive, error, trend and seasonal

component, respectively. The ETS on intraday price target does only contain an additive error

term.
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Hyperparameter Selection of Benchmark Models using Nested Cross-Validation

Mean validation Mean validation Mean validation
Model Target SMAPE MAE RMSE

SARIMA (5,1,5)(0,0,0)0 Day-ahead 0.133 8.028 10.836
EQ short term day-ahead benchmark Day-ahead 0.147 9.311 12.076
Näıve Day-ahead 0.180 10.015 12.760
ETS (A,Ad,A) season=168 (1 week) Day-ahead 0.196 10.435 12.984
Mean Day-ahead 0.777 37.022 38.321

SARIMA (2,1,4)(0,0,0)0 Intraday 0.197 11.167 14.269
EQ short term day-ahead benchmark Intraday 0.200 12.291 14.860
ETS (A,N,N) Intraday 22.449 12.353 19.858
Näıve Intraday 0.266 14.069 16.811
Mean Intraday 0.797 36.316 38.036

Table 5: Mean validation results of the best hyperparameter selection validated through nested
cross-validation for each architecture on day-ahead and intraday price as target.

Comparing the GRU’s MAE results with the benchmark models in table 5, it outperforms the

best ARIMA benchmark model with 0.904 and 1.726 EUR/MWh on average on day-ahead and

intraday, respectively.

7.2 Final Model Architectures

The end result of the model selection is narrowing down to a single model architecture for each

family of models. For the sake of brevity, we will only present the hyperparameters determined to

be the most influential for model performance. For a full overview of the model hyperparameters

in this section, see E.3.1 in the appendix. Some configuration is worth noticing from table 6

is that the neural networks use hidden size in a range between 64 and 256 and relative low

learning rate γ below 0.001, except for TFT which uses a 0.05 learning rate. The recurrent

neural layers used in this architectures are between 2 and 4. Furthermore, the neural networks

seem to perform well using 5 and 10 % dropout values, a modest degree of regularization. Using

gradient clipping value of 30 % to 60 % stabilizes training, and improves model performance.

Optimal Hyperparameter Configuration of each Neural Network

Model Target Hidden size Learning rate Layers Dropout Gradient clipping SWA starting epoch

GRU Day-ahead 256 0.00100 2 0.100 0.600 12
TFT Day-ahead 128 0.05000 3 0.050 0.300 10
LSTM Day-ahead 128 0.00010 2 0.100 0.500 15
DeepAR Day-ahead 64 0.00100 2 0.100 0.600 15

GRU Intraday 256 0.00100 2 0.100 0.600 12
TFT Intraday 64 0.05000 3 0.050 0.300 10
LSTM Intraday 128 0.00056 2 0.100 0.005 12
DeepAR Intraday 128 0.00010 2 0.100 0.050 13

Table 6: Optimal Hyperparameter Configuration of each Neural Network.

For all model architectures we found that averaging the predictions of the n best performing

model states improved performance17.

17This in-expensive ensembling technique is called checkpoint ensembling (H. Chen et al., 2017)
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cross-validation for each architecture on day-ahead and intraday price as target .

Comparing the GRU's MAE results with the benchmark models in table 5, it outperforms the

best ARIMA benchmark model with 0.904 and l. 726 EUR/MWh on average on day-ahead and

intraday, respectively.

7.2 Final Model Architectures

The end result of the model selection is narrowing down to a single model architecture for each

family of models. For the sake of brevity, we will only present the hyperparameters determined to

be the most influential for model performance. For a full overview of the model hyperparameters

in this section, see E.3.1 in the appendix. Some configuration is worth noticing from table 6

is that the neural networks use hidden size in a range between 64 and 256 and relative low

learning rate I below 0.001, except for T F T which uses a 0.05 learning rate. The recurrent

neural layers used in this architectures are between 2 and 4. Furthermore, the neural networks

seem to perform well using 5 and 10 % dropout values, a modest degree of regularization. Using

gradient clipping value of 30 % to 60 % stabilizes training, and improves model performance.

O p t i m a l H y p e r p a r a m e t e r Conf igurat ion of each N e u r a l N e t w o r k

Model Target Hidden size Learning ra te Layers Dropout Gradient clipping SWA star t ing epoch

G R U Day-ahead 256 0.00100 2 0.100 0.600 12
T F T Day-ahead 128 0.05000 3 0.050 0.300 10
LSTM Day-ahead 128 0.00010 2 0.100 0.500 15
DeepAR Day-ahead 64 0.00100 2 0.100 0.600 15

G R U Intraday 256 0.00100 2 0.100 0.600 12
T F T Intraday 64 0.05000 3 0.050 0.300 10
LSTM Intraday 128 0.00056 2 0.100 0.005 12
DeepAR Intraday 128 0.00010 2 0.100 0.050 13

Table 6: Opt imal Hyperparameter Configuration of each Neural Network.

For all model architectures we found that averaging the predictions of the n best performing

model states improved performance17.

T p h i s in-expensive ensembling technique is called checkpoint ensembling (H. Chen et al., 2017)
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Switching optimizer to stochastic weight averaging (SWA) mid-training, increased out-of-sample

performance considerably. SWA was generally switched to after 10 to 15 epochs worth of train-

ing. For a brief introduction of SWA and checkpoint-ensembling, we refer the reader to C.1.4

and C.1.1 in the appendix.

7.3 Performance evaluation

As described in the methodology section (see section 6.8.3) we want to fairly compare each

model against each other by performing a new nested cross-validation using larger unseen test

data folds. Notice that validation fold shares the same data records the last 38 records in the

last part of each training fold to avoid a temporal gap between train and test period.

Table 7 shows the nested cross-validation performance results for LSTM, GRU and DeepAR

for intraday and day-ahead forecasts. The results reveals that LSTM outperforms other models

in terms of MAE by a significant margin, averaging a 9.484 EUR/MWh discrepancy between

forecasts and observed prices. Of particular note is the differing relative performance of the

deep neural architectures. In intraday markets the gated recurrent unit model performs best in

terms of MAE with an average error of 12.118 EUR/MWh. The order of relative performance

is the same for RMSE and MAE, while SMAPE suggests that DeepAR performs better than

GRU. This may be a sign of lower relative forecast variance.

Neural network performance using Nested Cross-Validationa

Mean test Mean test Mean test Mean train Mean train Mean train
Model Target SMAPE MAE RMSE SMAPE MAE RMSE

LSTM Day-ahead 0.193 9.484 12.383 0.156 2.118 2.960
GRU Day-ahead 0.251 11.639 15.275 0.510 5.926 7.168
DeepAR Day-ahead 0.264 14.832 18.434 0.300 4.128 5.187

GRU Intraday 0.303 12.118 15.853 0.581 5.927 7.172
DeepAR Intraday 0.313 12.227 15.653 0.292 3.119 4.049
LSTM Intraday 0.351 12.553 16.046 0.317 2.776 3.674

Table 7: Model performance using Nested Cross-Validation

aThe performance results of TFT is not included in the further results and analysis (see section 8.3 for rationale)

For the benchmark models in table one observes that ETS(A,Ad,A) with 1 week seasons (168)

is the best performing model both for day-ahead and ARIMA on intraday price target. The

average test MAE for day-ahead and intraday on GRU and ARIMA price forecast are 13.667

and 17.067, respectively. It is noteworthy, that the Näıve model on day-ahead price target is

almost as good as GRU on average only deviating results by 0.238 on MAE. Considering the test

SMAPE performance metric, the Näıve model actually outperforms all the benchmark models

on day-ahead on average and benchmark Energy Quantified’s short-term day-ahead forecast on
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for intraday and day-ahead forecasts. The results reveals that LSTM outperforms other models

in terms of MAE by a significant margin, averaging a 9.484 EUR/MWh discrepancy between

forecasts and observed prices. Of particular note is the differing relative performance of the

deep neural architectures. In intraday markets the gated recurrent unit model performs best in

terms of MAE with an average error of 12.118 EUR/MWh. The order of relative performance

is the same for RMSE and MAE, while SMAPE suggests that DeepAR performs better than

GRU. This may be a sign of lower relative forecast variance.
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For the benchmark models in table one observes that ETS(A,Ad,A) with l week seasons (168)

is the best performing model both for day-ahead and ARIMA on intraday price target. The

average test MAE for day-ahead and intraday on GRU and ARIMA price forecast are 13.667

and 17.067, respectively. It is noteworthy, that the Na"ive model on day-ahead price target is

almost as good as GRU on average only deviating results by 0.238 on MAE. Considering the test

SMAPE performance metric, the Na"ive model actually outperforms all the benchmark models

on day-ahead on average and benchmark Energy Quantified's short-term day-ahead forecast on

53



Results and Analysis

intraday.

Benchmark performance using Nested Cross-Validation

Mean test Mean test Mean test Mean train Mean train Mean train
Model Target SMAPE MAE RMSE SMAPE MAE RMSE

ETS(A,Ad,A)168 Day-ahead 0.230 13.667 17.434 0.138 1.151 2.916
ARIMA(5,1,5) Day-ahead 0.218 13.709 17.749 0.045 0.943 2.861
Näıve Day-ahead 0.200 13.898 17.823
EQSTDF1 Day-ahead 0.279 14.755 18.795
Mean Day-ahead 0.980 46.549 48.514

ARIMA(2,1,4) Intraday 0.404 17.067 21.187 0.193 1.717 3.608
EQSTDF1 Intraday 0.401 17.103 21.320
ETS(A,N,N) Intraday 0.429 19.616 23.550 0.180 1.695 3.713
Näıve Intraday 0.429 19.622 23.556
Mean Intraday 1.002 42.538 45.138

Table 8: Model performance using Nested Cross-Validation. (1) EQSTDF = Short-term Day-ahead forecast

Comparing the nested cross-validated neural network LSTM (day-ahead) and GRU (intraday) in

table 7 against the best performing benchmark models ETS and ARIMA in table 8 it significantly

shows that the neural network models outperforms the benchmark models by 30.6 % measured

on test MAE and by 29 % on day-ahead and intraday on average, respectively. The neural

network models outperforms Energy Quantified’s forecasts, an example of which can be seen

in 22. This particular fold is chosen because it highlights the stability of deep neural network

forecasts. 18

LSTM vs. Energy Quantified’s short-term day-ahead 38 hours price forecast

Figure 22: LSTM vs. EQ Day-ahead

As observed in figure 11 (see section 5.5.2) that the price evolution on intraday and day-ahead

market NO2 are relative stationary from 2019 up until 2021, when the series become non-

stationary and more volatile. This can also be observed in figure 23 and 24 which present the

MAE for each nested cross-validate fold on day-ahead and intraday. Fold 1 to 4 have relative

18A compilation of all evaluation forecasts is available in the “forecasts” directory of the github repository:
https://github.com/sondreid/Buy-on-Intraday-Market-or-not-A-Deep-Learning-Approach
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intraday.

B e n c h m a r k p e r f o r m a n c e us ing N e s t e d Cross - Val idat ion
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shows that the neural network models outperforms the benchmark models by 30.6 % measured

on test MAE and by 29 % on day-ahead and intraday on average, respectively. The neural

network models outperforms Energy Quantified's forecasts, an example of which can be seen
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Figure 22: LSTM vs. EQ Day-ahead

As observed in figure 11 (see section 5.5.2) that the price evolution on intraday and day-ahead

market NO2 are relative stationary from 2019 up until 2021, when the series become non-

stationary and more volatile. This can also be observed in figure 23 and 24 which present the

MAE for each nested cross-validate fold on day-ahead and intraday. Fold l to 4 have relative

18A compilation of all evaluation forecasts is available in the "forecasts" directory of the github repository:
h t tps : / / github.com/ sondreid/Buy-on-Intraday-Market-or-not-A-Deep-Learning-App roach
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low MAE in contrast to the last 5th fold where the MAE for the best neural network and four of

the top benchmarks MAE increase significantly. 23 and 24 highlights the relative performance-

premium of deep neural networks in periods high price variance.

Performance evaluation on nested CV-folds
Day-ahead

Figure 23: MAE per cross validation fold in day-ahead
markets

Performance evaluation on nested CV-folds
Intraday

Figure 24: MAE per cross validation fold in intraday
markets

It is also interesting to analyse how well the neural network models perform across the forecast

horizon. Figure 25 and 26 shows the average MAE achieved by benchmarks and deep neural

networks per outer fold. It reveals that LSTM and GRU outperforms the best benchmark models

almost exclusively.

Performance across forecast horizon: Day Ahead
market

Figure 25: MAE per hour from forecast origin in day
ahead market for all cross-validated folds

Performance across forecast horizon: Intraday
market

Figure 26: MAE per hour from forecast origin in
intraday market for all cross-validated folds

The total performance across delivery hours for the nested performance validation is presented

in figure 27 and 28 for day-head and intraday, respectively. Calculating the test MAE for each

hours the plots showcase that LSTM and GRU almost always beating the best performing

benchmark models ETS and ARIMA, except from hour 16 and 17 on intraday.
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It is also interesting to analyse how well the neural network models perform across the forecast

horizon. Figure 25 and 26 shows the average MAE achieved by benchmarks and deep neural

networks per outer fold. It reveals that LSTM and GRU outperforms the best benchmark models

almost exclusively.
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The total performance across delivery hours for the nested performance validation is presented

in figure 27 and 28 for day-head and intraday, respectively. Calculating the test MAE for each

hours the plots showcase that LSTM and GRU almost always beating the best performing

benchmark models ETS and ARIMA, except from hour 16 and 17 on intraday.
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Performance across delivery hours in day-ahead
market

Figure 27: Performance evaluation across hour on
Day-ahead for all cross-validated folds

Performance across delivery hours in intraday

Figure 28: Performance evaluation across hour on
Intraday for all cross-validated folds

Summarized, the neural networks, i.e. LSTM on day-ahead and GRU on intraday, are the

best performing models as determined by nested cross-validation. The forecasts produced by

respective best-performing networks will be used in a simulated production environment to

showcase the potential use-case of the decision tool.

7.4 Neural network classifiers

We will compare the performance of our classifier networks to two benchmarks: A majority class

prediction, and the sign-difference of intraday and day-ahead forecasts in the production period.

In table 9 the Näıve model that always predict that day-ahead price always exceeds intraday

and LSTM neural network yield the highest accuracy of 67.9 %.

Performance of probabilistic classification

Model Test ROC AUC Test Accuracy

MLP model 0.598 0.671
Logit model 0.560 0.613
LSTM 0.504 0.679

Näıve (Prob(∆P̂h,d) = 1) 0.500 0.679

Table 9: Performance of probabilistic classification models

On the other hand, measuring model performance using ROC the MLP model outperforms both

the simple benchmark models and LSTM network with a measure of 59.8 %. It is noteworthy

that the simple sigmoid function (which is a logit model) squishing the exceeding price difference

between day-ahead and intraday directly, is quite close to MLP only deviating 3.8 %-points.
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Summarized, the neural networks, i.e. LSTM on day-ahead and GRU on intraday, are the

best performing models as determined by nested cross-validation. The forecasts produced by

respective best-performing networks will be used in a simulated production environment to

showcase the potential use-case of the decision tool.

7.4 Neural network classifiers

We will compare the performance of our classifier networks to two benchmarks: A majority class

prediction, and the sign-difference of intraday and day-ahead forecasts in the production period.

In table 9 the Naive model that always predict that day-ahead price always exceeds intraday

and LSTM neural network yield the highest accuracy of 67.9 %.

P e r f o r m a n c e of probabi l i s t i c c lass i f icat ion
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MLP model 0.598 0.671
Logit model 0.560 0.613
LSTM 0.504 0.679
Naive ( P r o b ( A P . a ) = 1) 0.500 0.679
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On the other hand, measuring model performance using ROC the MLP model outperforms both

the simple benchmark models and LSTM network with a measure of 59.8 %. It is noteworthy

that the simple sigmoid function (which is a logit model) squishing the exceeding price difference

between day-ahead and intraday directly, is quite close to MLP only deviating 3.8 %-points.
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ROC curve of the selected probabilistic classifier

Figure 29: ROC curve of probalistic classifer

Figure 29 shows the ROC curve of the classifier. In low threshold outcomes we see that our

model performs worse than a no-skill benchmark, seen in the bottom-left section of the plot.

This suggests that our model generally underestimates the likelihood of a day-ahead discount.

7.5 Production

We apply the best performing LSTM model and GRU model to forecast day-ahead and intraday

prices, in a simplified production environment. The forecasts are made before the day-ahead

market submission deadline, at 12 p.m. The forecast horizon spans to midnight the following

day, a total of 38 hours (see section 6.1). The probabilistic classifier outlined in previous section

is used to generate probabilities of day-ahead price exceeding intraday prices for a given delivery

hour. Depending on the risk profile of a potential buyer µ, a decision can be made on whether

to buy the entirety of the bid volume in intraday or day-ahead markets. We opt to simulate a

real life production scenario from January 2, 2022, to January 31, 2022, as presented in table

10.

Table 10 shows the actual profit (see section 6.2) based on a given probability threshold µ

between 0 % and 100 %. Studying the total performance for the production month one can

observe that a power buyer choosing to have a risk probability threshold of 50 % is gaining

6,414.3 Euro for its participation on intraday compared to a day-ahead strategy. For a very

risk-averse electricity buyer at a µ of 95 %, the total profit is reduced to 1,435.1 Euro.
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Figure 29 shows the ROC curve of the classifier. In low threshold outcomes we see that our

model performs worse than a no-skill benchmark, seen in the bottom-left section of the plot.

This suggests that our model generally underestimates the likelihood of a day-ahead discount.
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prices, in a simplified production environment. The forecasts are made before the day-ahead
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to buy the entirety of the bid volume in intraday or day-ahead markets. We opt to simulate a
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risk-averse electricity buyer at aµ of 95 %, the total profit is reduced to 1,435.1 Euro.
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Daily profits of the decision tool in production January 2022

Day/µ 0/10% 20% 30% 40% 50% 60% 70% 80% 90% 95% 100%

2 513.3 513.3 513.3 513.3 486.5 293.5 273.0 273.0 209.9 −3.9 0
3 756.8 756.8 756.8 756.8 756.8 756.8 724.3 711.6 658.0 606.0 0
4 136.3 136.3 136.3 129.7 139.1 196.0 −22.1 −22.1 −22.1 −22.1 0
5 24.7 24.7 24.7 24.7 24.7 24.7 24.7 26.8 83.6 62.0 0
6 347.2 347.2 347.2 347.2 347.2 348.7 263.6 148.7 106.4 88.6 0
7 557.9 557.9 557.9 557.9 557.9 306.1 192.1 133.8 79.4 51.0 0
8 209.9 209.9 209.9 209.9 209.9 207.4 201.7 181.6 163.5 93.0 0
9 0.3 0.3 0.3 0.3 0.3 0.3 0.3 −0.8 21.0 40.7 0
10 −85.0 −85.0 −85.0 −85.0 −85.0 −85.0 −85.0 −84.9 −105.3 −111.1 0
11 60.7 60.7 60.7 60.7 60.7 64.8 23.8 −13.2 −18.9 −18.9 0
12 598.8 598.8 598.8 598.8 598.8 598.8 598.8 598.8 320.6 30.0 0
13 632.1 632.1 632.1 632.1 632.1 15.0 16.7 0 0 0 0
14 216.5 216.5 216.5 216.5 216.5 165.5 2.0 0 0 0 0
15 79.4 79.4 79.4 79.4 79.4 −32.2 0 0 0 0 0
16 294.9 294.9 294.9 294.9 294.9 294.9 298.5 233.7 246.6 151.9 0
17 −59.3 −59.3 −59.3 −59.3 −59.3 −59.3 −59.3 −101.8 0 0 0
18 69.3 66.8 66.8 31.7 31.7 20.4 43.0 55.7 23.5 3.3 0
19 276.1 276.1 276.1 276.1 276.1 276.1 276.1 269.5 160.6 −9.7 0
20 387.7 387.7 387.7 387.7 387.7 184.0 0 0 0 0 0
21 88.0 88.0 88.0 88.0 88.0 88.0 88.0 85.7 7.5 0 0
22 103.9 103.9 103.9 103.9 103.9 50.2 11.3 2.4 0 0 0
23 240.1 240.1 240.1 240.1 240.1 216.9 57.7 21.6 0 0 0
24 137.2 137.2 137.2 137.2 137.2 127.5 94.0 75.4 27.9 0 0
26 144.0 144.0 144.0 144.0 144.0 140.5 112.4 13.5 0 0 0
27 254.0 254.0 252.0 238.2 227.0 158.7 154.0 117.8 130.7 88.7 −0.8
28 314.6 314.5 314.8 315.6 303.5 311.4 336.2 335.1 384.9 384.9 201.1
29 794.6 794.6 794.6 794.6 794.6 794.6 794.6 715.6 110.1 0 0
30 248.0 248.0 248.0 248.0 248.0 248.0 248.0 249.2 60.2 0.2 0
31 −1047.6 −1047.6 −1047.6 −1047.6 −828.0 −331.9 −104.7 0.4 0.4 0.4 0

Total 6294.3 6291.7 6290.1 6235.4 6414.3 5380.4 4563.7 4026.8 2648.7 1435.1 200.4

Table 10: Daily profits given a probability threshold µ

A buyer willing to take on more risk has a higher expected net profit, while total profits decrease

with lower risk tolerance. The decrease in risk is evident from the variation in daily profits, where

a lower threshold µ gives higher fluctuations in daily profits.

It should again be emphasized that the validity of the results presented depend on the assump-

tions outlined in section 6.1. The assumption of a transaction cost in particular are likely to skew

the results in favor of intraday trade. This can be seen in comparing the net marginal profits

of an exclusive intraday trade strategy when µ is 0 to 10 %, and a near-exclusive day-ahead

strategy when µ is 100 %. Furthermore, a 30-day production period is too small a sample for

generalizable results, and should be read as a proof-of-concept.
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4 136.3 136.3 136.3 129.7 139.1 196.0 - 2 2 . 1 - 2 2 . 1 - 2 2 . 1 - 2 2 . 1 0
5 24.7 24.7 24.7 24.7 24.7 24.7 24.7 26.8 83.6 62.0 0
6 347.2 347.2 347.2 347.2 347.2 348.7 263.6 148.7 106.4 88.6 0
7 557.9 557.9 557.9 557.9 557.9 306.1 192.1 133.8 79.4 51.0 0
8 209.9 209.9 209.9 209.9 209.9 207.4 201.7 181.6 163.5 93.0 0
9 0.3 0.3 0.3 0.3 0.3 0.3 0.3 - 0 . 8 21.0 40.7 0
10 - 8 5 . 0 - 8 5 . 0 - 8 5 . 0 - 8 5 . 0 - 8 5 . 0 - 8 5 . 0 - 8 5 . 0 - 8 4 . 9 - 1 0 5 . 3 - 1 1 1 . 1 0
11 60.7 60.7 60.7 60.7 60.7 64.8 23.8 - 1 3 . 2 - 1 8 . 9 - 1 8 . 9 0
12 598.8 598.8 598.8 598.8 598.8 598.8 598.8 598.8 320.6 30.0 0
13 632.1 632.1 632.1 632.1 632.1 15.0 16.7 0 0 0 0
14 216.5 216.5 216.5 216.5 216.5 165.5 2.0 0 0 0 0
15 79.4 79.4 79.4 79.4 79.4 - 3 2 . 2 0 0 0 0 0
16 294.9 294.9 294.9 294.9 294.9 294.9 298.5 233.7 246.6 151.9 0
17 - 5 9 . 3 - 5 9 . 3 - 5 9 . 3 - 5 9 . 3 - 5 9 . 3 - 5 9 . 3 - 5 9 . 3 - 1 0 1 . 8 0 0 0
18 69.3 66.8 66.8 31.7 31.7 20.4 43.0 55.7 23.5 3.3 0
19 276.1 276.1 276.1 276.1 276.1 276.1 276.1 269.5 160.6 - 9 . 7 0
20 387.7 387.7 387.7 387.7 387.7 184.0 0 0 0 0 0
21 88.0 88.0 88.0 88.0 88.0 88.0 88.0 85.7 7.5 0 0
22 103.9 103.9 103.9 103.9 103.9 50.2 11.3 2.4 0 0 0
23 240.1 240.1 240.1 240.1 240.1 216.9 57.7 21.6 0 0 0
24 137.2 137.2 137.2 137.2 137.2 127.5 94.0 75.4 27.9 0 0
26 144.0 144.0 144.0 144.0 144.0 140.5 112.4 13.5 0 0 0
27 254.0 254.0 252.0 238.2 227.0 158.7 154.0 117.8 130.7 88.7 - 0 . 8
28 314.6 314.5 314.8 315.6 303.5 311.4 336.2 335.1 384.9 384.9 201.1
29 794.6 794.6 794.6 794.6 794.6 794.6 794.6 715.6 110.1 0 0
30 248.0 248.0 248.0 248.0 248.0 248.0 248.0 249.2 60.2 0.2 0
31 -1047 .6 -1047 .6 -1047 .6 -1047 .6 - 8 2 8 . 0 - 3 3 1 . 9 - 1 0 4 . 7 0.4 0.4 0.4 0
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Table 1 0 : Daily profits given a probability threshold
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with lower risk tolerance. The decrease in risk is evident from the variation in daily profits, where

a lower threshold µ gives higher fluctuations in daily profits.

It should again be emphasized that the validity of the results presented depend on the assump-
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8 Discussion

8.1 Main findings

A central working hypothesis of this work has been the potential under-utilisation of intraday

electricity markets. When left with a choice to participate in intraday-markets or balancing mar-

kets, wind-traders often ignore intraday markets (Mauritzen, 2015). Similar findings by Scharff

and Amelin (2016), lends some credence that intraday markets remain underutilised. A central

point of discussion in this thesis is the potential gains of an electricity buyer by considering

intraday trading. To explore this possibility, we have used deep learning to make multi-day fore-

casts before the day-ahead market submission deadline. Our goal has been to determine whether

forecasts provided by deep neural architectures can provide sufficient information for a market

participant to choose its market of choice. The decision tool, a probabilistic neural classifier,

provides probabilities of an intraday price discount for a given delivery hour. The classifier, does

to some degree, rectify the error in day-ahead and intraday forecasts, leading to somewhat better

performance compared to using a simple logit model. The tested classifiers generate point-point

classifications, and the inclusion of sequence-sequence classifiers might have improved classifica-

tions, as done in Sutskever et al. (2014) for translation. The use of deep learning forecasts and

classifications complements previous work done by Maciejowska et al. (2019), using an ARX

forecasting model and a probit classification model. Although, a direct-comparison of results is

difficult as the underlying electricity markets differ.

We have placed a special emphasis on thorough model validation and performance review.

Through a nested cross-validation scheme, we ensure that the unseen test data is drawn from a

data sample that is as independent and temporally spread as possible. The added complexity

this entails reduces the number of model configurations we are able to test. The benefit of

more trustworthy results, outweighs the complexity and tediousness of a more thorough cross-

validation scheme.

In a simplified production environment, we have demonstrated the potential use-case of our

decision tool. By participating in intraday trade, an electricity buyer in our production period

can expect marginal net profits to increase by 6,414.3 Euro when compared to exclusively trading

in the day-ahead market. We find that given a high risk tolerance expected profits as well as

uncertainty increases. This is in line with with previous work from Maciejowska et al. (2019).

Our simulated production use-case should be read with an ample degree of scepticism. Due to

our limited dataset, and computational concerns, the production period is limited to only 29
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days, comprising 696 hours. Drawing any far-reaching conclusions from such a limited sample

is problematic.

In addition, the assumptions made in our production environment are likely not valid given

large buy volumes. Specifically, in lack of any clear method of estimating transaction cost

we have assumed that the ex-post observed intraday price is the price ultimately paid by a

producer. However, a large buy volume added to a relatively illiquid intraday-market will likely

have a net-positive effect on intraday prices. As seen in Weber (2010) any influence a bidder

has one the intraday price can be viewed as a major transaction cost. This may cause an

overestimation of the potential gains of intraday trading when compare to a purely day-ahead-

based trading strategy. Similarly, regulation prices will likely be affected by an increase in

consumption imbalance. In the event of an existing negative system imbalance, added buy

volume will likely increase upward regulation prices, reducing the potential gains compared to

day-ahead trade. As a result, we view it as unlikely that the production results can be viewed

as anything more than a proof-of-concept.

8.2 Suitability of Neural Networks in Electricity price forecast

As we have seen, deep learning architectures outperform all tested benchmark models for a

wide selection of test data. The average MAE in the evaluation period was 62.11 EUR/MWh in

intraday markets and 61.04 EUR/MWh in day-ahead markets. The average discrepancy between

forecasts and observed prices for LSTM (day-ahead) and GRU (intraday) were 9.48 and 12.12

EUR/MWh. In comparison the best performing benchmarks achieved mean absolutes errors

of 13.67 and 17.07 EUR/MWh in day ahead and intraday markets. In percentage terms this

constitutes a performance premium of 30.6 % and 29 % on day-ahead and intraday markets,

respectively.

Significantly, deep learning techniques outperform Energy Quantified’s preferred short-term

model (“Spot price model improvements”, 2022)19. The benchmarks presented in this thesis

does not represent an exhaustive suite of forecasting models, and the inclusion of other bench-

mark models may have altered the relative performance of the neural networks. Regardless

of the potential shortcomings of the benchmark models presented in this thesis, the efficacy

of deep neural networks for forecasting has been shown in existing literature. Comparing the

performance of our deep neural networks directly is problematic as no previous work exists for

intraday and day-ahead forecasts in the NO2 price region to our knowledge. Nonetheless, exist-

19The Energy Quantified forecasts represent the latest iteration of forecasting methods per January 25, 2022
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ing literature for other European electricity markets such as Beigaitė et al. (2018) and Lago et al.

(2021) identify deep learning architectures as their respective best performing class of models.

We find that the performance premium of deep neural networks are particularly noteworthy when

in periods of high intraday and day-ahead price volatility. Our findings are in line with previous

work such as Polson and Sokolov (2019) who found that deep learning forecasting techniques

were particularly effective for periods with high price volatility. With some confidence we can say

that the performance of our deep neural networks is credible, and supports existing literature.

There are however some major caveats to using deep neural networks for forecasting. The

discrepancy in performance between the the first tested model, and the final models presented

in this thesis is such that model performance is often paid for with time. In comparison, a well-

performing ETS model can be validated in a fraction of time while achieving similar performance

on some sections of the test data. A refit on available training data takes neural network training

time for best performing LSTM network while the day-ahead ETS model uses ETS training time.

The increase in model performance achieved by applying more complex models might not be a

good trade-off in all cases. However, the economic benefits gained by minimizing forecast errors

in day-ahead and intraday markets might justify time spent.

8.3 The anatomy of tested neural networks

For the purposes of maximizing forecast performance, a large number of architectures have

been tested. Generally, our initial design choices have been based on previous work, such as

Lago et al. (2018). Aside from techniques meant to speed-up convergence such as the use of

stochastic weight averaging and gradient clipping, the width and depth of the neural networks

have an immediate impact on model performance. Generally the best performing model were

relatively shallow, only spanning two-layers in depth. While shallow and narrow networks (as

determined by the number of weights in each layer) frequently under-fitted, shallow and broad

networks were generally found to outperform their deep counterpart. This contrasts recent

findings in literature and what seems to have been a developing consensus in machine learning

circles. Specifically, Goodfellow et al. (2016) finds that increasing model depth beyond 4 layers

increases model performance.

We can only speculate as to the reason for this discrepancy between our findings and that of

existing literature. One reason might be our relatively modest data-sampling period. This

may be plausible as model convergence was often found to be unstable, a sign of high-variance

parameter updates. Increasing the number of training observations might have altered the
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in this thesis is such that model performance is often paid for with time. In comparison, a well-

performing ETS model can be validated in a fraction of time while achieving similar performance

on some sections of the test data. A refit on available training data takes neural network training

time for best performing LSTM network while the day-ahead ETS model uses ETS training time.
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For the purposes of maximizing forecast performance, a large number of architectures have

been tested. Generally, our initial design choices have been based on previous work, such as

Lago et al. (2018). Aside from techniques meant to speed-up convergence such as the use of

stochastic weight averaging and gradient clipping, the width and depth of the neural networks

have an immediate impact on model performance. Generally the best performing model were

relatively shallow, only spanning two-layers in depth. While shallow and narrow networks (as

determined by the number of weights in each layer) frequently under-fitted, shallow and broad

networks were generally found to outperform their deep counterpart. This contrasts recent

findings in literature and what seems to have been a developing consensus in machine learning

circles. Specifically, Goodfellow et al. (2016) finds that increasing model depth beyond 4 layers

increases model performance.

We can only speculate as to the reason for this discrepancy between our findings and that of

existing literature. One reason might be our relatively modest data-sampling period. This

may be plausible as model convergence was often found to be unstable, a sign of high-variance

parameter updates. Increasing the number of training observations might have altered the
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optimal architectures.

We were particularly interested in model architectures that has been shown to perform well as

electricity price forecast models in existing literature. Temporal fusion transformers (Lim et al.,

2021) seemed promising, but proved to be a challenge family of models to train. The numerous

sub-networks of the TFT model such as encoder-decoder and variable-selection networks in-

creases complexity, and reduces the potential configurations tested given limited computational

resources. A pragmatic approach would be to reduce the number of neurons and layers, but

this in turn lead to under-fitting and more or less static forecasts in line with the mean of the

preceding electricity prices. The end result were a set of under-performing model, found to be

unworthy of further time-investment. As a consequence, TFT models were withheld from perfor-

mance evaluation. It is possible, but not likely, that testing TFT models on a larger test during

performance evaluation would have altered the relative order of the best performing models.

8.4 Relevance of decision tool: Barriers and Possibilities

The decision tool described in this thesis may enable electricity buyers to take an informed

decision on whether or not to participate in intraday trading. Despite its severe limitations,

narrowing down the market-participation choice down to a binary choice offers several benefits.

For one, it allows for automation of intraday trade, a possibility that according to Scharff and

Amelin (2016) is rarely used today20. This is particularly relevant as intraday trade is expected to

increase in tandem with the share of variable renewable energy sources (vRES) and particularly

wind power Mauritzen (2013), plausibly making intraday trade more difficult to monitor without

the aid of automated systems.

The application of deep neural networks comes with a significant added complexity, for prac-

titioners and the machines required to train and validate countless iterations. Neural network

frameworks typically have a higher barrier-of-entry in terms of programming skills than other

machine learning methods, examples including Pytorch and Tensorflow. We would argue that

the skills needed to implement deep neural networks are non-negligible, but does not present a

barrier for wide-spread adoption. The application of deep neural networks comes with a consid-

erable computational premium. However, it is reasonable to assume that the minimum-required

computational resources are available to a potential user of the decision tool outlined in this

thesis. We find this to be particularly plausible as the training of forecast and classification

models presented in this thesis was done mostly on a modestly powerful desktop computer and

20Specifically, Scharff and Amelin (2016) looks at observed trading patterns and suggests the patterns are in
line with manual trading
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virtual servers.

8.5 Weaknesses

In this thesis we rely on linear interpolation of non-traded hours and potentially missing data.

We have discussed that there exist a multitude of methods to interpolate the missing records,

and that linear interpolation is a simple method to overcome this problem (see section 5.4.1). It

is a stark assumption to assume that two observed neighboring values are linear. It is however

difficult to ascertain the potential faultiness of linear interpolation as no obvious test to judge

it suitability exists. Creating values for non-existing or missing values has potentially severe

impact on the prediction, considering that 33 % of the intraday data are non-traded on or

missing (see figure 14). Additionally, the ticker bids on intraday market not only occur for a

single period, may last for several hours, referred to as block order (see section 5.1). We have

chosen to extrapolate the price and volume for given block orders represented as several hours

bids, for the purpose of calculating the hourly volume weighted price. We highlight this as a

potential weakness, because large order may affect the hourly price calculation, and the fact

that block orders can be partially accepted during its lifetime.

By including meteorological, production, and capacity-related forecasts we can potentially enrich

our models. There are however, some plausible caveats to using forecasts as covariates. Each

forecast is a result of an underlying forecast model, inevitably including simplifying assumptions.

The sum of numerous forecasts errors ϵi may have degraded, rather than improved our forecasts.

Additionally, we opt to only include 2 days ahead old forecasts to ensure that only data that

would be available to a prospective electricity buyer is used. This is crucial in validation and

evaluation where forecasts are made on a rolling origin. However, in a production environment

all forecasts made before 10 .a.m should be considered. As such we have potentially left out

valuable information present in newer forecasts, potentially degrading model performance. The

Energy Quantified short-term day-ahead forecasts is also penalized by forecast restriction, and

may have been an unrealistic benchmark in the validation of models.

The validation of our models has been conducted using non-overlapping 38 hour forecasts, using

all available data. In order to strictly use data that would be available in a real-life use-case,

Energy Quantified forecasts published within the forecast horizon have been intentionally left

out. Another viable approach could have been to validate the models by performing 38 hours

forecast each day at 10 a.m. such that we could make use of Energy Quantified’s newest forecast

before issued at 10 a.m. each day. In practice this would mean leaving out large portions of
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available data, a trade-off we deemed unattractive.

The use of two different neural networks in order to predict the probability of day-ahead ex-

ceeding intraday price classification may have been an unnecessary complication. Using the

actual price exceedance ∆P = PDay-ahead − P Intraday directly as dependent variable may reduce

the modeling complexity. Early attempts to forecast using the day-ahead exceedance directly

suggested that predictions improved by modelling the intraday and day-ahead prices in separate

neural networks. The discrepancy in relative performance of the same model architecture applied

to intraday and day-ahead markets may lend some support to this hypothesis, as seen in table 4.

This suggests that the optimal intraday and day-ahead forecasting models differ depending on

whether they are applied to day-ahead or intraday markets. Additionally, predicting prices are

beneficial as it is allows for easier comparisons with existing literature and day-ahead forecasts

made by Energy Quantified.

8.6 Avenues of further research

In this thesis we have made several major simplifications which may have affected our results.

Extending trading behaviour by allowing for mixed day-ahead and intraday positions may alter

the conclusions drawn in this thesis.

The decision to trade in intraday markets is largely based on the expectation that volume may

be adequate for a given delivery hour. Complementary forecasts of expected volume could

potentially be of great value in determining the optimal market for a given delivery hour.

We have been primarily concerned with the perspective of an electricity buyer, but dispatchable

energy producers are faced with a similar decision problem as that of electricity buyers. Adapting

a similar decision tool for electricity producers could be an interesting future research topic.

Preliminary findings suggests that forecasting the price exceedance of day-ahead and intraday

prices directly ∆P degrades forecast performance. An exhaustive analysis is needed to conclude

either way.
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9 Conclusion

Deep neural networks represents a powerful forecasting tool. This thesis support the general

findings in existing literature, and find that deep neural networks outperform all tested bench-

marks by a significant margin. The LSTM and GRU models chosen for day-ahead and intraday

markets surpasses the benchmark by 30.6 % and 29 %, respectively.

We find that the performance premium achieved by the implemented neural networks is par-

ticularly promising in time periods of high price variance. Furthermore, the forecasts produced

by the neural networks are less susceptible to performance degradation across delivery hours

and length of forecast horizon. As a result this thesis provides some degree of evidence that

neural networks applied to the electricity price domain, increases performance and stability

when compared to traditional forecasting techniques. The use of a multilayer feedforward net-

work to classify the probabilities of an intraday discount modestly increased performance when

compared to using the forecasts directly in a logit model. Though ripe with potential sources

of error, our decision tool is shown to increase expected marginal profits when compared to a

day-ahead-only trading strategy. Given the allevement of the error sources, the decision tool

presents a promising avenue for automation of intraday trade. This is particularly relevant as

wind-power and other variable intermittent energy sources make up an ever-larger share of total

electricity production.
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Appendix

A Background

A.1 Power Market

A.1.1 Balancing markets

The regulating volume available to a TSO can broadly be divided into three types: primary re-

serves (FCR), secondary reserves (aFFR) or tertiary reserves (mFRR) (“Reserves and balancing

power”, n.d.). The primary and secondary reserves act automatically as a response to deviation

in frequency, while the tertiary reserves are manually initiated by the TSO. The procedure is as

follows: using primary reserve when the imbalance occurs, the second reserves take effect when

the imbalance lasts for several minutes in order to free up primary reserve for a new imbalance,

and tertiary reserve initiated when the first two reserves come in short with up to 15 minute re-

sponse time. Primary and secondary reserves are traded in separate hourly and weekly markets

while tertiary reserves are paid upfront to bidders guaranteeing available regulation regardless

of utilization of the available resources.

A.1.2 Balancing market: price-determination for consumers and producers

The Norwegian regulating market follows one-price system for consumption-imbalances, and

a two-price system for production imbalances. The one-price system entails that consumers

pay the regulating price of the dominating regulated power volumes. “Regulation information

per area” (n.d.). Producers however, are only penalized for increasing the existing regulation

imbalance, that is, moving in the opposite direction of the regulation measure taken by the

TSO (Bourry and Kariniotakis, 2009). On the other hand, should a power producer alleviate

an imbalance by for example buy available electricity when a surplus exists, the volume is paid

for by the day-ahead/spot price for that delivery hour (Holttinen et al., 2006).

B Data

B.1 Pre-Processing

B.1.1 Feature scaling

Max-Min Scaler, Standard Scaler, Max Absolute Scaler and Robust Scaler are some of the scaling

methods that can be used. Each of the existing scaling methods also requires that certain

assumptions are fulfilled and are not always appropriate for certain data. Standard Scaler
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assumes that the data are Gaussian distributed, and observing all the histograms of all features

in figure 30 and 31 (see Appendix) indicates that not all are normally distributed (Baijayanta,

2020). Max-Min Scaler and Max Absolute Scaler are sensitive to outliers, and studying the

boxplots of all features in figure 32 and 33, in the appendix, one can see that most of the

features on hourly frequency suffers from outliers.

B.1.2 Time zone

Coordinated Universal Time (UTC) and Central European Time (CET) are two standardized

time zone where CET is one hour ahead of UTC during winter time and two hours ahead during

summer time (daylight saving time), commonly called CEST. Since most of our features from

Energy Quantified uses CET, especially hourly data, we opt to use this as hour standard time

zone. Some of the daily data in Energy Quantified and Nord Pool uses UTC, which needs

transformation to CET.

C Methodology

C.1 Neural Networks

C.1.1 Checkpoint ensembling

Checkpoint ensembling is an inexpensive technique that has been shown to increase generaliz-

ability by averaging predictions of the n best performing renditions of a given model (H. Chen

et al., 2017). Checkpoint ensembling is used extensively, for all models presented in this thesis.

C.1.2 Regularization techniques

Early stopping

Early stopping refers to ending model training once out-of-sample performance has degraded or

is no longer improving after new epochs of training. Early stopping has been described as “free

lunch”, implying that its performance increase suffers no penalty (Hinton et al., 2015).

Dropout

Dropout is a dramatic yet effective regularization technique. The technique approximates the

performance of multiple renditions of the same model by leaving out random neurons (Srivastava

et al., 2014).
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C.1.3 Model convergence

Gradient clipping Gradient clipping seeks to increase the stability and thus the expected speed

of model convergence. Simply put, the step performed in parameter updates may become too

large and “skip” over local minima undoing previous valuable training (Goodfellow et al., 2016).

Clipping restricts the value of the parameter gradient just before a parameter update occurs.

C.1.4 Stochastic Weight Averaging

As we have seen Stochastic Gradient Descent (SGD) involves calculating training loss and updat-

ing loss for all samples drawn from a random batches zt. A single weight update is done on the

basis of subtracting the calculated loss from the random sample: wt+1 = wt−δwQ(zt, wt), where

λyt is a learning rate (Bottou, 2010). We remind the reader that all optimization techniques

involving gradient descent bears the risk of learning stalling in local minima far from the global

minima. We emphasize for the reader that the purpose of learning and corresponding parameter

updates is to approximate as closely as possible the global minimum. In neural network training

involves carefully balancing the number of steps, batch size, type of optimizer and learning rate

to carefully balance the risk of converging too quick or overfitting. The authors of this thesis can

vouch for the frustrations that choosing optimizers and finetuning learning rates may involve.

A recent technique seeks to mitigate the risk of getting stuck i local optima by using a higher

learning rate to explore nearby optima (Izmailov et al., 2018). Stochastic Weight Averaging is

used in our model selection as a callback implemented in Pytorch Lightning (Pytorch, 2022).

After an attempt of finding a local optimum using a low learning rate with an non-averaging

optimizer such as ADAM or Ranger, we switch to SWA after a preset number of epochs (fre-

quently, 12 or 15). This results in some rather unusual-looking learning curves, as the constant

learning rate is applied. In the burn-in period, training and validation loss typically increases

before approaching a new optima. This can be seen in several of the learning curves presented

in the appendix, most notably in the intraday GRU model seen in figure 40.
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D Figures

D.1 Data

D.1.1 Data Exploration

Histogram of selected variables 1 of 2

Figure 30: Histograms of all variable used
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Histogram of selected variables 2 of 2

Figure 31: Histograms of all variable used
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F i g u r e 3 1 : Histograms of all variable used
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Box-plot of selected variables 1 of 2

Figure 32: Boxplot of all variable used
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Box-plot of se lected variables l of 2

F i g u r e 3 2 : Boxplot of all variable used
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Box-plot of selected variables 1 of 2

Figure 33: Boxplot of all variable used
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Box-p lo t of se l ec t ed var iab les l of 2
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F i g u r e 3 3 : Boxplot of all variable used
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Figure 34: Frequency of missing tradehours on intraday markets per
hour

Figure 35: Boxplot of intraday buy volume in NO2 per hour in
2019-2022

Figure 36: Boxplot of day-ahead buy volume in NO2 per hour in
2019-2022
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Figure 37: Boxplot of intraday and day-ahead prices per day for area
NO2 in 2019-2022

E Tables

E.1 Price-Drivers

Time features

Series Unit Example

Hour Integer [0, 1, ..., 23]
Day String [Monday, Tuesday, ..., Sunday]
Week Integer [1, 2, ..., 52]
Month String [January, February, ..., December]

Table 11: Time features

Binary structural change features

Series Unit State Period

Covid-19 String [Yes, -] 12.03.2020 - 25.09.2021
Nord Link String [Yes, -] 31.03.2021
North Sea Link String [Yes, -] 01.10.2021

Table 12: Binary structural change features

E.2 Data

E.2.1 Consolidated time series

Consolidated features are mainly combined features, where the main purpose is to reduce the

amount of features under the assumption that these are consider to explain the independent

target variable together. From the literature (see section 1, 2 and 4.1) it is found that wind and

solar photovoltaic have a significant impact on power prices, likely because of its intermittent

property, and the fact that Norway (NO2) imports this type of energy because of the strongly

reduced prices due to production surplus in Denmark, we opt to only include these power sources

and leaving all the dispatchable power sources into a single feature as shown in table 13.
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Figure 37: Boxplot of in t raday a n d day-ahead prices per d a y for area
N O 2 in 2019-2022

E Tables

E . l Price-Drivers

T i m e features

Series Unit Example

Hour
D a y
Week
M o n t h

Integer
St r ing
Integer
St r ing

[0, 1, ... 23]
[Monday, Tuesday, .. . , S u n d a y ]
[1, 2 . . . . , 52)
[January , February , ..., December]

Table 1 1 : T i m e features

B i n a r y s t r u c t u r a l c h a n g e features

Series Unit S t a t e Period

Covid-19 Str ing [Yes, -] 12.03.2020 - 25.09.2021
Nord Link Str ing [Yes, -] 31.03.2021
Nor th Sea Link Str ing [Yes, -] 01.10.2021

Table 12: Binary s t r u c t u r a l change features

E.2 D a t a

E.2 .1 Consolidated time series

Consolidated features are mainly combined features, where the main purpose is to reduce the

amount of features under the assumption that these are consider to explain the independent

target variable together. From the literature (see section l, 2 and 4.1) it is found that wind and

solar photovoltaic have a significant impact on power prices, likely because of its intermittent

property, and the fact that Norway (NO2) imports this type of energy because of the strongly

reduced prices due to production surplus in Denmark, we opt to only include these power sources

and leaving all the dispatchable power sources into a single feature as shown in table 13.
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Consolidated time series

Series Unit Type Resolution Area

+ CHP biomass power production MWh Actual Hourly DK1
+ CHP central power production MWh Actual Hourly DK1
+ CHP decentral power production MWh Actual Hourly DK1
+ Hard coal power production MWh Actual Hourly DK1
+ Natural gas power production MWh Actual Hourly DK1
+ Oil power production MWh Actual Hourly DK1
+ Other power production MWh Actual Hourly DK1
+ Waste power production MWh Actual Hourly DK1

= Dispatchable power production MWh Actual Hourly DK1

Table 13: Showing how the features are combined into a single time series. The
dispatchable power production series is named dk power non wind in the code

E.2.2 Pre-processing

Summary of missing hours for all selected time series

Series Missing values Share of total

NO5 Residual Load MWh/h 15min Forecast 38 0.16%
NO2 Residual Load MWh/h 15min Forecast 38 0.16%
NO1 Residual Load MWh/h 15min Forecast 38 0.16%
DK1 Residual Load MWh/h 15min Forecast 38 0.16%
NO2 Consumption Index Cloudiness % 15min Forecast 31 0.13%
NO5 Consumption Temperature °C 15min Forecast 24 0.10%
NO5 Consumption MWh/h 15min Forecast 24 0.10%
NO2 Wind Power Production MWh/h 15min Forecast 24 0.10%
NO2 Consumption Temperature °C 15min Forecast 24 0.10%
NO2 Consumption MWh/h 15min Forecast 24 0.10%
NO2 Consumption Index Heating % 15min Forecast 24 0.10%
NO2 Consumption Index Chilling % 15min Forecast 24 0.10%
NO1 Consumption Temperature °C 15min Forecast 24 0.10%
NO1 Consumption MWh/h 15min Forecast 24 0.10%
DK1 Wind Power Production MWh/h 15min Forecast 24 0.10%
DK1 Solar Photovoltaic Production MWh/h 15min Forecast 24 0.10%
NO2 Hydro Reservoir Production MWh/h H Synthetic 23 0.09%
NO5 CHP Power Production MWh/h H Actual 7 0.03%
NO2 CHP Power Production MWh/h H Actual 7 0.03%
NO1 CHP Power Production MWh/h H Actual 7 0.03%
NO1 Hydro Power Production MWh/h H Actual 6 0.02%
Day-ahead Trade Volume 3 0.01%
Day-ahead Price 3 0.01%

Table 14: Summary of missing data for each time series

E.2.3 Data Exploration

Summary statistics of Nord Pool volumes in 2019-2022

Market Area Count Mean St.dev Min 25% 50% 75% Max

Day-ahead NO1 26709 3980.1 1504.7 1514.8 2758.6 3678.0 5097.1 8717.2
Day-ahead NO2 26709 3738.5 608.9 2324.3 3256.4 3721.6 4158.1 5740.4
Day-ahead NO3 26709 2962.5 456.1 1928.6 2585.7 2912.0 3318.7 4182.1
Day-ahead NO4 26709 1656.9 313.4 948.5 1405.0 1662.7 1903.3 2571.2
Day-ahead NO5 26709 1691.0 408.9 830.7 1390.0 1653.0 1984.2 2801.1
Intraday NO1 26688 21.1 37.3 0.0 0.0 5.0 26.3 467.0
Intraday NO2 26688 39.7 75.1 0.0 0.0 10.8 45.3 1170.0
Intraday NO3 26688 15.6 35.1 0.0 0.0 0.0 15.0 646.4
Intraday NO4 26688 6.7 20.1 0.0 0.0 0.0 4.0 440.0
Intraday NO5 26688 15.5 48.4 0.0 0.0 0.0 5.0 946.0

Table 15: Summary statistics of Nord Pool volumes in 2019-2022
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C o n s o l i d a t e d t i m e ser ies

Series Unit T y p e Resolution Area

+ C H P biomass power production M W h Actual Hourly D K l
+ C H P central power production M W h Actual Hourly D K l
+ C H P decentral power production M W h Actual Hourly D K l
+ Hard coal power production M W h Actual Hourly D K l
+ Natura l gas power production M W h Actual Hourly D K l
+ Oil power production M W h Actual Hourly D K l
+ Other power production M W h Actual Hourly D K l
+ Waste power production M W h Actual Hourly D K l

= D i s p a t c h a b l e p o w e r p r o d u c t i o n M W h A c t u a l H o u r l y D K l

Table 13: Showing how t h e features are combined into a single t ime series. T h e
dispatchable power production series is named dk power non wind in t h e code

E.2 .2 Pre-processing

S u m m a r y of miss ing h o u r s for all s e l ec t ed t i m e ser ies

Series

NO5 Residual Load M W h / h 15min Forecast
NO2 Residual Load M W h / h 15min Forecast
N O l Residual Load M W h / h 15min Forecast
D K l Residual Load M W h / h 15min Forecast
NO2 Consumption Index Cloudiness % 15min Forecast
NO5 Consumption Temperature °C 15min Forecast
NO5 Consumption M W h / h 15min Forecast
NO2 Wind Power Product ion M W h / h 15min Forecast
NO2 Consumption Temperature "C 15min Forecast
NO2 Consumption M W h / h 15min Forecast
NO2 Consumption Index Heating % 15min Forecast
NO2 Consumption Index Chilling % 15min Forecast
N O l Consumption Temperature °C 15min Forecast
N O l Consumption M W h / h 15min Forecast
D K l Wind Power Product ion M W h / h 15min Forecast
D K l Solar Photovoltaic Product ion M W h / h 15min Forecast
NO2 Hydro Reservoir Product ion M W h / h H Synthetic
NO5 C H P Power Product ion M W h / h H Actual
NO2 C H P Power Product ion M W h / h H Actual
N O l C H P Power Product ion M W h / h H Actual
N O l Hydro Power Product ion M W h / h H Actual
Day-ahead Trade Volume
Day-ahead Price

Missing values Share of to t a l

38 0.16%
38 0.16%
38 0.16%
38 0.16%
31 0.13%
24 0.10%
24 0.10%
24 0.10%
24 0.10%
24 0.10%
24 0.10%
24 0.10%
24 0.10%
24 0.10%
24 0.10%
24 0.10%
23 0.09%

7 0.03%
7 0.03%
7 0.03%
6 0.02%
3 0.01%
3 0.01%

Table 1 4 : Summary of missing da t a for each t ime series

E.2 .3 D a t a Exploration
S u m m a r y stat ist ics of N o r d P o o l vo lumes in 2019-2022

Market Area Count Mean St.dev Min 25% 50% 75% Max

Day-ahead NOl 26709 3980.1 1504.7 1514.8 2758.6 3678.0 5097.1 8717.2
Day-ahead NO2 26709 3738.5 608.9 2324.3 3256.4 3721.6 4158.1 5740.4
Day-ahead NO3 26709 2962.5 456.1 1928.6 2585.7 2912.0 3318.7 4182.1
Day-ahead NO4 26709 1656.9 313.4 948.5 1405.0 1662.7 1903.3 2571.2
Day-ahead NO5 26709 1691.0 408.9 830.7 1390.0 1653.0 1984.2 2801.1
Intraday NOl 26688 21.1 37.3 0.0 0.0 5.0 26.3 467.0
Intraday NO2 26688 39.7 75.1 0.0 0.0 10.8 45.3 1170.0
Intraday NO3 26688 15.6 35.1 0.0 0.0 0.0 15.0 646.4
Intraday NO4 26688 6.7 20.1 0.0 0.0 0.0 4.0 440.0
Intraday NO5 26688 15.5 48.4 0.0 0.0 0.0 5.0 946.0

T a b l e 1 5 : Summary statistics of Nord Pool volumes in 2019-2022
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Summary statistics of Nord Pool prices in 2019-2022

Market Area Count Mean St.dev Min 25% 50% 75% Max

Day-ahead NO1 26733 42.6 40.9 -2.0 13.6 37.6 50.6 600.2
Day-ahead NO2 26733 42.8 40.7 -2.0 13.6 37.6 52.2 600.2
Day-ahead NO3 26733 29.8 22.0 -0.0 13.0 31.2 41.4 360.0
Day-ahead NO4 26733 27.5 21.0 -0.0 11.9 26.3 39.3 360.0
Day-ahead NO5 26733 42.5 40.5 -0.1 13.7 37.6 50.5 600.2
Intraday NO1 15398 40.8 39.6 -29.7 16.5 35.0 48.7 563.1
Intraday NO2 18147 42.1 41.6 -29.8 15.5 35.2 51.5 598.0
Intraday NO3 12999 28.4 23.9 -45.0 12.2 27.1 39.0 437.0
Intraday NO4 7837 27.1 25.5 -36.0 11.5 22.9 37.2 357.5
Intraday NO5 7693 46.9 43.2 -29.0 21.0 36.4 60.9 580.9

Table 16: Summary statistics of Nord Pool prices in 2019-2022

E.3 Results

E.3.1 Model configurations

Hyperparameter configurations of day-ahead neural networks

Hyperparameters LSTM GRU TFT DeepAR

Accumulate gradient batch size 2 4 3 5
Batch size 128 128 64 64
Dropout 0.1 0.1 0.05 0.1
Encoding length 336 336 96 200
Gradient clipping 0.5 0.6 0.3 0.6
Hidden size 128 256 128 128
Layers 2 2 3 2
Learning rate 0.0001 0.001 0.05 0.001
Minimum delta 0.05 0.05 0.01 0.05
Number of ensembles 3 3 2 3
Optimizer Ranger Ranger Ranger Ranger
Patience 17 17 7 16
Reduce on plateu patience 2 2 2 2
Reduce on plateu reduction 3 2 2 2
SWA epoch start 15 12 10 15

Table 17: Hyperparameter configurations of day-ahead neural networks

Hyperparameter configurations of intraday neural networks

Hyperparameters LSTM GRU TFT DeepAR

Accumulate gradient batch size 2 4 3 2
Batch size 64 128 218 64
Dropout 0.1 0.1 0.05 0.1
Encoding length 120 300 168 120
Gradient clipping 0.005 0.6 0.3 0.05
Hidden size 128 256 64 128
Layers 2 2 3 2
Learning rate 0.00056 0.001 0.05 0.0001
Minimum delta 0.05 0.05 0.1 0.03
Number of ensembles 0 3 2 0
Optimizer Adam Ranger Ranger Adam
Patience 17 17 7 17
Reduce on plateu patience 2 2 2 3
Reduce on plateu reduction 2 2 2 3
SWA epoch start 12 12 10 13

Table 18: Hyperparameter configurations of day-ahead neural networks

E.3.2 Neural network classifiers
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S u m m a r y s t a t i s t i c s of N o r d P o o l pr ices in 2 0 1 9 - 2 0 2 2

Market Area Count Mean St.dev Min 25% 50% 75% Max

Day-ahead N O l 26733 42.6 40.9 -2.0 13.6 37.6 50.6 600.2
Day-ahead NO2 26733 42.8 40.7 -2.0 13.6 37.6 52.2 600.2
Day-ahead NO3 26733 29.8 22.0 -0.0 13.0 31.2 41.4 360.0
Day-ahead NO4 26733 27.5 21.0 -0.0 11.9 26.3 39.3 360.0
Day-ahead NO5 26733 42.5 40.5 -0.1 13.7 37.6 50.5 600.2
Intraday N O l 15398 40.8 39.6 -29.7 16.5 35.0 48.7 563.1
Intraday NO2 18147 42.1 41.6 -29.8 15.5 35.2 51.5 598.0
Intraday NO3 12999 28.4 23.9 -45.0 12.2 27.1 39.0 437.0
Intraday NO4 7837 27.1 25.5 -36.0 11.5 22.9 37.2 357.5
Intraday NO5 7693 46.9 43.2 -29.0 21.0 36.4 60.9 580.9

Table 16: Summary statistics of Nord Pool prices in 2019-2022

E.3 R e s u l t s

E.3 .1 M o d e l configurations

H y p e r p a r a m e t e r conf igurat ions of d a y - a h e a d n e u r a l ne tworks
Hyperparameters LSTM G R U T F T DeepAR

Accumulate gradient batch size 2 4 3 5
Batch size 128 128 64 64
Dropout 0.1 0.1 0.05 0.1
Encoding length 336 336 96 200
Gradient clipping 0.5 0.6 0.3 0.6
Hidden size 128 256 128 128
Layers 2 2 3 2
Learning ra te 0.0001 0.001 0.05 0.001
Minimum delta 0.05 0.05 0.01 0.05
Number of ensembles 3 3 2 3
Optimizer Ranger Ranger Ranger Ranger
Patience 17 17 7 16
Reduce on plateu patience 2 2 2 2
Reduce on plateu reduction 3 2 2 2
SWA epoch s t a r t 15 12 10 15

Table 1 7 : Hyperparameter configurations of day-ahead neural networks

H y p e r p a r a m e t e r conf igurat ions of intraday n e u r a l ne tworks
Hyperparameters LSTM G R U T F T DeepAR

Accumulate gradient batch size 2 4 3 2
Batch size 64 128 218 64
Dropout 0.1 0.1 0.05 0.1
Encoding length 120 300 168 120
Gradient clipping 0.005 0.6 0.3 0.05
Hidden size 128 256 64 128
Layers 2 2 3 2
Learning ra te 0.00056 0.001 0.05 0.0001
Minimum delta 0.05 0.05 0.1 0.03
Number of ensembles 0 3 2 0
Optimizer Adam Ranger Ranger Adam
Patience 17 17 7 17
Reduce on plateu patience 2 2 2 3
Reduce on plateu reduction 2 2 2 3
SWA epoch star t 12 12 10 13

Table 1 8 : Hyperparameter configurations of day-ahead neural networks

E.3 .2 Neura l network classifiers
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ROC curve of the logit benchmark classifier

Figure 38: ROC curve of logit classifier

E.3.3 Performance evaluation

Learning curve of intraday GRU model

Figure 39: Learning curves displaying validation and training loss per training step

Learning curve of day-ahead LSTM model

Figure 40: Learning curves displaying validation and training loss per training step
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R O C curve of t h e logit benchmark classifier
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F i g u r e 3 8 : ROC curve of logit classifier

E.3.3 Per formance evaluat ion
Learning curve of intradayGRUmodel
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F i g u r e 3 9 : Learning curves displaying validation and training loss per training s tep
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F i g u r e 4 0 : Learning curves displaying validation and training loss per training s tep
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