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1. Introduction 

Photovoltaic-based (PV) development intervention programs have substantial potential in 

alleviating poverty and sustaining the environment, but most of these programs are only used 

as a compensating solution for rural electrification (Adeoti et al., 2001; Ahammed & Taufiq, 

2008; Baurzhan & Jenkins, 2016; Biswas et al., 2004; Kamalapur & Udaykumar, 2011; 

Laufer & Schäfer, 2011; Munro & Bartlett, 2019; Obeng & Evers, 2009; Yadav, Davies, et 

al., 2019; Yadav, Malakar, et al., 2019). This article investigates a special program in China 

which introduced solar energy for poverty alleviation (SEPAP). This program subsidizes 

rural households to build PV systems connected to the grid, therefore the households can get 

access to solar energy at a very low cost and sell the excessive energy generated from the 

system to increase their income. Increased incomes and access to free energy for poor 

households have the potential to not only promote local economic activities but may also 

make a difference in their energy choice. Exploiting the data at county level using several 

causal methods shows that getting access to SEPAP increased vegetation index by about 

1.2% and increased nightlight intensity by about 8%. The result is likely generated by the 

decline in traditional biomass energy consumption, income generated from selling electricity 

and expanded PV market. 

I constructed an original dataset covering 2709 counties over 19 year (from 2001 to 2019) by 

combining satellite data and official data. The records provide information on vegetation 

index and nightlight intensity at the county level which shed lights on the potential impact on 

environment and economic activity. The analysis begins with staggered difference-in-

difference with two treatment periods. The changes in vegetation index and nightlight 

intensity are compared between counties included in SEPAP, and counties that are not 

included. Controlling for cofounding factors, there are no differential pre-trends in 

vegetation index and nightlight intensity before the initiation of the policy.  

The findings indicate higher vegetation index and nightlight intensity associated with the 

implementation of SEPAP: compared with untreated counties, treated counties experienced a 

1.2% increase in vegetation index and 8.1% increase in nightlight intensity after enrolled in 

SEPAP. The findings are significant at the 5% level. The estimates are robust to controlling 

for county-level and provincial-level time varying controls.  
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The baseline model is then extending to an event study design which captures the dynamic 

treatment effects and tests the trends during pretreatment periods. The potential flaws 

regarding difference-in-difference method with staggered adoption is also considered in this 

study by employing the Goodman-Bacon decomposition to estimate potential biases 

generated from comparisons between two treatment periods (reference goodman bacon). In 

addition, I also use the synthetic difference-in-difference estimator as a robustness check. I 

find very limited biased generated from staggered adoption, and the estimation with 

synthetic difference-in-difference is similar to the difference-in-difference estimates.  

As a program promoted under a national poverty alleviation campaign, many counties 

included in SEPAP are also entitled as poverty-stricken counties which benefit from other 

poverty alleviation programs. The potential influence of poverty-stricken counties is also 

examined by excluding all the poverty-stricken counties, and only compares counties that are 

not influence by other poverty alleviation policies. I find limited changes in the coefficients 

of nightlight intensity, but effects on vegetation index decreased to nearly zero. By carefully 

identifying the potential flaws of the empirical models, employing advanced identification 

strategy, and avoid the influence of other poverty alleviation policies, the impact on 

nightlight intensity is statically robust. Therefore, these pieces of evidence collectively 

support a potential causal interpretation that the increase in nightlight intensity is likely 

attribute to the implementation of SEPAP. 

Before this study, only few studies explored the poverty alleviation experience of China 

through SEPAP program. Some studies noticed that the fund shortages might block the 

development of PV projects in China (Li et al., 2019; Y. Wu et al., 2019; Xu et al., 2019). 

The other studies emphasize the importance of industry structures in eliminating 

overcapacity and alleviating poverty (Xue, 2017; Zhou & Liu, 2018). Liao and Fei 

investigated the SEPAP program by focusing on the information of PV projects and 

installation capacity using satellite data, but the impact of SEPAP is not evaluated (Liao & 

Fei, 2019). Geall et al. stress that without appropriate incentives for local officials and non-

state actors, the promotion of PV projects in rural areas are limited (Geall & Shen, 2018). 

Zhang et al conducted a systematic quantitative evaluation regarding the effect of SEPAP 

with official data which limited the number of counties included in their study (H. Zhang et 

al., 2020). 
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These prior studies either lack of quantitative evaluation of the efficacy of the program, or 

are not able to include most of counties due to missing values. This study contributes to the 

understanding of SEPAP by combining different satellite data and official data to cover most 

counties and by employing several empirical strategies to measure the causal effect of this 

program. More broadly, this study shed lights to the potential of increasing economic 

activities without harming the environment.  
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2. Background 

Since the launch of the "Reform and Opening-Up" policy in late 1978, China's economy has 

undergone unprecedented changes. Along with the transformation, poverty rate decreased 

dramatically. Using the World Bank’s international poverty line of $1.90 a day as the 

benchmark, the national poverty rate has fallen from over 66% in 1990 to under 1% in 

2015.1 China has been targeting poverty alleviation as one of its key national strategies since 

2013. Unlike the previous measures which emphasize the allocation of special funds to the 

poor counties, this approach highlights the importance of accurate poverty identification and 

appropriate projects arrangement (Zhou et al., 2018). The poverty alleviation projects are 

designed based on the natural and social conditions of each poor areas. About Ten initiatives 

have been published under this strategy, including skill training and education to improve 

human capital, targeting microcredit to rural households, relocation of villages located in 

extremely remote areas, expansion of e-commence to improve small businesses, tourism, 

planting cash plants such as paper mulberry, entrepreneurial training, and photovoltaics (PV) 

deployment which is the topic of this study.2 

Solar energy for poverty alleviation program (SEPAP) is being implemented in counties 

with sufficient solar radiation and with suitable geographic conditions. Its goal is to add over 

10 GW of capacity and to reach more than 2 million households by 2020. (Han et al., 2020). 

It consists of three primary projects: rooftop or yard installations targeting poor households 

(3-5 kW), the ownership and benefits belong to the household; village-level arrays (100 to 

300 kW) owned by the village and a certain share of benefits are allocated to poor 

household; and joint construction between villages and enterprise (no more than 6000 kW) 

(H. Zhang et al., 2020).  

Households equipped with the rooftop PV equipment have free access to the electricity 

generated from it and are connected to the electric grids so that they can sell extra electricity 

to generate income, but they are also in charge of the maintenance cost. The PV projects 

organized by villages are subsidized by the government and a proportion of income 

 

1  World Bank. Poverty headcount ratio at $1.90 a day (2011 PPP) (% of population). 
https://data.worldbank.org/indicator/SI.POV.DDAY?view=map&year=2015  

2 SCIO briefing on poverty alleviation and development SCIO briefing on poverty alleviation and development 

6

2. Background

Since the launch of the "Reform and Opening-Up" policy in late 1978, China's economy has

undergone unprecedented changes. Along with the transformation, poverty rate decreased

dramatically. Using the World Bank's international poverty line of $1.90 a day as the

benchmark, the national poverty rate has fallen from over 66% in 1990 to under l% in

2015.' China has been targeting poverty alleviation as one of its key national strategies since

2013. Unlike the previous measures which emphasize the allocation of special funds to the

poor counties, this approach highlights the importance of accurate poverty identification and

appropriate projects arrangement (Zhou et al., 2018). The poverty alleviation projects are

designed based on the natural and social conditions of each poor areas. About Ten initiatives

have been published under this strategy, including skill training and education to improve

human capital, targeting microcredit to rural households, relocation of villages located in

extremely remote areas, expansion of e-commence to improve small businesses, tourism,

planting cash plants such as paper mulberry, entrepreneurial training, and photovoltaics (PV)

deployment which is the topic of this study.2

Solar energy for poverty alleviation program (SEPAP) is being implemented in counties

with sufficient solar radiation and with suitable geographic conditions. Its goal is to add over

10 GW of capacity and to reach more than 2 million households by 2020. (Han et al., 2020).

It consists of three primary projects: rooftop or yard installations targeting poor households

(3-5 kW), the ownership and benefits belong to the household; village-level arrays (100 to

300 kW) owned by the village and a certain share of benefits are allocated to poor

household; and joint construction between villages and enterprise (no more than 6000 kW)

(H. Zhang et al., 2020).

Households equipped with the rooftop PV equipment have free access to the electricity

generated from it and are connected to the electric grids so that they can sell extra electricity

to generate income, but they are also in charge of the maintenance cost. The PV projects

organized by villages are subsidized by the government and a proportion of income

1 World Banlc Poverty headcount ratio at $1.90 a day (2011 PPP) (% of population).
https://data.worldbank.org/indicator/SI.POV.DDAY?view=map&year=2015

2 SCIO briefing on poverty alleviation and development SCIO briefing on poverty alleviation and development

https://data.worldbank.org/indicator/SI.POV.DDAY?view=map&year=2015
http://www.scio.gov.cn/32618/Document/1459407/1459407.htm


 7 

generated from the projects will be transferred to the poor households in the villages. These 

projects are implemented based on the distribution of poor households and natural 

conditions. Middle and East areas that lack of sufficient land resources are recommended to 

implement village-level arrays, while middle and west areas with sufficient lands can choose 

moderate scale centralized photovoltaic power station. Besides, to promote the solar energy 

capacity, the government introduced a fixed feed-in tariff subsidy policy for solar PV 

projects.3 The selling price of electricity generated from PV projects are determined based 

on local solar radiation resources and was separated into three solar resource zones. 

Although the solar PV tariffs declined since 2013, the selling price of electricity generated 

from PV system is still higher than electricity generated from other sources (Auffhammer et 

al., 2021). This program creates a win-win situation which increases the electricity 

accessibility by supplying affordable and reliable clean energy, it also provides employment 

and income generation opportunities which contribute to poverty alleviation.  

The development of SEPAP experienced several steps. In 2013, the PV was first introduced 

to 105 poor households in Hefei, the capital of Anhui province. The intervention was also 

adopted by Jinzhai, a county in the same province. In 2014, the SEPAP was established by 

the central government, the pilot program was announced in the same year and covered 37 

counties in 6 provinces. With these experiences, several government departments4 jointly 

issued the Opinions of Photovoltaic Poverty Alleviation Work File in 2016, aiming to 

expand the coverage of SEPAP to about 35,000 poverty-stricken villages located in 471 

counties in 16 provinces by the end of 2020. The households without the ability to work will 

increase their income by more than 3000 yuan (about $470 USD) per household each year.5 

This document implies the two important criteria for counties to be covered in SEPAP: the 

amount of solar radiation and local economic conditions. If the program achieves its 

objective of income generation, the poor households at the margin of poverty line (yearly 

household income of 4000 yuan in 2020, about $627 USD) would be able to increase their 

 

3 According to Maximilian Auffhammer et al. (2021), fixed feed-in tariffs are fixed electricity prices paid to renewable 
electricity producers for each unit of renewable electricity generated and delivered into the electricity grid. 

4 The government departments include the National Development and Reform Commission, the State Council Leading 
Group for Poverty Alleviation and Development, the National Energy Administration, the China Development Bank, and 
the Agricultural Development Bank of China 

5 Opinions of Photovoltaic Poverty Alleviation Work File 关于实施光伏发电扶贫工作的意见_部门新闻_中国政府网 
(www.gov.cn) 
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income by at least 75%. At the end of 2019, a total of 26.36 million kW of photovoltaic 

poverty alleviation has been built across the nation which produce electricity worth about 18 

billion yuan and benefit 4.16 million households.6 

The implementation of SEPAP is a historical conjecture of three contexts: 1) unbalanced 

development results in a political push for poverty alleviation; 2) the overcapacity and 

curtailment in solar energy industry of China need to be addressed with new market 

opportunities; 3) The rising electrification rate in rural area makes it possible to connect PV 

station with grid company. It is worth considering the context of SEPAP to better understand 

its potential impacts (Geall & Shen, 2018). 

Unbalanced development in China: Poverty alleviation has been a great success in China, 

however, the income gap between rural and urban residents keeps increasing. The disposable 

income of urban residents increased from 6,256 RMB in 2000 to 31,195 RMB in 2015 

whereas in rural areas, it rose from 2,282 RMB to 11,422 RMB. 7  The unbalanced 

development between regions exacerbates the urban-rural income gap. In 2015, there are 

55.75 million rural residents living under the national poverty line (annual net per capital 

income of 2,300 RMB)8 and most of them live in western inland provinces.9 The remaining 

population under the poverty line is known as the “hardest nut” which needs special 

treatment. The targeted poverty alleviation campaign is promoted to identify and help the 

poor household based on their specific difficulties. Generating income from solar energy is 

not skill or labour demanding which is suitable for poor families unable to work (Zhang et 

al., 2018), thus SEPAP is an ideal policy tool from the government’s perspective.  

Overcapacity of PV industry: China’s PV industry was largely export oriented and 

dominated the market of solar panels in Europe until the happening of trade disputes in EU 

and US in 2008 (Zhang et al., 2014). Some solar manufacturers have been forced to close 

due to declining orders and falling prices for polysilicon (Urban et al., 2016). Due to this 
 

6 the National Energy Administration: Photovoltaic poverty alleviation has been completed 国家能源局：光伏扶贫建设
任务全面完成 惠及415万户_新闻频道_央视网(cctv.com) 

7 Source: China National Bureau of Statistics: 国家数据 (stats.gov.cn) 

8 Source: 2015 National Economic and Social Development Statistical Bulletin 2015年国民经济和社会发展统计公报 
(stats.gov.cn) 

9 Source: China National Bureau of Statistics 2018年全国农村贫困人口减少1386万人 (stats.gov.cn) 
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situation, the opening of the domestic solar energy market became the only way for 

manufacturers to survive. Many top-down measures were taken to expand solar energy 

production (Chen & Lees, 2016). In addition, local governments, energy utilities, and 

manufacturers welcomed the development of solar energy as an environmentally friendly 

opportunity for growth. (Harrison & Kostka, 2014; Shen, 2017). The successful rescue plan 

led to China becoming the world's largest solar energy market since 2013. There were over 

15 GW of solar capacity installed in 2015, which represents more than a quarter of the total 

solar capacity installed worldwide. However, the rapid expansion of PV installations has 

outpaced grid connections and caused a persistent overcapacity in both production and 

consumption (Shen, 2017). The situation provides an important context to understand 

SEPAP which not only helps poor households but also absorbs overcapacity in solar energy 

industry. 

Rural electrification in China: The connection to the grid companies is the key to the 

implementation of SEPAP. China’s electrification rate rose from less than 10% in 1949 to 

nearly 99.8% in 2013 (Bie & Lin, 2015). The high electrification rate makes it possible for 

rural residents to sell the surplus electricity generated from PV stations to grid company, it 

also resulted in significant change of energy consumption patterns. Energy consumption 

from non-commercial sources (primarily fuelwood and crop residuals) has declined from 

70% in 1979 to 30% in 2007 (Liu et al., 2013). Different regions, however, have a great deal 

of disparity. Underdeveloped areas consume significantly less commercial electricity due to 

factors such as distribution of energy sources and socioeconomic factors (Zhang et al., 

2009). Getting accessed to SEPAP under this situation might further decrease the 

consumption of biomass energy by increasing the income of poor households and providing 

free electricity generated from PV station. 

Equipped with the background information, the potential impacts of SEPAP can be 

concluded into two dimensions. On the one hand, the improved household income and the 
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Figure 1 SEPAP Coverage at Province Level 

 

Note: The figure indicates the proportion of counties included in the SEPAP and total counties in each 

province. A darker color means more counties are included within a province. 
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3. Conceptural Framework 

This section discusses how the SEPAP could influence the local economy and environment. 

As a “top-down” program, the implementation of SEPAP needs cooperation between 

different stakeholders. First, the government provides preferential policies to the 

construction of PV stations, such as preferential loans and interest-bearing loan. Then, PV 

firms are contracted to build the PV stations. When PV stations are functional and connected 

to grid companies, the electricity generated from solar energy can be sold to grid companies. 

To promote the production of clean energy, the government subsidies solar PV electricity 

price through grid companies to owners of PV station (H. Zhang et al., 2020). According to 

the SEPAP, the income generated from PV station shall be allocated to poor households if 

it’s owned by village collectives. If the PV station is owned by a household, the owner can 

decide the proportion of electricity for self-use and for sell. The simple structure shows fours 

most important stakeholders of SEPAP: government, grid company, PV firm, and owner of 

PV station. For government, it provides preferential policies and subsidies to achieve “the 

greater good” for the society, the benefit to itself is limited assuming no corruption in the 

SEPAP. For grid company, they receive subsidies from government, but the subsidies are 

transferred to owner of PV station during the electricity transaction. The two apparent 

beneficiaries in SEPAP are poor household and PV firms. Poor households are benefited 

from receiving money transfer without providing labor force and getting access to new 

energy source which is barely free. PV firms can receive more orders from rural areas, and 

the operation and maintenance of PV station is a long-term business which needs ongoing 

technical services from PV firms.10 Based on the operation mechanism of SEPAP, the 

output can be characterized as expanding market for PV firms, generating income for poor 

households, and increase energy choice for those who own the PV station for themselves.  

Generating more income and having access to free solar energy might help rural households 

by changing their energy choice. The common model about household energy choices in 

developing countries is called “energy ladder” which attribute the difference in household 

energy choices to the variation of economic status. Many studies about developing countries 
 

10 This point is also stated in the policy announcement of 2016 that SEPAP should “establish long-term reliable project 
operation management system” which selects firms with strong financial strength, and technical and management 
capabilities, to undertake the operation and management of photovoltaic power plants or technical services. 关于实施光伏
发电扶贫工作的意见_部门新闻_中国政府网 (www.gov.cn) 
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also found that households with higher income shift from traditional biomass and other solid 

fuels to more modern and efficient energy source such as liquid petroleum gas, natural gas, 

or electricity (Barnes & Floor, 1996; Behera & Ali, 2016; Ekholm et al., 2010; Hanna & 

Oliva, 2015; Hosier & Dowd, 1987; Leach, 1992; Martey et al., 2021; Mottaleb & Ali, 

2017). Meanwhile, existing research also focused on other factors that drive household 

energy choices beyond income, the accessibility is one of the most mentioned factors. 

Getting to access to more convenient energy source makes it easier for households to shift 

energy source, studies did show that households shift their energy choices from traditional to 

modern and cleaner energy source once they get access to it (Campbell et al., 2003; Masera 

et al., 2000; Mensah & Adu, 2015; J. Zhang et al., 2020). The change in energy choice may 

not be an absolute replacement, in many cases households use a combination of mixed fuels, 

they shift traditional energy source from primary to secondary fuel, but still use them as one 

of energy source, even when they are having higher income or getting access to cleaner and 

more convenient energy (Behera et al., 2017; Joon et al., 2009). If the energy choices of 

households shift from biomass energy to commercial energy, the rate of deforestation and 

vegetation degradation might decrease.  

Expanding PV market along with increase of income might improve local economic 

activities. Many papers have found that public and private investment spending contributes 

to economic growth (Munnell, 1992; Ramirez & Nazmi, 2003; Zou, 2006). Even though the 

government does not invest on PV installations directly, it provides money through SEPAP 

to build infrastructures which may have large payoffs. The money generated from a PV 

station is similar to an unconditional cash transfer; which also has the potential to increase 

some categories of consumption (Habimana et al., 2021; Handa et al., 2018). Combining 

these two outputs, the economic activities might increase after the start of SEPAP. The 

detailed channels are presented in Figure 2.  
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Figure 2 Channels through which household energy consumption is affected by SEPAP 

 

Source: The graph is an adaptation based on Zhang et al. (H. Zhang et al., 2020), and Geall et al. (Geall & 

Shen, 2018). The SEPAP stipulates that non-residential PV stations funded by government shall be owned by 

village collectives and the income is distributed by village collectives. The residential PV stations is owned by 

households who can determine whether to sell or use the electricity generated from PV stations. The electricity 

generated from power station can be sold to grid company after connected to the grid and are expected to be 

consumed locally or nearby. The price of electricity generated from PV stations consists of two parts: 

desulfurization price and government subsidy. The subsidy is paid from government to grid company and then 

to the owner of power station. The SEPAP helps solar energy company by absorbing overcapacity and increase 

distributed solar PV generation. The market expansion for PV industry and income generation for poor 

households might improve local economic activity. The income generation and energy accessibility for poor 

household might raise their energy ladder. 
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4. Data 

The dataset used in this research is combined from several data sources. First, I collected 

policy announcements indicating when and which counties are included in SEPAP.11 The 

date of policy announcement might however not be a perfect indicator of the starting point of 

SEPAP: Some counties started their own PV program earlier than SEPAP, some counties 

spent months in preparation after enrolling in SEPAP. But it is difficult to track the specific 

starting time for each county, thus the years of policy announcements are used to identify the 

starting time of the SEPAP program.  

Then, several variables are merged at the county level to build a panel data with 51,471 

observations, covering 2709 counties and 19 years. The dataset included 94.5% of all 

counties in China, among which 388 counties are listed in the SEPAP, accounting for 81.2% 

of all counties participating in SEPAP.  

Some counties are excluded from the dataset for two reasons. First, all counties from Tibet 

were excluded because the social and natural environment of Tibet Plateau is unique and 

very different from other regions of China. Meanwhile, all the counties of Tibet are included 

in SEPAP due to excellent solar resources which makes it impossible to find suitable 

counterfactuals. Second, some counties were divided or merged into other counties during 

the last 20 years which prevents tracking their economic and environmental changes.  

Measuring Economic Activity with Nightlights Data 

Night lights, as detected by satellites, are increasingly used by economists, especially to 

proxy for local economic activity in poor countries (Beaman et al., 2021; Eberhard-Ruiz & 

Moradi, 2019; Fiorini et al., 2021; Jia et al., 2021; Mamo et al., 2019). There are two 

commonly used datasets regarding night-time lights: the Defense Meteorological Satellite 

Program (DMSP) and the Visible Infrared Imaging Radiometer Suite (VIIRS). The recent 
 

11 Two major policy announcements are used to identify counties included in SEPAP. The first one is published in October, 
2014, which only announced selected provinces, and asked the provinces to choose the pilot counties. The list pilot counties 
in this round are searched from provincial policy announcements and public news. The second one is published in April, 
2016, which contains the list of selected counties. Noted that 7 counties selected in the first round are not included in the 
second round, but they are also included in the analysis because the PV equipment still existed. Policy announcement 1: 政
府信息公开目录---国家能源局---国家能源局 国务院扶贫办关于印发实施光伏扶贫工程工作方案的通知 国能新能
[2014]447号  (nea.gov.cn). Policy announcement 2: 关于实施光伏发电扶贫工作的意见_部门新闻_中国政府网 
(www.gov.cn) 
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studies noticed that most of economic studies used DMSP data while other disciplines 

switched to VIIRS data which is newer and better than DMSP (Gibson et al., 2021; Gibson 

et al., 2020). Due to the fact that the DMSP data was designed for short-term weather 

forecasts for the Air Force, it contains a number of flaws, including blurring, coarse 

resolution, no calibration, low dynamic range, top-coding, and unrecorded changes in sensor 

amplification that complicate comparisons over time and space. The VIIRS Day-Night Band 

(DNB) on the other hand is designed to help researchers consistently measure the radiance of 

light coming from the Earth under a wide range of lighting conditions (covering almost 

seven orders of magnitude whereas the DMSP is limited to two), with high spatial precision 

and with data that is comparably time-stamped (Abrahams et al., 2018; Bluhm & Krause, 

2018; Elvidge et al., 2013). Based on the previous studies of these two data sources, the 

yearly VIIRS data12 is used to construct the intensity of night lights at county-level and the 

change of intensity of night lights represents the change in economic activities.  

Measuring Vegetation Degradation with Vegetation Index 

The normalized difference vegetation index (NVDI) measuring the “greenness” of 

vegetation based on the reflectance signatures of leafy vegetation has been used by 

economists to measure the deforestation or vegetation degradation in both developed and 

developing countries (Alix-Garcia et al., 2015; Burgess et al., 2012; Foster & Rosenzweig, 

2003; Mansfield et al., 2005; Pedelty et al., 2007). Deforestation or significant vegetation 

degradation can cause a decline in annual NDVI.  

In this study, the NDVI is used to shed light on the potential change in consumption of 

biomass energy, because the consumption of biomass energy is shown to be one of the 

causes of deforestation, especially in underdeveloped areas (Angelsen et al., 2014; Wunder 

et al., 2014). A study including 158 countries also shows that expanding rural electrification 

access can ease deforestation by weaning rural residents off the consumption of biomass 

energy (Tanner & Johnston, 2017). Along with studies about “energy ladder” that 

households with higher income shift from traditional biomass energy to more modern and 

efficient energy source such as liquid petroleum gas, natural gas, or electricity (Barnes & 

Floor, 1996; Behera & Ali, 2016; Ekholm et al., 2010; Hanna & Oliva, 2015; Hosier & 
 

12 C. D. Elvidge, K. Baugh, M. Zhizhin, F. C. Hsu, and T. Ghosh, “VIIRS night-time lights,” International Journal of 
Remote Sensing, vol. 38, pp. 5860–5879, 2017. 
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Dowd, 1987; Leach, 1992; Martey et al., 2021; Mottaleb & Ali, 2017). The change of 

consumption of biomass energy is very likely to be detected through the level of vegetation 

degradation and uncovered by the NDVI.  

The Construction of Covariates 

The following time-varying controls are included to alleviate the concern about omitted 

variable bias. The covariates are separated into county and provincial level. Due to missing 

values in the county-level statistical yearbook, the county-level controls are derived from 

satellite data. The provincial controls are collected from China’s National Bureau of 

Statistics.  

The county-level covariates are yearly hours of sun exposure, the ratio of lands used for 

agriculture, yearly average temperature, annual precipitation, and population density. Hours 

of sun exposure are applied from China Meteorological Data Service Center.13 The ratio of 

agricultural land is calculated by dividing the number of pixels of three types of croplands 

(rainfed, irrigated, mosaic) by the total number of pixels within a county using the ESA land 

cover class data product.14 Annual average temperature and precipitation are recorded from 

Climate Research Unit (Harris et al., 2014). The population density is calculated based on 

the World Population Account which estimates population based on number of people per 

1km pixel.15 The covariates of provincial level are derived from China National Bureau of 

Statistics, including ratio of public expenditure against public income, proportion of 

secondary industry in total GDP growth, and annual disposable income of rural residents.16  

The construction of the panel data is largely benefited from GeoQuery, a free platform 

filtering and aggregating geodata to certain geological boundaries (Goodman et al., 2019). 

Among all the geodata mentioned above, the geodata of vegetation index, temperature, 

precipitation, land cover, and population are derived from GeoQuery directly. 

 
 

13 China Metrological Data Service Center: CMDC (cma.cn) 

14 European Space Agency: https://www.esa-landcover-cci.org 

15 World Population Account: WorldPop 

16 China National Bureau of Statistics: 国家数据 (stats.gov.cn) 
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5. Empirical Strategy 

The SEPAP was implemented in two phases, the first one was announced in 2014, and the 

second one was started from 2016. I therefore use a staggered difference-in-difference (DID) 

estimation to estimate the causal effects.  

The validity of DID should be tested before the analysis, as the counties in each round of 

SEPAP were not chosen randomly, thus I also employed the Event-Study method to test the 

parallel trend assumption and to present dynamic treatment effects. If the assumption is 

violated, the treatment and control counties would have significant differences before the 

implementation of SEPAP.  

However, these two-way fixed effect models with staggered treatment timing have important 

weaknesses:  time-varying confounders, feedback from past outcome to treatment, 

assumption of treatment effect homogeneity, and carryover effects (Blackwell & Glynn, 

2018; De Chaisemartin & d'Haultfoeuille, 2020; Goodman-Bacon, 2021; Imai & Kim, 

2019). I estimate the Bacon decomposition to test if the staggered adoption would generate 

biases. I also estimate the synthetic difference-in-difference estimator (SDID), which weaken 

the reliance on parallel trending and derive the average treatment effect for the treated 

(ATT), as a robustness check.  

5.1 Difference-in-Difference 

The empirical strategy of this study follows the standard DID approach with staggered 

treatment timing. The relative changes in vegetation index and nightlight intensity are 
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 and the error term is represented as . The coefficient of interest in equation (1) is , 

the estimated impact of the SEPAP on the logarithm of vegetation index and nightlight 

intensity. The coefficients are expected to be positive, which would suggest a greater 

increase in vegetation and economic activities.  

The estimation strategy has all the advantages and pitfalls of standard DID estimators, and 

the staggered adoption may generate other biases even if the treatment is randomly assigned 

(Baker et al., 2022). This identification relies on the assumption that there are no other 

variables omitted beyond those that are controlled for, which coincide with the treatment of 

SEPAP and influence the vegetation index or nightlight intensity. Moreover, the causal 

interpretation requires both a parallel trend assumption and a constant treatment effect 

(Goodman-Bacon, 2021). These assumptions should not be taken as granted since Chinese 

government announced several policies before and after the implementation of SEPAP that 

might bias the estimates of the effects of SEPAP.  

5.2 Event Study 

The standard DID only capture a single aggregated treatment effect, whereas event-study 

estimators are able to generate dynamic treatment effects. The event study is also employed 

to test the parallel trends assumption with a fully flexible year-by-year estimating equation 

that takes the following form:  

 

 

where  and  represent vegetation index and nightlight 

intensity respectively, all other variables are defined as equation (1). The only difference 

from equation (1) is that in equation (2) and (3), rather than estimating the aggregated effect 

of SEPAP, the effects on each period is estimated and periods before the start of SEPAP is 

used to check the parallel trends assumption. The estimated vector  reveals the difference 
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j = - 1 5 , j + 0

5
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j = - 4 . j ± 0
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between the treated and control counties during each period and  is dropped as a 

reference. If the SEPAP increases vegetation index and nightlight intensity, then the 

estimated  is expected to be constant before the SEPAP took place and increase after that. 

Similar with the DID estimator, the event-study estimator with staggered adoption is also 

problematic. According to Sun and Abraham, the dynamic effect estimates for one relative-

time period can be contaminated by the causal effects of other relative-time periods if both 

staggered treatment timing and treatment heterogeneity effect present in the estimation 

sample (Sun & Abraham, 2021). The issue about staggered adoption is addressed in the 

following section. 

5.3 Bacon Decomposition 

The two empirical strategies are commonly applied to estimate the impact of policy changes, 

but the staggered adoption may not provide valid estimation. Goodman-Bacon shows that 

the estimator of DID is a weighted average of all possible 2×2 DID estimators that 

comparing timing groups to each other. For the DID estimator with staggered adoption, 

some of the estimators are derived by the comparison between treated units at a particular 

time and untreated units, some of them compared treated units at two different times by 

using the later-treated group as control group before it is treated and the earlier treated group 

as a control after its treatment begins (Goodman-Bacon, 2021). Therefore, the staggered DID 

combined with heterogeneous effects is likely to be biased. To address this issue, the Bacon 

decomposition is employed as a diagnostic test. 

Bacon decomposition can analyse the contribution of constituent DID estimates again their 

implicit weight. By doing so, the total weights and weighted-average DID estimate for each 

type of constituent is presented including the comparison of treatment-timing groups vs. 

never treated groups, earlier- vs. later treated groups (as effective controls), and later- vs. 

earlier- treated groups (as effective controls) (Baker et al., 2022). If the constituent that 

compares treated units at different times has very small weight after decomposition, the 

estimation of staggered DID would be less problematic.  
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5.4 Synthetic Difference-in-Difference 

Except for Bacon decomposition, Synthetic Difference-in-Difference (SDID) (Arkhangelsky 

et al. (2021)) is also employed to solve the potential problem of non-parallel trends. It 

combines the advantages of both Difference-in-Difference (DID) and Synthetic Control 

Method (SCM). The SDID can reweights and matches pre-exposed trends like SCM, thus 

the reliance on parallel trends assumption is weakened. Like DID, it is also invariant to 

additive unit-level shift and allows for valid large-panel inference. The weights in SDID are 

designed based on two categories: unit weights and time weights. First, it puts more weights 

on units that are similar in terms of their past to the treated units. Then, more weights are 

also put on periods that are similar to the treated periods. With unit weights, the average 

outcome for treated units and weighted average outcome of control units can be 

approximately paralleled. With time weights, the constant from the weighted average of pre-

treatment outcome for control units is differed from the average post-treatment outcome of 

the same control units. Combination of these two weights makes the estimation more 

plausible (Arkhangelsky et al., 2021).  

Even though Arkhangelsky et al. (2021) focused on SDID estimation with single treatment 

period, it also possible to be adjusted to staggered adoption. A simple modification 

suggested by the authors is to apply the SDID separately for every treatment period and 

calculate a weighted average of all estimators. In this case, the heterogeneous impact of 

different treatment period is also presented. 

20

5.4 Synthetic Difference-in-Difference

Except for Bacon decomposition, Synthetic Difference-in-Difference (SDID) (Arkhangelsky

et al. (2021)) is also employed to solve the potential problem of non-parallel trends. It

combines the advantages of both Difference-in-Difference (DID) and Synthetic Control

Method (SCM). The SDID can reweights and matches pre-exposed trends like SCM, thus

the reliance on parallel trends assumption is weakened. Like DID, it is also invariant to

additive unit-level shift and allows for valid large-panel inference. The weights in SDID are

designed based on two categories: unit weights and time weights. First, it puts more weights

on units that are similar in terms of their past to the treated units. Then, more weights are

also put on periods that are similar to the treated periods. With unit weights, the average

outcome for treated units and weighted average outcome of control units can be

approximately paralleled. With time weights, the constant from the weighted average of pre-

treatment outcome for control units is differed from the average post-treatment outcome of

the same control units. Combination of these two weights makes the estimation more

plausible (Arkhangelsky et al., 2021).

Even though Arkhangelsky et al. (2021) focused on SDID estimation with single treatment

period, it also possible to be adjusted to staggered adoption. A simple modification

suggested by the authors is to apply the SDID separately for every treatment period and

calculate a weighted average of all estimators. In this case, the heterogeneous impact of

different treatment period is also presented.



 21 

6. Results 

This section begins with the summary statistics of all the variables used in this study along 

with the raw trends of nightlight intensity. It then proceeds to the baseline estimates with 

validation of identification assumption. The analysis is extended to robustness check, 

simultaneous event, heterogeneity analysis, and spillover effect. 

6.1 Summary Statistics 

The summary statistics are provided in Table 2, using information of each county in each 

year. It includes 2709 counties and 19 years for all variables except for nightlight intensity 

which only has 8 years of observation. Suggested by Baker et al., the staggered adoption is 

less biased if the percentage of never treated units are higher (Baker et al., 2022). The 

percentage of treated counties is reported as TREAT which equals one if a county is 

included in SEPAP. Notice that only 14.3% of counties are ever treated and 85.7% of 

counties are never treated which means a relatively low potential bias caused by staggered 

adoption.  

Raw trends and nightlight intensity are provided in Figure 3. It presents counties in three 

categories: earlier treated counties, later treated counties and never treated counties. The 

earlier treated counties are included after the policy announcement of SEPAP in 2014 while 

later treated counties are included after the policy announcement in 2016. From the raw 

trends, three types of counties have similar trending before the policy announcements but 

performed slightly differently after that. The two vertical lines indicate the years of two 

policy announcement. 
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Table 1 Data Source and Summary Statistics 

Variable Source N Mean S.D. 

Vegetation Index (VI) 1 51,471 4276.40 1176.43 

Nightlight Intensity (NI) 1 21,672 2.58 6.12 

Ever treated county (TREAT) 2 51,471 0.14 0.35 

Treated county after treatment (SEPAP) 2 51,471 0.02 0.15 

Hours of Sunlight (SUNHR) 3 51,471 13.48 5.68 

Ratio of cropland (CROP) 4 51,471 77.13 41.22 

Population density (POP) 5 51,471 723.09 2072.56 

Temperature (TEMP) 6 51,471 0.55 0.29 

Precipitation (PRECIP) 6 51,471 2007.32 516.98 

Disposable income of rural residents (RUINC) 7 51,471 7419.93 4872.04 

Share of secondary industry (SECOND) 7 51,471 0.45 0.07 

Ratio of fiscal expenditure to revenue (EXPINC) 7 51,471 2.25 0.77 

Source: 

1. Visible Infrared Imaging Radiometer Suite 

2. Policy Announcement 

3. China Metrological Data Service Center 

4. European Space Agency 

5. World Population Account 

6. Climate Research Unit 

7. China National Bureau of Statistics 
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Table l Data Source and Summary Statistics

Variable Source N Mean S.D.
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Figure 3 Raw Trends in Vegetation Index and Nightlight Intensity 

 

Note: Figures present the average number of vegetation index and nightlight intensity during their periods of 

observation. The earlier treated counties are included in the policy announcement of SEPAP in 2014, and the 

later treated counties are listed in the policy announcement in 2016. Two vertical lines represent the year of two 

treatment period.  

 

 

6.2 Baseline Estimates 

The baseline estimates derived from Equation (1) are presented in Table 3 where the 

dependent variables are logarithms of vegetation index and nightlight intensity. The three 

columns under each dependent variable reflect varying combinations of controls. For column 

1 and 4, only county and year fixed effects are controlled. This specification rules out all 

time-invariant county features and year shocks that unanimously affect all regions. For 

column 2 and 5, county-level time-varying controls are added which alleviate the biases 

generated from omitted variables. For column 3 and 6, another three province-level time 

varying controls are added. The results across all specifications are positive and significant, 

suggesting that higher vegetation index and nightlight intensity in treated counties after the 

deployment of SEPAP. For example, the point estimation in column 1 and 4 is 0.0111 and 

0.0824 which represent a 1.11% increase in vegetation index and 8.24% increase in 
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columns under each dependent variable reflect varying combinations of controls. For column

l and 4, only county and year fixed effects are controlled. This specification rules out all

time-invariant county features and year shocks that unanimously affect all regions. For

column 2 and 5, county-level time-varying controls are added which alleviate the biases

generated from omitted variables. For column 3 and 6, another three province-level time

varying controls are added. The results across all specifications are positive and significant,

suggesting that higher vegetation index and nightlight intensity in treated counties after the

deployment of SEPAP. For example, the point estimation in column l and 4 is 0.0111 and

0.0824 which represent a 1.11% increase in vegetation index and 8.24% increase in
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nightlight intensity. After adding more controls, the magnitude of effects increases to 1.3% 

for vegetation index and 10.3% for nightlight intensity. 

The evidence from the event study is presented in Figure 4 where the dynamic effects on 

vegetation index and nightlight intensity are shown in Figure 4a and 4b respectively. In 

Figure 4a, a lagged increase in vegetation index is observed following the deployment of 

SEPAP. Additionally, there is little evidence of prevailing difference in treated and control 

counties prior to the policy announcement. Following the policy announcement, vegetation 

index starts to increase from the second year and is significantly differentiated between 

treated and control counties from the third year. In Figure 4b, a sharp increase in nightlight 

intensity is observed after the policy announcement, and the difference between treated and 

control counties are quite constant after that. Similar to the vegetation index, the estimate of 

the program effect on of nightlight intensity prior to the policy announcement is not 

statistically significant. The potential concern about the estimation of the event study is that, 

as a staggered adoption, the estimation of latest two periods is derived from 37 earlier treated 

counties which might be biased due to a small sample size.  

The different performance between vegetation index and nightlight intensity can be partially 

explained by different channels of impact. For nightlight intensity, the change starts from the 

construction of PV stations, while the case for vegetation index is more complicated. As 

mentioned in the conceptual framework, the vegetation index might be impacted by the 

change of energy choice for poor households from biomass energy to commercial energy or 

electricity. In rural Chine, using biomass as main source of energy accounts for 64.1% of 

total household energy consumption (S. Wu et al., 2019), and about 60% of rural households 

use biomass energy as their main cooking fuels (Hou et al., 2017). The change of cooking 

fuels could be costly and time consuming. Traditional firewood stove does not require 

electricity or pipeline to be functional which means that to change energy choice for cooking 

is to change the whole stove along with supporting facilities in kitchen. This mechanism 

could partially explain the delay of change in vegetation index, and more evidence is 

provided in the heterogeneity analysis.  
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Table 3 Baseline Estimates 

 Vegetation Index  Nightlight Intensity 
 (1) (2) (3)  (4) (5) (6) 
SEPAP 0.011*** 0.014*** 0.013***  0.082*** 0.109*** 0.103*** 
 (0.004) (0.003) (0.003)  (0.019) (0.019) (0.019) 
TEMP  0.018*** 0.018***   0.017* 0.018* 
  (0.003) (0.003)   (0.009) (0.009) 
PRECIP  0.092*** 0.092***   -0.226*** -0.230*** 
  (0.006) (0.006)   (0.022) (0.022) 
POP  -0.097*** -0.096***   0.791*** 0.788*** 
  (0.017) (0.017)   (0.039) (0.039) 
CROP  -0.010 -0.015   0.386*** 0.386*** 
  (0.045) (0.045)   (0.145) (0.145) 
SUNHR  0.080*** 0.079***   0.289*** 0.295*** 
  (0.007) (0.007)   (0.029) (0.028) 
RUINC   0.090***    0.395* 
   (0.014)    (0.221) 
SECOND   0.015    0.571*** 
   (0.014)    (0.189) 
EXPINC   -0.004    0.049** 
   (0.002)    (0.019) 
County FE Y Y Y  Y Y Y 
Year FE Y Y Y  Y Y Y 
Observations 51,471 51,433 51,433  21,668 21,652 21,652 
Counties 2,709 2,707 2,707  2,709 2,707 2,707 
Adjusted  0.00 0.13 0.13  0.00 0.33 0.33 
Note: The dependent variable, vegetation index and nightlight intensity, is transformed into logarithm. SEPAP 

represents whether a county is covered in the SEPAP in a specific year. TEMP presents the yearly average 

temperature. PRECIP is the logarithm of annual total precipitation of a county. POP shows the logarithm of 

population density in a county. CROP indicate the ratio of croplands within a county. SUNHR is the hours of 

sunlight exposure per year. RUINC is the logarithm of disposable income of rural residents. SECOND depicts 

the ratio of the added value of second industry to GDP. EXPINC is the proportion of publics expenditure to 

public income. Standard errors clustered at the county level and are shown in the parenthesis. ***, **, * 

indicate significance at 1%, 5%, 10%, respectively. 
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Figure 4 Event Studies for Percentage Change of Vegetation Index and Nightlight Intensity 

 

Note: Event studies document the evolution of percentage change of vegetation index and nightlight intensity 

surrounding the passage of SEPAP policy. Each point estimate refers to the change in percentage between 

treated and untreated counties, compared to their baseline differential in the year of policy announcements. 

Graph (a) shows the difference on vegetation index, and graph (b) shows the difference on nightlight intensity. 

Regression includes the full set of time-varying controls. 

 

6.3 Bacon Decomposition 

The diagnostic test of Bacon decomposition is presented in Table 4 where the staggered DID 

estimates are separated into three components: earlier treated vs. later treated, later treated 

vs. early treated, and treated vs. never treated. In group of earlier treated vs. later treated, the 

later treated counties are used as controls for earlier treated counties. In group of later treated 

vs. earlier treated counties, the earlier treated counties are used as controls for later treated 

counties. In group of treated vs. never treated, treated counties are compared with untreated 

counties. Since the overall estimation from staggered DID is a weighted average of estimates 

from each component, if the comparison between earlier treated counties and later treated 

counties takes a large proportion of total weight, the estimation from staggered DID would 

be problematic (Goodman-Bacon, 2021).  

The results from Table 4 shows that about 99% of the estimation is derived between the 

comparison of treated and never treated counties, only about 1% of the estimation capture 

the difference between time-varying treatment. The overall estimates of DID are basically 
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Note: Event studies document the evolution of percentage change of vegetation index and nightlight intensity

surrounding the passage of SEPAP policy. Each point estimate refers to the change in percentage between

treated and untreated counties, compared to their baseline differential in the year of policy announcements.

Graph (a) shows the difference on vegetation index, and graph (b) shows the difference on nightlight intensity.

Regression includes the full set of time-varying controls.
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the same as estimates between treated and never treated counties which means that the 

staggered adoption would not be a problem in this study. To be noted that the Bacon 

decomposition is not be able to incorporate covariates at present, therefore no covariates are 

included in the decomposition. 

 

Table 4 Weights and Estimates from Bacon Decomposition 

 Weight Estimate 
Panel A: Vegetation Index 
Earlier Treated vs. Later Treated 0.008 0.005 
Later Treated vs. Earlier Treated 0.002 -0.023 
Treated vs. Never Treated 0.990 0.012 
Difference-in-Difference 0.012 
Observations 51433 
Panel B: Nightlight Intensity 
Earlier Treated vs. Later Treated 0.006 -0.026 
Later Treated vs. Earlier Treated 0.006 0.025 
Treated vs. Never Treated 0.988 0.083 
Difference-in-Difference 0.083 
Observations 21624 
Note: The Goodman-Bacon decomposition (2021) above displays the weights and components making up the 

overall single coefficient of DID estimates where treatment refers to deployment of SEPAP. Decompositions 

are documented for vegetation index and nightlight intensity (panel A and B). The models are estimated 

without controls since Bacon decomposition do not incorporate covariates at present. For decomposition, each 

components’ weight is given along with the point estimate for this comparison. The overall DID estimates and 

numbers of observations are presented at the foot of each panel.  
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Figure 5 Goodman-Bacon Decomposition for Vegetation Index and Nightlight Intensity 

 

Note: This figure documents the Goodman-Bacon decomposition into a series of 2×2 difference-in-difference 

models depending on the type of comparison unit. The treatment refers to the deployment of SEPAP and the 

outcomes are vegetation index and nightlight intensity. 
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Note: This figure documents the Goodman-Bacon decomposition into a series of 2x2 difference-in-difference

models depending on the type of comparison unit. The treatment refers to the deployment of SEPAP and the

outcomes are vegetation index and nightlight intensity.
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6.4 Synthetic Difference-in-Difference 

Except for the staggered adoption, to address the potential violation of parallel trends 

assumption, the synthetic difference-in-difference (SDID) is employed as an additional 

robust check. This approach requires a balanced panel, thus 38 observations with missing 

value are dropped when estimating the impact on vegetation index, and 44 observations are 

dropped for impact on nightlight intensity.  

The estimation of SDID is presented in Table 5 which contains three categories for each 

outcome variable: overall estimation, impact on earlier treated counties, and impact on later 

treated counties. When analyzing DID model with staggered adoption, SDID measures the 

impacts on each treatment periods and calculates the weighted average estimation as the 

overall estimation. Therefore, presenting both overall effects and impact on each treatment 

period not only fits how SDID deals with the data but also provides heterogenous impacts of 

each treatment period.  

Figure 6a and 6b shows the trends of vegetation index and nightlight intensity using SDID, 

the outcomes of treated and untreated counties are basically parallel which relief the concern 

of unparallel trending. The result stored in Table 5 shows that SEPAP increased vegetation 

index about 1.2% for counties treated in two waves, while the impact on nightlight intensity 

is about 8.1%. The overall estimations from SDID are both positive and statistically 

significant at 1% level, which is consistent but slightly lower than the baseline estimates 

suggesting the potential of overestimation in staggered DID. The estimation of SDID shows 

that earlier treated counties do not benefit very much from the program, the magnitudes are 

small and insignificant for both vegetation index and nightlight intensity. For later treated 

counties, the SEPAP increases about 1.3% of vegetation index and 9.1% of nightlight 

intensity.  

The different impacts on earlier and later treated counties can be partially explained by the 

different policy intensity. In the policy announcement of 2014, central government selected 

pilot provinces, and the pilot counties are selected by each province, thus provincial 

governments play a major role in the promotion of SEPAP. Besides, the pilot program is 

implemented in six provinces that are “highly motivated, have had supporting policies and 
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foundation” for implementation of SEPAP17. These provinces either have experience about 

build large-scale PV station such as Qinghai province which has the largest PV station in 

China, or have implement SEPAP-like program before it became a national policy such as 

Anhui province which started its own solar energy poverty alleviation program in 2013. All 

of these situations might dilute the effect of SEPAP.  

 

 

Table 5 Synthetic Difference-in-Difference Estimator 

 Vegetation Index  Nightlight Intensity 
 Overall Earlier Later  Overall Earlier Later 
SEPAP 0.012 0.003 0.013  0.081 0.026 0.091 
 (0.003) (0.009) (0.003)  (0.019) (0.047) (0.018) 
Control Y Y Y  Y Y Y 
Observations 51,433 44,764 50,730  21,624 18,816 21,328 
Counties 2,707 2,356 2,670  2,703 2,352 2,666 
Note: The impacts of SEPAP on vegetation index and nightlight intensity estimated with synthetic difference-

in-difference are presented in this table. The impact on each outcome variable is separated into three categories: 

overall estimation, impact on earlier treated counties, and impact on later treated counties which is shown under 

Overall, Earlier, and Later respectively. The overall estimation is a weighted average effect of impacts on two 

treatment periods. 

 

 

 

 

 

 

 

 

17 Policy announcemet in 2014: 政府信息公开目录---国家能源局---国家能源局 国务院扶贫办关于印发实施光伏扶
贫工程工作方案的通知 国能新能[2014]447号 (nea.gov.cn) 
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Policy announcemet in 2014: UFJ# A J FBR---El3 #El.Ee---[El3'#)l.ES[BR13 3 # 3 J) 3 F Ep'2 9 M ) # #
I H I ' E j #Sb 1 BAEAIAEI2OH4]AA7g (nea.goven)

http://zfxxgk.nea.gov.cn/auto87/201411/t20141105_1862.htm
http://zfxxgk.nea.gov.cn/auto87/201411/t20141105_1862.htm
http://zfxxgk.nea.gov.cn/auto87/201411/t20141105_1862.htm
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Figure 6a Trends on Vegetation Index using Synthetic Difference-in-Difference 

 

Figure 6b Trends on Nightlight Intensity using Synthetic Difference-in-Difference 

 

Note: this figure shows trends of vegetation index and nightlight intensity in two treatment periods. The 

weights used to average pretreatment time periods are shown in the bottom of each graph. 
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Figure 6a Trends on Vegetation Index using Synthetic Difference-in-Difference
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Figure 6b Trends on Nightlight Intensity using Synthetic Difference-in-Difference
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Note: this figure shows trends of vegetation index and nightlight intensity in two treatment periods. The

weights used to average pretreatment time periods are shown in the bottom of each graph.
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6.5 Simultaneous Policy 

The two approaches applied in the previous section provide extensive evidence that 

vegetation index and nightlight intensity increased after the implementation of SEPAP. Yet, 

the SEPAP is not a single and stand-alone event, it is included in a large-scale poverty 

alleviation program which might distort the impact of SEPAP (Park et al., 2002). The two 

selection criteria of SEPAP, solar radiation and economic condition, means that many 

poverty-stricken counties participating multiple poverty alleviation programs are included in 

the SEPAP. Among 477 counties included in the SEPAP, 312 of them are on the list of 

national poverty-stricken counties.  

To address this problem, the baseline estimates are conducted again excluding all the 

poverty-stricken counties. There are 570 poverty-stricken counties excluded from the 

dataset, among which 303 of them are included in the SEPAP, leaving us 85 treated counties. 

The results are presented in Table 6. After excluding poverty-stricken counties, the 

coefficient of nightlight intensity does not change much and are all significant - with or 

without controls. Consequently, the impact on nightlight intensity is not subject to other 

poverty alleviation policies. On the contrary, the coefficients of vegetation index decrease to 

nearly zero, and even have a negative sign in column 1 and 3. The positive environmental 

impact of SEPAP may therefore capture the effects of other poverty alleviation policies.  

However, according to the conceptual framework, the vegetation is influenced by SEPAP 

through the change of household energy choice which is more likely to happen in the poor 

area. With nearly 99.8% of electrification rate in 2013 (Bie & Lin, 2015), households living 

in the poverty-stricken counties are more likely to use biomass energy and change their 

energy choice after the intervention of SEPAP. Therefore, excluding the poverty-stricken 

counties alleviate the influence of other policies but might also eliminate the potential effect 

on vegetation.  
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Table 6 Baseline Estimates Excluding Poverty-Stricken Counties 

 Vegetation Index  Nightlight Intensity 
 (1) (2) (3)  (4) (5) (6) 
SEPAP -0.008 0.001 -0.003  0.077* 0.113*** 0.106*** 
 (0.007) (0.007) (0.007)  (0.040) (0.039) (0.039) 
TEMP  0.018*** 0.018***   0.021** 0.021** 
  (0.004) (0.004)   (0.010) (0.010) 
PRECIP  0.092*** 0.092***   -0.23*** -0.23*** 
  (0.007) (0.007)   (0.025) (0.025) 
POP  -0.098*** -0.097***   0.785*** 0.785*** 
  (0.018) (0.018)   (0.040) (0.041) 
CROP  -0.023 -0.026   0.303** 0.303** 
  (0.045) (0.045)   (0.147) (0.147) 
SUNHR  0.083*** 0.080***   0.241*** 0.241*** 
  (0.008) (0.008)   (0.032) (0.032) 
RUINC   0.090***    0.082 
   (0.016)    (0.230) 
SECOND   0.015    0.279 
   (0.017)    (0.201) 
EXPINC   -0.002    0.027 
   (0.003)    (0.020) 
County FE Y Y Y  Y Y Y 
Year FE Y Y Y  Y Y Y 
Observations 40,641 40,603 40,603  17,108 17,092 17,092 
Number of Counties 2,139 2,137 2,137  2,139 2,137 2,137 
Adjusted  0.00 0.13 0.13  0.00 0.38 0.38 
Note: This table present the estimation excluding all national poverty-stricken counties to alleviate the impact 

of other poverty alleviation programs. The dependent variables, vegetation index and nightlight intensity, are 

transformed into logarithm. SEPAP represents whether a county is covered in the SEPAP in a specific year. 

TEMP presents the yearly average temperature. PRECIP is the logarithm of annual total precipitation of a 

county. POP shows the logarithm of population density in a county. CROP indicate the ratio of croplands 

within a county. SUNHR is the hours of sunlight exposure per year. RUINC is the logarithm of disposable 

income of rural residents. SECOND depicts the ratio of the added value of second industry to GDP. EXPINC is 

the proportion of publics expenditure to public income. Standard errors clustered at the county level and are 

shown in the parenthesis. ***, **, * indicate significance at 1%, 5%, 10%, respectively. 
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6.6 Heterogeneity Analysis 

Before the implementation of SEPAP, solar PV electricity prices are decided based on local 

solar energy radiation. The subsided PV electricity price is categorized with three solar 

source zones. Zone 1 has the best solar resources while the PV electricity price is the lowest. 

Zone 2 has moderate solar resources, and the PV electricity price is in the middle. Zone 3 

contains all other places and PV electricity price is the highest.18  

Heterogeneity analysis is conducted based on this setting to check the different impacts on 

counties located in three types of solar energy zones. When conducting the estimation for 

each zone, the treated counties in other zones are excluded to keep the control group 

unchanged, thus the heterogeneous estimation is comparable to each other under the same 

outcome. The results are presented in Table 7. 

The treated counties in zone 1 experienced more increase in vegetation than treated counties 

in zone 2 and zone 3 while the impact on nightlight intensity increased from zone 1 to zone 

3. The interesting results can be explained by the characteristics of each zone. Zone 1 has 

plenty of solar radiation with low PV electricity price which decrease the opportunity cost of 

using self-generated electricity. As increase of PV electricity price, selling PV electricity 

instead of using them might be preferred by poor households. In this case, keeping the old 

energy choice and selling all the PV electricity might generate more income and utility. 

Meanwhile, with the best solar resources in China, zone 1 can be seen as a traditional market 

of solar energy which might not bring many new customers even after the implementation of 

SEPAP. Instead, zone 2 and zone 3 is under developed for solar industry which might 

expand the market in a larger scale.  

 

 

 

18 Policy about PV electricity prices and three solar resource zones: 关于发挥价格杠杆作用促进光伏产业健康发展的通
知(发改价格[2013]1638号)_政府信息公开_政务公开-国家发展改革委 (ndrc.gov.cn) 
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1s Policy about PV electricity prices and three solar resource zones: 3 T '#2# { # # 1 # F { [# IE2i# {/ l g± '#2#8$33#
31I8$' ( 1# [201311638) EBA RATE EL3;ANFE-BR' F ±i ± (ndre.gov.en)

https://zfxxgk.ndrc.gov.cn/web/iteminfo.jsp?id=1743
https://zfxxgk.ndrc.gov.cn/web/iteminfo.jsp?id=1743
https://zfxxgk.ndrc.gov.cn/web/iteminfo.jsp?id=1743
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Table 7 Heterogeneous impacts on three solar resource zones 

 Vegetation Index  Nightlight Intensity 

 Zone 1 Zone 2 Zone 3  Zone 1 Zone 2 Zone 3 
SEPAP 0.034*** 0.010** 0.013*  -0.045 0.116*** 0.118*** 
 (0.010) (0.004) (0.007)  (0.057) (0.023) (0.034) 
TEMP 0.018*** 0.018*** 0.018***  0.017* 0.020** 0.019** 
 (0.003) (0.003) (0.003)  (0.010) (0.009) (0.010) 

PRECIP 0.092*** 0.089*** 0.088***  -0.246*** -0.229*** -0.249*** 
 (0.007) (0.006) (0.007)  (0.024) (0.023) (0.024) 

POP -0.095*** -0.096*** -0.095***  0.778*** 0.788*** 0.778*** 
 (0.0179) (0.017) (0.018)  (0.040) (0.039) (0.040) 
CROP -0.0184 -0.017 -0.022  0.321** 0.387*** 0.334** 

 (0.0452) (0.045) (0.045)  (0.149) (0.146) (0.149) 
SUNHR 0.0765*** 0.076*** 0.077***  0.282*** 0.285*** 0.286*** 

 (0.0074) (0.007) (0.007)  (0.030) (0.029) (0.030) 
RURALINC 0.1170*** 0.093*** 0.121***  0.515** 0.344 0.648*** 

 (0.0151) (0.014) (0.015)  (0.230) (0.221) (0.228) 
SECOND 0.0418** 0.016 0.038**  0.462** 0.626*** 0.585*** 
 (0.0163) (0.015) (0.016)  (0.198) (0.190) (0.196) 

EXPINC 0.0021 -0.003 -0.000  0.039* 0.057*** 0.051** 
 (0.0027) (0.002) (0.003)  (0.021) (0.019) (0.021) 

County FE Y Y Y  Y Y Y 
Year FE Y Y Y  Y Y Y 

Observations 44,688 49,248 45,619  18,812 20,732 19,204 
Counties 2,352 2,592 2,401  2,352 2,592 2,401 

Adjusted  0.14 0.13 0.13  0.34 0.34 0.35 
Note: This table present the estimation based on three solar resource zones. The dependent variables, vegetation 

index and nightlight intensity, are transformed into logarithm. SEPAP represents whether a county is covered 

in the SEPAP in a specific year. TEMP presents the yearly average temperature. PRECIP is the logarithm of 

annual total precipitation of a county. POP shows the logarithm of population density in a county. CROP 

indicate the ratio of croplands within a county. SUNHR is the hours of sunlight exposure per year. RUINC is 

the logarithm of disposable income of rural residents. SECOND depicts the ratio of the added value of second 

industry to GDP. EXPINC is the proportion of publics expenditure to public income. Standard errors clustered 

at the county level and are shown in the parenthesis. ***, **, * indicate significance at 1%, 5%, 10%, 

respectively. 
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Table 7 Heterogeneous impacts on three solar resource zones

Vegetation Index Nightlight Intensity

Zone l Zone 2 Zone 3 Zone l Zone2 Zone 3

SEPAP 0.034"" 0.010" 0.013' -0.045 0.116" 0.118***

(0.010) (0.004) (0.007) (0.057) (0.023) (0.034)

TEMP 0.018"" 0.018" 0.018" 0.017° 0.020" 0.019"

(0.003) (0.003) (0.003) (0.010) (0.009) (0.010)

PRECIP 0.092" 0.089"" 0.088"" -0.246*** -0.229*** -0.249"

(0.007) (0.006) (0.007) (0.024) (0.023) (0.024)

POP -0.095*** -0.096" -0.095" 0.778" 0.788" 0.778"

(0.0179) (0.017) (0.018) (0.040) (0.039) (0.040)

CROP -0.0184 -0.017 -0.022 0.321** 0.387" 0.334"

(0.0452) (0.045) (0.045) (0.149) (0.146) (0.149)

SUNHR 0.0765*** 0.076" 0.077 0.282" 0.285" 0.286"

(0.0074) (0.007) (0.007) (0.030) (0.029) (0.030)

RURALINC 0.1170"" 0.093"" 0.121*** 0.515" 0.344 0.648"

(0.0151) (0.014) (0.015) (0.230) (0.221) (0.228)

SECOND 0.0418" 0.016 0.038" 0.462" 0.626" 0.585***

(0.0163) (0.015) (0.016) (0.198) (0.190) (0.196)

EXPINC 0.0021 -0.003 -0.000 0.039 0.057*** 0.051"

(0.0027) (0.002) (0.003) (0.021) (0.019) (0.021)

County FE y y y y y y

Year FE y y y y y y

Observations 44,688 49,248 45,619 18,812 20,732 19,204

Counties 2,352 2,592 2,401 2,352 2,592 2,401

Adjusted R? 0.14 0.13 0.13 0.34 0.34 0.35
Note: This table present the estimation based on three solar resource zones. The dependent variables, vegetation

index and nightlight intensity, are transformed into logarithm. SEPAP represents whether a county is covered

in the SEPAP in a specific year. TEMP presents the yearly average temperature. PRECIP is the logarithm of

annual total precipitation of a county. POP shows the logarithm of population density in a county. CROP

indicate the ratio of croplands within a county. SUNHR is the hours of sunlight exposure per year. RUINC is

the logarithm of disposable income of rural residents. SECOND depicts the ratio of the added value of second

industry to GDP. EXPINC is the proportion of publics expenditure to public income. Standard errors clustered

at the county level and are shown in the parenthesis. ***, **, * indicate significance at 1%, 5%, 10%,

respectively.
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6.7 Spillover Effect 

Except for the direct influence on the treated counties, the SEPAP might generate spillover 

effect on untreated counties in the same province (Deininger & Xia, 2016; Donaldson & 

Hornbeck, 2016; Wooster & Diebel, 2010). Because of the staggered adoption, it should be 

difficult to decide when the untreated counties are affected by the spillover effects. However, 

the previous analysis has shown that the first wave does not have effects on both vegetation 

index and nightlight intensity, thus I assume the untreated counties might experience 

spillover effects on the second wave. To estimate the spillover effect, I first exclude all 

treated counties, then separate the spillover effects into two categories, one is a binary 

variable defining whether a county is located in a province where at least one county is 

included in SEPAP, the one is the coverage of SEPAP in a province. The spillover effects 

are estimated based on the two following equations:  

 

 

where  equals 1 if a county is in a same province with SEPAP counties, 

while  is the percentage of SEPAP counties in a province. The variable 

 denotes whether it is after the year 2016. All other variables are the same as previous 

equations. The results are presented in Table 8.  

Being an untreated county in a province where some counties are included in the SEPAP can 

significantly decrease the nightlight intensity of that county by about 2.8%, and the situation 

is worsened if the coverage of SEPAP increases. The untreated counties seem to be losers in 

this program when money and resources are poured into SEPAP counties. The reasons can 

be explained by the following reasons. First, Since the money and resources are allocated by 

provincial government, untreated counties in the same province with SEPAP counties might 

receive less support than previous years, but untreated counties in other province are not 

affected. Second, with more labor demanding in SEPAP counties to build PV installations, 

the people living in the same province might move to SEPAP counties for better job 

opportunities.  
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(4)

(5)

where SameProvince. equals I if a county is in a same province with SEPAP counties,

while SEPAPCoverage. is the percentage of SEPAP counties in a province. The variable

Post, denotes whether it is after the year 2016. All other variables are the same as previous

equations. The results are presented in Table 8.

Being an untreated county in a province where some counties are included in the SEPAP can

significantly decrease the nightlight intensity of that county by about 2.8%, and the situation

is worsened if the coverage of SEPAP increases. The untreated counties seem to be losers in

this program when money and resources are poured into SEPAP counties. The reasons can

be explained by the following reasons. First, Since the money and resources are allocated by

provincial government, untreated counties in the same province with SEPAP counties might

receive less support than previous years, but untreated counties in other province are not

affected. Second, with more labor demanding in SEPAP counties to build PV installations,

the people living in the same province might move to SEPAP counties for better job
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For vegetation index, there is a very small decrease for untreated counties in a province but it 

is not statistically significant. With more counties covered in SEPAP, the coefficient become 

positive and significant at 10% level which means that vegetation index increased for 

untreated counties if more counties are covered in SEPAP in a same province. The price of 

firewood is relatively low which makes them more attractive than charcoal and commercial 

energy for rural household, but it also means that transporting firewood from far away is not 

worthwhile. Therefore, with more counties covered in SEPAP, the demand for firewood 

might decrease more drastically. For untreated counties located in a province with more 

SEPAP counties, even though the demand for firewood is still exist for local residents, less 

demand from treated counties might decrease the deforestation in these untreated counties 

and increase their vegetation.  
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Table 8 Spillover effects 

 Vegetation Index  Nightlight Intensity 
 (1) (2)  (3) (4) 

 

 

-0.002   -0.028**  
 (0.003)   (0.012)  

 

 

 0.017*   -0.179*** 
  (0.010)   (0.041) 
TEMP 0.0178*** 0.0179***  0.0186* 0.0182* 
 (0.0034) (0.0034)  (0.0099) (0.0098) 
PRECIP 0.0883*** 0.0879***  -0.2406*** -0.2397*** 
 (0.0071) (0.0071)  (0.0242) (0.0241) 
POP -0.0951*** -0.0953***  0.7787*** 0.7802*** 
 (0.0180) (0.0180)  (0.0403) (0.0404) 
CROP -0.0214 -0.0221  0.3345** 0.3361** 
 (0.0452) (0.0452)  (0.1497) (0.1497) 
SUNHR 0.0756*** 0.0752***  0.2780*** 0.2610*** 
 (0.0074) (0.0074)  (0.0297) (0.0293) 
RUINC 0.1222*** 0.1188***  0.5263** 0.5830** 
 (0.0153) (0.0153)  (0.2295) (0.2278) 
SECOND 0.0413** 0.0430***  0.4765** 0.5263*** 
 (0.0166) (0.0165)  (0.1985) (0.1970) 
EXPINC 0.0013 0.0009  0.0526** 0.0647*** 
 (0.0028) (0.0028)  (0.0212) (0.0211) 
County FE Y Y  Y Y 
Year FE Y Y  Y Y 
Observations 44,061 44,061  18,548 18,548 
Number of Counties 2,319 2,319  2,319 2,319 
Adjusted  0.13 0.13  0.35 0.35 
Note: This table present the estimation of spillover effects on the untreated counties in same province. The 

dependent variables, vegetation index and nightlight intensity, are transformed into logarithm. SEPAP 

represents whether a county is covered in the SEPAP in a specific year. TEMP presents the yearly average 

temperature. PRECIP is the logarithm of annual total precipitation of a county. POP shows the logarithm of 

population density in a county. CROP indicate the ratio of croplands within a county. SUNHR is the hours of 

sunlight exposure per year. RUINC is the logarithm of disposable income of rural residents. SECOND depicts 

the ratio of the added value of second industry to GDP. EXPINC is the proportion of publics expenditure to 

public income. Standard errors clustered at the county level and are shown in the parenthesis. ***, **, * 

indicate significance at 1%, 5%, 10%, respectively. 
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1) 2) (3) (4)
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(0.003) (0.012)
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(0.010) (0.041)
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PRECIP 0.0883"" 0.0879" -0.2406" -0.2397
(0.0071) (0.0071) (0.0242) (0.0241)

POP -0.0951*** -0.0953*** 0.7787" 0.7802"
(0.0180) (0.0180) (0.0403) (0.0404)

CROP -0.0214 -0.0221 0.3345" 0.3361"
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(0.0074) (0.0074) (0.0297) (0.0293)

RUINC 0.1222"" 0.1188*** 0.5263" 0.5830"
(0.0153) (0.0153) (0.2295) (0.2278)

SECOND 0.0413" 0.0430*** 0.4765" 0.5263"
(0.0166) (0.0165) (0.1985) (0.1970)

EXPINC 0.0013 0.0009 0.0526" 0.0647
(0.0028) (0.0028) (0.0212) (0.0211)

County FE y y y y
Year FE y y y y
Observations 44,061 44,061 18,548 18,548
Number of Counties 2,319 2,319 2,319 2,319
Adjusted R? 0.13 0.13 0.35 0.35
Note: This table present the estimation of spillover effects on the untreated counties in same province. The

dependent variables, vegetation index and nightlight intensity, are transformed into logarithm. SEPAP

represents whether a county is covered in the SEPAP in a specific year. TEMP presents the yearly average

temperature. PRECIP is the logarithm of annual total precipitation of a county. POP shows the logarithm of

population density in a county. CROP indicate the ratio of croplands within a county. SUNHR is the hours of

sunlight exposure per year. RUINC is the logarithm of disposable income of rural residents. SECOND depicts

the ratio of the added value of second industry to GDP. EXPINC is the proportion of publics expenditure to

public income. Standard errors clustered at the county level and are shown in the parenthesis. ***, **, *

indicate significance at l%, 5%, 10%, respectively.
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7. Conclusion and limitation 

I estimated the effect of SEPAP on the vegetation and on nightlight intensity. Using the 

original dataset covering 2709 counties over 19 years, I present causal evidence that the 

implementation of SEPAP increased local economic activity. Furthermore, the finding 

shows that the effect on economic activities is not biased by staggered adoption, potential 

violation of parallel trends assumption, and influences of other poverty alleviation programs. 

Importantly, I show that the increase in economic activity (measured by changes nightlight 

intensity) didn’t happen at the expense of the environment (measured by the vegetation 

index). My study therefore suggests that SEPAP is a successful policy to achieve the twin 

goals of reducing poverty and preserving the environment, but the negative spillover effects 

need to be addressed.  

This study also has limitations. First, the identification of the starting year of SEPAP is 

based on national policy announcements which might not be accurate. Some provincial 

government starts their own solar energy program prior to or after the implementation of 

SEPAP. Besides, there could lags between policy announcement and actual implementation.  

Second, the lack of microdata makes it difficult to uncover the exact mechanisms of change. 

All the estimations in this study are trying to capture the change in economic activities and 

household’s energy choice through nightlight intensity and vegetation index. More specific 

data such as survey data or health records would have allowed to obtain more direct 

evidence of the impacts of SEPAP.  

Third, there are a lot of policies implemented in China every year. Some of them are having 

more impacts than others. Even though, we have seen that the poverty-stricken counties 

would not bias the estimation on nightlight intensity. It might be influence by the 

heterogeneous effect of other policies. 

Finally, given the strong policy effects on economic activity and on the local vegetation (and 

hence, potentially on indoor fumes), an important question is whether the policy also affects 

indoor pollution and people’s health.  Such analysis of further effects of the SEPAP 

however goes beyond the scope of this study and is left for future research. 
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